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Abstract. Even though a physical theory, the Scale Relativity Theory (SRT) means more than 
physics, as its creator noticed himself. In fact it targets the very foundation of the entire positive 
knowledge, and we are set here to prove this fact. Mathematically one needs the description of a 
transition between infrafinite, finite and transfinite orders, while physically one needs a transition 
between microcosmos, daily world (quotidian cosmos) and universe. With SRT the mathematical 
categories of infrafinite, finite and transfinite, become differentias of the same general concept of 
‘finite’. As it turns out, there is a parallelism of the physical transition between the worlds and the 
mathematical transition between degrees of ‘finite’: it is followed here historically and logically, 
in a first part of the present work, with the benefit of extracting the mathematical principles of a 
physical description of matter. 
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1. Introduction 

Among the newest theories of physics, the Laurent Nottale’s scale theory of relativity deserves, in 
our opinion, a special attention. The scale relativity theory (SRT in what follows) really means 
business, and big business at that, and we are set here on demonstrating this fact: SRT targets in 
fact the very foundations of our positive knowledge. The proof will be effectively done by 
showing that SRT follows a line of essential achievements of the physical knowledge of the world, 
and follows it properly. As a matter of fact the bottom line of our conclusion here is that, once the 
principle of scale invariance is adopted, there is no other way to follow but the right way, which 
is the line of thought marked by those essential achievements of knowledge. All of the works to 
date of Laurent Nottale, regarding the problems raised by scale relativity testify of a well guided 
thinking, and such a guidance cannot come but from an inherent fundamental principle of 
knowledge. If there is an ambition from our part here, that would therefore be none other than to 
make this principle as obvious as possible, maybe even by giving it an explicit verbalization. In 
doing this, we make use both of common and own results upon the fractal theory of space, 
expounded though along a special line indicated by Laurent Nottale himself, in an evaluation of 
thirty years of development of the theory. We quote the final words from a relatively recent book 
of Nottale: 

 Giving up the differentiability hypothesis, i.e. generalizing the geometric 
description to general continuous manifolds, differentiable or not, involves an 
extremely large number of new possible structures to be investigated and described. 
In view of the immensity of the task, we have chosen to proceed by steps, using 
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presently-known physics as a guide. Such an approach is rendered possible by the 
result according to which the small scale structures, which manifest the 
nondifferentiability, are smoothed out beyond some relative transitions toward the 
large scales. One therefore recovers the standard classical differentiable theory as 
a large scale approximation of this generalized approach. But one also obtains a 
new geometric theory, which allows one to understand quantum mechanics as a 
manifestation of an underlying nondifferentiable and fractal geometry and finally 
to suggest generalizations of it and new domains of application for these 
generalizations. 
 Now the difficulty that also makes their interest with theories of relativity is 
that they are meta-theories rather than theories of some particular systems. Hence, 
after the construction of special relativity of motion at the beginning of the 20th 
century, the whole of physics needed to be rendered “relativistic” (from the 
viewpoint of motion), a task that is not yet fully achieved. 
 The same is true regarding the program of constructing a fully scale-relativistic 
science. Whatever the already-obtained successes, the task remains huge, in 
particular when one realizes that it is no longer only physics that is concerned, but 
also many other sciences. Its ability to go beyond the frontiers between sciences 
may be one of the main interests of the scale relativity theory, opening the hope of 
a refoundation on mathematical principles and on predictive differential equations 
of a “philosophy of nature” in which physics would no longer be separated from 
other sciences. [(Nottale, 2011), p. 712; our Italics] 

The Italics in this excerpt roughly mark our points of intervention with the present work, ‘using 
presently-known… SRT as a guide’. In broad strokes, we aim here to clarify the idea of “general 
continuous manifolds” and of the general “transition between scales”. We also construct a “new 
geometric theory”, with the task of “understanding the quantum mechanics”, with a slight change 
in emphasis: the quantum mechanics in its wave mechanical form. 
 One of the ideas that occurred to us, regarding the fact that theories of relativity are indeed 
meta-theories rather than theories of some particular systems, is that these theories should in fact 
not be axiomatically forced upon such systems. It is sufficient that the description of a particular 
one – truly significant for the whole our knowledge – be accomplished properly in order to reveal 
the theory of relativity in it, in all its fundamental features. This shows that the relativity is indeed 
a meta-theory, by the manner in which it acts as such a meta-theory. Following the usual concept 
of meta-theory is perhaps the reason why that task of rendering the physics relativistic mentioned 
by Nottale “is not yet fully achieved”. The physical system we have in mind as significant, is 
significant for the whole modern knowledge indeed: the classical planetary hydrogen atom. Its 
analysis led to the modern quantum theory, and to a great extent it contributed in the construction 
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of the modern wave mechanics. Nottale has also the great merit of realizing that “no longer only 
physics” is concerned here. Thus, from the “many other sciences” involved, we shall positively 
mark in this work the intervention of statistics, theory of color continuum, differential geometry, 
insofar as it concerns the theory of random surfaces, with a “refoundation on mathematical 
principles” leading to a sound view of the category of matter, whose sole physical feature is best 
rendered today by the modern idea of confinement. Perhaps this last observation should be 
elaborated even from this Introduction a little further. 
 The critical point of the modern physical knowledge is the one originating in the classical 
natural philosophy, and due to the essential property of the matter of being presented to our senses 
through physical structures. Specifically we are talking here of the idea of density, which 
represents the mathematical characterization of the manner in which matter fills the space at its 
disposal. There is indeed such a manner, insofar as in the physical structures presented to our 
senses the matter does not fill the space suggested to our intellect by their manifestation. In fact, 
the very concept of a physical structure involves both the theoretical and experimental physics in 
describing a specific arrangement of matter in space, so that the most appropriate definition of a 
physical structure would be ‘matter penetrated by space’. The matter per se shall therefore be 
defined negatively: the place where the space does not have access. This way, the density in its 
Newtonian connotation can make mathematical sense as it was first defined – i.e. by continuity, 
even by a differential continuity at that – only in the matter thus defined. 
 The continuity of matter was always an issue in physics. However, it became a critical issue 
within the framework of ideas of general relativity, for which the very concept of density is vital, 
and because of that, in the development of theory one would have to overcome the problems related 
to the definition of matter as a physical structure. The essential point here is Einstein’s idea of 
describing the world by its “mean density”. It could not work properly in the background of his 
general relativity, simply because it is unsecured from a mathematical point of view. Indeed, the 
theory of general relativity, as a field theory, works mathematically based on exactly the same 
classical principles of continuity as the classical mechanics. Therefore, as far as the general 
relativity is concerned, the Newtonian connotation of density cannot be removed. And from this 
point of view there is not such a precise notion as the mean density, any way we look at it. Quoting 
Richard Feynman: 

… What is the situation as regards estimates of the average density? If we count 
galaxies and assume they are more or less like ours, the total density of this kind 
of visible matter amounts to some 10–31 g/cm3. This represents some kind of lower 
limit on the matter density, since the visible matter must be a fraction of the total. 
… The critical value, r = 1´10–29 g/cm3 is always within the range of any estimate; 
yet the data has enough slop so that if a theory were to require a density as high 
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as 10–27 g/cm3, the observations could not rule it out, the theory could not be 
disproved on the basis that the density predicted is much too high. 
 At this point I would like to make a remark on the present state of observations 
relevant to cosmology. When a physicist reads a paper by a typical astronomer, 
he finds an unfamiliar style in the treatment of uncertainties and errors. Although 
the papers reporting the calculations and measurements are very often very 
careful in listing and discussing the sources of error, and even in estimating the 
degree of confidence with which one can make certain key assumptions, when 
the time comes for quoting a number, such as Hubble time T, one does not find 
an estimate of the over-all uncertainty, for example in the form of the familiar 
±DT used by physicists. The authors are apparently unwilling to state precisely 
the odds that their number is correct, although they have pointed out very 
carefully the many sources of error, and although it is quite clear that the error is 
a considerable fraction of the number. The evil is that often other cosmologists 
and astrophysicists take this number without regard to the possible error, treating 
it as an astronomical observation as accurate as the period of a planet 
[(Feynman, 1995), Chapter 13, our Italics]. 

Notice first, that the actual concept of mean density used in general relativity involves the 
continuity as just a moment of its definition, i.e. through those final figures quoted by Feynman in 
this excerpt. In its capacity as cosmology, which, as we see it, is actually its essential trait, the 
general relativity introduces nevertheless another moment of the definition, related explicitly to 
the manner in which the matter is presented to our senses (“the visible matter” in the excerpt 
above). That moment is the moment of counting of the fundamental matter formations, i.e. of the 
simplest material points presented to our senses. Here, these material points are the galaxies, and 
in counting they are reduced to classical material points, for which the physical structure is totally 
suppressed. The reason for this situation is way too complicate to be described in a sentence, but 
we think it comes down to the fact that the universe appears as isotropic only at the level of 
galaxies. There are then many other levels of reasoning in evaluating the mean density of the 
matter in universe, where the accuracy is lost but, according to Feynman, not assessed in any way, 
so that it remains in fact completely lost, and the theory based on such evaluation remains a pure 
speculation. As Feynman articulates it, the “cosmologists and astrophysicists take this number 
without regard to the possible error”, viz. as an exactly defined number, as far as its measure is 
concerned. 
 Well, this situation is quite general, it is a human characteristic, we should say: at another level, 
whatever scientists say, is taken as accurate by the layman, with absolute certainty, because it is… 
well, scientific! Anyway, Laurent Nottale is an astrophysicist, so that he may have felt ‘close 
range’, so to speak, the situation so aptly exposed by Richard Feynman, and perhaps he has decided 
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to clean it up of that ‘slop’. Fact is that to Nottale the density can be both the usual physical density 
and the probability density, and one of the points we shall substantiate here is that this is not a 
contradiction in terms, provided the matter is properly defined by a general concept of continuity. 
This idea goes far beyond the critique of Feynman who, in chorus with all the physicists and 
astrophysicists alike, fails to take heed of the fact that the ‘average density’ itself is only a fictitious 
concept, improper for the use of general relativity in its classical form, on the very ground that the 
matter as presented to our senses does not fill the space of universe. That failure has an objective 
reason though, that needs to be uttered from the very beginning: as long as SRT was not properly 
developed as a theory, one cannot assess in any way the concept of “average density”. 
 Now, before anything else should be said by the way of announcement of intentions and 
ambitions here, an introductory review of their very origin seems at least appropriate, if not even 
necessary. This review follows the line of presentation of some specific results of Laurent Nottale 
himself (Nottale, 1992, 2011). The basis of these results is the SRT’s request for a specific fractal 
structure of the physical theory, which can be recognized first of all in the character of motion at 
the transition between scales: space scales as well as time scales. Along this way it is found 
necessary to describe the physical structure of the matter by a fluid, to wit a ‘complex’ fluid, 
complex from quite a few points of view. First, assuming that the curves (fractal, i.e. continuous 
and non-differentiable) describing the space motions of some fluid particles, are immersed within 
a three-dimensional space, and that the vector X having components Xi (i = 1,2,3) is the position 
vector of a point on the fractal curve at the time ‘t’, the total differential expansion up to the third 
order of a fractal field F(X,t,dt), with ‘dt’ the time resolution scale, is 

 
 

(1.1) 

The sign ‘+’ corresponds to the forward process, while the sign ‘–’ corresponds to the backward 
one, and we used the abbreviations 

 
 

 

In equation (1.1) only the terms indicated are finite; any other combinations containing 
differentials, like dt2, dXidt, dt3, dtdXidXj, dt2dXi are null when taking an asymptotic limit dt ® ¥. 
We notice that only the first three terms have been used, both in SRT as well as in its non-standard 
version (i.e. SRT approach with arbitrary constant fractal dimension). 
 Take now the forward and backward average values of (1.1). In averaging the fluctuations it is 
natural to assume that the value of function F and its derivatives are constants at the event’s 
location and, moreover, we further assume that the differentials d±Xi and dt are independent. Thus, 
the average of their products coincides with the product of averages, so that (1.1) becomes 

d±F = dt ⋅ ∂t F + d±X ⋅∇F + 1
2
d±X

id±X
j ⋅ ∂ij

2 F + 1
6
d±X

id±X
jd±X

k ⋅ ∂ijk
3 F

∂ij
2 F ≡ ∂2F(X)

∂Xi ∂Xj ; ∂ijk
3 F ≡ ∂2F(X)

∂Xi ∂Xj ∂Xk
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(1.2) 

Using by now the standard relations 
  (1.3) 

where d±x is differentiable and resolution scale independent spatial coordinate variation, and d±x 
is non-differentiable (fractal) and resolution scale dependent spatial coordinate variation, we get: 

 

 

(1.4) 

One can recognize here that even if the average value of the fractal coordinate differential is null, 
the situation can still be different for a higher order of fractal coordinate average. Indeed, let us 
first focus on the averages of second order terms. If i ≠ j, these averages are zero due to the 
independence of the increments involved in them. Thus, using the fractal equations we have: 

 
 

(1.5) 

where λ±#  are constant coefficients having statistical meanings, dt/t is the normalized resolution 
scale, with τ the time scale and Df is fractal dimension of the motion curve. Thus, we can write: 

 
 

(1.6) 

Then, let us consider the averages of third degree. If i ¹ j ¹ k ¹ i, these averages are zero due to 
the independence of the variations of the first order. Now, using (1.5) we get: 

 
 

(1.7) 

For the fractal dimension Df any definition can be used (the Hausdorff–Besikovich fractal 
dimension, the Kolmogorov fractal dimension etc.), but once a definition accepted, it has to be 
maintained the same over the entire analysis of the complex fluid dynamics. Thus, (1.4) may be 
simplified by inserting (1.5), (1.6) and (1.7), dividing by ‘dt’ and neglecting the straight 
differentials of higher orders. The net result is: 

 

 

(1.8) 

Now, recalling that the fractal operator of time differentiation has the form: 

 
 

(1.9) 

the velocity of the process becomes a complex vector 

d±F = dt ⋅ ∂t F + 〈d±X〉 ⋅∇F +
1
2
〈d±X

id±X
j〉 ⋅∂ij

2 F + 1
6
〈d±X

id±X
jd±X

k 〉 ⋅∂ijk
3 F

d±X ≡ d±x + d±ξ

d±F = dt ⋅ ∂t F + 〈d±x〉 ⋅∇F

+ 1
2
(d±x

id±x
j + 〈d±ξ

id±ξ
j〉) ⋅ ∂ij

2 F + 1
6
(d±x

id±x
jd±x

k + 〈d±ξ
id±ξ

jd±ξ
k 〉) ⋅ ∂ijk

3 F

〈d±ξ
i 〉 = λ±

i dt
τ

⎛
⎝⎜

⎞
⎠⎟
1/Df

〈d±ξ
id±ξ

j〉 = λ±
i λ±

j dt
τ

⎛
⎝⎜

⎞
⎠⎟
2/Df

〈d±ξ
id±ξ

jd±ξ
k 〉 = λ±

i λ±
jλ±

k dt
τ

⎛
⎝⎜

⎞
⎠⎟
3/Df

d±F
dt

= ∂t F +V± ⋅∇F

+ 1
2
λ±
i λ±

j

τ
⋅(∂ij

2 F) ⋅ dt
τ

⎛
⎝⎜

⎞
⎠⎟
(2/Df )−1

+ 1
6
λ±
i λ±

jλ±
k

τ
⋅(∂ijk

3 F) ⋅ dt
τ

⎛
⎝⎜

⎞
⎠⎟
(3/Df )−1

d
dt

= 1
2
d+ + d−

dt
− i
2
d+ − d−

dt
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(1.10) 

The real part Vd, of the complex velocity V represents the standard classical velocity, which does 
not depend on the resolution scale, while the imaginary part Vf is a new quantity coming from non-
differentiability (fractal velocity), and is dependent on the resolution scale. Moreover, applying 
the fractal operator (1.9) to the fractal field F(X,t,dt) by means of relations (1.8) we have: 

 

 

(1.11) 

which then allows us to give an explicit form of the fractal operator (1.10): 

 

 

(1.12) 

For Markov-type random processes, in which case we have 

 
 

(1.13) 

the fractal operator (1.12) takes the form: 

 
 

(1.14) 

where Ñ2 is the usual Laplace operator, and we adopted the notations: 

 

 

 

According to the regular theory the first three terms of the the fractal operator (1.14) correspond 
to a covariant derivative in the fractal space. Extending this interpretation to all of the terms of 
operator represented in equation (1.14), warrants a corresponding extension of the results, which 
we have generally described as follows [see (Agop, Păun & Harabagiu, 2008); (Casian-Botez, 
Agop, Nica, Păun & Munceleanu, 2010)]. 
 First, the principle of scale covariance was applied and, accordingly, we have assumed that the 
transition from classical (differentiable) to “fractal” physics can be implemented by replacing the 
standard time derivative operator (d/dt), with the fractal operator (d/dt). Consequently, by applying 
the fractal operator (1.14) to the complex velocity field V, the specific momentum conservation 
law in its covariant form (i.e. the equation of geodesics) can be written as 

V ≡ dX
dt

= 1
2
V+ +V−

dt
− i
2
V+ −V−

dt
= Vd − iVf

dF
dt

= ∂t F +V ⋅∇F + 1
4τ
[(λ+

i λ+
j + λ−

i λ−
j )− i(λ+

i λ+
j − λ−

i λ−
j )]⋅(∂ij

2 F) ⋅ dt
τ

⎛
⎝⎜

⎞
⎠⎟
(2/Df )−1

+ 1
12τ

[(λ+
i λ+

jλ+
k + λ−

i λ−
jλ+

k )− i(λ+
i λ+

jλ+
k − λ−

i λ−
jλ+

k )]⋅(∂ijk
3 F) ⋅ dt

τ
⎛
⎝⎜

⎞
⎠⎟
(3/Df )−1

d
dt

= ∂t+V ⋅∇ + 1
4τ

dt
τ

⎛
⎝⎜

⎞
⎠⎟
(2/Df )−1

[(λ+
i λ+

j + λ−
i λ−

j )− i(λ+
i λ+

j − λ−
i λ−

j )]⋅ ∂ij
2

+ 1
12τ

dt
τ

⎛
⎝⎜

⎞
⎠⎟
(3/Df )−1

[(λ+
i λ+

jλ+
k + λ−

i λ−
jλ+

k )− i(λ+
i λ+

jλ+
k − λ−

i λ−
jλ+

k )]⋅ ∂ijk
3

λ+
i λ+

j = −λ−
i λ−

j = 2λ2δ ij; λ+
i λ+

jλ+
k = −λ−

i λ−
jλ−

k = 2 2λ3δ ijk

d
dt

= ∂t+V ⋅∇ − i λ
2

τ
dt
τ

⎛
⎝⎜

⎞
⎠⎟
(2/Df )−1

∇2 + 2
3

λ3

τ
dt
τ

⎛
⎝⎜

⎞
⎠⎟
(3/Df )−1

∇3

∇3 ≡ ∂3

∂x3
+ ∂3

∂y3
+ ∂3

∂z3
, δ ij ≡

1 i = j

0 i ≠ j

⎧
⎨
⎪

⎩⎪
δ ijk ≡

1 i = j= k

0 i ≠ j≠ k

⎧
⎨
⎪

⎩⎪
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(1.15) 

Equation (1.15) shows that at any point of a fractal path, the local acceleration ¶tV, the convection 
(V×Ñ)V, the dissipation (l2/t)(dt/t)(2/Df)–1(Ñ2V), and the dispersion (l3/t)(dt/t)(3/Df)–1(Ñ3V), are in a 
sort of equilibrium. The presence of the dissipative and dispersive terms in equation (1.15) shows 
that the behavior of the complex fluid is of viscoelastic, or even hysteretic type. Since there are no 
interactions in the fluid, when it is assimilated with a fractal fluid, the self-convection, self-
dissipation, and self-dispersion type mechanisms should be operational. Therefore, in this case, 
the geodesics of the fractal space can be assumed to correspond to the streamlines of a complex 
fluid of free particles, thereby allowing us to introduce a specific mathematical treatment of the 
problem. The motion thus described is purely inertial. 
 Now, let us consider only the dissipative approximation of motions on fractal paths (the 
dispersive term from equation (1.15) is taken as negligible comparing to the dissipation and 
convection terms). Then the equation (1.15) is: 

 
 

(1.16) 

For reasons to be explained shortly, one chooses V in the form: 

 
 

(1.17) 

Substituting (1.17) in (1.16), one can get after calculations 

 
 

(1.18) 

where f is an arbitrary function of position. Relation (1.18) is the reason of the previous choice for 
the field of velocities V: we have to do with a nonstationary Schrödinger-type equation. 
 The potential (lnψ) was originally introduced for purposes of description of the dissipation in 
wave mechanics (Kostin, 1972). Remarkably enough, it describes the very properties of the free 
particle within fractal mechanics as conceived here, and these turn out to spring actually from a 
wave mechanics. As a matter of fact, the quantization of Schrödinger equation with pure 
dissipation terms is known to lead to Gaussian wave packets (Hasse, 1978). But, again, we follow 
another path, having an objective connotation related to hydrodynamics. Namely, we can solve the 
Schrödinger equation by the classical methods that reduce it to the equation of continuity and 
Navier-Stokes equation (the so-called Madelung representation), thus giving an explicit form to 
the self-interaction. So we can handle the problem by known techniques (Bohm, 1952). 
 Specifically, for y=Ör×eiS, with Ör the amplitude and S the phase of y, the complex velocity 
field (1.17) takes the explicit form: 

dV
dt

= ∂tV + (V ⋅∇)V − i λ
2

τ
dt
τ

⎛
⎝⎜

⎞
⎠⎟
(2/Df )−1

∇2V + 2
3

λ3

τ
dt
τ

⎛
⎝⎜

⎞
⎠⎟
(3/Df )−1

∇3V = 0

dV
dt

= ∂tV + (V ⋅∇)V − i λ
2

τ
dt
τ

⎛
⎝⎜

⎞
⎠⎟
(2/Df )−1

∇2V = 0

V = −2i λ
2

τ
dt
τ

⎛
⎝⎜

⎞
⎠⎟
(2/Df )−1

∇ lnψ

∂ψ
∂t

− i λ
2

τ
dt
τ

⎛
⎝⎜

⎞
⎠⎟
(2/Df )−1

∇2ψ = (∇×φ)ψ
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(1.19) 

with an obvious identification of the two real components of the complex velocity field. Now 
carrying the calculations through, we find the interesting result that the quantum potential is 
entirely determined by the fractal component of the velocity field: 

 
 

(1.20) 

with Q the specific fractal potential: 

 
 

(1.21) 

The first equation (1.20) represents the conservation law for momentum, while the second equation 
represents the conservation law of a probability density. Let us notice that when multiplying the 
probability density with the rest mass of the complex fluid particle, we obtain its standard density 
(Nottale, 1992, 2011). Then, the second equation (1.20) is a continuity equation that corresponds 
to the complex fluid continuity law. Through the fractal velocity field Vf, the specific fractal 
potential Q is a measure of non-differentiability of the complex fluid particle trajectories, more to 
the point, a measure of their chaoticity. The equations (1.20) with (1.21) define a non-differentiable 
hydrodynamic model. 
 Since the position vector of the particle is assimilated with a stochastic process of Wiener type, 
y is not only the scalar potential of a complex velocity (through lny) in the framework of fractal 
hydrodynamics, but also the basis of a density of probability (through |y|2) in the framework of a 
Schrödinger type theory. Thus we have a complementarity of these two formalisms (the formalism 
of the fractal hydrodynamics and the one of the Schrödinger type equation). Moreover, the 
chaoticity, either through turbulence in the fractal hydrodynamics approach, or through 
stochasticization in the Schrödinger type approach, is generated only by the non-differentiability 
of the movement trajectories in a fractal space. Thus, it can be shown that the dissipation-
dominated fractal behaviour of a fluid-solid mixture, for instance, can be properly described by 
the Schrödinger equation for the free particle (Nedeff, Lazăr, Agop, Eva, Ochiuz, Dimitriu, 
Vrăjitoriu & Popa, 2015). This is another way of saying that the part of this behavior of the fractal 
fluid is purely inertial. 
 Now, let us concentrate upon the cases where the dissipation is negligible, however the third 
order term in the fractal expansion (1.19) is somehow dominant. The fractal equation (1.15) 
becomes: 

 
 

(1.22) 

V = λ2

τ
dt
τ

⎛
⎝⎜

⎞
⎠⎟
(2/Df )−1

(2∇S− i∇ lnρ) ≡ Vd − iVf

∂Vd
∂t
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∂t
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4
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τ

⎛
⎝⎜

⎞
⎠⎟
(4/Df )−2 ∇2 ρ

ρ
) = −Vf

2

2
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τ
dt
τ

⎛
⎝⎜

⎞
⎠⎟
(2/Df )−1

(∇⋅Vf )

dV
dt

= ∂tV + (V ⋅∇)V + 2
3

λ3

τ
dt
τ

⎛
⎝⎜

⎞
⎠⎟
(3/Df )−1

∇3V = 0
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The behavior of the fractal fluid described by this equation seems to us to be of a dispersion type. 
In thus labelling the fractal fluid, we took as a prototype of this kind of behavior the third order 
Korteweg-de Vries equation, describing dissipation-free waves dominated by dispersion in one 
space dimension. This equation is known to have solutions preserving their space-time shape 
through interaction (Gardner, Greene, Kruskal, & Miura, 1967). These are particle-like solutions, 
or solitons (Scott, Chu, & McLaughlin, 1973). In such a circumstance, our fractal expansion leads 
explicitly to a third order nonlinear equation and obviously also to a soliton solution. It is this fact 
only that induced us into saying that the equation (1.22) describes a dispersive behavior of the 
fractal fluid. By comparison with the previous results, one can expect that, although in this 
formalism the particle and soliton solutions involve the same inertial type of behaviour – the 
motion is still geodesic – the soliton is structurally expected to exhibit a new characteristic. It turns 
out that this is a kind of holographic property: any volume of the fluidic soliton has the same 
structure as the entire fluid. 
 This brief review appears as just enough in order to support what we have called before our 
statement of intentions and ambitions with the present work. The general conclusion sustained by 
SRT along the previous lines initiated by Laurent Nottale, is that the description of the world is 
legitimate as a fractal fluid of free particles. However, this fractal fluid should be described via 
Schrödinger equation in its both instances of time dependent as well as time independent partial 
differential equation. Our proper finding at this juncture was that, while the second order partial 
differential equation describes a dissipation indeed, a third order partial differential equation of 
Schrödinger type is instrumental in describing a dispersion within the fractal fluid. 
 Now, at some point of our research an occurrence has prompted a certain amount of thinking 
from our part, about the difference between time-dependent and time-independent Schrödinger 
equations. Namely the solitonic solutions of the third order partial differential equation are also 
formally to be found among some solutions of the second order, even linear, partial differential 
equation, or vice versa, does not really matter. What is important here, is the fact that between the 
two different ‘approximations’, as we called them, of the fractal Schrödinger equations, there seem 
to be some fundamental connections. If discovered, these connections might be able to draw SRT 
out of the pit of conjectures, giving it the place of a fundamental theory, which we think it plainly 
deserves. Thus, our main intention here, inspired basically by this last finding of ours along the 
Nottale’s line of thought, is to show that SRT is in fact a unitary view of matter. From physical 
point of view, the present work is, by and large, set out to discuss the actuality of this statement. 
 The first thing to prove along this line is that the wave-mechanical description of the matter is 
universal, not just incidental. Specifically, the time-dependent Schrödinger equation is universal: 
it is the equation representing what is currently known in the theory of elementary particles as the 
principle of asymptotic freedom, but in any structure of the matter, at any scale [see (Nottale, 
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2011), Open Problem 22]. The only thing incidental at this theoretical level is a Born-type 
interpretation of the wave function. The wave function per se is a universal instrument of 
knowledge, transcending between any two scales, particularly between quotidian world and 
cosmological scales of the theoretical physics (Mazilu & Porumbreanu, 2018). The potential, on 
the other hand, is well known to be related to a wave function through the time-independent or 
stationary Schrödinger equation (Nottale, 1992). However, the wave function of this last instance 
is a very special one: it is the one obtained from the density of matter, by square rooting. Therefore 
this is the function for which the Born’s probabilistic interpretation may be valid, and this property 
goes for no other wave function. The proper conclusion would then be that SRT is, indeed, a theory 
of matter structures in the universe, provided one goes beyond the Born-like probabilistic 
interpretation of the wave function. A general probabilistic approach then emerges quite naturally, 
by giving Nottale’s ideas the rank of principles of knowledge which they plainly deserve. 
 Perhaps a few details of the organization of the present work will be useful, and we really think 
they are indeed, at least for a chance reader. The first order of things is triggered by the fluid 
dynamical approach of the wave mechanics: the structure thus revealed through the Schrödinger 
equation is that of a Madelung fluid, that occurred with a certain, allegedly physical, interpretation 
of the wave function (Madelung, 1927). This is undoubtedly at odds with the Born interpretation 
of the wave function, but as we shall see, it allows us to restore what has been lost by the acceptance 
of Born-type stand. The moment can be aptly characterized by the words of Henri Bacry: 

2. All particles are equal 
 One of the important ideas of the century was that of de Broglie, who 
proposed in 1923 to put the matter and radiation on the same footing. An irony 
of the history was that this «democracy» was destroyed by the Born statistical 
interpretation of the wave function, an interpretation that the photon field cannot 
have. Obviously, such an interpretation was a non-relativistic property, but it was 
believed that it was valid also for relativistic waves. 
 With our proposal, the symmetry between all kinds of particles is recovered. 
First, each kind of particle has a position operator. All spinning particles have in 
common the property of not being localizable. Since all stable particles are 
spinning, this provides the spin with a fundamental character. [(Bacry, 1988); 
our Italics] 

We will show in a section of the present work that the properties which Louis de Broglie revealed 
in that ‘photon field’ alluded to by Bacry in this excerpt, should be assumed at any rate for a 
properly defined wave function, and this request cannot be satisfied but only by free particles. 
Then again, we seem to come at odds with that ‘proposal’ of Henri Bacry regarding the position 
operator, inasmuch as it involves interactions, and this certainly means no free particles. One 



 14 

section here is therefore dedicated to this issue, where it is shown that the fluid mechanics in the 
Madelung’s taking, allows a meaningful interpretation of the position variables. This interpretation 
is of a purely classical origin, thoroughly pointed out and analyzed in the due time and space of 
the present work. 
 Thus, we come up with a physical model of the world matter per se, the matter free of space: 
a fluid with no interaction, only inertially described, just the fluid necessary for SRT. For once, 
this is not a physical structure, but only a physical model, because the matter does not allow for 
penetration of the space within it. And only if we have matter penetrated by space can we say that 
we are dealing with a physical structure, otherwise not. Therefore, one of the sections of the present 
work will be dedicated to the explanation of the inertia and its mathematical extension. The 
explanation will be done on purely geometrical grounds, whereby the holographic principle – a 
natural principle, we should say, for the matter in bulk – is brought to bear at the level of a surface, 
where the surface is this time physical: the surface of separation of matter from space. The physical 
definition of such a surface is by fragments, representing portions of matter just about to enter the 
reality of a physical structure. This plainly gives physical sense to holographic principle in its most 
general undertaking. 
 Finally, we feel necessary to round up with the physical grounds of the SRT. Suffice it to 
mention for now two issues of principle. First we show why de Broglie’s approach to democracy 
is universal, by the way of discussing a fundamental model of the natural philosophy: the planetary 
model of atom. From this we extract the idea of elementary particle of modern physics. Secondly, 
we describe the basis of a general mathematical approach of scale relativity, thus proving the virtue 
of the Nottale’s choice for the representation of resolution scale: this is just the scale making the 
finite… ‘finite’ in any physical world, be it microcosmos, quotidian cosmos or the universe at 
large. 

2. Madelung Fluid Dynamics 

Erwin Schrödinger left a marvelous heritage for the future of physics, namely a way to look at the 
spatially extended systems of known physical components: not each component in evolution, as 
in classical physics, but all of the components at once; simultaneously, as it were, when we can 
actually speak of simultaneity here. The mathematical device through which this approach is 
accomplished is the well-known Schrödinger equation, to be satisfied by what came ever since to 
be known as the wave function. Needless to say, the initial success of the method was purely 
mathematical – the presentation of the planetary atom as an eigenvalue problem – and thus left 
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many open issues, especially on the physical side of the problem at hand. Among these issues, the 
physical interpretation of the wave function is a chief one, which still haunts the natural philosophy 
today. Almost immediately after the fundamental works of Schrödinger, Max Born and Erwin 
Madelung came up with two physical interpretations of the wave function, one from the point of 
view of the theory of probabilities, the other from the point of view of the classical fluids’ 
dynamics. Momentarily we are concerned with Madelung’s physical interpretation, as Born 
interpretation of the wave function seems to be only incidental in the ultimate analysis we intend 
to pursue in this work. 
 Erwin Madelung has noticed that the task of interpretation is twofold: first of all we have to 
give a physical interpretation to the stationary equation 

 
 

 

obtained by Schrödinger via a logarithmic transformation of the classical variable of action, which 
helped transform the energy of the planetary atom into a variational functional of Dirichlet type 
(Schrödinger, 1933). The equation above is then the corresponding partial differential equation 
obtained from that variational principle. Then Madelung realized that in order to give a proper 
physical interpretation to the function y itself – which brings that logarithmic transformation of 
Schrödinger into effect – one needs actually to give a physical interpretation to the nonstationary 
equation that Schrödinger obtained from stationary equation by eliminating time with the help of 
the function y itself. That elimination of time is generally a matter of arbitrariness, forasmuch as 
the derivative of any order of a wave function which depends on time through a phase factor with 
the phase linear in time, is proportional to the very function. Schrödinger has probably had a long 
debate with himself over the choice of the right way of doing it. First, he obviously inclined for a 
wave equation of the D’Alembert (Klein-Gordon) type, but soon he realized that the analogy with 
classical problem of the membrane fits better his own philosophy, and allows for an equation 
equivalent with the first order derivative elimination of time. The equation obtained this way came 
to be known as the nonstationary (or time-dependent) Schrödinger equation. From this perspective, 
the way of Madelung’s physical interpretation can pe summarized along the following modern 
lines. 

 The Madelung Fluid 

 Let us consider a continuous material system, described by a density ρ, function of position 
and time in a certain frame of reference, and normalized such that 

 
 

(2.1) 
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Here Ω is the spatial range of extension of that continuous matter. Assume now that the system 
thus chosen can also be described by a wave function ψ, solution of the time-dependent 
Schrödinger equation: 

 
 

(2.2) 

Here V(x,t) is the potential of forces, as it appears in classical physics, assumed a function of 
position and time. The problem arises if the two descriptions are compatible and in what 
conditions. In view of (2.1), the density of this continuous system can also be taken as a probability 
density, so that a connection can be a priori posited between the two descriptions. At this moment 
Madelung assumes what almost any modern approach assumes, namely a Born-type correlation 
between wave function and the density of fluid: 

  (2.1) 

The problem can now be transferred into that of analyzing what this correlation entails. Note that 
the equation (2.3) entitles one to define the wave function as an essentially complex function: 

 
 

(2.2) 

where S is, for the moment, an arbitrary function of position and time. Then the Schrödinger 
equation (2.2) may be translated into a system of two partial differential equations: 

 
 

(2.3) 

The first of these equations can be cast into: 

 
 

(2.4) 

provided R is not identically zero. By this last equation the matter thus described gets actually a 
physical structure: the equation represents the continuity equation for a continuous fluid of density 
 r, function of position and time. This physical structure is represented by an ensemble of classical 
material points having a velocity field mathematically defined by the expression: 

 
 

(2.5) 

which shows that S should be the classical action function. This ensemble is, in fact, the key of 
interpretation which Erwin Madelung gives to the Schrödinger’s wave function. The further 
connection of this velocity field with the wave function itself can be given by using the definition 
(2.4), with the important result: 

 
 

(2.6) 
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the star denoting the complex conjugate of the function. Thus the equation (2.6) is nothing more 
than the condition of conservation of mass on a continuous ensemble of classical material points, 
characterized by the density ρ, function of position and time. 
 On the other hand, we need to consider the second equation of the system (2.5), which can be 
transcribed into the form: 

 
 

(2.7) 

As S has already been identified wit the classical action, this equation is a Hamilton-Jacobi 
equation, having however the potential changed by a quantity depending on the space fluctuations 
of the density, and represented specifically in the form: 

 
 

(2.8) 

which contains the square of the Planck’s constant. This is the well-known ‘quantum contribution’ 
to potential, discovered by Erwin Madelung as a consequence of his interpretation. On the other 
hand, the existence of this contribution is a condition that the physics of the Madelung fluid should 
be consistent. It is here the point where Madelung’s mathematical treatment basically stops, giving 
the floor to the discussion of some questions raised by the alternatives of the physical interpretation 
of the theory. In his own words, these alternatives are summarized in the following excerpt closing 
the Madelung’s original work: 

We probably have o decide only between the following alternatives: 
 a) Do several electrons flock together to form a larger entity? 
 b) Do they exclude each other, and interfere (only) under certain conditions? 
 c) Do they penetrate each other without merging? 
 It seems to me that c) is the most likely. a) would mean the same solution like 
that for a single electron, only with an altered normalization, which obviously 
would lead to false results. b) seems unlikely from the perspective of “submerged 
orbits”, but still conceivable. 
 According to c) several vectors must be defined in each point of space, as well 
as the corresponding velocity potentials. The continuum would then have an 
appearance suggesting a vivid swarm, whose particles have infinite free paths. 
 What form the function U assumes, representing both the interaction between 
electrons and the “quantum contribution” from equation (2.10), can be decided 
only after the successful calculations for at least one case. 
 There is thus a prospect of building a quantum theory of the atom on this 
basis. The radiation emission is thereby only partially represented. To be sure, it 
appears that the atom in a quantum state does not radiate, and also the frequencies 
of the radiation are shown correcly, only without “jump”, but rather at a slow 
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transition into a state of non-stationarity; but many other things such as, for 
instance, the absorption of quanta, remain unclear. [(Madelung, 1927); our 
translation and Italics] 

The story of accomplishments related to the lines of question raised by Erwin Madelung in this 
excerpt, can be briefly reviewed as in the immediately following lines. We do not follow the 
historical order, by any means, not even the order of the questions as raised by Madelung himself, 
because we are interested only in physical achievements. As it turned out, almost every single one 
of those issues – the Italicized ones for sure! – have been brought about in a way or another in 
theoretical physics today. 
 First, denoting U º V+Q, as that potential «representing both the interaction between electrons 
and the “quantum contribution”», applying the gradient operation to (2.9), and then multiplying 
the result with the density ρ, gives the equation 

 
 

(2.9) 

which is a transport equation for the momentum of the Madelung fluid, the so-called Navier-
Stokes equation. Starting from this, H. E. Wilhelm performed some of those ‘successful 
calculations’ for the case of hydrogen atom, giving then a hydrodynamical interpretation of the 
results (Wilhelm, 1971). Wilhelm follows exactly the line of Madelung’s ideas, forasmuch as he 
uses the Schrödinger equation in both its instances (stationary and nonstationary) on the same 
footing, in order to construct the wave function, from which then he finds the density of the 
corresponding Madelung fluid. 
 But the things turned out to be a lot more complicated than the classical mechanics would have 
been able to indicate. Specifically, the potential Q is different from the classical potential V not 
only by the fact that it contains the Planck’s constant, but also by the fact that the quantum force 
resulting from it by the classical operation of gradient, is in fact the divergence of a tensor. This is 
not to say that a gradient of a scalar function cannot be the divergence of a tensor, but in keeping 
with the classical views here, that tensor should be a stress tensor, and this is what brings all the 
complications. Indeed, customarily – which means within the classical theory of the forces in a 
continuum – the gradient of a potential like Q from equation (2.10) should represent a force. As 
the gradient of V is a known conservative force, at least in the case of the classical planetary model, 
with the classical part of the potential we have no issues here. However, the issues occur once we 
consider the ‘quantum contribution’ to potential. Specifically, if we take the tensor [see 
(Takabayasi, 1952), p. 180; (Wilhelm, 1971)]: 
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the equation defining the forces that derive from potential Q can be written in the form of an 
equilibrium equation, physically characterizing our continuous medium – the Madelung fluid – by 
tensions incorporated in the tensor τ, and acted upon by volume forces included in the gradient  of 
the entire potential (ÑQ): 

 
 

(2.11) 

This proves our statement. Part of the complications are then brought about by this very 
observation, because in every physical fluid a constitutive law should be in effect, relating the 
acting stress to the deformation of the fluid. And the Madelung fluid can be taken, indeed, as a 
physical fluid, for in fact one can define a velocity field by the variation of density: 

 
 

(2.12) 

so that the tensor τ can be written in the form: 

 
 

(2.13) 

This is, indeed, a linear constitutive equation for a viscous fluid, and gives the reason for an original 
interpretation of the coefficient η as a dynamic viscosity of the Madelung fluid (Harvey, 1966). 
Summarizing the results up to this point, according to Madelung’s idea, the physical system 
allowing a proper interpretation of the wave function via transformation (2.4) should be a viscous 
fluid having a density proportional with the square of modulus of the wave function. 
 The first problem to be now solved is to decide if the velocity field u as defined by equation 
(2.14) is indeed of a quantum nature, i.e. if it necessarily contains the Planck’s constant. Especially 
Nathan Rosen reiterated quite a few times this issue, starting from the fifth decade of the last 
century (Rosen, 1945, 1947). The equation (2.9) shows that the function S is not quite as arbitrary 
as one may think, merely based on mathematics: it should be the classical action, or at least a 
function having some relation to the classical action. Thus, writing the exponent of the wave 
function from (2.4) in a manifestly nondimensional form, as in fact an exponent should 
mathematically be, we need to put out (S/ħ) instead of S. So we can consider the function S as 
having its physical meaning, which makes obvious that the continuity equation (2.6) and the 
vectorial field v from (2.7) are of a purely classical extraction, as they do not contain the Planck’s 
constant: 

 
 

(2.14) 

At the same time, though, in equation (2.9) the potential Q remains unchanged, which means that 
it is of a purely quantal nature: 

ρ ∂Q
∂xi

+
∂τij
∂x j

= 0

u(x, t) ≡ !
m 2

∇ρ
ρ

τij = η⋅ ∂ui
∂x j

+
∂u j
∂xi

⎛
⎝⎜

⎞
⎠⎟
, η≡ !

2 2
ρ

∂ρ
∂t

+∇⋅(ρv) = 0, mv(x, t) ≡ ∇S



 20 

 
 

(2.15) 

Consequently the velocity field u itself, as defined by (2.13), is indeed of a purely quantal nature. 
However, this equation makes clear that we can have a classical fluid only in the cases where the 
Planck’s constant is null, if it is to have an exact theory or, if it is not the case for an exact theory, 
that constant should be so small that in some conditions its square can be neglected. 
 This dual property of the potential – viz. of cumulating both quantum and non-quantum 
properties at once – should have been somehow embarrasing for physics, which always sought, 
mostly implicitly, by ‘instinct’ as it were, for ways to avoid it. For once, the reason can be made 
obvious if we assume a philosophically objective point of view: both the classical theory of 
hydrodynamics and the rule of quantization are incomplete as concepts, and cannot be taken as 
laws. The particulate structure of the continuum seems therefore hard to be accommodated 
theoretically, in order to justify the idea of potential for the Madelung fluid. In fact, all the issues 
raised above may add to nothing when compared to the fact that the definitions of the concepts 
related to ‘quantum contributions’ are purely formal, being obtained from one single function – 
the density – by different mathematical operations. Starting from equation (2.12) and going toward 
(2.15) everything comes out from the the density by different applications of the operator Ñ. In 
this respect, the equation (2.12) is actually an identity. This is not to deny the often-quoted idea 
that the mathematics is actually a tautology: the problem is not with the equations (2.16) and (2.17), 
but with a physical content associated to these equations. 
 On the other hand, however, as we only mentioned before, the fundamental rule of quantization 
is simply the consequence of an approximation of the image of classical atom, entailed by the fact 
that in the atomic phenomenology the electromagnetic fields play a substantial part in the 
observation of the microcosmic world. This model approximation, to wit, the harmonic oscillator 
model of hydrogen atom, serves the purpose of defining the measurement at microscopic level and 
by measurement to introduce the quantum rules. It was, indeed, the Thomas-Reiche-Kuhn rule the 
one that prompted Werner Heisenberg into his interpretation of the quantal laws of composition of 
quantum symbols (Heisenberg, 1925), and that rule was originally referring to an electric dipole 
oscillator model for atom [see (Mazilu & Porumbreanu, 2018) for details related to the rise of 
quantum mechanics], whereby the atom is electromagnetically described by a Hertz potential in 
two dimensions. It is therefore worth stepping into a case which involves the very rules of 
quantization according to Schrödinger view, in constructing the quantal quantities corresponding 
to some classical physical quantities (Wigner, 1954). Incidentally, as far as we are aware, this case 
seems quite singular in theoretical physics – in fact it was intended just as an illustration of a 
‘would be’ situation in the process of quantization – but, taken as describing the reality of a 
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Madelung fluid, it shows a neat difference between the two parts of the potential brought about by 
the Madelung’s discovery. 

