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Abstract 

 

In this report we describe correct operation of autopilot for supply correct drone flight. There 
exists noticeable delay in getting information about position and orientation of a drone to 
autopilot in the presence of vision-based navigation. In spite of this fact, we demonstrate that it is 
possible to provide stable flight at a constant height in a vertical plane.  We describe how to form 
relevant controlling signal for autopilot in the case of the navigation information delay and 
provide control parameters for particular case of flight. 

 

1. Introduction 

This paper is engineering application of stability theory for differential equations with delays 
described in [1-5]. In this paper we describe correct operation of autopilot for supply desirable 
drone flight (movement of a drone in a vertical plane at a constant height). For the finding drone 
flight parameters was used vision-based navigation [6-15]. For realization vision-based 
navigation was developed the computer program “Video-navigation of UAV over relief” [6]. 
This program was tested in Zhejiang Province in east China near the capital Hangzhou using 
Google Earth data [12]. There always exists noticeable delay in getting information about 
position and orientation of a drone to autopilot for vision-based navigation because of computer 
processing image’s big data. In spite of this fact, we demonstrate that it is possible to provide 
stable flight at a constant height in a vertical plane. We want to describe how to form relevant 
controlling signal for autopilot in the case of the navigation information delay. For this purpose 
we use theory of stability for differential equations with delays described in [1-5]. We plan to use 
the autopilot described in the paper for controlling flight parameters found from vision-based 
navigation. 

Although there is a resistance of engineers to the use of theoretical results on stability of 
differential equations with delays, the theory of these equations develops intensively. Every year 
hundreds of papers on stability analysis of delay equations are published.  

Let us consider two examples. 

Example 1: These two very similar equations arise directly from the Newton second low: 
''( ) 0y t   and ''( )x t  .  Assume that  is very small and consider the same initial conditions at 
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the point 0: (0) 0, '(0) 0y y   and (0) 0, '(0) 0x x  . Their solutions are ( ) 0y t   and 

2( )
2

x t t


  respectively. It is clear that lim ( ) ( )t x t y t    , and there is no stability with 

respect to right-hand side. Conclusion: we need a feedback control to stabilize the equation 
''( ) ( )x t f t with respect to a right-hand side. In this way we come to stability analysis of the 

delay equation 
1

''( ) ( ( ))
m

i i
i

x t a x t t


   . ( ) 0i t   appeared as a result of information, operation 

or transport delays existing in all real technological processes. 

Example 2. There exists a delusion that instead of stability analysis of the delay equation one can 
use elements of the modern technology, for example, GPS gives us the values of 

1 2 3( ), ( ), ( ),...x t x t x t  with very small time intervals 1i i it t t   .  It can be demonstrated, for 

example, on the delay equation ''( ) ([ ])x t ax t  , where [ ]t is the integer part of t  and 0a  . At 

the moment t  we know almost exactly ([ ])x t , but this does not help in stabilization. 

Actually, it is known from the paper [16] that all solutions of the equation ''( ) ( ( ))x t ax t t    

are bounded if and only if 
0

( )t dt


  . For our equation ''( ) ([ ])x t ax t  , we have ( ) [ ]t t t    

and 
0

( )t dt


  . This means that there exist unbounded solutions of the equation ''( ) ([ ])x t ax t , 

and this equation is unstable. The direct use of GPS without theoretical basis could not achieve 
stabilization even the signals from GPS come with very small time intervals. 

Results on exponential stability, i.e. all solutions of the homogeneous equation 

1

''( ) ( ( ))
m

i i
i

x t a x t t


    tend to zero like exp( )t  with positive  , were obtained for the case 

2m   under corresponding conditions on the coefficients and delays in the form of inequalities 
in the paper [17]. 
 
Stability analysis presents one of the necessary parts in the almost all papers on robotics. Their 
authors avoid to consider the delay in their models although they accept fact of arising transport, 
information or executive delay in robotics models. They use the technique of Lyapunov’s 
functions which has the long history (starting with works of N.Krasovskii in 1950s) but is not 
convenient in many cases for stabilization by delay feedback control. 
 
The current basic engineering method for analyzing a delayed system is replacing the system 
with delays to the system without delay and using the classical theory of stability (characteristic 
equations in linear case, and method of Lyapunov’s functions – in nonlinear). It is usually 
achieved in the frame of the following two ideas or their combinations ([18,19]): 

 
A) to extrapolate a motion forward during the delay time, 
B) to take into account the estimate error of a current state and to use all possible 

values of the process for its future analysis. 
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The use of method B) results in an obvious decrease in the accuracy of control and its 
effectiveness.  

The use of method A) is possible when the system is sufficiently inert and does not have a strong 
control effect during the delay time. Even in this case, we need to use a complex algorithm. This 
results in an increase in the time and cost of creating a control system, the cost of computing 
power for extrapolation. The simplification of the model leads to a decrease in the accuracy and 
effectiveness of control. Also, when we change and upgrade the system, this big work needs to 
be carried out again. 

If there is a control effect on the behavior of the system during the delay time, the method makes 
even more expensive and complex - it requires complex iterative schemes, the iterations do not 
always converge and require a long calculation time, which may insert an additional time delay. 
This can lead to a complete loss of controllability of the system. In order not to be unfounded 
from the mathematical point of view, we added an explanation of the shortcomings of approach 
A) and the justification for the necessity of using new results on stability theory. 
 
 It looks that the use of Azbelev’s theory of stability of functional differential equations can open 
new perspectives in the control in robotics. See the book [21]   . 
In the book [2], based on Azbelev’s theory, we developed the stability analysis and methods of 
estimates of solutions to systems of delay differential equations.  
The use of mathematical theory of stability and control of systems with delays allows: 

1) It reduces the time and costs for control development. 
2) It is easy to modernize the control of the system if the system has been changed. 
3) Methods are universal for a wide class of systems. 
4) Due to the high accuracy of mathematical methods, the system will have efficient and precise 

control. 
5) There are no additional delays or control failures for complex cases where the controlled 

system is not inertial, and the control effect is significant during the delay time. 
 

