A Poincaré - conformal matrix Lie algebra

Richard Shurtleff *
November 21, 2018

Abstract

The Poincaré group of spacetime rotations and spacetime translations has been
fundamental for over a century. Also a century old are efforts to find alternatives,
efforts that include invoking the larger symmetry group of Maxwell’s electrodynamics,
the conformal group. In this paper an 8 x 8 matrix representation of the Poincaré
group is enhanced by defining a 4 x 4 matrix rep of the conformal group that acts
on 4 of the 8 dimensions, a 4-spinor subset of 8-spinors. The matrix generators are
described in detail and the commutation relations of the Lie algebra are displayed.
There are additional generators needed to keep the enhanced algebra closed. The new
generators add new transformations making a group larger than the direct product of
the Poincaré and conformal groups.
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1 Introduction

The Poincaré and conformal groups have been well-studied, with a wide range of applications
in, for example, quantum field theory,[1] graphene,[2, 3] and theories of gravitation.[4, 5| Here,
the two groups combine in something like a direct product, but with some mixing due to
some of the transformations in one group not commuting with all the transformations in the
other.

One can define a matrix Lie algebra by providing a suitable set of matrices. The com-
mutators of the matrices must be expressible as linear combinations of the matrices. One
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standard example is the 4 x 4 matrix representations of the Lorentz group of spacetime rota-
tions that, among other uses, describes 4-spinor Dirac reps of massive spin 1/2 fermions such
as the electron in relativistic wave mechanics. The Lorentz group has 6 linearly independent
generators in the set of sixteen angular momentum matrices J* = —i (yHy" — "~H) /4,
made with Dirac y-matrices and u,v € {1,2,3,4} = {z,y, z,t}, Minkowski coordinates.

Just as angular momentum matrices generate a representation of the group of spacetime
rotations, there are linear momentum, often shortened to just ‘momentum’, matrices that
generate reps of spacetime translations. Naively, since both translations and rotations are
fundamental spacetime symmetries, one expects that matrix reps of translations would be
just as helpful in formulating quantum mechanics as the spin matrices that represent the
group of spacetime rotations.

The matrix representations of the Poincaré group are found by, for example, seeking
matrix solutions of the commutation relations of the Poincaré algebra.[6, 7] For spin 1/2, the
process of representing translations increases the component count from 4-spinors, needed
for rotations with parity invariance, to 8-spinors. By similarity transformations, one can
arrange the eight components so there are two 4-spinors, each with its own standard 4-
spinor representation of the Lorentz group. The two 4-spinors do not mix for spacetime
rotations.

With translations, the first 4-spinor, the “donor”, donates a linear combination of its
components to the second 4-spinor, the “receiver.” In general, the essence of translation
generators, the momentum matrices, is to acquire linear combinations of one set of spinor
components and deposit those combinations with a second set of components.

In this paper the receiver 4-spinor transforms also with the conformal group. There is
just one matrix rep of the conformal group,[8, 9] the 4-spinor rep, within similarity transfor-
mations. That rep is applied to the receiver 4-spinor.

Since, for Lorentz rotation/boost transformations, the receiver 4-spinor is independent
of the donor 4-spinor, the conformal group of the receiver mixes only with the donor via
translations. The mixing introduces new transformations.

Counting generators, there are 10 generators needed for the 8-spinor Poincaré group and
15 generators of the 4-spinor conformal group. The 8-spinor Poincaré group representation
has an additional 4 momentum generators since, in general, there are two linearly inde-
pendent, commuting representations of translations. Closure, upon mixing the translations
and conformal transformations, requires an additional 8 generators, making a group with 37
generators. This is well short of the limit of 64 generators allowed for 8 x 8 matrices.

For convenience, the Appendix has a Mathematica notebook[10, 11] that verifies the
calculations. The Appendix will be jettisoned when the article is published.

The matrix representation is detailed in Sec. 2 and the commutation relations of the
corresponding Lie algebra are given in Sec. 3. The algebra has three Poincaré subalgebras
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and a conformal subalgebra, as discussed in Sec. 4. Sec. 5 finishes with some concluding
remarks.

2 Generators

Formulas to construct the 8 x 8 matrix generators are presented in this section. First, let us
recall briefly some of the concepts.[12, 13, 14]

A matrix Lie algebra has a set of, say IV, linearly independent matrices { X1, Xo, ..., Xy}
called “generators.” Two matrices M, and M, determine the commutator, [M,, M;], which
is the “product” operation in the algebra. In a Lie algebra, the matrix commutators of
generators are expressible as linear combinations of the generators,

N
[XmXb] = Xa : Xb - Xb : Xa — Zisachc ) (1)
c=1
where the centerdot “” denotes matrix multiplication. The coefficients s,;. are called the

“structure constants” and the indices range over generators a,b,c € {1,2,..., N}. Each gen-
erator, say X, generates a transformation 7'(0) = exp (£iX0), where 6 is a real valued
parameter. The sign is conventionally negative when a momentum generates a translation
and positive otherwise.

In this paper, the Lie algebra has N = 37 generators. Many of the generators are not
Hermitian, X # XT its complex transpose, so the group they generate is non-unitary, since
TTT # 1 for some of the transformations 7. The transformations are generated by 8 x 8
matrices with complex components and act on 8-component quantities called “8-spinors”.

The generators can be sorted by the number of indices they have. Quantities with two
indices are “tensors”, one index indicates “vectors” and “scalars” have no index. The labels
refer to the behavior of the quantities under the set of Lorentz transformations generated by
the angular momentum matrices called “J§*” below.

The tensor matrices are J{”, Ji, J&', and Ji3'. The vector matrices are called Py, P4,
Pi;, Piy. Finally, there are the scalar matrices D, D3y, and Dyy. Indices p, v, ... € {z,y, z,t}
={1,2,3,4}, while 7, j, ... € {z,y,2} = {1,2,3}.

The J§” are given the subscript “8” because the generators act nontrivially on all 8
components of the 8-spinor. The generators J, “R” for ‘Receiver,” act nontrivially only on
the second four components of the 8-spinor, which is the ‘receiver’ 4-spinor.

An 8 x 8 matrix generator can be divided into a 4 x 4 array of 2 x 2 matrix blocks. The
subscript labels in, for example, the momentum matrices Pj; and P%; designate 2 x 2 blocks
of the 8 x 8 matrices with 41 the first 2 x 2 block in the fourth row and 32 the second block
in the third row, respectively.
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While the labels, such as “8,” “41,”, “34,” of the generators are tied to the representation
constructed here, the algebra may have other representations for which the labels do not have
any such meaning.

It happens that each nonzero 2 x 2 block of the generators is a multiple of one of the four
Pauli matrices o*,

L (0 1N, (0 =i\ . o.t_<+1 0)
=1 o)=L 0)ie=(0 D)= ( h) o

The spacetime metric 7" has signature +2, n** = 7, = diag{+1,+1,+1, —1}. The metric
is used to “raise” and “lower” indices. For example o* = n*”¢,. The summation convention
for repeated indices is assumed.

The generators are grouped as tensors, vectors and scalars:

Nonzero 2 x 2 blocks of the tensors J:

(), = ()= () = (), = 37 R
()= = (8= () = = ()= 5"
(), = (7)., = 5eto" (4)
() =~ (8, = 57
(), = et (), = 5 ”
()= 3ot 5 ()=t ©

The Js are antisymmetric, meaning that, for J* = J§ Jg", J& and J§3', we have J"* =

—Jm. Thus J{” and J%” each has 6 linearly independent generators, one for each of the 6
pairs pv € {12,13,14, 23,24, 34} of nonrepeated integers from 1 to 4.

But J4} and Jj5 have nonzero components only in one 2 X 2 matrix, the 31 and 42 block,
respectively. At most four can be linearly independent. Inspection of (5) and (6) shows that
the generator with space-space indices ij and the generator with indices k4, k # i, j, are
proportional to the same matrix o®, k € {1,2,3}. Thus just three of the J" and three of
the Ji5 are linearly independent.

The total is 6 + 6 + 3 + 3 = 18. There are 18 linearly independent tensor generators .J.

Nonzero 2 x 2 blocks of the vectors P:
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(Pzﬁ)41 =tky o, (7)
(P?f;)w = —tik.o" (8)
(Pzﬁs)zxg = —ikqoy (9)
(P?fi;)34 = +ike " (10)

Since the four Pauli spin matrices o* are linearly independent and the four vectors P* are
nonzero in different blocks, there are 44+4-+4+44 = 16 linearly independent vector generators.

Nonzero 2 x 2 blocks of the scalars D:

(D)gy =~ (D)yy = +5" (1)
(D31)3, = +;04 (12)
(Diz)y = 50" (13)

The nonzero components of D, D3y, Dy occupy different 2 x 2 blocks, so these three gener-
ators are linearly independent.

Therefore, the total number of linearly independent generators is 18 + 16 + 3 = 37,
which can be verified directly by showing that the only null linear combination of generators
has vanishing coefficients. Finding the commutators of these 37 matrices is straightforward
arithmetic. One can then unravel each commutator into a linear combination of generators.
The commutation relations of the Lie algebra they form is presented next.

3 Lie algebra

The generators {J§”, J5", Ji, Jis', Py, Ply, Pls, Phy, D, D31, Dyo} together with the opera-
tion of matrix commutator determine a Lie algebra because the commutators can be written
as linear combinations of generators. The nonzero commutation relations are displayed in
this section and may be verified directly with the matrices defined in Sec. 2. The Lie algebra
is, of course, more general than the representation used to derive it.

The commutation relations for Jg with itself and other generators are the following,

I TE7) = =i (T P T = e T — o) (1)

(S IR ) = =i (P TR + 0" T =" T — 0" JE’) (15)
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(8", It ) = =i (" Js0” + 0" Tt — P I — 0”7 J5()
57, Jig] = =i (0™ Jiy + 0" Jis — " Ji5 — 0" Jig)

[, P = —i (" Py — 0" Pyy)
[J§”, PR = —i (0" Py — 0" P3))
[J§", Pls] = —i (0" Pz — 0" Py3)
[JE", P§) = —i (0" Piy — """ Py))

For Jg, we get

TR IRl = —i (P T + 0" T =" T — 0" JE’)

v loa /L 1% ag g 14 vo vo
[Jllé 7Jé01] = _5 (77 p‘]i/’:l +n* J31p - 77“sz%1 —n Jgf)
i 1
+g 07 =P 7) (L= 1"n") Day — 5 Dy
174 loa Z 1% g ag v vo vo
(5, T ] = —5 P by 0t dyy — 0P T — 0" Jis)

i 1
=5 0" =) (L= "11”7) Daz — 5e” Dy

v Z 1% v 1 vpo
[JR Phl = ) (" Py — " Pyy) + 5'5” P Puo
14 Z 14 14 1 Vpo
(R’ Phy] = 9 (0" Py — " P3y) — ie“ P P3oo
[JR', Pia) = —i (0" Pig — 0" Py3)
[JR', Ph) = —i(n"" Py — 0" Py))
14 i 4
R, D] = =5 Jar
14 Z v
[Jllé , Dig] = +§J52
Nonvanishing commutation relations for J3; and Jyo are as follows,

4 N kd 14 14 kd vVpo
[J41, Pis] = _227% (0" P — 0" Pyy) — ka‘f“ P Pyio

v [
[JzéLl vD] - _5‘]:?1
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k. ke
[Jf;v P3p4] =—1 (prpzfz - nﬂPP§’2) + P Py,

2k, 2k,
D) =~
The commutators for Pj; and Pk, are found to obey
[Py, Pyy] = —2ikpke (0" D31 — J47)
[Ph. D) =+ Ph
[Psy, Prs] = 42ikckq (" Dag + Jis)
[Ph, D) =~ Ph
With Py3 and Ps4, one gets
[Pts, P3)] = +2ikake (7" D + JR")

[Pi3, D] = +iPy

1 k
[Pi3, D3] = —gkjjpﬁ
[P3y, D] = —iP3,
1k,
[P3, Dyo)] = +§EP52

Finally, the commutators for D give

7
(D, D3| = +§D31

)
[D, Dyo) = —§D42

Commutators that vanish are not displayed.

(39)
(40)
(41)
(42)

(43)

(44)

(45)

When nonzero, the four parameters ky, k., kq, k. are free parameters since the commu-
tation relations are homogeneous in them. For example, by the definition of Pj; in (7), one
sees that k;, is a common factor in every term of (18), (25), (35), (36), and cancels in (31)
and (41). When k;, vanishes, assume the limit k, — 0 is taken in (31) and (41), so the
cancellation still occurs. Similarly for k.. With these stipulations the ks are free parameters

that may vanish.
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By the definitions of the vectors P* in (7-10), each k is a scale factor for one of the
linear momentum-like vector matrices Pj;, Pl,, Pls, Ply. Thus, when real-valued, the four
ks determine the dimensional units such as meters, feet, or seconds for the position-like
parameters x* that occur when constructing translations with the momentum-like generators,
such as exp (—iPj; x41,). Changing k is equivalent to changing the units for x.

The commutation relation for [J§", J§7] in (14) shows that the J{” generators represent
the Lorentz group of spacetime rotations. The notation for generators J*”, Pf, and D
is keyed to the J{” generators. By the commutation relations (15-21)) and the vanishing
commutators of J{” with D, D3y, Dy which are not shown above since they vanish, all the
generators transform properly as tensors, vectors and scalars under the spacetime rotations
generated by the J{.

While the J&” generators also represent the Lorentz group of spacetime rotations by the
commutation relation for [J3”, J&] in (22), the generators J§y, Ji5, Py, P, do not have
the proper commutation relations (23-26) with the J%” to transform as tensors and vectors
under the rotations generated by the J5”. The terms tensor, vector and scalar are keyed to
the J§” not to the Jy".

