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The metaphysics of physics 
1. The wavefunction of an electron 

The wavefunction is a wonderful mathematical object which can be used in various ways. 
One way is to describe the Zitterbewegung (zbw) of an electron – or of any charged 
particle, as depicted below. 

 

Figure 1: The force and position vector 

The zbw model of an electron implies a dual view of the reality of the real and imaginary 
part of the wavefunction. On the one hand, they will describe the physical position (i.e. 
the x- and y-coordinates) of the pointlike charge. This is the green dot in the illustration. 
The elementary wavefunction describes its motion as follows:  

a·ei = x + i·y with x = a·cos(ωt) and y = a·sin(ωt) 

As such, the (elementary) wavefunction is viewed as an implicit function: it is equivalent 
to the x2 + y2 = a2 equation, which describes the same circle. On the other hand, the zbw 
model implies the circular motion of the pointlike charge is driven by a tangential force, 
which we write as: 

F = Fx·cos(ωt+π/2) + i·Fx·sin(ωt+π/2) 

The line of action of the force is the orbit, because a force needs something to grab onto, 
and the only thing it can grab onto in this model is the oscillating (or rotating) charge. 
The formula above suggests we should think of the composite force F as the resultant 
force of two perpendicular oscillations. The zbw model – which is derived from Dirac’s 
wave equation for free electrons – tell us the velocity of the pointlike charge is equal to c. 
If the zbw frequency is given by Planck’s energy-frequency relation (ω = E/ħ), then we 
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can combine Einstein’s E = mc2 formula with the radial velocity formula (c = a·ω) and 
find the zbw radius, which is nothing but the (reduced) Compton wavelength: 

𝑎 =
ℏ

m𝑐
=

λୣ

2π
≈ 0.386 × 10ିଵଶm 

This (two-dimensional) oscillator model also allows us to calculate the magnitude of the 
force. Indeed, the energy in the oscillator must be equal to the magnitude of the force 
times the length of the loop: 

E = Fλୣ ⟺ 𝐹 =
E

λୣ
≈

8.187 × 10ିଵସ J

2.246 × 10ିଵ  m
≈ 3.3743 × 10ିଶN 

Considering the sub-atomic scale, this is a significant force. The current is equally 
significant:  

I = qୣ𝑓 = qୣ

E

ℎ
≈ (1.6 × 10ିଵ  C)

8.187 × 10ିଵସ J

6.626 × 10ିଷ  Js
≈ 1.98 A 

The A is not ångström but ampere. Hence, we have a household-level current here at the 
sub-atomic scale. Does that make sense? Maybe. Maybe not. But the result is consistent 
with the calculation of the magnetic moment, which is equal to the current times the area 
of the loop and which – using the results above – we can now calculate as: 

μ = I ∙ π𝑎ଶ = qୣ

m𝑐ଶ

ℎ
∙ π𝑎ଶ = qୣ𝑐

π𝑎ଶ

2π𝑎
=

qୣ𝑐

2

ℏ

m𝑐
=

qୣ

2m
ℏ 

All that is left is to check whether this is consistent with the presumed angular 
momentum of an electron, which is that of a spin-1/2 particle. The oscillator model 
implies the effective mass of the electron will be spread over the disk, which gives the 
form factor for the moment of inertia (I): 1/2. We write: 

L = 𝐼 ∙ ω =
𝑚𝑎ଶ

2

𝑐

𝑎
=

𝑚𝑐

2

ℏ

𝑚𝑐
=

ℏ

2
 

We now get the correct g-factor for the pure spin moment of an electron: 

𝛍 = −g ቀ
qୣ

2m
ቁ 𝐋 ⇔

qୣ

2m
ℏ = g

qୣ

2m

ℏ

2
⇔ g = 2 

The vector notation for 𝛍 and L (boldface) should make us think about the plane of 
oscillation. This question is related to the question of how we should analyze all of this is 
a moving reference frame. This is a complicated question. The Stern-Gerlach experiment 
suggests we may want to think of an oscillation plane that is perpendicular to the 
direction of motion, as illustrated below. 
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Figure 2: The zbw electron traveling through a Stern-Gerlach apparatus? 

