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1 Abstract

The Near-Square Prime conjecture, states that there are an infinite number
of prime numbers of the form 22 4 1. In this paper, a function was derived
that determines the number of prime numbers of the form z? + 1 that are
less than n? + 1 for large values of n. Then by mathematical induction, it is
proven that as the value of n goes to infinity, the function goes to infinity,
thus proving the Near-Square Prime conjecture.

2 Functions

Let the function [(x) be the largest prime number of the form 4i 4+ 1 that is
less than x. For example, [(10.5) = 5,1(20) = 17,1(17) = 13.

Let the function 7*(n) represent the number of primes of the form z? + 1
that are less than or equal to n? + 1.

Let the set K, equal the set of odd integers of the form 22 + 1 less than or
equal to n? + 1 where n is an even integer.

Let the set P equal the set of prime numbers of the form 4: + 1.

Let the function z,(n) = the number of elements in K,, that are evenly di-
visible by prime number p excluding p, that are not divisible by another prime
number less than p. For example, if n is 12, then Ky = {5, 17,37,65,101, 145}
and z5(12) = 2 since 65 and 145 are evenly divisible by 5.



3 Methodology

We will look only at cases where n is an even number because if n is odd,
then n? + 1 will be an even number and thus not prime.

The set of odd integers of the form 22 + 1 less than or equal to n? + 1 is
as follows:

K, = {5,17,37,65,101, 145,197, 257, 325,401,485, ..., n? + 1}

These numbers are in the form 422 +8x + 5, where x is an integer greater
than or equal to 0.

There are exactly n/2 numbers in the set. Notice that not all of these
numbers are prime.

To identify the numbers that are prime, we will eliminate the values
divisible by primes of the form 4¢ + 1 since primes not of this form do not
evenly divide numbers of the form x? + 1. This is a known theorem of
quadradic residues.

Primes of the form 47 + 1 are:

P = {5,13,17,29,37,41,53,61,73,89,97,101,109,113,137,...}

According to Dirichlet’s Theorem, there are an infinite number of prime
numbers of the form 47 + 1. Note that the minimum gap between primes of
the form 47 4 1 is 4, and there are no consecutive gaps of 4. This is because
for the sequence 5,9,13,17,21,25,29,33..., every 3rd number is divisible by 3.

We start by identifying all the elements in set K,, that are divisible by
the prime number 5, the first prime number of the form 4z + 1, excluding 5.

K, = {5,17,37, 65,101, 145 ,197,257, 325 ,401, 485 , 577,677, 785,901, 1025 ,
1157,1297, 1445 ,1601, 1765 ,1937... ,n2+1}

Notice that every 5th element after 5, there are two elements that are
divisible by 5. This is a property of quadradic equations.

The equation y = 4%+ 8z +5 can be written as y = x(4x+8)+5. Values
of x = 5k or 5k 4+ 3 where k is an integer, will result in a value of y that is
evenly divisible by 5. Plugging 5k for = gives 5k(4x + 8) which is divisible
by 5, plugging 5k + 3 for x gives x(4(5k + 3) +8) = x(20k 4 20) which is also
divisible by 5.

Thus, as n — oo, about 2/5ths of the elements in K,, are evenly divisible
by 5. The number of elements in K,, that are evenly divisible by 5 excluding
5, limit n — oo are:

z5(n) lim,, o = (n/2)(2/5)



Next, we identify all the elements in set K,, that are divisible by 13, the
next higher prime of the form 47 + 1.

K, ={5,17,37, 65 ,101,145,197,257, 325 ,401,485, 577,677,785,901,1025, 1157 ,
1297,1445,1601, 1765, 1937 ,...,n% + 1}

Notice that every 13 elements, there are two elements that are divisible
by 13. If we subtract 65 from both sides of y = 422 + 8z + 5, we get
y — 65 = 42> + 8z — 60 which can be written as y — 65 = (4z — 12)(4x + 20).
Values of x = 13k + 3 or 13k + 8 will result in an integer value of y/13. If we
plug x = 13k + 3 in the left set of parentheses, we get 52k(4x + 20) which
is divisible by 13. If we plug 13k + 8 in the right set of parentheses we get
(4dx — 12)(52k + 52) which is divisible by 13.

Thus, as n — 0o, about 2/13ths of the values are divisible by 13. However,
notice that 65 and 325 are also divisible by 5. About 2/5ths of the numbers
divisible by 13 are also divisible by 5. So to avoid double counting, we must
multiply the number divisible by 13 by 3/5. The number of elements in K,
that are evenly divisible by 13 excluding 13, and not divisible by 5 limit
n — oo are:

z13(n) lim, oo = (n/2)(3/5)(2/13)

Next, we identify all the elements in set K,, that are divisible by 17, the
next higher prime of the form 47 + 1.