2. Stability of systems with time delays 

Throughout the paper e denotes the Euler number. 𝐿ஶ is the space of essentially bounded 
measurable functions: [0,+∞) → R.  
Consider the non-homogenous system of differential equations 
 
𝑥௜

ᇱሺ𝑡ሻ െ ∑ ∑ 𝑎௜௝
௞ ሺ 𝑡ሻ௠

௞ୀଵ 𝑥௝ሺ𝑡 െ 𝜃௜௝
௞ ሺ𝑡ሻሻ௡

௝ୀଵ ൌ 𝑓ሺ 𝑡ሻ, 𝑡 ∈ 0, ൅∞ሻ    (2.1) 

𝑥ሺ𝜉ሻ ൌ 0, 𝜉 ൏ 0, i = 1, . . . , n, 

Where 𝐴௞ሺ𝑡ሻ ൌ ሼ𝑎௜௝
௞ ሺ 𝑡ሻሽ௜,௝ୀଵ,...,௡ are 𝑛 ൈ 𝑛 matrices with entries 𝑎௜௝

௞ ሺ𝑡ሻ ∈ 𝐿ஶ, 𝜃௜௝
௞ ሺ𝑡ሻ ∈ 𝐿ஶ 

for 𝑘 ൌ 1, . . . , 𝑚, 𝑓ሺ𝑡ሻ ൌ 𝑐𝑜𝑙ሼ𝑓ଵሺ 𝑡ሻ , . . . , 𝑓௡ሺ 𝑡ሻሽ, 𝑓௜ ∈ 𝐿ஶ, for 𝑖 ൌ 1, . . . , 𝑛. The components 
𝑥௜: ሾ0, ൅∞ሻ → ℝ of the vector 𝑥 ൌ 𝑐𝑜𝑙ሼ𝑥ଵ, . . . , 𝑥௡ሽ are assumed to be absolutely continuous and 
their derivatives 𝑥௜

ᇱ ∈ 𝐿ஶ.  A vector-function 𝑥 is a solution of (2.1) if it satisfies system (2.1) for 
almost all 𝑡 ∈ ሾ0, ൅∞ሻ.   

Denote 

𝜃௜௜
ାሺ𝑡ሻ ൌ 𝑚𝑎𝑥௠ஹ௞ஹଵ 𝜃௜௜

௞ሺ𝑡ሻ 
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𝜃௜௜
ିሺ𝑡ሻ ൌ 𝑚𝑖𝑛௠ஹ௞ஹଵ 𝜃௜௜

௞ሺ𝑡ሻ 

                                                        𝛥௜ ൌ 𝑒𝑠𝑠𝑠𝑢𝑝௧ஹ଴ሼ𝜃௜௜
ାሺ𝑡ሻ െ 𝜃௜௜

ିሺ𝑡ሻሽ.     

It was shown in Theorem 3.2 in [1] that: 

If the following conditions are fulfilled: 

(1.1) There exist positive numbers 𝑧ଵ, . . . , 𝑧௡ such that 

∑ 𝑎௜௝
௞ ሺ𝑡ሻ௠

௞ୀଵ 𝑧௜ െ ∑ ∑ ห𝑎௜௝
௞ ሺ𝑡ሻห𝑧௝

௠
௞ୀଵ

௡
௝ୀଵ,௝ஷ௜ ൒ 1, 𝑡 ∈ ሾ0, ൅∞ሻ, 𝑖 ൌ 1, . . . , 𝑛      

(1.2) For every 𝑖 ൌ 1, … , 𝑛 at least one of the conditions (1.2a) or (1.2b) be fulfilled: 

 (1.2a) there exists 𝑚௜ such that 𝑎௜௜
௞ ሺ𝑡ሻ ൒ 0,  𝑎௜௜

௝ ሺ𝑡ሻ ൑ 0, 𝜃௜௜
௞ሺ𝑡ሻ ൒ 𝜃௜௜

௝ ሺ𝑡ሻ for 𝑘 ൌ

            1, . . . , 𝑚௜, 𝑗 ൌ 𝑚௜ାଵ, . . . , 𝑚, ∑ 𝑎௜௜
௞ ሺ𝑡ሻ ൒௠೔

௞ୀଵ
ଵ

௘
∑ ห𝑎௜௜

௝ ሺ𝑡ሻห௠
௝ୀ௠೔ାଵ  for 𝑡 ∈ ሾ0, ൅∞ሻ 

׬             ቄ∑ 𝑎௜௜
௞ ሺ𝑠ሻ௠೔

௞ୀଵ െ ଵ

௘
∑ ห𝑎௜௜

௝ ሺ𝑠ሻห௠
௝ୀ௠೔ାଵ ቅ

௧
௧ିఏ೔೔

శሺ௧ሻ 𝑑𝑠 ൑ ଵ

௘
, 𝑡 ∈ ሾ0, ൅∞ሻ and 

         (1.2b) there exists 𝑚௜ such that 𝑎௜௜
௞ ሺ𝑡ሻ ൒ 0,  𝑎௜௜

௝ ሺ𝑡ሻ ൑ 0, 𝜃௜௜
௞ሺ𝑡ሻ ൑ 𝜃௜௜

௝ ሺ𝑡ሻ for 𝑘 ൌ
                     1, . . . , 𝑚௜, 𝑗 ൌ 𝑚௜ାଵ, . . . , 𝑚, ∑ 𝑎௜௜

௞ ሺ𝑡ሻ ൒௠೔
௞ୀଵ ∑ ห𝑎௜௜

௝ ሺ𝑡ሻห௠
௝ୀ௠೔ାଵ  for 𝑡 ∈ ሾ0, ൅∞ሻ 

׬        ൛∑ 𝑎௜௜
௞ ሺ𝑠ሻ௠೔

௞ୀଵ െ ∑ ห𝑎௜௜
௝ ሺ𝑠ሻห௠

௝ୀ௠೔ାଵ ൟ
௧

௧ିఏ೔೔
శሺ௧ሻ 𝑑𝑠 ൑ ଵ

௘
, 𝑡 ∈ ሾ0, ൅∞ሻ  

and 

׬        ∑ 𝑎௜௜
௞௠೔

௞ୀଵ
௦ା௱೔

௦ ሺ𝜉ሻ𝑑𝜉 ൑ ଵ

௘
 ∀𝑠 ൒ 0, where 𝛥௜ ൌ 𝑒𝑠𝑠𝑠𝑢𝑝௧ஹ଴ሼ𝜃௜௜

ାሺ𝑡ሻ െ 𝜃௜௜
ିሺ𝑡ሻሽ  

Then system (2.1) is exponentially stable. 

 

3. Parameters of drone’s motion 
 

3.1 Nonlinear equations 
 
Let us define the following variables and parameters used in equations of motion for a 
drone (see Fig. 1) [22]: 
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Fig.1 Parameters of drone's longitudinal motion 
 

1) for forces and moments of forces:  

P − Tractive force directed along longitudinal drone axis  

Y− Carrying force orthogonal to flight velocity  

X− Resistance force opposite to V  

G − Gravitation force  

𝑀௭ − Total moment of aerodynamical forces with respect of transversal axis  

𝑓ଵ, 𝑓ଶ, 𝑓ଷ − Random forces and random moments of forces  

2) for variables describing motion:  

V− Flight velocity tangent to trajectory (with respect of air)  

H – Height above mean sea level of a drone flight 

L – Drone path in longitudinal direction  

ϑ − Pitch angle, i.e. angle between longitudinal drone axis and horizontal plane  

θ − Tilting of velocity about horizontal plane  

α − Angle of attack, i.e. angle between longitudinal axis of a drone and projection of drone 
velocity on the symmetry plane of the drone 

3) Drones parameters: 

m = G/g − drone mass  

𝐽௭ − Inertial moment of drone with respect of axis z p - air density 
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4) Controlling signals: 
 