By design, there are Poincaré and conformal subalgebras embedded in the Lie algebra.
As discussed in the next section, these can be found by selecting commutation relations from
the list above.

4 Subalgebras

There are three Poincaré subalgebras and one conformal subalgebra. Along side these there
are two Lorentz subalgebras and dozens of Abelian subalgebras. We focus on the Poincaré
and conformal subalgebras.

By the commutation relation (14), the matrices J{” constitute a representation of space-
time rotations, the Lorentz group. To make a representation of the Poincaré group, one
needs linear momentum matrices to generate translations. Both PJ; and P%; qualify by their
commutation relations (18), (19) with J{”. One could take Pj; and Pj, separately, but they
commute, so let us combine P}; and P%;, and define a vector matrix P,

P! =aP}| + PP}y . (46)

The two parameters k, and k. scale the components of Pj; and P, in (7) and (8), respectively.
And k, and k. are arbitrary, so the arbitrary coefficients o and 8 could be absorbed with
new parameters k; and k.. By adjusting the arbitrary factors k, and k. one can get many
special momentum matrices. For example, to eliminate Pj; and have just Pi;, one can make
ky vanish. With ak, and k. arbitrary, one has the most flexible momentum matrices P}’
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to combine with the angular momentum matrices J{” in a representation of the Poincaré
algebra.

By the commutation relations (14), (18), (19) among the generators J§*, Py, P, one sees
that J§” and P = aPj, + SP%, satisfy the commutation relations of the Poincaré algebra,

) = =i (I T = I — ) (47)
P = =i (Y = 7 ) (48)
P R=0 (49)

Therefore J§ and P{ form a representation of the Poincaré group.

Similarly, by the commutation relations with Jg”, Pfs, Py, in (22), (27), (28), the Jg”
represent the Lorentz algebra with two qualifying momenta matrices Pj; and PL;. Unlike the
momenta Pj; and Pf; with J{, the matrices Py and PL; do not commute, so they must be
taken one at a time.

By the commutation relations (22) and (27) among the generators J~ and Pjs, one has
the Poincaré algebra,

R’ IR ) = =i " TR+ T = TR — 07 JE) (50)
[Tk, Pis] = —i (0" Pig — /" Py3) (51)
[Piz, Pis] =0 . (52)

Therefore J&” and Pj; form a representation of the Poincaré group.
By the commutation relations (22) and (28), one sees that J5” and P4 satisfy the Poincaré
algebra,

TR IR = =i (P I + 0t T = Iy — 0" JR") (53)
(IR, Pg] = —i (0" Pyy — n'** Pyy) (54)
[Py, Pl =0 . (55)

Therefore J&” and P}, form a representation of the Poincaré group.

The generators in each of the three sets {J{", P{' = Py, + Py}, {J%, Pis}, {J5", P},
form a Poincaré subalgebra of the Lie algebra in Sec. 3.

Next, consider the conformal subalgebra which motivated the construction and whose in-
clusion was required. The generators J&~ together with Pjs, Py and D obey the Lie algebra
of the conformal group. Unlike the Lorentz and Poincaré groups, which have infinitely many
finite dimensional matrix reps, there is just one finite dimensional matrix representation of
the conformal group, within the equivalence of similarity transformations. That representa-
tion is produced by the generators Jg~ , Pjs, Py , and D which, in the rep of Sec. 2, are
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confined to the 4 x 4 diagonal block that acts nontrivially only on components 5 to 8 of an
8-spinor.

The conformal subalgebra collects the commutation relations (22), (27), (28), (39), (40),
(42) among the generators J&*, Pjs, P4y, D Note that the arbitrary scale factors k, and k.
should be set so that their product is unity, kzk. = 1 in (39). With that understanding, the
subalgebra of the generators J3” | Pjs, P4, , and D takes on a conventional form of the Lie
algebra of the conformal group,

I T = = P+ T — T — TR (56)
IR Pl = =i 0Pl — 7 Ph) 5 LR PR] = —i 0 Ph - R (5T

58
59
60

[PL, PY] = +2i ("D + J)

(
(
(
[J&" D] = [Pi3, Pis] = [P3y, P5y] = [D, D] = 0, (

)
)
)
)

where the product of the arbitrary quantities kq and k. is unity, kske = 1 in (39) and (58).
By their definitions, (4), (9), (10), (11), the generators J3”, Pfs, Py;, D vanish outside one
4 x 4 block. Thus this conformal rep has transformations that act on a single 4-spinor.

5 Conclusions

The 37-generator Lie algebra has distinct Poincaré and conformal subalgebras. The larger
algebra introduces new generators and transformations because there is nontrivial mixing of
the Poincaré’s translations with the conformal’s translations. For example, note the need to
introduce D3; and J47 in the commutation relation (35) between the Poincaré momentum
Pj; and the conformal’s P},. Likewise, the commutation relation (37) between Pi; and
the conformal’s P}, require Dgs and Jjy, which generate transformations previously not
associated with the Poincaré and conformal groups.

The 8 x 8 matrix rep of the Poincaré group happens to be the most general non-unitary
finite dimensional spin 1/2 representation of that group. One of its two 4-spinors sits in
an awkward secondary position. That 4-spinor merely accepts the linear combinations of
the first 4-spinor’s components deposited on it by translations. While it transforms with
rotations and boosts like the primary 4-spinor, the secondary, the “receiver”, 4-spinor does
not mix with the primary under these Lorentz transformations. By transforming the sec-
ondary 4-spinor with the conformal group, balance between the two 4-spinors is achieved;
each 4-spinor is special in its own way.
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In[2]:=

In[3]:=

(*Content—type:application/mathematica*) (**xWolfram Notebook Filexxx)
(*http://www.wol-Fram.com/nb*) (*CreatedBy="Mathematica 11.1'x)

Appendix

A Poincaré - conformal matrix Lie algebra, the notebook, by Richard Shurtleff

This Mathematica notebook!? verifies the calculations in the article A Poincaré - conformal matrix Lie
algebra.® The article is abbreviated herein as “PCMLA”. Equations in PCMLA are called “PCMLA Eqn (N)”
in the work below.

The article PCMLA reports a set of 8x8 matrices with complex components that produce a Lie algebra.
In this notebook, the matrices are constructed in detail. The commutation relations of the Lie algebra
are displayed and verified. The structure constants are obtained, along with the associated adjoint
representation. The Cartan-Killing metric is shown to have a null determinant and therefore has no
inverse. Various subalgebras, Lorentz, Poincare, conformal, and Abelian are found. Some transforma-
tions are found.

References:
1. Wolfram Research, Inc., Mathematica, Version 11.1, Champaign, IL 2018.

2. A link to the executable Mathematica notebook can be found in the References section of the article
in Ref. 3 on ViXra. The notebook runs on Windows 10, Mathematica 11.1 platforms and, most likely, on
other Mathematica platforms.

3. R. Shurtleff, A Poincaré - conformal matrix Lie algebra, to be submitted to ViXra, 2018. (Technical
difficulties associated with the link in Ref. 2 prevent providing more complete bibliographic data.)

Preliminaries

Fundamentals:

n"¥ flat spacetime metric = diag {+1,+1,+1,-1}; 8™ Kronecker delta ; €iX 3D antisymmetric symbol ;
€V9 4-dimensional antisymmetric symbol;

o Pauli spin matrices

zip[f_] := f =0 (» zip[f] makes equations.*)

eqnS = Map[zip, {3x+2y - 7, x-y+1}];

Print["Example: Mapping 'zip' on {3x+2y - 7,x-y+1} gives
Print["The equations yield ", Solve[eqnS, {X, y}]1[[1]] ]

,» eqnsS]

Example: Mapping 'zip' on {3x+2y - 7,x-y+1} gives {-7+3x+2y=0, 1+x-y=-0}
The equations yield {x-1, y-2}

r’pv’ 5mn’ Eijk’ E/\uva’ omn
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nr= (% M, 6, €, €, @ *)
nuv = { {+1, 0, o, 0}, {0, +1, 0, 0}, {0, 0, +1, 0}, {0, 0, O, -1} };
6[1_, j_1 :=6[1, j] = IdentityMatrix[50] [[i, j]] (* 50 = o =*)
eijk[i_, j_, k_] := (k-3) (k-1i) (3-1i)/2/; (1<i<3)8 (1sj=<3)8&&(1<kx3)
EAUVO[A_, U_, V_5 0_] := (A-u) (A-V) (A-0) (u-V) (1n-o0) (V-G)/12 /3
(Lsr<4)8&(1sus<4)8 (1svs4)8&(1sox<4)
ZeroMatrix[n_] := ZeroMatrix[n] = IdentityMatrix[n] - IdentityMatrix[n]

In[12]:=
Print[" Spacetime metric nuv = ", nuv // MatrixForm, " ."]
Print[" Antisymmetric 3-symbol eijk[1,2,3] = ", eijk[1, 2, 3], " ."]
Print[" Antisymmetric 4-symbol eAuvo[1,2,3,4] = ", exuvo[l, 2, 3,41, " ."]

4123

Print[ "Note: With the time index first, as in € = -1, we get a negative result.
0123 +1."]

Often the convention is to have the time index t = @ and to set e =

Print["The two conventions differ by a minus sign in their epsilons e**°. " ]
100 o
Spacetime metric nuv = g é ? g
0 00 -1
Antisymmetric 3-symbol eijk[1,2,3] =1 .

Antisymmetric 4-symbol eAuvo[1,2,3,4] =1 .
4123 _ _1, we get a negative result.
0123 _ . q.

Note: With the time index first, as in e
Often the convention is to have the time index t = @ and to set e

AUvo

The two conventions differ by a minus sign in their epsilons €
Note that when time is index @, one has the opposite conventione®?® = 1,

whereas we have time as index 4 and e*1%3 = -1

The projection matrix that selects the first four “donor” components is eDONOR. The projection matrix
that selects the last four components, the “receivers”, is eRECEIVER.
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n7:= (*Projection matrices eDONOR for first
4 indices and eRECEIVER for the last 4 indices. *)
eDONOR = ArrayFlatten|[
{{IdentityMatrix[4], ZeroMatrix[4]}, {ZeroMatrix[4], ZeroMatrix[4]}}] ;
eRECEIVER = ArrayFlatten[{{ZeroMatrix[4], ZeroMatrix[4]},
{ZeroMatrix[4], IdentityMatrix[4]}}]

Print["projection matrix on Donor components 1-4: eg4onor = ", €DONOR // MatrixForm,
" and Receiver components 5-8: €peceiver = "', €RECEIVER // MatrixForm]
1 0000 00 0
© 1000090090
© 0100000
. . . . |9 0606100 0 0
projection matrix on Donor components 1-4: €gonor = 000000 0
© 0000000
© 0000000
© 0000000
© 0000000
© 0000000
© 0000000
. © 00 00 00 0
and Receiver components 5-8: €peceiver = 0001000
© 0000100
© 0000010
© 0000001

npop= op = { {{0, 1}, {1, @}}, {{0, -4}, {i, 0}}, {{1, 0}, {0, -1}}, {{1, @}, {0, 1}} }s5
Print["PCMLA Eqn(2) . Pauli spin matrices {o*,0Y,0%,0'} =",
Table[ou[[v]] // MatrixForm, {v, 4}]]

PCMLA Eqgn(2). Pauli spin matrices {o*,0¥,0%,0%} = {(? é), (i 701 ), (é _91), (é ?)}

4
nez- yu = -i Table[ArrayFlatten[{(0, ou[[u]11}, {D® (-nuviu, vI) oulvl, 0}}], {u, 4}];

Print["4-component Dirac matrices: y* = ", Table[yu[[v]] // MatrixForm, {v, 4}]]

4-component Dirac matrices: y* =

0 0 0 -i 0 0 0 -1 0 0 -1 @ e 0 -1 ©

{ 0 0 -i © 0 01 0 0 0 0 i e 0 o0 -i }
i © @ (|08 108 0 |’|1 @ © ©|°|-1 6 © 0
i @ 0 ©o -1 00 0 0 -1 0 © e -1 0 ©

nzar= (*PCMLA Eqn (3) #)

Juvalu_, v_] :=Juvlalu, v] = _4—1 (W[l ey [Iv1] =wullv1]ewuel[k1])

(*Print["Sample 4-spinor Rotation generator for rots about x3: J%2 = ",
Juv4[1,2]//MatrixForm|
Print[“Sample 4-spinor Boost generator for boost along x': 34 = ",

Juv4[1,4]//MatrixForm] )
(xPrint["check ¥*3*'¥* = NN = 3, ",
{0}==Union[Flatten[Table[yu[[4]].Juv4[u,v].yul[[4]]-
Sum[nuv [ [1,x]11nuv [[V,A]11IuvA[x,A], {x,4}, {2,841, {1,4},{v,4}111]*)

Start Generators Section
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n2si= (*PCMLA Eqn(3)  «)
I8[u_, v_] :=38[u, v] = ArrayFlatten[{{Juv4[u, v], O}, {0, Juva[u, v]1}}]