 Classical and Quantum Conservation Laws 

 The stochastic approach, essential to Nottale’s scale relativity theory, brings to the fore an 
important issue related to the general description of the motion in physics: the choice of initial 
conditions. Its importance is not quite so obvious in classical mechanics, but the wave mechanics 
needs its due consideration. A first quotation from a classical work, resuming the theoretical 
physical knowledge contemporary with Madelung’s article, is essential in understanding the point 
of view: 

 In this connection one feature of the present processes perhaps deserves 
mention, because of its difference from what we are accustomed to in dynamics. 
There we think of a particle describing a trajectory and can take any point of the 
trajectory indifferently as starting point of the motion. But in the wave theory the 
experimental conditions always mark out some special position, say a slit, as 
starting point, and at other places the waves will have spread. Thus, unlike the case 
of dynamics, we do not expect to get a solution in which the starting point is quite 
indifferent. [(Darwin, 1927); our Italics] 

The important work of Charles Galton Darwin from which we extracted this fragment, seems to 
us the best summary of the of the state of specific knowledge at the time of creation of the wave 
and quantum mechanics. We shall take the liberty of quoting it here from time to time, just to 
mark, in the best possible way we think, the differences between the classical approach of natural 
philosophy and the quantum mechanical approach. 
 To wit, in the above excerpt the emphasis is placed upon experimental conditions related to 
the idea of motion, which neatly differentiate the wave-mechanical approach of the motion, from 
its classical counterpart: “a particle describing a trajectory”. The ‘difference introduced by the 
‘starting point’ in the wave mechanical approach is instrumental in recognizing that a stochastic 
theory is needed within a SRT-type theory. This was subsequently recognized by Richard 
Feynman, who has built the archetype of any modern stochastic theory of wave mechanics 
[(Feynman, 1948); (Feynman & Hibbs, 1965)]. Reserving a later return to the content of the above 
excerpt, we now contemplate a first attitude in describing a possible connection between wave 
mechanics and classical mechanics: the statistical connection (Ehrenfest, 1927). This attitude 
regards only the concept of ‘particle describing a trajectory’, as it comes out from classical 
dynamics. The statistical connection known as Ehrenfest’s theorem, then gives the classical 
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quantities involved in the second law of Newton as means of the corresponding wave-mechanical 
ones, constructed on ensembles defined by probability densities as determined by the wave 
function. 
 The original Ehrenfest’s theorem is therefore referring to the correlation between acceleration 
and force, as involved in the second law of Newton, and Eugene Wigner’s work cited above can 
only incidentally be related to this subject matter. However, it is important both for the content of 
this section of our work and for the whole work in general, as we shall see, in connection with 
equation (2.14), for this equation addresses a subtle point which brings Wigner’s idea in actuality. 
Namely, Wigner undertakes Ehrenfest’s idea but for a force proportional with the velocity and not 
with the acceleration. And, by introducing the quantum contribution to potential, one has to 
recognize indeed the existence of a force proportional to velocity to be added as a quantum effect 
to that caused by classical inertia. Indeed, the equation (2.14) can be transcribed in Wigner’s form, 
but for a single classical material point: 

 
 

(2.16) 

From this perspective, Wigner’s analysis and, more to the point, its very conclusions, carry a 
universal validity, pinpointing the true role of the statistical ensembles in the economy of a 
quantum theory in general. As a matter of fact, it is worth noticing again that the very substance 
of the Nottale’s SRT is revealed by the stochastic aspects of the Schrödinger approach, based on 
the definition of a velocity field, as in equation (1.15). Such a definition is in turn a consequence 
of the Edward Nelson’s stochastic approach of constructing the Schrödinger equation starting from 
a stochastic velocity field like that from equation (2.18). The velocity u(x,t) is what, following the 
classical works of Einstein on Brownian motion, Nelson calls an osmotic velocity field (Nelson, 
1966). To the extent to which the SRT needs a stochastic approach, a Wigner-type analysis should 
be essential here. 
 According to Wigner, the law of motion associated with those coordinates which have their 
rates given by the field velocity u(x, t) in the form 

  (2.19) 
can be taken as expression of the simplest law of motion: if no force acts, then the material point 
is at rest. Now, if the potential f(x,t) is indeed referring to forces, then these forces should be of a 
special nature: the dissipation forces, proportional to velocity. The conservation of momentum is 
here equivalent with the statement that the center of mass is fixed for an isolated system of material 
points. And Eugene Wigner quantizes such a system by adopting the Ehrenfest’s approach, in a 
theorem which can be rightfully considered counterpart of the original one, even though it was 
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presented as merely mimicking it. The general description of the situation requires a nonstationary 
Schrödinger equation for a wave function characterizing a system of ‘n’ material points: 

 
 

(2.20) 

Now, according to Ehrenfest’s idea, the center of mass of such a system should be at rest. The 
coordinates of this center of mass are given by equations involving the probability density related 
to the wave function: 

 
 

(2.21) 

where dt is the volume element of the configuration space of the system of those ‘n’ material 
points, and the integral extends over the this whole configuration space. The second relation here 
is the equivalent of Ehrenfest’s original theorem, which contains the second derivative of the mean 
position, instead of the first derivative appearing in the left hand side here. The requirement that 
the probability determined by the wave function should be independent of time, comes down to 
the the fact that Q in (2.20) should anti-Hermitean. This leads to the commutation relations 

 
 

(2.22) 

and further on to the most general anti-Hermitean form of the evolution operator: 

 
 

(2.23) 

where ‘g’ is invariant with respect to displacements and rotations, otherwise arbitrary. Thus, we 
have the energy equation 

 
 

(2.24) 

the angular momentum conservation, which is the same with that of the usual wave mechanics: 

 
 

(2.25) 

and the very momentum conservation, to which we have to add the center of mass conservation 
laws, analogous to classical ones, viz.: 

 
 

(2.26) 

Whence the Wigner’s conclusions: 

... The equations of motion (2.18) would have made the physics of the past fifty 
years very much easier : they would have made it impossible to introduce the theory 
of relativity, and quantization of the equations would not have changed their 
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physical content. The only new feature which the quantum theory introduces is the 
complex phase of our wave function  y and it is questionable whether this quantity 
could be attributed any physical significance. Since the quantum conservation laws 
(2.24), (2.25) and (2.26) are all based on this complex phase, and vanish for a real 
wave function y, their physical interpretation is open to question. 
 The above example was meant as a warning against a facile identification of 
symmetry and conservation laws. It reminds us that the Hamiltonian formulation is 
necessary for that connection to hold in ordinary mechanics and that while it is 
always possible in quantum theory to deduce conservation laws from a symmetry 
condition, the interpretation of these conservation laws, and their significance, 
might be quite problematical. 
 The fact that the quantization of the equations of motion would not lead to a 
real quantum theory might have been foreseen from the fact that the uncertainty 
principle is hardly compatible with (2.18). If all the coordinates have sharp values, 
this holds also for the forces – grad(f). This is true also in current quantum theory. 
However, in the present theory, the forces determine the velocities, rather than the 
accelerations, and these become determined also. [(Wigner, 1954); our Italics] 

The Madelung fluid is one case illustrating how “the forces detemine the velocities”, however at 
a different level of statistics, as we shall see later. This statistics is related to the “complex phase 
of the wave function” whose physical interpretation turned out a half a century later. However, for 
the moment being, this interpretation forces us to an observation about the potential, that appears 
by and large to have been unnoticed thus far. 
 In order to get the ideas in their proper order, we need to take notice of the fact that in his 
attempt of physical interpretation, Erwin Madelung, like Schrödinger himself, seeks actually for 
a physical explanation of the atom as a physical structure represented by the classical planetary 
model, for this is the actual physical image of the atom. This seems somehow contrary to the 
quantum mechanics which seeks only for the description of a model atom befitting the idea of 
measurement. Then, we here too should rather pursue a way in which both the hydrodynamics and 
the quantization refer to models of things, not to models approximating these things. So let us turn 
back to assuming the Schrödinger equation, the way Madelung assumed it originally, i.e. without 
considering that the density could be somehow referred to as a probability density. This time, 
therefore, we consider fluid dynamics without resorting to the Max Born’s type of interpretation 
of the wave function, or any interpretation of the kind, for that matter. 
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 Hydrodynamics of Free Point Particles: Universality of the Schrödinger Equation 

 The “complex phase” of the wave function is, even to Schrödinger himself, the mark of the 
solution of nonstationary equation. However, his justification for the existence of the “essentially 
complex” wave function can be recognized only as anecdotal [(Schrödinger, 1933), Footnote 1, p. 
166; see also (Mazilu & Porumbreanu, 2018)]. Such a solution is legal though, and beyond any 
possibility of rejection, so to speak, provided some extra constraints are applied to the classical 
mathematics involved in this problem. For instance, if the nonstationary Schrödinger equation 
proves to be a necessary tool of the trade, then the classical properties of the complex phase ensue 
just naturally by the way of mathematics. Indeed, the essentially complex Schrödinger equation 
leading to previous results is: 

 
 

(2.27) 

where only the first relation from equation (2.4) was assumed, i.e. a wave function of the regular 
complex form in terms involving the amplitude and phase: 

  (2.28) 

without any further assumptions about their meaning within the framework of the classical physics. 
That is, none other than those assumptions necessary for the mathematical handling toward some 
results, of course. Now, in order to get those results, the equation (2.27) must be read somehow, 
and this can be done in many different ways, each one of them leading to just as many different 
results. The Madelung’s original way of reading was based on the algebra of complex numbers, 
whereby a number is zero only if its two real components are both zero concurrently. However if, 
in view of its primary importance here, the physical way of reading mathematical equations is to 
prevail, the algebraic structure should be only a subordinate one, and in this case the equation 
(2.27) has a clear advantage over (2.17). This last equation shows that the classical action can be 
the phase of wave function regardless its amplitude, only if the square of the Planck’s constant is 
negligible. That might not be the most general case, as equation (2.27) shows. Indeed, in this last 
equation the quantum terms are clearly exhibited within two orders of magnitude in the Planck’s 
constant, appearing in the right hand side. If the complex algebra is to be subordinate to a ‘physical 
algebra’, so to speak, then equation (2.27) must be read as follows: the exponent of wave function 
(2.28) is the classical action if, and only if, its amplitude is a nontrivial solution of the Laplace 
equation, with its square satisfying a continuity equation. Indeed, we have 
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which represents the whole logic just laid down above. The mark of classical action is here taken 
to be the classical Hamilton-Jacobi equation which, once satisfied by the phase f(x,t), means the 
vanishing of the left hand side of equation (2.27) and, of course, vice versa. Then the right hand 
side of equation (2.27) is vanishing but, as a complex quantity now, it is vanishing only when its 
reak components are both vanishing concurrently, as in the Madelung’s case. This gives the right 
hand side in equation (2.29). Note, nevertheless, that now it is not the phase that should not be 
zero, but the amplitude of the wave function. This fact dramatically changes the emphasis, with 
very important consequences, as we shall see later. 
 This approach, however, shows that the scheme of thinking thus followed would imply that, if 
the wave function is considered as a general representation of a physical situation, then the classical 
description (the Hamilton-Jacobi equation) inflicts specific restrictions upon the very amplitude of 
the signal represented by that wave function. The most important of these restrictions is that the 
amplitude of such signal has to be a solution of the Laplace equation. These restrictions might not 
be quite unnatural, but they are altogether independent of the value of the Planck’s constant, and 
if we do not know anything about the Schrödinger equation, we might very well dispense with it. 
So, the situation raises an obvious question: is the nonstationary Schrödinger equation necessary 
to our knowledge? And while we are at it, let us take notice of the fact that nothing has been said 
here about the stationary Schrödinger equation. It may be a consequence of the nonstationary 
corresponding equation, which is true indeed, but not in a historical and logical order if things. For 
instance, the Madelung’s approach follows the Schrödinger’s approach, which starts with the 
stationary equation, and then builds the nonstationary one by eliminating the energy with the help 
of the first time derivative of the wave function. 
 Now if, for the sake of internal completeness of the theory say, we hold the existence of a 
stationary equation as one essential ingredient of that theory, this feature is not at all missing from 
among the possibilities offered to us by equation (2.27). Consider, indeed, the Madelung fluid as 
a fluid of free particles as required by the scale relativity theory of Laurent Nottale. We even have 
here a quintessential physical example: the classical ideal gas which served, among other as the 
basis of modern thermodynamics. Then we can also read the equation (2.27) as follows: 

 
 

(2.30) 

provided the amplitude A(x,t) of the wave function from (2.28) is a solution of the stationary 
Schrödinger equation: 

 
 

(2.31) 

The two equations in (2.30) are obviously independent of any potential. One can hope to solve for 
the action function  f(x,t), as this operation was done for long in the classical mechanics, and then, 

∂φ
∂t

+ 1
2m

(∇φ)2 = 0; ∂A2

∂t
+ 1
m
∇⋅[A2(∇φ)]= 0

!2

2m
∇2A = V(x, t)A



 27 

based on this solution, to find a corresponding amplitude, whose square should be a density, as the 
second equation from (2.30) shows it. However, in this case, the equation (2.31) offers just a 
definition for the potential, which thereby acquires quite a natural feature: it is purely quantal. If 
it is zero, from (2.31) we have (2.29) as a special case. However, in this reading the potential seems 
to be redundant, if there is no need for the quantum as represented by the (square of) Planck’s 
constant. So, this time there is no way around: we need to prove the necessity of the quantum 
theory itself and, moreover, that it is naturally connected with the idea of potential, not with that 
of wave function. 
 Strange as it may seem, this approach is the only one satisfying the condition noticed by us 
beforehand, that the quantization is related to an approximate model of the atom: the 
electromagnetic Hertz dipole. For, then, the fundamental quantum rule can be surely recognized 
as an expression of electromagnetic interaction, as it was indeed the case, concurrently with the 
Planck’s constant (Boyer, 1969, 1975). Therefore the presence of a quantum should, indeed, be 
recognized only in the expression of potential, while the wave function must contain even some 
other kinds of physical magnitudes. This brings to fore the important problem of connection 
between the stationary and nonstationary Schrödinger equation, in case this last one is altogether 
necessary to our knowledge. Further, it asks for a precise definition of what is known as physical 
interpretation, and of interpretation in general, for that matter. 

 A Definition of the Interpretation 

 The scheme contained in the equations (2.30) and (2.31) seems to be rather simple: the general 
signal (2.28) describes a ‘swarm’ of free classical particles of a continuum of density A2, each one 
of them having a momentum mv º Ñf. Notice then that the whole function y(x,t) can be recovered, 
in principle, from equation (2.30). In this case the equation (2.31) is nothing else, indeed, but a 
definition of the potential. Or else, knowing the potential we can solve (2.31) for the amplitude, 
and then find a solution of the first equation (2.30), compatible with this solution via the second 
equation from (2.30). If, for instance, we are trying to give an explanation to that “infinite free 
path” mentioned by Erwin Madelung, we may have no other choice but to notice that it begs for a 
kind of generalization of the modern principle of asymptotic freedom: in a region of pure quantum 
forces the wave function describes an ensemble of free particles. For, indeed, the stationary 
Schrödinger equation (2.31) shows that the continuum described by the function (2.28), as 
structured by a swarm of free particles in the manner proposed by Madelung, appears as an 
ensemble of particles evolving under a purely quantal potential: the whole potential, not just part 
of it, is in fact a “quantum contribution”. Thus, the description of the continuum by the function 
(2.28) is a purely undulatory description of a region of space-time. Its interior however, is a swarm 



 28 

of free classical particles described by an equation of continuity for a density proportional to the 
square of the modulus of function (2.28). Each one of these classical particles has a momentum 
given by the gradient of phase of (2.28). However, a question still stands: what this very region 
represents? The answer to this question cannot be given classically, for the classical argument has 
already been exhausted. But it can be given mathematically, provided we are free to choose an 
interpretation of the scheme contained in the equations (2.30). 
 Fact is that any signal represented in the complex form (2.28) is the solution of an equation 
resembling the free particle Schrödinger equation, provided some specific conditions are in effect 
(Schleich, Greenberger, Kobe & Scully, 2013). The complex form we are talking about assumes 
an implicit time and space dependence for the phase and the amplitude of the signal (2.28), 
resulting in the identity: 

 

 

(2.32) 

where b is a constant having the physical dimensions of a rate of area (m2/s). The ‘specific 
conditions’ necessary in order that y(x,t) be a solution of the time dependent Schrödinger-type 
equation for the free particle, to wit: 

 
 

(2.33) 

are in fact the two known equations that guarantee the vanishing of the right hand side of equation 
(2.32), so that (2.33) can take place: 

 

 

(2.34) 

The first of these equations is the classical Hamilton-Jacobi equation, the second one is a continuity 
equation for a fluid of density givn by the square of the amplitude of the function  y. Here, 
however, by comparison with the equation (2.29), the classical potential suggested by the 
Hamilton-Jacoby equation for the phase of function y is only defined by the amplitude of this 
function, through equation 
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which can be turned into a stationary Schrödinger equation. In other words, the nonstationary 
Schrödinger equation for the free particles is a mathematical tool of unquestionable existence, just 
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like any other mathematical concept used by physics, as long as the wave function has to be 
complex. The problems rise with the equation (2.35), and they concern only the mathematical 
structure of the functions representing the amplitude and the phase of the wave function. These 
should tell us what is a free material particle from the point of view of wave mechanics. When it 
comes to considering the potential, the phase of the wave function cannot be identified with the 
classical action quite unconditionally: this last one must satisfy the above constraints. Only in this 
instance can one have the freedom of using the potential in a two-way reasoning: either as given 
and then helping to find the amplitude or, once the amplitude known, it helps to find the potential. 
With a proper extension of the concept of complex number, this last way is the old one initiated in 
the physics of elementary particles by Tullio Regge (Regge, 1959). 
 Thus, we can say that the equation (2.33) is indeed a universal instrument of our knowledge, 
once it ensues mathematically from a necessary complex form of the wave function. Then 
everything comes down to the interpretation of the wave function, which should be part of a 
general interpretation process, and this is the moment where the idea of ensemble makes its proper 
entrance in the argument. Like in all of the classical cases, the ensemble enters first by its historical 
element – the particle – as in the quintessential case of classical ideal gas. We return again to C. 
G. Darwin for a brilliant choice of the proper words characterizing the physical situation: 

 It is almost impossible to describe the result of any experiment except in terms 
of particles – a scintillation, a deposit on a plate, etc. – and this language is quite 
incompatible with the language of waves, which is used in the solution. A necessary 
part of the discussion of any problem is therefore the translation of the formal 
mathematical solution, which is in wave form, into terms of particles. We shall call 
this process the interpretation, and only use the word in this technical sense 
[(Darwin, 1927); our Italics] 

Notice, in this context, that the equation (2.33) is the Schrödinger nonstationary equation for the 
free particles, once no potential is involved in it. However, classically, these particles are not free, 
as the first of the equations (2.34) shows. Consequently, if the function y(x,t) itself represents an 
ensemble of free particles as required for a proper physical interpretation, these are free particles 
not from classical point of view, but from the Schrödinger equation point of view: classically they 
can be anything along the line of physical freedom. 
 In order to represent the classical case of free particle, the amplitude of the wave function 
should be taken, for instance, from among the solutions of the partial differential equation (2.35), 
with the potential V(x,t)  º constant. According to classical dynamical standards, such a potential 
would mean null force at the positions where it has that constant value, therefore free particles as 
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the material particles upon which the force acts. Let us find such solutions: designate the constant, 
say with V0; then the equation (2.35) assume the form of a Helmholtz equation 

  (2.36) 

with s2 º |V0/b|. The notation was chosen in order to suggest that the potential may assume any 
constant value, positive or negative. It may have even a complex value, for that matter, but just for 
the sake of general argument we do not go momentarily that far. A separation of variables via 
identity A(x,t) º R(x,t)´F(q,j,t), where x º |x| and (q,j) are spherical polar angles, helps bringing 
(2.36), for the case of minus sign, to the form 

 
 

(2.37) 

Here a prime means derivative with respect to the unique variable as usual, and ‘k’ is an integer, 
accounting for the periodicity of solution on the unit sphere. Thus the ‘radial part’ of the amplitude 
of this wave function should be a solution of the equation 

  (2.38) 
while the angular part is a regular spherical harmonic. This last equation is a transform of the 
standard Bessel equation given by Frank Bowman [(Bowman, 1958); see his equation (6.80)], and 
has the general solution of the form: 
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where In are modified Bessel functions of the first kind. Likewise, for the cases with a plus sign in 
equation (2.36), the solution is: 

 
 

(2.40) 

where Jn are the usual Bessel function of the first kind. 
 According to the philosophy delineated by C. G. Darwin in the excerpt right above, in order to 
be considered wave functions, the solutions (2.39) and (2.40) need interpretation. And the key of 
this interpretation is in the form of the radial part of these solutions. Both the classical mechanics 
and the general relativity contain a clear possibility of such an interpretation for the case of the so 
called free fall in a gravitational field. It is obvious that we need to put this interpretation under 
the concepts related to the nonstationary Schrödinger equation for the free particle, insofar as this 
equation is a fundamental mathematical instrument. 
 Fact is that the nonstationary Schrödinger equation admits, besides the clasical Galilei group 
proper, an extra set of symmetries (Niederer, 1972) that, in general conditions, can be taken in a 
form involving just one space dimension and time, as a SL(2,R) type group in two variables with 
three parameters (de Alfaro, Fubini & Furlan, 1976). Limiting the general conditions, the space 
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dimension can be chosen as the radial coordinate in a free fall, as in the case of Galilei kinematics, 
which can also be extended as such in general relativity (Herrero & Morales, 1999, 2010), for 
instance in the case of free fall in a Schwarzschild field. The essentials of the argument of Alicia 
Herrero’s and Juan Antonio Morales’ work just cited are delineated based on the fact that the radial 
motion in a Minkowski spacetime should be a conformal Killing field, which is a three-parameter 
realization of the sl(2,R) algebra in time and the radial coordinate. This is a Riemannian manifold 
of the Bianchi type VIII (or even type IX, forcing the concepts a little) when taking the stand of 
one of the epoch-making, widespread, nomenclatures of the theory of general relativity [(Bianchi, 
2001); see especially the editorial comment for this English version of the classical work of Luigi 
Bianchi]. The bottom line here is that, as long as the general relativity is involved, the 
nonstationary Schrödinger equation describes the continuity of matter. And since, as a universal 
instrument of knowledge, this Schrödinger equation is referring to free particles, we need to show 
what kind of freedom is this in classical terms. 
 For our current necessities it is best to start with the finite equations of the specific SL(2,R) 
group, and build gradually upon these (Mazilu & Porumbreanu, 2018), in order to discover the 
connotations we are seeking for. Working in the variables (t, x) as above, the finite equations of 
this group are given by the transformations: 
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This transformation is a realization of the SL(2,R) structure in variables (t,x), with three essential 
parameters (one of the four constants a, b, g and d is superfluous here). Every vector in the tangent 
space sl(2,R) is a linear combination of three fundamental vectors, the infinitesimal generators: 
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satisfying the basic structure equations: 
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which we take as standard commutation relations for this type of algebraic structure, all along the 
present work. The exponential group has an invariant function, which can be obtained as the 
solution of a partial differential equation: 
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The general solution of this equation is a function of the constant values of the ratio: 
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which represents the different paths of transitivity of the action described by (2.42). 
 In order to draw some proper conclusions from these mathematical facts, let us go back to the 
transformation (2.41) and consider it from the point of view of classical physics. The first principle 
of dynamics offers a special content to the classical time: it is represented by the uniform motion 
of a free classical material particle. According to this principle, such a particle is free as long as no 
forces act upon it. And the equation (2.45) faithfully records this idea in an obvious form: the paths 
of transitivity of the group (2.41) are given by the ‘radial motion’ of a free classical material point, 
no question about that. Questions rise, however, and on multiple levels at that, when noticing that 
the general solution of equation (2.44) is an arbitrary function of the ratio (2.45). For once, we are 
compelled to notice that the content of time in (2.41) is not classical anymore, at least not in 
general, being a ratio of coordinates representing two uniform motions. Likewise, the second 
equation (2.41) can be taken as representing the content of spatial coordinate of the motion in 
terms of the classical coordinate of a uniform motion. This much, at least, can be put in the 
common charge of the wave mechanics and general relativity, regarding an ‘updating’ of the idea 
of time and space contents. But there is more to it, regarding the concept of freedom, because at 
this point we start to notice some apparently unrelated facts from the past, which seem to pick up 
concrete shapes, all converging to the ratio from equation (2.45). 
 First, comes the second of Kepler laws, viz. that law serving to Newton as a means to introduce 
the idea of a center of force: if, with respect to such a material point, a motion proceeds according 
to the second Kepler law, then the field of force should be Newtonian. The wave mechanics shows 
that this law means more than it was intended for initially, namely that it should have a statistical 
meaning, according to the idea of Planck’s quantization (Mazilu & Porumbreanu, 2018). Indeed, 
if ‘x’ denotes the distance of the moving material point from the center of force, we have 

 
 

(2.46) 

where q is the central angle of the position vector of the moving material point with respect to the 
center of force. In this form the law usually serves as a transformation in the mathematical 
treatment the central motion. However, from the point of view of the physical content of time, the 
second equality in equation (2.46) tells us much more if we take the argument out of the 
mathematical form of the classical Kepler problem. 
 To wit, consider an extended body revolving in a central field of Newtonian forces. It can be 
imagined as a swarm of classical material points, and such a swarm illustrates classical laws, 
provided it is considered as a swarm of free material points in the classical sense of the word 
(Larmor, 1900). In the first of equations (2.41) this requirement would mean that the material 
points are considered simultaneously. Then each material point can be located in the swarm by 
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four homogeneous coordinates (a,b,g,d), or three nonhomogeneous coordinates, if the equations 
(2.41) represent the content of time and radial coordinate for the space region covered by this body. 
The simultaneity in the motion of the swarm of material points can be differentially characterized, 
giving a Riccati equation in pure differentials: 

 
 

(2.47) 

Thus, for the description of the extended body in motion as a succession of states of the ensemble 
of simultaneous material points, it suffices to have three differential forms, representing a coframe 
of the sl(2,R) algebra: 

 
 

(2.48) 

That this coframe refers to such an algebra, can be checked by direct calculation of the Maurer-
Cartan equations which are characteristic to this algebra: 

 
 

(2.49) 

Using these conditions one can prove that the right hand side of equation (2.47) is an exact 
differential (Cartan, 1951), therefore it should always have an integral. The Cartan-Killing metric 
of this coframe is given by the quadratic form (w2/2)2 – w1w3, so that a state of an extended orbiting 
body in the Kepler motion, can be organized as a metric phase space, a Riemannian three-
dimensional space at that. The geodesics of this Riemannian space, are given by some conservation 
laws of equations 

 
 

(2.50) 

where a1,2,3 are constants and q is the affine parameter of the geodesics, so that, along these 
geodesics the differential equation (2.47) is an ordinary differential equation of Riccati type: 

 
 

(2.51) 

This equation can be identified with (2.46), provided its right hand side is proportional to the square 
of a ‘radial coordinate’ of a free classical material point. Mathematically this requires an ensemble 
generated by a harmonic mapping between the positions in space and the material points, with the 
square of the radial coordinate ‘x’ measuring the variance characterizing the distribution of 
material points in space. 
 So everything comes down to finding a physical system whose motion gives the content of 
time by the first relation (2.41), the same way the uniform motion gives the content of time in the 
classical case. For this we need to treat the wave function (2.28) as a signal recorded in a given 
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space point x. In this case both the amplitude A and the phase f are to be considered as functions 
of time only. The experimental practice asks here for an analysis of signal in the time domain, 
allowing us to assign mechanical properties to the magnitudes extracted from the records. A 
mandatory parameter in this analysis is the instantaneous frequency (Mandel, 1974), which can be 
evaluated as the first time derivative of the phase of wave function. Denoting q(t) the wave function 
in this instance, i.e. as the instantaneous ‘elongation’ representing the recorded signal, we want to 
associate this signal with a mechanical oscillator, in order to have a physical interpretation of the 
parameters, especially of the phase as function of time. This association comes down to the 
following equivalences, representing connections between amplitude and phase as functions of 
time at a certain position: 

 

 

(2.52) 

from which we have, denoting by {*,*} the Schwarzian derivative of the first symbol in curly 
brackets with respect to the second one, we have: 

  (2.53) 

The signal having the instantaneous frequency as an exact mechanical frequency of a damped 
harmonic oscillator, should have {f,t} = 0, which means 

 
 

(2.54) 

Therefore the most general signal having mechanically defined parameters is of the form 

 
 

(2.55) 

and the time of the first equation (2.41) is the phase of such a signal, whose amplitude is a ‘damped’ 
uniform motion. Notice that for a proper choice of the arbitrary constants of integration ‘a’ and 
‘b’, the equation (2.55) is, in fact, a special connection between the group variables from equation 
(2.41). Let us recount the results here, to better realize what we acquired. 
 In order to get a sharply defined instantaneous frequency of a signal by mechanical means, we 
need to compare this signal with a local harmonic oscillator. Then, the phase of this harmonic 
oscillator has to be a homographic function of the time moments involved in the time sequence 
defining the signal by its amplitudes. In this case, the instantaneous frequency of the signal has to 
be the reciprocal square of a linear function in the moments of this time sequence. In this case, by 
equation (2.55) the product between the square of instantaneous amplitude and the frequency of 
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the signal must be a special function of the phase, to wit, a complex exponential. We need to insist 
here on the idea of time content, with a first observation which hints on the role of a relativity-like 
theory. 
 Obviously, when we speak of the content of time, we understand a time sequence: a set of 
moments of time provided arbitrarily, e.g. by a local clock, and ordered with the assistance of a 
local motion. Typically, such a motion is taken as the classical uniform motion, to be somehow 
locally gauged. Until further elaboration on the notion of ‘local’ here, we have to take it in the 
strict mathematical sense: in a given point in space. It remains, of course, to explain how the 
‘uniform motion’ matches the idea of a space position, but for now let us assume that this is the 
case, and only notice how relativity bypassed the idea of ‘local’. There are two aspects of the 
physical idea of time, which need to be somehow corroborated with one another in order to give a 
useful time concept. First we have the idea of time provided by a clock: a device measuring the 
time according to local needs, usually by a periodic process. Then we have the idea of choosing 
from this time an ordered sequence, and the ‘device’ for this ordering is a uniform motion. 
Classically, for a uniform motion, the time is a parameter of continuity. Physically, the problem 
occurred as to the sound definition of the ordered sequence of time itself, and this was the point 
where the special relativity started to erect its structures. 
 Indeed, the special relativity circumvented the necessity of a ‘local gauging’ of the uniform 
motion by the practical observation that we have always at our disposal an apparently ‘global 
gauging’, offered by the light phenomena. The physics then discovered that these phenomena can 
be locally described as electromagnetic phenomena. The Maxwellian form of electrodynamics 
shows that, as long as the time is classically considered – i.e. as just a parameter of continuity – 
this concept of ‘local’ does not require any further consideration beyond ‘in a given space 
position’. At this point Albert Einstein stepped in (Einstein, 1905) with the observation that the 
ordered time sequences in different position in space can be set in correspondence by the procedure 
of synchronization. This requires the light as essential in building a special correspondence 
involving the positions in space and the time moments, incorporated as such into the concept of 
spacetime. Further, Einstein noticed that the electromagnetic phenomena, as described by Maxwell 
equations, behave controllably with respect to the spacetime correspondences thus conceived, an 
observation that encouraged the idea that light phenomena should be exclusively of an 
electromagnetic nature. This conclusion pushed, so to speak, in the background, for a while, the 
necessity of ‘local gauging’, but mixed inadvertently the two differentias of time. For, as long as 
Maxwell equations are involved, the time can be used indifferently, both as a continuity parameter, 
and as as a time sequence. This was the state of the case until electrodynamics popped up again, 
with the concept of a Yang-Mills field, brought about by wave-mechanical necessities of physics 
(Yang & Mills, 1954). 
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 This last concept did not come out of nowhere: it was reached via another route left unexplored 
by Einstein himself, but noticed by Louis de Broglie. It is the notion of energy content of a massive 
particle, according to which to any particle at rest a frequency can be associated, which behaves 
according to the rules of special relativity (de Broglie, 1923). This association came up with the 
idea of quantum, which, in turn, sprung from a special statistics (Mazilu, 2010) inspired and 
supported exclusively by the very electromagnetic image of the light [(Einstein, 1909, 1965); see 
also (Boyer, 1969, 1975)]. However, the initial de Broglie’s theory ignored the statistical aspect of 
the concept of quantum, a fact which had the immediate consequence of forcing upon theory the 
notion of wave group. In the long term, however, this fact obligated de Broglie to recognize the 
necessity of a statistics for the very ‘wave phenomenon called classical material point’, after his 
own expression, and this statistics, referring this time to the rest mass, is exactly of the general 
type involved in the Plancks theory of radiation: a statistics described by an exponential probability 
distribution (de Broglie, 1966). 
 Coming back to our idea of the mechanical measurement of phase, we need to notice that it 
provides a method of measuring the phase, by gauging it with a harmonic oscillator. This method 
is, actually, a long known method of measurement in physical and technical problems involving 
periodical phenomena. And Louis de Broglie’s idea of introducing the frequency for massive 
particles the same way as for light particles, gains thereby a special meaning: that of deciding what 
is ‘finite’, when having at our disposal just the notions of ‘local’ and the ‘global’, as introduced by 
special relativity. Insofar as the quantum is involves in defining the de Broglie frequency of a 
massive particle, the decision is clear: this ‘finite’ should be spatially a cavity like the one built by 
Wien and Lummer for the verification of the laws of thermal radiation (Wien & Lummer, 1895), 
wherein, however, only the phase can be measured. The observation was brought about by Lachlan 
Mackinnon, who thus showed how the idea of randomness is to be taken in the wave physics of 
Louis de Broglie (Mackinnon, 1978). Quoting: 

 An observer is sitting in an empty laboratory in which there is one particle – 
say, an electron – stationary with respect to him. Suppose that his powers of 
observation are restricted to observing the phase of the de Broglie wave of this 
electron at any point in the laboratory. All that he will then be able to observe is 
that the phase is uniform throughout the laboratory and he will not be able to use 
it to locate the electron. Another observer enters the laboratory and walks smartly 
through it; he finds the phase of the electron’s de Broglie wave far from uniform; 
he tells the first observer what he sees; the first observer then deduces that the 
electron can only be at one of those points in the laboratory where he and the 
second observer agree about the phase. Further observers enter the laboratory, each 
moving with a different speed and in a different direction, so that they each observe 
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a different de Broglie wave from the electron; with their additional information, the 
first observer will deduce that the electron can only be at the point or points where 
all these waves are in phase. A sufficient randomness among the observers will 
ensure that the electron can be located because the shared information will have 
allowed the first observer to construct his de Broglie wave packet for the electron. 
The “anchor” for the time coordinates of the reference frames of the various 
observers is also at the particle, but, as will be pointed out in the next paragraph 
but one, the apparent frequencies of all the de Broglie waves are the same to the 
first observer, so the wave packet can be constructed from the space information 
alone. [(Mackinnon, 1978); our Italics] 

Now, in view of our results right above, this excerpt gains significance beyond the special theory 
of relativity. Indeed if the measurement of phase is done as usual, then “observing the phase” 
means the possibility of construction of a phase as in equation (2.54), based on which we define 
an instantaneous frequency. The ‘uniform phase throughout laboratory’ then comes down to 
equation (2.47), which means that the cavity is physically a Riemannian space given by the sl(2,R) 
algebra, whose coframe is given in the equation (2.48). The ‘agreement about the phase’ is then a 
statistical matter to be decided as in equation (2.51), which gives any sequence of time moments 
as means of an ensemble characterized by an exponential distribution with quadratic variance 
function, which is a Planck-type ensemble that led to the first quantization (Mazilu, 2010). 
 This may be a first incentive in taking the nonstationary Schrödinger equation as fundamental 
to physical thinking, forasmuch as the particles in such a cavity should be free particles. But then, 
the whole quantum philosophy is concentrated on the potential, as we just said, and we need to 
find a way to bring together the potential and the wave function. We shall do this here, by following 
logically the historical order of things, in explaining the idea of an ‘empty laboratory’ in transition 
between scales, as a fundamental concept of scale relativity. This concept allows us to build a 
model of space extended particle, by interpretation of some well known physical cases, in the 
sense of definition of this process given by Charles Galton Darwin. And the first historical 
undertaking, within this very logic is one by Louis de Broglie himself, just about the same time 
with Erwin Madelung’s approach to physical interpretation of the wave function (de Broglie, 
1927). 
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3. De Broglie’s Interpretation of Wave Function 

In order to properly frame de Broglie’s contribution in the order of our things here, we turn again 
to the same exquisite summary of Darwin already used a few times for straightening out our 
expression here, from which we extract yet another fragment: 

… Now the wave aspect of matter is a century behind that of light, and so the class 
of experiments that have hitherto been done with electrons have not called into play 
any such complicated interference phenomena. For this reason the ray problem – 
depending on the limitation of beams – is for electrons quite as important as the 
wave problem. But that is not all, for electrons have the complication that the wave 
velocity depends very strongly on the wavelength, so that group velocity is a very 
important consideration, and the actual motion of rays cannot be directly seen even 
qualitatively from the solution of the wave problem without a proper consideration 
of the limitation of the beam. It thus proves more convenient not to attempt to 
separate the problem into two parts, but to construct solutions of the wave equation 
which contain the limitations ab initio. With this method all that remains of the ray 
problem is merely the derivation of the intensity from the amplitude by squaring its 
modulus. [(Darwin, 1927), our Italics] 

It is quite clear that Darwin is trying to avoid the problems imposed by optical considerations, and 
he does that indeed in a remarkable way. It is however symptomatic, that the work from which we 
extracted these quotations, substantially exceeds the task suggested by its title, and we think we 
can pinpoint the reason. Darwin had in mind only the wave function, but the theory needs also the 
potential, and there is no possibility of theoretically treating it within the framework of Schrödinger 
equations, other than case-by-case. Which is exactly what Darwin does indeed. It is not by chance 
that he considers as the prototype of that “proper consideration of the limitation of the beam” the 
Schrödinger’s work that initiated the modern idea of coherent states: as we have shown above, this 
aspect is required indeed for a statistical interpretation of the wave function. However, this 
approach raises an important issue: the wave function is not physically interpreted, according to 
the very definition of interpretation as given by Darwin himself, for the ‘limitations’ of the 
Schrödinger type do not properly cope with the idea of a light beam, and so much the less they 
cope with the idea of a light ray in the classical sense! 
 First, let us state again the grounds of what we called ‘logic’ at the end of the previous section. 
It is the concept of a Madelung fluid: a fluid of free particles according to Schrödinger ideas, 
epitomized by the time-dependent Schrödinger equation. Taken per se, this fluid is a continuous 
structure in the mathematical sense. For this kind of interpretation of the wave function, the physics 
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needs to give it a structure, a physical structure if possible. Darwin tries to avoid the common way 
of appealing to optics, and clings on the pure probabilistic interpretation, which is not unnatural, 
but raises some strange statistical issues. Part of the problem is that the optics seems to be unable 
to open itself to the physical description by an ensemble, and this may justify the attitude of Darwin 
up to a point. However, the first known ensemble satisfying the logic just sketched in the excerpt 
above, was actually a physical structure related to “ray motion”, “limitation of beams”, “wave and 
group velocity” and the like, just about the time when Darwin made his point. This is the ensemble 
which will be taken here to indicate the necessary conditions for a general construction of such a 
structure within the limits of the wave mechanics, and its construction is due not to Erwin 
Schrödinger, but to Louis de Broglie. 
 Notice that the second one of the conditions (2.34) is the usual continuity equation, again, 
provided the square of the amplitude of the general signal (2.28) is interpreted as a density. That 
kind of density was the object of some works of de Broglie, that we have in mind for this 
illustration of the process of interpretation (de Broglie, 1926b,c). They were addressed to a special 
optical signal, which is not a solution of the Schrödinger equation (2.33), but of the D’Alembert 
equation, usually taken as the basis of physical optics. However, it turns out that de Broglie follows 
closely the idea of interpretation in the exact sense of the Darwin definition above, forasmuch as 
one can say that in optics we have to deal with the density of a fluid conceived as an ensemble of 
photons, more specifically with a modern image of the classical light ray, built on the ideas of 
Hooke and Newton (Mazilu & Porumbreanu, 2018). 
 At the time when he issued the two works just cited, Louis de Broglie was engaged in proving 
explicitly that there is no gap between optics and quantum theory. In its broad lines, one can say 
that this idea is simply a reflection of the continuity of human knowledge, which is a trait of 
knowledge that will often return in the course of development of the present work. The specific 
problem at that time was, in de Broglie’s idea, to prove that the light can be seen as a flux of 
photons, and he intended to show that this image contradicts neither the optical nor the mechanical 
rules of thinking. The optical rules were considered all concentrated in the description of 
propagation of light, as described for the case of vacuum by the D’Alembert equation: 

 
 

(3.1) 

In this context, Louis de Broglie took note of the fact that an optical solution of the equation should 
be written in the form: 

  (3.2) 
which must then be submitted to some space constraints, evidently mandatory in optics by the 
presence of screens, diopters or some other obstacles met by light in space. This is exactly the 
philosophy outlined by Darwin, simply applied for the case of optics. As if in agreement with that 
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philosophy, de Broglie was forced to consider the light as a fluid of particles, for the incarnation 
of which the best candidate was the idea of photon, floating ‘in the air’ so to speak, for at that 
moment of time the photon was just getting baptized (Lewis, 1926). We preserve here the notations 
of de Broglie himself, by not exhibiting the wave function in its customary notation. The main 
reason is that, while the signal (3.2) is clearly of the general form (2.28), it is not a solution of the 
Schrödinger equation (2.33). The same goes for the signal given in the equation (3.3) that follows, 
which is taken as properly describing a fluid of particles. And that is certainly due to the algebraic 
form of the phase, which is in a way identified with the time, a property upon which we need to 
return at some moment of our present work. 
 Indeed, by taking the light quanta as those material particles able to explain, from a classical 
point of view, the particulate structure of light, de Broglie noticed that one needs to assume a 
solution of equation (2.1), having nonetheless not only the phase, but also the amplitude time 
dependent: 

  (3.3) 
Here f is the same function as in (3.2), embodying the earlier idea of de Broglie that the corpuscles 
and the representative waves have the same phase (de Broglie, 1923). Why should the amplitude 
be variable with time here? 
 Louis de Broglie gives an explanation in the English version of the work (de Broglie, 1926c), 
and this can be summarized as follows: such an elementary particle must be described by a field 
satisfying the Klein-Gordon equation. This defines, choosing words of de Broglie, «the wave 
phenomenon called ‘material point’», and is: 

 
 

(3.4) 

The last identity here represents de Broglie’s initial idea from 1923, apparently prompted by the 
relativistic mechanics, according to which one can associate, via energy, a frequency to a classical 
material point: the de Broglie’s frequency. Now, the fundamental solution of this equation, based 
on which one can build the general solution as a linear combination according to mathematical 
rules, is taken by de Broglie in the general form: 

 
 

(3.5) 

with a0 a constant, β º v/c and γ2(1–β2) º 1, and the direction of motion chosen as the axis ‘z’ of 
the reference frame. No doubt, the general solution of (3.4) can be taken as being a linear 
combination of waves of the form (3.5). However, it should have a spacetime singularity: at the 
event that locates the ‘material point’ in motion with respect to origin of space coordinates and 
time, its amplitude becomes infinite. Thus, when considering the classical material point a ‘wave 
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phenomenon’, if this wave phenomenon is classically located as an event, i.e. interpreted as in the 
phrasing of Darwin, the representative wave has a specific singularity at its location: its amplitude 
becomes infinite. In other words, by interpretation, the very concept of wave acquires here a 
differentia, for the particle itself gets new properties above and beyond its usual classical depiction 
as a position endowed with mass or charge: it a singularity of the wave amplitude, whereby this 
one becomes infinite. 
 However, from a ‘phenomenological’ point of view, we might say, the things are to be 
presented in a different manner. The wave is here a light wave, and it should be the space locus, 
in a proper geometrical sense, of the events representing the «wave phenomena called ‘material 
points’». The linearity of the Klein-Gordon equation allows a superposition of wave phenomena 
represented by (3.5) with different velocities, but there is a problem: as all of the material points 
move with the speed of light, one has β → 1, and thus γ → ∞, for all the waves of this type. So the 
resultant wave, if represented by a linear combination of such ‘wave phenomena’, must have rather 
a vanishing amplitude no matter where the material points representing the light are located in 
space and time. Thus, while classically the trajectory of the material point is, according to its 
definition adopted also by Darwin in the above excerpt, the locus of successive positions of a 
material point in motion, in a wave representation of ‘the phenomenon called material point’ it is 
simply the locus of the events where the amplitude of the wave vanishes, no matter of the time 
sequence and space locations of these events. Therefore, along the space line representing 
(continuously or not) a trajectory of the ‘wave phenomena representing a classical material point’, 
the phase should also be arbitrary according to this optical representation. 
 A little digression may be in order here: the phase and the amplitude of the optical elongation 
(3.5), which allowed the preceding speculations, are quite particular. However, only as such 
particulars they allowed the very construction of the special relativity, based upon D’Alembert 
equation (Lorentz, 1904, 1916). Thus, against these speculations one might raise the objection that 
the representation (3.5) is just as… special as the relativity is, and a general definition of the optical 
signal, as in the equation (2.28) for instance, may render them obsolete, to say the least. Two things 
have to be considered, however, when engaging along this line of thought. First, a signal like 
(2.28), satisfying any desires of generality for both amplitude and phase, is a solution of the 
Schrödinger equation (2.33), which proved so fruitful for the physics of the last times. If one proves 
that the Schrödinger equation for the free particle is vital for the natural philosophy in general, 
then one has to argue just ‘how special’ is the special relativity, viz. to give some reasons for a 
general… special relativity, so to speak, ideally even to find its formulation. Meanwhile notice 
that a stationary Schrödinger equation (2.31), deriving from (2.34), is satisfied even for the 
amplitude going to zero, for the phase of the signal (2.28) still can be taken as the classical action, 
provided the potential defined by equation (2.35) goes to zero in the position of the classical 
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material point thus described as a ‘wave phenomenon’. Secondly, as Dirac has noticed in his works 
which inspired a certain wave-mechanical approach to the idea of magnetic charge (Dirac, 1931, 
1948), a general spatial geometric locus of zero amplitude of the signal might be instrumental for 
the condition of quantization based on the concept of wave function satisfying a Schrödinger 
equation for the free particle. Therefore, we should not avoid this line of thought, by any means. 
As we shall see, it is actually materialized in a certain kind of approach of the wave mechanics, 
leading to the general idea of a structure of the matter. 
 However, Louis de Broglie had another observation, in concordance with his own idea of phase 
waves. Namely, he took notice of the fact that if the amplitude function ‘f’ is to have any mobile 
singularities, these have to move across the surface of constant phase, particularly normally to this 
surface. In this case the speed of a material point in position M at the time ‘t’ is necessarily 

 
 

(3.6) 

with the variable ‘n’ taken along the very trajectory of the material point – the symbol ‘n’ is here 
intended to suggest the idea of ‘normal’ to the wave surface – and the partial derivatives upon time 
(∂tf) and along the normal direction (∂nf) taken in position M at the moment ‘t’. Substituting (3.2) 
and (3.3) in equation (3.1), and making the imaginary parts of the relations thus obtained vanish, 
one can find the following equations connecting the optical amplitude ‘A’ and particle amplitude 
‘f’ to phase f: 

 
 

(3.7) 

and 
  (3.8) 

Then we simply have, as de Broglie notices, that the equation (3.7) will describe the diffraction 
phenomena according to physical optics, while the equation (3.8) will describe the diffraction 
phenomena according to quantum theory, i.e. by an ensemble of particles. It should be indeed all 
about diffraction, forasmuch as we have to deal here with a space locus of events distributed in 
space, and not with a classical trajectory per se. Therefore, this is indeed an interpretation of the 
wave in the acceptance of the definition given by Charles G. Darwin. 
 However, in the French version of his work, de Broglie assumes that if, as one approaches at 
constant time a light particle following its trajectory, the function ‘f’ varies as the reciprocal 
distance to that particle, then in the position M of the particle the ratio between ‘f’ and (∂nf) 
vanishes. This fact obviously generalizes the one represented by the equation (3.5), so that it can 
be taken as typical for the wave mechanics. In the English version of the work, de Broglie calls for 
an analogy with “the spherical free point” in order to get that relation. Therefore here we would 
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have a situation which can be characterized in general terms as a constant time solution of the 
Laplace equation in spherical coordinates. Be it as it may, the insistence of de Broglie upon this 
point is manifest. It can be explained by the fact that a solution is necessary for the contradiction 
between the space-time singularity where the wave amplitude jumps to infinity and the singularity 
due to the classical material point image, where the amplitude of the wave should be zero, no 
matter of the space-time details. Anticipating a little our explanations here, we can say that de 
Broglie ‘felt the urge’, so to speak, of completing a missing link between two scales of amplitude 
– infinite and infinitesimal – with a model representing the finite amplitude. The way he did this 
gives also an idea about the general approach to solution of such a problem. For, there is another 
side of this story, consistent with the ideas of wave group and phase waves, which also has a 
modern exquisite theoretical realization along the idea of interpretation of a wave. 
 The classical singularity depends exclusively on the speed of the classical material point in 
motion, therefore on the material point as an inertial reference frame. Now, if the light particles 
are indeed classical material points, for them the amplitude of the signal (3.5) vanishes, so that the 
phase makes indeed no sense for this signal. Obviously, however, that solution was inspired by the 
fact that at zero speed the equation (3.5) also represents a solution of the Laplace equation, except 
for the singularity in the origin. And, as we just have noticed above, starting from this equation – 
more precisely from Poisson equation – the Lorentz transformations were introduced (Lorentz, 
1904). From this, one could also infer that the Lorentz transformations have to represent an inertial 
reference frame, i.e. they characterize a continuous connection between null speed and an arbitrary 
speed, which is indeed the case [(Boltyanskii, 1974, 1979); (Fowles, 1977)]. On the other hand, 
this particular requirement of Louis de Broglie is in fact universal from the point of view of the 
‘wave phenomenon called material point’. As we shall see here, it proves to be a necessary 
expression of the equivalence principle, thus making the quantum theory a fundamental component 
of the general relativity according to Einstein ideas. 
 Fact is that under the condition of space behavior of the amplitude as requested by de Broglie, 
the equation (3.8) gives a special expression for the light particle velocity in a certain position; and 
this expression befits the classical character of phase. Indeed, using equation (3.6) and de Broglie’s 
condition of ‘approaching the point at constant time’ in the form: f/(¶nf) ® 0, the formula for this 
velocity reveals that the phase should be a potential of velocities, i.e. it should have the very 
classical role of the variable of action: 

  (3.9) 
Thus, the only thing left for explanation would be the construction of a physical light ray, and this 
can be classically understood as a thin pencil of trajectories of classical material points. So, de 
Broglie comes to the idea that an infinitely thin tube confining an ensemble of trajectories of light 

U(x, t) = c2(∂nφ)M,t
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particles would be able to do the job. Thus, the classical Newtonian image – or to be more precise, 
the Hookean image [see (Mazilu & Porumbreanu, 2018) for an account of historical order of 
development of this idea] – of the physical light ray takes, with de Broglie’s description, a 
geometrically precise modern shape: a generalized cylinder, whose area of any transversal section 
is variable with the position along the ray. 
 And so it comes that de Broglie assimilates a physical ray with a capillary tube of variable 
cross-section s, and he describes this tube by the known physical principles of the theory of 
capillarity. Assuming, for instance, that the flux of light particles is conserved along the ray – an 
assumption that can, in general, be taken as the fundamental attribute of the concept of ray within 
the theory of fluids – the equation representing this situation: 

  (3.10) 
should be satisfied, where r means the Newtonian volume density of the particles of light. Taking 
the logarithmic derivative in the direction of the ray, one can find 

 
 

(3.11) 

By a “known theorem of geometry”, as de Broglie declares, one can calculate the last term here. 
Now, because the physical ray is a space construction, it would be hard to decide the meaning of 
¶/¶n – is it effectively variation along the ray itself, or along the normal to the wave surface as de 
Broglie assumes!? – but to a good approximation we can take that it means variation along the 
normal, to start with. It is, indeed, only in this case that we can take advantage of that ‘known 
theorem’ to which de Broglie alluded, and according to which the last term in (3.11) is the double 
of the mean curvature of the surface f = const in a given position. That quantity has as expression 
the sum of the principal curvatures of the surface: 

 
 

(3.12) 

Here R1,2 are the radii of curvature of the principal sections of the surface. With (3.9) and (3.12), 
the equation (3.11) now takes the form 

 
 

(3.13) 

and comparing this with (3.7), one finds 

  (3.14) 
Thus, Louis de Broglie has the essential result of interpreting the physical optics based on 
diffraction phenomena without making any reference to the idea of harmonic oscillator and its 
classical dynamics in order to calculate the intensity of light. Indeed, the equation (3.14) shows 
that the density of the light particles classically conceived as material points or localized quanta, 
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is proportional with the intensity of the classical theory of light. The interference phenomena are, 
therefore, explained by the corpuscular theory, just as well as the difraction phenomena, provided 
we add to the wave mathematical image a necessary property deriving from the wave 
representation of classical material point: the ratio between the amplitude of the wave and the 
normal derivative of its wave surface, taken at constant time, vanishes in the position of the 
material point. 
 An issue still lurks in the background though, and a fundamental gnoseological issue for that 
matter: was this effort of mathematics and stretch of imagination necessary at all for our 
knowledge? From the point of view of the continuity of the knowledge, the answer is definitely 
affirmative. Indeed, making reference to the harmonic oscillator in the case of light – in order to 
interpret the intensity of light, for instance, to say nothing of some other physically fundamental 
necessities – is, stretching a little the meaning of word, ‘illegal’. For, as a purely dynamical system, 
the harmonic oscillator is a dynamical system described by forces proportional with displacements 
(Hooke-type elastic forces), and in the case of physical optics the second principle of dynamics is 
only incidental, being introduced only by a property of transcendence of the second order ordinary 
differential equation: it describes any type of periodic processes. And the fact is, that in the 
foundations of modern physical optics, the periodic processes of diffraction have more to do with 
the theory of statistics than with the dynamics (Fresnel, 1827). 
 This is, however, not to say that the harmonic oscillator is to be abandoned altogether, as a 
model, because this is not the case, either from experimental point of view or theoretically. All we 
want to say is that we need to find its right place and form of expression in the theory, and this is 
indicated again through the order imposed by the measure of things, this time as their mass. Indeed, 
dynamically, the second order differential equation involves a finite mass. On the other hand, for 
the light the mass is evanescent, and if the second order differential equation is imposed by adding 
the diffraction to the phenomenology of light, this means that it describes actually a transcendence 
between finite and infinitesimal scales of mass. As we shall see later, the mathematics of scale 
transitions between finite and infinitesimal in SRT, respects entirely rules related to the harmonic 
oscillator model. In fact, the whole wave mechanics as a science can be constructed based on such 
rules, which appear to be universal. 