𝛿௣− Position of drone central control knob 

 𝛿஻− Deviation of drone control elevator 

5) External environment parameters: 

𝑈௫and 𝑈௬− wind velocities along axes𝑥and𝑦, correspondently 

 
It's shown in [22] that forward movement and rotation are described by the system of 
equations: 
 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝑚 ௗ௏

ௗ௧
ൌ 𝑃൫𝛿௣ሺ𝑡ሻ, 𝑀ሺ𝑉, 𝐻ሻ൯ 𝑐𝑜𝑠ሺ 𝛼ሻ െ 𝑋ሺ𝛼, 𝑉, 𝐻ሻ െ 𝐺 𝑠𝑖𝑛ሺ 𝜃ሻ ൅ 𝑓ଵሺ𝑡ሻ

𝑚𝑉 ௗఏ

ௗ௧
ൌ 𝑃൫𝛿௣ሺ𝑡ሻ, 𝑀ሺ𝑉, 𝐻ሻ൯ 𝑠𝑖𝑛ሺ 𝛼ሻ െ 𝑌ሺ𝛼, 𝑉, 𝐻ሻ െ 𝐺 𝑐𝑜𝑠ሺ 𝜃ሻ െ 𝑓ଶሺ𝑡ሻ

𝐽௭
ௗమణ

ௗ௧మ ൌ 𝑀௭൫𝛼, 𝑀ሺ𝑉, 𝐻ሻ, 𝛼ሶ , 𝜗ሶ , 𝛿஻ሺ𝑡ሻ൯ ൅ 𝑓ଷሺ𝑡ሻ
ௗு

ௗ௧
ൌ 𝑉 𝑠𝑖𝑛ሺ 𝜃ሻ ൅ 𝑈௬ሺ𝑡ሻ

ௗ௅

ௗ௧
ൌ 𝑉 𝑐𝑜𝑠ሺ 𝜃ሻ ൅ 𝑈௫ሺ𝑡ሻ

𝜗 ൌ 𝜃 ൅ 𝛼

 (3.1) 

 

𝑃 ൌ 𝑃ሺ𝛿௣, 𝑉ሻ,𝑋 ൌ 𝑐௫ሺ𝛼, 𝑀ሻ𝑆 ఘሺுሻ௏మ

ଶ
,𝑌 ൌ 𝑐௬ሺ𝛼, 𝑀ሺ𝑉, 𝐻ሻሻ𝑆 ఘሺுሻ௏మ

ଶ
, 𝜗 ൌ 𝜃 ൅ 𝛼,    

𝑀௭ ൌ 𝑚௭ሺ𝛼, 𝑀ሺ𝑉, 𝐻ሻ, 𝛼ሶ , 𝜗ሶ , 𝛿஻ሻ𝑏௔𝑆 ఘሺுሻ௏మ

ଶ
 , 𝑀ሺ𝐻ሻ ≝ ௏

௔ሺ௛ሻ
  

Here 

𝑐௫ And 𝑐௬- coefficients of resistance and carrying forces, correspondently 

𝑚௭ - Coefficient of moment 

S – Area of winds 

𝑏௔ - Length of wind chord 

𝜌ሺ𝐻ሻ - Air density at a flight height 

𝑀 ൌ 𝑉/𝑎 - Mach number 

𝑎 - Sound velocity 

 𝑚௭ሺ𝛼, 𝛼, 𝜗ሶ , 𝑉, 𝛿஻, 𝜌ሻ ൌ 𝑚ଵ௭ሺ𝛼, 𝑀ሺ𝑉, 𝐻ሻ, 𝛿஻ሻ ൅ 𝑚ଶ௭൫𝑀ሺ𝑉, 𝐻ሻ, 𝛼ሶ , 𝜗ሶ൯   

Aerodynamical damping moment: 
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𝑚ଶ௭൫𝑀ሺ𝑉, 𝐻ሻ, 𝛼ሶ , 𝜗ሶ൯ ൌ 𝑘 ൬
𝐿ଵ

𝑀ሺ𝑉, 𝐻ሻ
𝜗ሶ ൅ 𝑘ᇱ𝛼ሶ ൰ 

𝐿ଵ- Distance from tail unit to center of mass 

𝑘, 𝑘ᇱ- Constants 

Dependence of parameters on a flight height above mean sea level is defined by the following 
equations: 

𝜌ሺ𝐻ሻ ൌ 𝜌ሺ0ሻ ቀ்ಹሺுሻ

்ሺ଴ሻ
ቁ

భ
ംషభ ;𝑎ሺ𝐻ሻ ൌ ඥ𝛾𝑅𝑇ுሺ𝐻ሻ; 𝑇ுሺ𝐻ሻ ൌ 𝑇ሺ0ሻ െ 𝛽𝐻, where 

𝑇ுሺ𝐻ሻ - Temperature at a flight height 

𝑇ሺ0ሻ, 𝜌ሺ0ሻ - Temperature and air density at mean sea level 

𝛾 - Adiabatic constant 

𝑅 - Gas constant 

𝛽 - Temperature gradient over height 

 

3.2 Steady state solution 

For the constant wind, zero-controlling external small random forces and moments we can find a 
steady state solution for a drone flight: 

𝑉଴, 𝜃଴, 𝛼଴, 𝜗଴, 𝐻଴, ሺ𝑈௫ሻ଴, ሺ𝑈௬ሻ଴  

𝑈௬ሺ𝑡ሻ ൌ ሺ𝑈௬ሻ଴ ൅ 𝛥𝑈௬ሺ𝑡ሻ  

𝑈௫ሺ𝑡ሻ ൌ ሺ𝑈௫ሻ଴ ൅ 𝛥𝑈௫ሺ𝑡ሻ, 

Where 𝛥𝑈௫ሺ𝑡ሻ, 𝛥𝑈௬ሺ𝑡ሻ - small wind fluctuations. 

The steady state solution can be obtained from (1) by equating all external small random forces 
and moments, controlling parameters, wind velocity fluctuations, all derivatives to zero: 
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 

2
20 0

0 0 0 0 0 0 0

2
20 0

0 0 0 0 0 0 0

0

0 0 0

0 0

0 0 0

1 2 3

1
sin( ) cos( ) ( ) ( )

2 2

1
cos( ) sin( ) ( ) ( )

2 2
0

sin( ) ( )

( ) ( cos( ) ( ) ) (0)

( ) 0;  ( ) 0;  ( ) 0;  ( ) 0;  ( )

def

x x

def

y y

z

y

x

p B

V
G P c S c S V

V
G P c S c S V

m

V U

L t V U t L

t t f t f t f t

  

  




  
 

   

  



 

  

 
    0;  ( ) 0;  ( ) 0x yU t U t















    




  

Here we use the following steady state parameters: 