Print["8-spinor Rotation matrix for rots about x3: J%* = ", J8[1, 2] // MatrixForm];
Print["8-spinor Boost matrix for boost along x1: J** = ", 18[1, 4] // MatrixForm];
% © 0 0 © 0 0 0
@ -6 6 6 6 0 0
0 o % @ 0 © 0 ©
@ 0 6 - 20 0 0 o
8-spinor Rotation matrix for rots about x3: 32 = e
© 0 0 0 3 o 0 0
0 06 0 0 o -% 0 0
6 6 6 6 06 0 0
© 6 0 © 0 0 0 -%
6 > 6 6 60 0 0
ﬁg @ @ © 0 0 0 o
66 6 -~ 060 0 0
@ 0 -1 o 00 0 o
8-spinor Boost matrix for boost along x1: J* = 2 ,
0 0 0o 0 0 i 0 0
@ 0 0 o % 6 0 o
@ 0 0 © 0 0 o 717
0 0 0 © 0 0 - o
inel= (*PCMLA Eqn (4) )
IR[u_, v_] := IR[u, v] = eRECEIVER .I8 [y, v]
Print["Receiver Rotation matrix for rots about x3: 3'? = ", JR[1, 2] // MatrixForm];
Pr‘int["Receiver‘ Boost matrix for boost along x1: J* = ", JR[1, 4] // Matr‘ixFor'm];
© 000 0 0 0 0
© 000 0 0 0 o
9O 000 06 0 0 o
© 000 0 0 0 0o
1
Receiver Rotation matrix for rots about x3: 3% = o06e 2 e o o
0000 0 % o o
00000 0 % 0
60000 0 0 -
© 000 0 0 o 0
© 000 0 0 o 0
© 000 0 0 0 0
© 000 0 0 o 0
Receiver Boost matrix for boost along x1: 1 = 6eeo006 ; 0 ©
0000 ; e 0 o
90000 0 0 ;
90000 0 - o
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3= (*PCMLA Eqn (5) *)

IB31[u_, v_] :=

ArrayFlatten[{{ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2]},
{ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2]},
{Table[-Juva4([u, v1[I[i, 311, {i, 2}, {Jj, 2}], ZeroMatrix[2], ZeroMatrix[2],
ZeroMatrix[2]}, {ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2]}}]

(*PCMLA Eqgn (6) )

142[u_, v_] :=

ArrayFlatten[{{ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2]},
{ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2]},
{ ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2]}, {ZeroMatrix[2],
Table[-Juva4[u, v1[I[i, j11, {i, 3, 4}, {Jj, 3, 4}], ZeroMatrix[2], ZeroMatrix[2]}}]

nez= Print["31 2x2 block Rotation matrix for rots about x3: 3*2 = ", 331[1, 2] // MatrixForm];
Print["31 2x2 block Boost matrix for boost along x1: 14 ",331[1, 4] // Matr‘ixFor‘m];

[ORGRONN]

31 2x2 block Rotation matrix for rots about x3: 32 =

N R

®

OONIF ® OO0

OO0 ® O 0000
OO0 ® ®O 0000
OO0 ® OO0
OO0 ® OO0
OO0 ® OO0
OO0 ® O 0000

[OR)

0 OO0
[OR G RN]

31 2x2 block Boost matrix for boost along x1: 1% =

|
N B

OO0 ® O®© 0O
OO0 ® O®© OO0
OO0 ® O®© 0O
OO0 ® ©®© O0CO0O0®

OO0 ®© O®© 0O
OO0 ® O®© 0O

o0 ©

(4]
(<]

nzs)= Print["42 2x2 block Rotation matrix for rots about x3: 3*2 = ", J42[1, 2] // MatrixForm];
Print["41 2x2 block Boost matrix for boost along x1: 3** = ", J42[1, 4] // MatrixForm] ;

0 0 0

42 2x2 block Rotation matrix for rots about x3: 1'% =

OO0

© O OO0
N [

© O OO0
© O OO0
© O OO0

© OO0
© OO0

()
NE ©O OO0

41 2x2 block Boost matrix for boost along x1: 1% =

®© O®© OO0
®© O©®© OO0
© OO0 O®
OO0

®© O© OO0
®© O© OO0
®© O© OO0
®© O© OO0

N |-
S N[
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ne71= (*PCMLA Eqn (7) *)
P41[u_, kb ] :=
ArrayFlatten[{{ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2]},
{ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2]},
{ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2]},
{i kbSum[nuv[[ux, v1] ou[[v]l]l, {v, 4}] , ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2]}}]
Print["8-spinor momentum matrices in 41 2x2 block: P41* =",
Table[P41[u, kb] // MatrixForm, {u, 4}]]

0 0 000000
0 0O ©0 006000
0 0 000000
. . . . v 0 0O ©00000O0
8-spinor momentum matrices in 41 2x2 block: P41 7{ o o 000000
0 0 000000
o 1kb © 0 0 0 0 0
ikb © © 0 0 0 0 0
© ©0 000000 0 © 000000 0 0O ©0 00000
© © 000000 0 © ©0 00000 0 0O ©0 00000
© ©0 000000 0 © 000000 0 © 000000
© © 000000 0 © 000000 0 0 00000@}
© © 900000)| 0 (4] 0 00000)]| 0 0 0 0 0 0 0 0
© ©0 000000 0 © 000000 0 0O ©0 00000
© kb 0 0 00 0 0 ikb © © 0 0 06 0 o -ikb © © 0 06 0 0 0
-kb 0 0 0 0 0 0 0 0 -ikb 0 0 0 0 0 0 o -ikb 06 0 0 0 0 0

nize)= (*PCMLA Eqn (8) )

P32[u_, kec_] :=

ArrayFlatten[{{ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2]},
{ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2]},
{ZeroMatrix[2], -i kcou[[u]], ZeroMatrix[2], ZeroMatrix[2]},
{ ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2]}}]

Print["8-spinor momentum matrices in 32 2x2 block: P32*¥ = ",

Table[P32[u, kc] // MatrixForm, {u, 4}]]

~

00 o0 © ©0 000
0 0 0 0 0 0 0 0
00 o0 © ©0 000
. . . . . _[le e e @ 0000
8-spinor momentum matrices in 32 2x2 block: P32 _{ o 0 0 ikc 0 000l
00 -ikc © © 0 0 0
0 0 0 0 0 0 0 0
00 o0 © ©0 000
©0 06 0 0009 o0 o 0 00 0 90 00 o 0 ©0 0009
0 0 0 © ©0 0 0 0 0 0 0 © 0 0 0 0 0 0 0 0 0 0 0 0
00 06 0 0000 o0 o 0 000 90 00 o 0 ©0 000
0 0 0 O 0 0 0 0 0 0 0 © 00 0 0 (] 0 0 0000}
00 0 -kcoo0O0O|’|00 -ikc 0 ©000|°” |00 -ikc © © 0 0 0
0@ 0 kc 0 00 0 0 00 © 1ikc o o0 0 0 00 © -ikc o0 0 0 0
0 0 0 O ©0 0 0 0 0 0 0 0 ©0 0 0 0 0 0 0 0 0 0 0 0
©0 06 0 0000 o0 o 0 000 90 00 o 0 ©0 000
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niat= (*PCMLA Eqn (9) )
P43[u_, kd 7] :=
ArrayFlatten[{{ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2]},
{ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2]},
{ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2]}, { ZeroMatrix[2],
ZeroMatrix[2], -i kdSum[nuv([[u, v]1] ou[[v]], {Vv, 4}]1, ZeroMatrix[2]}}]

Print["Receiver conformal momentum matrices in 43 2x2 block: P43* =",
Table[P43[u, kd] // MatrixForm, {u, 4}]]

© 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
© 0 0 0 0 0 0 0
) . . . ., _[leeee o e © o0
Receiver conformal momentum matrices in 43 2x2 block: P43 {0 00 0 0 0 00|’
© 0 0 0 0 0 0 0
0 0 0 0 0 -ikd © ©
0 0 0 0 -i1kd 0 0 0
© 000 0 © 00 © 000 o 0 0 0 0 0 00 0 0 0 0
0000 06 0 00 0 000 0 0 0 0 0 000 0 0 0 0
© 000 0 © 00 © 000 0o 0 0 0 0 000 0 0 0 0
0000 @06 00 00 0 000 0 0 0 0 0 000 0 000}
O 000 0 0 ©00|°’|0000 0 © 00|’|0o0000 o 0 0 0
© 000 0 © 00 © 000 o 0 0 0 0 000 0 0 0 0
0 000 0 -kd 0 0 0 000 -ikd © 0 o 0 000 ikd © o0 o
0 00 0 kd 0 0 0 © 000 0 i1kd @ © © 000 O 1kd o o
nes= (*PCMLA Eqn (10) «)
P34[u_, ke_] :=
ArrayFlatten[{{ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2]},
{ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2]},
{ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2], i ke ou[[u]]},
{ ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2]}}]
Print["Receiver conformal momentum matrices in 34 2x2 block: P34* =",
Table[P34[u, ke] // MatrixForm, {u, 4}]]
0 00000 0 (7]
0 00000 o0 (4]
0 060000 0 (7]
. . . . ., [|loeoeoeeeo o )
Receiver conformal momentum matrices in 34 2x2 block: P34 7{ ©0 00006 0 ikel’
O 0 00 00 1ke ©
0 00000 o0 (4]
0 060000 0 (7]
0 00000 0 0 9 00000 0 (4] 0 00000 o0 0
0 00000 0 0 © 00000 o0 (4] 0O 00000 o 0
0O 00000 0 0 © 00000 o0 0 © 00000 0 0
0 00000 0 0 0O 00000 0 (4] 0O 00000 o0 0}
© OO0 000 O ke|’”’|000000 ike o |2 00000 ike 0
© 00000 -ke © 000000 0 -ike 0 00000 0 1ike
0 00000 0 0 © 00000 o0 (4] 0O 00000 o 0
0O 00000 0 0 © 00000 0 0 © 00000 0 0
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nias)= (*PCMLA Eqn (11) #)
mD = ArrayFlatten[{{ZeroMatrix[Z], ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2]},
{ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2]},

hi N
{zeroMatrix[2], ZeroMatrix[2], — IdentityMatrix[2], ZeroMatrix[2]},
2

i
{zeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2], - — IdentityMatrix[2]}}] ;
2

Print[" dilation matrix for Receiver conformal algebra: D = ", mD // MatrixForm]
90000 06 0 o0
0O 000 0 0 o 0
0 0000 06 0 o
0 0000 0 0 o0
dilation matrix for Receiver conformal algebra: D = 6000 2 @ ° @
0000 - 0 0
0 000 0 0 —% 0
090000 0 0 -

nari= (*PCMLA Eqn (12) )
mD31 = ArrayFlatten[{{ZeroMatrix[Z], ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2]},
{ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2]},

i
{= IdentityMatrix[2], ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2]},
2

{ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2]}}];
Print["Dilation-like matrix in 31 and 42 2x2 blocks, 31-block portion D3; =",
mD31 // MatrixForm]

[ORGIN)
© O0O0O0®

Dilation-1like matrix in 31 and 42 2x2 blocks, 31-block portion D3; =

OO0 ® O© ®O0CO0O0
OO0 ® O© ®O0O0O0
OO0 ® O© ®O0CO0O0
OO0 ® O© ®O0CO0O0
OO0 ® O© ®O0O0O0
OO0 ® O© 000

O O NI=
O O

nse)= (*PCMLA Eqn (13) *)
mD42:=ArrayFlatten[{{ZeroMatrix[Z], ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2]},
{ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2]},
{ ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2], ZeroMatrix[2]},

i
{zeroMatrix[2], - — IdentityMatrix[2], ZeroMatrix[2], ZeroMatrix[2]}}];
2

Print["Dilation-1like matrix in 31 and 42 2x2 blocks, 42-block portion D, = ",

mD42 // MatrixForm]
0 0 0 O 0 0 0o
0 0 0 0 0 0 0
0 0 0 © 0 0 0
0 0 0 0 0 0 0

Dilation-like matrix in 31 and 42 2x2 blocks, 42-block portion D,, = |© @ © © © 0 ©
0 0 0 O 0 0 0
) 7%, @ 000
606 @ - 000

® O OO0
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Generator matrices that are the basis for the Lie algebra

n51= (*List of generator names = genNAMEx)
genNAME = {"3J8", "JR", "J31", "J42", "p4a1", "P32", "p4a3", "P34", "D", "D31", "D42"};
Print["There are ", Length[genNAME], " generator families: ", genNAME]

There are 11 generator families: {318, JR, 331, J42, P41, P32, P43, P34, D, D31, D42}
ns3= (#Flatten[Table[{u,v,331[u,v]//MatrixForm}, {u,3},{v,u+1,4}]1,1]%)
nis4= (#Flatten[Table[{u,v,342[u,v]//MatrixForm}, {u,3},{v,u+1,4}]1,1]+)

nssi= (*List of generators = genx)

gen = {Flatten[Table[J8[u, v], {u, 3}, {v, u+1, 4}1, 17,
Flatten[Table[JR[u, v], {u, 3}, {v, n+1, 4}1, 1],
Flatten[Table[J331[u, v], {u, 3}, {v, u+1, 4}1, 1],
Flatten[Table[J42[u, v], {u, 3}, {v, u+1, 4}], 1], Table[P41[u, kb], {u, 4}],
Table[P32[u, kc], {u, 4}]1, Table[P43[u, kd], {u, 4}1,
Table[P34[u, ke], {u, 4}], {mD}, {mD31}, {mD42}};

Print["There are ", Sum[Length[ gen[[i]] ], {i, Length[gen]}],

" generators. Just 37 of the generators in the list are linearly independent."]

There are 43 generators. Just 37 of the generators in the list are linearly independent.

In[57]:= Print["Each J family has six matrices J*¥ with indices in the order {u,v} =",

Flatten[ Table[{u, v}, {u, 3}, {v, u+1, 4}], 1]

Print["Each P family has four matrices P* with indices in the order u = ",
Table[u, {u, 4}11]

Print["Each D family has one matrix D with no indices."]

Each J family has six matrices J*Y with indices in the order {u,v} =
{{1, 23, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

Each P family has four matrices P* with indices in the order u = {1, 2, 3, 4}

Each D family has one matrix D with no indices.

neo= Print["The 3rd generator family Js3; has ",
Length[gen[[3]]], " generators. Just 3 are linearly independent. "]
Print["The 2nd generator is 337 = ", gen[[3, 2]] // MatrixForm,
" and the 5th generator is 13 = ", gen[[3, 5]] // MatrixForm, " = iJ3; ."]
Print["Clearly, the two generators are proportional."]
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In[63]:=

In[65]:=

The 3rd generator family Ji; has 6 generators. Just 3 are linearly independent.