 The Appropriate Geometry of de Broglie’s Idea 

 The effectively inadequate point of the de Broglie’s argument is in fact only the mathematical 
expression of his way to conclusions, for, as we have seen, everything else is in the right place. 
So, we assume now the burden of a first mathematically appropriate expression of de Broglie’s 
results, in order to see where they lead us. The first step suggested in his argument would then be 
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construction of an adequate geometrical theory of the implicitly defined surfaces in space. 
[(Hughes, 2003); (Goldman, 2005)]. Louis de Broglie works only with this kind of surfaces, but 
from a particular point of view. We shall give here only an inventory of the geometrical formulas 
necessary in reaching the equation (3.12), because this equation is the fundamental result which 
represents the key of argument, and thus motivates its conclusions. This result is simply borrowed 
by de Broglie from the classical theory of capillarity (Poincaré, 1895). There, indeed, it is only 
presented in the particular one-dimensional form used by de Broglie, but it can be presented in a 
general three-dimensional form. 
 The equation of a family of parallel surfaces like, for the case in point, the waves in free space 
for instance, can be written parametrically in the form: 

  (3.15) 
Here (u,v) are the parameters on the surface chosen as basis, ê3 is the common normal of the family, 
and x(u,v) represents the basis surface. In order to be in agreement with our current subject, the 
parameter λ might mean, for instance, the wavelength, like in the geometrical optics, so that the 
equation (3.15) can be taken as suggesting the fact that when we have to deal with a family of 
successive wave surfaces, the distance along the normal between them is the wavelength. Let us 
assume that this is a constant, in order to simplify the argument: so, if there is a dispersion of the 
vaves our assumption says that it is not accompanied by a variation of the wavelength. In this case, 
from (3.15) we have by differentiation: 

  (3.16) 
Using now some equations characteristic to the differential geometry of surfaces, we further have 
that the first fundamental form of a generic surface of the family (3.15) is given by the vector 

  (3.17) 
where |sñ is the elementary displacement in the surface and h is an ancillary matrix used in classical 
theory of surfaces to represent the variations of curvature, or even curvature properties themselves 
(Mazilu & Agop, 2015). In the present context it plays the part of a curvature matrix, and allows 
us to say that there is a local linear homogeneous relation between the different wave surfaces of 
this linear family. Thus the element of a oriented generic surface of the family, located by the 
parameter l, is given by an exterior differential 2-form, which can be represented as the exterior 
product [(Stoker, 1989), p.352] 

  (3.18) 
Here H is the mean curvature of the reference surface, while K is its Gaussian curvature. Using 
this, we can calculate the mean and Gaussian curvatures of a generic surface of the family. This 
can be done by using two differential relations which, for the reference surface are [(Stoker, 1989), 
pp.352ff] 
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  (3.19) 
The symbol ‘´Ù’ means here a vector product of the vectors having differential 1-form as 
components, where the monomials are defined by the exterior multiplication of 1-forms instead of 
regular multiplication of numbers. For a generic surface of the family (3.15) we have the equivalent 
of equation (3.19) as 

  (3.20) 
because the normal direction is common to the family. Using the equations (3.16) and (3.18), the 
two measures of the curvature of a generic surface are given as function of the wavelength by the 
following relations: 

  (3.21) 

The “known theorem” used by de Broglie in calculating the last term in equation (3.11) can be 
obtained from equation (3.21) for a finite portion of the generic surface of the family. Indeed, 
taking (3.18) for expressing the difference between sl and s, we have 

  (3.22) 

because λ can be taken as an affine parameter along the normal of the family. For completeness, 
we need to establish now the relation (3.12) in its general form, but for a surface defined implicitly, 
as in the case of louis de Broglie. 
 To this end we have to consider the definition of the normal to a surface defined implicitly by 
equation f = constant. Such a normal is defined by vanishing of the differential form: 

  (3.23) 

which represents the tangent plane to surface, and expresses the natural fact that if dx is taken as a 
virtual displacement in the surface, the normal has to be perpendicular to it. After a longer, but 
otherwise direct calculation, the differential dê3 of the normal unit vector – the so-called 
Weingarten application – turns out to have the components 

 
 

(3.24) 

where H(f) is the Hessian matrix of the function f. Thus, the second fundamental form of such a 
surface is given by 

  (3.25) 
which would indicate that the mean curvature can be given by the trace of the matrix Ψ º (ψij). 
This is what happens indeed [(Goldman, 2005), equation (4.2)]: 
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  (3.26) 

This should be the generalization of expression from equation (3.12), which therefore enables us 
to establish the following correspondences: 

  (3.27) 

Thus the derivative along the normal in the case considered by Louis de Broglie must be the 
magnitude of the gradient of phase surface, while the second order derivative along the normal 
must be the component of the Hessian matrix of the surface along its normal. Starting here, a 
further generalization should be in order from physical point of view – or, better, from a fractal 
point of view, because in our opinion the fractal point of view becomes, by Nottale’s ideas, a 
physical point of view – namely the description of a fragment of a surface. Obviously, this can be 
done by generalizing the idea of curvature and metric to satisfy the physical definition of a surface, 
which is one of our main points here. 
 Meanwhile, for completeness of the present image of de Broglie’s theory, we just transcribe 
here the Gaussian curvature, in the framework of the implicit definition of a surface. It is given by 
a little more complicated formula [see (Goldman, 2005), equation (4.1)]: 

  (3.28) 

where Φ is the reciprocal of the Hessian matrix H of surface, defined by: 

  (3.29) 
However, as we have shown above, this relation is not used by Louis de Broglie, who simply 
follows the particular classical line according to which the surface tension – like the fluid surface 
itself in a capillary tube – is exclusively defined by its mean curvature. This item calls, again, for 
a generalization of the theory to the physical definition of fragment of surface. 

 Lessons and Mandatory Developments 

 It is the time to summarize the achievements with respect to the Schrödinger theory, and then 
make an inventory of the problems that remain to be solved, and for which SRT offers ideas of 
solution. It is by now clear that only the theory of fluids can offer the image of a structure of matter, 
an interpretation we should say, in order to devote ourselves to an established language, whatever 
the time and space scale of its location. That explains the intervention of Erwin Madelung, who 
maintained the Schrödinger initial point of view, but introduced a special kind of continuity of 
matter, connected with the Newtonian definition of its density. Madelung’s idea has received a 
physical elaboration only under the assumption that between Schrödinger wave function and the 
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Newtonian-type density of matter there is a quadratic relationship: the density is the square of the 
modulus of the “essentially complex” wave function. Quite naturally then, the theory should be 
limited to places where the matter exists continuously, but this raises problems related to the 
physical description of such places. In turn, these problems impose choices about the elementary 
units of a physical structure, and the Madelung’s choice is indicated by him with no hesitation: for 
instance, the electrons “penetrate each other without merging”. In other words, the electron, by 
then an elementary particle – which, as a matter of fact, remained elementary ever since – is the 
home of the continuous matter, once it behaves inside other electron like the matter in ether. For, 
the ether, was then, as it is nowadays, the quintessential matter, which the bodies penetrate 
“without merging”. So, if we ask how to describe it as a physical structure, we actually have no 
space-time possibility: there is no possibility of “merging” indeed, in order to assure a physical 
structure. And thus, the image of the matter should be that of a continuum having “an appearance 
suggesting a vivid swarm, whose particles have infinite free paths”. This is the first remark ever 
upon the fact that the only kind of structure of the matter is not a physical structure, but only a 
mathematical one, resulting from the theory of ensembles via the continuum hypothesis. 
 Enters now Louis de Broglie, with the only known candidate to an ensemble of classical 
material points to date: the light in a Huygens-type interpretation. He could see the material points 
as photons, in view of his recent discovery that the frequency can be associated with the rest energy 
of a classical material point (de Broglie, 1923). However, de Broglie did not describe the light 
globally, as Huygens’ description of the light requires, but rather locally, much in the manner of 
Fresnel, in order to account for the difraction phenomena (Fresnel, 1827). While this specific 
approach of the idea of an ensemble describing the matter seemed to leave aside the Madelung’s 
problem of ‘penetrating without merging’, it showed that the quadratic correlation assumed by 
Madelung in reaching such a conclusion is actually only a local correlation. Thus de Broglie added 
an important attribute to the very classical notion of a light ray, as we duly noticed before. 
However, his theory means in fact much more, far and beyond the physical theory of light. 
 First of all, locally de Broglie had to assume that if, as one approaches at constant time a light 
particle following its trajectory, the amplitude function ‘f’ of the wave associated to the 
representative classical material point varies as the reciprocal distance to that point, then in the 
very position of the point the ratio between ‘f’ and (∂nf) vanishes. It is, of course, necessary to 
explain what that ‘constant time’ means, and insofar as the idea of ‘approach’ here suggests a 
motion, we can appeal to intuition. Intuitively, therefore, a ‘motion of approach’ of de Broglie’s 
type, if it ever exists, should be way faster than the motion of the material point itself along the 
ray, in order to appear as instantaneous at the time scale of this last motion. This is not as unusual 
as it seems, at least in physics, and can even be framed into a general rule of describing the matter: 
a regular motion of a physical structure should be ‘adiabatic’ with respect to internal motions 
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explaining the ‘wave phenomenon called material point’. For once, this is the gist of the duality 
between wave and particle, but it goes way beyond the theory of relativity. Which is what might 
be able to explain the universal success of de Broglie’s theory as an incentive of approaching the 
wave mechanics, in the first place. Because, as a matter of fact, the theory of relativity is a strong 
point against de Broglie’s theory of relation between phase waves and group of waves. As Charles 
Galton Darwin puts it: 

 When de Broglie first developed his wave theory he based it largely on the help 
of relativity. The consequence is that the wave velocity of an electron is much 
greater than the velocity of light. This is ultimately correct of course, but it is an 
unnecessary complication always to have to consider relativity in dealing with 
quite slow motions. We shall throughout the present work avoid doing so by taking 
a factor exp{–i(2p/h)mc2t} out of our wave functions, which is done by a simple 
and familiar modification of the wave equation. We shall, of course, get quite a 
different value for the wave velocity from that of de Broglie. To borrow an analogy 
from the practice of wireless telephony, we are observing our waves with the help 
of a heterodyne frequency mc2/h, and when we speak of the phase of a wave we 
mean the phase of the sound heard in the telephone, not that of the aethereal 
vibrations. [(Darwin, 1927); our Italics] 

The fact that a velocity greater than the limit velocity does not make physical sense is indeed true, 
provided the limit velocity is that of light, as in physical optics. In this case the interpretative 
ensemble would have as constituents material points moving with a speed greater than that of light. 
But this is not always the case in physics, and the de Broglie’s physical ray allows us to construct 
an interpretation based on the idea of adiabaticity mentioned above. The specific case of the 
classical hydrogen atom, from which, when it comes to quantum electrodynamics, it all started, 
enables indeed a ray interpretation in the sense of de Broglie, when this model is taken in its utmost 
mathematical generality. 
 Therefore, in order to show what is the specific key point of such a construction, let us notice 
that de Broglie’s approach to the concept of physical ray of light offers a natural way of description 
of the classical nuclear atom. In fact, not quite a description of the whole atom, but only of a 
Madelung electron, virtually capable of ‘penetrating another electron without merging it’. All it 
takes for realizing that this possibility is unraveled by de Broglie’s idea, is to notice that the whole 
Keplerian orbit in the physical structure of a classical nuclear atom can be actually assimilated to 
a capillary tube. Indeed, if the electron is regarded as a classical material point described as a 
‘wave phenomenon’, then it should be a spatially extended structure, within the space of which 
those de Broglie ‘motions of approach’ are much faster than the velocity of motion around the 
nucleus. With respect to those fictitious motions, the proper electron motion around nucleus 



 51 

appears as ‘adiabatic’ by its slowness. The whole region occupied by this structure then describes 
an ‘elliptic ray’, as it were, physically realized as an ‘elliptical capillary tube’ around the nucleus. 
In fact, with a little geometry, this image shows a lot more than it appears at the first sight. 
 Assume, indeed, that the region occupied by the wave phenomenon describing the electron as 
a classical material point is of a regular shape: an ellipsoid say, even of variable dimensions as it 
goes around the nucleus. Then the de Broglie’s capillary tube can be described as the envelope of 
the set of instantaneous ellipsoidal shapes assumed by the electron in its journey around nucleus. 
This is, in fact, a generalized Huygens principle. The generalization refers to the fact that the 
principle can be applied to matter exactly the same way it is applied to light. This means that the 
capillary tube is actually a wave surface, comprising a space region only within which the fictitious 
de Broglie particles have the freedom to move. 
 Out of this whole summary of classical achievements, we have an inventory of mathematical 
developments necessary in order to initiate a physical theory: 
 The first comes the Kepler problem: where de we stand with the Kepler problem? Of course, 
we all know the actual standing, but that standing has nothing to do with the Madelung’s fluid or 
de Broglie’s wave-particle duality. And a proper theory of matter expressly requests these 
concepts: the matter cannot be defined, for the benefit of physics of course, but only through 
interpretation and, as we have shown above, the interpretation cannot be accomplished without 
them. 
 Secondly, these very concepts ask, in turn, for a proper further development of the theory of 
surfaces: a theory of surfaces made out of physically defined fragments. Because the physics 
cannot define a surface but through its perceived fragments. The quintessential example is the 
contribution of the phenomenology of diffraction to the idea of wave surface: the Fresnel 
reconstruction of the wave surface from ‘infinitesimal fragments’, does not lead exactly to a 
Huygens wave surface. However, insofar as the theory of de Broglie is mandatory in properly 
completing the Fresnel’s theory of light into a physical theory, a point that should be duly taken 
by theoretical physics, it asks for a proper generalization of the idea of capillarity: this one should 
be part an parcel of a physical theory of surfaces. Thus, we do recognize it as one of our 
mathematical tasks with the present endeavor. As we shall see, it is closely connected to statistics 
and stochasticity of the processes in matter. 
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4. The Planetary Model as a Dynamical Kepler Problem 

The classical Kepler motion is the usual model describing either the planets revolving around the 
Sun or the electrons revolving around a nucleus, within the framework of classical dynamics. In 
the spirit of Nottale’s conclusions quoted in our Introduction to this work, we will insist here in 
detail on the fact that this problem shares with the special relativity one distinctive feature: the 
limitation in magnitude of the initial velocities possible in a certain instance. This is quite a general 
feature, fundamental for the quantitative knowledge we should say, that makes out of special 
relativity a… general theory, and bestows upon de Broglie’s theory of wave-particle duality the 
necessary status of independent physical theory. In hindsight, this is nothing short of SRT! For the 
moment, however, we limit our considerations to geometry, pointing out that the mathematics of 
the classical Kepler problem allows us to construct a specific non-Euclidean geometry, which can 
be shown to arise quite naturally from the requirement that the Kepler orbit should be closed 
[(Belbruno, 1977); (Milnor, 1983)]. In what follows we keep the description as close as possible 
to the intuitive and classical aspect of the problem, in order to best unveil what we believe is its 
true physical nature. 
 The classical space image of a Kepler motion can be dynamically explained via Newtonian 
equations of motion, with a central force having a magnitude inversely proportional to the square 
of the distance between the center of attraction and the attracted classical material point. In vector 
notation these equations are: 

 
 

(4.1) 

Here k is a physical constant, r denotes the position vector of the classical material point whose 
motion is calculated with respect to the center of force, and an overdot means derivative with 
respect to time, as usual. The constant k may or may not depend on quantities related to the material 
point in motion, depending on the Newtonian forces involved in its dynamics. For instance, in the 
case of motion in pure gravitational field, this constant does not contain but the properties of the 
material point considered the source of the gravitational field (the gravitational mass). It is only in 
electric and magnetic problems, as in the case of planetary atom, that k contains also properties of 
the revolving material point thus described by our Kepler problem. This situation is simply a 
reflection of the fact that, in the first place, the second principle of dynamics confers a special 
position to the inertial mass and, secondly, the inertial mass itself is identified with the gravitational 
mass. 
 We can simplify the algebra leading to solution of equation (4.1) by restricting the geometry 
to the plane of motion, where the position vector will be denoted by x, which is in fact all we need 
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for the argument of the present work. We can do this as a benefit of the fact that we are dealing 
with a central force, and thus the motion is plane. If the generic coordinates of the point in motion 
with respect to the center of force are ξ and η say, the equation (4.1) is then equivalent to the 
system (Mittag & Stephen, 1992): 

 
 

(4.2) 

x º |x| and f here, are the polar coordinates of the moving point in the plane of motion with respect 
to the attraction center. The magnitude of rate of area swept by the position vector is a constant of 
motion given by 

  (4.3) 
This area rate, a constant of motion according to the second of the Kepler laws, allows us an elegant 
integration of the system (4.2) with the analytical form of the trajectory as a direct outcome. First 
we define the complex variable 

   

so that (4.2) can be written in the form 

 
 

 

Now, use (4.3) to eliminate x2, such that 

 
 

(4.4) 

where v º v1 + iv2 is a complex constant of integration to be defined by some initial conditions of 
the problem. Then the analytical equation of motion can be extracted directly, by calculating the 
area constant (4.3) with the help of the first result of integration given in equation (4.4). In polar 
coordinates the final result is: 

 
 

(4.5) 

The shape of this trajectory is nevertheless best pictured, in well-known details, by switching back 
to the Cartesian coordinates ξ and η, thus obtaining instead of (4.5) the second-degree plane curve 
– a conic: 

 
 

(4.6) 

The first known detail is that the center of this conic is not the center of the force, i.e. in our chosen 
coordinates it is not located in the origin of the plane of motion. However, we can make this 
statement more precise: with respect to the center of force, the center of orbit has the coordinates: 
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(4.7) 

Some other well-known details can further be made precise as follows. Assuming the center of the 
conic at finite distance with respect to the center of force, and referring the trajectory to this center 
by a translation of vector x0, h0: x = x-x0, y = h-h0, its equation becomes 

 
 

 

The quadratic form from the left hand side of this equation is completely described from a 
geometrical point of view, by the 2´2 special matrix 

 

 

(4.8) 

The metric elements of the trajectory, i.e. its semiaxes, are given by eigenvalues of inverse of this 
matrix, which can be written in the form: 

 
 

(4.9) 

Here 1 is the 2´2 identity matrix, while the vector e and the scalar l are defined by: 

 
 

(4.10) 

Further on, the eigenvectors of this matrix are e and a vector orthogonal to e in the plane of motion, 
so that the corresponding eigenvalues are given by: 

 
 

(4.11) 

Thus, the eccentricity of the trajectory, defined geometrically by 

 
 

 

turns out to be the length of vector e, which explains in fact our very notation. Again, by equation 
(4.7) the relative coordinates of the center of trajectory with respect to its focus, or vice versa, can 
be written as: 
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Now, the ratio of these two coordinates gives the orientation of the orbit, so that if q is the angle 
of this orientation we may write the components of the eccentricity vector in the form 

  (4.13) 

These are all well-known facts, as we said, only expressed in a mathematical form that makes the 
role of the necessary initial conditions more obvious for our purpose: on one hand they control the 
shape of the orbit while, on the other hand, they delimit the extension of the area covered by the 
very center of force, which is measured by the eccentricity vector. 
 It is now the time to start with less known things about the geometries involved in the Kepler 
motion. The first such thing to be noticed is the tensor involved in the relation (4.9), viz. 

 
 

(4.14) 

This matrix is the subject of a surface embeding theorem [see (Hu & Zhao, 1997), Proposition 1]: 
the matrix g is the first fundamental form of a hyperbolic twofold having curvature –1, immersed 
into a hyperbolic threefold of curvature ‘c’. The second fundamental form of the twofold is given 
by the 2´2 matrix having the entries 

 
 

(4.15) 

Here u(e) is a smooth solution of the Monge-Ampère equation: 

 
 

(4.15) 

which realizes the embedding. In other words, we are entitled to consider the region around the 
center of force in the classical Kepler problem as a hyperbolic space of constant curvature. In view 
of the definition (4.10) for the coordinates, this is basically a velocity space: its coordinates are 
defined by the velocity chosen as initial condition of the Kepler orbit. On the other hand, the 
presence of the Hessian matrix as the second fundamental form, is indicative of the pertinence of 
an implicit theory of surfaces as in the case of theory of Louis de Broglie. Before any further 
elaboration along these lines, let us uncover a few more things connected with this very point. 
 We can rewrite the metric (4.14) in a well-known form, by recalling that for elliptic trajectories 
‘e’ is confined to values taken in the interval between –1 and +1, so that the change of parameter 

  (4.16) 
with ψ real, is legitimate. With this the metric defined by (4.14) becomes 

  (4.17) 
from which it is obvious that we have to deal with a metric of negative curvature, as the embedding 
theorem states. Again, we have to deal here with a property of the velocity space in special 
relativity, forasmuch as the quadratic form (4.17) is simply the metric of the space of relativistic 
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velocities (Fock, 1959), provided we identify dθ with the arclength of the regular unit sphere. This 
can be taken, and we shall take it here indeed, as the basis of the possibility to ‘render the theory 
relativistic’ as Nottale puts it. 
 For now, we are interested here only in a suggestion correlated to this idea, coming out from 
the previous considerations as follows. From equation (4.7) and (4.11) we can get the position of 
the center of force with respect to the center of orbit which, in (ψ, θ) coordinates: 

  (4.18) 

This means that if the orbit is fixed, say by a kind of gauging, the variables (ψ, θ) describe the a 
priori variation of the position of the center of force compatible with that orbit. In other words, ξ0 
and η0 can be considered as possible coordinates of the center of force in the plane of orbit, when 
this one has a fixed center. In this capacity, as we have already noticed above, they are proper 
coordinates in the space region occupied by the center of force, i.e. the interior of the atomic 
nucleus, Sun, galactic nucleus, and the like. That space region is then described by a Lobachevsky-
type geometry, which can be presented as a Cayleyan geometry with respect to a sphere, taken as 
an absolute of space containing the matter in Kepler problem. 
 With this observation we come to the main question: how is this region to be described in 
space? More to the point, how is the past velocity field of initial conditions correlated with a 
contemporary space position? The answer is immediately at hand through a suggestion given by 
a known mathematical construction. Indeed, the eccentricity vector from equation (4.13) has a 
direct connection with the theory of classical potentials via harmonic maps. This raises an 
important issue which may affect the way we conceive the necessary stochasticity of matter. 
Indeed, in order to exhibit the connection just mentioned let us notice that we may have a few 
possibilities of constructing harmonic maps between the usual space and the twofold described by 
the metric (4.17). One of these is to consider the complex variable, ‘z’ say,  written in terms of 
parameters (e, θ) in the form for which that metric is given by a well-known formula: 

 
 

(4.19) 

The metric is obviously a metric of the Lobachevsky plane in the Poincaré disk representation. As 
it happens, this complex parameter even represents a harmonic map from the usual space into the 
Lobachevsky plane having the metric (4.19), provided ψ is a solution of the Laplace equation in 
free space. Perhaps we need to sketch the proof in order to see how this statement is understood. 
 Indeed, the problem of harmonic correspondences between space and the hyperbolic plane is 
described by the stationary values of the energy functional corresponding to the metric (4.17). This 
is defined as the volume integral of an integrand obtained from that metric by transforming the 
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differentials into space gradients [(Eells & Sampson, 1964); (Misner, 1978)]. The stationary values 
of energy functional, therefore, correspond to solutions of the Euler-Lagrange equations for a 
metric Lagrangian like 

  (4.20) 

where the gradient is purely euclidean. These are given by 

  (4.21) 
and its complex conjugate. Then it is easy to see, by a direct calculation, that ‘z’ from equation 
(4.19) verifies equation (4.20) when ψ is a solution of Laplace equation, and θ is arbitrary, in the 
sense that it does not depend on the position in space. Nevertheless, it might depend on the local 
time of the original Newtonian dynamics; but as long as the parameter ψ is real, θ should not 
depend on space coordinates. 
 The issue mentioned above can now be made obvious by the fact that, while in equation (4.19) 
θ is just incidental, one cannot say the same if we apply the principle of harmonic mapping to the 
metric (4.17) directly. Indeed, the harmonic map problem for the metric (4.17) is provided by the 
solution of the couple of partial differential equations 

  (4.22) 
This time the orientation of the orbit is not a matter of arbitrary choice with respect to the position 
in space, because it depends on space coordinates. However, the arbitrariness still exists, but this 
time it is moved to another level, so to speak, namely that of the constants of integration of the 
equations (4.22). In order to show a possible connotation in that direction, let us briefly present a 
solution of these equations. 
 From the form of equations (4.22) it becomes clear that we should have to deal with some 
solitonic-type solutions in space. As, incidentally, the solution should be plane, it can be obtained 
by taking the natural assumption that ψ and θ depend on the position in space via the distance from 
a certain plane, therefore through a linear form: 

  (4.23) 
where a is an arbitrary constant vector. Then, assuming further that this vector is non-null, the 
equations (4.22) take the form 

  (4.24) 
with a prime denoting derivative with respect to ξ. The second of these equations can be integrated 
right away, and gives the result 

  (4.25) 

where C is a constant of integration. Using (4.25) in the first of equations in (4.24) gives 
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which can again be integrated directly, multiplying it by ψ¢. This leads to the first implicit integral 

   

All things considered real, ψ¢ can be written in the form 

   

and this equation can be rearranged in a form with total differentials 

   

This equation is equivalent to one which can be directly integrated by standard formulae: 

  (4.26) 

where ξ0 is another constant of integration, and we used the parity of hyperbolic cosine in order to 
get rid of the ambiguity of sign. Using this last result in equation (4.25) we get 

   

which can be integrated using the example 2.458.2 from (Gradshteyn & Ryzhik, 2007), with the 
result 

  (4.27) 

θ0 being still another integration constant. The equation (4.27) and the last equation of (4.26) 
provide our solution to differential system (4.24). It depends on four real parameters: θ0, ξ0, ψ0 and 
C1, which can be fixed by some boundary conditions, appropriate to our problem. This may turn 
out to be a routine, but it does not touch the essentials of the physical argument. However, that 
argument is strongly influenced by the fact that the vector a is completely arbitrary in the definition 
(4.23) of the parameter ξ. 
 Our issue is now obvious: it is represented by the difference in the results of these two 
variational problems. Even though the metrics are referring to the very same situation, they 
represent nevertheless two different physical objects. The second one is clear, for it is referring to 
a precise physical situation: an orbit varying continuously in its plane. Neither the eccentricity of 
this orbit, nor its orientation in the plane of motion are independent free parameters. As to the first 
of these variational problems, its physical objects are a little more complicated, but can nonetheless 
be briefly presented in the following manner. As known, within general relativity the gravitational 
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field is expressed by the coefficients of the quadratic form representing the metric of spacetime 
continuum. The material content of this continuum is then assumed to control its physical 
properties through Einstein field equations. As it turns out, in special conditions of spacetime 
symmetry, the problem of solving these equations can also be reduced to a solution of the problem 
of harmonic mappings from the regular space to hyperbolic plane. This fact was brought to light 
by Frederick J. Ernst for stationary spacetime metrics, first in the case of cylindrical space 
symmetry (Ernst, 1968a,b) and then for a general situation not involving special space symmetry 
(Ernst, 1971). 
 Ernst himself (Ernst, 1968b) noticed the fact that a functional relation between the pure 
gravitational and pure electromagnetic potentials can solve the problem of gravitational field. In 
fact he proved (Ernst, 1971) that Einstein’s field equations are amenable to the variational principle 

   

where R(g) is the scalar curvature of the three-dimensional metric g, corresponding to a stationary 
four-dimensional relativistic metric, and Î is the so-called Ernst potential. We can see here that in 
a flat space or, with some minor provisos, in a space of constant Riemannian curvature, this 
principle involves exclusively the complex Ernst potential. The details of expression of three-
dimensional curvature tensor in terms of Ernst potential, and of expression of this potential in 
terms of gravitational and electromagnetic fields can be found in (Perjés, 1970), and especially 
(Israel & Wilson, 1972). A recent work (Mazilu & Porumbreanu, 2018) explains in detail, along 
this line of thought and with historical arguments, the implications of general relativity. The 
essentials of this line seem to emphasize the Ernst’s idea that a relationship between gravitational 
and electromagnetic field is mandatory in solving the problem of metric structure of spacetime. To 
wit, Israel and Wilson (loc. cit.) show that in a flat three-dimensional environment, where the 
curvature tensor of the metric g is null, there should be a linear relationship between the 
electromagnetic field and the Ernst potential. In this case, the scalar curvature R(g) is also zero, 
and therefore the spacetime stationary metric can be described exclusively in terms of the Ernst 
potential: 

 
 

(4.28) 

In other words, only in cases where the gravitational field defines somehow an electromagnetic 
field, or vice versa, the gravitational field is described exclusively by a complex potential. 
 In order to better grasp the importance of such a circumstance, it pays to notice that the wave 
mechanics, in its quantum form, is liable to decide the issue, insofar as it concerns the planetary 
model of the fundamental structure of our model of the world. Indeed, as we already have noticed 

0)d()det(
)(

))((2)(R 3
2
nm

mn

=
þ
ý
ü

î
í
ì

Î+Î
ÎÑÎÑg

+gdòòò *

*

xγ

δ γ mn(∇m ∈)(∇n ∈
*)

(∈+ ∈*)2
det(γ )(d3x)∫∫∫ = 0



 60 

before, the quantum mechanics was built upon an approximation of the planetary model, which 
can adequately describe the world of electromagnetic phenomena at the microscopic level. On the 
other hand, a world described according to the prescription of general relativity is certainly at the 
other end of the scale of things scientific – the universe at large. And if the electromagnetic field 
determines a metric which is cosmological, then this very fact speaks of the identity of the two – 
wave mechanics and general relativity at any scale transition of the human knowledge. This simple 
observation is liable, by itself, to offer full support to Nottale’s approach to SRT. However, there 
is more to it than meets the eyes. 
 For now, just notice that the description by Ernst potential is much more palpable if instead of 
the original Ernst potential Î we use the field variable h º iÎ, so that the equation (4.28) becomes 

 
 

(4.29) 

Obviously this variational equation describes a harmonic map between the ordinary flat space of 
metric tensor (gmn) and the complex half plane possessing the Poincaré metric, exactly as in the 
case of Kepler motion. And so it comes that this circumstance reveals here an essential possibility 
of interpretation related to the physical idea of confinement. 

 A Newtonian Brief on Density 

 Indeed, the situation above can be turned into a mathematical method of characterizing the 
matter in general, provided the space containind matter can be geometrically described by a metric 
having physical meaning. The previous discussion shows that a notorious place of the presence of 
matter, namely the nucleus of planetary atom, may be taken as a portion of space where the matter 
is continuous, just as the philosophical principles of general relativity demand. Then the theory of 
harmonic mappings can assume a general physical meaning: given a metric that characterizes the 
matter, a harmonic map represents the mode in which the matter fills the space available to it. In 
order to illustrate this statement we need, again, some reference to the previous example related to 
the nucleus of planetary model. 
 The classical mode in which the matter fills the space is by continuity, described through the 
Newtonian concept of density, which is established by comparison, via Archimedes law for fluids. 
We reproduce from Newton a significant excerpt involving the whole group of concepts which 
this method involves: 

 COR. III. All spaces are not equally full; for if all spaces were equally full, then 
the specific gravity of the fluid which fills the region of the air, on account of the 
extreme density of the matter, would fall nothing short of the specific gravity of 
quicksilver, or gold, or any other most dense body; and, therefore, neither gold nor 
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any other body, could descend in air; for bodies do not descend in fluids, unless 
they are specifically heavier than the fluids. And if the quantity of matter in a given 
space can, by any rarefaction, be diminished, what should hinder a diminution to 
infinity? 
 COR. IV. If all the solid particles of all bodies are of the same density, and 
cannot be rarefied without pores, then a void, space, or vacuum must be granted. 
By bodies of the same density I mean those whose inertias are in proportion to 
their bulks [(Newton, 1974), Vol. II, p. 414; our Italics] 

The very first thing to notice here is that the Archimedes’ principle is referring to non-miscible 
bodies, i.e. to that situation characterized by Erwin Madelung as “penetrating each other without 
merging”. This means that, properly generalized, this principle can be applied to matter at any 
spacetime scale. 
 The concept of density in the Newton’s acceptance naturally enters here in explaining the 
“quantity of matter in a given space”, by the definition that starts the Principia: 

The quantity of matter is the measure of the same, arising from its density and bulk 
conjointly. [(Newton, 1974), Vol. I, p. 1; our Italics] 

In the preceding metric description of the matter, it is however always possible to define locally, 
therefore exactly, the density as a relationship between the elementary volumes as parts of spaces 
represented by the metrics of space and matter. This is simply done as solution of a problem of 
mathematical principle, via a well known algorithm: find the solution of the harmonic mapping 
problem, giving the coordinates in matter as functions of the coordinates in space, and then 
construct their Jacobian. According to the principles of classical fluid theory, which certainly 
apply to the Madelung fluid, the density of matter should be proportional to the square of Jacobian 
of such a transformation. Sounds rather simple, but physically this approach raises a few 
challenging issues. 
 The key issue is an honest answer to that straight question of Newton: what should hinder a 
diminution to infinity? Obviously, Newton thought the ‘nothing’ for answer. He could not grasp 
that the answer is positive and just stares at him, due to the manner in which the matter presents 
itself to our senses: the very confinement of matter. This however, became clear only in the last 
century, when the idea of confinement of matter took a dramatic turn of representation, which 
transformed it from an a priori thing offered to our senses, to a concept that needs theoretical 
explanation. This theoretical explanation starts nevertheless from the very same point where 
Newton himself started: the telling of our senses. Let us, therefore, get into some details. 
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 The Concept of Confinement 

 Fact is that a metric can be always produced through the mathematical idea of confinement – 
and therefore in the general terms allowed by our senses for the idea of ‘bulk’ – by the Cayley’s 
procedure of constructing metrics based on an absolute (Cayley, 1859): a space region of any 
shape can always be considered as confined inside a closed space surface. Usually, when 
constructing such a metric in geometry, one follows the original work of Arthur Cayley, and takes 
a quadric as the closed surface necessary to carry out the procedure. This, however, is not at all a 
mandatory choice. Dan Barbilian has shown that a Cayleyan metric can be constructed based on 
any algebraic surface represented by a homogeneous equation (Barbilian, 1937). He has noticed 
that if, in general, Q(R1,R2,R3) is a “ternary quantic” of degree ‘n’ – which, in modern algebraical 
language means a homogeneous polynomial of degree ‘n’ in three variables – then the quadratic 
differential 

  (4.30) 

where K is a constant, generalizes the metric of Cayley, which is only a particular case of this for 
n = 2, as we just said. Here dQ is the first order differential, while d2Q is the second order 
symmetric differential of the polynomial Q. 
 This mathematical construction qualitatively represents indeed the general property of matter 
as it first appears to our senses, of being confined in a finite volume. So, by Cayleyan idea of 
metric, the intuitive property of being confined to a volume can be directly turned into a concept 
that includes the very modern theoretical idea of confinement of the material components of the 
nucleus. For instance, in the case of eccentricity of a Kepler orbit, if the coordinates Rk are the 
components of the eccentricity vector in any Cartesian reference frame in space, we can consider 
the cubic Q(R1,R2,R3)  º R1×R2×R3. This ternary cubic may be taken as representing the volume of 
a cuboid having the edges R1, R2 and R3, which contains the matter of the atomic nucleus. Based 
on this volume, the quadratic differential form (4.30) can be written as 

  (4.31) 

This metric has quite a few physical connotations that can apply to the theoretical concept of matter 
in general, of which this time only two are of interest in order to accomplish our task here. These 
are, however, in close physical correlation with each other, and that correlation is what interests 
us most. 
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 First, recall that the Hubble parameter is defined as the logarithmic derivative of a linear size 
of the universe, with respect to the cosmic time. If the “shape of the universe” is a tensor, R say, 
having the eigenvalues Rk, then its logarithmic derivative has the eigenvalues ln(Rk) and when 
referred to a cosmic time, the metric (4.31) is Misner’s variance of the Hubble parameter, which 
can be written as (Misner, 1968): 

  (4.32) 

This kinematical parameter is therefore an expression of the existence of a metric characterizing 
the size of the universe based on a measure of its volume, and can be presented as an absolute 
metric in the manner above. Of course, this characterization is not unique by any means, forasmuch 
as the measure of the volume is not unique, but this can be delegated to a precise mathematical 
study. For, two things need to be noticed here, both of them in connection with the concept of 
matter as it lies at the foundations of general relativity. 
 The first one of these, concerns the idea of extension of the meaning of volumic measure: the 
cubic Q represents the measure of extension in space of the matter in general, just as in the case 
of the central matter in the classical Kepler problem. This clearly defines a reference frame, 
however not of the usual Euclidean type. One should realize indeed, that the quantity (R1·R2·R3) 
which, as we just said, is physically a volume, remains invariant with respect to any permutation 
of the indices of symbols R1, R2, R3. In that case we can construct three different vectors obtained 
by even permutations from one another, but having the same Euclidean length, and therefore 
providing the same eccentricity of the orbit: 

  (4.33) 

These vectors also have the same Euclidean angle between them, defined by the equation 

  (4.34) 

where the symbolic sums run over the positive permutations of the symbols. As, in the generic 
case, R1¹R2¹R3¹R1, these vectors are linearly independent, and they can be taken as establishing 
a frame, however not always an orthonormal one. The angle ψ is a distinctive feature of such a 
frame, and cannot be π/2 if all the three quantities Rk are positive. Therefore, a shape statistics 
(Nedeff, Lazăr, Agop, Eva, Ochiuz, Dumitriu, Vrăjitoriu & Popa, 2015), for instance, of the 
volume of matter thus described, can never define an orthonormal frame this way. However, such 
a frame is perfectly legitimate, and certainly qualifies as an affine reference frame. There is, in this 
respect, a noteworthy case where this reference frame cannot be but exclusively orthogonal. For 
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this we have to take the liberty offered to us through the possibility of constructing a metric by any 
homogeneous cubic, no matter of its geometrical meaning. 
 In order to explain what we mean by this, it is worth noticing that if the symbols R1, R2, and 
R3 represent the roots of a cubic equation in general, for instance, the eigenvalues of a matrix, then 
the columns (4.33) establish a reference frame uniquely related to these eigenvalues. On the other 
hand, the eigenvectors of the matrix establish, in turn, another reference frame describing in space 
the physical quantities embodied in the matrix representation. If the matrix is symmetric, then this 
last reference frame is orthonormal. For the case in which the matrix is a tensor, its eigenvalues 
can be presented as what we would like to call Novozhilov averages (Mazilu & Agop, 2012) of the 
physical magnitudes represented by tensors. These are space averages over directions in space, 
performed in a orthonormal reference frame given by the eigenvectors of the symmetric tensor at 
hand: 

 
 

(4.35) 

Here the generic tensor is denoted by letter m – suggesting… magnitude. The averages are done 
over directions represented on the unit sphere represented by the unit vector û.  W is the whole 
solid angle of the space around a given position (4p, to be precise), while dWû is the elementary 
solid angle centered around û. The original case, addressed by Valentin Valentinovich Novozhilov, 
was the one of tensions and deformations (Novozhilov, 1952) representable, as well known, by 
symmetric 3´3 Euclidean tensors. There are, in general, only two Novozhilov averages that can 
be calculated this way, and these are referring to a normal component of the tensor, which in our 
notations here would be mn, and a tangential component of the tensor, which in our notation would 
be mt. The labels ‘normal’ and ‘tangential’ are referring to an arbitrary plane in space, for a tensor 
quantity can be projected in two ways on a plane of normal û: first along the normal, giving the 
‘normal’ quantity: 

   

and secondly in the plane giving the ‘tangential’ quantity: 

   

via Pythagoras’ theorem. Then the averages in equation (4.35) embody a fact of continuity: the 
measurement of the tensor in a certain point reveals averages over a sphere of arbitrary small 
radius, inside of which any orientations of planes are a priori equally probable. These measured 
quantities cannot be but only functions of the position in which they are measured. Their 
expressions are: 
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(4.36)  

where the sign of sum indicates this time a sum over all positive permutations of the numerical 
indices. In cases where these two expressions are the only available as results of the measurement, 
the eigenvalues of m are reproducible up to an arbitrary angle, which we like to call the Barbilian 
phase (Barbilian, 1938). The recipe is the following (Mazilu & Agop, 2012): construct the complex 
quantity h º u+iv, where ‘i’ is the imaginary unit, with u º m%& and v º [(5 6⁄ )m-

.////]1 .⁄ . Then we 
have, up to a permutation of the indices of eigenvalues: 

  (4.37)  

where f is an arbitrary angle of orientation of the vector representing tangential component of the 
tensor in one of the eight octahedral planes from the position of measurement. Thus, we have here 
a genuine ‘eightfold way’ which can be described based on a simply transitive continuous group 
having the SL(2,R) structure, in the variables u, v and f, with three parameters: the Barbilian group 
(Barbilian, 1938). 

 A Clasic Example of Affine Reference Frame: Maxwell Stress Tensor 

 Now, after this short presentation, let us describe our promised case of a mandatory orthogonal 
affine reference frame generated by the eigenvalues of a tensor. Any physical conclusion involving 
the light is based upon local measurements. Because a measurement always involves some kind 
of uncontrolled averages over regions of space and and sequences of time, this may be taken as 
being the case with the local measurements of an electromagnetic field. And, to the extent in which 
an electromagnetic field, can be defined by the Maxwell stress tensor, we can simply apply the 
previous theory to Maxwell stresses. As known (Stratton, 1941), this is a tensor M of the form 
(‘M’ here stands for ‘Maxwell’) 

  (4.38) 

where the matrices e and b are obtained from the vectors of intensity of electric field and induction 
of the magnetic field, which will be denoted by the same bold letters, via the relations 

   

The eigenvalues of Maxwell stress tensor (4.38) are: 
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  (4.40) 
This pair even represents an eigenvalue of M and its associated eigenvector – the Poynting vector. 
The other two eigenvectors are in the plane given by the two original vectors e and b. Now, if we 
calculate cosy from equation (4.34) using the eigenvalues (4.39), the result is 

 
 

(4.41) 

Thus the affine reference frame established according to the recipe (4.33) from the eigenvalues of 
the Maxwell tensor, can be orthogonal only in the singular case where |p| = ±m, so that the 
geometrical angle q between the two vectors e and b in their plane is given by 

 
 

(4.42) 

The quantity in the right hand side here is always ³1. Therefore it cannot represent the sine of a 
proper geometrical angle but only in the case when it is 1. But in that case q = p/2, and this is 
always the case of the electromagnetic field in vacuum. Therefore, inasmuch as the previous 
physical theory is based on electromagnetic light, for instance, the affine reference frame it selects 
is always an orthogonal Euclidean frame, just as the reference frame given by the eigenvectors of 
the Maxwell tensor. 
 The light, however, has also color, and in astrophysics, for instance, the color makes all the 
difference in extracting the information about the distant objects. It is then quite remarkable that a 
second connotation of the metric from equation (4.31) is related to the geometrization of the 
manifold of colors. This time, however, the geometry reveals its general meaning as a necessary 
tool giving the possibility of arithmetization of a manifold. We take here the concept of 
arithmetization as the general possibility of attaching numbers as measures to physical properties, 
based on the general theory of ensembles. The spirit of this approach is best grasped, in our 
opinion, by Nicholas Georgescu-Roegen, who connected the probabilities with an ordering of 
scales of the world things (Georgescu-Roegen, 1971). 