ሺ𝑇ுሻ଴ ൌ 𝑇଴ െ 𝛽𝐻଴;   𝜌଴ ൌ 𝜌ሺ0ሻ ቀ்ಹሺுబሻ

బ்
ቁ

భ
ംషభ ;   𝑎଴ ൌ ඥ𝛾𝑅ሺ𝑇ுሻ଴;   𝑀଴ ൌ ௩బ

௔బ
  

𝑃଴ ൌ 𝑃ሺ0, 𝑀଴ሻ;   ሺ𝑐௫ሻ଴ ൌ 𝑐௫ሺ𝑎଴, 𝑀଴ሻ;   ൫𝑐௬൯
଴

ൌ 𝑐௬ሺ𝑎଴, 𝑀଴ሻ;   ሺ𝑚௭ሻ଴ ൌ 𝑚௭ሺ𝑎଴, 𝑀଴, 0,0,0ሻ  

ቀడ௖ೣ
ᇲ

డெ
ቁ

଴
, ቀ

డ௖೤
ᇲ

డெ
ቁ

଴
,ቀడ௖ೣ

డఈ
ቁ

଴
,ቀ

డ௖೤

డఈ
ቁ

଴
,ቀ డ௉

డఋು
ቁ

଴
,൫𝑐௬

ᇱ ൯
଴
,ሺ𝑐௫

ᇱ ሻ଴, ቀడ௠೥

డఈሶ
ቁ

଴
,ቀడ௠೥

డఈ
ቁ

଴
,ቀడ௠೥

డణሶ ቁ
଴
,ቀడ௠೥

డெ
ቁ

଴
,ቀడ௠೥

డఋಳ
ቁ

଴
 - 

values of the functions and its derivatives for the steady values 

𝑉଴, 𝜃଴, 𝛼଴, 𝜗଴, 𝐻଴, ሺ𝑈௫ሻ଴, ൫𝑈௬൯
଴

, 𝛿஻ሺ𝑡ሻ ൌ 0, 𝛿௉ሺ𝑡ሻ ൌ 0  

 

3.3 Linear equations 

Since the system (1) is nonlinear, it’s too hard to use those equations to analyze stability. We 
need to linearize those equations on the premise that the parameters 𝜗଴, 𝜃଴, 𝑉଴, 𝛼଴, 𝐻଴ 
corresponding with steady flight get small increments 𝛥𝜗,𝛥𝜃,𝛥𝑉,𝛥𝛼,𝛥𝐻caused by perturbations 
action on a flight. 

Let us define the following deviations from the steady state: 

0

0

0

0

0

( )

( )

( )

( )

V V V t

t

t

H H H t

  
  
  

  
      
   
   

  

𝑣ሺ𝑡ሻ ൌ ௱௏

௏బ
;   ℎሺ𝑡ሻ ൌ ௱ு

௏బఛೌ
;   𝛼ሺ𝑡ሻ ൌ 𝛥𝛼;   𝜃ሺ𝑡ሻ ൌ 𝛥𝜃;   𝜗ሺ𝑡ሻ ൌ 𝛥𝜗;   𝑣௬ሺ𝑡ሻ ൌ

௱௎೤

௏బ
;   𝑣௫ሺ𝑡ሻ ൌ ௱௎ೣ

௏బ
;  

The correspondent parameters are the following: 

𝜏௔ ൌ ௠

ఘబ௏బௌ
; 𝜇 ൌ ௕ೌ௠

ଶ௥೥
మఘబௌ

; 𝑟௭
ଶ ൌ ௃೥

௠
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𝑟௭- inertial radius 

𝑡̄ ൌ
௧

ఛೌ
;𝑝 ൌ

ௗ

ௗ௧ሜ
  

𝑐௫
ᇱ ሺ𝑀ሻ ≝ 𝑐௫ሺ𝛼଴, 𝑀ሻ െ 2 ௉ሺ଴,ெሻ ௖௢௦ሺఈబሻ

ఘబௌ௏బ
మ ;  𝑐௬

ᇱ ሺ𝑀ሻ ≝ 𝑐௬ሺ𝛼଴, 𝑀ሻ ൅ 2 ௉ሺ଴,ெሻ ௖௢௦ሺఈబሻ

ఘబௌ௏బ
మ ; 

We can made linearization of (1) in the neighborhood of the found steady state solution: 

⎩
⎪
⎨

⎪
⎧ ሺ𝑝 ൅ 𝑛ଵଵሻ𝜐 ൅ 𝑛ଵଶ𝛼 ൅ 𝑛ଵଷ𝜗 ൅ 𝑛ଵସℎ ൌ 𝑛௣𝛿௣ ൅ 𝑓ଵሺ𝑡ሻ

െ𝑛ଶଵ𝜐 ൅ ሺ𝑝 ൅ 𝑛ଶଶሻ𝛼 െ ሺ𝑝 ൅ 𝑛ଶଷሻ𝜗 ൅ 𝑛ଶସℎ ൌ 𝑓ଶሺ𝑡ሻ
𝑛ଷଵ𝜐 ൅ ሺ𝑛଴𝑝 ൅ 𝑛ଷଶሻ𝛼 ൅ ሺ𝑝ଶ ൅ 𝑛ଷଷ𝑝ሻ𝜗 ൅ 𝑛ଷସℎ ൌ െ𝑛஻𝛿஻ሺ𝑡ሻ ൅ 𝑓ଷሺ𝑡ሻ

െ𝑛ସଵ𝜐 ൅ 𝑛ସଶ𝛼 െ 𝑛ସଶ𝜗 ൅ 𝑝ℎ ൌ 𝜐௬ሺ𝑡ሻ

  

 𝑛ଵଵ ൌ ெబ

ଶ
ቀడ௖ೣ

ᇲ

డெ
ቁ

଴
൅ ሺ𝑐௫ሻ଴;  𝑛ଵଶ ൌ ଵ

ଶ
ቀቀడ௖ೣ

డఈ
ቁ

଴
െ ሺ𝑐௬ሻ଴ቁ ; 

 𝑛ଵଷ ൌ ଵ

ଶ
ሺ𝑐௬

ᇱ ሻ଴; 𝑛ଵସ ൌ ఉ௏బఛబ

ଶሺ்ಹሻబ
ቂெబ

ଶ
ቀడ௖ೣ

ᇲ

డெ
ቁ െ

ሺ௖ೣሻబ

ఊିଵ
ቃ ; 

 𝑛ଶଵ ൌ െ ቀெబ

ଶ
ቀ

డ௖೤
ᇲ

డெ
ቁ

଴
൅ ሺ𝑐௬ሻ଴ቁ; 𝑛ଶଶ ൌ ଵ

ଶ
ቀቀ

డ௖೤

డఈ
ቁ

଴
൅ ሺ𝑐௫ሻ଴ቁ; 

 𝑛ଶଷ ൌ ଵ

ଶ
ሺ𝑐௫

ᇱ ሻ଴; 𝑛ଶସ ൌ ఉ௏బఛబ

ଶሺ்ಹሻబ
൤ெబ

ଶ
ቀ

డ௖೤
ᇲ

డெ
ቁ

଴
െ

൫௖೤൯
బ

ఊିଵ
൨; 