© 0 0 0 0 0 0 0
© © 0 0 0 0 0 0
© © 0 0 0 0 0 0
© © 0 0 0 0 0 0
The 2nd generator is 333 = | g _i— 900000
> 0 000000
© © 0 0 0 0 0 0
© 0 0 0 0 0 0 0
© © 0 0 00 0 0
© 0 0 0 0 0 0 0
© © 0 0 00 0 0
© © 0 0 0 0 0 0
and the 5th generator is 13 = | ¢ ,% 0000 0| =113.
%eeeeeee
© 0 0 0 0 0 0 0
© © 0 0 00 0 0

Clearly, the two generators are proportional.

One finds that 33] and 3% are proportional, 3% = 433, wherei,j,k = 1,2,3 are distinct and in order,
123,231, or 312.

Similar comments hold for the 3,, family of generators gen[[4]]. We have 3% = - i3] which has a
negative compared to the J3; family.

The total number of linearly independent generators is 43 -3 -3 = 37. This is confirmed in the next cell.

gen37 = {Flatten[Table[J8[u, v], {u, 3}, {v, u+1, 4}1, 1],
Flatten[Table[JR[u, v], {u, 3}, {v, n+1, 4}1, 1],
Flatten[Table[J331[u, v], {u, 3}, {v, u+1, 3}1, 1],
Flatten[Table[J42[u, v], {u, 3}, {v, u+1, 3}], 1], Table[P41[u, kb], {u, 4}],
Table[P32[u, kc], {u, 4}1, Table[P43[u, kd], {u, 4}1,
Table[P34[u, ke], {u, 4}], {mD}, {mD31}, {mD42}};

Print["There are ", Sum[Length[ gen37[[i]] ], {i, Length[gen]}],

" generators in the list gen37."]

There are 37 generators in the list gen37.

linearIndependentCHECKcoeffs =
Flatten[Table[ac[i, m], {i, Length[gen37]}, {m, Length[gen37[[1]] 1}11];
LHS37 = Complement [Union[Flatten[Sum[ ac[i, m] gen37[[i, m]],
{i, Length[gen37]}, {m, Length[gen37[[i1]11} 111, {@}1;
LINEARindependentCHECKeqns37 = Map[zip, LHS37]; (*zip[f_]:= f==0%)
1iSOLN37 = Solve [LINEARindependentCHECKeqns37, linearIndependentCHECKcoeffs];
Print["All coefficients vanish, which means the 37 matrices are linearly independent: ",
{0} == Union[Flatten[linearIndependentCHECKcoeffs /. 1iSOLN37]] ]

All coefficients vanish, which means the 37 matrices are linearly independent: True

The 37 generators are linearly independent.
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But, it is easier to work with tensors and vectors, so work with all 43 generators and remember that just
37 are linearly independent because 3% = 133 and 3% = -133].

Comment: With Dirac 4-spinors, there are Left- and Right- 2-spinor Lorentz reps, one for each sign of
\/=1 =+/-i. It does not seem possible to combine J31 and J42 like one does with Dirac 4-spinors . If
you do combine J31 with J42 making J3142 := J31 + J42, then the commutation relations with JR and
D make you include also J31 - j42. So, no gain, its equivalent.

End Generators Section

Start Commutation Relations Section

NoCommute: pairs of generator families {i,j} that do not commute.
That means that {i,j} isin NoCommute if at least one matrix in gen[i,m], any m, does not commute with
some matrix in gen[j,n], any n.

nro= (% pairs of generators with nonzero commutatorsx)
NoCommute = {};
Table[{i, m, j, n,
If[Length[Union[Flatten[gen[[i, m]].gen[[]j, n]] -gen[[j, n]].gen[[i, m]]1]1]] = 2,
AppendTo [NoCommute, {i, j}11}, {i, Length[gen]},

{m, Length[gen[[i]] 1}, {j, i, Length[gen]}, {n, Length[gen[[j]] 1}1;
Union[NoCommute] ;
Union[Table[ {NoCommute[[i, 1]], NoCommute[ [i, 2]], genNAME[[ NoCommute[[i, 1]] 1],

genNAME [ [ NoCommute[[i, 2]] 1]}, {i, Length[NoCommute]}]1];

Length[

%] s

n7s:= Print ["Generator families with members that do not commute
with each other. Non-commuting families by family number and name: ",
Union[Table[ {NoCommute[[i, 1]], NoCommute[[i, 2]], genNAME[ [ NoCommute[[i, 1]] 11,
genNAME [ [ NoCommute[[i, 2]] 1]}, {i, Length[NoCommute]}]]]
Print["Each case of noncommuting families gives a commutation
relation with nonzero structure constants. There are ",
Length[Union[Table[ {NoCommute[[i, 1]], NoCommute[[i, 2]],
genNAME [ [ NoCommute[[i, 1]] 1], genNAME[[ NoCommute[[i, 2]] 11},
{i, Length[NoCommute]}]1]], " nontrivial commutation relations."]

Generator families with members that do not commute
with each other. Non-commuting families by family number and name:
{{1, 1, 38, 38}, {1, 2, 18, IR}, {1, 3, 38, J31}, {1, 4, 18, 142}, {1, 5, 18, P41},
{1, 6, 318, P32}, {1, 7, 38, P43}, {1, 8, 18, P34}, {2, 2, IR, JR}, {2, 3, IR, 331}, {2, 4, IR, J42},
{2, 5, JR, P41}, {2, 6, IR, P32}, {2, 7, JR, P43}, {2, 8, IR, P34}, {2, 10, IR, D31},
{2, 11, IR, D42}, {3, 7, 331, P43}, {3, 9, J31, D}, {4, 8, J42, P34}, {4, 9, J42, D},
{5, 8, P41, P343, {5, 9, P41, D}, {6, 7, P32, P43}, {6, 9, P32, D}, {7, 8, P43, P34}, {7, 9, P43, D},
{7, 10, P43, D31}, {8, 9, P34, D}, {8, 11, P34, D42}, {9, 10, D, D31}, {9, 11, D, D42}}

Each case of noncommuting families gives a commutation relation with
nonzero structure constants. There are 32 nontrivial commutation relations.

Commute: pairs of generator families {i,j} that do commute.
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That means that {i,j} is in Commute if all the matrices in genl[i,m], any m, commute with all the matrices
in gen[j,n], any n.

n77= (*Generators that commute with one anotherx)
commutingGEN = {};
Table[
{i, j, If[Union[Flatten[Table[gen[[i, m]].gen[[j, n]] -gen[[j, n]].gen[[i, m]1, {m,
Length[gen[[i]] 1}, {n, Length[gen[[j]1] 1}11] == {@},
AppendTo [commutingGEN, {i, j}11}, {i, Length[gen]}, {j, i, Length[gen]}];
Union[commutingGEN] ;
Union|
Table[ {commutingGEN[[i, 1]], commutingGEN[[i, 2]], genNAME[ [ commutingGEN[[i, 1]1] 1],
genNAME [ [ commutingGEN[[i, 2]] 11}, {i, Length[commutingGEN]}]];
Length[%];
Intersection[commutingGEN, NoCommute] ;

ns3= Print["Generator families that commute with each
other. Commuting families by family number and name: ", Union[
Table[ {commutingGEN[[i, 1]], commutingGEN[[i, 2]], genNAME[ [ commutingGEN[[i, 1]1] 1],
genNAME [ [ commutingGEN[[i, 2]] 11}, {i, Length[commutingGEN]}]]]
Print["The commutation relations for commuting families are not
displayed in the paper. There are ", Length[Union[
Table[ {commutingGEN[[i, 1]], commutingGEN[[i, 2]], genNAME[ [ commutingGEN[[i, 1]] 1],
genNAME [ [ commutingGEN[[i, 2]] 11}, {i, Length[commutingGEN]}1]11],
commutation relations with commuting families."]

Generator families that commute with each other. Commuting families by family number and name:
({1, 9, I8, D}, {1, 10, 18, D31}, {1, 11, I8, D42}, {2, 9, JR, D}, {3, 3, 131, 131},
(3, 4, 131, 3423}, (3, 5, 131, P41}, {3, 6, J31, P32}, {3, 8, 131, P34}, {3, 10, J31, D31},
(3, 11, 131, D42}, {4, 4, 142, 142}, {4, 5, 142, PAl}, {4, 6, 142, P32}, {4, 7, J42, P43},
{4, 10, J42, D31}, {4, 11, J42, D42}, {5, 5, P41, P41}, {5, 6, P41, P32}, {5, 7, P41, P43},
{5, 10, P41, D31}, {5, 11, P41, D42}, {6, 6, P32, P32}, {6, 8, P32, P34}, {6, 10, P32, D31},
{6, 11, P32, D42}, {7, 7, P43, P43}, {7, 11, P43, D42}, {8, 8, P34, P34}, {8, 10, P34, D31},
{9, 9, b, D}, {10, 10, D31, D31}, {10, 11, D31, D42}, {11, 11, D42, D42}}

The commutation relations for commuting families are not displayed in the paper. There are
34 commutation relations with commuting families.

The list “commutingGEN” has pairs of generator families (a,b) that commute: [a,b] = 0 and a<=Db,
ordered. “commutingGENDbiI” has both [a,b] and [b,a], bidirectional. For example, both (1,9) and (9,1)
arein “commutingGENbi”, while just (1,9) is in “commutingGEN”.

In[85]:=
commutingGENbi =
Union[Table[Reverse[commutingGEN[[i]]], {i, Length[commutingGEN]}], commutingGEN]

outss= {{1, 9}, {1, 10}, {1, 11}, {2, 9}, {3, 3}, {3, 4}, {3, 5}, {3, 6}, {3, 8}, {3, 10},
{3, 11}, {4, 3}, {4, 4}, {4, 5}, {4, 6}, {4, 7}, {4,110}, {4, 11}, {5, 3}, {5, 4},
{5, 5}, {5, 6}, {5, 7}, {5, 1@}, {5, 11}, {6, 3}, {6, 4}, {6, 5}, {6, 6}, {6, 8},
{6, 10}, {6, 11}, {7, 4}, {7, 5}, {7, 7}, {7, 11}, {8, 3}, {8, 6}, {8, 8}, {8, 10},
{9, 1}, {9, 2}, {9, 9}, {1e, 1}, {1e, 3}, {10, 4}, {10, 5}, {10, 6}, {10, 8}, {10, 10},
{1e, 11}, {11, 1}, {11, 3}, {11, 4}, {11, 5}, {11, 6}, {11, 7}, {11, 10}, {11, 11}}

There are 11 families of generators. That makes 11*12/2 = 66 commutation relations between families.
There are 32 commutation relations with nonvanishing structure constants and 34 commutation
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relations for the families that commute with each other.

The next problem is to find the nonzero structure constants by expanding the nonvanishing commuta-
tors in terms of generators.

Commutation relations

For J8 with general generator G,

[J8,G]:

In[86]:=
Print[" PCMLA Eqn(14). {1,1,38,18} [J8"",18°°] = -i(n’°I8“°+n"°18"°-n"°18"°-n*°18**) : ",
{0} = Union[Flatten[Table[ ((38[u, v].38[p, o] -38[p, 0].38[u, v]) -
(-2 (nuvlv, P11 38[u, o] +nuv[[u, 011 I8[v, p] -nuv[lu, p1]138[v, o] -
nuvlv, 011 38[u, p1) ) ), (1, 4}, {v, 4}, {p, 4}, {0, 4}]]]];
Print[" PCMLA Eqn(15). {1,2,38,IR}, [I8*Y,IR®°] = -i (n*?IR*°+n*°IR*P-n*?IR*°-n*"IR")
: ", {0} = Union[Flatten[Table[((38[u, v]1.IR[p, o] - IR[p, 0].38[u, v]) -
(—1'1 (nuvilv, p11 IRk, o] +nuv[[u, o]]1 IR[v, p] -nuv[[u, p11 IR[v, o] -
nuv[[v, 11 IR[u, p1) ), {1, 4}, {v, 4}, {0, 4}, {0, 4}]]]];
Pr-int[" PCMLA Eqgn(16). {1,3,38,331} [J8“Y,]31°°] =
-1 (n¥PI314°4+nH°I31P-n*PI31Y°-nY9I31H°) : ",
{0} = Union[Flatten[Table[ (((38[u, v]1.331[p, o] -331[p, o©].38[u, v])) -
(-i (nuvIIvs £11331[u, o] +nuv[[u, 011 I31[v, p] -nuv[[u, p1]1331[v, o] -
nuvi[v, 011331[u, p1) ), {us 4}, {v, 4}, {0, 4}, {0, 4}]]]]
Pr'int[" PCMLA Eqn(17). {1,4,38,J42} [J8+V,]42°°] =
-1 (n¥°J42K°4nk]42VP-nP]427°-n¥742H0) 1 ",
{0} == Union[Flatten|[Table[ (((38[u, v].342[p, o] -342[p, ©1.38[u, v])) -
(-2 (nuvilv, p11342[u, o] +nuv[[u, 011 342[v, p] -nuv[[u, p1] I42[v, o] -
nuviv, 011382[u, p1) ))s {45 4}, (Vs 4}, {0, 4}, {0, 4}]]]]
Pr-int[" PCMLA Eqn(18). {1,5,38,P41}, [I8*Y,P4P] = -1 (N*PPa*-n*PPsY) : ",
{0} = Union[Flatten[Table[ (J8[u, v].P41l[p, kb] - P41[p, kb].18[u, v]) -
(-2 (nuvlv, P11 PAL[u, kb] - nuv[[u, p11P41v, kb]) ), {u, 4}, {v, 4}, {0, 4}]]]];
Pr-int[" PCMLA Egn(19). {1,6,318,P32}, [I8*Y,P3,°] = -1 (n*PP3*-n*PP3Y) : ",
{0} == Union[Flatten[Table[(Js[u, v].P32[p, kb] - P32[p, kb].38[u, v]) -
(-2 (nuvIlvs p11P32[u, kb] - nuv[[u, p11P32[v, kb]) ), {u, 4}, {v, 4}, {0, 4}]]]];
Pr-int[" PCMLA Eqgn(20). {1,7,318,P43}, [I8*Y,P43P] = -1 (N*PPs3*-nHPPs3Y) : ",
{0} == Union[Flatten|[Table[ (38[u, v].P43[p, kb] - P43[p, kb].38[u, v]) -
(-1 (muvIIvs P11 PA3[u, kb] - nuv[[u, p1]1P43[v, kb]) ), {u, 4}, {v, 4}, {p, 4}]]]];
Pr-int[" PCMLA Eqgn(21). {1,8,318,P34}, [I8*Y,P34°] = -1 (n*PP3*-n*PP3,Y) : ",
{0} = Union[Flatten[Table[ (38([u, v].P34[p, kb] - P34[p, kb].J8[u, v]) -
(-2 (nuvlv, P11 P34[u, kb] ~nuv[[u, 11 P34[v, kbl) ), {u, 4}, {v, 4}, {p, 4}]]]];
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PCMLA Eqn(14). {1,1,38,38) [J8",318°°] = —i (n"°18"°+n"°I8"°_nH°18"9_" 38"°) : True
PCMLA Eqn(15). {1,2,38,IR}, [I8“Y,IR°] = —1i (n"PIR“C+nH9IR"-n"°IR-n"°IR") : True
PCMLA Eqn(16). {1,3,38,331} [J8"Y,331°°] = -1 (n"°331"9+n"°3317°—n"°331"°-n"9I31"°) : True
PCMLA Eqn(17). {1,4,38,342} [J8Y,342°°] = —1i (n"°342/°+nH93427°—nH°342"°-n342"°) : True
PCMLA Eqn(18). {1,5,38,P41}, [384,Pa1”] = -1 ("°Pas”-n"°Pa¥) : True