Of course, the Stern-Gerlach experiment assumes the application of a (non-homogenous) 
magnetic field. In the absence of such field, we may want to think of the plane of 
oscillation as something that is rotating in space itself. The idea, then, is that it sort of 
snaps into place when an external magnetic field is applied. 

As for the question of how we should look at the motion in a moving reference frame – 
and, in particular, when the electron would move at a relativistic speed – we will come 
back to this later. Let us first see how we can use the wavefunction concept to interpret a 
photon. Before we do so, however, we should say something about the nature of the force. 

The assumption is that the force grabs onto a pointlike charge. Hence, the force must be 
electric. We write: 

F = qeE. 

The E in this formula is an electric field vector (as opposed to the energy E). The field 
must be humongous because the force is humongous (a force of 0.0375 N is equivalent to a 
force that gives a mass of 37.5 gram (1 g = 10-3 kg) an acceleration of 1 m/s per second). 
Hence, what makes the charge go round and round? There is no wire to confine its 
motion. The E = ma2ω2 = mc2 is intuitive: the energy of any oscillation will be 
proportional to the square of (i) the (maximum) amplitude of the oscillation and (ii) the 
frequency of the oscillation, with the mass as the proportionality coefficient. But what 
does it mean? 

This question is difficult to answer. This is why we insist that the Zitterbewegung idea 
must be complemented with the idea of a two-dimensional oscillation. We explore this 
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elsewhere1 and, hence, will not dwell on this here. We will only make one or two remarks 
below which may or may not help the reader to develop his or her own interpretation.    

When everything is said and done, we should admit that the bold c2 = a2·ω2  assumption 
interprets spacetime as a relativistic aether – a term that is taboo but that is advocated 
by Nobel Prize Laureate Robert Laughlin2. It is inspired by the most obvious implication 
of Einstein’s E = mc2 equation, and that is that the ratio between the energy and the 
mass of any particle is always equal to c2: 

𝐸௘௟௘௖௧௥௢௡

𝑚௘௟௘௖௧௥௢௡
=

𝐸௣௥௢௧௢௡

𝑚௣௥௢௧௢௡
=

𝐸௣௛௢௧௢

𝑚௣௛௢௧௢
=

𝐸௔௡௬ ௣௔௥௧௜௖௟௘

𝑚௔௡௬ ௣௔௥௧௜௖௟௘
= 𝑐ଶ 

This reminds us of the ω2 = C1/L or ω2 = k/m of harmonic oscillators – with one key 
difference, however: the ω2= C1/L and ω2 = k/m formulas introduce two (or more) 
degrees of freedom. 3 In contrast, c2= E/m for any particle, always. This is the point: we 
can modulate the resistance, inductance and capacitance of electric circuits, and the 
stiffness of springs and the masses we put on them, but we live in one physical space 
only: our spacetime. Hence, the speed of light c emerges here as the defining property 
of spacetime. It is, in fact, tempting to think of it as some kind of resonant frequency but 
the c2 = a2·ω2 hypothesis tells us it defines both the frequency as well as the amplitude of 
what we will now refer to as the rest energy oscillation.  

It is now time to look at how we can use the very same wavefunction to describe the 
conceptual opposite of matter: the photon. 

                                      
1 See: Jean Louis Van Belle, 24 November 2018, Einstein’s mass-energy equivalence relation: an 
explanation in terms of the Zitterbewegung (http://vixra.org/abs/1811.0364). 
2 Robert Laughlin (2005), as quoted in the Wikipedia article on aether theories 
(https://en.wikipedia.org/wiki/Aether_theories).   
3 The ω2= 1/LC formula gives us the natural or resonant frequency for an electric circuit consisting of a 
resistor (R), an inductor (L), and a capacitor (C). Writing the formula as ω2 = C1/L introduces the concept 
of elastance, which is the equivalent of the mechanical stiffness (k) of a spring. We will usually also include 
a resistance in an electric circuit to introduce a damping factor or, when analyzing a mechanical spring, a 
drag coefficient. Both are usually defined as a fraction of the inertia, which is the mass for a spring and the 
inductance for an electric circuit. Hence, we would write the resistance for a spring as γm and as R = γL 
respectively. This is a third degree of freedom in classical oscillators.   
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2. The wavefunction of a photon 
Photons may or may not have a wavefunction but, if they do, we would probably want to 
visualize it as a circularly polarized wave, as illustrated below: a rotating electric field 
vector (E) which can be analyzed as the sum of two orthogonal components: E = Ex + 
Ey.4   