5. The Light in a Schrödinger Apprenticeship 

One can hardly say that in the year 1920 Erwin Schrödinger was still an apprentice in the field of 
physics. Experimental works, a few of them accompanied by exquisite theoretical explanations 
and conclusions, produced by Schrödinger for a decade since his graduation, can easily testify to 
the contrary. And yet, judging from the perspective of the epoch-making idea of wave function 
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introduced by him six years later, we venture to advocate the idea that the year 1920 was one of 
his ‘internship’ so to speak, in theoretical physics. For, that year shows up as being the year when 
Schrödinger rounded up some incongruent pieces of a concept, important at that historical moment, 
just as it is today for that matter, mostly for practical industrial and medical purposes: the concept 
of color. And, in our views, the fact that starting from 1920 Schrödinger dedicated his life 
exclusively to theoretical physics, carries a fundamental meaning especially related to this 
circumstance: the necessity to arithmetize a continuum. In view of one of the observations of 
Charles Galton Darwin, reproduced here in a previous excerpt, which we take as a definition of 
the concept, an interpretation in physics must be related to such a fundamental procedure. Not 
only this, but as Nottale’s approach to the transition of scale suggests, the procedure itself needs 
to be inserted explicitly as part and parcel of the theoretical physical description. 
 The concept of color fully illustrates the necessities of this procedure, but not only that: in 
hindsight it clears up the Newtonian idea of matter, by properly framing the Archimedes’ principle 
of measurement of densities. For, the difference between the quantification of densities and the 
quantification of colors is, nevertheless, a major one: in the case of colors the randomness is 
dominant, as a modern relic of the old exclusive physiological approach of the calibration and 
comparison of colors. This is not to say that nowadays the physiology does not play any part in 
the definition of the colors, because it does, mostly for its own benefit, but also for the benefit of 
theoretical physics, in general. What we want to emphasize is the fact that the subjectivism here is 
mainly related to the statistical side of the color issue, and the metric approach of the color 
continuum, to the geometry of which Erwin Schrödinger has fundamental contributions, may have 
contributed substantially to the ideas which resulted in the creation of the concept of wave function 
as we have it today. Thus, if Louis de Broglie has the widely recognized merit of participating, 
and almost solitary at that, to the creation and development of the objective side of the duality 
wave-particle, one can surely say that Erwin Schrödinger has such a merit but referring to the 
‘subjective’ side of that concept. The recognition of this fact comes from the specific participation 
of Schrödinger to rounding up the modern concept of color, and thus it takes us unexpectedly to 
the very foundations of the modern theoretical physics. 
 At the time of Schrödinger’s contribution on the theory of colors, this one has already have 
gotten out of the realm of pure experimental work assisted by an occasional mathematics, entering 
the phase of physiological character based on a firm mathematical principle, through the works of 
Hermann von Helmholtz. That firm mathematical principle was the theory of metric spaces. In his 
famous habilitation dissertation from 1854, which set the ground for the modern theory of metric 
manifolds, Bernhard Riemann wrote an often-cited phrase: 
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The positions of the objects of sense, and the colors, are probably the only familiar 
things whose specifications constitute multiply extended manifolds (our Italics). 

This phrase has been taken as a mathematical research incentive ever since its publishing thirteen 
years later (Riemann, 1867), mostly in geometry, and mostly regarding the first “thing” of the two, 
viz. “positions of the objects of sense”, whereby the “specifications” are mainly made by reducing 
the spatial extension of the objects to points in a three-dimensional manifold. The colors are, 
however, “things” through the agency of which those “objects” are made available to our senses, 
but they did not seem to get so much attention, at least from a mathematical point of view. The 
work of Hermann Günther Grassmann on a linear theory of color, almost contemporary with that 
of Riemann (Grassmann, 1853), had not received so much attention, just like Riemann’s work for 
that matter, and in fact one can assume that the whole life of Grassmann stands witness of such a 
kind of social rejection. It was not so much the inexactness of Grassmann’s laws regarding the 
mathematics of color continum, which the physiology started to assess only lately (Pokorny, Smith 
& Xu, 2012), that contributed to this state of the matters, as much as it was the absence of social 
means for undersanding their true drive. 
 The rival theory of colors, created by Hermann von Helmholtz (Helmholtz, 1852), had a 
substantially better chance which, in hindsight, can be explained by the fact that it was predisposed 
to a metric description (Helmholtz, 1891, 1892). And in this instance, from the very same algebraic 
point of view, it requires linearity only at a certain level, which best fits the color measurement 
needs. In fact one can say that insofar as the practice of mathematics is concerned, the theory of 
Helmholtz is closer to the Riemann’s original views. However, it has the great merit of notifying 
the human spirit on the big difference between the “extended manifolds” of “positions of the 
objects of sense” and the “extended manifolds” of the human means of sensing those objects: the 
interpretation is referring here to ensembles having the cardinality of continua. For, as Schrödinger 
expressed it: 

 The manifold of lights has a higher power than the power of the continuum, 
namely that of a space of functions; and hence an indefinitely large number of 
dimensions. A priori it would seem possible that this could also hold true for the 
manifold of color qualities, or at least that it could have had a very large number of 
dimensions; as in the case of manifold of combined tones, since the ear acts to some 
extent as a harmonic analyzer. That is not the case here. Rather, according to the 
principle of matching appearance on adjacent fields, the lights arrange themselves 
into large groups – each one of the power of the function space – and the manifold 
of these groups of the same appearance is, for normal color-perception persons, of 
the dimension three – the highest ever observed. This dimensionality is a 
fundamental fact of basic colorimetry, and its derivation from experience will be 
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our closer concern here. [(Schrödinger, 1920), our translation and Italics; see also 
(Niall, 2017), Ch. II, first communication] 

Obviously, there is a difference between the manifold of lights and the manifold of color qualities. 
In other words, the color, considered as a property of light, is more than the frequency, which is 
its basic physical association even nowadays. The main point here is that the eye is not simply a 
harmonic analyzer, at least not to the same extent as the ear, for instance. Fact is that the light is 
produced independently of a material structure accessible to our senses, while the sound depends 
essentially on such a structure. This very fact, i.e. the accessibility to our senses, seems to make 
an essential difference. Anticipating a little some results of our discussion here, we can say that 
the color is an expression of transcendence from transfinite to finite order, once it can be 
discovered in the relationship between the frequency and the wavelength. 
 But, let us start from the very beginning: the above excerpt contains the essentials of what has 
driven Schrödinger’s contributions to the color theory, and in fact his main contributions to the 
future wave mechanics, soon to have its first milestone set by Louis de Broglie from a purely 
physical point of view (de Broglie, 1923). Those essentials are obviously abridged here by the idea 
of cardinality of continua, necessary in case one thinks to give a continuum the simplest structure 
necessary for interpretation: that of an ensemble. In retrospect, one can say that Schrödinger was 
compelled to take this action by the unsatisfactory concept of the very same physical light ray 
contemplated six years later by Louis de Broglie, which did not contain properly the feature of 
color. This fact is not quite so explicitly set by Schrödinger from the very beginning, but gets to 
us through the explanations he offers in the works on color from 1920. In order to make the reasons 
of his contribution more obvious, it is perhaps better to reveal that contribution from the very 
beginning. And we cannot accomplish such a task without first getting into description of the 
influence upon this subject of another pillar of the modern natural philosophy, which was Hermann 
von Helmholtz, known for his fundamental contributions to many different chapters of the physics 
of 19th century. 

 A Special Contribution of Helmholtz 

 The color is, obviously, one of the most important among the physical properties of the objects 
revealed to us by senses, and is usually described as a continuous three-dimensional manifold. The 
reader interested on every minute detail of measurement procedures and theoretical account of 
light, may consult any edition the comprehensive work of Günther Wyszecki and Walter Stanley 
Stiles on Color Science. We had at our disposal (Wyszecki & Stiles, 1982). By and large the 
mathematical theory of color stays in the shadow of the quote we presented above from the 
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celebrated Dissertation of Bernhard Riemann from 1854, “Über die Hypothesen, welche der 
Geometrie zu Grunde liegen”, which established the grounds of the modern metric geometry. 
However, we are interested here in another idea of Riemann, much more significant in our context. 
It touches the difference of two procedures that have always been mixed, sometimes even 
inadvertently, with each other in calculations of the density of matter, as we have exemplified 
previously with an excerpt from Feynman. To wit: 

Parts of a manifold distinguished by a characteristic or a boundary are called 
quanta. Their comparison regarding quantity takes place in case of discrete 
extensions by counting, in case of continuous extensions by measurement. The 
measuring consists in a superposition of the extensions to be compared; for 
measuring, therefore, a means is required to carry one extension as a meter for the 
other. If this is lacking, one can only compare two extensions if one is a part of 
the other, and even then only to decide for the more or less, not for how much. 
The investigations which may be made of them in this case represent a general 
part of the doctrine of extensions, independent of measures, where the extensions 
are not regarded as independent of location, and not as expressible by a unity, but 
as domains in a manifold. For several parts of mathematics, especially for the 
treatment of multivariate analytic functions, such investigations have become a 
necessity, and their absence is probably a major cause that the famous Abel 
theorem and the achievements of Lagrange, Pfaff, Jacobi for the general theory of 
differential equations were unfruitful for so long. For the present purpose it 
suffices to emphasize two points of this general part of the doctrine of the extended 
quantities, where nothing else is assumed other than what is already contained in 
the concept of quantity, of which the first is the generation of the concept of a 
multiply extended manifold, and the second concerns the reducing of the positional 
determinations in a given manifold to quantitative determinations, thus making 
clear the essential characteristic of an n-fold extension. [(Riemann, 1867); our 
translation and Italics] 

With Hermann von Helmholtz, the measurement of colors takes a fundamental turn prompted by 
necessities of physiology of vision. Specifically, one needed a means of quantitatively describing 
that ‘comparison of the extensions’ mentioned by Riemann. At this juncture, the idea of metric 
was taken by Helmholtz as a measure of the difference in the “extensions to be compared”. This 
is part of the general philosophy which says that in order to declare things identical, one needs first 
to know their difference. And the physiology of vision already had such a case of measuring the 
difference in things by the difference in sensations: it was the law of Fechner, which stipulated 
that the intensity of sensation is proportional to the logarithm of stimulus engendering that 
sensation within the eye. 



 71 

 So, Helmholtz was the first to construct a significant metric for the manifold of colors 
(Helmholtz, 1891), based on Fechner’s law of relation stimulus-sensation. In our reference frame 
above, R1, R2, R3 would represent the primary colors, nowadays usually red, green and blue, at 
least as far as routine eye vision is concerned. Then any color can be linearly represented, indeed, 
with respect to these primaries by the quantity: 

  (5.1) 

where xk are the amounts of corresponding primary color Rk contained in the quantity representing 
the color R. Mantaining the same primaries, which is the customary case in the modern theory of 
colors, defines a ‘universal reference frame’ as in the regular Euclidean geometry. In this reference 
frame, a certain color can be therefore represented by the ‘ket’: 

 

 

(5.2) 

Now, Helmholtz’s problem was to construct a Riemannian metric for these quantities in the 
reference frame given by the three fixed primaries. His procedure can be best categorized in 
modern geometrical terms by the statement that there is a certain colorimetric approach of 
establishing the amounts xk of the primaries, whereby the metric can be taken as the difference 
between the colors distinguished by a normal eye. Quoting: 

 Determination of similar color pairs. If we have a pair of composite colors, 
one of which contains the quanta x, y, z, of the primary colors, the others which 
differ a little (x + dx), (y + dy), (z + dz), and the intensity of the first colors can be 
increased in the ratio 1:(1 + e), so that their components become 
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colors is 

 
 

 

With variable values of  e, this becomes a minimum when 

 
 

 

or 

 
 

(3a) 

Now, if we give to  e this value, we get the value of the minimum of dE2 as 

R = x1R1 + x
2R2 + x

3R3

x =
x1

x2

x3

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

x(1+ ε) , y(1+ ε) , z(1+ ε)

dE2

k2
= dx − εx

x
⎛
⎝⎜

⎞
⎠⎟
2

+ dy − εy
y

⎛
⎝⎜

⎞
⎠⎟

2

+ dz − εz
z

⎛
⎝⎜

⎞
⎠⎟
2

0 = −2 dx − εx
x

+ dy − εy
y

+ dz − εz
z

⎛
⎝⎜

⎞
⎠⎟

dx
x

+ dy
y

+ dz
z
= 3ε



 72 

 
 

(3b) 

 
 

 

The x, y, z which are used to indicate the color value of the various spectral colors 
of Messrs. A. König and C. Dieterici, are related to the elementary colors R, G, V, 
according to Newton’s law by linear homogeneous equations, but their coefficients 
are initially unknown. Let us denote these values 

 

 

(4) 

It should first be noted that each of the coefficients in each horizontal row can be 
given an arbitrary value, since 

 
 

 

do not change their values if each of the amounts x, y, z is modified by an arbitrary 
constant factor. In other words the choice of the coefficients in the sense of Young’s 
theory is only limited by the fact that, the values of R, G, V belonging to the spectral 
colors, no negative values may be given to x, y, z. This will never be the case if all 
the coefficients a, b, c have positive values. [(Helmholtz, 1891b); our translation 
and Italics; original captions] 

The problem of definition of the colorimetric terms is hardly settled even today, but hopefully the 
Italicized phrases in this excerpt are self-explanatory to some point, at least for the geometrical 
purposes which we follow closely in the present work. The reader interested in details has at his/her 
disposal, besides the already cited comprehensive work of Wyszecki and Stiles, a compendium by 
David L. MacAdam containing excerpts from principal inspirational works in colorimetry along 
the time, rendered in a historical order (MacAdam, 1970). A work of Deane B. Judd, closer to our 
times is particularly interesting, inasmuch as it contains definitions of colorimetric terms, even 
with translations from German (Judd, 1940); as a matter of fact any glossary published by modern 
optical societies will do. 
 Now, Helmholtz’s definition of the ‘minimum difference in feeling’ has a precise geometrical 
meaning, which completely justifies his mathematical procedure. Certainly, his metric (3b) 
characteristic to the situation of such a minimum, is no different from (4.32), and this may have 
an explanation in the fact that the Pogson-type correlation, used for associating the distance to the 
magnitude of the astrophysical objects, is in a sense similar to Fechner’s physiological law. At the 

dE2

k2
= 1
3

dx
x

− dy
y

⎛
⎝⎜

⎞
⎠⎟

2

+ dy
y

− dz
z

⎛
⎝⎜

⎞
⎠⎟

2

+ dz
z
− dx
x

⎛
⎝⎜

⎞
⎠⎟
2⎧

⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

dE
k

= δλ
3

1
x
dx
dλ

− 1
y
dy
dλ

⎛
⎝⎜

⎞
⎠⎟

2

+ 1
y
dy
dλ

− 1
z
dz
dλ

⎛
⎝⎜

⎞
⎠⎟

2

+ 1
z
dz
dλ

− 1
x
dx
dλ

⎛
⎝⎜

⎞
⎠⎟
2

x = a1 ⋅R + b1 ⋅G + c1 ⋅V
y = a2 ⋅R + b2 ⋅G + c2 ⋅V....................
z = a3 ⋅R + b3 ⋅G + c3 ⋅V

⎫
⎬
⎪

⎭⎪

dx
x
, dy
y

and dz
z



 73 

time of von Helmholtz, this law has been held as essential in the comparison and quantification of 
the color continuum by direct vision. The excerpt above illustrates, in the first place, the way he 
thought to construct a global metric of this color continuum: geometrically, in modern terms, this 
is a metric possessing a special Killing vector. Indeed, if such a vector is taken as a displacement 
in the color continuum, the quadratic form of the metric is invariant with respect to this 
displacement if (Vrânceanu, 1962): 

 
 

(5.3) 

where g is the metric tensor. Now, it is clear that the displacements sought for by Helmholtz are 
given by vectors of the form xk º e×xk, so that the Killing equation is of the form: 
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Therefore, all of the entries of the metric tensor must be homogeneous functions of degree –2 in 
the coordinates ordering this continuum. The choice of Helmholtz is 
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and obviously satisfies the Fechner’s law in the sense that the differential components of the metric 
do not change if the amounts of primaries are “modified by an arbitrary constant factor”. So the 
minimum of the metric should formally coincide with the Misner’s parameter of anisotropy of the 
universe, and this may not be just a formal coincidence, as long as the Hubble parameter is 
evaluated by light measurements concerning the magnitude of astrophysical objects. However, 
two main objections can be raised here. 

 Enters Erwin Schrödinger 

 The first one of these was laid down by Erwin Schrödinger, and concerns, on one hand, the 
parameter to which the Fechner’s law refers, in case it is indeed a law, and on the other hand, the 
correctness of that law. He noticed that the theory of color continuum should be centric affine, and 
that the surface of equal brightness ‘h’ should be a surface orthogonal to the direction of position 
vector. According to his logic, the function h(x) has to satisfy the condition: 
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(5.7) 

and h(x) is not a linear function as the first condition (5.6) requires. However, Schrödinger is 
convinced that the experimental data up to date (i.e. year 1920) shows that the brightness is linear 
to a very good approximation, a condition not so sound, as it was shown in later experiments. Be 
it as it may, the bottom line of the Schrödinger’s analysis was a proposal for a little more general 
metric tensor of the color continuum. His metric tensor is still diagonal, but has as components 
more general entries, still homogeneous of degree –2, involving three arbitrary constants 
[(Schrödinger, 1920), the Part III of communication, equation (4.12)]. Schrödinger’s conclusion 
was that having such a metric… 

… we obtain constant intervals following Fechner’s Law not only for the same 
stimulus quality but also over the whole gamut of color, as experience appears to 
require over a large region of color space. [loc. cit. ante, our Italics; translation 
from (Niall, 2017)] 

This conclusion touches the second one of the objections we have in mind here, which gives to 
Schrödinger’s intervention a genuine character from the point of view of the future physics. 
 The ‘experience’ here is that physics leading to quantum theory, which requires essentially 
‘the whole gamut of color’. This is, indeed, the fundamental difference between Fechner’s and 
Pogson’s laws: the first one is refering to a precise stimulus (color), while the second one is 
referring to a finite portion of spectrum, if not even at the whole spectrum. From the point of view 
of this experience, the color measurements should satisfy the principles referring to the blackbody 
radiation, and thus there is physics to address such measurements. As a matter of fact this physics 
existed as such even at the time Schrödinger developed his theory. For, as one can notice right 
away, Helmholtz’s way of acceptance of the Fechner’s law, expressed in the special form of the 
Killing vector of the metric, is actually the mathematical basis of demonstration of Wien’s 
displacement law, and therefore the general mathematical premise of Planck’s law of radiation. 
This last law refers to the spectral density of radiation and even gives the known expression for it. 
Although this expression is a consequence of a specific statistical behavior of the radiation (Mazilu 
& Porumbreanu, 2018), its statistical standing – as a connection between ensemble average and 
variance function – forbids us from taking it as a density. But it can be taken nevertheless as a 
probability density. Specifically, it is a Gaussian density of probability for the cubic root of the 
ratio between frequency and temperature (Priest, 1919). 
 This conclusion sound rather speculative, even hazardous we might say, for the state of mind 
of a physicist used to the classroom physics of the last part of the previous century, whereby the 
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Planck’s law is a kind of taboo, so to speak. This is why we did not just take for granted the old 
arguments of Irwin G Priest himself, but documented this conclusion based on many sets of 
classical data on blackbody radiation (Mazilu, 2010), and also on the modern official data on 
cosmic bacground radiation (Fixsen, Cheng, Gales, Mather, Shafer, & Wright, 1996). In this last 
case numbers are at the public’s disposal, and using those numbers the conclusion formulated 
above seems to be satifactorily true, at least just as satisfactory as the official conclusion that the 
cosmic background radiation is a Planck-type blackbody radiation. Therefore the Planck’s law can 
be taken as a probability law, as long as it can be reduced to such a fundamental law by a 
transformation used currently in the statistical practice (Box & Cox, 1964). However, the 
implications of this conclusions are much more profound, for they target the very transition 
between the microcosmos and the universe in the case of a SRT. This fact seems rather intuitive if 
we think of the data on blackbody radiation: it characterized to atomic world, and all of a sudden 
proves to be valid at the scle of the universe. 
 However, two things are forced now upon us now, and require our close consideration. First, 
the theoretical background of the demonstration of Planck’s in the microscopic world is the 
physical adiabatic transformation. The history proved that the adiabatic transformation needs an 
appropriate geometry from the perspective of wave theory related to nonstationary Schrödinger 
equation. Secondly, we may need a reformulation of the Wien’s displacement law, insofar as a 
probability density equivalent to Planck’s law – like that of Priest – does not seem to contain a 
factor free of temperature. Both these issues have been addressed in a moment of the history of 
physics related to the name of Sir Michael Victor Berry. 

6. The Wave Theory of Geometric Phase 

To Madelung, just like to Schrödinger himself, the stationary Schrödinger equation was an 
eigenvalue equation. Likewise, the nonstationary equation was worth considering just as long as 
it provided this eigenvalue equation. In the beginning, though, the connection was not quite as 
direct as it seems today. To wit, the stationary equation was instrumental in guiding the reason 
towards a nonstationary equation, for both, Madelung as well as Schrödinger himself. The main 
difference in the two approaches is that Madelung assumes a Born-type of interpretation for the 
wave function in connection with density of a fluid, and this, just like the actual probabilistic 
interpretation of the wave function, leaves the phase of the wave function undecided. In view of 
the identification of the phase with the classical action, this lack of decision might not be quite out 
of line: after all, the classical action itself was always undecided in theoretical mechanics. 



 76 

However, the wave mechanics, with its quantum amendment, brings an important point to fore: a 
specific intervention of the geometry, in fact, of the differential geometry. 

 Enters Sir Michael Berry 

 It is in this matter indeed, that the main result of Sir Michael Berry’s work on the geometry 
required by the existence of arbitrary phase factors (Berry, 1984) makes its mark, showing that the 
nonstationary Schrödinger equation means much more than usually thought, when taken from the 
perspective of fundamental knowledge. To wit, based on nonstationary Schrödinger equation, 
Berry noticed that the adiabatic changes of the phase in the definition of the wave function ask for 
a definite differential geometry of the adiabatic parameters. Thinking back, one must admit that 
the nature of such a geometry, as well as that of the associated statistics, was somehow obscured 
in the initial works on the interpretation of quantum mechanics, as this interpretation started from 
considerations on a single adiabatic parameter only, and remained concentrated upon this case for 
a long while (Mazilu & Porumbreanu, 2018). With the work of Berry, though, the adiabatic 
evolution, in general, gets the explicit position of a transition between two scales of spacetime, 
much in the way Erwin Madelung pointed it out (Madelung, 1927). For once, this points to a 
position of the wave function close to, if not identical with, that conferred to it by Nottale’s SRT. 
On the other hand, however, it is more important to notice that Berry’s work actually gives a 
precise place to the potential function in the geometry of the world in general. Let us therefore 
pinpoint the essentials of this theory, by following the line of thought of Michael Berry. 
 The time dependent Schrödinger equation to be considered here is: 

  (6.1) 

The notation suggests the Born-Oppenheimer approximation, according to which in describing the 
behavior of the ‘fast’ variables (p,r) – in this special instance the phase space position parameters 
of the point of reduced mass µ – there are ‘slow’ variables (P,R), that can be taken as adiabatic 
parameters – as are, for the very same instance the coordinates of the position of the total mass M 
(Born & Oppenheimer, 1927). In other words, the geometry of adiabatic parameters is here a 
geometry of the space proper. On the other hand, it should be admitted that the wave function must 
have several components, a suggestion which explains the representation of the wave function 
above as a ‘ket’: |Ψñ. The Hamiltonian controlling the motion of the fast variables is 

 
 

(6.2) 

depending on the slow position through potential V(R,r). The ensuing stationary Schrödinger 
equation (Darwin, 1927): 

  (6.3) 

i! | "Ψ〉 = H(R,r) |Ψ〉

h(R,r) = p
2

2µ
+V(R,r)

h(R,r) |R〉 = ε(R) |R〉
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then provides the eigenfunctions and the corresponding eigenvalues of the problem, which, of 
course, will parametrically depend on the slow position. This dependence is what brings forth the 
Berry geometrical connection in the space of slow variables and this connection takes a physical 
shape via a vector potential defined as 

  (6.4) 
Indeed, in his 1984 work Michael Berry took note of the fact that if, according to the prescription 
of the adiabatic approximation, one has to write the solution of nonstationary Schrödinger equation 
corresponding to the Hamiltonian (6.2) in the form 

 
 

(6.5) 

then the arbitrary phase γ(t) is not integrable in a cyclic transformation in the space of adiabatic 
parameters given by the slow position. More to the point, using the nonstationary Schrödinger 
equation, the phase γ(t) proves to be a solution of the ordinary differential equation 

  (6.6) 

with A(R) defined by (6.4), so that in a cyclic transformation along a closed curve in the space of 
slow parameters, the wave function gains a phase factor depending on the cycle: 

 
 

(6.7) 

Now, what is more important for our discussion at this juncture, is a fact which Berry himself 
noticed: if the fast variables (p,r) are the spin variables represented by a vector S, then the 
Hamiltonian 

  (6.8) 
is invariant with respect to the rotations of the adiabatic spatial background. So he found that in 
this case, the curvature associated to the connection (6.4) is simply the magnitude of intensity of 
a magnetic field given by a well-known expression 

  (6.9) 

Notice, however, that insofar as it should be referred to as a curvature, this vectorial expression is 
in fact representative for many other fundamental physical situations. The chief among these is the 
one involving the classical Newtonian central force responsible for gravity. 
 In fact, as Barry Simon recognized in a work conferring universality to Berry phase (Simon, 
1983), a trait which, we should say, is intuitively appropriate for a fundamental ingredient of the 
natural philosophy of any taste, the vector (6.9) itself is universal and its presence in the theory is 
only a matter of the language necessary for adapting the theory. Quoting: 

A(R) ≡ 〈R | i!∇R |R〉

ψ(t) = exp − i
!

ds ⋅ ε(R(s))
0

t
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 Since Berry is talking about integrating (e,de) (i.e. a differential 1-form, a.n.) 
along curves which he makes analogous to a vector potential, he talks about 
magnetic monopoles. Since we only care about (de,de) (i.e. a differential 2-form, 
a.n.) whose dual is divergenceless away from degeneracies, we do not use the 
magnetic monopole language. Since the dual may not have a zero curl, electrostatic 
language is not appropriate. Since the sources have a sign, we still use the phrase 
“charge” for the coefficient of the delta function in d[(de,de)] at singularities. 
[(Simon, 1983), Note 15; our italics] 

The universality conveyed to Berry’s phase by the work of Barry Simon, needs to be somehow 
explained in the most general terms, and we shall do this here with reference to a three-dimensional 
phase space: the usual positions with respect to a space reference frame must be, in our opinion, 
considered as ‘phases’ of the classical material points. As we shall presently show, this explanation 
retains the statistical spirit of the original discovery descending directly from the early stages of 
the two new mechanics, quantum and undulatory [(Berry, 1985); (Hannay, 1985)]. However, our 
approach has the advantage of avoiding the classical Hamiltonian formalism, which demands a 
precise knowledge of the energetical content of a system. This, in our opinion, is still wanting in 
physics as, in fact, it was always wanting (Poincaré, 1897). 
 Again, we find it beneficial discussing the general principles based on a well-known example, 
and this is, naturally, the so-called Aharonov-Bohm effect (Aharonov & Bohm, 1959). This case 
comes in handy here, because it is referring to the nonintegrability of the phase factors representing 
the indecision in the definition of the wave function in closed space loops, which, as the work of 
Berry clearly reveals, should have a universal connotation. Thus, considering the adiabatic 
parameters’ space as a configuration space necessary in the process of interpretation – after all, the 
wave function must be a state function! – we impose upon the evolution in this space the Liouville 
theorem, according to which the elementary volume of the space should be preserved along the 
motion. In these conditions the motion can be described by a field of vectors, and this field of 
vectors decides its time as a succession of time moments, helping to order the set of states along 
the motion. In spite of the manner in which it is customarily taken in theoretical physics, the time 
is never a matter of free choice, and in this respect a Liouville dynamics is just about the only one 
of its kind, set on satisfying a correct definition of time. The Figure 1 from (Berry, 1984) for 
instance, should be related to such an interpretation. 
 We describe the dynamics, in some general coordinates, x1, x2, x3 say, obtained with the benefit 
of a reference frame. Assume further that with respect to these coordinates the oriented elementary 
Liouville volume of the space is given by the exterior differential 3-form: 

  (6.10) 321 dxdxdx ÙÙ=W
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Then, according to Vladislav Nikolaevich Dumachev, this dynamics has the following geometrical 
grounds (Dumachev, 2009, 2010, 2011). Generally, as in any phase space having a physical 
meaning, the exterior differential form of the elementary volume is preserved through the flow 
given by a vector X if its Lie derivative along this vector vanishes. This condition allows us to 
assume that the time derivative of a differential form is given by the Lie derivative along a path 
having the time as a natural continuity parameter. Postponing, for the moment, the detailed 
explanation of this last concept, let us concentrate upon the consequences of such identification. 
For an exterior differential form in general, the Lie derivative is calculated via Cartan’s ‘golden 
rule’, viz.: 

  (6.11) 
where iX(W) is the projection of the exterior form W along the vector X [see (Arnold, 1976) for a 
detailed explanation of the concept, and significant examples]. If the space is three-dimensional 
and the differential form is (6.10), then dÙW = 0 because W is a 3-form, and then the vanishing of 
Lie derivative equation reduces to 

 
 

(6.12) 

By the Poincaré lemma [(Spivak, 1995), pp. 94ff] this means that, in fairly general conditions, the 
exterior form iX(Ω) is exact, so that there is a differential form, ‘h’ say, allowing us to write: 

  (6.13) 
Obviously, here we cannot have but two different cases, depending on the degree of the exterior 
differential form ‘h’, which in turn depends upon geometrical nature of the vector field X. 
Specifically: 

(1) if X is a vector proper, i.e. in the coordinate basis it is expressed as 
  (6.14) 

then the differential form Θ, as defined by equation (6.13) is 2-form, inasmuch as for iX(Ω) we 
have the expression: 

  (6.15) 

Thus, ‘h’ must be a 1-form: 
  (6.16) 

while from equation (6.13) we deduce that the vector X must be assumed a curl from the 
mathematical point of view, i.e. for theoretical necessities: 

  (6.17) 

This vortex is generated by the differential form ‘h’ from (6.16), which explains the lower index 
in our notation of the components of the vector X. 
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(2) if X is bivector – equivalent in this particular case with a skew-symmetric matrix – which 
in the coordinate basis can be written as: 

  (6.18) 

the differential form Θ defined in equation (6.13), is a 1-form, so that ‘h’ must be a 0-form, i.e. a 
regular function. In this case the vector X must be assumed a gradient for theoretical necessities, 
having the components 

  (6.19) 

with an obvious meaning for the upper index of the components. Thus, in the classical theory of 
gravitation for instance, one can assert that the volume element is carried along the force vector. 
However, if the force is a gradient it is carried on a surface by a vortex, while if the force is a curl, 
it is carried along a line. This is the well-known duality revealed by the Maxwell’s electromagnetic 
theory, which turns out to be quite a general rule. 

 A Kepler Motion Analysis: the Geometrical Condition of Yang-Mills Fields 

 Our quintessential example in indicating the procedure of constructing the phase space is, 
again, the dynamical solution of the classical Kepler problem. Taken as such, this problem 
highlights indeed a fundamental element of physics upon which we need to insist especially: the 
quantitative definition of time by the physical process of revolution of the celestial bodies. This 
definition is stipulated in the second of the Kepler laws. Here we shall extend the problem of this 
time, but from the above mathematical point of view, by speculating on the fact that in a two-
dimensional world, the elementary area 2-form is in fact the Liouville elementary volume, the two-
dimensional analogous of the 3-form from three-dimensional case represented by equation (6.10). 
 Thus the plane of the the classical dynamics associated with a Kepler motion can be organized 
as a phase plane in a classical sense, where, nevertheless, the momenta corresponding to 
coordinates are not necessary. Indeed, the coordinates themselves are reciprocally momenta to one 
another in a natural way, based on the differential 1-form of area. If ‘x’ and ‘y’ are the generic 
coordinates of this ‘phase plane’, then exactly as in the three-dimensional case, from the Lie 
derivative (6.11) only the second term survives: 

  (6.20) 

because in a two-dimensional world the exterior differential of a 2-form vanishes. Thus, the rate 
of variation of the ‘Liouville elementary volume’ should be given here by 

  (6.21) 
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where v is a certain velocity field. If this elementary area is preserved by transport, then the 
differential 1-form in the right hand side of this equation should be exact, so that by Poincaré 
lemma, there is a ‘current function’, ψ say, such that 

  (6.22) 

Thus, the velocity field v satisfies to partial differential equation: 

  (6.23) 

In cases where a potential exists as well, both this potential and the current functions are solutions 
of the Laplace equation: 

  (6.24) 

 Now, if the velocity field is linear and homogeneous in the coordinates of this motion: 

  (6.25) 

the condition (6.23) is satisfied only when the matrix there is traceless: A + D = 0. Consequently 
if the evolution is Hamiltonian, in the transformation (6.25) only three parameters from the four 
ones are essential. This could be seen even directly: the 1-form in the left hand side of the equation 
(6.21) can be written as 

  (6.26) 

so that, given the condition (6.23) it is an exact differential. In this case, redefining the parameters 
by the following identifications: 

   
the equation (6.26) can be written in the form 

  (6.27) 

One can thus read directly the form of the function required by the condition of vanishing of the 
elementary area rate during the transport: it is the quadratic form giving the Keplerian trajectory 
as a conic. The equation (6.25) can be written as 

  (6.28) 

This tells us that the velocities linear in coordinates, necessary for vanishing of the elementary rate 
of area, as given by equation (6.27), are tangent to the family of conics 

  (6.29) 
where Q is a constant; they represent trajectories having the same center. 
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 An observation of general interest in the theoretical characterization of the matter is worth 
extracting from the developments up to this point. Due to equation (6.21), the vector v qualifies as 
a Killing vector field. Assuming linearity, as in equation (6.25), this Killing vector is of the 
Helmholtz type from the theory of color vision, only more general, satisfying the observations of 
Schrödinger, as it were. Until a proper occasion to make use of this observation, let us only notice 
the meaning of the linear relation (6.25): it can be taken as defining the coordinates of a classical 
material point having the velocity v. Case in point: the definition (4.7) of the eccentricity vector, 
which is related to the position of a classical material point in matter. However, let us continue 
with the mathematical development here, to see where it leads us. 
 The potential function f does not exist here but only in the cases where the 1-form 

  (6.30) 

is an exact differential. In the most general conditions in parameters – i.e. in the cases where a, b, 
g are different, even arbitrary with respect to each other – the motion along the trajectory (6.29) 
under condition (6.30) must satisfy to a special constraint – different from the vanishing of exterior 
differential of the 1-form (6.30) – showing that it is an exact differential. The condition of vanishing 
in (6.30) would only mean a restriction in the parameters a, b, g; however, proceeding as before, 
i.e. putting the equation (6.30) in the form exhibiting an exact differential: 

  (6.31) 

we can give directly the potential without any reference to the parameters. Indeed, the restrictive 
case in parameters: a + g = 0, a consequence of the equation dÙ(vxdx+vydy) = 0, is obviously 
included in this transcription of the 1-form. Aside from this case – very special indeed, when it 
comes to the general parametrization of the orbit with respect to its center – from equation (6.31) 
follows that only if the motion is such that the rate of the area swept by the position vector with 
respect to the center of the conic (6.29) is a constant – the area constant from the Kepler problem, 
which we shall denote from now on by the symbol ‘ȧ’ – a potential can exist, which is however 
not uniquely defined, but depends upon the area constant and time. Indeed, if: 

  (6.32) 
then (6.31) becomes 

  (6.33) 

which means that the velocity potential is defined up to an arbitrary additive constant by 

  (6.34) 

This equation represents therefore the condition that the motion thus defined is performed along 
the normal to the trajectory (6.29). 
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 Obviously, in order not to constrain the parameters of the Keplerian trajectory of a classical 
material point, we ought to pay a price. In the latter case here this comes down to vanishing of the 
differential form (vxdx+vydy). From a geometric point of view, this only means, indeed, that the 
velocity field thus defined is perpendicular to the trajectory. However, with reference to such 
trajectories, i.e. objects geometrically located by the three parameters a, b, g, the vanishing of our 
1-form means a deformation described by the gradient of a potential, ‘u’ say, in a form rendering 
the true meaning of this velocity field: 

  (6.35) 

In other words, the condition that the area rate can be defined the way it is defined in mechanics 
(i.e. by the position vector and its time rate), is in fact given by the existence of a deformation of 
the Keplerian orbit, admiting a linear field of rates of deformation. 
 Before anything else should be said here, let us notice that the area rate (6.32) is calculated 
with reference to the center of the orbit. Should this rate be calculated with respect to the focus, 
this equation would then get the form 

  (6.36) 
where ‘e’ is the eccentricity of the orbit, and ‘a’ is its major semiaxis. Now, this raises an important 
problem: recall that the center of force in the classical Kepler problem is actually in the focus of 
orbit, while its center – even though qualifying as a center of force according to Newtonian theory 
of forces – is just a space position with no physical content from the point of view of the classical 
natural philosophy. However, Newton’s way of defining the forces which he invented for 
describing the gravitation, is by a genuine theory of measurement (Principia, Corollary 3 of the 
Proposition VII from Book I): the ratio of any two forces pulling simultaneously a certain point 
on the actual orbit should be recognized in a specific way in the parameters of the orbit. Now, in 
the Kepler problem one of these two forces certainly pulls toward the focus, for that is the position 
where the attractive matter is located. However, it is only when the other point is taken as the 
center of the orbit that one obtains the central force of magnitude inversely proportional with the 
square of the distance to focus. Thus, the second force involved in the Newtonian procedure of 
describing the central forces is generated by… nothing, for in the center of the orbit there is no 
matter at all! But this force has an entirely different reality, made gradually obvious in physical 
optics especially after the works of Augustin Fresnel. We shall come to this issue again later on. 
 For the moment, in order to describe the deformation above in terms of the variation of orbit, 
as physically seems just a natural thing to do, notice that we can define the variation of a quadratic 
form like that from equation (6.29) by the usual rule of differentiation. This means that the 
variation in question can be written in the form 
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  (6.37) 

In so writing this variation, we intended to draw attention upon the fact that, when defining the 
variation this way, we have two differential contributions: one coming out of the variation of the 
matrix of the quadratic form, the other one resulting from the variation of the position vector itself 
in the plane of motion. We are now interested in somehow separating these variations, in order to 
introduce the physics through the entries of the matrix α. For instance, in the classical Kepler 
problem where the quadratic form is coming out from the second principle of dynamics for a 
Newtonian force, these entries have the special form from equation (4.8), depending on the initial 
velocity chosen for the motion. In general, therefore, physically speaking, the parameters of the 
orbit are a matter of choice, actually even a convenient choice for the problem at hand. Therefore, 
we would be interested in separating the two variations through some universal conditions, i.e. 
conditions independent of the actual position of the revolving material point, and therefore 
imposed exclusively upon the matrix from equation (6.37). One of these conditions seems obvious 
here: we just need to require that the variation of orbit should be due exclusively to the variation 
of the matrix. Using (6.37), this condition can be translated into: 

  (6.38) 
Thus, in order that the variation of the orbit should not depend but on the variation of its defining 
matrix, it is sufficient that the bilinear form  ádx|α|xñ vanishes. This defines a connection between 
the differentials of the position coordinates and the differentials of the matrix entries, which can 
be expressed as: 

  (6.39) 

where ‘dt’ is, for the moment, a differential of some arbitrary ‘time’ parameter. A comparison 
between (6.28) and (6.39) shows that this last equation can be interpreted as an equation of the 
‘motion’ along which the 1-form (6.27) must vanish, while the quadratic form from that equation 
is constant, thus providing a conservation law for that motion. Accordingly, the equation (6.39) 
defines the velocity field we contemplate here. On the other hand, if that velocity field is thus 
defined, the variation of the quadratic form (6.37) cannot be accomplished but only through the 
variation of its parameters. This enforces the general conclusion: if the motion takes place along 
a classical Keplerian orbit, then the variation of that orbit cannot be accomplished but only by the 
variation of its parameters. 
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 The Berry Moment of Human Knowledge 

 We just stated above that this last universal condition is obvious, but this remark might not be 
quite so obvious for the casual observer. Fact is, however, that the conclusion here does not tell us 
anything new over what we already know from the history of physics. Actually, the conclusion 
represents the fundamental thesis of Niels Bohr’s quantization procedure, in its utmost generality: 
in the classical Kepler description of the planetary atom problem we have to do with fixed orbits, 
and the transition among these can be accomplished only by jumps from an orbit to another. As 
the physical parameters of the orbit are the only ‘coordinates’ of these geometrical objects, then 
such a jump ought to be characterized by a variation of the physical parameters. Now, in the 
modern quantum description of the planetary atom, the procedure of quantization was inspired by 
thermodynamics. This is why the variation in question had to be described adiabatically, leading 
to the theory of Heisenberg, and further on to the idea of operator associated to a physical quantity. 
 From this perspective one can say that there is a ‘Berry moment’ of the human knowledge, 
which carries, among others, the precise meaning of liberating the knowledge from the lock-up of 
adiabaticity, and this is reflected in the general attributes of this landmark of physics. Indeed, what 
we just called the ‘Berry moment’ has essentially three major conceptual contributions related to 
the name of Sir Michael Berry. The first one, and from gnoseological point of view perhaps the 
most important among them, is the one just described succinctly above (Berry, 1984), showing 
that the adiabaticity must actually be allotted to geometry. Many people think that this work is 
indeed the most important of Berry’s works in the problem we discuss now, and we are not here 
set on disagreeing. Rather, we just need to emphasize the fact that the work from 1984 is only a 
partial conclusion of what seems to be a constant concern of Michael Berry. And this concern can 
be understood as such, only by making a ‘moment’ of knowledge out of it, which would be a 
proper moment of knowledge only if we consider at least two other works of essence of Michael 
Berry, both related to issues regarding the idea of adiabaticity. To reveal those issues we need a 
little digression on a significant point of the physical knowledge, which changed the world view 
in the last century. That significant point is represented by the implementation, in fact, as well as 
only in idea, of what we think is the essential ingredient of our knowledge: the physical reference 
frame. 
 Here again, an excerpt from the quintessential work of Charles Galton Darwin is in order, 
helping to express the connection between the idea of reference frame and the space, in its right 
context: the concept of interpretation. To wit, we need to make a concept out of the procedure of 
interpretation. In a word, the active knowledge is not possible without the objective duality of de 
Broglie type: 
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 In dealing with the interpretation we have touched on one of the great 
difficulties which have made it hard to gain physical insight into the wave theory. 
This is the fact that the wave equation is not in ordinary space but in a co-ordinate 
space, and the question arises how this co-ordinate space is to be transcribed into 
ordinary space. It would appear that most of the difficulty has arisen from an 
attempt to apply it illegitimately to enclosed systems, which are really outside the 
idea of space. In most of the problems we shall discuss, the question hardly arises, 
but where it does the correct procedure is so obvious that there is no need to deal 
with it in advance. It is tempting to believe that this will be found to be always the 
case. [(Darwin, 1927); our Italics] 

The development of physics invalidated this last ‘tempting belief’ mentioned by Darwin. More to 
the point, the only place to apply it legitimately appears to be exactly where “most of the difficulty” 
is concentrated: to enclosed systems. In our opinion this defines both the necessity of an “ordinary 
space” and the right “interpretation” of waves in terms of particles. The key point is that a reference 
frame helping in constructing a “coordinate space” is, actually, always an enclosure. 
 The quintessential physical reference frame remains forever the Earth, of course: it is the 
reference frame carrying us through the universe, the reference proper of all our positive 
knowledge. However, the first physical realization of a reference frame needed in the measurement 
as understood by Darwin in his work, but having at least part of the properties of Earth, is due to 
Wily Wien and Otto Lummer (Wien & Lummer, 1895), and is referring to what is generally known 
in physics and natural philosophy as a ‘hohlraum’. The fact that we attach this experimental tool 
to the physics of reference frame is warranted by some significant circumstances suggesting indeed 
the idea of a reference frame. Of chief importance among these is the blackbody radiation: the 
apparatus of Wien and Lummer was actually intended for the study of this physical system. 
However, it is well known that the incentives of such a study came from astrophysics, and led 
physics to the discovery of quantization. Based on this discovery, the relativistic cosmology made 
a ‘hohlraum’ out of the entire universe, and this image was confirmed by the outstanding discovery 
of the cosmic background radiation (Penzias & Wilson, 1965), which is a blackbody radiation 
corresponding to an equilibrium temperature of approximately 2.7K. As we just said, these facts 
are actually well known. 
 However, rarely, if ever, is it explicitly stated that the conclusion they entail – namely that the 
astrophysical background radiation is a proof of the behavior of universe we live in – is a 
consequence of a warranted extension of the conclusions drawn from the laboratory measurements 
on blackbody radiation. And that warranty comes from the fact that the Wien displacement law, 
which is the condition that every law of radiation must satisfy, is a consequence of the invariance 
with respect to the dimensions of the ‘hohlraum’, therefore a consequence of a space scale 
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invariance. In other words, extending a little bit this conclusion, if a property of the blackbody 
radiation is discovered in a laboratory, it is true also in the universe, which is actually only a… 
workshop of the largest size among many others. The discovery of the expansion of the universe 
allowed speculations go even further, to the conclusion that the essential property of background 
radiation is a consequence of the expanding of the universe, which is actually a physical process 
representative for a certain physical structure of the universe (Dicke, Peebles, Roll, & Wilkinson, 
1965). The whole demonstration of this fact had to be thermodynamical, in view of the 
uncertainties of the structure thus described, but this raised an entirely different problem, brought 
about by the quantum theory of radiation per se. 
 Namely, the physical theoretical demonstration of the right law of thermal radiation is based 
upon the existence of the adiabatic invariants, and in this case the expansion of universe ought to 
be an adiabatic expansion from the very thermodynamical point of view. While it may reasonably 
appear as such, that expansion is nevertheless controversial, as it was in fact from the very 
beginning. Not only that its rate remains undecided even today, being a kind of ‘unavoidable 
hypothesis’ believed as missing only a temporary precise quantitative confirmation. After all, this 
might not be a cause for denying the reality of the physical process, because the appearance of 
adiabaticity can be a relative phenomenon as far as its rate is involved. However, there are data 
showing that the universe is downright contracting, not expanding. This, again, might not be a 
theoretical problem: the expansion is a consequence of the metric description of the universe in 
spacetime and in some physical conditions, represented by the mean density of the matter in 
universe, the contraction might occur. An oscillating universe is just as acceptable for theorists as 
a purely expanding universe, but this cannot be a case of expansion existing simultaneously with 
contraction. Unless, of course, the universe behaves differently with the direction of its 
observation, i.e. it is utterly anisotropic to start with, as far as its matter content is to be considered. 
Be the case as it may, two problems arise and these bring us back to what we have called the ‘Berry 
moment’ of our knowledge. 
 First, the physics in a reference frame defined as an enclosure, should be independent of the 
variation of its dimensions, no matter of its rate. This fact – which is true for the Wien’s 
displacement law – could not be proved explicitly in its universality, however it is proved for a 
theory that was always taken as the first physical cosmology: the Newtonian cosmology. In this 
cosmology the fundamental forces are taken to be central forces of magnitude inversely 
proportional with the square of distance between locations, and these are the only forces selected 
by the variation of the dimensions of the reference frame containing matter (Berry & Klein, 1984). 
In other words, the condition of adiabaticity taken sensu stricto selects a too narrow range of 
physical processes in describing the state of the universe, to start with. In fact we have just about 
only the cosmic background radiation in that range. However the first ever theoretical physical 
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cosmology, the Newtonian cosmology, was not even considered from the point of view of the 
expansion of the universe, for if it would have been considered from such a stance, it would have 
been able to reveal that the Newtonian forces are universal forces in a precise sense, shown in the 
work of Berry and Klein just cited. So these forces carry at least the same gnoseological 
significance as the blackbody radiation, if not a more important one at all, which descends from 
Newton himself. 
 Indeed, everything in the ‘Berry moment’ has started, in this particular matter, from a discovery 
regarding the collisions: in studying a spherical enclosure containing classical material points – 
the classical model of ideal gas serving, for instance, in the definition of the absolute temperature 
– Klein and Mulholland have found an important invariant of collision between the material points 
and the enclosure wall, with respect to changes of the dimensions of the enclosure (Klein & 
Mulholland, 1978). The work of Berry and Klein that we cited above, analyzes, with the 
nonstationary Schrödinger equation, a general theory leading to this invariant, and finds that no 
matter what forces are involved in the coresponding Hamiltonian, there is always a time scale and 
a length scale where the forces appear to be conservative, provided the potential is updated by an 
additive harmonic oscillator potential (Berry & Klein, 1984). The scale transformation considered 
by Berry and Klein turns out to leave invariant the Newtonian inverse square forces. After all, this 
might have been the reason why these forces were so important in physics: Newton used the idea 
of collision in order to prove the physical acceptability of his invention [(Newton, 1974), beginning 
of the second section of the Book I]. 
 The second aspect involved in the implementation of the physical reference frame as an 
enclosure, and represented in what we just have called the ‘Berry moment’ of knowledge, is the 
equivalence principle of the general relativity. In fact, it is about the very idea of ‘Einstein’s 
elevator’, as one came a long time ago to call an essential physical ingredient of a well-known 
‘gedanken’ experiment, destined to prove the equivalence between inertia and gravitation. Of 
course, some might consider that such an experiment is no more… ‘gedanken’ at all, in view of 
the present-day astronautical experience, but this is not the issue here. The issue is that one needs 
to recognize that such an elevator is naturally equivalent to a Wien-Lummer experimental 
‘hohlraum’, and should thus be considered on equal footing with the original one, at least in some 
fundamental theoretical aspects, if not in each and every detail of the theoretical problems of 
physics. For, with this issue we enter the essence of the very idea of interpretation in the sense of 
Darwin, namely the theory of fluids, and therefore, implicitly, the concept of a Madelung fluid. 
 For the first time, this fact was only tacitly suggested in the thermodynamical model of Enrico 
Fermi for the decaying of elementary particles (Fermi, 1950). Three years later, in 1953, it was 
updated by Lev Davidovich Landau, who invoked some relativistic hydrodynamical motivations, 
in order to account for the experimentally observed ‘jet’ phenomenon in description of the decay 
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of particles [see (Landau, 1965), for a reproduction of the original work]. The proper quantum-
mechanical description is still wanting, but we think that the attention should be focused on the 
fact that the jet phenomenon is typically related to the cosmic radiation showers. The work of 
Berry and Balazs on the wave mechanics of the Airy wave pachets (Berry & Balazs, 1979), allows 
us to say the following. An elementary physical particle can be considered as an Einstein elevator 
within the space of which the matter can be described hydrodynamically, by relativistic methods. 
In its downward motion toward Earth, this elevator reaches a point where the fluid, implicitly 
present in this hydrodynamic description, ‘couples’ somehow with the gravitational field, and 
around that event (moment and position) the internal ‘hohlraum’ behaves like a Madelung ‘swarm’ 
of free material points just like an ideal gas: it is the moment of asymptotic freedom in the 
‘hohlraum’. Specifically, there is a position within the hohlraum moving at constant (gravitational) 
acceleration, and with respect to that position each material point of the swarm behaves statistically 
like a harmonic oscillator. All this story remains to be later documented in the present work. 
 Let us stop here for a quick recap, in order not to loose the continuity of ideas. Because the 
initial quantization procedure was inspired by thermodynamics, the variation in the dimensions of 
a reference frame had to be adiabatic, thus properly warranting the Madelung assertion that we do 
not have here a «“jump”, but rather a slow transition into a state of non-stationarity». In the case 
of hydrogen atom this condition led to the theory of Heisenberg, and further to the idea of operator 
associated to a physical quantity. However, the ‘Berry moment’ of our present knowledge would 
indicate that the rate of variation of the parameters of the orbit is completely indifferent, provided 
this variation is described in a certain association with the time of motion. A further conclusion 
then imposes almost by itself: the quantized electromagnetic fields from the prescriptions of the 
Bohr quantization, must be theoretically covered by the variation of the parameters of the orbit of 
a Keplerian system. In other words, the theoretical description of the electromagnetic field resides 
in the geometry of those parameters: the electromagnetic fields are, in general, Yang-Mills fields 
to be described in a geometry of the manifold of positions of Kepler orbits of classical material 
points. That geometry is a geometry of sl(2,R) Riemannian space, to be documented in what 
follows right away. 
 All of the previous conclusions can be simply summarized by the statement that the Keplerian 
motion, as classically described, entails with necessity the idea of quantization. It is indeed possible 
to talk about a jump between orbits only if these are real, i.e. when motions proceed along them. 
In such a case the jump cannot be described but by the variation of the parameters of an orbit. We 
ought to emphasize once again the fact that in the transition between classical and quantum 
mechanics one cannot talk about ‘quantum revolution’ as a sudden leap of our knowledge. On the 
contrary, of all things, we have here a case of manifest continuity in our knowledge. It is the 
variation of the parameters of the orbit which is then physically represented by a field, and insofar 
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as at a microscopic level this field is an electromagnetic field – generally a Yang-Mills field – the 
transition between orbits should be equivalent with the existence of such a field: this is exactly the 
content of the second postulate of Niels Bohr. 