PCMLA Eqn(19). {1,6,38,P32}, [384,P3,°] = -1 ("°P3"-n“°P3,Y) & True

PCMLA Eqn(20). {1,7,38,P43}, [384,Pa3”] = -1 ("°Pas”-n"°Pss¥) : True

PCMLA Eqgn(21). {1,8,38,P34}, [384,P34°] = -1 ("°P3s"-n"°P3,¥) : True

[JR,G]:

In[94]:= Print[
" PCMLA Eqn(22). {2,2,JR,JR}, [IR¥,IR?°] = -i (n*PIRH+nH°IRP-nHPIRY° -1 " IRHP)
{0} = Union[Flatten[Table[ ( (JR[u, v]1.IR[p, o] - IR[p, o1. IR[u, v]) -
(-i (muvIIv, p11 IRk, o] +nuv[[u, 011 IR[v, p] -nuv[[u, p1]1 IR[v, o] -
nuvilv, 011 IR[u, P1) ))s {15 4}, {v, 4}, {0, 4}, {0, 4}]]]];

i
Print[" PCMLA Eqn(23). {2,3,3R,331}, [IR*",331°°] = -—(n*PI31%° + p“°I31°
2

i 1
- MPIBLT - IR+ S (e -nton) (1-nnP?)D3L - ZeEDsL :

{0} = Union[Flatten[Table[| ((IR[u, v]1.331[p, o] -331[p, o].IR[u, v1)) -
—i (nuv v, p11331[u, o] +nuv[[u, 011 331[v, p] -nuv[[u, p1]3I31[v, o] -

nuv[[v, 0]11331[u, 1) +§ (muv[[u, p]1 nuvilv, ol] -
nuv [ [, 011 nuvv, p11) (1-nuvlu, v11 nuv[[e, o]]) mD31 -

1
;eluvc[l-‘l: vV, P, O] mD31)]: {u, 4}, {v, 4}, {p, 4}, {0, 4]’]]]]3

i
Print[" PCMLA Eqn(24). {2,4,JR,J42}, [JIR¥,142°°] = -—(n"P342"° + n°142"°
2
i 1
- n*P142¥° - n¥°142*°) + — (n*Pn¥°-n*°n*f) (1-n*Yn°°)D4a2 - —e*¥P°D42 : ",
2 2
{0} = Union[Flatten[Table| ((( IR[u, v]1.342[p, o] -3482[p, ol.IR[u, vl)) -

—% (nuv v, p1]342[u, o] +nuv[[u, o1 382[v, p] - nuv[[u, p]] I42[v, o] -

nuv v, o11342[u, pl) f (Muv [k, P11 nuviIy, ol] -
nuv[lu, 011 nuv[v, p11) (1-nuviiu, v11nuvile, o1]) mD42 -

1
zeluvo[u, vV, Py O] mD42)]: {u, 4}, {v, 4}, {p, 4}, {0, 4]’]]]]5

Print[" PCMLA Eqn(25). {2,5,JR,P41},
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i 1
[IR¥,P41”[kb]] = - 1(T7Vpr"41“[kb]-77“"|:’41V[kb])+ — €MYPoPy ,[kb] : ",
2 2
{0} == Union[Flatten[Simplify[Table[( IR[u, v].P41[p, kb] - P41[p, kb]. IR[u, v]) -

i 1
((- f (muvILv, p11PAa1[u, kb] - nuv[[u, p]] P41[v, kb]) J + 3 SumleAvolu, ¥, 0, o]

nuv[[o, t]] P4l[z, kbl, {o, 4}, {T, 4}1], {u, 4}, {v, 4}, {0, 4}]]]]];
Print[" PCMLA Eqgn(26). {2,6,JR,P32}, [IR¥,P3,°[ke]] = -
;l—(nvppszu[kc]-U“ppszv[kc])- i e’"PP3y 5 [ke] & ",
{0} == Union[Flatten[Simplify[Table[( IR[u, v].P32[p, kc] - P32[p, kc]. IR[u, v]) -

i 1
([ 5 (uvity, o11P3200, kel = muvitus 11 P321v, kel) | - > sunteruvotu, v, o,

o]l nuv[[o, t]]1P32[z, ke], {o, 4}, (T, 4}]), {u, 4}, {v, 4}, {0, 4}]]]]];

Print["PCMLA Eqn(27). {2,7,3R,P43}, [IRH,Pss° [kd]] =
- 1(n"PP43* [kd]-n*"Ps3Y [kd]) : ",
{0} = Union[Flatten[Simplify[Table[ ( IR[u, v].P43[p, kd] - P43[p, kd]. IR[u, v]) -
(-4 (nuviivs, p11P43[u, kd] -nuv[[u, 1] P43[v, kd1) ) , {u,
4}, {v, 4}, {0, 4}]]]]];
Print["PCMLA Eqn(28). {2,8,JR,P34}, [IRY,P3,° [ke]]
= - 1(n"PP3s* [ke]-n*"P3s" [ke]) : ",
{0} = Union[Flatten[Simplify[Table[ ( IR[u, v]1.P34[p, ke] -P34[p, ke]. IR[u, v]) -
(-4 (nuvIlv, p11P34[u, kel -nuv[[u, 1] P34[v, kel) ), {u,
4}, {v, 4}, {0, 4}]]]]]s

i
Print[" PCMLA Eqn(29). {2,10,3R,D31}, [JRY,D31] = -—J31" : ",
2

{0} = Union|

-1
Flatten[Table[ ( JR[u, v].mD31 -mD31. JR[u, v]) - (7 331, v]), {u, 4}, {v, 4}]]]];

i
Print[" PCMLA Eqn(3@). {2,11,3R,D42}, [JR¥Y,D42] = +=3J42*¥ : ", {0} =
2

i
Union[Flatten[Table[ ( IR[u, v].mD42 - mD42. JR[u, v]) - (— Ja2[u, v]), {u,; 43, {v, 4}]]]];
2
PCMLA Eqn(22). {2,2,3R,3IR}, [IR,IR°] = -1 (n"PIR“C+nH9IR"-n"°IRO-n"°IR’) : True
i
PCMLA Eqn(23). {2,3,JR,331}, [JR®Y,331°°] = —-—(n*PI31° + p~9331"°
2

i 1
- nFPI31Y - p¥9331°) + = (PO -ntIn®) (1-n"VnP%)D31 - —eMP°D31 : True
2 2

i
PCMLA Eqn(24). {2,4,3R,J42}, [JR®Y,342°°] = —— (n"P342"° 4 nH9342"°
2
i 1
- nM°J42Y° - n¥9342%°) + — (*°nY°-ntonv) (1-n*Vn°°)D42 - —e""P°D42 : True
2 2

PCMLA Egn(25). {2,5,3JR,P41},
i 1
[IRY,Pas” [kb]] = = —(n"°Par” [kb]-n""Psy” [kb]) + — €*"°%Py1,[kb] : True
2 2
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PCMLA Egn(26). {2,6,IJR,P32},

i 1
[IR,P3  [ke]] = - — (0P [ke]-n""P3" [ke]) - — €""P7P3,[ke] : True
2 2
PCMLA Eqn (27). {2,7,IR,P43}, [IREY,Pas® [Kd]] = - 1 (n"PPas”[kd]-n"Pss” [kd]) : True
PCMLA Eqn (28). {2,8,IR,P34}, [IRY,Psa” [ke]] = — i (7"°Pss” [ke]-n""Ps,” [ke]) @ True
1
PCMLA Eqn(29). {2,1@,IR,D31}, [JR¥Y,D31] = -—J31% : True
2
1
PCMLA Eqn(30). {2,11,IR,D42}, [IR¥Y,D42] = +—J42%Y : True
2

[J31,G] and [J42,G]:
nrios= Print[" PCMLA Eqn(31). {3,7,331,P43}
[I31%7,P43° [kd] ] = -ii(n""Pu“[ kd]-n""Par”[ kd]) - ie‘”""Puo[ kd] A
{0} = Union[Flatten[Simplify[Table[(331[u, v] .P43[p, kd] - P43[p, kd]. 331[u, v] ) -

1 1
-1 3 (nuv v, p1] P41y, kd] - nuv[[u, 1] P41[v, kd]) - ;Sum[e/\uvc[u, v, p, o]
nuv([[o, t]] P4l[z, kd], {o, 4}, {t, 4}] ) {us 8}, {v, 4}, {0, 4}]]]]];

Print[" PCMLA Eqn(32). {3,9,331,D} [I31*Y,D] = R E YA ",
2
{0} = Union[Flatten|
Lo i
Simplify[Table[(331[u, v] .mD-mD. J31[u, v] ) - (-;Jsl[u, vl|, {1 4}, (v, 4}]]]]]s
PCMLA Eqn(31). {3,7,331,P43}

1 1
[I31",Pa3” [kd]] = ——i (n"Par” [ kd]-n""Psr”[ kd]) - —€"Pgy [ kd] : True
2 2

i
PCMLA Egn(32). {3,9,331,D} [331%Y,D] = -— 331" : True
2

wios= Print[" PCMLA Eqn(33). {4,8,]42,P34)
1 1
[342"Y,P34° [ke]] = -—i(n""P3*[ ke]-n* P, [ ke]l) + —e€*PP3,[ kel @ ",
2 2
{0} = Union[Flatten[Simplify[Table[ (342[u, v] .P34[p, ke] - P34[p, ke]. 342[u, v] ) -

1 1
- = (v, P11 P32[k, kel -nuviiu, p11P32[Y, kel) + = SumleAuvalu, v, p, o]
nuv[[o, t]] P32[z, kel, {o, 4}, {t, 4}] ) {u, 8}, {v, 4}, {0, 4}]]]]];

i
Print[" PCMLA Eqn(34). {4,9,342,D} [J424Y,D] = +— J42* : ",
2

{0} = Union[Flatten|

i
Simplify[Table[(J42[u, v] .mD-mD. J42[u, v] ) - (; a2, v]], {u, 4}, {v, 4}]]]]];
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PCMLA Eqn(33). {4,8,342,P34}

1 1
[342%,P34" [ke]] = —Ei(ﬁvppszu[ ke]-n"P3," [ kel) + ;Gwpopno[ ke] ¢ True
i
PCMLA Eqn(34). {4,9,342,D} [3424Y,D] = +— 3424  : True
2

[P41,G] and [P32,G]:

nio7= Print[" PCMLA Eqn(35). {5,8,P41,P34},
[P41%[kb],P34" [ke]] = -2ikb ke ( p*'D31 - J31*V) : ",
{0} = Union[Flatten[Simplify[Table[ (P41[u, kb].P34[v, ke] - P34[v, ke].P41[u, kb]) -
(- 2dkbke ( mD31nuv[u, v11- 3I31[u, V1)), {4, 4}, (v, 4}]]]]];

E]

1
Print[" PCMLA Eqn(36). {5,9,P41,D}, [P41%[kb],D] = +i — P41%[kb] : "
2

{0} == Union[Flatten|[Simplify|
Table[ (P41[u, kb] .mD -mD.P41[u, kb]) - [+1 }-P41[u, kbl | 5 {u, 4}, {v, 4}]]]]1];
2

PCMLA Egn(35). {5,8,P41,P34},
[P41" [kb],P34” [ke]] = -2ikb ke ( n*'D31 - 331*¥) : True

1
PCMLA Eqn(36). {5,9,P41,D}, [P41% [kb],D] = +i — P41%[kb] : True
2

wriosp= Print[" PCMLA Eqn(37). {6,7,P32,P43},
[P32¥[kc],P43v[kd]] = +2ikc kd ( n*'D42 + 342*Y) : ",
{0} = Union[Flatten[Simplify[Table[ (P32[u, kc].P43[v, kd] - P43[v, kd].P32[u, kc]) -
(+2dkckd ( mDA2nuv[[u, v11+ 342[u, V1)), {4, 4}, (v, 4}]]]]];