 

 

Figure 3: LHC- and RHC-polarized light 

This is a very different view of the (elementary) wavefunction. It is not an implicit 
function anymore. It is a proper function now. To be precise, we think of a·ei as a 
function from some domain (Δx, Δt) to an associated range of values a·ei. We may 
write this as: 

(x, t) → a·ei = a·ei(ω·t  k·x) = a·cos(ω·t  k·x) + i·a·sin(ω·t  k·x) 

Hence, while the domain of this wavefunction has to be limited in space and in time, the 
wave itself will, effectively, occupy some space at any point in time and, conversely, will 
only have non-zero values over a limited time interval at any point in space. Of course, 
the amplitude is not necessarily uniform. If you have ever recorded someone playing the 
guitar (yourself, perhaps), then you are probably aware of how an actual wave packet 
looks like: it is a transient oscillation, as shown below. Note that its shape reverses 
depending on whether we take the horizontal axis to be time (t) or spatial position (x).   

                                      
4 One should not confuse the electric field vector E with the energy E. Boldface is used to denote a vector. 
Of course, there is more scope for confusion when we will use E to denote the magnitude of the electric field, 
which we will do shortly. We could have introduced new symbols but the context should make clear what 
we are talking about. 
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Figure 4: An actual wave is usually a transient 

This may look outlandish but it makes sense if we think photons are emitted – and 
absorbed – by an atomic transition from one energy state to another. We think of these 
atoms at atomic oscillators, and we can calculate their Q: it’s of the order of 108 (see, for 
example, Feynman’s Lectures, I-33-3), which means that, after about as many oscillations, 
the amplitude will have died by a factor 1/e ≈ 0.37. Let us give an example, because it 
gives rise to interesting questions. For sodium light – which has a frequency of 500 THz 
(500×1012 oscillations per second) and a wavelength of 600 nm (600×10–9 meter) – the 
decay time of the radiation will be some 3.2×10–8 seconds. That makes for about 16 
million oscillations. Now, the wavelength is small but the speed of light is huge. The 
length of the wave train is, therefore, still quite considerable: about 9.6 meter. 

This sounds lunatic: a photon with a length of 9.6 meter? Yes. Fortunately, we are saved 
by relativity theory: as this wave train zips by at the speed of light, relativistic length 
contraction reduces its length to zero. What about the field strength? Because the electric 
field is perpendicular to the direction of propagation, we like to think the amplitude 
remains what it is. However, that requires, perhaps, a more careful consideration. 

At this point in the argument, we have no choice but to think about relativistic 
transformations of the wavefunction or, to be precise, relativistic transformations of its 
argument. Before we do so, we need to make one more note. It should, intuitively, be 
obvious that the energy of a photon – the energy of the wave train, really – is packed over 
many oscillations. Zillions, literally. Each of these oscillations will, therefore, pack an 
exceedingly small (but real) amount of energy. As any oscillation, each oscillation takes 
some time (the cycle time) and, in the case of the photon, some space (the wavelength). 
In contrast, the electron picture was different: one oscillation – one cycle, really – packs 
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all of the energy E = Fλୣ = mec2. Hence, the magnitude of the associated electric field is 
humongous as compared to the amplitude of the oscillations of our photon.  

Let relativity enter the picture now. 

3. The relativistic invariance of the wavefunction 
Let us consider the idea of a particle traveling in the positive x-direction at constant speed 
v. This idea implies a pointlike concept of position and time: we think the particle will be 
somewhere at some point in time. The somewhere in this expression does not necessarily 
mean that we think the particle itself will be dimensionless or pointlike. It just implies 
that we can associate some center with it. Think of the zbw model here, for example: we 
have an oscillation around some center, but the oscillation has a physical radius, which we 
refer to as the Compton radius of the electron.5 Of course, two extreme situations may be 
envisaged: v = 0 or v = c. However, let us not consider these right now (we will do so 
later, of course).   