 𝑛ଷଵ ൌ െ𝜇𝑀଴ ቀడ௠೥

డெ
ቁ

଴
;  𝑛ଷଶ ൌ െ𝜇 ቀడ௠೥

డఈ
ቁ

଴
; 

 𝑛ଷଷ ൌ െ ఓ

ఛഀ
ቀడ௠೥

డణሶ ቁ
଴
; 𝑛ଷସ ൌ െ𝜇 ఉఛഀ௏బ

ଶሺ்ಹሻబ
𝑀଴ ቀడ௠೥

డெ
ቁ

଴
; 

  𝑛଴ ൌ െ ఓ

ఛഀ
ቀడ௠೥

డఈሶ
ቁ

଴
; 

 𝑛ସଵ ൌ 𝑠𝑖𝑛ሺ 𝜃଴ሻ; 𝑛ସଶ ൌ 𝑐𝑜𝑠ሺ 𝜃଴ሻ; 

 𝑛௣ ൌ
൬ ങು

ങഃು
൰

బ
௖௢௦ሺఈబሻ

ఘబ௦௏బ
మ  ; 𝑛஻ ൌ െ𝜇 ቀడ௠೥

డఋಳ
ቁ

଴
; 𝑝 ൌ

ௗ

ௗ௧ሜ
     

The typical real values of the coefficients 𝑛௜௝ can be found from the Table 1. 
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3.4 Adjusting the system to a proper form 

We have to adjust our system to a proper form to apply the theory of stability. 

⎩
⎨

⎧
𝜐ᇱሺ𝑡ሻ ൌ െ𝑛ଵଵ𝜐ሺ𝑡ሻ െ 𝑛ଵଶ𝛼ሺ𝑡ሻ െ 𝑛ଵଷ𝜗ሺ𝑡ሻ െ 𝑛ଵସℎሺ𝑡ሻ ൌ 𝑛௣𝛿௣ሺ𝑡 െ 𝜏ሻ

𝛼ᇱሺ𝑡ሻ ൌ 𝜗ᇱሺ𝑡ሻ ൅ 𝑛ଶଵ𝜐ሺ𝑡ሻ െ 𝑛ଶଶ𝛼ሺ𝑡ሻ ൅ 𝑛ଶଷ𝜗ሺ𝑡ሻ െ 𝑛ଶସℎሺ𝑡ሻ
𝜗ᇳሺ𝑡ሻ ൌ െ𝑛଴𝛼ᇱሺ𝑡ሻ െ 𝑛ଷଷ𝜗ᇱሺ𝑡ሻ െ 𝑛ଷଵ𝜐ሺ𝑡ሻ െ 𝑛ଷଶ𝛼ሺ𝑡ሻ െ 𝑛ଷସℎሺ𝑡ሻ െ 𝑛஻𝛿஻ሺ𝑡 െ 𝜏ሻ

ℎᇱሺ𝑡ሻ ൌ 𝑛ସଵ𝜐ሺ𝑡ሻ െ 𝑛ସଶ𝛼ሺ𝑡ሻ ൅ 𝑛ସଶ𝜗ሺ𝑡ሻ

 

 

Let's start with linear substitution. It brings the system to a form where all diagonal 
coefficients are non-zero. 

The first substitution is following: 
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ℎሺ𝑡ሻ ൌ 𝜆ሺ𝑡ሻ െ 𝑊𝑣ሺ𝑡ሻ ⇒  ℎᇱሺ𝑡ሻ ൌ ௗఒሺ௧ሻ

ௗ௧
െ 𝑊 ௗ௩ሺ௧ሻ

ௗ௧
; 

Now we have: 

⎩
⎪
⎨

⎪
⎧

𝜐ᇱሺ𝑡ሻ ൌ െ𝑛ଵଵ𝜐ሺ𝑡ሻ െ 𝑛ଵଶ𝛼ሺ𝑡ሻ െ 𝑛ଵଷ𝜗ሺ𝑡ሻ െ 𝑛ଵସሺ𝜆ሺ𝑡ሻ െ 𝑊𝜐ሺ𝑡ሻሻ ൌ 𝑛௣𝛿௣ሺ𝑡 െ 𝜏ሻ
𝛼ᇱሺ𝑡ሻ ൌ 𝜗ᇱሺ𝑡ሻ ൅ 𝑛ଶଵ𝜐ሺ𝑡ሻ െ 𝑛ଶଶ𝛼ሺ𝑡ሻ ൅ 𝑛ଶଷ𝜗ሺ𝑡ሻ െ 𝑛ଶସሺ𝜆ሺ𝑡ሻ െ 𝑊𝜐ሺ𝑡ሻሻ

𝜗ᇳሺ𝑡ሻ ൌ െ𝑛଴𝛼ᇱሺ𝑡ሻ െ 𝑛ଷଷ𝜗ᇱሺ𝑡ሻ െ 𝑛ଷଵ𝜐ሺ𝑡ሻ െ 𝑛ଷଶ𝛼ሺ𝑡ሻ െ 𝑛ଷସ൫𝜆ሺ𝑡ሻ െ 𝑊𝜐ሺ𝑡ሻ൯ െ 𝑛஻𝛿஻ሺ𝑡 െ 𝜏ሻ

𝜆ᇱሺ𝑡ሻ ൌ 𝑊 ቀെ𝑛ଵଵ𝜐ሺ𝑡ሻ െ 𝑛ଵଶ𝛼ሺ𝑡ሻ െ 𝑛ଵଷ𝜗ሺ𝑡ሻ െ 𝑛ଵସ൫𝜆ሺ𝑡ሻ െ 𝑊𝜐ሺ𝑡ሻ൯ ൅ 𝑛௣𝛿௣ሺ𝑡 െ 𝜏ሻቁ ൅

൅𝑛ସଵ𝜐ሺ𝑡ሻ െ 𝑛ସଶ𝛼ሺ𝑡ሻ ൅ 𝑛ସଶ𝜗ሺ𝑡ሻ

 

 

The second linear substitution is used here to decrease the order of the system. 