1
Print[" PCMLA Eqn(38). {6,9,P32,D}, [P32%[kc],D] = - — i P32%[kec] : "
2

Bl

{0} = Union[Flatten[Simplify|[

1
Table[ (P32[u, kc].mD - mD.P32[u, kc]) - |- ;-j.PBZ[u, kel | 5 {1 4}, {vs 4}]]]]];
PCMLA Eqn(37). {6,7,P32,P43},
[P324[kc],P43" [kd]] = +2ikc kd ( n*¥D42 + J42*Y)  : True
1
PCMLA Eqn(38). {6,9,P32,D}, [P32%[kc],D] = - — i P32%[kc] : True

[P43,G] and [P34,G]:
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= Print[" PCMLA Eqn(39). {7,8,P43,P34},
[P43#[kd],P34" [ke]] = +2ikd ke ( p*'D + JR¥Y) : ",
{0} = Union[Flatten[Simplify[Table[ (P43[u, kd].P34[v, ke] - P34[v, ke].P43[u, kd]) -
(+ 2dkdke ( mDnuv[[u, v11+ IR[K, V1)), {4, 4}, (v, 4}]]]]];
Print[" PCMLA Eqn(4@). {7,9,P43,D}, [P43“[kd],D] = +i P43“[kd] : ",
{0} = Union[Flatten[Simplify|
Table[ (P43 [u, kd].mD - mD.P43[u, kd]) - (+i P43[u, kd] ) , {u, 4}, {v, 4}]]]]];

Print[" PCMLA Eqn(41). {7,10,P43,D31}, [P43*[kd],D31]
1
= - —i P41*[kd] : ", {0} = Union[Flatten[Simplify|
2
1
Table[ (P43[u, kd].mD31 - mD31.P43[u, kd]) - |- — 4 P4l[u, kd] | , {u, 4}, {v, 4}]]]]];
2
PCMLA Eqn(39). {7,8,P43,P34}, [P43“[kd],P34" [ke]] = +2ikd ke ( n*'D + JR")
True
PCMLA Eqn(40). {7,9,P43,D}, [P43“[kd],D] = +i P43“[kd] : True
1
PCMLA Egn(41). {7,10,P43,D31}, [P43“[kd],D31] = - —i P41%[kd] : True
2
4= Print[" PCMLA Eqn(42). {8,9,P34,D}, [P34*[ke],D] = - i P34%[ke] : ",

{0} = Union[Flatten[Simplify|
Table[ (P34[u, ke].mD -mD.P34[u, ke]) - (-4 P34[u, kel ) , {u, 4}, {v, 4}]]]]];
Print[" PCMLA Eqn(43). {8,11,P34,D42}, [P344[ke],D42]

1
= + — iP32%[ke] : ", {0} = Union[Flatten[Simplify|
2

1
Table[ (P34[u, ke].mD42 - mD42.P34 [y, ke]) - |+ ;—i P32[u, kel | , {1, 4}, {v, 4}]]]]];

PCMLA Eqn(42). {8,9,P34,D}, [P34“[ke],D] = - i P34“[ke] : True
1
PCMLA Eqn(43). {8,11,P34,D42}, [P34%[ke],D42] = + — iP32“[ke] : True
2
[D,G]:
3 1 .
w116~ Print[" PCMLA Eqn(44) {9,10,D,D31}, [D,D31] = + — &D31 : ",
2
. . 1
{0} = Union[Flatten[Simplify[ (mD.mD31 - mD31.mD) - (+ i mD31J 1111
2
. 1
Print[" PCMLA Eqn(45). {9,11,D,D42}, [D,D42] = - — D42 : ",
2

1
{0} = Union[Flatten[Simplify[ (mD.mD42 - mD42.mD) - (— ;i mD42J 11115

1
PCMLA Eqn(44) {9,10,D,D31}, [D,D31] = + — iD31 : True
2

1
PCMLA Egn(45). {9,11,D,D42}, [D,D42] = - — iD42 : True
2

That completes the list of non-commuting generators forming a closed Lie algebra. The other commuta-
tors vanish.
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Sub-Algebras
Lorentz Sub-Algebras

In[118]:= Print[" The 18*Y matrices represent the Lorentz algebra
because [J84Y,]8°°] = -i (n"PI8H7+nH°18"P-_nHPI8Y -V I8*P) : ",
{0} == Union[Flatten|[Table[((38[u, v].38[p, o] - I8[p, 0].38[u, v]) -
(-4 (nuvIIvs p1138[u, o] +nuv[[u, 011 3I8[v, p] -nuv[[u, p1]138[v, o] -
nuvilv, 01138[u, p1) )), {1, 4}, {v, 4}, {0, 4}, {0, 4}]]]];
Print[" The JR* matrices represent the Lorentz algebra because
[IRHY,IRP°] = —i (n"PIRHI+nHTIRYP—nHP IRV -1 IRHP) ",

{0} = Union[Flatten[Table[( (JR[u, v]1.IR[p, o] - IR[p, o]. IR[u, v]) -
(-4 (nuv[Iv, P11 IR[u, o] +nuv[[u, 011 IR[v, p] -nuv[[u, p1]1 IR[v, o] -

nuv[v, 11 IR[u, p1) ), {1, 4}, {v, 4}, {p, 4}, {0, 4}]]]];

The 18" matrices represent the Lorentz algebra
because [J18",18°°] = -i(n¥°18“°+n"°18"°_n"°18Y°-n"718"°) : True
The JR" matrices represent the Lorentz algebra

because [JR*V,IR®?] = -1 (n"PIR*+nH°IRVP IRV -nY°IR*?) : True
Poincare Sub-Algebras

In[120]:= Print[" The J8*Y matrices represent the Lorentz algebra because
[I8#Y,]8°°] = -1 (n*PI8H7+nH]8P_nHPI8¥°_n"°I8"P), PCMLA Eqn(47) : ",
{0} = Union[Flatten[Table[ ((I8[u, v].38[p, o] -I8[p, 01.38[u, v]) -
(-2 (nuv[lv, P11 38[u, o] +nuv[u, 011 3I8[v, p] -nuv[[u, p1138[v, o] -
nuvlv, 011 38[u, p1) ) ), (15 4}, {v, 4}, {p, 4}, {0, 4}]]]];
P8[u_, kb_, kc_] :=P41[u, kb] +P32[u, kc]
Print["The J8*¥ and P8°, for P8* = P41* + P32¥, PCMLA Eqn(46),

Print[" are a rep of the Poincare algebra because of the commutation
relations [I8*Y,Pg”]

-1 (n"PPg*-n*°Pg¥), PCMLA Eqn(48) : ",

{0} == Union[Flatten|[Table[ (38[u, v].P8[p, kb, kc] - P8[p, kb, kc].38[u, v]) -
(-4 (nuvI[Iv, o11 P8[u, kb, k] - nuv[[u, p]1]1 P8[v, kb, kc]) ),

{u, 4}, {v, 4}, {p, 4}]]]: " and"];

Pr'int["All the commutators [P8“,P8'] vanish, PCMLA Eqn(49): ", {0} == Union[Flatten[

Table[ (P8[u, kb, kc].P8[v, kb, kc] - P8[v, kb, kc].P8[u, kb, kc]), {u, 4}, {v, 4}]]]]

Print["Thus J8"Y and P8* obey the commutation rules of the Poincare algebra. "]

Print["Note that P8% = P41* + P32¥ is an arbitrary linear
combination of P41 and P32, P8 = a P41'# + 3 P32'#

if you give kb =
a kb' and kc = B kc' new values. You can do that because kb and kc are

arbitrary: the commutation relations are homogeneous in kb and in kc. "]
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The 38" matrices represent the Lorentz algebra because
[18Y,18°%°) = -i(n'°38"9+n"°38"°-n""18"°-n"°18"°), PCMLA Eqn(47) : True

The J8*Y and P8°, for P8* = P41% + P32%, PCMLA Eqgn(46),
are a rep of the Poincare algebra because of the commutation
relations [I8*Y,Pg”] = -1 (n"°Pg"-n"*Pg”), PCMLA Egn(48) : True, and
All the commutators [P8,P8"] vanish, PCMLA Eqn(49): True
Thus 38" and P8" obey the commutation rules of the Poincare algebra.

Note that P8% = P41* + P32" is an arbitrary linear combination of P41 and P32, P8" = a P41'" +
B P32'" if you give kb = o kb' and kc = 3 kc' new values. You can do that because
kb and kc are arbitrary: the commutation relations are homogeneous in kb and in kc.

The J8*Y and P8°, for P8* = P41% + P32%, PCMLA Eqn(46),

are a rep of the Poincare algebra because of the commutation
relations [J8*Y,Pg”] = -1 (n"°Pg"-n"“Pg”), PCAB88M Eqn(48) : True, and

All the commutators [P8“,P8"] vanish, PCAB88M Eqn (49): True
Thus 38" and P8" obey the commutation rules of the Poincare algebra.

Note that P8" = P41% + P32" is an arbitrary linear combination of P41 and P32, P8" = o P41'" +
B P32'" if you give kb = o kb' and kc = 3 kc' new values. You can do that because
kb and kc are arbitrary: the commutation relations are homogeneous in kb and in kc.

In[127]:= Pr'int[" The JR*Y matrices represent the Lorentz algebra because
[IR¥Y,IRP°] = -1 (n*PIR“+nH°IRP-n*°IRY°-1¥°IR*?) , PCMLA Eqn(50) : ",
{0} = Union[Flatten[Table[( (JR[u, v]1.IR[p, o] - IR[p, o]. IR[u, v]) -
(-J'l (nuv v, P11 IR[u, o] +nuv[[u, 011 IR[v, p] -nuv[[u, p11 IR[v, o] -
nuv[v, 11 IR[u, p1) ), {1, 4}, {v, 4}, {p, 4}, {0, 4}]]]];
Print["The JR¥Y and P43° form a rep of the Poincare algebra because of the
commutation relations [IR*,P43°] = -1 (nYPP43*-n""P43¥), PCMLA Eqn(51): ",
{0} = Union[Flatten[Simplify[Table[ ( IR[u, v]1.P43[p, kd] - P43[p, kd]. IR[u, v]) -
(-2 (nuvIlv, P11 PA43[u, kd] -nuv[[u, p1]1PA3[v, kd]) ) ,
{u, 4}, {v, 4}, {p, 4}]]]]: " and“];
Print["all the commutators [P43%,P43Y] vanish, PCMLA Eqn(52): ", {0} ==
Union[Flatten|Table[ (P43[u, kd].P43[v, kd] - P43[v, kd].P43[u, kd]), {u, 4}, {v, 4}]]]]
Print[" Thus JR*Y and P43* obey the commutation rules of the Poincare algebra. ]

The JR* matrices represent the Lorentz algebra because
[IRMY,IRP] = —i (n"PIRH+nH9IRYP—n*PIRYO-n" IR*?), PCMLA Eqn(50) : True

The JR®Y and P43° form a rep of the Poincare algebra because of the
commutation relations [JR¥Y,Pa3P] = -1 (n"PPa3”-n"*Ps3”), PCMLA Eqn(51): True, and

all the commutators [P43%,P43Y] vanish, PCMLA Eqn(52): True

Thus JR”Y and P43" obey the commutation rules of the Poincare algebra.
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In[131]:= Print[" PCMLA Eqn(53) . The JR*Y matrices represent the Lorentz
algebra because [JR*Y,JRP°] = -i (nYPIR*7+nH°IRYP-n*PIRY?-n"?IR*?) : ",
{0} = Union[Flatten[Table[ ( (JR[u, v]1.IR[p, o] - IR[p, o]. IR[u, v]) -
(-J'l (nuv[[v, P11 IR[K, o] +nuv[[u, 011 IR[v, p] -nuv[[u, p11 IR[v, o] -
nuv[v, 011 IRk, p1) ), {4s 4Y, (V5 8}, {p, 4}, {0, 4}]]]];
Print[" PCMLA Eqn(54). The JR*Y and P34° form a rep of the Poincare algebra
because of the commutation relations [IR¥Y,P34°] = -1 (n"PP3s*-n*PP3sY) : ",
{0} == Union[Flatten[Simplify[Table[( IR[u, v].P34[p, kd] - P34[p, kd]. IR[u, v]) -
(-4 (nuvIlv, o111 P34[u, kd] - nuv[[u, p]1] P34[v, kd]) ),
{us 4}, {v, 4}, {p, 4}]]]], "s and"];
Print["all the commutators [P34%,P34Y] vanish, PCMLA Eqn(55): ", {0} =
Union[Flatten[Table|[ (P34[u, ke].P34[v, ke] - P34[v, ke].P34[u, ke]), {u, 4}, {v, 4}]]]]
Print[" Thus JR*Y and P34* obey the commutation rules of the Poincare algebra. "]

PCMLA Eqgn(53). The JR*Y matrices represent the Lorentz
algebra because [JR"Y,JR°°] = -1 (n"PIR*+n*?IRYP-n*?IRY°-n"?IR*?) : True

PCMLA Eqgn(54). The JR*Y and P34° form a rep of the Poincare algebra because
of the commutation relations [IR*,P34°] = -1 (n"PP3s"-n""P3,”) : True, and

all the commutators [P34%,P34"] vanish, PCMLA Eqgn(55): True

Thus JR"Y and P34* obey the commutation rules of the Poincare algebra.