The point is: in our reference frame, we have a position – a mathematical point in space, 
that is – which is a function of time: x(t) = v·t. Let us now denote the position and time 
in the reference frame of the particle itself by x’ and t’. Of course, the position of the 
particle in its own reference frame will be equal to x’(t’) = 0 for all t’, and the position 
and time in the two reference frames will be related as follows: 

𝑥ᇱ =
𝑥 − 𝑣𝑡

ට1 −
𝑣ଶ

𝑐ଶ

=
𝑣𝑡 − 𝑣𝑡

ට1 −
𝑣ଶ

𝑐ଶ

= 0 

𝑡ᇱ =
𝑡 −

𝑣𝑥
𝑐ଶ

ට1 −
𝑣ଶ

𝑐ଶ

 

Hence, if we denote the energy and the momentum of the electron in our reference frame 
as Ev and p = m0v, then the argument of the (elementary) wavefunction a·ei can be re-
written as follows: 

θ =
1

ℏ
(E௩𝑡 − p𝑥) =

1

ℏ

⎝

⎛
E଴

ට1 −
𝑣ଶ

𝑐ଶ

𝑡 −
E଴𝑣

𝑐ଶට1 −
𝑣ଶ

𝑐ଶ

𝑥

⎠

⎞ =
1

ℏ
E଴

⎝

⎛
𝑡

ට1 −
𝑣ଶ

𝑐ଶ

−

𝑣𝑥
𝑐ଶ

ට1 −
𝑣ଶ

𝑐ଶ ⎠

⎞ =
E଴

ℏ
𝑡′ 

                                      
5 The language is quite subtle: the Compton radius is the reduced Compton wavelength: a = rC = λe/2π. 
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We have just shown that the argument of the wavefunction is relativistically invariant.6 It 
makes us think that of the argument of the wavefunction and – therefore – the 
wavefunction itself – might be more real – in a physical sense, that is – than the various 
wave equations (Schrödinger, Dirac, Klein-Gordon) for which it is some solution. Let us, 
therefore, further explore this. We have been interpreting the wavefunction as an implicit 
function again: for each x, we have a t, and vice versa. There is, in other words, no 
uncertainty here: we think of our particle as being somewhere at any point in time, and 
the relation between the two is given by x(t) = v·t. We will get some linear motion. If we 
look at the ψ = a·cos(p·x/ħ − E·t/ħ) + i·a·sin(p·x/ħ − E·t/ħ) once more, we can 
write p·x/ħ as Δ and think of it as a phase factor. We will, of course, be interested to 
know for what x this phase factor Δ = p·x/ħ will be equal to 2π. Hence, we write:  

Δ = p·x/ħ = 2π ⇔ x = 2π·ħ/p = h/p = λ 

We now get a meaningful interpretation of the de Broglie wavelength. It is the distance 
between the crests (or the troughs) of the wave, so to speak, as illustrated below.  

 

Figure 5: An interpretation of the de Broglie wavelength 

Of course, we should probably think of the plane of oscillation as being perpendicular to 
the plane of motion – or as oscillating in space itself – but that doesn’t matter. Let us 
explore some more. We can, obviously, re-write the argument of the wavefunction as a 
function of time only:    

θ =
1

ℏ
(E௩𝑡 − p𝑥) =

1

ℏ

E଴

ට1 −
𝑣ଶ

𝑐ଶ

ቀ𝑡 −
𝑣

𝑐ଶ
𝑣𝑡ቁ =

1

ℏ

E଴

ට1 −
𝑣ଶ

𝑐ଶ

ቆ1 −
𝑣ଶ

𝑐ଶ
ቇ 𝑡 = ඨ1 −

𝑣ଶ

𝑐ଶ
·

E଴

ℏ
𝑡 

We recognize the inverse Lorentz factor here, which goes from 1 to 0 as v goes from 0 to 
c, as shown below.  