𝜗ᇱሺ𝑡ሻ ൌ 𝜑ሺ𝑡ሻ ൅ 𝑏଴𝜗ሺ𝑡ሻ; 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

𝜐ᇱሺ𝑡ሻ ൌ െ𝑛ଵଵ𝜐ሺ𝑡ሻ െ 𝑛ଵଶ𝛼ሺ𝑡ሻ െ 𝑛ଵଷ𝜗ሺ𝑡ሻ െ 𝑛ଵସሺ𝜆ሺ𝑡ሻ െ 𝑊𝜐ሺ𝑡ሻሻ ൅ 𝑛௣𝛿௣ሺ𝑡 െ 𝜏ሻ
𝛼ᇱሺ𝑡ሻ ൌ 𝜑ሺ𝑡ሻ ൅ 𝑏଴𝜗ሺ𝑡ሻ ൅ 𝑛ଶଵ𝜐ሺ𝑡ሻ െ 𝑛ଶଶ𝛼ሺ𝑡ሻ ൅ 𝑛ଶଷ𝜗ሺ𝑡ሻ െ 𝑛ଶସሺ𝜆ሺ𝑡ሻ െ 𝑊𝜐ሺ𝑡ሻሻ
𝜗ᇱሺ𝑡ሻ ൌ 𝜑ሺ𝑡ሻ ൅ 𝑏଴𝜗ሺ𝑡ሻ

𝜑ᇱሺ𝑡ሻ ൌ െ𝑛஻𝛿஻ሺ𝑡 െ 𝜏ሻ ൅ ൫ሺെ𝑛ଶଷ െ 𝑏଴ሻ𝑛଴ െ 𝑏଴ሺ𝑛ଷଷ ൅ 𝑏଴ሻ൯𝜗ሺ𝑡ሻ ൅

൅൫ሺെ𝑊𝑛ଶସ െ 𝑛ଶଵሻ𝑛଴ ൅ 𝑊𝑛ଷସ െ 𝑛ଷଵ൯𝜐ሺ𝑡ሻ ൅
൅ሺെ𝑛ଷଷ െ 𝑏଴ െ 𝑛଴ሻ𝜑ሺ𝑡ሻ ൅ ሺ𝑛଴𝑛ଶସ െ 𝑛ଷସሻ𝜆ሺ𝑡ሻ െ 𝛼ሺ𝑡ሻሺെ𝑛଴𝑛ଶଶ ൅ 𝑛ଷଶሻ

𝜆ᇱሺ𝑡ሻ ൌ 𝑊𝛿௣ሺ𝑡 െ 𝜏ሻ𝑛௣ ൅ ሺ𝑊ଶ𝑛ଵସ െ 𝑊𝑛ଵଵ ൅ 𝑛ସଵሻ𝜐ሺ𝑡ሻ ൅ ሺെ𝑊𝑛ଵଷ ൅ 𝑛ସଶሻ𝜗ሺ𝑡ሻ ൅
൅ሺെ𝑊𝑛ଵଶ െ 𝑛ସଶሻ𝛼ሺ𝑡ሻ െ 𝑊𝜆ሺ𝑡ሻ𝑛ଵସ

 

𝛿௉ and 𝛿஻ are control parameters. We want to express them as linear combinations of our 
original variables: 

𝛿௉ሺ𝑡 െ 𝜏ሻ ൌ 𝑝ଵ𝜐ሺ𝑡 െ 𝜏ሻ ൅ 𝑝ଶ𝛼ሺ𝑡 െ 𝜏ሻ ൅ 𝑝ଷ𝜗ሺ𝑡 െ 𝜏ሻ ൅ 𝑝ସℎሺ𝑡 െ 𝜏ሻ ; 

𝛿஻ሺ𝑡 െ 𝜏ሻ ൌ 𝑏ଵ𝜐ሺ𝑡 െ 𝜏ሻ ൅ 𝑏ଶ𝛼ሺ𝑡 െ 𝜏ሻ ൅ 𝑏ଷ𝜗ሺ𝑡 െ 𝜏ሻ ൅ 𝑏ସℎሺ𝑡 െ 𝜏ሻ 

Taking this into account the system will be the following: 

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

𝜐ᇱሺ𝑡ሻ ൌ െ𝑛ଵଵ𝜐ሺ𝑡ሻ െ 𝑛ଵଶ𝛼ሺ𝑡ሻ െ 𝑛ଵଷ𝜗ሺ𝑡ሻ െ 𝑛ଵସሺ𝜆ሺ𝑡ሻ െ 𝑊𝜐ሺ𝑡ሻሻ ൅

൅𝑛௣ ቀ𝑝ଵ𝜐ሺ𝑡 െ 𝜏ሻ ൅ 𝑝ଶ𝛼ሺ𝑡 െ 𝜏ሻ ൅ 𝑝ଷ𝜗ሺ𝑡 െ 𝜏ሻ ൅ 𝑝ସ൫ሺ𝜆ሺ𝑡 െ 𝜏ሻ െ 𝑊𝜐ሺ𝑡 െ 𝜏ሻ൯ቁ

𝛼ᇱሺ𝑡ሻ ൌ 𝜑ሺ𝑡ሻ ൅ 𝑏଴𝜗ሺ𝑡ሻ ൅ 𝑛ଶଵ𝜐ሺ𝑡ሻ െ 𝑛ଶଶ𝛼ሺ𝑡ሻ ൅ 𝑛ଶଷ𝜗ሺ𝑡ሻ െ 𝑛ଶସሺ𝜆ሺ𝑡ሻ െ 𝑊𝜐ሺ𝑡ሻሻ
𝜗ᇱሺ𝑡ሻ ൌ 𝜑ሺ𝑡ሻ ൅ 𝑏଴𝜗ሺ𝑡ሻ

𝜑ᇱሺ𝑡ሻ ൌ െ𝑏଴ሺ𝜑ሺ𝑡ሻ ൅ 𝑏଴𝜗ሺ𝑡ሻሻ െ

െ 𝑛଴ ቀ𝜑ሺ𝑡ሻ ൅ 𝑏଴𝜗ሺ𝑡ሻ ൅ 𝑛ଶଵ𝜐ሺ𝑡ሻ െ 𝑛ଶଶ𝛼ሺ𝑡ሻ ൅ 𝑛ଶଷ𝜗ሺ𝑡ሻ െ 𝑛ଶସ൫𝜆ሺ𝑡ሻ െ 𝑊𝜐ሺ𝑡ሻ൯ቁ          

െ𝑛ଷଷሺ𝜑ሺ𝑡ሻ ൅ 𝑏଴𝜗ሺ𝑡ሻሻ െ 𝑛ଷଵ𝜐ሺ𝑡ሻ െ 𝑛ଷଶ𝛼ሺ𝑡ሻ െ 𝑛ଷସሺ𝜆ሺ𝑡ሻ െ 𝑊𝜐ሺ𝑡ሻሻ െ 𝑛஻ሺ𝑏ଵ𝜐ሺ𝑡 െ 𝜏ሻሻ ൅
൅𝑏ଶ𝛼ሺ𝑡 െ 𝜏ሻ ൅ 𝑏ଷ𝜗ሺ𝑡 െ 𝜏ሻ ൅ 𝑏ସሺ𝜆ሺ𝑡 െ 𝜏ሻ െ 𝑊𝜐ሺ𝑡ሻሻ