Conformal Sub-Algebra
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In[135]:= Print[" PCMLA Eqn (56) . The JR*Y matrices represent the Lorentz
algebra because [JR*Y,JRP°] = -i (nYPIR*7+nH°IRYP-n*PIRY?-n"?IR*?) : ",
{0} = Union[Flatten[Table[ ( (JR[u, v]1.IR[p, o] - IR[p, o]. IR[u, v]) -
(—J'l (nuv[[v, P11 IR[K, o] +nuv[[u, 011 IR[v, p] -nuv[[u, p11 IR[v, o] -
nuv[v, 011 IRk, p1) ), {4s 4Y, (V5 8}, {p, 4}, {0, 4}]]]];
Print[" PCMLA Eqn(57). The JR*Y and P43° obey [JR*V,P43°] = - & (n“PPs3¥-n"PPg3Y) : ",
{0} = Union[Flatten[Simplify[Table[ ( IR[u, v].P43[p, kd] - P43[p, kd]. IR[u, v]) -
(-2 (nuvIIvs, p11 PA3[u, kd] - nuv[[u, 1] P43[v, kd]) ) , {u,
4}, {v, 4}, {p, 4]‘]]]]]:
Print[" PCMLA Eqn(57) . The JR*Y and P34° obey [JR*Y,P34°] = - i (n"PP3s"-n*"P3Y) : ",
{0} == Union[Flatten[Simplify[Table[( IR[u, v].P34[p, ke] - P34[p, ke]. IR[u, v]) -
(-4 (nuvIIv, o111 P34[u, ke] -nuv[[u, 1] P34[v, kel) ) , {u,
4}, {v, 4}, {0, 4}]]]]]s
Print[" PCMLA Eqn(58) . The conformal algebra comm. relations for P34* and
P43Y when kd ke = 1, [P43#,P34¥] = +2ikd ke ( n*YD + IR¥) HER
{0} = Union[Flatten[Simplify[Table[ (P43[u, kd].P34[v, ke] - P34[v, ke].P43[u, kd]) -
(+2ikdke (mDnuv[[u, v11+ IR[u, V1)), {us 4}, (v, 4}]]]]]5
Print[" PCMLA Eqn(59). The conformal algebra comm. relations for P43% and
D, [P43“,D] = +iP43* : ", {0} == Union[Flatten[Simplify|
Table[ (P43[u, kd].mD - mD.P43[u, kd]) - (+1 P43[u, kd] ) , {u, 4}, {v, 4}]]]]];
Print[" PCMLA Eqn(59). The conformal algebra comm. relations for P34¥ and
D, [P34%,D] = -iP34* : ", {0} = Union[Flatten[Simplify|
Table[ (P34[u, ke].mD - mD.P34[u, ke]) - (-1 P34[u, kel ) , {u, 4}, {v, 4}]]]]];
Print[" PCMLA Eqn(6). The JR*’, P43°, P34°, D obey [JR*’,D]
= @, [P43“,P43"] = @, [P344,P34"] =0 : ",
{0} == Union[Flatten[Simplify[Table[ ( JR[u, v].mD-mD. JR[u, v]) , {u, 4}, {v, 4}1111,
", ", {0} = Union[Flatten|
Simplify[Table[ ( P43[u, ke].P43[v, ke] - P43[v, ke]. P43[u, kel) , {u, 4}, {v, 4}]]]],
", ", {0} = Union[Flatten[Simplify|
Table[ ( P34[u, ke].P34[v, ke] - P34[v, ke].P34[u, kel) , {u, 4}, {v, 4}, {0, 4}]|]]]];
Pr-int["Thus JR¥Y, P43%, P34*, and D obey the commutation rules of the conformal
algebra when kd ke = 1, which can be arranged since kd and ke are
arbitrary. The commutation relations are homogeneous in kd and ke."]
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PCMLA Eqgn(56). The JR*Y matrices represent the Lorentz

algebra because [JR"Y,JR°°] = -1 (n"PIR*+n*?IRYP-n*?IRY°-nY?IR*?) : True
PCMLA Eqn(57). The JR*Y and P43° obey [IR",Ps3°] = - 1 (n"PP43"-n""P43”) : True
PCMLA Eqn(57). The JR®Y and P34° obey [JIR*',P3,°] = - i (1"°P3,*-n*°P3,") : True

PCMLA Eqn (58). The conformal algebra comm. relations for P34* and
P43Y when kd ke = 1, [P43¥,P34Y] = +2ikd ke ( n*'D + JR*"Y) : True

PCMLA Eqn(59). The conformal algebra comm.
relations for P43" and D, [P434,D] = +iP43* : True

PCMLA Eqgn (59). The conformal algebra comm.
relations for P34Y and D, [P34%,D] = -1P34" : True

PCMLA Eqn(6@). The JR“Y, P43°, P34°, D obey
[JR®Y,D] = @, [P43*,P43”] = @, [P34",P34Y] = @ : True , True , True

Thus JR"Y, P43*, P34", and D obey the commutation rules of
the conformal algebra when kd ke = 1, which can be arranged since kd and
ke are arbitrary. The commutation relations are homogeneous in kd and ke.

Commuting generators:

inf143:= Print ["Family ID Numbers and Names of Pairs of Commuting Generator Families: "]
Table[
If[commutingGENbi[[n]][[1]] < commutingGENbi[[n]]1[[2]], {commutingGENbi[[n]][[1]],
commutingGENbi[[n]][[2]], genNAME[ [commutingGENbi[[n]][[1]]1]]
» 8enNAME [ [commutingGENbi[[n]]1[[2]]1]1} 1
> {n, Length[commutingGENbi]}];
Complement[%, {Null}]
Length[%];

Family ID Numbers and Names of Pairs of Commuting Generator Families:

ourias- {{1, 9, 38, D}, {1, 1@, 18, D31}, {1, 11, I8, D42}, {2, 9, IR, D}, {3, 3, J31, J31},
(3, 4, 131, 342}, {3, 5, 131, P41}, {3, 6, J31, P32}, {3, 8, J31, P34}, {3, 10, 131, D31},
(3, 11, 131, D42}, {4, 4, 142, 142}, {4, 5, 142, P41}, {4, 6, 142, P32}, {4, 7, 142, P43},
(4, 10, 142, D31}, {4, 11, J42, D42}, {5, 5, P41, P41}, {5, 6, P41, P32}, {5, 7, P41, P43},
(5, 10, P41, D31}, {5, 11, P41, D42}, {6, 6, P32, P32}, {6, 8, P32, P34}, {6, 10, P32, D31},
(6, 11, P32, D42}, {7, 7, P43, P43}, {7, 11, P43, D42}, {8, 8, P34, P34}, {8, 10, P34, D31},
(9,9, D, D}, {10, 10, D31, D31}, {10, 11, D31, D42}, {11, 11, D42, D42} }

Abelian Subalgebras

in47:= Print["Check the list of Families of Commuting Generators: ",
commutingGEN, " . Check: ", Union[Flatten[Table]
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Union[Flatten[Table[gen[ [commutingGEN[[i, 1]], m]].gen[ [commutingGEN[ [i, 2]], n]] -

gen[ [commutingGEN[ [i, 2]], n]].gen[[commutingGEN[[i, 1]], m]],
{m, Length[gen[ [commutingGEN[[i, 1]]11]1 1},

{n, Length[gen[ [commutingGEN[[i, 2]]11] 13}111, {i, Length[commutingGEN]}]1]] == {0}]

Check the list of Families of Commuting Generators:
{{1, 9}, {1, 10}, {1, 11}, {2, 9}, {3, 3}, {3, 4}, {3, 5}, {3, 6}, {3, 8},
{3, 10}, {3, 11}, (4, 4}, {4, 5}, {4, 6}, {4, 7}, {4, 10}, {4, 11}, {5, 5},
{5, 6}, {5, 7}, {5, 10}, {5, 11}, {6, 6}, {6, 8}, {6, 10}, {6, 11}, {7, 7},
{7, 113, {8, 8}, {8, 10}, {9, 9}, {10, 10}, {10, 11}, {11, 11}} . Check: True
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In[148]:=

In[151]:=

If a family of generators is part of an Abelian subalgebra, the members of the family must commute
with each other. Thus, by inspection of the list “commutingGEN”, one sees that families
(3,4,5,6,7,8,9,10,11) can be in an Abelian subalgebra. Define the list “abPOSSIBLE” =
{3,4,5,6,7,8,9,10,11}.

More than one family can be an Abelian subalgebra if all the matrices in all the families commute. Thus
any subset of “abPOSSIBLE” = {3,4,5,6,7,8,9,10,11} is a potential Abelian subalgebra. Call the list of
subsets “subabPOSSIBLE “.

abPOSSIBLE = {3, 4, 5, 6, 7, 8, 9, 10, 11};
subabPOSSIBLE = Subsets[abPOSSIBLE];
Print["There are ", Length[subabPOSSIBLE],
" possible sets of generator families that can form a Abelian subalgebra."]

There are 512 possible sets of generator families that can form a Abelian subalgebra.

(xFind the Abelian subalgebras. x)
abSUBalgebras = {};
For[ n =1, n < Length[subabPOSSIBLE], n++, If[
Union[Flatten[Table [MemberQ[ commutingGENbi, {i, j}1,
{i, subabPOSSIBLE[[n]]}, {j, subabPOSSIBLE[[n]]}]]] == {True},
AppendTo[ abSUBalgebras, subabPOSSIBLE[[n]] 1 ] 1]
Clear[n]
abSUBalgebras;

Print["There are ", Length[abSUBalgebras],
" Abelian subalgebras if you count families with just one matrix
like D, D31, D42. If you don't count the singles, then there are ",
Length[abSUBalgebras] - 3, " Abelian subalgebras."]

There are 80
Abelian subalgebras if you count families with just one matrix like D, D31, D42. If you
don't count the singles, then there are 77 Abelian subalgebras.
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inis6= SUbALGEBRAtable = Table[ {n, abSUBalgebras[[n]], Table[genNAME[ [ abSUBalgebras[[n, m 1] 11,
{m, Length[abSUBalgebras[[n]] 1}1}, {n, Length[abSUBalgebras]} 1;
Print["The Abelian subalgebras are listed with (A) index number for
reference, (B) list of families in the subalgebra by numerical
ID, (C) list of families in the subalgebra by name:"]
subALGEBRAtable

The Abelian subalgebras are listed with (A) index number for reference, (B) list of families
in the subalgebra by numerical ID, (C) 1list of families in the subalgebra by name:

ourtsel= {{1, {3}, {I31}}, {2, {4}, {I42}}, {3, {5}, {(P4l}}, {4, {6}, {P32}],
{5, {7}, {P43}}, {6, {8}, {P34}}, {7, {9}, (D}}, {8, {10}, {D31}}, {9, {11}, {D42}},
{10, {3, 4}, {331, J42}}, {11, {3, 5}, {331, P41}}, {12, {3, 6}, {J31, P32}},
{13, {3, 8}, {J31, P34}}, {14, {3, 10}, {J31, D31}}, {15, {3, 11}, {I31, D42}},
{16, {4, 5}, {J42, P41}}, {17, {4, 6}, {142, P32}}, {18, {4, 7}, {342, P43}},
{19, {4, 1@}, {J42, D31}}, {20, {4, 11}, {J42, D42}}, {21, {5, 6}, {P41, P32}},
{22, {5, 7}, {P41, P43}}, {23, {5, 10}, {P41, D31}}, {24, {5, 11}, {P41, D42}},
{25, {6, 8}, {P32, P34}}, {26, {6, 10}, {P32, D31}}, {27, {6, 11}, {P32, D42}},
{28, {7, 11}, {P43, D42}}, {29, {8, 10}, {P34, D31}}, {30, {10, 11}, {D31, D42}},
{31, {3, 4, 5}, {331, 142, P41}}, {32, {3, 4, 6}, {J31, 142, P32}},
{33, {3, 4, 10}, {3131, 142, D31}}, {34, {3, 4, 11}, {J31, J42, D42}},

(35, {3, 5, 6}, {131, P41, P32}}, (36, {3, 5, 10}, {J31, P41, D31}},
(37, {3, 5, 11}, {J31, P41, D42}}, {38, {3, 6, 8}, {J31, P32, P34}},
(39, {3, 6, 10}, {J31, P32, D31}}, {40, {3, 6, 11}, {J31, P32, D42}},
(41, {3, 8, 10}, {J31, P34, D31}}, {42, {3, 10, 11}, {J31, D31, D42}},
(43, {4, 5, 6}, {J42, P41, P32}}, {44, {4, 5, 7}, {142, P41, P43}},
(45, {4, 5, 10}, {J42, P41, D31}}, {46, {4, 5, 11}, {J42, P41, D42}},
(47, {4, 6, 10}, {142, P32, D31}}, {48, {4, 6, 11}, {J42, P32, D42}},
(49, {4, 7, 11}, {142, P43, D42}}, {50, {4, 10, 11}, {142, D31, D42}},
(51, {5, 6, 10}, {P41, P32, D31}}, {52, {5, 6, 11}, {P4l, P32, D42}},
(53, {5, 7, 11}, {P41, P43, D42}}, {54, {5, 1@, 11}, {P41, D31, D42}},
(55, {6, 8, 10}, {P32, P34, D31}}, {56, {6, 18, 11}, {P32, D31, D42}},
(57, {3, 4,5, 6}, {J31, J42, P41, P32}}, {58, {3, 4, 5, 18}, {J31, J42, P41, D31}},
(59, {3, 4,5, 11}, {J31, J42, P41, D42}}, {60, {3, 4, 6, 18}, {I31, J42, P32, D31}},
(61, {3, 4, 6, 11}, {I31, J42, P32, D42}}, {62, {3, 4, 10, 11}, {I31, J42, D31, D42} },
(63, {3, 5, 6, 10}, {J31, P41, P32, D31}}, {64, {3, 5, 6, 11}, {31, P41, P32, D42}},
(65, {3, 5, 10, 11}, {J31, P41, D31, D42}}, {66, {3, 6, 8, 10}, {I31, P32, P34, D31}},
(67, {3, 6, 10, 11}, {J31, P32, D31, D42}}, {68, {4, 5, 6, 10}, {J42, P41, P32, D31}},
(69, {4, 5, 6, 11}, {J42, P41, P32, D42}}, {70, {4, 5, 7, 11}, {J42, PAl, P43, D42}},
(71, {4, 5, 10, 11}, {J42, P41, D31, D42}}, {72, {4, 6, 10, 11}, {J42, P32, D31, D42} },
(73, {5, 6, 10, 11}, {P41, P32, D31, D42}}, {74, {3, 4, 5, 6, 18}, {131, J42, P41, P32, D311},
(75, {3, 4, 5, 6, 11}, {331, J42, P41, P32, D42} },
(76, {3, 4, 5, 18, 11}, {331, J42, P41, D31, D42} },
(77, {3, 4, 6, 10, 11}, {331, J42, P32, D31, D42} 1,
(78, {3, 5, 6, 18, 11}, {J31, P41, P32, D31, D42} 1,
(79, {4, 5, 6, 10, 11}, {J42, P41, P32, D31, D42} 1,