                                      
6 E0 is, obviously, the rest energy and, because p’ =  0 in the reference frame of the electron, the argument 
of the wavefunction effectively reduces to E0t’/ħ in the reference frame of the electron itself. 
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Figure 6: The inverse Lorentz factor as a function of (relative) velocity (v/c) 

Note the shape of the function: it is a simple circular arc. This result should not surprise 
us, of course, as we also get it from the Lorentz formula:  

𝑡ᇱ =
𝑡 −

𝑣𝑥
𝑐ଶ

ට1 −
𝑣ଶ

𝑐ଶ

=
𝑡 −

𝑣ଶ

𝑐ଶ 𝑡

ට1 −
𝑣ଶ

𝑐ଶ

= ඨ1 −
𝑣ଶ

𝑐ଶ
∙ 𝑡 

What does it all mean? We can go through a simple numerical example to think this 
through. Let us assume that, for example, that we are able to speed up an electron to, 
say, about one tenth of the speed of light. Hence, the Lorentz factor will then be equal to 
 = 1.005. This means we added 0.5% (about 2,500 eV) – to the rest energy E0: Ev = E0 
≈ 1.005·0.511 MeV ≈ 0.5135 MeV. The relativistic momentum will then be equal to mvv 
= (0.5135 eV/c2)·(0.1·c) = 5.135 eV/c. We get:   

θ =
E଴

ℏ
𝑡′ =

1

ℏ
(E௩𝑡 − p𝑥) =

1

ℏ

⎝

⎛
E଴

ට1 −
𝑣ଶ

𝑐ଶ

𝑡 −
E଴𝑣

𝑐ଶට1 −
𝑣ଶ

𝑐ଶ

𝑥

⎠

⎞ = 0.955
E଴

ℏ
𝑡 

This is interesting, and then it is not. A more interesting question is what happens to the 
radius of the oscillation. Does it change? It must, but how should we interpret this? In 
the moving reference frame, we measure higher mass and, therefore, higher energy – as it 
includes the kinetic energy. The c2 = a2·ω2 identity must now be written as c2 = a’2·ω’2. 
Instead of the rest mass m0 and rest energy E0, we must now use mv = m0 and Ev = E0 
in the formulas for the Compton radius and the Einstein-Planck frequency, which we just 
write as m and E in the formula below: 
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m𝑎′ଶω′ଶ = m
ℏଶ

mଶ𝑐ଶ

mଶ𝑐ସ

ℏଶ
= m𝑐ଶ 

This is easy to understand intuitively: we have the mass factor in the denominator of the 
formula for the Compton radius, so it must increase as the mass of our particle increases 
with speed. Conversely, the mass factor is present in the numerator of the zbw frequency, 
and this frequency must, therefore, increase with velocity. It is interesting to note that we 
have a simple (inverse) proportionality relation here. 

The idea is visualized in the illustration below (for which credit goes to the modern zbw 
theorists Celani et al.), which depicts an accelerating electron: the radius of the 
circulatory motion must effectively diminish as the electron gains speed. Once again, 
however, we should warn the reader that he or she should also imagine the plane of 
oscillation to be possibly parallel to the direction of propagation, in which case the 
circular motion becomes elliptical.  

 

Figure 7: The Compton radius must decrease with increasing velocity 

Can the velocity go to c? This is where the analysis for an electron – or any other matter-
particle – and for a photon part ways. In the zbw model, we have a rest energy which is 
explained by the Zitterbewegung of a pointlike electric charge. Hence, relativity tells us we 
can never accelerate it to the speed of light, because its mass – a measure for inertia to 
movement – becomes infinite. 

In contrast, we have no such constraint for a photon. In fact, it does not have any rest 
energy (or rest mass). All of its energy is in its motion. What happens to the argument of 
the wavefunction? If we still think of the photon just like we would think of a particle – 
i.e. in terms of it being at some specific point in space at some specific point in time – 
then the argument vanishes: 

θ =
1

ℏ
(E · 𝑡 − p · 𝑥) =

1

ℏ
(p𝑐 · 𝑡 − p · 𝑐𝑡) = 0 
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What does this tell us? In our humble view, this tells us that we should not think of a 
photon as we think of a particle. If we want to associate a wavefunction with a photon, 
then we should not think of it as an implicit function, but as a proper function, i.e. a 
function from some domain (Δx, Δt) to an associated range of values a·ei. We can then 
use the superposition principle to shape it anyway we would want to shape it, and we 
should probably think of some transient here, rather than a nice symmetrical wave 
packet. 

 

Jean Louis Van Belle, 25 November 2018 
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