 A Classical Implementation of the Idea of Interpretation 

 We can generalize this idea in the framework of classical natural philosophy, by a methodology 
of interpretation due to Heinrich Hertz, who conceived the classical material point – a material 
particle in his context – as a fundamental agent of physics (Hertz, 2003). Namely, according to 
Hertz, a material particle is that physical agent allowing us to associate a certain position in space 
at a moment of time, with any other position in space at any other moment of time. In other words, 
this definition actually states explicitly the property of the classical material point of being the 
physical agent allowing us to correlate any two different events. This property is only implicitly 
understood in the concept of classical material point and, up to the moment of rising of special 
relativity, taken as implicitly understandable in this concept. To Hertz, a material point proper is 
then an aggregate of material particles. Certainly, such definitions are the only ones suitable for 
a spacetime description of the universe of events. Once accepted, a first conclusion following from 
them is that the modern concept of confinement is just a natural limitation of the very possibilities 
of human knowledge. All it takes for such a conclusion is only a need of physical explanation of 
the natural property revealed to us by senses: the matter does not exist but in spatially extended 
structures. Since such a structure contains space inside it, the matter should be defined just by the 
opposite property: it is the place where space does not have access. Kepler problem reveals the 
way to conceive it, so we follow this way, different from that followed by Hertz himself in erecting 
his mechanics (Hertz, 2003). 
 First, notice that in the planetary atom an electron can be considered a material point in the 
sense of Hertz, i.e. a collection of material particles. These are the equivalents of de Broglie’s 
photons in an elliptical capillary tube around nucleus, as we have shown before. Likewise, the 
atomic nucleus can also be interpreted as a Hertz material point. Then the Newtonian dynamics of 
every material particle from the matter of electron can be described by a Kepler orbit around a 
material particle inside the nucleus. Therefore an equation like (6.25), or (6.28) in fact, is actually 
a gauging, which gives positions in a de Broglie tube in terms of the velocities. There is a kind of 
continuity here that needs a stochastic explanation, because the ‘swarm of material particles’ of 
electron is always confined inside the de Broglie elliptic capillary tube. As each particle of electron 
can be paired by force in the Newtonian sense with each particle of the nucleus, it is then obvious 
that this pairing should proceed way faster than the motion of the electron around nucleus. The 
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idea may be able to give a concept to the Madelung’s observation about “the slow transition into 
a state of non-stationarity”: this is, again, a problem of scale. 
 In order to grasp this idea in its utmost generality, everything needs to be molded in a complex 
form, because from the point of view of the theory of ensembles, which is the essential tool of 
interpretation, and to which a Madelung fluid makes direct reference, the real numbers are not 
enough. As Nicholas Georgescu-Roegen puts it with the occasion of an appropriate consideration 
of the problem of the theory of ensembles in connection with the theory of measure: 

 Be this as it may, the actual difficulties – as I hope to show in this appendix – 
stem from two sources. Surprising though this may seem, the first source is the 
confusion created by the underhand introduction of the idea of measure at a 
premature stage in arithmetical analysis. The second source (an objective one) is 
the impossibility of constructing a satisfactory scale of infinitely large and infinitely 
small with the aid of real numbers alone. [(Georgescu-Roegen, 1971); our Italics] 

Accordingly, Georgescu-Roegen offers an idea of construction of the measure based on the 
concept of scale, which is quite natural, and even necessary we should say, in physics: 

 … To put it more generally, there are – as we shall argue presently – an infinite 
(in both directions) succession of classes of Numbers, each class having its own 
scale; every class is finite (original Italics!) with respect to its scale, transfinite 
(original Italics!) with respect to that of immediate preceding class, and infrafinite 
(original Italics!) with respect to that of its successor. Which scale we may choose 
as the finite scale is a matter as arbitrary as the choice of the origin of the 
coordinates on a homogeneous straight line. [(Georgescu-Roegen, 1971); our 
Italics, except as indicated] 

It seems that physics realized up to this historical moment at least two of the requirements of this 
program, traced only symbolically, so to speak, in the work of Georgescu-Roegen just cited. First 
comes the interscale connection between infinitely large and infinitely small by the idea of a 
general statistic, whose positive expression is nowadays the Ehrenfest’s theorem. Secondly, we 
have a specific meaning of the arbitrariness of origin of a reference frame, by the necessity of 
coupling between an event – an element of spacetime – with a ‘position where the gravitational 
field is applied’, in the phrasing of de Broglie. The expression of this coupling is nowadays the 
existence of general relativity. However, a suitable explanatory case of Georgescu-Roegen’s 
general terms can only be properly made out of the Kepler problem, as applied to the classical 
planetary model of the atom. In making this case we need to use Hertz’s terms ‘material particle’ 
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and ‘material point’, or some other concepts, if we prefer [like Feynman ‘partons’ for instance; see 
(Feynman, 1969)], having nevertheless the same meaning, along the following line. 
 First, each material particle from the matter of the electron has a transfinite number of orbits 
to which it belongs: the ensemble of orbits corresponding to all material particles from the matter 
of nucleus. Accordingly, at the time scale of observed Kepler motion any material particle from 
the mattter of electron belongs ‘simultaneously’ to every possible orbit due to the matter of 
nucleus. Here the term ‘simultaneously’ is interpreted in the sense that any material particle of 
electron matter belongs to such an orbit for an infrafinite time interval. Thus, when, in his Corollary 
3 of Proposition VII, Problem II from the first book of Principia, Newton makes reference to the 
ratio of forces acting upon a material particle toward any point, these are not just arbitrary forces. 
Indeed, they are forces directed differently in space, but acting upon a particle moving along the 
same Kepler orbit, forasmuch as the requirement about the orbit is to be achieved ‘in the same 
periodic times’. The Hertz type of natural philosophy liberates us from appealing to the idea of 
collisions, as Newton did, in order to physically justify the concept of force, or else to appeal to 
forces acting an infinitesimal time intervals, which are infrafinite in the sense of Georgescu-
Roegen (Mazilu & Porumbreanu, 2018). 
 It is in this sense that a Hertz material particle can be characterized exactly in the manner in 
which Erwin Schrödinger describes the color continuum. We can just rephrase the words of 
Schrödinger, from the excerpt above, by replacing the appropriate words: 

… the manifold of material particles has one of the powers of continuum, namely 
that of a space of functions, but the manifold of material particle qualities has the 
highest dimension three. 

We can even name a principle analogous to that of “appearance on adjacent fields” here: it is the 
action of Newtonian type of forces having a magnitude inversely proportional to the square of 
distance between material particles. These are the gravitational forces, the electric forces and the 
magnetic forces. They act indeed selectively, from statical point of view, which means at any scale 
of space and time, otherwise they could not even be discovered as such. This further means that 
the material particles “arrange themselves into large groups, each one of the power of a function 
space”. These are the Hertz’s material points, forasmuch as, reproducing his own words: 

 A material point … consists of any number of material particles connected with 
each other. This number is always infinitely great: this we attain by supposing the 
material particles to be of higher order infinitesimals than those material points 
which are regarded as being of infinitely small mass. The masses of material points, 
and in especial the masses of infinitely small material points, may therefore bear to 
one another any rational or irrational ratio. [(Hertz, 2003), p. 46; our Italics] 
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Still paraphrasing Schrödinger, the manifold of these material points is… of the dimension three, 
and the problem is to construct such a manifold, a task that seems particularly easy for the selective 
forces we have in mind as ‘connecting the particles with each other’ in a material point. 

 A Characterization of the Hertz’s Material Point 

 Fact is that in a static world, i.e. in a world existing as such at any scale, the three forces of 
Newtonian type must be in equilibrium. This observation should be able to allow us a connection 
between the mathematical order categorized by the sequence infrafinite – finite – transfinite, and 
the physical order categorized by the sequence microcosmos – macrocosmos – universe. 
 The main point of the theory of Berry and Klein on expanding force fields was to prove that 
the adiabaticity condition should not be a mandatory condition related to the idea of arbitrary phase 
in the wave mechanics (Berry & Klein, 1984). Incidentally, as we already noted before, this work 
touches a delicate issue related to cosmology: the length scale transformation – to use the 
terminology of Georgescu-Roegen in this specific instance – does not change the Newtonian forces 
of magnitude proportional to the inverse square of distance between classical material points. In 
other words, these forces are for the Newtonian cosmology just as significant as the blackbody 
radiation is for an Einsteinian cosmology. Indeed, we are now entitled to say, by virtue of Berry’s 
and Klein’s results, that an evolution of the universe, involving a transition of scale, leaves the 
Newtonian forces unchanged. This statement may seem particular because of the term ‘Newtonian’ 
to which it is referring. In hindsight though, we think that it is just as general as the Wien’s 
displacement law in the case of blackbody radiation. 
 Indeed, until a proper analysis of the work of Berry and Klein, we can only notice now that it 
was inspired by the influence of expansion upon collisions. The forces involved in a collision, act 
between bodies only within infrafinite lengths of time, and therefore the theory of Berry and Klein, 
which carries over into a continuum the properties of collision forces, carries also the specific 
feature of a theory of transition between infrafinite and finite. Insofar as the Newtonian forces are 
physically the basic feature of the macrocosmos, therefore of a finite world, one can say that, as a 
mathematical tool, they reflect a finite mathematical order. Likewise, the blackbody radiation 
should be physically the mark of the universe at large, but mathematically it should be referring to 
a finite scale of things. This should be taken as the essential difference between the cosmology 
based on Newtonian forces and the cosmology based on blackbody radiation: the first one concerns 
the transition between infrafinite and finite, while the last one concerns the transition between 
finite and transfinite. From theoretical point of view, the key of physics here is the construction of 
a material point, which according to Hertz, contains “any number of material particles” provided 
this number is “infinitely great”, in a space which is “infinitely small”. This last qualification sets 
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a differentia of the concept of material point, by emphasizing its essential feature: from physical 
point of view it is a transition concept. 
 Classically, the image of a general material point is a finite solid body: its particles are at rest 
with respect to one another, thus making a fixed structure. We cannot say that this is the general 
idea of defining a material point, but only that it provides a limiting case, first because a body as 
presented to our senses is far from being an ‘infinitely small space’. However, the Kepler problem 
as described above seems to indicate that those electrons of Madelung, which ‘penetrate each other 
without merging’, seem to qualify properly as such material points. First, every material particle 
entering the structure of an electron in revolution must be instantaneously, i.e. at an infrafinite 
time scale with respect to the period of motion, at rest. Such a situation has been aptly described 
by Joseph Larmor at the beginning of the last century: 

 Imagine a cloud of meteors pursuing an orbit in space, under outside attraction 
– in fact, in any conservative field of force. Let us consider a group of the meteors 
around a given central one. As they keep together, their velocities are nearly the 
same. When the central meteor has passed into another part of the orbit, the 
surrounding region containing these same meteors will have altered in shape; it will 
in fact usually have become much elongated. If we merely count large and small 
meteors alike, we can define the density of their distribution in space, in the 
neighborhood of this group: it will be inversely as the volume occupied by them. 
Now, consider their deviations from a mean velocity, say of the central meteor of 
the group; we can draw from an origin a vector representing the velocity of each 
meteor, and the ends of these vectors will mark out a region in the velocity diagram 
whose shape and volume will represent the character and range of the deviation. 
[(Larmor, 1900); our Italics] 

In order to set things in a right order here we just have to replace in Larmor’s description the word 
‘meteor’ with ‘material particle’, and thus describe an electron in revolution ‘as a cloud of material 
particles pursuing a Kepler orbit in space’. Each material particle of the electron resides on a 
Kepler orbit characterized by a specific velocity, namely the velocity playing the part of initial 
condition as in equations (4.8–10). There will be, naturally, also a transfinite number of material 
particles residing instantaneously along the portion of that orbit located inside the electron. These 
are the material particles whose own orbits intersect the orbit of the chosen material particle. The 
term ‘instantaneously’ means here ‘for an infrafinite time interval’. Thus, instantaneously, these 
particles are at rest with respect to each other. The situation can be easily described in the very 
same way in the whole space occupied by such an electron, whence the conclusion that the concept 
of material point asks for a ‘static ensemble of material particles’. Insofar as the material particles 
have to be connected, according to the Hertz’s definition of a material point, they need to be 
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connected by forces in equilibrium. And as in the finite space range only the Newtonian forces are 
allowed in the Berry-Klein scaling, these should be the forces responsible for the equilibrium 
inside a material point. 
 Therefore, at this stage of the theory – the static stage, so to speak – we cannot use but the 
simplest of all dynamical principles – the Wigner’s principle, forasmuch as each material particle 
needs to be at rest with respect to any other material particles. As each particle in this static stage 
is under the influence of all of the particles in the universe, regardless of scale, and as these forces 
should be in equilibrium, the Wigner’s principle is to be used: the forces between material particles 
in matter always determine the velocities, not the accelerations. It is only the forces acting upon 
particles inside component material points of matter that determine the accelerations, therefore the 
inertia. 
 Thus, the general plan of construction of the theory starts from the observation that a certain 
physical quantity is transported only by a mass transport: any other physical quantity is carried in 
a swarm of material points only together with their mass. Without mass there is no transport of 
anything else. As we shall see, the transport theory duly notices this important fact by a theorem 
defining the time of transport with the benefit of Lie derivative along the field of velocities of 
mass. Thus the mass itself, in a swarm of classical material points, can be concentrated two-
dimensionally, like in the classical Kepler problem above, one-dimensionally, or zero-
dimensionally, in well-defined mobile positions. Any other quantity though – such as the charge 
in both its instances, electric and magnetic, the color, the energy, the force, the momentum etc. – 
that has its own physical identity, is carried by the mass in a specific way to be described by the 
transport theory. In this context, a quantum jump does not necessarily mean a sudden jump in the 
value of the mass, as sometimes asserted: such a jump concerns only the variation of a physical 
quantity carried by the mass current, not the variation of the mass itself. In all instances, the Yang-
Mills fields represent the appearance of this variation, which can be described by geometrical rules. 

 The General Meaning of Berry’s Curvature 

 After all this discussion on the classical planetary model, we believe we are able to stage a 
scenario for a proper generalization of Berry’s choice of the Hamiltonian from equation (6.8), with 
the assistance of a general presentation of the idea of spin. Take, first, the equation (6.9) without 
its initial connotation, i.e. as the intensity of a magnetic field: it is simply a vector field. Consider, 
as it was always the case in physics, that the slow coordinates are parameters that can be considered 
as functions of fast coordinates the the three-dimensional phase space. This, of course will imply 
some physical definitions of the slow coordinates as functions of the position in the phase space, 
but let us not get into details at this moment. The projection of the Liouville volume (6.10) along 
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the field (6.9), which is instrumental in the definition of the time derivative in this formalism, is 
given by a 2-form: 

 
 

(6.40) 

This differential form fits into Dumachev’s scheme (6.15–17) only if the 1-form (6.16) is built 
upon a vector h, solution of the vectorial equation 
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Consequently, only along the solutions of this differential equation is the elementary Liouville 
volume preserved. We can give a functional estimate of this field, for it is directed radially with 
respect to the origin of positions in the slow parameters’ space. So, in appropriate spherical 
coordinates we have 
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If the radial component of the vector h is constrained to be an arbitrary function of the radial 
coordinate alone, the two last equations here become 
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This means that both components of the vector field h involved in these differential equations are 
homogeneous functions in R of degree –1: 
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with A and B arbitrary functions of their arguments. Thus, the first equation (6.42) reduces to 
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Now, assume a further simplification, looking for the field having A(q,j) as a function of  q only, 
H(q) say. Then we can solve for B(q,j), with the general result 
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where G(j) is an arbitrary function of its argument. Thus, we have a solution of (6.41) whose 
components in a spherical coordinate system are: 
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with F, G, H arbitrary functions of their unique arguments. The differential form ‘h’ is not an exact 
differential, as expected of course: 
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However, we can characterize its departure from that condition by a known differential form: 

 
 

(6.49) 

This differential form characterizes the Schwinger’s description of a magnetic monopole 
[(Felsager, 1983), Chapter 9]. If F and H are zero and G is a constant, we have the Dirac’s 
monopole. This situation was indeed, as it is actually even today, interpreted in terms of a magnetic 
monopole. 
  According to the formalism just presented, a special motion can be obtained, by further 
considering the 2-form (6.40) as a fundamental ‘Liouville volume’, as it should be in view of its 
geometrical meaning. Indeed, iB(W) is simply proportional to the elementary oriented area in the 
fast variables, which suggests an elementary solid angle. Assuming variations in the slow 
parameters in order to set the scale of time variation as in quantum mechanics (Mazilu & 
Porumbreanu, 2018), the projection of the flux (6.40) along the velocity vector field Ṙ: 

  (6.50) 

gives a rate of the solid angle in the slow variables. This is the elementary work of the force, 
anticipated by Henri Poincaré in describing the action of a magnetic pole upon an electric charge, 
in order to explain the results of the experiments of Kristian Birkeland (Poincaré, 1896). However, 
as we shall shortly see here, it can be rightfully connected to a physical deformational process, 
both geometrically and physically. 

7. The Physical Point of View in the Theory of Surfaces 

We start from the idea that a surface should play a double role in physics. First, it plays the obvious 
role of separator, specifically for separating the matter from space or of the space from matter, for 
these are altogether two different situations. This statement cannot be made understandable 
without the second role of the surface which is closer to the regular mathematical role: that of locus 
of an ensemble of positions in the geometrical acceptance. It pays, however, to notice that it is in 
this instance that the surface allows the mathematical description and the consequent physical 
understanding of that property of the material points of ‘penetrating without merging’, to use the 
phrasing of Erwin Madelung. In order to get a better grip of this idea, some introductory 
observations seem to be in order here. 

h = hRdR + hθRdθ+ hϕRsinθdϕ =
= F(R)dR +H(θ)dθ+G(ϕ)dϕ − gcosθdϕ
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 A Few Mathematical Prerequisites 

 It seems to us obvious that a physical theory of surfaces cannot be developed but by the idea 
of embedding. As a matter of fact, the embedding is an interpretation and, forcing a little the idea, 
the essential point of the Darwin’s definition of interpretation is the existence of an ensemble of 
positions giving the possibility of interpretation of the surface as a geometrical locus. Here a 
position can be taken geometrically as a point and physically as a material particle in the sense of 
Hertz. In this last instance, the material particle is to us a little more than it was to Hertz himself, 
in the sense that we added to it the feature of indicator of a point in space, by a process of 
application of a field to a position, being it in space or in matter in a sense which will be explained 
here shortly. For instance, in keeping with the classical physics, one can imagine the point of 
application of a force or of a resultant of many forces, according to the third principle of classical 
dynamics, but this is quite a particular example. 
 The mathematical method itself, for carying out the task of embedding a surface, and therefore 
the task of interpretation in general, is based on an almost trivial statement that emerged apparently 
largely unnoticed, or if noticed, it has not been properly used for physical purposes. In order to 
make it obvious, we reproduce here two of the Élie Cartan’s algebraical theorems which form the 
ground of his approach of differential geometry by moving frames [for a clear description of the 
idea from the point of view we adopt here, see (Spivak 1999), Volume II, Chapter 7]. These 
theorems are borrowed directly from one of Cartan’s courses, published via the Russian 
geometrical school of S. P. Finikov [(Cartan, 2001); pp. 16 – 17, Theorems 7 & 9]. We just 
appropriate them here under the name of Cartan Lemmas 1 and 2, only in order to be suitably used 
in making our point as explicit as possible: 
 Lemma 1. Suppose that s1, s2,…, sp is a set of linearly independent 1-forms. Then we have 

 
 

 

where f1, f2,…, fp is another set of linearly independent 1-forms, and summation over repeated 
indices is understood. 
 Lemma 2. Suppose the basis differential elements du1, du2, …, dun are connected by a system 
of equations 

   
where ωa, a = 1, 2, …, p are linearly independent 1-forms. Then the 2-form ‘f’ vanishes as a 
consequence of this system if, and only if, ‘f’ can be written as 

   
where, again, summation over a is understood, and fa are p conveniently chosen 1-forms. 

sα ∧ φα = 0 ↔ φα = aαβs
β , aαβ = aβα

0...,0,0 p21 =w=w=w

f = ωα ∧φα
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 The first one of these theorems is, by and large, known as Cartan’s Lemma proper in the 
specialty literature, while the second one carries no specific name. What seems to be essential in 
these lemmas, and is always stressed in many old treatises, but apparently forgotten lately – 
perhaps due to exclusive mathematical applications – is the fact that the symmetric matrix a from 
Lemma 1, as well as the 1-forms fa from Lemma 2, are things external to the geometrical problem, 
things through which the physics can therefore be introduced. In concentrating on the local 
description at a point of a surface, without being interested of the global aspects of that surface, as 
it is almost always the case in physics, this observation is essential. In this respect another 
convention referring to our use of indices is again in order: insofar as the space contemplated as 
environment in the embedding problem necessary to physical interpretation is here the usual, 
possibly Euclidean, three-dimensional space of our intuition, we reserve the Latin indices 
exclusively for this case. The Greek indices are used for any other dimension, as in the case above, 
but especially for dimension two, in the case of surfaces, and four in the case of the manifold of 
events – the spacetime. 
 Now, from the point of view of physics, these two theorems  of Cartan are not sufficient. Take 
for instance the extended electron model of Dirac, which can be considered as the epitome of a 
general model of extended material particle (Dirac, 1962), a point of view advocated in fact 
relatively long ago by Malcolm Mac Gregor (Mac Gregor, 1992). This is a matter sphere embedded 
in space, which needs to be characterized from electromagnetic point of view. And in the classical 
electrodynamics the relation between matter and space is resumed by electromagnetic constitutive 
laws, which primarily involve two exterior differential 2-forms and two exterior 1-forms (van 
Dantzig, 1934). In this case, a generalization of Cartan’s Lemma 1 is necessary, which must be 
able to allow us distinguish the presence of fields in matter and their correlation with the fields in 
space. This generalization has already been around for a relatively long time in the mathematical 
specialty literature, under the name of Yoshio Agaoka, through the following theorem (Agaoka, 
1989): 
 Assume that pa are ‘r’ exterior differential 1-forms representing a coframe with respect to a r-
dimensional manifold in space. If ‘r’ differential p-forms ωa satisfy to equation 

   

then the (p–1)-forms gab exist such that 

 
 

 

for a,b = 1, 2,..., r. 
 The Cartan’s lemma 1 can be derived from this theorem of Agaoka for p = 1, in which case gab 
must be 0-forms, i.e. simple functions. The case p = 2 is ‘maximal’, so to speak, in three 
dimensions, for in that case there are no exterior differential forms of degree higher than three. 

ωα ∧ πα = 0

ωβ = γ βα ∧ πα; γ βα = γ αβ
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Geometrically, the best candidate for the matrix γ seems to be a 2´2 matrix representing the 
variation of the curvature matrix or, more generally, a matrix related to it. Postponing a little bit 
the description of general theory of surfaces from this point of view, an account of the physical 
example based on the Dirac’s model of space extended electron (Dirac, 1962) seems in order. This 
is intended to clarify the position of Agaoka’s theorem per se, outside the framework of the 
Cartan’s lemmas. Our rendering here does not follow the details of the original description. We 
only build upon the idea of geometrical shape of matter in a space extended form, highlighting the 
needs of a classical electromagnetic description, just to make a point. 
 Assume that the limit separating the matter from space is indeed a surface, generalized in the 
following way: it is a proper geometrical surface, but from physical point of view it is also a 
support of ‘dual physical properties’, i.e. properties representative to matter as well as properties 
representative to space. In other words, here, on this surface, the matter meets the space, and 
physics needs to describe this ‘collision of the two worlds’, so to speak. In an electromagnetic 
structure, the space is simply represented by a 2-form, ‘b’ say, while the matter is represented by 
a 2-form, ‘d’ say. These symbols suggest electromagnetism in the sense of David van Dantzig, as 
representative for the purely electromagnetic structure of matter (van Dantzig, 1934). To wit, these 
exterior differential 2-forms can indeed be appropriated here as two forms denoted above wn for a 
general formulation of theory: 

 
 

 

They correspond to magnetic induction and respectively electric induction, from the classical 
theory of electricity and associated magnetism. An explanation is in order: if the surface delimiting 
matter can be globally defined, as in the case of Dirac’s electron for instance, these two exterior 
forms satisfy the integral equations: 

 
 

 

which justify their names, insofar as the magnetic field is source-free while the electric field has 
the electirc charge as its source. Here ρ is the third order tensor of the electric density of matter, 
while dV is the oriented volume 3-form in the space occupied by matter. These relations can be 
used to justify our choices for describing the matter and space in their common limit. 
 Indeed, in spite of the global aspect of the problem, as the previous integral equations seem to 
suggest, the physical definition of the two fields involved here is always local, at least 
experimentally. To wit, we have the infinitesimal voids in the magnetic matter for defining ‘b’, or 
the dipoles in the electric matter for defining ‘d’. This means that the tensor b should be always 
realizable in matter as a vector, say h, defining the 1-form of the magnetic field. Likewise, the 

ω1 ≡ b = bijdx
i ∧ dx j; ω2 ≡ d = dijdx

i ∧ dx j

bij dx
i ∧ dx j

Surface!∫∫ = 0; dij dx
i ∧ dx j
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tensor d is representable in space by a vector, e say, defining the 1-form of electric field. It is here 
the point where a theorem which we termed as Agaoka’s theorem, makes its mark of necessity, 
because we need a constitutive law relating the fields b and d to the fields e and h. Thus, between 
the corresponding differential forms we always need a general relationship of the form: 

   
for only in this case, according to Agaoka’s theorem, there should be a matrix of exterior 
differential 1-forms, g say, which realizes a linear correlation between the 2-forms and 1-forms: 

 
 

 

In terms of the field vectors themselves, these equations can be turned into linear constitutive 
equations of the kind used in the classical theory of electromagnetism. The exhaustive 
characterization of electromagnetism from this point of view is due to Reginald Aubrey Fessenden, 
at the beginning of the last century (Fessenden, 1900). But the situation is quite general, so that 
now, after this introduction of the mathematical basis and the reasons for such an approach to a 
physics of surfaces, we need to present in detail the essence of the geometric theory necessary to 
achieve this physics. 

 The Differential Theory of Surfaces 

 Élie Cartan’s exterior differential approach to the theory of surfaces, allows us to say that the 
local differential theory of surfaces is simply a consequence of the fact that the elementary 
(differential) displacement of a point of surface is an intrinsic vector of that surface 
(Guggenheimer, 1977). Everything in the differential theory of surfaces, and in the embedding 
theory in general, follows from this simple fact through the rules of handling of the differential 
forms. To wit, if x is the position vector of a point of surface, then dx should be an intrinsic vector 
of the surface, at least as long as no phenomenon occurs forcing us to consider that the position 
leaves the surface. But even in such a case, important from a physical point of view, the elementary 
variation of position in space can be described by a process of deformation through a continuous 
family of surfaces containing the position during that variation. At first, the deformation appears 
as a purely mathematical device, but as soon as we get into details it becomes gradually obvious 
that it needs further consideration, especially from physical point of view. 
 Let us now lay down the proper mathematical form of this portrayal of surfaces. Referring the 
local geometry at a position x in space to an orthonormal frame of reference: (ê1, ê2, ê3)  º áê|, we 
write 

  (7.1) 

0edhb =Ù+Ù

b = γ11 ∧ h + γ 12 ∧ e; d = γ12 ∧ h + γ 22 ∧ e

dx = s1ê1 + s
2ê2 + s

3ê3 ↔ dx = s ê
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These relations call for a further elucidation regarding the notations. A caret over a bold symbol 
means a unit vector. Further on, a ‘Dirac representation’ with ‘kets’ and ‘bras’ is used for any 
sequence of mathematically meaningful objects. For instance, |sñ here represents the matrix 3´1 
having the components of x as entries. It is thus understood that the vector notation x involves also 
the reference frame |êñ in its definition, which, according to our notation is a 3´1 matrix having 
the unit vectors of reference frame as components. The last equality in equation (7.1) embodies 
such a complete definition for the elementary geometrical displacement. A certain vector can 
definitely be represented just as a ‘ket’ or a ‘bra’, either in the same reference frame, or globally, 
in cases where the reference frame does not matter, as in the case of an Euclidean universe. 
 From the differential geometric point of view any portion of a surface defined by some kind 
of functional continuity, is locally describable by means of two elementary differentials s1 and s2, 
and a direction defined by a unit vector, normal to surface element. This unit normal is bound to 
retain its normalization over the entire surface element, so that the normalization condition can be 
taken as a defining property of the very surface element. In this case, the surface element can be 
parametrized in a manner that opens the gateway for physics. First, let us refer the surface to the 
ambient space containing the element of surface, and described geometrically in some general 
coordinates (xk, k = 1,2,3) gauged by means of a certain Euclidean reference frame. The elementary 
displacement from the second equation of (7.1), will be written again in the form involving the 
space coordinates, in order to make the idea of embedding more explicit: 

 
 

(7.2) 

where the summation convention over repeated indices of different variance is used. This vector 
should be an exact differential, so we must have: dÙdx = 0, which means 

 
 

(7.3) 

Now, assuming a Frenet-Serret evolution of the reference frame, we have 

 
 

(7.4) 

the last condition here being a consequence of the orthonormality of frame. Putting this into (7.3), 
gives the compatibility equations 

 
 

(7.5) 

Perhaps it is the case to insist again just a little bit upon our choice of symbols here. Namely, the 
symbol ‘dÙ’ means exterior differentiation in order to distinguish this type of differentiation from 
the regular differentiation. The simple sign ‘Ù’, taken by itself, means only exterior product of the 
differential forms. 

dx = (dxk )êk

(d∧ dxk )êk + dêk ∧ dx
k = 0

dêk =Ωk
j ê j; Ωk

j +Ω j
k = 0

d∧ dx + dx ∧Ω = 0
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 Now, assume that this reference frame of ambient space is adapted to a surface, in the sense 
that we can describe the space from the neighborhood of any point of surface by taking ê3 as the 
unit normal of surface in that point, and ê1, ê2 as unit vectors on the surface. This, of course, entails 
the identities sk  º dxk as in (7.1), in which case the surface itself can be described as embedded in 
the ambient space by the condition s3  = 0. This condition does not mean too much by itself, but 
when referred to equation (7.5) above, it has a few important consequences. First, the Frenet-Serret 
equations (7.4) can be written as: 

 
 

(7.6) 

in view of the fact that the diagonal entries of the matrix W vanish. The first two of the equations 
above show that the variations of the two vectors of the Euclidean reference frame which are 
situated on surface have also components along the normal to surface, obviously due to the 
curvature of the surface. This is why the entries W12 and W.

2 of the matrix W are usually taken as 
measures of the curvature of surface. In the case considered here they can be put naturally in 
connection with external, perhaps physical conditions, which might be able to locally determine 
the curvature of surface, or at least only its variation. These conditions come out from equation 
(7.5), which, combined with the embedding condition s3  = 0, gives 

 
 

(7.7) 

or in index notation with the summation convention: 

 
 

(7.8) 

This equation is referring exclusively to the surface, viz. to its intrinsic geometry. This means that 
the indices take just the values 1 and 2, which explains the Greek symbols for indices. 
 The last equation (7.7) shows that between the components of the vector |W3ñ representing the 
curvature of surface, and the vector |sñ of elementary displacements on the surface, there is a linear 
homogeneous relation. This is guaranteed by the Cartan’s Lemma 1, which says that the last 
equation (7.7) is equivalent to existence of a convenient symmetric matrix, b say, determining the 
components of the curvature vector with respect to the variation of position by a linear 
homogeneous relation: 

 
 

(7.9) 

The equations above suffice in making a point about the place of physics in determining the local 
geometry of a surface. It is offered by the entries of the symmetric matrix b, which can be properly 
called a curvature matrix: these can be any three convenient numerical things – the curvature 
parameters – provided they are arranged in a 2´2 symmetric matrix. The trace of the curvature 
matrix gives the mean curvature, and its determinant gives the Gaussian curvature. Our contention 
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here, inspired by this way of introducing the curvature parameters, is that even these measured 
quantities are actually external parameters, possibly physical, a feature bestowed upon them by 
the Cartan’s Lemma 1. Fact is that they are always subjected to variations when physical causes, 
like the contact of bodies for instance, participate in changing the local aspect of their surface. 
However, the evaluation of the curvatures – in case one needs it, and has the conditions to do it, 
of course – can be done just by geometrical measurements on the surface, as in the usual classical 
procedure (Lowe, 1980). 
 In this respect, another point is worth making, for the very sake of physics: if we have at our 
disposal a meaningful unit vector, or simply a meaningful vector for that matter, as in the case of 
Louis de Broglie’s theory of waves associated with the physical rays (de Broglie, 1926), we can 
always connect to this vector an element of surface by the condition of orthogonality. Indeed, let 
û be a unit vector with origin in the space position x. Then the surface whose normal is û, can be 
defined by the condition that dx should be normal to û, while dû should be an intrinsic vector: 

  (7.10) 

where  ás| º (s1, s2) is the ‘bra’ having the surface displacements as entries, and a is a 2´2 matrix. 
Of course, this matrix should satisfy some constraints, based on the relation between dx and |sñ. 
However, insofar as only the relations from equation (7.10) are involved, all we can say is that 
only the symmetric part of the matrix a can be taken as representing the curvature matrix of the 
surface. Indeed, we have 

  (7.11) 

which proves our statement, and the choice of minus sign in (7.10) in order to give an adequate 
quadratic form in (7.11). This last equation shows that, as long as only physics is concerned, the 
curvature matrix may not be necessarily symmetrical, because it is not decided by Cartan’s Lemma 
1, but by the linear dependence defining the surface element with respect to a given vector in space. 
This is, for instance, the case of mechanical torsion of plates (Lowe, 1980), and thereby we can 
guess that such a situation involves forces, an idea that we shall subsequently develop here. 
 The equations above suffice in order to settle the ideas with respect to a physical perception of 
space, which seems to be liable to be made into a general physical theory. The man did not gain 
the concept of space out of nothing: he needed a nest to grow in, and this nest is provided by the 
Earth. The idea of space has grown along the time starting from its embryo – the space of our 
intuition. This space occurred in turn only because it has been made possible by the fact that the 
man grows on a quintessential surface of separation: the surface of Earth. In the interest of physics, 
it becomes therefore necessary to show how a space can be described with respect to a given 
surface, just as we have shown how the surface can be with respect to a given space. 

dx ⋅ û = 0, dû = −a ⋅ s

d(dx ⋅ û) = d2x ⋅ û+ dx ⋅dû = 0 ∴ d2x ⋅ û = s a s
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 Rainich’s Description of Surrounding Space 

 The equation (7.10) may appear as instrumental to a physical theory aiming to locally 
constructing a surface. This means that the equations of embeding the space sk  º dxk may not be 
satisfied, and thus the differentials on surface are, in a sense, arbitrary with respect to space 
coordinates: they need to be chosen in advance and, thus, the surrounding space to be described 
with respect to surface by a reference frame that needs to be constructed ad hoc, not simply adapted 
from among those of surrounding space. The situation appears at its best if we analyze the 
condition of embedding used thus far. Indeed, the embedding condition s3 = 0, used to obtain the 
last equation in (7.7) or (7.8) is quite particular from the point of view of the differential calculus. 
Indeed, those equations represent actually the condition dÙs3 = 0, which is satisfied even for s3 
constant but arbitrary, i.e. for any surface parallel to the one given by s3 = 0. In fact, the most 
general solution of the equation dÙs3 = 0, is an arbitrary exact differential 1-form. In view of this, 
further differential conditions should be provided in order to describe the embedding a surface in 
the surrounding space. In the classical theory of surfaces these conditions are usually known as 
Gauss-Codazzi, or sometimes as Mainardi-Codazzi equations. We will illustrate their necessity by 
the way of an example involving explicitly the physics from the very beginning of the construction. 
Obviously, this example mimics appropriately the very historical order of ways in which the man 
gained to concept of space. 
 Alois Švec insisted upon the fact that an adaptation of a geometrical theory of space to a given 
surface is fundametal (Švec, 1988), but in such a process essential would not be so much the 
adaptation to surface of a reference frame, as much as a kind of adjustment to the parametrization 
of the surface. The most general kind of adjustement according to Švec’s idea, is linear, and 
therefore can satisfy a differential equation of the type: 

  (7.12) 
According to Cartan Lemma 1, the fundamental differentials s1 and s2 are then linear in the 
differentials of the functions ‘u’ and ‘v’ – the parameters on surface. Indeed, according to Lemma 
1, from equation (7.11) we have that the elementary displacements must be expressed in terms of 
the differentials (du) and (dv) by 

  (7.13) 

The original case of Alois Švec (loc. cit.) is included here for a special choice of the parameters, 
whereby β = 0. Thus, the fundamental differentials on our surface – that, in this instance, can be 
properly called surface of reference – which are not always exact differentials, are nevertheless 
always linear combinations of such differentials. 
 Now, from (7.13) we get by exterior differentiation: 

0dvsdus 21 =Ù+Ù

dvdus;dvdus 21 g+b=b+a=
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  (7.14) 

so that a system corresponding to (7.8) can be obtained from this by the identification: 

  (7.15) 

where the three differential forms (ω1, ω2, ω3) represent a coframe of the sl(2, R) algebra: 

  (7.16) 

 and we denoted ξ º ln√(D). 
 Represented as such, in the manner of Švec we should say, the geometry of space in the 
neighborhood of a position from the surface taken as reference, is a conform euclidean geometry, 
completely determined by the surface and its curvature matrix at the given position. Indeed, the 
position of a point in surrounding space can be located in a local Euclidean reference frame by the 
differential coordinates (Rainich, 1925) 

  (7.17) 

The parameters ‘u’ and ‘v’ are convenient parameters on the surface. The origin of reference frame 
is physically defined by the equations s1 = s2 = 0. Thus, the qualification ‘physically’ means here 
that from a mathematical point of view, in this definition there should be some relations between 
the parameters (u, v) and the parameters (α, β, γ), whose parentage can be physical. Further on, 
(dx) and (dy) from equation (7.17) represent homogeneous transforms of the differential forms 
s1,2, with the help of the surface parameters themselves. 
 This suggests a general philosophy related to this representation: the surface ‘arranges’ locally 
the physics – as it always did, in the historical order mentioned above – in the sense that the 
accomodation of space to surface is first given by the condition (7.13) on differentials, which need 
themselves to express the surface physics in a certain way. This very physics is then lent to space 
by a condition of accomodation of the differentials of the coframe: 

  (7.18) 

According to Cartan’s Lemma 1, this equation leads to |dxñ = m×|sñ, where m is here a symmetric 
2´2 matrix having entries which depend exclusively on surface. These entries are concretely 
expressed by some quadratic forms in the binary parameter (u,v), as shown in the first two 
equations from (7.17). On the other hand, (dz) clearly represents the height of the point in space 
with respect to the tangent plane of the surface, given by the second fundamental form of the 
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surface in case the matrix α determining the transformation (7.13) is the curvature matrix of the 
surface. Obviously this is the case with equation (7.18). Indeed, the first fundamental form of the 
surface is given by the Euclidean metric of the surrounding space, which can be obtained directly 
from equation (7.17). The metric tensor turns out to be: 

  (7.19) 

with 2λ º 1+u2+v2. Classically speaking, this tensor represents actually the third fundamental form 
of a regular surface, just as (dz) is its second fundamental form. The conditions that the differential 
forms (7.13) are exact differential can be written in the form: 

  (7.20) 

with µ º u2–v2 and ν º 2uv. When written in the parameters ‘u’ and ‘v’, they lead to the Gauss-
Codazzi equations, which impose a geometric continuity on surface for the physical parameters 
(α,β,γ), characterized by the partial differential equations given by Rainich himself (loc. cit.): 

  (7.21) 

One can, therefore, rightfully say that these equations accommodate the physical parameters to the 
given surface. 

 A Physical Parametrization of Surface 

 As we have seen, the surface on which a Kepler orbit lies can be fully described by 
deformations. As long as the physics is involved here, the deformation is generated by forces, and 
these forces can be taken as deciding the surface parametrization necessary to a ‘Švec stage’, so to 
speak, in defining the physics of surface. The forces we are talking about here should be valid in 
any initial conditions of the kind involved in expressing the trajectory in the classical Kepler 
problem. Put otherwise, the mathematical expression of these forces should be valid no matter of 
the material particle chosen from a ‘swarm’ representing, in the sense of Madelung, the orbiting 
matter to which they are applied according to the third principle of dynamics. This is a property of 
invariance which needs to be taken into consideration in the choice of the parameters on the 
reference surface itself. A specific choice is of particular interest in illustrating the manner in which 
that property of invariance should be understood. 
 The motions from which the initial conditions of a Kepler problem are chosen should be of the 
same nature as the actual motion which they help describe through the equations of the classical 
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dynamics. This observation can be mathematically used for a conclusion involving forces, as long 
as these are central (Appell, 1889, 1891). Thus, if ‘u’ and ‘v’ are the plane coordinates of some 
classical motion under a central force, then their equations describing that motion are 

  (7.22) 

where F is the magnitude of that force and t is the time of motion. This is simply a convenient 
transliteration of a dynamical equation as, for instance, (4.1) in the case of Kepler problem, but for 
a general force, not necessarily a Newtonian one. It is intended to help represent the coordinates 
of the plane of motion under a central force as the coordinates on a surface having this plane as a 
tangent plane, or as a plane in some relation with the tangent plane, for instance parallel to it. Based 
on equations (7.22), if the force is central, we can construct the area integral expressing the second 
of the Kepler laws (4.3), which in this case is: 

 
 

 

Now, assume that these are the coordinates which, as shown beforehand, give a content to the time 
and radial coordinate in a gravitational field. Specifically, as suggested by the transformation 
(2.41), we take ‘u’ and ‘v’ as factors of the ratios involved in the group transformations, i.e. 