K, =5,17,37,65,101,145,197,257,325,401,485, 577,677,785, 901 ,1025,1157,1297, 1445 ,1601,
1765,1937... ,n2+1

Notice that every 17 elements after 17, there are two elements that are di-

visible by 17. If we subtract 17 from both sides of y = 422 + 8z + 5, we get

y—17 = 42% +8x+5— 17 which can be written as y — 17 = (4z —4)(4z +12).

Values of x = 17k 4+ 1 or 17k + 14 will result in an integer value of y/17.

Thus, there will always be at least 2 values of x every 17 numbers that will

result in a value of y that is evenly divisible by 17.

Thus, as n — oo, about 2/17ths of the values are divisible by 17. However,
about 2/5ths of the numbers divisible by 17 are also divisible by 5 and 2/13ths
of them are also divisible by 13. So to avoid double counting, we must
multiply the number divisible by 17 by 3/5 and 11/13. The number of
elements in K, that are evenly divisible by 17 excluding 17, and not divisible
by 5 or 13 limit n — oo are:

z7(n) limy o0 = (n/2)(3/5)(11/13)(2/17)



The fact that y = 422 + 8x + 5 is quadratic, for every p numbers, there
will always be 2 values of x that will result in a y that is evenly divisible by
P.

The general formula for number of values in the set K, that are evenly
divisible by prime number p of the form 47 + 1 excluding p, and not evenly
divisible by a prime less than p is:

zp(n) lim, 00 = (n/2)(3/5)(11/13)(15/17)...(2/p)
This can be written as

%) lim = (%) <;> ﬁ (q;z)

=5
q prime,4i+1

where the product is over prime numbers of the form 47 + 1.

We only need to go up to [(n) since prime numbers greater than [(n)
will not evenly divide any odd number less than n? + 1 that is not already
divisible by a lower prime. Let k(n) equal the total number of composite
numbers in set K,, limit n — oo that are less than or equal to n? + 1.

k(n) = z5(n) + z13(n) + 217(n) + ... + zmy(n)
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p prime,4i+1 q prime,4i+1

If we define the function W (z), which represents the fraction of elements
in K,, thar are composite numbers, as follows:

- 2 )
we= > ((2) I
p=>5 p q=5 q
p prime,4i+1 q prime,4i+1

where z is a prime number of the form 47 4+ 1 and the sum and products are
over prime numbers of the form 47 4 1.
The equation for the total number of composite values in set K, is:

n

kn) = (5 ) (W)
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Figure 1: The actual number of primes of the form z? + 1 that are less than
or equal to n?+1 is very closely approximated by 7*(n) = (n/2)(1—W(I(n)).

The number of primes of the form z? + 1 in K,, that are less than n? 4
1limn — oo equals the total number of values in K,,, which is (n/2), minus
the total number of composite elements in K,,.

n

T(n) = <§>—k(n)
mm) = (5)-(5) wem)

Equation 1: 7°(n) = (g) (1—W(in)))

To verify that I derived equation 1 properly, I plotted the number of
primes of the form 2%+ 1 that are less than or equal to n? + 1 (blue line) and
7*(n) (orange line) for values of n up to 1000 and as can be seen, the lines
correspond very closely.

Since I will be using mathematical induction to prove the Near-Square
Prime conjecture, I need to define 1 — W (p;;1) in terms of W (p;). Below are
the values of 1 — W (p;).

1-WE)=1-(3) =3
own <m0 (18 200 )
L—we) = 1- @) =@ -G-GO e -

(3) (5) (2)
Notice the value of 1 — W(p;11) is equal to ((pir1 — 2)/piy1) times the
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previous value of 1 — W (p;). This gives us the following recursive definition
for 1 — W(pis1):
. (Piv1 — 2)
Equation 2: 1 — W(p;41) = ——(1 - W(p:))
Pit1
Let [(n) = p; and let’s approximate n = p;. Since n is an even integer, n

is at least p; + 1 so this approximation errs on the side of caution. Plugging
p; for [(n) and n into equation 1 gives the following:

m) = (5)a-wm)

2
T (pit1) = <p¢;1> (1 = W(pit1))
™ (piv1) = <p¢;1> (p?};: 2) (1—-W(p;))  Using equation 2
o) = (P52) 0w

Taking the ratio of 7*(p;11)/7*(p;) gives:

)

T (pip1) /7 (pi) = (%) (1—-W(p))
T (pip1) /7 (pi) = (pH;—z_Q) =

Since p;41 is at least p;+4, this proves that 7*(p;1) will always be bigger than
7*(p;). However, plugging in p; +4 for p;yy gives (p; +4 —2)/p; = (pi+2)/ps
which approaches 1 as p; goes to infinity. This could mean that 7*(p;) may
approach a constant.