𝜆ᇱሺ𝑡ሻ ൌ 𝑊൫𝑝ଵ𝜐ሺ𝑡 െ 𝜏ሻ ൅ 𝑝ଶ𝛼ሺ𝑡 െ 𝜏ሻ ൅ 𝑝ଷ𝜗ሺ𝑡 െ 𝜏ሻ ൅ 𝑝ସሺ𝜆ሺ𝑡 െ 𝜏ሻ െ 𝑊𝜐ሺ𝑡 െ 𝜏ሻሻ൯𝑛௣ ൅

൅ሺ𝑊ଶ𝑛ଵସ െ 𝑊𝑛ଵଵ ൅ 𝑛ସଵሻ𝜐ሺ𝑡ሻ ൅ ሺെ𝑊𝑛ଵଷ ൅ 𝑛ସଶሻ𝜗ሺ𝑡ሻ ൅
൅ሺെ𝑊𝑛ଵଶ െ 𝑛ସଶሻ𝛼ሺ𝑡ሻ െ 𝑊𝜆ሺ𝑡ሻ𝑛ଵସ

  (3.1) 
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1.1 Autopilot 

For the case when steady state parameters cannot provide stability of the desirable steady state 
trajectory themselves, we need to use autopilots (Fig.2.). An autopilot states the controlling 
parameters 𝛿௣, 𝛿஻ to be functions of the output controlled 

parametersሺ𝜐ሺ𝑡ሻ;   ℎሺ𝑡ሻ;   𝛼ሺ𝑡ሻ;   𝜃ሺ𝑡ሻ;   𝜗ሺ𝑡ሻሻ, which are deviations from the desirable steady 
state trajectory. The values of the output parameters can be obtained by autopilot from 
navigation measurements, for example, from vision-based navigation, inertial navigation, 
satellite navigation and so on. On the basis these navigation measurements, the autopilot forms 
controlling signals to decrease undesirable deviation. Unfortunately, there always exists some in 
getting information about the output controlled parameters to autopilot for any navigation 
measurements. So we have a problem, because of the lack of some necessary information for 
controlling. In this paper we demonstrate that we are possible even for such conditions with the 
time delay to get controlling signal providing a stable flight. 

 

 

Fig.2 Automatic control 

 

4 Applying the theory to a particular case 
 
Apply the condition (1.1) of Theorem 3.2 in [1], described in section 2 of this paper to 
the system (3.1) 
Consider the system of inequalities: 
 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧൫𝑛௣𝑝ସ𝑊 ൅ 𝑛ଵସ𝑊 െ 𝑛௣𝑝ଵ ൅ 𝑛ଵଵ൯𝑧ଵ െ หെ𝑛௣𝑝ଶ ൅ 𝑛ଵଶห𝑧ଶ െ หെ𝑛௣𝑝ଷ ൅ 𝑛ଵଷห𝑧ଷ െ หെ𝑛௣𝑝ସ ൅ 𝑛ଵସห𝑧ହ ൒ 1            ሺ4.1ሻ

𝑛ଶଶ𝑧ଶ െ |𝑛ଶସ𝑊 ൅ 𝑛ଶଵ|𝑧ଵ െ |𝑛ଶଷ ൅ 𝑏଴|𝑧ଷ െ 𝑧ସ െ |𝑛ଶସ|𝑧ହ ൒ 1                                                                                    ሺ4.2ሻ 
െ𝑏଴𝑧ଷ െ 𝑧ସ ൒ 1                                                                                                                                                                     ሺ4.3ሻ 
ሺ𝑏଴ ൅ 𝑛଴ ൅ 𝑛ଷଷሻ𝑧ସ െ |െ𝑛଴𝑛ଶଵ െ 𝑛଴𝑛ଶସ𝑊 െ 𝑛ଶଵ ൅ 𝑛ଷସ𝑊 െ 𝑛஻𝑏ଵ ൅ 𝑛஻𝑏ସ𝑊|𝑧ଵ െ |𝑛଴𝑛ଶଶ െ 𝑛ଷଶ െ 𝑛஻𝑏ଶ|𝑧ଶ െ
െ|𝑛଴𝑏଴ ൅ 𝑛ଷଷ𝑏଴ ൅ 𝑏଴

ଶ ൅ 𝑛଴𝑛ଶଷ ൅ 𝑛஻𝑏ଷ|𝑧ଷ െ |𝑛଴𝑛ଶସ െ 𝑛ଷସ െ 𝑛஻𝑏ସ|𝑧ହ ൒ 1                                                            ሺ4.4ሻ 

ሺെ𝑛௣𝑝ସ𝑊 ൅ 𝑛ଵସ𝑊ሻ𝑧ହ െ หെ𝑊ଶ𝑛௣𝑝ସ ൅ 𝑊ଶ𝑛ଵସ ൅ 𝑊𝑛௣𝑝ଵ െ 𝑊𝑛ଵଵ ൅ 𝑛ସଵห𝑧ଵ െ ቚെ𝑛௣𝑝ଶ ൅ 𝑛ଵଶ ൅
𝑛ସଶ

𝑊
ቚ 𝑧ଶ െ

െ ቚെ𝑛௣𝑝ଷ ൅ 𝑛ଵଷ െ
𝑛ସଶ

𝑊
ቚ 𝑧ଷ ൒ 1                                                                                                                                           ሺ4.5ሻ 
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Take other coefficients from the first column of Table 1 we get following: 
𝑛ଵଵ ൌ 0.024, 𝑛ଵଶ ൌ െ0.11, 𝑛ଵଷ ൌ 0.2, 𝑛ଵସ ൌ െ0.00043, 𝑛ଶଵ ൌ െ0.4, 𝑛ଶଶ ൌ 2.4, 𝑛ଶଷ ൌ
0, 𝑛ଶସ ൌ െ0.0122, 𝑛ଷଵ ൌ 0, 𝑛ଷଶ ൌ 38, 𝑛ଷଷ ൌ 2.45, 𝑛ଷସ ൌ െ0.053, 𝑛଴ ൌ 0.4, 𝑛஻ ൌ 49, 
𝑛௉ ൌ 0.022, 𝑛ସଵ ൌ 0, 𝑛ସଶ ൌ 1;                   
 
We choose 𝑧ଵ ൌ 1 ∙ |𝑧|, 𝑧ଶ ൌ 1 ∙ |𝑧|, 𝑧ଷ ൌ 10ିଵ଴ ∙ |𝑧|, 𝑧ସ ൌ 10ିଵ଴ ∙ |𝑧|, 𝑧ହ ൌ 1 ∙ |𝑧|, 
where |𝑧| ≫ 1, |𝑧| ∙ 10ିଵ଴ ≫ 1 
From (4.3) 

𝑏ଵ ൌ െ
𝑛ଶଵሺ𝑛଴ ൅ 1ሻ

𝑛஻
 

𝑏ଶ ൌ
𝑛଴𝑛ଶଶ െ 𝑛ଷଶ

𝑛஻
 

𝑏ଷ ൌ െ
𝑏଴

ଶ ൅ 𝑛଴𝑏଴ ൅ 𝑛ଷଷ𝑏଴ ൅ 𝑛଴𝑛ଷଶ

𝑛஻
 

𝑏ସ ൌ
𝑛଴𝑛ଶସ െ 𝑛ଷସ

𝑛஻
 

𝑏଴ ൒ െ𝑛଴ െ 𝑛ଷଷ ൅ 1 /ሺ|𝑧| ∙ 10ିଵ଴ሻ    
From (4.3) 
𝑏଴ ൒ െሺ1 ൅ 1 /ሺ|𝑧| ∙ 10ିଵ଴ሻሻ    
We choose 𝑏଴ ൌ െ1.001 
Then we can calculate parameters 𝑏ଵ, 𝑏ଶ, 𝑏ଷ, 𝑏ସ: 
𝑏ଵ ൌ 0.01142857143, 𝑏ଶ ൌ -0.7559183673,  𝑏ଷ ൌ 0.03777242857, 𝑏ସ ൌ
0.0009820408163 
 