  (7.23) 

Then, the equations of motion (7.22) become 

 
 

(7.24) 

Now, the radial coordinate from equation (2.41) is taken as the ‘vertical’ coordinate, which 
explains our notation by ‘z’. On the other hand, the first equation (2.41) gives a ‘horizontal’ 
coordinate in an arbitrary direction, denoted here with ‘r’, so that the (r, z)-coordinates can be 
taken as some cylindrical coordinates. The equations (7.24) then suggest a free fall in a vertical 
force field, exactly as in the case of gravitational motion close to Earth surface, whereby the 
gravitational force can be practically considered as a field with parallel vertical lines of force. 
Appell’s procedure is based upon the fact that if the point (u, v) describes a conic, the point (r, z) 
describes a conic too, the homographic transform of the first one. This observation is particularly 
important in the problem of finding the central forces corresponding to given orbits, which is thus 
reduced by equation (7.24) to the problem finding those ‘parallel fields of forces’ of magnitude Z 
º –Fv3/r, whose point of application describes a conic. This problem can, in turn, be further 
reduced to that of solving the Halphen’s equation of conics in the plane of coordinates (r,z) 
(Halphen, 1879). 
 Indeed, we have from equations (7.24) we have 
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Now, it is clear that any differential equation for the coordinate ‘z’ as a function of ‘r’, become 
here an equation for the parallel force Z as a function of ‘r’. In particular we have: 

   

where an accent means derivative with respect to ‘r’, and the first equation is Halphen’s equation 
of a conic in the plane (r,z). Therefore the parallel force is 

   

with µ – a constant. Paul Appell found this way two expressions of the parallel force, valid in any 
initial conditions for the motion: 

   

Using again the equations (7.23) and (7.24), we can find two possible central forces satisfying the 
first two Kepler laws for motion: 

  (7.25) 

These are also results obtained by Gaston Darboux on the same problem of finding the magnitude 
of central forces respecting the first and second of the Kepler laws [(Darboux, 1877, 1884); 
(Halphen, 1877)]. However, the Appell transformation bestows upon Halphen’s solution a 
connotation of principle having profound consequences. 
 As we just said before, the notation (r, z) used here is intended to show a historical fact: the 
Appell transformation mimics the reduction of the general Newton theory to the Galileo’s 
kinematics, a procedure which is known today as the reduction procedure, indeed (Carinena, 
Clemente-Gallardo, & Marmo, 2007). For our case here, the notation suggests a vertical plane 
projection of the horizontal dynamics, like in the case of tangent plane to Earth’s surface. The 
horizontal motion represented by ‘r’ is uniform according to equation (7.24), while the vertical 
motion, represented by ‘z’ is uniformly accelerated, of course if the force Z is constant. This, 
indeed, carries out a projection, of what happens in the ‘horizontal plane’ containing the Kepler 
orbit described in coordinates (u,v), onto what happens in a ‘vertical plane’ in coordinates (r,z). 
As shown here, the projection can only be mathematically realized in terms of asymptotic 
directions to surface, which, by Appell’s transformation, turn out to have a precise physical 
interpretation in terms of Newtonian central forces. 
 In order to physically explain the result we need to go back to Newton’s Corollary 3 of the 
Proposition VII from the first book of Principia (Mazilu & Porumbreanu, 2018), assuming this 
time the existence of a physical ray issuing from a point located somewhere along a transversal 
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direction to the plane of Kepler motion. The portion of any wave surface which may be taken to 
define this physical ray, can then be geometrically described in the parameters (u,v), whereby the 
Kepler orbit appears as the intersection of that wave surface with the plane of motion. So, the 
Kepler motion determines a wave surface, but only locally, in the manner in which the ellipse of 
polarization determines the wave surface in the case of light. Chances are, therefore, that this way 
one can generalize the Fresnel’s synthesis of the wave surface from its differential elements, to a 
synthesis involving any kind of ‘elements’, even non-differential fragments, if we take into 
consideration the spirit of SRT. For the general idea of a synthesis of the wave surface, one of the 
Hamilton’s works is to be recommended, as the clearest one from geometrical analytical point of 
view (Hamilton, 1841). 
 One more observation, before we go any further: we talked right above of ‘asymptotic 
directions’ and the involvement of these may not be quite so obvious for the casual reader. 
However, what we expressly had in mind at this juncture, is the fact that passing from the 
coordinates (u,v) to the coordinates (r,z) involves intuitively a transition between two scales of 
spacetime. Our contention is that the procedure, far from having only an intuitive meaning, like it 
had to Newton for instance, should actually be taken as a universal procedure and theorized as 
such. For, imagine a portion of the orbit of a satellite around the Earth, as in Newton’s gedanken 
experiment with a cannon powerful enough, and high enough above ground, to launch such a 
satellite. This way one can prove indeed that the gravitation in the universe is the same one as the 
gravitation causing the free fall, provided one agrees to jump over the scale of things. For, the laws 
of Galilei for the free fall are local laws, valid over a finite altitude at the Earth surface, while the 
universality refers, obviously, to… universe. The above geometrical procedure transforming the 
Kepler motion in a free fall in every point, requires evidently a further physical explanation from 
the perspective of SRT. As it turns out, it is indeed legal, so to speak, but involves precise 
formulations of scale transitions. 

 The Three-Dimensional Space of Accelerations 

 So we come to the suggestion of using a piece of a surface as a reference for the surrounding 

space, exactly the way we use it daily in the case of Earth surface. The previous use of the Appell 

coordinates encourages us to hope that this intuitive behavior can be molded into a general theory 

with the help of idea of wave surface. However, choosing a wave surface element as reference for 

the surrounding space, leads to particular concerns regarding the metric quantities by which that 

space is mathematically turned into a concept. For instance, equation (7.11) shows that the height 

of the surface with respect to its tangent plane is given by a quadratic form involving some 
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curvature parameters or their variations. This case is characteristic to the definition of second 

fundamental form of the surface, giving therefore positions of a point in the surrounding space 

along the normal to the surface element (Struik, 1988). Of course, this geometric interpretation 

resides upon the idea of infinitesimals, therefore upon a limiting process, but the theory can be 

extended into a representation of the height above surface by a Taylor series, truncated to the 

second order term, which is quite a general case. 

 Theoretically, one can argue that the dimension of the environmental space cannot be three, as 

classically suggested, but the issue is a little more involved, for it cannot be purely geometrical. 

Of course, one cannot bring arguments against the intuitive feeling that the residence space of the 

matter, as it presents itself to our senses, is three-dimensional. The simplest argument for this 

statement is provided by the fact that in order to evaluate quantitatively the shape of a body, no 

matter of the space scale, we need at least three measurements of its space extension along three 

different directions. However, from the very foundation of the theory of surfaces – the linear 

independence of the vectors – the things cannot remain at the intuitive level, because the physics 

itself points out, in fact, to a environmental space of geometrical dimension five. Indeed, our line 

of introducing the physics here is based on the fact that both the metric form and the second 

fundamental form in a point of a surface are binary quadratic forms. The binary variable is 

provided, of course, by the components of differential displacements along the tangent plane to 

surface in the chosen point. It is from this perspective that the ‘vertical’ position of a certain point 

in the space referred to a surface element, along local normal direction to this surface is, in a sense, 

a vector in a three dimensional real space. The mathematical basis of this statement can be 

presented as follows. 

 Any binary quadratic form can be uniquely expressed as a linear combination of three 

nonsingular, mutually apolar, binary quadratic forms. The proof here is due to Dan Barbilian 

(Barbilian, 1971), but for the general theory of apolarity of the binary quadratic forms, one can 

consult a classical treatise (Burnside & Panton, 1960). The chapter XVI of the second volume of 

this last work, particularly the example 6, pp. 136–137, is particularly illuminating for what we 

have to say here. Start with designating a generic binary quadratic form by 

   

where the binary variable is, again generically, denoted (x,y). Write this quadratic form as a linear 

combination 

  (7.26) 
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where Qk represent three quadratic forms whose coefficients are a, b, c with different indices ‘k’. 

This identity is equivalent to the linear algebraical system: 

 

 

(7.27) 

Considered as a linear system for the unknowns l1,2,3, this system can be compatible, and if the 

three basic quadratics are nonsingular and mutually apolar, it is always compatible and has unique 

solution. Indeed, the square of its third order principal determinant can be expressed as 

  (7.28) 

Now, if the three basic quadratic forms are apolar Ikl  = 0 for k ¹ l, so that only the diagonal entries 

survive here, and these are the discriminants of the quadratic forms. Because they are assumed 

nonsingular, the equation (7.28) shows that the determinant of system (7.27) is always nonzero, 

therefore the system has unique solution for the unknowns l1,2,3. If the system is homogeneous, it 

has only the trivial null solution. Therefore the set of all quadratic binary forms, defined by some 

external reasons in a point of an affine surface, is a linear three-dimensional set. 

 Strange as it may seem, the dimension three for the ‘normal space’ to a physical surface has 

indeed strong physical reasons, not only historically as noted before, but even from the very 

classical mechanics’ point of view. That point of view is given by the Newtonian relation between 

force and acceleration – the second law of dynamics – however, with a proper perspective of of 

concepts. In the classical differential geometry of surfaces, as presented above, this perspective 

amounts to the following. Assume that v is the local speed of a motion along the geodesics of a 

surface in a certain point: 

   
Here the overdot denotes a time rate as usual. This is an intrinsic vector, just like the elementary 
displacement on the surface itself, from which it is derived. The rate of displacements is taken with 
respect to the time of geodesics of surface, which is to assume that they exist and the motion along 
them is physical. The variation of vector v along geodesics has only one component, namely that 
component normal to surface, according to the very definition of geodesics: 

   

Using the definition of the curvature vector, one can see that the quadratic generated by the second 

fundamental form, or its variation, in association with the time of geodesics on surface, i.e. the rate 
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  (7.29) 

is the magnitude of a normal acceleration to surface. Here h is a general matrix, representing either 

the curvature matrix or its variation, as the case may occur. By the same token, the intrinsic vector 

normal to geodesics in the tangent plane 

   

when transported by paralelism along geodesics, yields a normal vector 

  (7.30) 

having the magnitude 

  (7.31) 

This is an acceleration due to the ‘geodesic torsion’: the vector (7.30) represents the torsion of any 

curve touching the geodesic in the given point. The two quadratic forms from equations (7.29) and 

(7.31), represent two different accelerations, both oriented along the normal to surface. 
 In a regular geometry these are just the magnitudes of two collinear vectors. Nevertheless, as 
quadratic forms, they are insufficient for characterizing the whole magnitude of the normal 
acceleration in general, inasmuch as, considered as a quadratic polynomial, this one is a point in a 
three-dimensional linear space, as shown above. This is the right place to use the property of 
apolarity in order to properly make up the magnitude of an acceleration. Indeed, as one can see 
directly, the two quadratics (7.29) and (7.31) are reciprocally apolar: the quantity I12 defined in 
equation (7.28), calculated with their coefficients, is null. Then we can naturally construct a third 
quadratic, apolar with each one of them, the so-called resultant: 

  (7.32) 

where ‘h’ is the determinant of h, i.e. the Gaussian curvature of surface, or its variation. If the 

support function of the surface [see (Spivak, 1999) for a clear explanation of the concept] can be 

represented by a quadratic form, then the proper representation of the magnitude of acceleration, 

when referred to the time of the geodesics on the surface, should be by a linear combination of the 

quadratics (7.29), (7.31) and (7.32). 

 Therefore, a first general conclusion, concerning physics alone, can be drawn by assuming that 

by the classical Newtonian relation between the magnitude of acceleration and and the magnitude 

of force we can transfer the reasoning upon forces. Then the forces with which the surface of a 

spatially extended particle responds when accomodating with each other the exterior structure to 
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which the particle belongs physically, and interior changes of the particle’s matter, should be linear 

combinations of the three accelerations above. One can further say, again on behalf of physics 

itself, that the coefficients entering such an expression of the forces represent three types of inertia, 

which only accidentally reduce to one, in those cases in which the force can be sufficiently 

characterized as vector. For instance, this could be the case when the constituent Hertz particles of 

the matter structure can be represented as a material points. This was actually the very case that 

allowed introducing forces in physics. 

 Indeed, this was the manner of conceiving forces responsible for the celestial harmony in the 

first place: namely, by the ratio of their magnitudes (Newton, Principia, Book I, Proposition VII, 

Corollary 3). Only, in the original case of Newton, the forces were considered as acting in different 

arbitrary directions in the plane of motion. A particular instance of such directions is given by the 

force from a planet toward the focus of its orbit, and from the same planet toward the center of the 

orbit. This provides the Newtonian force of magnitude inversely proportional with the square of 

the distance from the focus. However, a more explicit example of forces having as magnitude a 

linear combination of magnitudes of forces, is provided by the case of revolving orbits, whereby 

the magnitude of the force responsible for the motion along a revolving Kepler orbit is a linear 

combination of the magnitude of a force inversely proportional to the square of distance and the 

magnitude of a force inversely proportional to the cube of distance (Principia, Book I, Proposition 

XLIV). For a treatment of the problem in modern theoretical terms one can consult many works 

referring, for instance, to the basic reasons of general relativity. However, there are a few works 

considering the problem in its own classical right [see (Whittaker, 1917); (Chandrasekhar, 1995); 

(Lynden-Bell, 2006)]. 

 There is, however, a very instructive classical case illustrating the issue even from the very 

standpoint of the theory of surfaces. Like anticipating the case of Fresnel, occurring  two centuries 

later, Newton explained the phenomena of reflection and refraction of light by a force acting at the 

surface of matter, along the normal to that surface [see (Newton, 1952), pp. 79ff]. Nowadays, we 

should be able to say that such a force can be explained within differential geometry, by the 

previous extension of the principle of inertia, as long as the light itself is considered a material 

structure, as it always was actually. From this perspective, one can say that the diffraction 

phenomena studied by Fresnel, only extended the phenomenological framework leading to 

Newtonian force. The original phenomenology of Newton’s optics was only based upon the 

experience regarding only reflection and refraction of light, while Fresnel enlarged this 
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phenomenology with the experience on diffraction. The existence of the force of light as assumed 

by Newton, was indeed confirmed as a physical fact, however, only at the infrafinite scale of time, 

i.e. within a theory of collisions, on one hand through the electromagnetic structure of the light 

and, on the other hand, through the experiments of Pyotr Nikolaevich Lebedev [(Lebedeff, 1900); 

(Lebedew, 1902)]. The extension of the principle of inertia has, nevertheless, by far larger 

implication than the corpuscular theory of light. 

 Force at an Outward Distance 

 Assuming, indeed, that we have an extended particle model, the problem is to incorporate such 

a particle within a physical structure of the matter: that physical structure to which the particle 

belongs. A first issue in solving this problem, at least in a classical view, is the construction of a 

potential of the forces acting outside the matter of this particle, and we are able to show here that 

this potential is strictly determined by the limit of separation of the matter of extended particle. 

The expression of the force obtained from this potential depends solely on the curvature of surface 

and its variation. This can be shown as follows. 

 To start with, we take notice of the fact that by the beginning of the last century, Edmund 

Taylor Whittaker was able to produce solutions of the nonhomogeneous Laplace equation (in fact 

of Helmholtz equation) by introducing arbitrary functions in an integral over the unit sphere 

(Whittaker, 1903). Specifically, if we parametrize the sphere by the polar angles θ, f with respect 

to its center, then we find that the potential written in the form 

  (7.33) 

with f(θ, f) an arbitrary function, is a solution of the equation ΔU(r) = U(r), where  D is the 

Laplacian in Cartesian coordinates (x, y, z), considered as components of the position vector r. 
 Some three decades afterwards, Pierre Humbert noticed the fact that the partial differential 
equation to be satisfied by the potential of a surface in the outer space is actually dictated by the 
equation of the surface itself, if it can be represented by a known algebraical expression, as in the 
case of Whittaker’s unit sphere. Such a description of the surface is always handy, even though far 
from unique, if one asks for means of defining it depending exclusively on the local geometry of 
surface. This can be shown quite directly, considering U(r,a) the potential between points r and a 
in space (Humbert, 1929). Humbert chose for illustration a Gaussian central potential, but he soon 
noticed that the theory goes very well with arbitrary forms of potential. It is this fact that entitles 
us to write the potential in terms of a simple algebraical approximation of the local elements of 
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surface. The theory goes along the following lines: if the point of position a describes a surface, S 
say, the potential of that surface in the space point of position r is naturally given by the integral 

   

where d2a is the elementary measure on that surface. For a potential of the form 

  (7.34) 

and if the surface is algebraic, having the equation: 

  (7.35) 

the potential as a function of position in space satisfies the partial differential equation: 

  (7.36) 

These results generalize the one due to Whittaker, for the representation of the solutions of Laplace 

equation: in that case it is sufficient to consider that the algebraic equation in (7.35) is a sphere of 

unit radius referred to its center, which can be obtained as a particular case for m+n+p = 2. 

 However, the Humbert’s results can be seen even from another angle, namely as an ‘eigenvalue 

problem’, involving some ‘level surfaces’, so to speak. Indeed, if instead of (7.35) the equation of 

the local algebraical surface is of the general form 

  (7.37) 

where Amnp and λ are some parameters, then the partial differential equation satisfied by U(r), as 

given by equation (7.34), is of the form: 

  (7.38) 

This allows us to include among the representations of Humbert some important homogeneous 

equations like, for instance, the Laplace equation proper, which is the epitome of the classical 

theory of potential. The solutions of this equation are then represented by an integral of the form 

  (7.39) 

where f(a) is an arbitrary function on the surface a2 = 0 [see also (Bateman, 1918), Chapter VIII, 

and (Helgason, 1984), pp. 18 – 20]. Thus, in view of what has been said before, the potential of an 

extended material particle in a position from the outer space, considered as a solution of the 

Laplace equation in that position, is decided by what we like to call the spin parameters of the 

extended particle (Yamamoto, 1952). If these spin parameters are connected to the curvatures 

òò=
S

2d),(U)(U aarr

)(fe),(U aar ra×=

ambncp
m,n,p∑ = 1

∂x
m∂y

n∂z
pU(r)

m,n,p∑ = U(r)

l=å p,n,m
pnm

mnp cbaA

)(U)(UA
p,n,m

p
z

n
y

m
xmnp rr l=¶¶¶å

òò ×=
S

2d)(fe)(U aar ar



 117 

parameters and their variations, the force generated by an extended particle in any position from 

the outside space is offered by the gradient of the potential, as usual: 

  (7.40) 

a conclusion in concordance with the extended inertia principle as restated above. The arbitrary 

function f(a) can be given from further invariance considerations, but related to surface only. 

 It is now the proper place to take notice of the inedit: the inertia property of matter is an issue 

involving the surface separating the matter form space, which means that it should be a 

holographic property. Indeed, the three spin parameters as characterized by Yamamoto, can be 

realized as accelerations as we have shown above. Thus, they occur with a proper physical 

characterization of the surface of a certain material point in the sense of Hertz. The force of inertia 

is thereby related to this surface, and from it any external force can be calculated by the recipe 

given in equation (7.40). This equation is then the universal expression of the second principle of 

dynamics, with a proper definition of the surface forces. 

8. Nonconstant Curvature 

Consider, therefore, the case of a nonconstant curvature matrix, and choose the variations of 
curvature as determining the variations in the direction of the normal to surface: 

   

as an equation for the ‘orbits’ through |sñ, as it were. This is surely the case with a special gauging 
of the local piece of surface, with the assist of curvature matrix itself. If, for instance, the curvature 
is initially decided by a Kepler orbit, as in equation (6.38), and the surface is locally gauged by 
this Kepler orbit as in equation (6.39), then the curvature vector itself satisfies to a known 
differential differential equation involving the coframe of the sl(2, R) algebra: 

  (8.1) 

Using the three curvature parameters,  a, b, g say, the equation (8.1) is: 

  (8.2) 

where we denoted: 
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with ω1,2,3 the differential 1-forms of the coframe: 

 
 

(8.4) 

Now, in order to interpret geometrically, and therefore physically, this definition, we need first to 
have some characterization of the vector from equation (8.2) with respect to the position |sñ from 
the tangent plane. This will then show how much the second fundamental form differs from the 
one calculated in the position of origin of the plane. From equation (8.2) we have by direct dot 
multiplication: 

  (8.5) 
where the matrix W is defined in equation (8.3). Therefore the variation ‘gauged’ through equation 
(8.2) induces a differential variation along the position vector in the tangent plane proportional 
with the second fundamental form, but to which a certain quadratic form is added. Using equation 
(7.9) for calculating this quadratic form, results in 

 
 

(8.6) 

The general conclusion is that the variation of curvature parameters at a given position on the 
surface involves three quadratic differential forms: the second fundamental form of surface in the 
given position, the quadratic differential from equation (8.6) and the quadratic differential 

  (8.7) 
where the star denotes the usual Hodge duality operation on the differentials: |*sñ º i×|sñ. Now, the 
two differential forms involved in equation (8.5), together with the one from equation (8.7) are, 
from algebraic point of view, a system of three mutually apolar quadratics: the very property of 
the spin parameters in Yamamoto representation. The idea is thereby suggested, that the apolarity 
plays a fundamental role, when it comes to issues of the variation of curvature, and consequently 
to the physics involved in this variation of curvature. 
 Thus, there are three mutually apolar quadratics that can play the part of spin parameters, and 
these are generated by the variations of curvature of the surface. These quadratics may play the 
parts of some accelerations as in the case of the classical theory of surfaces, equations (7.29), 
(7.31) and (7.32), but there are some problems. The first of these is the calibration condition 
leading to the equation (8.1): it requires a condition of calibration like (6.39), and if there are forces 
involved here – as there should be, if we are talking about the Kepler problem – these need to 
satisfy the Wigner dynamical principle, not the classical one. Thus, in the general formulation of 
the dynamical principle we need to account for calibration forces setting the background, so to 
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speak, and incidental forces, responsible for the variation of curvature per se, and acting on that 
background. A case of working in such a background should be illuminating here. 

 The Infinitesimal Deformation 

 In order to give an interpretation of the previous results we shall call upon one of the many 
descriptions of the deformation of surfaces, namely the infinitesimal deformation [see 
(Guggenheimer, 1977), p. 245ff]. Such a deformation gives a new surface described by a position 
vector 

   
The choice of symbols is here intended to show that the surface x undergoes a deformation 
characterized by the small parameter e, in a ‘vertical direction’, so to speak, given by vector z. In 
general, however, the direction of deformation is not vertical per se, but only transversal to the 
surface x, in the sense that it takes the corresponding points out of this surface. By definition, this 
type of deformation is such that the variation of the first fundamental form is null for small ε, i.e. 
it remains approximately constant through the deformation: 

 
 

(8.8) 

where the geometry of the ambient space is considered to be Euclidean. This condition leads to 
the following constraint for the vector z: 

  (8.9) 

y here is an ancillary vector which, nonetheless, cannot be quite arbitrary. Its properties are, again, 
simple consequences of the exterior differential calculus. Indeed, the vector dz in equation (8.9) 
should be an exact differential vector. Imposing this condition on the second of these equations, 
and using again Cartan’s Lemma 1, leads directly to the following equations: 

  (8.10) 
where the definition v º dy is used. Thus, the ket |vñ, as defined by this last equation, is practically 
a vector intrinsic to surface, which in turn means that the normal component of the ket |yñ itself 
must be, locally, a constant. Moreover, by its definition |vñ must be an exact differential vector. 
The condition that its exterior differential is the null vector, leads to equations like (7.7), but with 
v1 and v2 instead of s1 and s2. The third of those equations, combined with equation (8.10), then 
shows that A, B, C are constrained to satisfy the linear relation 

  (8.11) 
where a, b, g are the coefficients of the second fundamental form (the entries of the curvature 
matrix). This shows that the flux through surface at the chosen location, given by equation: 
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  (8.12) 

where i is the fundamental skew-symmetric 2´2 matrix, has as magnitude a quadratic form which 
is apolar to the second fundamental form. It only remains to elaborate on how the coefficients A, 
B, C can be related to the physics of our problem. 
 Notice that the parameters A, B, C are, again, external parameters, introduced by Cartan’s 
Lemma 1. They can be introduced as such, in the way in which the curvature parameters were 
introduced, as proceeded above, or they can be constructed from the curvature parameters. This 
last case is always handy by the very rules of algebra. Indeed, the equation (8.11) is an apolarity 
condition, between the quadratic form (8.12) and the second fundamental form of the surface in 
the point considered. If we take these parameters as differential forms (8.4), according to the rule 
of correspondence 

  (8.13) 

we can define an infinitesimal deformation, induced exclusively by the variation of curvature 
parameters. This infinitesimal deformation is then expressed by an addition to the second 
fundamental form, as we already mentioned before, given by equation (8.12) as: 

  (8.14) 
This vector has indeed the magnitude given by equation (8.7), and therefore can be viewed as 
related somehow to the ket |dW3ñ defined in equation (8.1). It can be described indeed by an 
auxiliary ket |yñ defining a deformation, which is directed along the normal to surface, and which 
acquires in-surface components by the very curvature parameters’ variations: 

 

 

(8.15) 

The corresponding first fundamental form then becomes: 

  (8.16) 

where the ket i·|vñ is calculated based on equation (8.10), but this time with the values (8.13) for 
the coefficients A, B, C. This matrix obviously reduces to the usual identity matrix, representing 
the initial Euclidean geometry, once the parameter ε ® 0. 
 We can assume, therefore, that the initial surface generated on the basis of a Kepler motion, is 
an already deformed surface, and thus start in the description of the process of deformation from 
an initial surface having a nontrivial metric. Then, the physics of this problem reveals another way 
of construction of the infinitesimal deformation, whereby the classical Euclidean notions enter 
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explicitly. Specifically what Euclidean notions, is quite obvious from the dynamical theory of 
Kepler orbits. Namely, such an orbit can be identified by the initial conditions from which it starts. 
Thus, if the orbiting matter is to be physically interpreted in the manner of Louis de Broglie, and 
the interpretation is to be achieved by ensembles of Hertz material particles, these particles can be 
identified only by their velocities. And the physically fundamental problem is that of constructing 
a surface which is perpendicular to such a velocity vector. Of course, as long as only the Euclidean 
geometry is involved, we just have to apply a procedure based on relations (7.10) and (7.11). The 
problem is a little more complicated when we already have a surface at our disposal, like, for 
instance, the one determined by an isolated Kepler orbit. In this case the curvature parameters are 
given, and based on these parameters we need to find a surface normal to the velocity field. Then 
the following general recipe can be applied. 
 Assume a certain Euclidean velocity field v, and a surface locally characterized by the 
curvature parameters a1 º a, a2 º b, a3 º g. This last indicial notation entails a warning about the 
procedure we are just about to describe: they are the contravariant components of some position 
vector locally describing the surface, as shown before, for instance the coefficients of an ellipse 
considered as Dupin indicatrix of the surface. Case in point, the wk from equation (8.4) might be 
considered as some vector densities constructed with a metric given by the discriminant of the 
second fundamental form. Likewise, the components of vector v are the coefficients of a 
differential form in space: v º vk×dxk, i.e. some ‘covariant’ components, carrying lower indices. If 
the vectors involving the components ak, are a realization of the structure relations of the three-
dimensional sl(2,R) algebra, satisfying the structure given by equations (2.43), viz.: 

  (8.17) 

then we can construct the bilinear forms 
  (8.18) 

One has to understand here that an upper index represents the number of a line of the matrix hi, 
defined by 

  (8.19) 

so that, according to equation (2.43), we will take: 

 

 

(8.20) 

Thus, the matrices hk act upon a’s by left multiplication, and on v’s by right multiplication, and 
thus we have, from equation (8.18): 

 
 

(8.21) 
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These three quantities satisfy two important identities, namely: 

 
 

(8.22) 

which may be able to justify us in calling them ‘transition quantities’. Indeed, they play a double 
role: on one hand the xk can be considered as the components of an Euclidean vector perpendicular 
to vector v, while, on the other hand, they can be considered as the coefficients of a quadratic form, 
apolar to the second fundamental form of the surface characterized by ak. 
 Perhaps this description is not enough for understanding the idea of transition between the two 
otherwise intransitive geometries. However, let us think of the fact that we are always prepared to 
accept the notion that the matter fills a space. With Newton and, closer to our times, with Einstein, 
this notion became critical. And this ‘criticalness’, so to speak, can simply be exhibited as the 
common denominator of the classical physics and theory of relativity: we do not know anything 
about the space filled by matter. All we know is referring to the matter filling that space, the space 
itself is a problem of hypothesis. As we have shown previously, the idea of ensemble is intrinsically 
involved in the possibility of interpretation of matter per se. Along this interpretation the concept 
of surface comes as only natural with the fundamental model of our knowledge: the planetary 
model. This model shows that the sl(2,R) differential geometry is the natural Riemannian 
geometry of matter. And having some quantities characteristic to this geometry, which belong also 
to the Euclidean geometry, can be taken as an indication that the geometry of the space free of 
matter is, or at least can be taken as, Euclidean. It is then only natural to assume that the matter 
fills an Euclidean space, and work with this assumption along the ideas of Élie Cartan in 
constructing the Riemannian geometry of space based on the concept of torsion (Cartan, 1931) 

 Summing up the Differential Geometry of Curvature Parameters 

 A few algebraical relations among the differential forms from equation (8.4) are in order. They 
form a basis (coframe) of a sl(2,R) algebra. We already alluded to such a structure, by presenting 
equation (8.1) as a gauge equation obtained by left multiplication with the inverse of the curvature 
matrix. More than this, it turns out that, among other things, the space of curvature parameters can 
be organized as a Riemannian space. In order to show this, notice first the following differential 
relations in the space of curvature parameters, which can be proved by a direct calculation: 

 
 

(8.23) 

Here Θ is the differential 2-form of Hannay 

  (8.24) 
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The 2-form Θ is closed because it is the exterior differential of a 1-form: 

   

which represents the classical Hannay angle for the problemof variation of the second fundamental 
form of a surface. In the present context this 1-form can be written as 

 
 

(8.25) 

including explicitly the ratio between the mean and Gaussian curvatures. It gives therefore a way 
to establish the mathematical procedure for the local problem of surface forces, but certainly has 
everything in common with the original angle designated as such [see (Hannay, 1985); (Berry, 
1985)]. More than this, there is also a statistic involved in this exterior calculus, which will be 
revealed shortly. 
 Meanwhile, continuing with pure algebra, we can verify the following relations: 

 
 

(8.26) 

Thus, from (8.17) and (8.22) we have indeed the characteristic equations of a sl(2, R) structure 
given before in equation (2.49): 

  (8.27) 

Using these relations we can draw an important conclusion, destined to guide our future research. 
Notice, indeed, that in a given point of the surface, we can construct the 2-form in the curvature 
parameters’ space: 

 
 

(8.28) 

where we have used the equation (8.17) and the matrix  W from equation (8.3). As the 2-form Θ is 
a flux in the space of curvature parameters, to wit something analogous of the solid angle in the 
usual Euclidean space, the second fundamental form ás|b|sñ of a surface, in a given point, is in fact 
the intensity (the value) of a flux in the space of curvature parameters, depending quadratically on 
the position in the local tangent plane. This philosophy can be profitably used in constructing a 
statistic of the fluxes of forces for a material point inside matter. First, however, let us define the 
notion of surface tension, in order to reveal the right place of the Riemannian character of the 
space of curvature parameters: its metric. 
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 A Definition of Surface Tension 

 We introduce the surface tension locally, as a differential 2-form. It can be the component of 
a vector, or even the magnitude of a vector, depending on the measure of the deformation of surface 
we manage to define. Talking of deformation, it is the reason we consider the surface tension as 
being represented by a 2-form. Indeed, in order to interpret the deformation in the physical way, 
i.e. by an ensemble in the continuous matter, even from the times of Augustin Cauchy physics took 
the habit of considering the fluxes of forces between some constitutive material particles – called 
molecules in the times of Cauchy – through a plane. The deformation is then connected to the 
tensions created by these fluxes of forces calculated with respect to planes in matter, and 
designated as stresses, via a constitutive law of matter. Classically, one defines the stresses as 
tensions on the six faces of a little cube, imagined as cut out from the matter. The stresses are then 
the components of the resultants of these fluxes of forces through each one of the six faces of cube. 
With the present work, we have in mind two steps in generalization of this classical image. First, 
a little cube is quite a particular solid shape, which might indeed be assumed by a material point 
in matter, but this is highly unlikely. It is true that, inside matter, such a solid shape can indeed be 
imagined, but it rather counts only as a reference frame, as we explained before. For, inside matter, 
the ephemeral shapes of the lumps of matter assumed by a material point can be rather complicated, 
like higher dimensional polytopes, to say the least [see (Manton & Sutcliffe, 2004) for the gist of 
a description of material formations by such shapes]. 
 It is then obvious that a material point has to be described only locally on incidental surfaces, 
therefore on incidental planes of arbitrary orientation, and on these planes we need to connect the 
tensions with an already built-in statistics somehow related to the deformation. So, as a first step 
in introducing physics here, we define the local tension as the 2-form: 

  (8.29) 
where f1 and f2 are two conveniently chosen differential 1-forms, and the components of the 
differential of curvature vector are defined in equation (8.2). The equation (8.29) is the expression 
of a specific logic, allowed, this time, by using the Cartan’s Lemma 2. Indeed, it incorporates the 
idea that the tension is directly related to curvature. For, according to Lemma 2, the tension f0 is 
null whenever there is no curvature in the given point, and reciprocally, of course: if the tension is 
zero, there is no curvature. However, this tension obviously depends on some other physical 
circumstances, embodied this time in the choice of differential 1-forms f1 and f2. This allows us 
to state that the tension can be zero even if there is curvature of the surface, as it happens indeed, 
in actual cases of our experience. 
 Thus, if the conveniently chosen auxiliary forms, in the definition (8.29) of the tension, are the 
components of the first fundamental form, i.e. the local components of the position vector |sñ in 
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the tangent plane for instance, then equation (8.29) simply shows that there is no tension. For then, 
there is a symmetric matrix relating |W3ñ to |sñ, as in equation (7.9), and therefore the tension is 
zero. On the other hand, if the tension is zero, according to Lemma 1 there is, again, a symmetric 
matrix defining the local curvature. Thus, the geometrical definition of the local curvature of a 
surface is simply a consequence of dynamics: it represents a description of the local geometry in 
the absence of tensions on surface. We can think of this definition as being the definition of a local 
reference state of the surface, with the state defined by the curvature parameters, viz. the entries 
of the curvature matrix b: a given set of values of these three parameters represents a fragment of 
surface, which represents geometrically a state of the surface. 
 Starting from such a state, we can build an evolution based on tensions, along the very same 
line of thought, but based on Agaoka’s theorem. The tension, if it exists, should be related to the 
variation of curvature. We take a differential 3-form, assuming that it can be zero whenever two 
differential 2-forms are zero and vice versa. Then we can write: 

  (8.30) 

Here ‘f’ is our 3-form, and (f1, f2) are some 2-forms, components of the surface tension. Then, if 
the 3-form ‘f’ is null, we have, according to Agaoka’s theorem: 

  (8.31) 
where B is a symmetric matrix having some 1-forms as entries. In the right hand side here, we 
have a matrix multiplication as usual, but with exterior product of 1-forms instead of usual 
multiplication of numbers. Now, we can assume that the ket |fñ is generated by variation of the 
curvature parameters. 
 An digression is in order here: as one can see, the equation (8.30) cannot refer but to a three-
dimensional theory, since the intrinsic theory of surfaces cannot accommodate an exterior 3-form. 
However, an embeding theory of surfaces can certainly contain such a form, which, in this case, 
can even be considered as mandatory from the point of view of interpretation. Fact is that in a 
Hertzian natural philosophy of matter we have to deal with two types of surfaces: one separating 
the categories of matter from the categories of space, the other delimiting the categories of matter 
themselves, specifically, material points, with respect to each other. This last type of surfaces, 
accidental inside matter, is the one serving in clarification of Madelung’s notion of ‘penetrating 
without merging’. ‘Merging’ is, at least in the framework of the classical natural philosophy, if not 
all over the natural philosophy in general, a notion related to the first type of surfaces, i.e. those 
describing the separation of matter from space. It involves forces calculated according to a 
Whittaker-type theorem, exclusively through the ‘holographic properties’, presented by matter in 
its limit of separation from space, as in equation (7.40), for instance. Therefore, the equation (8.30) 
represents a matter surface embedded in matter, thus ‘penetrating’ but not ‘merging’. In hindsight, 

f = f1 ∧φ1 + f2 ∧φ2
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one can say that this property of the matter, so aptly described by Madelung, has a significant 
history within natural philosophy. This history is epitomized by the idea which triggered the birth 
of relativity, that the bodies move through ether without dragging it along. When this idea reached 
its critical point, and, in fact, even before, starting from its birth as a concept, the ether was a 
category of matter. So the first ever case of ‘penetrating without merging’ is simply the motion of 
bodies through ether. 
 Returning to our algebraical development, a well-known choice related to the sl(2,R) group 
algebra is the Sasaki ket, |Sñ say, having the components (Sasaki, 1979): 

 
 

(8.32) 

where (w1, w2, w3) is the coframe of this algebra, given in equation (8.4). The symmetric matrix 
B0, defined by 

 
 

(8.33) 

acts on this vector as an exterior differentiation: 

 
 

(8.34) 

with i denoting the fundamental skew-symmetric 2´2 matrix. 

 The Statistics of Fluxes on a Material Point 

 The characterization of a local flux of forces is closely related to a plane centric affine 
geometry. That is to say that if one insists in characterizing a statistics of the contact forces on the 
surface of a certain nucleon, one has to consider the centric affine geometry in the tangent plane. 
This section shows a way to build such a statistics, based on the idea of continous Lie group 
characterizing the plane centric affine geometry. 
 The sl(2,R) action preserving origin of this plane geometry is given by the three vectors 

  (8.35) 

while the corresponding action in the space of curvature parameters is realized by the vectors: 

  (8.36) 

This last realization characterizes an intransitive action in the space of curvature parameters, which 
allows transitivity only along specific manifolds, given by constant discriminant of the second 
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fundamental form. Therefore the action realized by operators (8.30) is transitive only at constant 
Gaussian curvature. 
 The functions of physical interest can be presented here as joint invariants of any two of the 
actions given by equations (8.35) and (8.36), with the help of Stoka theorem (Stoka, 1968). 
According to this theorem, any joint invariant of the two actions is an arbitrary continuous function 
of the two algebraic formations 

  (8.37) 
Obviously the Gaussian probability density, for instance, if the case may occur, is only a special 
case of this theorem. By the same token, the straight lines through origin s1 = s2 = 0 can be presented 
as joint invariants of two actions realized by operators (8.35), while the joint invariants of two 
actions realized by operators (8.36), one in the variables a, b, c, say, the other in the curvature 
parameters α, β, γ, are arbitrary continuous functions of the following three algebraic formations 
(Mazilu, 2006): 

  (8.38) 
These are important in problems transcending the manifolds of transitivity, of which an example 
will be given presently. These algebraic facts can give good reasons for a few further observations 
related to the classical statistical theory of contact points at the surface of a nucleon inside nucleus. 
 Before entering the calculational detail, let us notice that such a line of thought tips us to 
ammend the definition of a shape as given, for instance, by Shapere and Wilczek [see the works 
included in the collection (Shapere & Wilczek, 1989)]. Namely, we consider the instant shape, of 
a nucleon say, first of all as a collection of elementary events, described by contact points, their 
extended contact spots and the contact forces on them. It is this collection that should be considered 
as an evolving part of a ‘phase space’ of shapes. The actual space shapes have yet to be constructed 
from these elements by a certain physical procedure. The classical illuminating example is 
Fresnel’s construction of the wave surface from pieces accessible to diffraction experiments. 
 Thus, for instance, consider that the fluxes of contact spots of a certain nucleonic surface, are 
controlled by the Dupin indicatrices at the contact points. According to Stoka theorem, the 
statistical ensemble of these contacts may be characterized by a normal probability density 

 
 

(8.39) 

in two statistical variables X and Y, of which we don’t know too much for now, other than that 
they are the coordinates of position on any one of the contact spots of the surface of nucleon, as 
suggested before. 
 We have, therefore, a way to calculate the statistics of a quadratic variable Z(X, Y), obtained 
as before, in the process of deformation by contact, and having the generic values: 
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(8.40) 

Thus we need to find first the probability density of this variable, under condition that the plane of 
contact is characterized by the a priori probability density as given, for instance, by the Gaussian 
in equation (8.39). The probability density of Z should also satisfy the Stoka theorem, in the precise 
sense that it must be a function of the algebraic formations from equation (8.38). This leaves us 
with a functionally undetermined probability density though, even if we impose some natural 
constraints in order to construct it. 
 Nevertheless, proceeding directly, in the usual manner of the statistical theoretical practice, we 
are able to solve the problem, at least in this particular case. Thus, we have to find first the 
characteristic function of the variable (8.40). This is the expectation of the imaginary exponential 
of Z, using (8.39) as probability density. Performing this operation directly, we get, with an 
obvious notation for the average: 

 
 

(8.41) 

In view of (8.38), this characteristic function certainly satisfies the Stoka theorem, which thus 
reveals its right place in a physical theory: it should serve for the selection of the right physical 
functions, specifically the probability density, or the characteristic function, as in this case. 
Anyway, the sought for probability density can then be found by a routine Fourier inversion of the 
characteristic function from equation (8.41), based on existing tabulated formulas [see (Gradshteyn 
& Ryzhik, 2007), especially the examples 3.384(43); 6.611 (40); 9.215(16) & (39)]. The result is: 

  (8.42) 

Here I0 is the modified Bessel function of first kind and order zero, and A, B are two constants to 
be calculated from the formulas 

  (8.43) 

Again, this probability density obviously satisfies the Stoka theorem, as it is a function of the joint 
invariants from equation (8.38). And so do the statistics of the variable Z, i.e. its mean and 
variance, for they can be calculated as 
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We thus have the interesting conclusion that the essential statistics related to variable Z do not 
depend but on its coefficients and the values of the curvature parameters characterizing the point 
of contact. 

 The Stress by a Statistic 

 The previous theory can help us secure, from a theoretical point of view, a purely statistical 
connotation in the curvature space itself. Assume indeed, that ‘a’, ‘b’ and ‘c’ are some variations 
of the curvature parameters α, β and γ, respectively, over an ensemble of points locally representing 
an instantaneous surface inside matter. This instantaneous surface may be a surface proper 
separating the matter from space, or even an imaginary surface inside matter itself. It turns out that 
the statistical variable having its values given by equation (8.40) can actually be taken as a 
variation of the second fundamental form of such a surface, when this variation is controlled only 
by the variations of its coefficients. Such a situation is particularly important for physical 
applications. In this case, (8.40) gives the values of a statistical variable – let us call dZ in order to 
show its ‘differential’ nature – which has, according to equation (8.44), the expectation 

 

 

(8.45) 

and the variance 

 

 

(8.46) 

These two statistics have a precise geometrical meaning, which may not be obvious by itself to the 
casual observer. However, if we use them in building another statistic: 

 

 

(8.47) 

and this statistic has a precise geometrical meaning. First, the right hand side of this formula is the 
Riemannian metric which can be built by the methods of absolute geometry for the space of the 
2´2 matrices, having the curvature matrices with null Gaussian curvature as points of the absolute 
quadric (Mazilu & Agop, 2012). This is actually the Klein model of the so-called ‘fourth geometry 
of Poincaré’, in the modern views (Duval & Guieu, 1998). Secondly, one can prove that the 
quadratic form (8.47) is just the Cartan-Killing metric of a homographic action of the 2´2 real 
symmetric matrices. For, it is, indeed, the quadratic form 

 
 

(8.48) 

where ω1,2,3 are the 1-forms from equation (8.4), and this quadratic form means tr[(b–1db)2], where 
b is the curvature matrix. 
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 Now, in order to introduce the surface tension in our formalism, we only need to adopt the 
natural hypothesis that the deformation it induces is to be accounted for by the variation of 
curvature. The considerations above just show a logical way toward that connection. Specifically, 
we leave the realm of infinitesimal deformation expressed by an auxiliary vector |yñ, and adopt its 
generalization through the apolarity condition (8.11). The vector representing the deformation, is 
then basically that from equation (8.15). Considering, for the sake of illustration, the small 
parameter ε, as well as a constant local stretch of the surface metric, included in the variation of 
the curvature parameters, the metric tensor expressing this deformation is given by equation (8.16) 
as 

 
 

(8.49) 

The eigenvalues of this matrix are 1 and 1+áv|vñ. The corresponding eigenvectors are 

 
 

(8.50) 

respectively. We choose their components as the convenient differential forms f1,2 from the 
definition of surface force in equation (8.55). Accordingly the contact force can be described as a 
vector in the local tangent plane, whose components in the two orthogonal eigendirections of the 
metric tensor are given by 

 
 

(8.51) 

One of these components – let’s say the first one – is null according to the definition (8.15): 
naturally, there is no component of contact force along a direction, if there is no deformation along 
that direction. As to the other component – in this case, the second component – using equation 
(8.15), it is 

   
Assuming now the gauge definition of the variation of curvature, as given by equations (8.2) and 
(8.3) this contact force becomes 

 
 

 

Recall that we are using here the exterior multiplication in the tangent plane at a point of nucleon 
surface, not in the space of curvature parameters! With equations (7.8), (8.11) and (8.13) this 2-
form shows up as 
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After some lengthy, but otherwise straightforward calculations, based on equation (8.1), we further 
reduce this force to its final expression: 

  (8.52) 

where x is the logarithm of the ratio of the two curvatures, as defined in equation (8.25). 
 Just like the classical surface tension, this force contains indeed the mean curvature of the 
surface in a point. However, unlike that classical expression it also depends on the variance of the 
increment of the second fundamental form due to a proces of ‘wrinkling’ at the local fragment of 
surface, a phenomenon expressed by the variations of curvature parameters. If either one of the 
mean and Gaussian curvatures is not affected by this ‘wrinkling’, the magnitude of the surface 
force thus defined can be expressed exclusively by the Riemannian metric of the space of curvature 
parameters. 