4)

(80, {3, 4,5,6,10, 11}, {131, J42, P41, P32, D31, D42} }}

Some Abelian subalgebras that may be of interest:
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In[159]:=

In[162]:=

In[165]:=

In[168]:=

(* "P41", "P32", "D31", "D42" . Includes PS8,

part of Poincare algebra above. This is number 73 in subALGEBRAtable. x)

{{5, 5, "pP41", "P41"}, {5, 6, "P41", "P32"}, {5, 10, "P41", "D31"}, {5, 11, "P41", "D42"}};
{{e6, 6, "P32", "P32"}, {6, 10, "P32", "D31"}, {6, 11, "P32", "D42"}};

{{1e, 10, "D31", "D31"}, {10, 11, "D31", "D42"}};

{11, 11, "D42", "D42"};

(» P41, P43, D42 . This is number 53 in subALGEBRAtable. x)
{{5, 5, "pP41", "P41"}, {5, 7, "P41", "P43"}, {5, 11, "P41", "D42"}};
{{7, 7, "pP43", "P43"}, {7, 11, "P43", "D42"}};

{11, 11, "D42", "D42"};

(» P32, P34, D31 . This is number 55 in subALGEBRAtable. )
{{6, 6, "P32", "P32"}, {6, 8, "P32", "P34"}, {6, 10, "P32", "D31"}};
{{8, 8, "P34", "P34"}, {8, 10, "P34", "D31"}};

{10, 10, "D31", "D31"};

Center

Find all 8x8 matrices, the center c, that commute with all elements G of the group, [¢,G] = 0.

centerM = Table[am[i, j], {i, 8}, {Jj, 8}1];
centerM // MatrixForm;
centerMvar = Variables[centerM];
LHS = Union[Flatten[Table[Simplify[ centerM.gen[[i, m]] - gen[[i, m]].centerM],
{i, Length[gen]}, {m, Length[gen[[i]] ]} 111;
Table[LHS[[i]], {i, 10}1;
{Length[LHS], Length[LHS[[1]]], 37 * 64};
CENTEReqns = Map[zip, LHS]; (*zip[f_]:= f==0%)
1iSOLN = Solve [CENTERegns, centerMvar];
Print["There is (are) ", Length[1iSOLN],
" solution(s) for matrices c that commute with all matrices of the algebra."]
Print["The matrix (ces) is(are) c = ",
Table|[ (centerM /. 1iSOLN[[n]]) // MatrixForm, {n, Length[1iSOLN]}]]

Solve: Equations may not give solutions for all "solve" variables.

There is(are) 1 solution(s) for matrices c that commute with all matrices of the algebra.

The matrix (ces) is(are) c =

am([7, 7] 0 0 0 0 0 0 0
0 am[7, 7] 0 0 0 0 0 0
0 0 am(7, 7] 0 0 0 0 0
{ 0 0 0 am[7, 7] 0 0 0 0 }
0 ) 0 0 am(7, 7] ) ) 0
0 0 0 0 0 am([7, 7] 0 0
e ) 0 0 0 ) am[7, 7] )
0 0 0 0 0 0 0 am(7, 7]

Therefore, only multiples of the unit matrix commute with all 37 linearly independent generators.

Transformations

A generator G generates a transformation T = exp[%i 8 G], with minus(-) for momenta generating

(el

translations and plus(+) otherwise. 8 is a parameter. Use “0” with J, use “x” with P,and use “s
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with D.

np7er= {J8[1, 2] // MatrixForm, MatrixExp[i J8[1, 2] 6] // MatrixForm} (*Samplesx)
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out[178]

ni79r= {IR[1, 2] // MatrixForm, MatrixExp[i JR[1, 2] €] // MatrixForm}
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out[179]

npsor= {J331[1, 2] // MatrixForm, MatrixExp[i J31[1, 2] €] // MatrixForm}
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out[180]

nie1= {J42[1, 2] // MatrixForm, MatrixExp[i J42[1, 2] €] // MatrixForm}
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out[181]
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niez= {P41[1, kb] // MatrixForm, MatrixExp[-i P41[1, kb] x] // MatrixForm}

}
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out[182]

npes= {P32[1, kc] // MatrixForm, MatrixExp[-1i P32[1, kc] x] // MatrixForm}

}
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out[183]

infsa= {P43[1, kd] // MatrixForm, MatrixExp[-i P43[1, kd] x] // MatrixForm}
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out[184]

{P34[1, ke] // MatrixForm, MatrixExp[-1i P34[1, ke] x] // MatrixForm}

In[185]
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Out[185]

infse)= {mD // MatrixForm, MatrixExp[imDs] // MatrixForm}
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inie7= {mD31 // MatrixForm, MatrixExp[i mD31s] // MatrixForm}

© 9 000000 1 0 000000
© 0 0000 O0O0 1 000000
@ 0 0000O0O0 @ © 100000
© 0 000000 © © 010000
ommanz{i—@aeeeee,-ieeeleee}
ofeeeeee 6 -> 00010080
© 0 0000 OO © © ©0 00010
© © 9 0 9 0 0 0 © © 0 0 0 0 0 1
infiss;= {mD42 // MatrixForm, MatrixExp[imD42 s] // MatrixForm}
0 0 0 0000 10000000
0 0 © 0000 01000000
0 0 0 0000 01006000
0 0 0 0000 000 10000©0
oupes- {|© @ 6 @0 © 0 0 0|, 000 01600 0,]}
0 0 © 0000 00000100
66 - 0 0000 ee§00010
60 0 -2 0000 @00 >06001

Structure Constants, adjoint rep, Cartan-Killing metric:

tGEN37 is a simple list of the 37 generator matrices, unlike gen37[[i,m]] which is splitinto 11 families
and their members.

inisg= tGEN37 = Flatten[Table[gen37[[i, m]], {i, Length[gen37]}, {m, Length[gen37[[i]] ]1}]1, 1];
tGEN37names =
Flatten[Table[ {genNAME[[i]], m}, {i, Length[gen37]}, {m, Length[gen37[[i]] 1}]1, 1];
{tGEN37names[[3]], tGEN37[[3]] // MatrixForm,
tGEN37names [ [28]], tGEN37[[28]] // MatrixForm};
Print["There are ", Length[tGEN37], " matrices in tGEN37."]

There are 37 matrices in tGEN37.

Examples follow:

In[193]:= Print["Each J family has six matrices J*¥ with indices in the order {u,v} = ",
Flatten[ Table[{u, v}, {u, 3}, {v, u+1, 4}], 1], " . "]
Print["Thus the matrix tGEN37[[9]] = ", tGEN37[[9]] // MatrixForm,
" with tGEN37names[[9]] = ", tGEN37names[[9]], " is the matrix JR™ = JR**."]
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In[195]:=

In[197]:=

Each J family has six matrices J*Y with indices in the order {u,v} =
{{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}

P 00O0O OO 0 0
000000 O 0
00000 0 0
0000 OO 0 0

Thus the matrix tGEN37[[9]] = |2 2 @ @ 9 , @ @
o000 -0 0 0
90000 0 0 -%
0000 0O - 0

with tGEN37names[[9]] = {JR, 3} is the matrix IR = JR*t.
Print["Each P family has four matrices P* with indices in the order u = ",

Table[u, {u, 4}11]
Pr'int["Thus the matrix tGEN37[[28]] = ", tGEN37[[28]] // MatrixForm,

" with tGEN37names[[28]] = ", tGEN37names[[28]], " is the matrix P432 = P43y."]

Each P family has four matrices P* with indices in the order u = {1, 2, 3, 4}

Thus the matrix tGEN37[[28]] =

OO0
|
Q.

OCOOOPOOOO
OO0
OO0
~

AR SIS R Y]
OXAOOOOOOO®
COOOOOO
COOOOOO

with tGEN37names[[28]] = {P43, 2} is the matrix P432 = P43V,

Print["Each D family has one matrix D with no indices."]
Print["Thus the matrix tGEN37[[35]] = ", tGEN37[[35]] // MatrixForm,
" with tGEN37names[[35]] = ", tGEN37names[[35]], " is the matrix D."]

Each D family has one matrix D with no indices.

0000 0 0 0
00000 0 0
0000 0 0 ©
00000 0 0 0
o000 Lo o0 o

Thus the matrix tGEN37[[35]] = 2 -
o006 ; 0 0
eeeeee-i— )
0000 0 0 717

with tGEN37names[[35]] = {D, 1} is the matrix D.

structC[i,j,k] is the structure constant s} in the sum: [d, 9] = is) g¥, where ¢’ is the ith generator in
tGEN37 and i,j,k=1,2,... 37.
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o= (*Find the structure constants structC[i,j,k].*)
For[i=1,1i<37,i++, For[j=1, j<37, j++,
strucConstLHS = Complement [Union[Flatten[tGEN37[[i]].tGEN37[[j]] -
tGEN37[[j]].tGEN37[[i]] - Sum[4 s[k] tGEN37[[k]]1, {k, 37}111, {O}1;
strucConstEQN = Map[zip, strucConstLHS]; (*zip[f_]:= f==0%)
strucConstSOL = Solve[strucConstEQN, Table[s[k], {k, 37}]1;
Table[structC[i, j, k] = s[k] /. strucConstSOL[[1]], {k, 37}111]

nzooi= Print["For example, [IR',IR**] = +inuv[[4,4]]1IR[1,2], which is ",
Union[Flatten[ (tGEN37[[9]]. tGEN37[[11]] - tGEN37[[11]]. tGEN37[[9]]) -
(+inuvi[4, 411 tGEN37[[71]1)]] = (e},
" , involves the three generators tGEN37[[9]], tGEN37[[11]], tGEN37[[7]],
with names tGEN37names[[9]], tGEN37names[[11]], tGEN37names[[7]] = ",
tGEN37names[[9]], " , ", tGEN37names[[11]], " , ", tGEN37names[[7]], " ."]
Print["Note that each J family has six matrices J*¥ with indices in the order {u,v} =",
Flatten[ Table[{u, v}, {u, 3}, {v, u+1, 4}1, 1],
" and the JR matrices are the 7,8,9,10,11,12'" matrices in tGEN37. "]
Print["Thus the structure constant structC[9,11,7]
should be structC[9,11,7] = + nuv([[4,4]] = ",
+nuv[[4, 4]], ": ", structC[9, 11, 7] == + nuv[[4, 4]] ]
For example, [JR¥,IR**] = +inuv[[4,4]]IR[1,2], which is True
, involves the three generators tGEN37[[9]], tGEN37[[11]], tGEN37[[7]], with names
tGEN37names [ [9]], tGEN37names[[11]], tGEN37names[[7]] = {3JR, 3} , {3IR, 5} , {JIR, 1}
Note that each J family has six matrices J*Y with indices in the order {u,v} =
{{1, 23}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}}
and the JR matrices are the 7,8,9,10,11,12%" matrices in tGEN37.

Thus the structure constant structC[9,11,7] should be structC[9,11,7] = + nuv([[4,4]] = -1: True

Adjoint rep.

mT[n] is the 37x37 matrix for the nth generator in the adjoint rep. According to Group Theory in a
Nutshell, A. Zee, page 365, the adjoint rep is defined to be the set of 37 matrices with components
(mTY, = -is) .
ineosp= MT[i_] := mT[i] = -4 Table[structC[i, j, k1, {J, 37}, {k, 37}]
o= mT[1] // MatrixForm; (x sample x)
Table[{i, Union[Flatten[mT[i]]1]1}, {i, 37}] ;

Print["None of the mT[a], a=1,...37, matrices is null: ",
Union[Table[Length[Union[Flatten[mT[i]]]1] > 1, {i, 37}] 1]

None of the mT[a], a=1,...37, matrices is null: {True}

In[207]:=
Print["The mT! matrices of the adjoint rep obey the Lie algebra: ",
Union[Flatten[Table [mT[i].mT[j] -mT[j].mT[i] - (

i Sum[structC[i, j, k] mT[k], {k, 37}1), {i, 37}, {3, 37}]]] = {(@}]

The mT! matrices of the adjoint rep obey the Lie algebra: True

Cartan-Killing metric gCKis not invertible.
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g2 = Tr(T9 1) = =s3¢s2¢ = gCK[[a,b]]

inosi= gCK = Table[ -Sum[structC[a, c, d] structC[b, d, c], {c, 37}, {d, 37}]1 , {a, 37}, {b, 37}1;
Print["The determinant of the Cartan-Killing metric vanishes, Det(gCK®) = o: ",
Det[gCK] =0 ]
Print["Therefore the metric gCK®® has no inverse."]

The determinant of the Cartan-Killing metric vanishes, Det(gCKab) = 0: True

Therefore the metric gCk® has no inverse.

END PROGRAM...
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