From (4.2) 

𝑛ଶଶ െ |𝑛ଶସ𝑊 ൅ 𝑛ଶଵ| െ ሺ|𝑛ଶଷ ൅ 𝑏଴| ൅ 1ሻ ∙ 10െ10 െ |𝑛ଶସ| ൒
1

|𝑧|
 

𝑛ଶଶ

|𝑛ଶସ|
െ

ሺ|𝑛ଶଷ ൅ 𝑏଴| ൅ 1ሻ
|𝑛ଶସ|

∙ 10ିଵ଴ െ 1 െ
1

|𝑧||𝑛ଶସ|
െ

𝑛ଶଵ

𝑛ଶସ
൒ 𝑊

൒ െ
𝑛ଶଶ

|𝑛ଶସ|
൅

ሺ|𝑛ଶଷ ൅ 𝑏଴| ൅ 1ሻ
|𝑛ଶସ|

∙ 10ିଵ଴ ൅ 1 ൅
1

|𝑧||𝑛ଶସ|
െ

𝑛ଶଵ

𝑛ଶସ
 

 

162.95െ
ሺ|௡మయା௕బ|ାଵሻ

|௡మర|
∙ 10ିଵ଴ െ ଵ

|௭||௡మర|
൒ 𝑊 ൒ െ228.51 ൅

ሺ|௡మయା௕బ|ାଵሻ

|௡మర|
∙ 10ିଵ଴ ൅ ଵ

|௭||௡మర|
 

We choose 𝑊 ൌ െ63 
We choose 

ቚെ𝑛௣𝑝ଶ ൅ 𝑛ଵଶ ൅
𝑛ସଶ

𝑊
ቚ ൌ หെ𝑛௣𝑝ଶ ൅ 𝑛ଵଶห ൌ ቚ

𝑛ସଶ

2𝑊
ቚ 

ቚെ𝑛௣𝑝ଷ ൅ 𝑛ଵଷ െ
𝑛ସଶ

𝑊
ቚ ൌ หെ𝑛௣𝑝ଷ ൅ 𝑛ଵଷห ൌ ቚ

𝑛ସଶ

2𝑊
ቚ 

 

so 

𝑝ଶ ൌ െ
ቚ೙రమ

మೈ
ቚା|௡భమ|

௡೛
 ,  𝑝ଷ ൌ െ

ቚ೙రమ
మೈ

ቚା|௡భయ|

௡೛
; 

Then we can calculate parameters 𝑝ଶ, 𝑝ଷ: 
𝑝ଶ ൌ -5.360750359, 𝑝ଷ ൌ 9.451659450 
  



14 
 

We introduce new variable 𝑝ହ ൌ 𝑝ଵ െ 𝑊𝑝ସ. 
Substituting 𝑝ଵ ൌ 𝑝ହ ൅ 𝑊𝑝ସ we get conditions for parameters 𝑝ସ and  𝑝ହ from (4.1) and 
(4.5): 
 

  ቐ
ቀ𝑛ଵସ𝑊 െ ቚ௡రమ

ଶௐ
ቚ ሺ1 ൅ 10ିଵ଴ሻ ൅ 𝑛ଵଵቁ െ 𝑛௉𝑝ହ െ หെ𝑛௣𝑝ସ ൅ 𝑛ଵସห ൐ 0

ሺ𝑛ଵସ𝑊 െ ቚ௡రమ

ଶௐ
ቚ ሺ1 ൅ 10ିଵ଴ሻሻ െ 𝑛௣𝑝ସ𝑊 െ ห𝑊ଶ𝑛ଵସ ൅ 𝑊𝑛௣𝑝ହ െ 𝑊𝑛ଵଵ ൅ 𝑛ସଵห ൐ 0

 

 

  ൜
െ0.022𝑝ହ ൅ 0.04315349210 െ |0.022𝑝ସ ൅ 0.00043| ൐ 0
0.022𝑝ସ െ 0.007506507971 െ |0.00309 ൅ 0.022𝑝ହ| ൐ 0

    (4.6) 

 
  
We find the parameters and choose the particular ones that satisfy the requirements: 
 
𝑝ଵ ൌ െ35, 𝑝ସ ൌ 0.5512345678   
 
Now it's possible to find the requirements for delay: 

Apply the conditions (1.2) of Theorem 3.2 in [1], described in section 2 of this paper to 
the system (3.1) 

From eq. for 𝜐ᇱሺ𝑡ሻ 

൫𝑛ଵସ𝑊 ൅ 𝑛ଵଵ െ 𝑛௣𝑝ଵ൯𝜏 ൑ ଵ

௘
  

0.821𝜏 ൑ 0.368 
𝜏 ൑ 0.448 

൫𝑛ଵସ𝑊 ൅ 𝑛ଵଵ െ 𝑛௣𝑝ଵ െ ห𝑛௣𝑝ସ𝑊ห൯𝜏 ൑ ଵ

௘
;  

0.057𝜏 ൑ 0.368 
𝜏 ൑ 6.445 
From eq. for 𝜆ᇱሺ𝑡ሻ 

൫𝑛ଵସ𝑊 െ 𝑛௣𝑝ସ𝑊൯𝜏 ൑
1
𝑒

 

0.791𝜏 ൑ 0.368 
𝜏 ൑ 0.465 
 
Finally,  
𝜏 ൑ 0.448 
Delay in seconds  
𝜏௦ ൑ 0.448𝜏௔ ൌ 0.448 ∗ 3.8 𝑠𝑒𝑐 ൌ 1.703 𝑠𝑒𝑐 
 

5 Computer simulations 
 
We made numerical simulation of the system (4.1)-(4.5) for different values of time delay 
(fig. 3-5). Nonzero initial conditions was used. We can see that the system (4.1)-(4.5) is 
stable even for values of time delay larger than theoretical one  𝜏 ൌ 0.448 
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Fig. 3 Numerical simulation of the system (4.1)-(4.5) for time delay  
𝜏 ൌ 1 

 
Fig. 4 Numerical simulation of the system (4.1)-(4.5) for time delay  
𝜏 ൌ 1.9 
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Fig. 5 Numerical simulation of the system (4.1)-(4.5) for time delay  
𝜏 ൌ 2 
 

6 Conclusion 

As a result, we proved that it's possible to maintain stable movement of a drone even when time 
delay exists in transfer information about output control parameters from navigation 
measurement devices to autopilot. We found control parameters for a particular case of flight and 
estimated max possible delay of the system. 
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