 The Tensions: Conclusions and Outlook 

 The classical little cube, serving to prove the existence of tensions, was always a problem in 
the definition of the stresses in a continuum. The main issue is the fact that ‘gedanken’ instrument 
of mathematics finds itself always in deformation due to the very stressed it is supposed to define. 
However, using the idea of interpretation here, we can conceive here another approach, avoiding 
the geometrical precise form, to which we can arrive some other way, involving the deformation 
itself. Namely the continuum can be interpreted as an ensemble of material points, penetrating 
each other with or without merging, to use Madelung’s expression. A material point inside matter, 
can be further conceived as a convex body limited in space by an irregular surface in permanent 
transformation due to interactions with other material points. If it is to have some understanding 
of the strong and weak forces inside nuclear matter, then we have to describe a very first instance 
of the interactions between material points, namely the contact. There are two aspects of the 
geometrical and physical theory of contact: first the a priori choice of the location on the host 
delimiting surface of the material point taken into consideration, then the measure of the contact 
spot, due to the neighboring material points and their induced forces. 
 A natural idea about the physical description of the contact on the host surface, is that it can be 
defined only locally, and only at a certain scale, by the curvature parameters and their changes. 
This fact has the twofold advantage of being clearly accountable by a mathematical form: on one 
hand, a deformation of surface which can be expressed by local curvature changes, on the other a 
certain definition of the variation of the local curvature vector. These two mathematical results 
converge in a logical definition of the contact force as a differential 2-form that generalizes the 
classical definition of superficial tension. 

f2 = (α + γ ) dλdξ + (ω2 / 2)2 −ω1ω3⎡⎣ ⎤⎦(s
1 ∧ s2 )
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 The space of curvature parameters can be organized as a Riemann space, whose metric, has a 
precise statistical meaning as the standard deviation of a variation of the second fundamental form 
with respect to its nominal value, induced by exclusive variation of its coefficients (the curvature 
parameters). The contact force, as defined here, is proportional with both the nominal mean 
curvature as in the classical case, but also involves the statistical variance of the second 
fundamental form, therefore the Riemannian metric of the space of the curvature parameters. This 
fact can have important consequences in the description of the dynamics of a material points inside 
matter by a gauge theory. But unlike the classical case, the gauge defined by the variation of local 
curvature, asks for a proper definition of the instantaneous delimiting surface of a material point. 
This surface can be conceived as an ensemble of ‘elements of contact’, whose characteristic 
contact force already contains a statistical element through the variance of the second fundamental 
form. 
 The actual instantaneous delimiting surface of a material point inside matter is an issue 
demanding further elaboration. However, one could say that this elaboration can take advantage 
of a sound guidance, both from the classical Fresnel theory of the wave surface in the case of light, 
and from the modern theory of a holographic universe, according to which the interior of a material 
point should be structured as a hologram [(’t Hooft, 1993); (Susskind, 1994)]. In this respect, the 
actual surface of a material point can even be taken as a fuzzy sphere in the sense of John Madore 
(Madore, 1991, 1992). This seems to be quite a natural approach, in view of the fact that, with the 
variation of the curvature parameters as presented in this work, we reach actually in the realm of 
sl(2, R) Lie algebra. However, our approach will be to consider the basis of a three-dimensional 
algebra as only a reference frame in the sense of Alexey Shchepetilov, for the geometry of 
curvature parameters (Shchepetilov, 2003). A continuous theory of Frenet-Serret type can then be 
established [see (Dubois-Violette, Kerner & Madore, 1990) for the general ideas on this issue], 
which is a genuine holographic theory of material points, and also contains those elements of 
fuzziness necessary to a stochastic methodology. 
 

9. The Nonstationary Description of Matter 

If we are anywhere near accepting the stationary Schrödinger equation as a natural instrument of 
our knowledge unquestionably, the case with the nonstationary Schrödinger equation is however 
far from being accepted as such. Particularly the idea of free particles in the matter itself seems to 
be hopeless with any standing, be it classical, wave-mechanical or quantum-mechanical. On the 
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other hand though, the concept of a Madelung fluid certainly pushes our fantasy to the point of 
accepting that the matter per se admits at least a description, if not even a physical structure, by 
ensembles of free Hertz material particles. It seems, therefore, a duty from our part, to further 
elucidate the idea of physical freedom according to the nonstationary Schrödinger equation. 

 The Louis de Broglie Moment 

 The nonstationary Schrödinger equation (2.33) has a solution in the form of the Gaussian 
(Synge, 1972). For ‘n’ space dimensions, this Gaussian can be written in the form (Skinner, 2016) 

 
 

(9.1) 

for positive ‘t’. In view of the fact that the equation is linear, we can assume the general solution 
of Schrödinger equation as given in the integral equation form 

 
 

(9.2) 

whereby (9.1) plays the role of a kernel. In order to avoid the singularity at t = 0, John Lighton 
Synge adjusts the time and position with arbitrary imaginary quantities, in view of the fact that 
the equation (2.33) is invariant with respect to translations in time and position and, from physical 
point of view does not make sense to be singular at the initial moment of time. Based on this, he 
derives some interesting properties of the wave packets (9.1) that set them in a direct comparison 
with the de Broglie’s wave packets. Quoting: 

 My aim has been to present the properties of the [three-dimensional Gaussian, 
a.n.] wave function in a concise and simple way, and to deal with wave packets 
concentrated in three dimensions and not in one dimension only. The velocity v 
appears naturally … as the locus of maximum density, rather than as a group 
velocity, and momentum is derived from velocity … rather than the other way 
around. … the expectation of energy is not simply (1/2)mv2; there is a suplementary 
term. [(Synge, 1972); our Italics] 

The emphasized conclusions of Synge from this excerpt are of importance: particularly the idea 
that the velocity should be somehow related to density, which seems inconsistent with de Broglie’s 
own relationship between a group of waves and a physical particle. Limiting our discussion to the 
one dimensional case, rather than to the three dimensional one, we shall concentrate therefore here 
mostly upon that “locus of maximum density” mentioned by Synge in his conclusion, for this 
involves directly the idea of density in the sense of Hertz: the density of material particles. 
Naturally then, from this perspective, the equation (9.2) confers to the wave function a property of 
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the Gaussian distribution anticipated by Louis de Broglie himself some three decades before the 
work of Synge (de Broglie, 1935): pending a proper interpretation of the complex coordinates and 
time, it represents the manner in which a field is attached to a physical magnitude. Let us get into 
some details of the idea. 
 Louis de Broglie started from the assumption that the fundamental interactions in the world of 
material particles involve electromagnetic fields, but he went a little further, methodologically 
speaking. Namely he moved on to suggest a way in which a field is applied upon a physical 
quantity that can be characterized by a density, and that way seems to us as having universal 
validity: it should be true for any kind of field, in fact it should be the very definition of a field 
Specifically, de Broglie used Poisson equation in order to substantiate the idea that the field and 
matter are generally defined in different positions in space. If V is a field magnitude, defined in a 
position x say, and r is the density of an electron, defined in the position X say, then, according to 
classical precepts, the interaction can be expressed by monomials having the following algebraic 
structure: 

  (9.3) 
where δ is the Dirac symbol. The interaction per se is thus expressed by a double space integral 
over the two space positions 

  (9.4) 

so that de Broglie takes note of the fact that in (9.3) and (9.4)… 

... the factor δ is a ‹‹application function›› whose role is that of expressing the fact 
that in each point an electromagnetic field is applied to the electricity from that 
point [(de Broglie, 1935); our translation and Italics] 

It is not hard to notice then, starting from the very same point of view with Poisson equation, that 
this ‹‹application function›› plays also a reciprocal role, so to speak, insofar as it also indicates the 
way in which, maintaining the de Broglie’s phrasing, the “electricity is applied to field”. Thus the 
field equation – here the classical Poisson equation – for the field magnitude characterized by the 
function V, can be written as 

  (9.5) 

using the properties of the Dirac symbol. Since in the classical case this leads to the Coulombian 
potential which is singular in the position of charge, the classical physics was forced to assume 
here a space extension of the material point, which in turn calls for a physical structure for the 
electron. However, at this point de Broglie takes notice of the fact that… 

)(δ)(V)(ρ xXxX -
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… Unfortunately it does not seem at all possible, within present-day ideas, to assign 
a structure to the electron: the quantum theories of interaction between 
electromagnetic field and matter also find an infinite energy for the electron 
(except, however, the recent very interesting theory of Mr. Born). [(de Broglie, 
1935); our translation and Italics] 

Incidentally, the work of ‘Mr. Born’ referred to by de Broglie in this excerpt, is the one from 1934, 
setting the ground for what we know today as the Born-Infeld nonlinear electrodynamics [(Born, 
1934); (Born & Infeld, 1934)]. Accordingly, de Broglie proposes a way out of impasse, by 
replacing the symbol δ of Dirac with an isotropic Gaussian: 

  (9.6) 

which reduces to δ in the limit σ → 0. In this case, the equation (9.5) takes the form: 

  (9.7) 

Thus everything happens as if the charge is normally distributed around the point x. However, in 
spite of the fact that it has the dimensions of a length, and even plays the classical part of the radius 
of a spatially finite electron, the quantity σ ... 

... is nevertheless not a structure parameter; rather, it is a parameter of uncertainty 
of the position of application of the field upon charge (or vice versa). This seems 
to be in better agreement with the quantum ideas than the introduction of a genuine 
radius [(De Broglie, 1935), our translation and Italics] 

That ‘vice versa’ of Louis de Broglie, which we specifically emphasized in this excerpt, expresses 
an essential point, when combined with his own observation that either the quantum mechanics or 
the wave mechanics do not support the idea of a “genuine radius” for the electron. It shows that 
the Gaussian thus introduced is not simply an entirely subjective element: both the application of 
the field upon charge but, more importantly, the application of the charge upon field need to be 
further documented and physically assessed, on an equal footing. Generally, we can replace here 
the word ‘charge’ with ‘matter’, thus making out of this observation of Louis de Broglie a law. 
For, by this de Broglie actually introduces the Hertzian element of natural philosophy within the 
core of theoretical physics. True, only from electrodynamical point of view, but universal as such 
nonetheless, when referred to matter. Indeed, according to Hertz’s ideas, de Broglie’s reasoning 
gives, in fact, explicitly, in the spirit of modern theoretical physics, the way in which a spatially 
extended particle (an electron, in this case!) indicates a position in space: this is ‘the position in 
which the charge is applied to the field’. This position is a necessarily random process over a finite 
space region, with finiteness measured by a statistical estimator representing the a priori space 
extension of the electron. However the normality is only a part of this statistics, and the history of 
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last half of century brought about facts indicating that the statistics per se should be part and parcel 
of the natural philosophy even from classical point of view. 
 The second part of our experience with Nottale’s SRT, concerns, as we already mentioned, the 
third order section of nonstationary Schrödinger equation, represented here by (1.22). Guided by 
the soliton interpretation of the Korteveg-de Vries equation, to which (1.22) reduces in the case of 
one space dimension, we reasoned out that our own equation would represent the dispersion 
phenomenon within a complex fractal fluid of free particles [(Agop, Păun & Harabagiu, 2008); 
(Casian-Botez, Agop, Nica, Păun & Munceleanu, 2010)]. Especially the stationary solutions 
attracted our attention, insofar as they can be represented by special elliptic functions, a feature 
apparently shared even by the solutions of the classical Laplace equation, defining the potential in 
free space [(Ouroushev, 1985); (Martinov, Ouroushev & Grigorov, 1991, 1992)]. This would 
suggest indeed a general underlying statistical interpretation, only recently advocated even in 
theoretical statistics (Letac, 2016). Be it as it may, the interpretation of stationary solutions thus 
categorized by us does not include the three-dimensional case and, what is more important, those 
solutions do not make any reference to the nonstationary case. However, historically speaking, 
there is a nonstationary case, and even related to a linear third order equation of the Schrödinger 
type for that matter, which opens a new direction of research along the idea of a fractal fluid of 
free particles. 
 David Vernon Widder took notice of the fact that the classical Airy function can be presented 
as the kernel of a partial differential equation of the first order in time and third order in a space 
coordinate (Widder, 1979). Namely, the solution of the third order partial differential equation 

 
 

(9.8) 

can be represented by an integral equation of the form (9.2) for the one-dimensional case: 

 
 

(9.9) 

with ‘V’ a function of space variable only, satisfying some convenient conditions imposed by the 
physics of the problem to be solved, and Ai(…) the Airy function of the first kind. As a «function 
of application of the field upon matter or of the matter upon field» in the phrasing of Louis de 
Broglie, the kernel of the integral equation (9.9) satisfies the very same conditions in the classical 
limit of short times as the Gaussian from equation (9.2) [(Vallée & Soares, 2004), §4.2, equation 
(4.16)]: 

  (9.10) 

This, in our opinion, gives the strength of a principle to the observation of de Broglie that either 
the standard deviation in the case of Gaussian, or the period ‘t’ in the case of Airy function, should 
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be taken as ‘uncertainty parameters’ rather than geometrical quantities in the classical sense. For 
along this line, the physics brought here a positive case for the uncertainty of the positions in which 
the field is applied upon matter, or vice versa, the matter is applied upon field. 

 Airy Moment of Berry and Balazs 

 Indeed, in this connection we have even a fundamental way to characterize de Broglie’s 
application procedure, closer we should say to Hertz’s natural philosophy. Michael Berry and 
Nandor Balazs took note that if in equation (9.2) for the one-dimensional case V(y) is an Airy 
function, then solution y(x,t) of the nonstationary Schrödinger equation (2.33) retains this property 
in a specific and convenient form: its amplitude is an Airy function (Berry & Balazs, 1978). Indeed, 
as an Airy function V(y) is defined by equation: 

 
 

(9.11) 

so that equation (9.2) takes the form 

 
 

(9.12) 

Performing here the integral over ‘y’, up to a multiplication constant the result is: 

 
 

(9.13) 

Now, our final result is obtained using the equation (2.25) from page 10 of (Vallée & Soares, 
2004), and it is 

 
 

(9.14) 

We only arranged the things in order from a mathematical point of view, within this expression, 
by the fact that both the argument of the Airy function and the exponent are made explicitly 
nondimensional. The procedure we followed in doing this is simply by noticing that the exponent 
of the Gaussian in (9.2) must be non-dimensional, and this property must be preserved by a 
transformation of the type x ® kx, t ® k2t, which is instrumental in deciding the form of the 
solution of Schrödinger equation [see (Skinner, 2016), Chapter 4, for the case of heat equation]. 
Now, if the scale factor ‘k’ has the dimension of the inverse of a length, i.e. it is either a curvature 
from a geometrical point of view, or a wave number from a physical point of view, the ratio from 
exponent in (9.2) is non-dimensional, leading to equation (9.14), whereby n has the dimensions of 
a frequency. Further on, if we identify this last equation with (2.28), then we have the announced 
property, for, in that case: 
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(9.15) 

According to this identification, the potential defined by equation (2.35) is 

 
 

(9.16) 

and classically represents a constant force. Thus, the nonstationary Schrödinger equation, in its 
‘universal’ instance given by equation (M.24), actually produces results related to a uniformly 
accelerated motion (the arguments of the Airy function and that of the potential). This conclusion 
is valid indeed, provided we take for granted the other one of de Broglie’s ideas, referring to the 
«undulatory phenomenon called classical material point». 
 The original physical interpretation of the result just presented here, in its essential lines 
mathematically speaking [see (Berry & Balazs, 1979) for details], stands upon the very nature of 
the invention of the Airy function: the behavior of light in the proximity of caustic (Airy, 1838, 
1848). We thus have the interesting result that there is a probability density given by the square of 
the Airy function, i.e. by the square of the amplitude of the wave function, indeed. We might say 
that this is the very spirit of Louis de Broglie’s idea (de Broglie, 1927). However, as this probability 
density is not integrable over the whole a priori real range [see (Vallée & Soares, 2004), §3.5.1, 
p. 50], the wave packet cannot have a localizable center in the sense of de Broglie, in order to 
represent a classical material point. The conclusion expressed by Berry and Balazs is that equation 
(9.14) represents in fact an ensemble of particles moving uniformly in straight lines, but with 
different velocities. The argument of Airy function actually represents a caustic indeed, but in the 
phase space: it is the envelope of the ensemble of straight lines representing the corresponding 
uniform motions. 
 A conclusion apparently contradictory to this one is offered by Daniel Greenberger, who gets 
it by appealing to the equivalence principle (Greenberger, 1980): the Airy wave packet is not 
spreading because it represents a particle in an enclosure analogous to Einstein elevator falling in 
a gravitational field, and thus the gravitational force is suppressed. For the details of analysis of 
the nonstationary Schrödinger equation at this juncture one can follow the works indicated by 
Greenberger himself, especially (Rosen, 1972). This last work of Gerald Rosen tackles the details 
of the circumstance that Schrödinger equation involves, over the Galilei group, another group of 
SL(2,R) type in two variables with three parameters. One can thus prove [see (Olver, 1998), 
Example 3.17, p. 208] that the solution of the Schrödinger equation admits indeed an expression 
by Airy functions up to a phase factor. However, we are set here on proving that there is no 
contradiction between the two interpretations: that of Berry-Balazs and that of Greenberger. In 
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fact, by pushing the Berry-Balasz geometry of the phase plane a little further, we can have actually 
a physical model of an Einstein elevator, to be described in detail as follows. 
 Let us notice first that the Galilei relation, originally giving the speed of a free falling body in 
a constant gravitational field: 

  (9.17) 

represents perhaps the first relation deserving the name of a trajectory in the phase plane, and it is 
referring to a uniformly accelerated material point. Here ‘v’ is the speed at position ‘x’, where ‘x’ 
is the height with respect to Earth, up to a sign of course, and ‘g’ is the gravitational acceleration 
assumed a constant. The phase plane is then coordinated by the pairs (x,v), reprezenting the 
position and its corresponding velocity, and the trajectory in this plane is represented by a parabola, 
as in (9.17). Let us state it again: this phase plane is classic indeed, however not with reference to 
the uniform motion, but to the uniformly accelerated motion. Physically speaking the relation 
(9.17) is indeed correct, being dimensionally homogeneous: both terms from the right hand side 
have dimensions of square velocity, just as the left hand side of the equation. Again, geometrically 
it represents, in an implicit form, a parabola having the explicit parametric representation given by 
equations: 

 
 

(9.18) 

where ‘t’ is the Galileian time. 
 Now, in this context, the Berry-Balazs argument regarding the solution (9.14) of the 
nonstationary Schrödinger equation comes down to the idea that the parabola (9.17) is 
geometrically an evolute, inasmuch as a caustic is the envelope of a family of straight lines in the 
phase plane, representing unlimited uniform motions. These, however, are not representative for 
real motions of the classical material points. This is actually the physical ground of the conclusion 
that the Airy packet does not represent a material point, but an ensemble of classical material 
points, as a true interpretation in the sense of Charles Galton Darwin would ask. Now, we preserve 
here the classical character of the treatment, and even the conclusions, but push the geometry a 
little further, by presenting the Galilei equation (9.17) as an involute, namely the evolvent of a 
cubic parabola, having the typical form given by the cubic representing the phase of the Airy 
packet (9.14). Therefore, the ensemble necessary to a physical interpretation referred to by Berry 
and Balazs is not quite an ensemble of free classical material points, but an ensemble of Hertz 
material particles, having straight uniform motions indeed. However, these motions are confined 
to segments measured, for instance, by the radii of curvature of the cubic parabola representing the 
phase in (9.14). This would then explain why the potential in (9.16) is linear in coordinate: it 
represents actually the whole energy of a family of Hertz material particles in free fall in a constant 
gravitational field [(Synge, 1972); see his equation (13)]. This seem to be the most comprehensive 
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physical interpretation of the third point of what we have called the ‘Berry moment’ of human 
knowledge – the Airy moment. 
 In order to complete the technical part of this whole story, one can start with the observation 
that the parametric equations of the evolvent of parabola (9.18) is a plane cubic. Indeed, the 
parametric equations of an evolvent are, in their general form given as [(Gheorghiu, 1964), §1.9, 
equation (3), p. 55, and example 2, p. 58]: 

 
 

(9.19) 

To wit, here x(t) is the position on parabola in the phase plane, and y(t) is the second coordinate in 
the phase plane, given by the equation 

 
 

(9.20) 

Further on, the dot over the symbol means time derivative, as usual, and t is a constant having the 
physical dimensions of a time period, necessary in order to establish to the coordinate ‘y’ the 
character of a length to be used in geometric calculations. For, in a geometry of the phase plane, 
the coordinates must obviously have the same physical dimensions, and we chose to work with 
lengths. After a succession of routine calculations, the formulas (9.19) give the final result 

 
 

(9.21) 

which represents indeed a cubic parabola. In implicit form its equation is: 
  (9.22)) 

Therefore, at least qualitatively speaking at this moment, the classical type arguments of Berry and 
Balazs do have indeed the physical reason which their authors invoke, but only under the condition 
that the second coordinate in the phase plane is to be taken as the phase of the wave function 
obtained as a solution of the nonstationary Schrödinger equation, in the initial condition given by 
an Airy packet. 
 Let us now reverse the argument, taking the undulatory point of view as a basis. In the present 
circumstance this point of view has the same rank within our knowledge with the classical 
dynamical point of view, and consequently it should be just as important. Indeed, we know for 
sure that the Airy packet (9.14) is a solution of the nonstationary Schrödinger equation for the free 
particle (Berry & Balazs, 1979). This knowledge is, mathematically speaking, just as sure as is the 
theory leading to the Galilei equations (9.18). Therefore the signal (9.14) can be taken as a general 
signal, to which we have however the obligation to find a physical interpretation. Extending the 
observations of Berry and Balazs by taking into considerations just motions of material particles 

X(t) = x(t)− !y !x
2 + !y2

!x!!y− !y!!x
; Y(t) = y(t)+ !x !x

2 + !y2

!x!!y− !y!!x

y(t) = y0 + (gτ)t; y0 ≡ v0τ

X(t) = x0 + gτ
2 −
v0
2

2g
+ 3
2g
(v0 + gt)

2; Y(t) = −
(v0 + gt)

3

g2τ

8(X − x0 − gτ
2 + v0

2 / 2g)3 = 27gτ2Y2



 141 

which extend over finite geometrical ranges, it would then be necessary to find the involute of the 
cubic parabola represented by parametric equations: 

 
 

(9.23) 

where the quantity 

 
 

(9.24) 

represents physically an acceleration. The parametric equations of the involute of this cubic 
parabola are taken according to a general formula of calculation of an involute [(Guggenheimer, 
1977); the equation (3–7), p. 39]: 

 
 

(9.25) 

Here s(t) is the arclength of the portion of the cubic parabola whose involute we need to find. Let 
us calculate these coordinates. We shall carry out the calculations exclusively for the case x  = 0 
in equation (9.23): the general case, x ¹ 0, is entirely analogous, but with more involved 
calculations, and the results of principle are exactly the same as for this particular case. Thus, in 
the interest of clarity in expounding of the very point of view, it becomes almost necessary, we 
should say, to simplify the calculations, by limiting our considerations to the case x = 0. Therefore, 
for x = 0 in (9.23), we have: 

 
 

(9.26) 

and with these we have directly the following expression for the arclength: 

 
 

(9.27) 

Using now the results (9.26) and (9.27) in (9.25) we have finally: 

 
 

(9.28) 

Obviously, we do not have here a Galilean parabola or, better, we do not have it always. Indeed it 
cannot be obtained quite unconditionally insofar as the value of parameter ‘a’ is concerned, but 
only in cases where the frequency n is sufficiently high in order to be possible to neglect its inverse 
square by comparison with the inverse itself in (9.28). In these cases we have indeed the parabola: 
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This parabola represents an accelerated motion in the phase plane, characteristic, for instance, to a 
free fall with the acceleration g = a/3 and initial velocity v0 = a/(3n). These parameters define a 
time period v0/g = 1/n which should be small enough in order to satisfy the required conditions. 
 Therefore, as an involute, the curve obtained from the solution of nonstationary Schrödinger 
equation by a ‘Berry-Balazs method’ amended in the way just shown, is not quite the parabola of 
free fall, but a cubic curve, having however a well defined connection with that parabola. Namely, 
the equation (9.28) represents a curve parallel with the free fall parabola, with the parallelism 
defined in a geometrically precise sense. For, in the present context, the free fall parabola is not 
the one given by equation (9.29), but the curve having the parametric equations: 

 
 

(9.30) 

The unit normal to this curve has the parametric components 

 
 

(9.31) 

so that the curve (9.28) is the locus of the positions in the phase plane located on the normals of 
(9.30) at the constant distance d = –a/(3n2). 
 Thus, let us just assume that we have to start afresh from the nonstationary Schrödinger 
equation, taken this time as an universal instrument of our knowledge, in order to construct a fluid 
dynamics of the Hertz material particles, for interpreting the wave mechanics. Having initially an 
Airy packet in the construction of the wave function (9.2), we describe not an ensemble of uniform 
motions, but an ensemble of motions having a definite relationship with a uniformly accelerated 
motion. Represented in the phase plane in the geometric manner of Berry and Balazs, but in action-
angle variables, this ensemble is characterized by positions along the normals to the trajectory 
representing the uniformly accelerated motion. The locus of these positions is a trajectory in the 
phase plane parallel to the parabola of uniformly accelerated motion, with the parallelism defined 
by the distance along normals. In fact, writing the difference between the two positions in the form: 

 
 

(9.32) 

we even have a physical meaning of the classical Galilean time of the uniformly accelerated 
motion, or in fact of the free fall: it is the time of some known geodesic motions. Indeed, if we 
designate  nt = tan q, then these equations become: 
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This shows that the difference between the motion of such a material particle and the uniformly 
accelerated motion, is represented by a harmonic oscillator, having the phase tan–1(nt). 
 In order to better grasp the physical meaning of this situation, let us summarize the way of 
reasoning we followed up to this point: the nonstationary Schrödinger equation (2.33) describes 
an ensemble of Hertz material particles. Judging by the character of this partial differential 
equation, these are free particles, qualified therefore to describe the structure of a complex fractal 
fluid, as SRT requires. If the starting conditions in the constructing the solution of the Schrödinger 
equation are given by an ensemble described by a density which is the square of an Airy function, 
then this solution describes an ensemble of Hertz particles characterized in the phase plane by a 
constant Euclidean distance from the positions of a uniformly accelerated motion. Therefore, when 
we say Berry-Balazs free particle, this is by no means a Galilei free particle. The fact is that the 
equation (9.33) is prone indeed, to a purely ensemble interpretation, from a statistical theoretical 
point of view. 

 Cosmological Moment of Berry and Klein 

 The documentation of this last statement takes us, again, to the third achievement listed by us 
under what we designated as the Berry moment of modern positive knowledge. In connection with 
the idea of a free fall of an Einstein elevator, the need of such a documentation goes, as we have 
already mentioned, as deep in the history of human knowledge as the Newton’s invention of the 
forces responsible for the gravitational action. First, however, let us see what is meant here by an 
Einstein elevator: in the light of the conclusions right above, we can imagine an enclosure, just 
like the Wien-Lummer enclosure, containing only matter and no space. This may be, for instance, 
an elementary particle falling in the gravitational field of Earth, or revolving in a Kepler problem 
with extended bodies. Then, according to Berry-Balazs theory above, there is just a position inside 
matter, which at a certain moment of time has an instantaneous well defined acceleration [for 
details on this issue see (Mazilu & Porumbreanu, 2018)]. With respect to that spacetime event, 
there exist in the enclosure an ensemble of material particles having constant Euclidean distance, 
which manifest themselves as harmonic oscillators at a certain time scale. This point of view in 
the description of such a structure is entirely justified, at least speculatively speaking, in the case 
of nucleus of the planetary model, by the results of the so-called focal regularization (Burdet, 
1968, 1969). Fact is that the manner of procedure can be documented even starting with Galilean 
studies of motion (Mazilu & Porumbreanu, 2018). Thus, it can be shown that the only forces 
compatible with this situation are the Newtonian forces with magnitude inversely proportional 
with the square of distance between the Hertz material particles (Berry & Klein, 1984). 
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 In the present context, the great merit of the work of Berry and Klein just cited here, appears 
to be the use of a gauging argument of the type that led to the Wien displacement law, and this is 
what really makes the Wien-Lummer enclosure and Einstein elevator two different expressions of 
the same concept: the physical reference frame. However, as observed before, insofar as the two 
instances of physical reference frame characterize two different productions of the positive 
knowledge, they also represent mathematically two completely different transitions. To wit, in 
view of the Berry-Klein theory, the Einstein elevator can be taken as carrying the burden of 
transition between microcosmos and the world of our daily experience, while the Wien-Lummer 
enclosure carries the burden of transition between the world of daily experience and universe at 
large. This physical conclusion is based upon mathematical observation that the Newtonian forces 
are the mark of the world of daily experience – the quotidian world. They are justified even by 
Newton himself by collision forces which, in the phrasing of Nicholas Georgescu-Roegen, acting 
over infrafinite time intervals, are the clear expression of the microcosmos. On the other hand, the 
Wien-Lummer enclosure is justified by the necessity of indefinite extension of our daily 
experience to the whole universe. Therefore, mathematically, it should represent a transition 
between finite and transfinite. As the measurement of light have also decided the peculiarities of 
the physical structure of microcosmos, the Wien-Lummer enclosure carries a mark of universality, 
also manifest by the fact that it allows thermodynamic judgments, referring to adiabaticity for 
instance. It seems, however, that the Berry-Klein theory of scaling the forces, in case it can be 
applied to a Wien-Lummer enclosure, acts as a universal gauging procedure which, in an 
undertaking of Georgescu-Roegen type, should be able to make us decide what is infrafinite, finite 
or transfinite. Let us, therefore, get into some details of that theory. 
 In the present circumstance, the essential point of Berry’s and Klein’s work can be summarized 
as follows: consider a Hertz material particle in a field of forces represented by a potential V(r), 
with its motion characterized by a Hamiltonian of the form: 

  (9.34) 

Here the length ℓ itself is a function of the time of motion, and epitomizes the idea of isotropic 
expansion, the way it was described by us for the case of blackbody radiation. To wit, one assumes 
that every quantity which is length in a certain enclosure, no matter of its further physical attribute, 
is affected in expansion by the factor ℓ depending on the time of motion which, according to 
classical precepts is a unique time in a Newtonian universe. The invariance of the field of forces 
represented in the Hamiltonian (9.34) by the potential V(r), from which the force itself is derived 
via the classical recipe f(r) º  ÑrV(r), can here be expressed in the form: 

  (9.35) 
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For the inverse square forces, this invariance condition comes down to a more precise definition 
of the function α(ℓ): 

  (9.36) 

In words: if the function α(ℓ) is inversely proportional with the square of the gauge length, the 
Newtonian force has the property defining the Wien displacement law, i.e. it is invariant with 
respect to the expansion, no matter if this is adiabatic or not. 
 Let us analyze the motion from the point of view of the classical dynamics, following the work 
of Berry and Klein. Hamilton’s equations: ṙ = ÑpH, ṗ = – ÑrH, come down to the classical equation 
of motion: 

  (9.37) 

In a general continuity parameter τ(t), and for the positions in a Euclidean reference frame 
redefined by x º r/ℓ, the equation of motion assumes the form 

  (9.38) 

where the accent means the derivative upon time τ. Under condition (9.35), this becomes 

 

 

(9.39) 

Now, we redefine the time itself by t¢ = ℓ2, so that this equation of motion simplifies to one with 
no dissipative forces: 

 

 

(9.40) 
Finally, if the gauge length is determined by the inertial mass of the material particle such that: 

 

 

(9.41) 
where ‘k’ is an appropriate physical constant, then the continuity in the τ parameter is defined via 
a dynamics, and thus it deserves indeed the name of time, forasmuch as it is referring to a dynamics 
in a conservative force field: 

 
 

(9.42) 
This is a situation as the one just presented beforehand, in connection with the Berry-Balazs theory 
of Airy wave packets: the position of free fall in matter is accompanied by harmonic oscillators. It 
should, therefore, be noticed that the conservative forces, initially represented by the potential 
V(x), are now amended by elastic forces in the gauged coordinates. 
 The equation (9.41) represents the essence of the Berry-Klein gauging procedure, an allows a 
precise characterization of such a procedure. Indeed, the solution of differential equation (9.41) 
has a well-known history mostly concentrated in the second part of the last century. In short, for 
what we have to show here the result can be conveniently summarized as follows (Eliezer & Gray, 
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1976): if ‘u’ and ‘v’ are two independent solutions of the same ordinary second-order differential 
equation 

   

then ℓ calculated via quadratic form ℓ2 º au2+2buv+cv2, is a solution of (9.41), provided 
 

 
(9.43) 

Therefore, the continuity parameter τ is a time indeed, defined by a dynamics corresponding to a 
motion in the conservative field V(x), over which a harmonic oscillatory motion is superimposed. 
An intuitive explanation of this situation is helpful at this moment of our argument. 
 Obviously, to the extent to which it can be geometrically explained, the usual eye view can be 
relegated to the idea of a pencil of geometrical directions in the form of a cone. We presented this 
idea by following it in the details of current context (Mazilu & Porumbreanu, 2018), but there are 
exquisite classical presentations [see (Coddington, 1829), especially pp. 1 – 4, for a summary of 
the geometrical definitions involved in the classical geometrical optics]. Fact is that this purely 
geometrical image of a physical light ray fits in detail the present day concept. The continuous 
tracking of a motion of a classical material point – therefore of a Hertz material particle – from a 
certain position, is always realized only by a geometrical projection of that material point on a 
surface. This position of surface remains however, undecided, as long as we don’t know the 
distance where the material particle is located with respect to the position of observation. Let us 
assume though, that by certain physical means we are able to know that distance, and it corresponds 
to a position given by the vector r, which defines a family of Cartesian reference frames having 
common origin in the point of observation. Even by this, the position as such remains undecided: 
there are at least a double infinity of Cartesian reference frames describing it. We can choose from 
this double infinity one of the reference frames, for instance by a signal propagation procedure. 
 This procedure can certainly be used – in fact it is almost exclusively the procedure of choice 
in physics – if the physical process that we have at our disposal for observation is the propagation 
of light, or the propagation of any other perturbation in fact, which is describable by an equation 
of propagation. Only, we have to be careful, because such a procedure offers, as a rule, a position 
in space which is largely a matter of some assumptions. Usually such assumptions are referring to 
the propagation itself, to the source of perturbation and such, but its main point may have been 
misplaced if we are to take into consideration the wave mechanics, as we shall see shortly by the 
way of a significant example. In this case we need to devise a procedure for extracting known 
coordinates – the coordinates of the observation point – and this procedure should actually include 
the meaning of coordinates, the meaning of their origin and their connection with the space filled 
by matter. In order to make these issues clear, we have to throw a critical eye over one of the most 
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important problems occuring along the way of relating the science with the social practice, namely 
the problem of transport, which is intrinsically related to the general concept of continuity. 

10. The Idea of Continuity in Fluid Dynamics 

Nottale’s idea contains an implicit concept, according to which the continuity must be adopted by 
an adaptation: at a certain scale, the continuity has to be described in connection with the 
continuity with respect to a previous scale. This is actually the case of the classical Ehrenfest 
theorem. The problem here is the general description of the transition between scales of continuity, 
which is mandatory in deciding the categories of mathematical order infrafinite-finite-transfinite, 
according to the ideas of Nicholas Georgescu-Roegen. It seems that the Berry-Klein theory opens 
a way of dealing with the problem of this decision along the concept of interpretation, but there is 
a drawback. Namely, from physical point of view, the theory of ensembles needed for 
accomplishing an interpretation involves quite a few intricate concepts: transport theory, as a mean 
of transiting between scales, the deformation theory and an associated ‘general rotation theory’, 
for maintaining the description within the same scale, and a host of other notions related to these. 
In order to properly understand the physics’ point of view in the concept of interpretation, it is 
therefore necessary to appeal indeed to the transport theory in fluids, because only this way we can 
connect the concept of Madelung fluid with the Newton’s idea of matter filling a space. 

 The Mass Transport in a Volume Element 

 A first step in an adaptation process of the kind envisioned by Laurent Nottale, would be a 
continuity equation telling us just ‘how continuous is a system in space’. In the cases where such 
a system does not contain space in its structure, the Newtonian-type continuity is to be taken into 
consideration. In usual differential form, the content of such an equation can be expressed in words, 
by simply saying that the mass element is preserved by transport. Thus, if the transport is done in 
a time sequence ‘t’ that sets in order the states of matter contained in a volume element, then the 
equation of continuity can be written as 

  (10.1) 

Here the initial time moment 0 is arbitrarily chosen, and ‘t’ is a time moment reckoned with respect 
to this initial moment. This equation does not mean much if we do not take into account the specific 
transport, viz. that transport which sets the time as a sequence, thus involving the Lie derivative 
based on the vectorial field along which the transport is accomplished. 
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 Consequently, the first in order of things here, comes the fact that the volume element must be 
oriented, in order to be properly considered for the definition of the time sequence: it becomes a 
differential 3-form, while the density becomes a third order tensor. From the entries of this tensor, 
the Newtonian definition of the mass element samples out only a totally antisymmetric part, i.e. a 
third order tensor skew-symmetrical in every pair of its three indices: 

  (10.2) 

Here a summation over repeated indices is understood, as usual. The scalar ρ in the left hand side 
of the equality must be then a certain invariant of the tensor ρ. This is obtained from the right hand 
side of (10.2) if we decompose the sum into appropriate partial sums, defined according to the 
orientation of the volume element 3-form: 

  (10.3) 

The symbol ρ(klm) represents the arithmetic mean of the elements of tensor ρ over the three different 
permutations of the indices, having the same parity. 
 A digression seems in order here: according to the orientation of the volume element there are 
two kinds of scalar densities of matter, represented in equation (10.3) by the two arithmetic means 
of the entries of skew-symmetric part of the density tensor. It is therefore worth keeping in mind 
that the density is, in general, a third order tensor, from which the idea of an equation of continuity 
according to Newton’s definition samples out, as we said, only a skew-symmetric part. If the Louis 
de Broglie’s theory of the proportionality of density with the square of field amplitude is true, then, 
according to equation (10.3), there should be, correspondingly, two kinds of fields providing 
amplitudes for this equivalence of the continuum with a field. As long as the D’Alembert equation 
is involved, the things are classically illustrated by the electromagnetic field in vacuum. Indeed, in 
this case, the field intensities are both solutions of the homogeneous D’Alembert equation [in a 
Lorenz gauge freedom, of course (Lorenz, 1867)]. Therefore one orientation of the volume element 
would correspond to electric field, E say, while the other one would correspond to magnetic field 
B, so that a de Broglie-type theory offers here a density of the form 

 
 

(10.4) 

where the squares are understood up to a physical factor. The two densities can be represented 
indeed by time sequence means (Gibbs, 1883). The case of an electromagnetic field in matter 
elucidates things even further here, inasmuch as it shows that the physical constant, necessary for 
the equivalence between matter and field, splits into two different constants, one for electric field, 
viz. electric permittivity, and one for the magnetic field, viz. magnetic permeability. As it turns out 
in this case only one of these constants can represent a density, and the experimental data then 
cannot but only help decide which one of them (Fessenden, 1900). 
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 Now, the equation (10.1) itself is the finite time form corresponding to a differential 
conservation law, which can be given by the natural assumption that the evolution of the mass 
element happens in space along a vector, X say. The conservation (10.1) taken over a infinitesimal 
time interval, is then expressed by the vanishing of the Lie derivative along this vector, which by 
exterior differential equation (6.11), comes down to: 

  (10.5) 

Here iX(rdV) signifies the projection of the differential form taken as argument along the vector 
X. Therefore, the evolution of the differential 3-form (10.2) in space must be a Hamiltonian 
evolution imposed by the Poincaré classical lemma: there is always a differential form in terms of 
which the differential form iX(rdV) from equation (10.5) is its exact differential. As we have shown 
before – see equations (6.10) to (6.19) – this property further triggers some other properties 
imposed by that Hamiltonian evolution upon the vector field along which the mass is carried, in 
the following manner (Dumachev, 2009, 2010, 2011). 
 Assume first that X is a vector proper, having the meaning – which seems appropriate in this 
context – of a ‘velocity’ that describes the connection of the transport process with a certain time 
sequence indexing the states of the transported structure. This velocity field, w say, must be tangent 
to a current line along which the transport is accomplished: 

  (10.6) 

Then by the projection operation from equation (10.5) we can infer that the mass is ‘laid-down’ in 
the volume element on a ‘support’ offered by the curve locally represented by the vector w. Then 
it is transported along this curve in the form of a ‘mass flux’: 

  (10.7) 

In this case, the equation (10.5) shows, via Poincaré lemma, that there is a differential 1-form, v 
 º vkdxk say, ‘v’ – from velocity! – such that 

  (10.8) 
Therefore this ‘mass flux’ can be physically classified as a vortex, and mathematically represented 
by the curl operation on the vector defining the form ‘v’: 

  (10.9) 

Assuming, in the second place, that the mass is ‘laid-down’ on a support offered this time by a 
bivector w: 

 , (10.10) 

instead of (10.7) we will have a differential 1-form 
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 , (10.11) 

In words: if the mass is laid-down in the volume element on a surface locally characterized by the 
bivector w, it is then transported by this surface in the form of elementary work of a certain vector. 
The equation (10.5) then shows that there is a potential function ‘F’, with respect to which this 
vector can be expressed as a gradient, i.e. 

  (10.12) 

This potential represents a function whose level surfaces in space are surfaces upon which the 
mass is laid-down in the volume element, and thus it is transported throughout the space. Finally, 
if the mass is ‘laid-down’ in the volume element on a trivector w: 

 , (10.13) 

then it is transported as a scalar: 

  (10.14) 

so that the transport maintains this scalar constant during transport. Thus, if the ambiant manifold 
describing the possible phase space is three-dimensional, there are just three possibilities in which 
the mass can be carried in this phase space: on a line, on a surface and in points given by positions 
in space. 
 The previous theory can be understood not quite so much by conservation laws, as much as it 
can by the way in which a continuum is filled by continuity at a differential level. The equations 
(10.9), (10.12) and (10.14), can be taken as conservation laws indeed, but they tell us something 
more: such a law depends on the kind of continuity we conceive to be preserved by transport. In 
other words, these conservation laws offer in fact the necessary expressions of the magnitudes 
from the left hand side, as provided by the quantities from the right hand side. These are: a vortex, 
a gradient and a scalar respectively. Therefore – by the way of anticipating some further results 
here – if the mass itself is a carrier of some physical quantities like charge, momentum and such 
like, and the mass element is to be preserved during transport, then it cannot carry those physical 
properties but on a surface, on a curve or in a point of the volume in which the matter is accounted 
for. The conservation of the mass element thus forces the shape of the carriers through which the 
mass itself carries some other physical quantities. 

 The Transport Theorem in Finite Volume 

 The previous transport theory characterizes the infinitesimal transport in time and space: 
infrafinite in the phrasing of Georgescu-Roegen. The things change significantly if the transport 
occurs in a finite volume, usually termed as control volume in engineering terminology, for obvious 
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reasons: from such a volume we extract, or in it we inject, physical properties of industrial and 
economical interest, like heat, momentum, charge etc. And such a control volume cannot be 
infinitesimal in engineering practice, which is in fact the social expression of the daily experience. 
One can claim the control over an elementary volume, however not a first-hand control, but by the 
intermediary of some mechanical laws, well established indeed from mathematical point of view. 
Thus, for instance, according to previous observations, if the evolution is Hamiltonian, one can 
claim control over the elementary volume, which thus becomes itself a control volume. 
 Restricting, therefore, for the moment being, our considerations to the practical case of 
transport in a finite control volume, the mass of a certain continuous system contained in this 
volume can be calculated by an integral: 

 
 

(10.15) 

Now, a physical system can transport something only if it moves, and during this motion it changes 
both the configuration and the structure. In the case of continuous systems this motion can be 
characterized by the fact that between system and volume there is some discrepancy. This 
discrepancy means that if at a given moment of time the system occupies a certain volume, at a 
later time it occupies another volume. Physically, the system may be the same, but the volume it 
occupies is certainly not the same. If we characterize this system the same way we characterize the 
volume, i.e. by a continuous set of points in a certain interpretation, then the discrepancy has a 
positive definition: at a given moment of time the system coincides with the volume, while at a 
later moment they do not coincide anymore. However, if we assume that the mass of the system is 
constant, then the transport can be mathematically described as a spatial process during which this 
condition is maintained. 
 Indeed, the condition just stated calls for the vanishing of the time rate of variation of the mass 
of system. Consequently it is necessary to calculate the time rate of variation of the mass from 
equation (10.15). In order to represent the time sequence, we have to use the Lie derivative of the 
differential form under the integral sign along a ‘velocity’ vector. Thus we if we write: 

 
 

 

where V(t) means the fact that the volume is a function of the time sequence, and for the expression 
of the time rate use the transport equation (6.12), we shall have: 

 
 

(10.16) 

Therefore the velocity field V is referring to that surface, and the equation (10.16) will take the 
form 
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(10.17) 

where the surface of integration S(t) is the closed surface delimiting the physical system at the 
moment ‘t’. Here the unit normal n̂ orients the element of area of surface S(t) according to the 
definition dA(t) º n̂dA(t), and we added the index ‘s’ to the velocity field in order to mark its 
essential property of being a velocity field only defined on the closed surface S(t) which delimits 
the system in its evolution. 
 Physically however, the equation (10.17) is not sufficient: it does not represent the transport in 
volume but only as a flux through the surface of the physical system, according to its mathematical 
representation as a set of points. This flux describes only a stationary physical structure, while we 
are also interested in the physical structural changes of the system during transport. These changes 
take place only within volume, and physics treats them, in the most general case, as variations of 
the density of the system. Thus, for completeness, from a physical point of view the equation 
(10.17) must be written in the form 

 
 

 

Using here the Gauss theorem in order to express the surface integral by a volume integral, we 
finally have: 

 
 

 

Now it is clear that the velocity field Vs characterizes the system by a flux, so that if we focus upon 
just a part of it confined in an arbitrary control volume (CV), the equation of the mass rate in that 
volume should be 

 
 

(10.18) 

where by v we mean the velocity field characterizing the flux of the system as a current. Let us 
emphasize once more: the equation (10.18) assumes the space filled with matter, so that in a control 
volume we have to contemplate only matter, not a physical structure: there is no space there, no 
‘pores’ or ‘voids’ in the phrasing of Newton. Now, with some usual assumptions of regularity, the 
arbitrariness of the control volume allows us to declare that this integral equation has a local 
equivalent: 

  (10.19) 

This is the usual continuity equation for the mass. 

dmSystem

dt
= d
dt

(ρVs ) ⋅ n̂dA(t)
S(t )!∫∫

dmSystem

dt
= ∂ρ

∂t
dV(t)

V(t )∫∫∫ + (ρVs ) ⋅ n̂dA(t)
S(t )!∫∫

dmSystem

dt
= ∂ρ

∂t
+∇⋅(ρVs )

⎛
⎝⎜

⎞
⎠⎟ dV(t)V(t )∫∫∫

dm
dt

= ∂ρ
∂t

+∇⋅(ρv)⎛
⎝⎜

⎞
⎠⎟ dV(t)CV∫∫∫

0)(
t

=r×Ñ+
¶
r¶ v



 153 

 The most important outcome of this continuity equation is the Reynolds transport theorem, 
which can be obtained if the control volume is decided by a certain physical quantity, say Q (from 
Quantity!). This theorem arises from the concept of continuity as follows (Reddy, 2008): consider 
the magnitude ‘q’ defined by ρq º dQ/dV, which is a density indeed, but this time referred to mass, 
not to volume. Instead of equation (10.18), we shall have then 

 
 

(10.20) 

Expanding appropriately the differential operations under integral sign, we have 

 
 

 

Now, if the continuity equation of the mass (10.19) is satisfied over the region of space contained 
in the control volume under consideration then we have 

 
 

(10.21) 

This is the Reynolds transport theorem. In words: if the continuity equation of the mass is satisfied, 
and the system carries a certain quantity Q attached to the mass in a spatially continuous manner, 
then the time rate of variation of this quantity during transport is the volume average of the 
substantial time derivative of the specific magnitude referred to mass, q º dQ/dm. The substantial 
derivative is defined as usual, by equation 

 
 

(10.22) 

The advantage of working with such specific quantities defined with respect to mass is obvious in 
the classical cases where we deal with the ideas of force, momentum or kinetic energy and apply 
them to a continuous system. Before bringing these examples to the fore, let us remind however 
that this kind of magnitudes are usually intensive quantities, in the sense that they do not depend 
upon the space extension of the physical system they describe, provided this one is a continuum. 
It is this property that conveys universality to the mathematical relations, thereby giving them even 
the necessary characteristic of a physical law. 