To prove that 7*(p;) goes to infinity as p; goes to infinity, I will prove
that 7*(p;)? goes to infinity. This is done because it is easier to prove that
7 (p;)? goes to infinity than 7*(p;).

e = (L) a-woy

e = (L) - w)
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Let Am(p;) represent the difference between 7*(p;41)? and 7*(p;)?.
Ar(p) = 7 (pin1)* — 7 (pi)?
Pir1 — 2)° P}
artp) = (P ) - weor - () - wey

N s = [

We know that p;,; is at least p; + 4, so to simplify things, let’s substitute
pi+1 with p; +4. We will call this new function An*(p;) which will always be
less than or equal to A7 (p;).

AT (pi) ((pi+4-2)" = p})(1 = W(p))*/4
Am*(p) = ((pi+2)* = pi) (L — W(p))*/4
AT (pi) ((pz+4pz+4) (L= W(pi)*/4
AT (pi) (dpi +4)(1 = W(p:))*/4

Ar*(pi) (pi + 1) (1 = W(py))*

I will prove A7*(p;) > 0 by mathematical induction. Base case: pg = 5.

(5) = (G+1)(1-W(5))?

(5) = (6)(1—2/5)°
AT*(5) = 6(3/5)?

(5) = 6(9/25)

(5) = 72/25>1

Assuming that An*(p;) > 1, I will prove that An*(p;41) > 1



A (p) = (pi+1)(1 =W (p:))?
AT (pis1) = (pig1 + 1)(1 = W(pi1))?
AT (pir1) = (P +1) <(M> (1- W(pz)))

Pi+1

Am*(piy1) = (pia+1) (%) (1—W(p))*

Taking the ratio of An*(p;y1)/An*(p;) gives the following:

) . (pit1 +1) (%) (= W)
AT (pis1) /AT (py) = (pi + 1)(1 = W(p;))?

(pi+1 + 1) (piy1 — 2)?

Ar* (pz 1 Ar* pi) =
)/ ) pia(pi +1)
(Piv1 + D (P — 4pia +4)
AT (pear) /AT () = A
(pz?—i-lpi + pg_,_l)
i1 = 4p7 Api P — Api 4
A* (pl+1)/A7T*(pz) _ (pz-i-l Dit1 +2 Di+1 ‘|‘]2?H_1 Dit1 + )
(P api +Divy)
P — 32, +4
AR (i) /D () = Lo =i Y

(p2pi + py)

The minimum p;,; can be is p; + 4. Substituting p; with p,;; — 4 gives

(p?-&-l - 3p?+1 +4)
(P71 (Pis1 — 4) +0700)
(p§+1 - 3p7,2+1 + 4)
Py — 4pi +pi)
PPy — 3Py +4)

AT (p; A" (p;) = > 1
Bis1)/ (#:) (pg’+1 —3p§+1)

AT (piv1)/ AT (pi)

A (piy1) /AT (pi) =

Since the numerator is greater than the denominator by 4, the ratio will
always be greater than 1, thus proving that An*(p;y1) > An*(p;) for any p;
and p;;1. Since An*(py) = 72/25, then An*(p;) > 72/25 for all p; where p;
is a prime number of the form 47 + 1.



Since An*(p;) is always less than or equal to Ax(p;), then An(p;) > 72/25.

Since Am(p;) > 72/25, then 7*(p;41)* — 7 (p;)? > 72/25.

Since the gap between 7*(p;)? and 7*(p;11)? is always greater than 72/25,
then as p; goes to infinity, 7*(p;)? goes to infinity. Therefore, 7*(p;) also goes
to infinity as p; goes to infinity. This proves that there are an infinite number
of primes of the form n? + 1 thus proving the near square primes conjecture.

4 Summary

It has been shown that as n goes to infinity, the number of prime numbers of
the form 22 + 1 that are less than or equal to n? + 1 approaches the following
equation:

where W (x) is defined as follows:

- 2 T (¢-2)
we= () 17
p=5 p q=5 q
p prime,4i+1 q prime,4i+1
where x is a prime number and the sum and products are over prime numbers
of the form 4i + 1. By mathematical induction, it is proven that 7*(p;)? goes
to infinity as p; goes to infinity thus proving that there are an infinite number
of prime numbers of the form z? + 1.
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