 Some Classic Physical Examples 

 First, consider the second law of the classical dynamics. Written in the usual form of an 
equation representing the proportionality between force and acceleration, it does not satisfy the 
requirements connected with the idea of a continuous physical system, whereby the mass itself can 
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vary with time. For a continuous physical system we ought to reformulate the second principle of 
dynamics, in a new mathematical form accounting for the variation of the mass: 

  (10.23) 

In words: the time rate of variation of the momentum of a system is provided by the resultant of 
the forces acting upon that system. Thus, because dP/dm º v, if the mass is conserved in the 
volume, the Reynolds transport theorem (10.21) can be written as 

 
 

(10.24) 

Here d3x represents the idea that the volume element dV(t) º d3x is taken at the location x in the 
volume occupied by the system. The control volume cut from the volume of the system includes 
also a control surface which in this case is a purely material surface. The equation (10.24), which 
can also be read, for instance, as defining the forces acting upon system by their local action, 
becomes a little more explicit if we go back to the surface term via Gauss theorem. Using this 
theorem, we can write: 

 
 

(10.25) 

Here d2x is the element of the control surface at location x. This formulation of the second law is 
important in engineering calculations. However, we consider here only the suggestion it contains: 
the general way of defining the forces consists of their local action to be recognized in the system 
both by specific transformations and the specification of their geometrical form, mimicking the 
geometrical form of that action. Indeed, in equation (10.24) the forces are defined only by their 
local action upon the system. However, in equation (10.25), we notice that this action takes place 
in the control volume as well as on the control surface delimiting this control volume. A known 
case is the Fulton-Rainich theorem (Fulton & Rainich, 1932), which expresses the forces satisfying 
both Helmholtz conditions: Ñ×F = 0 and Ñ´F = 0, in a continuum. The equation (10.25) is the 
general form of expressing this very fact: the force F is geometrically – in fact, topologically – 
defined, both in volume and in surface, by: 

 
 

(10.26) 

Here f º dF/dm, t is the traction vector in the control surface, while σ is the Cauchy stress tensor 
defined by those tractions: t º n̂×σ, with n̂ the unit normal of the surface. This unit normal 
physically orients the surface element d2x, in the sense of the following relation sometimes even 
taken as a definition of the Cauchy tensor: 
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Using the definition (10.26) in (10.24) while arranging appropriately the terms, results in: 

 
 

 

Again, in reasonable regularity conditions, usually assumed by default, this integral equation can 
be taken as equivalent to a local equilibrium equation: 

  (10.27) 

We wrote the equation in the indicial form also, in order to make the meaning of the differential 
vector operation clearer. It expresses the fact that the substantial time derivative of the velocity 
field in the structure of a physical system – the material acceleration – is given by both the external 
forces and the tensions. As we have seen in Introduction, this equation is indispensable to 
Notttale’s theory of the complex fractal fluid. 
 It is now the appropriate moment for a short digression, which turns out to be useful in defining 
the place of the wave function in the general economy of concepts of the classical natural 
philosophy and, in fact, of the natural philosophy in general. As we just said, the equation (10.27) 
can be regarded as an extension of the second law of dynamics to the material continuum. This 
fact recommends it as a fundamental equation in the description of a fictitious structure of the 
matter, whereby it ought to play the very same role as that played by the second law of dynamics 
for the classical material point. The things are, however, not quite as simple as the classical 
D’Alembert principle portrays them, because we have not defined yet, up to this point, the way of 
action of the force f in matter. Surely, this way is not the same as the one in which the force acts 
outside the matter, given, for instance, by the Whittaker-Humbert theory in equation (7.39), which 
describes the action by a potential involving only the surface of separation between matter and 
space [(Whittaker, 1903); (Humbert, 1927)]. And even if, in the spirit of Hertz’s definition for the 
material particle, we assume that there are ensembles of such particles, enabling us to give the 
continuum a structure analogous to a physical structure, the problem of interpretation of stresses 
and strains still remains. For it is hard, if not impossible sometimes, to ascribe to them inertial 
properties of the material particles: the stresses exist even statically or, better said, especially 
statically, in which case the inertial properties are practically inexistent, at least at a certain space 
scale, where the velocities are comparable with deformation rates. This is another strong reason 
why we are compelled to define the Hertz material point statically, and use for it the Wigner’s 
principle expressed by equation (2.19). As we shall see, this is the place where the wave function 
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appears as ontologically necessary: it is an invention of the human spirit at least of the same rank 
as the forces of Newton. 
 The results reviewed up to this point are sufficient in order to enable us a discussion on some 
issues of principle of the natural philosophy, thus bringing to a convenient point some fundamental 
ideas. That ‘convenient point’ is the close account of the transcendence between finite and 
infrafinite but from the unique physical point of view of the transport theory. 

 The Hamiltonian Transport in Finite Volume 

 Our discussion of this issue starts from the observation that all we have to say is referring to a 
physical system. This means that the physical system fills the control volume or, more generally, 
that the control volume defines a part of a physical system. The Reynolds transport theorem given 
in equation (10.21) is effective if and only if the continuity equation (10.19) is effective, expressing 
that the mass of that part of the system, which is defined by equation (10.15), is a constant during 
the evolution along the velocity field v. Mathematically speaking, that part of the system should 
be completely arbitrary, in order to be able to pass from equation (10.18) to (10.19). In fact it is 
not identified by anything else other than a formal declaration, so that there is no sufficient reason 
to use the continuity equation, which is a local statement. Thus, as a matter of principle, in order 
that such a statement should not appear quite as rhetorical, the mass of any possible part of the 
system needs to be constant by transport, even the mass of an infinitesimal part, viz. the mass 
element. This entails the fact that the differential condition (10.5) should also be necessarily 
satisfied at any location from the volume of the system. In a word, the continuity equation of the 
mass may not be satisfied, but the transport theorem in the form (10.21) should be certainly true. 
This can be best illustrated starting from the equation of definition of the momentum, for instance, 
viz. the equation (10.23). We have 

   

If the first term in the right hand side here is vanishing, we are left with only the second term, 
which leads directly to the expression (10.24) even without the special condition of continuity 
(10.19). The observation is valid for any physical quantity defined by a density and transported by 
the physical system, and has fundamental consequences. For, if the elementary mass is conserved 
in a space process of transport, then this transport must necessarily be Hamiltonian, so that the 
quantity Q from equation (10.21), for instance, cannot be carried during transport but on an axial 
vector by vortices, as in equation (10.9), on a vortex by polar vectors, as in equation (10.12), or in 
every point of the system as in equation (10.14). Let us analyze each of these cases in turn. 
 In the case of transport along a direction, the transport theorem is of the form (10.21) 
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(10.28) 

but with the vector w along which the transport is done defined by equation (10.9), which we 
rewrite as: 

  (10.29) 

Here ε is the Levi-Civita symbol. This writing makes the fact obvious that the vector w is the so 
called potential vorticity from the usual theory of fluids [(Salmon, 1998), Section 4, §§1–4, pp. 
197 – 207]. Consequently, if the element of mass is preserved during transport, and if the transport 
is done along trajectories, the potential vorticity is the only form of physical transport in space. 
We are talking here of a classical transport obviously, i.e. a transport like that in which the particles 
hold on to their trajectories, and thus also preserve their identity, which is a normal case if we deal 
with particles carried on a surface. In a more suggestive ‘meteorological’ jargon, for instance, 
along a line, the physical quantities are carried by particles in vortices ‘swirling like hurricanes’. 
 In order to make this last observation a little clearer, assume now the case where the transport 
is done with the help of a surface: instead of equation (10.28) we must write 

 
 

(10.30) 

because according to (10.12), we have 

  (10.31) 

where ÑF is the normal to the carrying surface F = constant. Therefore, in this case we have the 
conclusion: if the element of mass is preserved during transport, and the transport is done by 
carrying on surfaces, a vector oriented along the normal to these surfaces, having the magnitude 
inversely proportional with the density is the only physical form of transport. In other words, in 
transport on a surface the physical quantities are carried by currents of material particles normal 
to surfaces. 
 This was certainly the case when the wave mechanics was born. Indeed, if the quantity Q from 
equation (10.30) is preserved in the control volume during transport along the vector w, then in 
reasonable continuity conditions one can assume the vanishing of a rate expressed by a substantial 
derivative constructed with  the help of the vector w, given as in equation (10.31). Thus 
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This last condition should be compared with that already noticed as necessary in the case of the 
threedimensional wave theory of Louis de Broglie, namely the definition of the phase and group 
velocities. Indeed, the equation (10.32) becomes either a condition for the group velocity w º U 
and q º f, or a condition for the wave velocity for w º u and q º f in the theory of de Broglie’s 
physical ray. Thus, one can say that, what the classical mechanics has ignored, due to a certain 
idea of materiality, methodically we should say, namely the transport on surfaces, has necessarily 
forced the occurrence of the wave mechanics. For, the transport of an amplitude is just as physical 
as the transport of a phase, and it is accomplished through matter too, even if not along trajectories. 
Let us substantiate these two modes of transport, related in a way or another to the physical concept 
of surface, by a statistical model of a ‘label’ and a few epoch-making examples. As to the third 
mode of transport, we postpone its discussion, insofar as it is directly related to the physical idea 
of an Einsteinian elevator considered as a Wien-Lummer enclosure, and asks for an examination 
in a special context. 

 Transcendence between Volume Element and a Control Volume 

 It is, incidentally, the case of a note clarifying in some detail the difference between the way 
in which the labels are conceived in the classical physics and the way we conceive them here. One 
of the attitudes of the human spirit was describing an ensemble of material particles – in their 
instance as classical material points, i.e. mobile positions endowed with physical properties – by 
properties invariant with respect to ‘labelling’. Such an approach in physics is notorious, being 
forced upon our intellect by the indecision on the dynamics of physical structures. However – fact 
entirely natural, nonetheless remarkable from our perspective – it is enticed not in connection with 
the motion of the revolving Hertzian material point in a Kepler problem, but related to the idea of 
Hertzian material point when considered as a central body in that problem, i.e. a body creating 
the gravitational field. The concept of ‘label’, as a physical identity carried by a particle, acquires 
here a bonus of precision: it is now exclusively referring to what we call Hertz material particle 
as belonging to a material point, while in the usual classical acceptance it is referring directly to a 
Hertz material point. 

 We shall take the case of Earth as a fundamental example of spatially extended particle. Living 
in its universe, the man created a science to deal with this environment, from which we can draw 
some natural conclusions valid at any space scale. That science is geophysics, and we take it now 
in its instance as meteorology and oceanology, the two sections of geophysics dealing with the 
fluid parts of the Earth’s universe. In these fluid parts of universe, the transport phenomena are the 
main motivation for study, inasmuch as they do affect our social life directly. The transport of 
mass, charge and heat in hydrosphere and athmosphere is crucial indeed for our daily social life, 
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and from the study of these transport phenomena we can extract the role of the concept of ‘label’, 
and extend it no matter of scale. 
 A theorem discovered by Hans Ertel in 1942, proved itself subsequently to be the mathematical 
expression of that invariance to labelling in the case of the physical transport of quantities by 
molecular ensembles admitting a purely kinematical description [see (Salmon, 1998), pp. 299 – 
304]. From our perspective this theorem has a particular importance. In order to reveal that 
importance, it suffices to give to Ertel’s theorem a suggestive statement to be made easily 
understandable. And that understanding rests upon the simple fact that the Ertel’s theorem 
correlates the two essential transport modes: the transport preserving the mass element and the 
transport preserving the mass contained in a control volume. In order to comprehend this general 
statement, we shall use here only the argument of Clifford Ambrose Truesdell. And not quite only 
for the fact that it is the simplest and the most direct argument, indeed, but rather because, 
alongside, it has the advantage of showing precisely what are the points in which the physics 
intervenes in order to limit the universality of kinematics (Truesdell, 1951). 
 That argument starts from the expression of the acceleration field, which in the case of 
continuous systems dealt with in meteorology, involves also such collective physical fields as the 
Coriolis acceleration and the gradient of the square of field velocity, which in the case of fluids 
describe the turbulence: 

 
 

(10.33) 

The vector Ω has the components Ωk º eklmwlm with wlm defined by equation (10.9). Thus, by this 
one implicitly admits a first physical fact, namely that the mass element is conserved when the 
mass is transported by vortices. Applying the vortex operator in both sides of the equation (10.33) 
results in 

 
 

(10.34) 

Dividing here by the scalar r resulting from the definition of the vector Ω according to equation 
(10.9), and expanding alongside the double vector product from the right hand side, finally gives: 
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Here for the material derivative we used the definition (10.22). Now, this is the place where the 
second physical fact intervenes, the first being, as we saw, the condition that the mass element is 
preserved when the mass is carried by vortices during transport. Namely, in order to write the 
second term in the equation (10.35) we use the equation (10.19). But that equation is referring to 
the mass continuity in finite volume, and thus we must have: 

a = ∂v
∂t

+Ω × v + 1
2
∇(v ⋅v)

∇× a = ∂
∂t
Ω +∇× (Ω × v)

∇× a
ρ

= 1
ρ
D
Dt
Ω +Ω(∇⋅v

ρ
)− (Ω ⋅∇

ρ
)v



 160 

 
 

(10.36) 

expressing the fact that the divergence of the velocity field of the fluid continuum is given by 
material derivative of the logarithm of fluid density. Thus, the equation (10.35) becomes: 

 
 

(10.37) 

This equation can be further generalized (Truesdell, 1951a), and its generalisation is actually the 
key of Hans Ertel’s observations from 1942. Namely, if ψ is a quantity conserved by transport in 
finite volume, in the sense that its material time derivative is null, then the material time derivative 
of (w×Ñψ), calculated in the particular time sequence in which the conservation law of  y takes 
place, has the meaning of a density: 

 
 

(10.38) 

Here ‘p’ is the pressure, a physical variable which seems quite natural in all of the classical cases. 
In order to prove this equality, Truesdell takes notice of the fact that there is a general identity 

 
 

(10.39) 

deriving from (10.37) by scalar multiplication with  Ñy, where y can be a scalar, a component of 
a vector, or even an entry of a tensor of arbitrary dimension. Now, if  y is materially conserved, 
then (10.39) reduces to 

 
 

(10.40) 

The mathematical result known under the name of Ertel’s theorem, can then be expressd as: 

 
 

(10.41) 

The usual way of proof – which is actually the way Hans Ertel himself followed (Ertel, 1942) –is 
by passing from equation (10.39) to (10.38) via constitutive considerations relating to the fluid in 
motion (Truesdell, 1951a), and then admitting a certain behaviour of the fluid, whereby the 
Jacobian from the right hand side of the equation (10.38) vanishes. The reason for this is based on 
the fact that the constitutive relationship which involves the pressure and density in the relation 
expressing the vortex of acceleration: 
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shows that the equation (10.40) goes into (10.38). Thus, if a functional relation exists between 
pressure and the density the equation (10.41) follows. 
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 Truesdell however, insists on a fundamental conclusion regarding Ertel’s theorem: it can be 
obtained only by geometrical considerations following exactly the line above, without involving 
any constitutive considerations. In this, one uses vector calculus, assisted only by elementary mass 
conservation and continuity equation, with no concept of pressure, which necessitates further 
elaboration in order to be physically explained. To wit, because Ñy is a gradient, we have the 
vector identity (Ñ´a)×Ñy º Ñ×(a´Ñy) which, when used in (10.40) produces a purely kinematical 
result, obviously universal: the Ertel’s theorem is valid without any suplemetary physical condition 
– constitutive relation, the definition of pressure etc. – when the acceleration field is oriented along 
the normal at the surface y = constant. In fact, one can extract a much more general conclusion, 
in the sense that it does not depend on the fact that y is materially constant or not (Truesdell, 
1951b), just starting from the equation (10.39). However, this conclusion takes shape either in the 
nonhomogeneous differential form: 

 
 

 

or only ‘as a mean’, as Truesdell expresses it in the work just cited: 

 
 

 

and only under the condition that the acceleration field is oriented along the normal to surface y = 
constant, in any of its points. 
 It is therefore highly significant, from the point of view of the theory of ensembles of Hertz 
material particles which possibly casts the continuum into a primary structure – the interpretative 
structure – that the magnetic motion of the Poincaré type, generated by the force (6.50), occurs 
only on a conical surfaces. First, on this type of surfaces the geodesics are ‘magnetic trajectories’ 
so to speak, i.e. trajectories along which the acceleration is oriented along the normal to surface. 
By its definition, the geodesic on a surface is a curve whose normal coincides with the normal of 
surface [(Struik, 1988), p. 131]. Thus, the ensemble of Hertz material particles from the nucleus 
of the material point creating the gravitational field in the Kepler problem for instance, can surely 
be described via Ertel’s theorem at any space scale, for that theorem is independent of any 
constitutive relationship. We can thus realize that this theorem – according to Truesdell, 
independent of any classical physical structure – is appropriate to serve in describing even that 
fictitious structure ‘confined’ in the nucleus of every material point – in the very same manner the 
quarks and partons are thought to be confined – insofar as it does not assume constitutive relations 
which would imply the idea of a physical structure. The Ertel’s theorem assumes only a continuous 
behavior of the mass at any space scale of the matter continuum and, as an aside hypothesis, only 
a specific orientation of the acceleration field. Or, according to the regularization procedure in its 
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focal alternative (Burdet, 1968, 1969), these conditions are always satisfied upon conical surfaces 
having the base a spherical cap, i.e surfaces defining the usual solid angle. It is this property which, 
in our opinion, confers to Ertel’s theorem a great gnoseologic importance. 
 As an incidental general observation, in spite of its great methodological importance, it seems 
that the Ertel’s theorem found hardly its way within the scientific observance of the last century. 
It is only after a decade from its discovery [see (Ertel, 1942); for an English translation of the 
essential works of Hans Ertel, one can refer to (Schubert, Ruprecht, Hertenstein, Nieto Ferreira, 
Taft, Rozoff, Ciesielski, & Kuo, 2004)] the true value of this theorem started to be noticed as such, 
through the works of Clifford Ambrose Truesdell (Truesdell, 1951). For the needs of current work, 
we should rather recommend the presentation of Rick Salmon, which seems clearer, as being 
intuitively more explicit than many others (Salmon, 1988, 1998). Besides, it deliberately insists 
upon the fact that the theorem is the implicit expression of a classical invariance to labelling, here 
present in the equation (10.33) via the Jacobian expression. The idea is as attractive as it gets, in 
view of the fact that, as we shall see shortly, the non-Euclidean geometry of essential physical 
quantities in a Hertz material point – the gravitational mass and the two charges, magnetic and 
electric – defines the density of the matter ensemble of particles by a Jacobian. 
 As a general conclusion of the preceding analysis, a physical image of the continuum depends 
upon two necessities rationally enacted by mathematics during the process of interpretation. These 
occur as a natural consequence, in view of the idea of ensemble of material particles – the essential 
tool of interpretation. First, one has the conservation of the mass element, defining the density in 
Newton’s manner, with reference to the volume element. Then, one has the idea of conservation in 
any control volume, expressed by the transport theorem, requiring in turn the physical content of 
a finite volume. We thus have shown that the physical realization of the first necessity is sufficient 
in order to warrant the possibility of the physical realization of the second, via the Reynolds 
transport theorem. The physical conservation of mass element is realized three ways: two of them 
are referring to the transport on and between surfaces, and are represented by the equations (10.9) 
and (10.12) which define it mathematically. As far as the third way is concerned, the one 
characterized by equation (10.14), this raises the problem of interpretation of the quantities Vijk 
and it has a particular importance in the history of physics. 

11. A Hertz-type Labelling in a Madelung Fluid 

The first in our order of reason here, arises the problem of expressing coordinates in the general 
circumstances representing the arithmetization of a continuum. One of the natural ideas in the spirit 
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of Nicholas Georgescu-Roegen, would be to replace them by specific densities of statistical 
distributions (Calmet & Calmet, 2004). It is known that the families of these densities can be 
organized as a Riemannian space [see, for instance, (Burbea, 1986)], having a metric tensor given 
by the Fisher information measure: 

 
 

(11.1) 

Jacques and Xavier Calmet operate in the four-dimensional space of the general relativity, so that 
the formula given here has the basic features of original work, specifically µ,ν = 0,1,2,3 or 1,2,3,4 
depending on the convention of use of coordinates and time. However, from a statistical point of 
view it should be valid in any dimension. Explanation of the symbols is as follows: the vector x is 
the position in the space X of the stochastic event position-time, while the vector s represents the 
four parameters of the probability density pX(x;s). Although in a very specific expression, we have 
here one of the properties that allowed the first conclusions regarding the necessity of probabilistic 
interpretation of the wave function: the coordinates in which the metric (11.1) is understood are 
parameters of distributions which characterize them theoretically. In other words, the Riemannian 
geometry generated by (11.1) is actually a geometry in the parameter space of the statistics of 
coordinates. 
 That property descends from a classical case which, in our opinion, becomes critical with 
Laurent Nottale’s views. As a rule, however, this case is contemplated in some other circumstances 
regarding the fundamental physics. Here, however, it can be illuminating in establishing the 
general view on the parameters of a statistical distribution. The classical case in question is 
concretely represented by the Ehrenfest theorem, according to which the classical quantities are 
ensemble averages of the microscopic quantities of corresponding connotation. The property 
proves indeed to be general, but with the generality well delineated from a statistical point of view: 
every classical quantity is represented by certain parameters of the families of statistical 
distributions describing the geometry of a space-time. For, indeed, in the present context, the 
traditional task of Ehrenfest’s theorem lays on it the aspect of just a particular case among many 
possible others: it is that case where the means and standard deviations (or the variance matrices 
in general) serve as parameters for the distributions over ensembles of microscopic quantities. 
 This would mean, for instance, that even a classical trajectory must be statistically 
characterized, and this description is quite precise: practically speaking, not every position is 
measurable along trajectory, as the classical mechanics seems to claim. The phase space of a 
classical material point should be indeed a continuum by the mathematical rigor. The act of 
measurement, however, chooses from this continuum only means or, in the most general case, 
parameters related to these means by some mathematical relationships based on probability 
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densities. The problem here is to recognize that, generally, the coordinates describing the phase 
space thus characterized are not exclusively means or exclusively standard deviations, but still 
some other quantities of physical interest, liable though to connections with those traditional 
particular parametrizations. This is the essence of equation (11.1). 

 Fact is that if in equation (11.1) we write the probability density in a three-dimensional space 

in a form suggesting a Born-like interpretation of the wave mechanics: 
  (11.2) 

a few things start to unravel. In the spirit of Louis de Broglie’s idea, this would mean that the wave 

function itself is considered an ‘optical’ amplitude, physically interpreted by an ensemble of Hertz 

material particles. Then the Fisher information measure is given by the metric tensor 

 
 

(11.3) 

Here Ä signifies the dyadic product of the vectors. Indeed, the writing in equation (11.2) just 

suggests the idea of wave function: if the three-dimensional parameter s is a position vector in the 

usual space, then the equation (11.3) represents the tensor generalization of the functional used by 

Erwin Schrödinger in his variational principle generating the stationary equation for the free 

particle at rest (Schrödinger, 1933). That functional is obviously more restrictive, being in the 

present context just the trace tr(g) of the metric tensor, up to a constant numerical factor. Submitted 

to the variational principle used by Schrödinger, it gives the usual Laplace equation: 
  (11.4) 

and its interpretation here raises a few problems, opening nevertheless the way to a special 

interpretation of the facts. 

 There is a solution of equation (11.4), satisfying almost all of the requirements of the discussion 

right above. It can be written in the form: 
  (11.5) 

The chief one among these requirements, is obviously the fact that such a wave function has an 

algebraical structure in which the parameters s and the position variables x enter on equal footing 

so to speak. This would represent the natural property of a mean, namely that it should be, 

quantitatively speaking, of the same order of magnitude as the values from the ensemble it 

describes, possibly even one of those values. In the long run, this property means that statistics 

preserve the scale of things, and the ideas of Nicholas Georgescu-Roegen are indeed a sound basis 
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for the mathematics involved in theoretical statistics. In this regard, the function (11.5) can very 

well be considered as a solution of the Laplace equation in the position variables x, and in fact this 

can add one more important property to the characterization of ‘equal footing’ of x ans s. The 

function yX(x;s) would then give a probability density which, according to (11.2) is, up to 

multiplicative constant, also a symmetric function in x and s: 
  (11.6) 

Then the metric tensor (11.3) can be written as a mean, for the integrand in (11.3) is the function 

 

 

(11.7) 

In other words, the metric tensor (11.3) is the average of the dyadic product with itself of the vector 

 
 

(11.8) 

The notation m is intended to suggest the idea of a mean, because we have to do indeed with a 

mean in the sense to be presently described. 
 First note that the vector (11.8) can be written as 

 
 

(11.9) 

which means that m is an average position of an ensemble of positions having F(x;s) as a partition 
function. According to this interpretation, one can say even what kind of ensemble is this one, from 
the point of view of the very theory of probabilities: it is an ensemble having as probability density 
a natural exponential with quadratic variance function in three statistical variates locating a 
position. [see (Letac, 1989); (Casalis, 1996), for the concept and general properties]. Such an 
ensemble is a genuine concept of quantum physics, forasmuch as this one was constructed from 
its very beginnings based on it (Mazilu, 2010). Indeed, Planck’s quantization is the very first such 
example in physics, but referring to a single statistical variate, the energy density of the thermal 
radiation field. Here, however, we have to do with three statistical variates, and this needs a little 
introduction into subject, with a few definitions. 
 A set of elementary probabilities, depending on three parameters arranged as a vector s and 
expressed in the form 

  (11.10) 

is an exponential family with three parameters. Here µ(dx) is a certain a priori measure of space, 
and the index µ is given to function ‘k’ in order to show the dependence of density normalization 
on the a priori measure of space. The mean vector and the variance matrix of such an ensemble 
are given by the expressions: 
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(11.11) 

Certainly, the first one of these equations can be identified with (11.9) for kµ(s) º F(x;s), but there 
is a problem: the mean over our ensemble depends on the elements of the ensemble itself. This is 
not a regular occurrence, at least from an orthodox statistical point of view. However, from a 
certain physical point of view, we can relegate it to a known issue of the wave mechanics, and this 
allows for an alternative interpretation of statistics. Namely, in view of the first relation from 
(11.11), the equation (11.9) can be written as 

  (11.12) 

so that the wave function is liable to be further defined by some hidden parameters besides those 
represented by the vector s. These parameters are contained in the a priori measure µ(dx) of the 
space. 
 Before any further discussion on this issue, let us consider the second equation from (11.11). 
Regardless of the existence of the hidden parameters, the variance matrix V can be written 
exclusively in terms of the vector m in the form which, following Gérard Letac, describes a family 
of natural exponentials with three parameters, having quadratic variance (matrix) function: 

 
 

(11.13) 

where Aij, Bi and C are symmetric matrices. Now, it is quite obvious that our equation (11.10) with 
kµ(s) defined by (11.12) fits into this definition, for we have after a short calculation based on the 
second equation (11.11), the following covariance matrix: 

  (11.14) 

This quadratic matrix is obviously of the form (11.13) for Bi and C all null matrices, and Aij given 
by the fourth order orthogonal matrix 

  (11.15) 

Thus, there is nothing in this scheme of definition of the multiparameter natural exponentials with 
quadratic variance matrix function, which would not befit our vector m in its capacity of a mean, 
as defined by equation (11.8). Except, perhaps, a genuine representation of what has come to be 
called statistical sufficiency. Within the present geometrical theory, this idea can be best 
understood as follows. 
 One can notice that the function defined by equation (11.6) has indeed one of the essential 
properties of a probability density function: it is positive over the whole a priori range of either x 
or s. This can be easily verified, just by writing the quadratic function from the denominator of 
(11.6) in spherical polar coordinates (r, q, j), and referring the colatitude angle q either to the 
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direction of the parameter vector s or to the direction of position vector x, as the case may happen 
to be convenient. Thus we can write: 

   

This quadratic polynomial – either in the variable ‘r’, or in the variable ‘s’ – is always positive, 

because its discriminant is unconditionally negative. Consequently, the function pX(x;s) is always 

positive, no matter if considered as a function of x with the parameters s, or a function of s with 

parameters x. 

 Problems arise only with the normalization, a second essential condition that needs to be 

satisfied by a probability density. If this condition is not satisfied, the Fisher measure of 

information cannot be defined as such, and therefore the metric tensor cannot be defined by 

equation (11.1). And here it is quite obvious that the integral of the function (11.6) over the whole 

a priori range of the vector x, is not a finite quantity, as it should be in order to characterize a 

continuous probability. More to the point, that integral can be written as 

 
 

(11.16) 

where η º cosθ. A second integration over h gives the value: 

 
 

(11.17) 

The final integration can be done by regular means, for there is a primitive of the integrand in this 

equation [see e.g (Gradshteyn & Ryzhik, 2007), ex. 2.729.2]. However, the result is not always 

positive and, moreover, even if positive it is not always finite. 

 One can only produce a meaningful result in real numbers under the constraint –1 ≤ λr ≤ 1 that 

guaranties the right values of the modulus in (11.17). However, because ‘r’, as well as ‘s’ for that 

matter, must be always positive, it is clear that in order to make sense, the integrand needs an even 

more restrictive constraint: 0 < λr < 1. Thus, ‘r’ can take any positive value, as the integration in 

(11.16) requires, but not unconditionally: it depends on the parameter ‘s’ that the integral makes 

sense and if so, this happens only over a limited interval of values of ‘r’. Any way we look at it, 

the integral cannot be calculated in finite terms over the whole range of a priori values of the radial 

coordinate, and consequently the function pX(x;s) cannot be normalized as such. 

 The things seem to get in order in physics only if we conceive the Fisher information measure 

in the spirit in which it was conceived first, i.e. as a test functional of the physical homogeneity of 
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the data sampled from a given population (Fisher, 1925). The physical homogeneity of a 

population with respect to a given physical quantity does not mean only a significant grouping of 

the results of measurements of that quantity, but also the same probability density used in 

estimating by sampling the statistics of that grouping (mean vector and variance matrix). If these 

two conditions are not satisfied the sampling does not produce efficient, viz. reliable results from 

a theoretical point of view. The Fisher information measure was actually first conceived as a 

measure of efficiency. As it turns out, the indecision in the probability measure is correlated with 

the indecision in the evaluation of a physical quantity as a statistic of the population under sampling 

(Frieden, 2004). Our problem is then that of getting down to considerations of the relationship 

between the probability density and physical measurement of quantities, and this can only be done 

if we have a sampling process producing the evaluations from equation (11.11), and involved in 

some physics related to the probability density from equation (11.6). 

 A first question would be if the limitation in the a priori range of space variables produces 

meaningful probability densities. The answer is only conditionally affirmative, in that it is 

contingent upon the possibility of producing true probabilities. For instance, in the case above, 

under our scrutiny here, we are referring only to coordinates of positions in some range of space 

extensions. Let us therefore assume that we cannot measure but a limited range of the radial 

coordinate, say between 0 and R for any given ‘s’. Then we can define ‘s’ by te condition of a 

fixed ξ º λR < 1. This condition is equivalent with admitting that we cannot talk of a sampling 

which would justify the definition of Fisher information, but only for a limited space range inside 

a sphere of radius x/R. This certainly looks like a sampling defined primarily by the radius of 

sphere. In this case we have indeed, instead of the undecided value of equation (11.16), the finite 

value calculated as in the following equation: 

 
 

(11.18) 

The right hand side here can very well be taken as a normalization factor of the probability density 

(11.6), obviously if it is positive. As it happens, this quantity is always positive within the given 

conditions, as can be checked by direct calculations. The sphere of radius R is therefore a proper 

tool which can be used to characterize such a space sampling process: one samples only points 

inside this sphere. The problem is now transferred to the physical level: what is the physical 
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meaning of such a sampling. As it turns out, this physical interpretation is not quite out of hand 

from the point of view of the measurement, if we reconsider the equation (11.8). 

 Fact is that the equation (11.8) embodies a succession of transformations involving a sphere. 

First, we have a transformation by “reciprocal radii” as they say, i.e. an inversion proper with 

respect to a sphere that can represent the scale of things contained inside it. In order to get an idea 

of what is going on here, let us say that we need to pinpoint the Sun’s position. Now, we know 

scientifically that the Sun is a star, and the idea of locating a star is very simple, since a star can be 

assimilated with a point, therefore it has a first-hand geometrical position in a certain reference 

frame. However, this characterization is valid only at a certain space scale. We are aware of this 

fact by the very same science that allows us to place the Sun and stars under the same concept. For 

if they are physically describable in the same manner, then any star should also have the same 

properties which the Sun has. The first property that jumped the human mind in this particular 

problem, was that a star should have a planetary system like the Sun itself. However, this property 

is not the one to be theoretically considered first. And this not because the evidence for such an 

occurrence is not a first-hand evidence and, even as such, too scanty. By far more important, from 

a physical point of view, is that a star should have spatial extension, like the Sun has. Now, if a 

star has a spatial extension, then its precise location is a matter of scale of proportion of the space 

we can reach by our physical means. Indeed, the Sun cannot be precisely located, inasmuch as it 

has an obvious finite extension in space. When we talk of the Sun’s position we really mean the 

position of a point within the space occupied by Sun’s physical structure. Approximating Sun’s 

shape with a sphere, we may accept, for instance, that its position is the position of the center of 

that sphere. In order to maintain the very same philosophy for all the stars, we then need to 

characterize their space extension by a parameter, or a combination on a set of parameters, 

allowing us to say that only in a certain limit of these parameters a star is sufficiently characterized 

by a position. The Sun – and so a star in general – is surely not sufficiently characterized by a 

position in space. 
 Before entering deeper into the idea of sufficiency, let us continue with characterization of the 
equation (11.8) the way we mentioned, i.e. as a succession of geometrical transformations, because 
this way the idea of relation between space scale and position might be easier to comprehend. The 
inversion proper can be represented by the transformation 

 
 

(11.19) x → R2 x
x2
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Here R is the radius of the sphere accomodating the inversion, and the positions are considered in 
an Euclidean reference frame with origin in the center of this sphere. The point having the position 
x, and its transformed, x¢ say, are located along the same radius of the sphere, one inside the other 
outside it. But this topology heavily depends on the specific details of the physical problem whose 
geometric solution we need. A example related to our discussion from the present work will better 
explain what should be understood by ‘specific details’, helping us, at the same time, in reducing 
these details to essentials. 
 Assume that the sphere accomodating the inversion is a light wave surface. If the radius we 
are talking about is the longitudinal axis of a physical light ray, we might ask ourselves what is 
happening with the other rays defining its physical structure (Mazilu & Porumbreanu, 2018). Thus, 
the transformation (11.19) should be true indeed, but only for the axis of physical ray: the other 
rays – the mathematical rays of this physical structure – behave differently, depending on their 
position within the physical ray at the point where they touch the sphere. This is the well-known 
property of a spherical diopter, a concept usually taken as the basis of all of the constructions of 
geometrical optics. In general, we may assume that a physical ray behaves in such a way that its 
constitutive geometrical rays can be properly considered as radii with respect to the given sphere 
only from some displaced points. This may be taken as a particular way of expressing the idea that 
reflection and refraction phenomena are dictated by the general position of the physical ray with 
respect to the normal to the wave surface, a sphere in this particular case. Be it as it may, the 
displaced positions will then depend on three parameters: 
 

 
(11.20) 

where p is a vector that may depend on time or on the details of the physical system to be thus 
described, which, in the case here considered is our physical ray. Now, applying again an inversion 
to the position (11.20) in order to bring it within the same side of the sphere as the original position 
– i.e. inside or outside – gives the position from equation (11.8), with 

 
 

(11.21) 

Therefore, m describes – here, as well as presumably everywhere – an ensemble of positions 
generated by starting from a position x, through the radii of a physical ray in the manner just 
explained. The word ‘presumably’ may not illustrate the right stand to be taken in this kind of 
description, for, as far as we are aware, it works everywhere, provided we have a proper 
interpretation of the parameters of the transformation (11.8). To wit, it is understood here as 
meaning that we just did not cover all of the situations to which these reasons apply, and may exist 
some situations of which we simply are not aware. However, the wave mechanics as conceived by 
Louis de Broglie, can be cited as a case illustrating the reasoning, provided the wave function is 
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defined by Schrödinger’s time-dependent equation. Such a conclusion may, at least as far as we 
are concerned, obliterate by its grandeur any other possibilities of thinking, so that we feel as 
having to express it with a certain hesitation. Hence that ‘presumably’! 
 Strange as it may seem, this example does not concern the wave mechanics exclusively. It is 
the very root of the modern physical optics and, taken from the perspective of our presentation 
here, it shows, again, that the human knowledge is utterly continuous: there are no ‘quantum leaps’ 
of knowledge! Indeed, the modern physical optics started by adding the difraction phenomenon to 
the old phenomenology involving just reflection and refraction of light (Fresnel, 1827). This 
completion of phenomenology triggered the necessity of a closer consideration of the idea of 
infrafinite in optics, so that the differential geometry started to be involved routinely in the 
construction of the wave surface [see (Hamilton, 1841) for a clear geometrical illustration of the 
procedure of construction of the Fresnel wave surface]. Thus, the Fresnel construction of the wave 
surface is, in the field of physical optics, a first example of passage from infrafinite to finite and 
vice versa. The wave mechanics only added a physical interpretation to this objective process. 
However, the wave mechanics also brought in something new, which comes to our mind if we ask 
what is the general physical procedure of constructing a physical light ray. Then it becomes clear 
the fact that, in unfolding the idea of Nicholas Georgescu-Roegen, the choice of an origin is just 
as important as a gauging in the definition of a reference frame. These are involved in the 
construction of the frame exactly the way in which the origin of sphere and the sphere of inversion 
are involved in the inversion as described above. Only, as the wave mechanics teaches us, the 
sphere is to be replaced by a general surface, in the manner of Humbert for instance, while the a 
priori choice of origin has to be replaced by a choice according to a physical process of 
propagation, or an equivalent procedure. 

 An example a little different in its nature, may be helpful in bringing us to a better appreciation 

not only of the general geometry, in its Riemannian metric form, but also of the physics involved 

here. Speaking of the same physical ray of light, we need to consider the human eye, and the idea 

of physiological mechanism of vision: after all, this is physics too! Thus a physical ray is 

concentrated by the diopter of eye, in the way just described by the inversion above, on the retina, 

but over a region given by such images and quantitatively characterized by a statistics like ‘the 

mean’ from equations (11.11). These regions ought to be described as ensembles (Hoffman, 1966), 

and their geometry is the metric geometry of a sl(2,R) group algebra [see also (Resnikoff, 1974) 

for a general theory of vision colors]. 

 Therefore the probability density defined by equation (11.2) starting from (11.5) is only 

correct, even a priori, on limited ranges, not over the entire space as it would seem necessary. This 
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condition can be endorsed within Hertz’s natural philosophy where a clear probabilistic 

interpretation is then necessary. Namely, a position in space cannot be assigned but with a limited 

degree of precision, and only through the intermediary of a material point, as the man does not 

have any other possibility. The Hertz material particles, the only ones ‘entitled’ to assign a position 

in space, are out of our reach! In view of this, it becomes necessary to assign a first a priori 

geometrical measure to the space ranges we need in order to locate a certain position. The above 

statistical approach of the conformal transformation provides a way for such a construction, 

through the idea of sphere of inversion. 
 Again, an example infused with a little physics should be illuminating here. Assume indeed, 
that we are to assign positions to the centers of force of the stars from a neighborhood of our 
universe. We choose here ‘the centers of force’ in order to suggest the idea that a position is always 
to be assigned to a physical thing, but that very physical thing may not be directly accessible. For 
instance, in the case of Sun, we may assign a location for its geometrical center, but unfortunately 
that is only a geometrical thing. The center of force of the Sun’s gravitational field can be located 
everywhere inside the matter of Sun, or even outside it for that matter, as our presentation of the 
Kepler problem shows. Its position depends, even in the ideal case, upon the attracted point, to say 
the least. In this respect the position of the center of force may also depend on the position of the 
attracted point on its orbit. Fact is that, in general, a physical point of view may not be accessible 
as such, and this is the point where the probability enters the physical knowledge. 
 If the stars from our chosen system, i.e. the stars which are… suns, are all of the same 
dimensions and shape – let us say spheres of radius R0 – we may be able to locate their geometrical 
centers in an arbitrary reference frame. Assuming then that the system is governed by Newtonian 
gravitation, we may further be able to locate to a certain extent even the centers of forces of every 
one of the stars. That ‘we may’ here, expresses a lot of doubt, usually left aside in actual researches. 
In order to show what is left aside, let us see in what conditions ‘we may’ be able to establish the 
center of force of a certain star from our system. Let us choose a star from the system and follow 
the following procedure for discovering the center of force. Using the reference frame with its 
origin in the geometrical center of the chosen star, locate three other different stars of the system, 
for instance in three different directions in space. The Newtonian force exerted by our star upon 
the other stars, will be of the form  kr/r3, where r is the position of that other star. Now, as long as 
k is a constant, the following observation is true: every component of this Newtonian force is a 
solution of the Laplace equation in the chosen reference frame, in Cartesian coordinates. Then by 
the Kelvin’s inversion theorem, the force can be considered as the inverse of the position of certain 
point with respect to the sphere representing the chosen star. 
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 Perhaps it is better to insist on this point, for it is of importance. Take one component of 
Newtonian force, say kx/r3, r2 º å(x2); if k is a constant, then this component is a solution of 
Laplace equation in the Euclidean coordinates (x, y, z), i.e. it is a harmonic function. Now, the 
Kelvin inversion theorem tells us that if V(r) is a harmonic function of its vectorial argument, then 
r–1V(r/r2) is a harmonic function of r/r2. We need to emphasize the fact that the geometrical 
reference frame must be the same for the whole space, otherwise the formulation might be 
confusing. In a word, the theorem requires the same reference frame, and this does not seem to be 
obvious in all the presentations of the theorem. This is why we chose here a technical formulation, 
whereby the things must be kept proper, in view of their immediate application (Russell, 2013). 
The theorem allows us to characterize by harmonicity in a Euclidean background any given 
function: if it is harmonic on a certain space range, then its Kelvin transform is harmonic in the 
transformed range. As it happens, any component of the Newtonian force is harmonic at the place 
where the force acts. Therefore its Kelvin inversion components are also harmonic, but inside a 
sphere of inversion representing the star that generates the gravitational field. 
 As we already mentioned before, the sphere of inversion plays the part of a gauging device for 
a certain expanse of space, being therefore ‘sanctioned’, so to speak, to gauging that region. 
Mathematically speaking, the precise definition of such a device is inessential: one can simply 
assume that the radius of the gauging sphere is unity, and thus proceed to the general construction 
of the inversion vith no problem. However, physically the things are quite complicate, at least for 
the decision on validity of the point approximation in estimating the position of a celestial body, 
if not for the process of interpretation in general. For instance, the Newtonian gravitation cannot 
be used in explaining the Kepler motion but in the limit of very small dimensions of Sun and 
planets with respect to the distance between them. At the cosmological level, the universe is not 
isotropic but at a certain scale, specifically that scale where the galactic nebulae can be considered 
material points with respect to the distance between them. We are therefore entitled to assume a 
certain homogeneity with respect to the dimensions of the bodies populating a region of space at 
a certain space scale, for which we assume a statistical characterization: they are a normal 
population of spatially extended physical particles. The statistics of space extension of the bodies 
of this population are then available by sampling (Nedeff, Lazăr, Agop, Eva, Ochiuz, Dumitriu, 
Vrăjitoriu & Popa, 2015), with the physical interpretation given by equations (4.31–37). 

 On the other hand, what is more important, and thus is necessary to be recalled here, is the fact 

that, as long as Madelung-type interpretation of the wave function is concerned, we can take this 

function as a physical instance of the definition of Ronald Fisher for the efficiency criterion. 

Indeed, the David Bohm’s argument in its hydrodynamical variant, is referring to a quadratic 

relation between the wave function and the probability density. Here the compatibility between 
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the nonstationary Schrödinger equation and the probabilistic character of the wave mechanics, is 

mediated by the very existence of the Takabayasi tensor, not by its integral which defines the 

Fisher information as we know it today. Therefore, if we limit ourselves to the local case, without 

going to make use of the integral, which is the only operation imposing restrictions, the Takabayasi 

tensor is essential: everything in the space statistics depends on its existence. This observation 

acquires a great authority if we take further notice of the fact that the description by Takabayasi 

tensor does not even require the normalisation of the density, which is essential in the definition 

of Fisher information. Incidentally the Takabayasi tensor is also independent of any incideental 

optical notions that might be involved in the problem of transition between infrafinite and 

transfinite, making it a necessary tool of the knowledge in general. Likewise the idea of hidden 

parameters connected with this tensors should also be a necessary tool in gauging the continuum. 

 In this differential context the hidden parameters are by no means ‘hidden’: they are simply 

coordinates in the geometric space continuum. In differential variant of statistics, thus from an 

infrafinite point of view, the Takabayasi tensor – and through it the whole geometry of the hidden 

parameters – is physically fundamental. There must therefore be a circumstance objectively 

compelling us to accept the hidden parameters as natural coordinates in the three-dimensional 

phase space. In order to reveal this circumstance, we need to reconsider the idea of conformal 

metric in its utmost generality. The term ‘utmost generality’ carries here a little more precise 

meaning after all of the previous discussion: a fragmentary defined surface of inversion, as a 

diopter for instance, with a physically defined ‘fragments’, and a general description of the choice 

of origin of the reference frame. These two items, even though related to the concept of reference 

frame, confer distinctive properties to the space itself, which it controls: it is a conformal space. 

Then, as David Delphenich shows it, this space should however be endowed with torsion 

(Delphenich, 2002, 2013). In view of Élie Cartan’s approach to geometry, we think this is also the 

right way of approaching the physics. Let therefore get into some details of the subject. 

 Torsion Induced by Space Variations of Density 

 Recall that we are physically in the infrafinite space range, and we are to stay into that range. 
Then using equation (11.8) we can prove (Mazilu & Porumbreanu, 2018) 

 
 

 pX (x;s) =
m2

x2
; dm ≡ ψ = pX (x;s)dx
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with pX(x;s) given by equation (11.6). The metric (dm)2 is therefore a conformal metric with 
respect to the Euclidean one (dx)2, by a factor proportional to the square of the probability density. 
As up to this point the integrability condition is not yet of concern in the definition of the 
probability density, one can think that this situation is the one occuring in the transfer from a 
hypothetical empty space to the same space but filled with matter. Therefrom, a rule to which 
David Delphenich adheres in his theory: the space filled with matter is conformal to the euclidean 
space, by a factor involving the density of matter. He then relegates the differential situation we 
just described here to a deformation of the physical coframe of space. As long as by ‘filling the 
space with matter’ should be an operation that does not change the scale of things mathematically 
– infrafinite remains infrafinite, finite remains finite etc. – we think that Delphenich’s approach is 
the only sound way to physics. Indeed, if we can express the metric of space in the conformal 
euclidean form: 

 
 

(11.22) 

where y are the coframe vectors having some differential forms as components: 
  (11.23) 

Obviously, in the usual manner, we need to put the components of y in connection with the square 
root of the density of matter. Delphenich takes note that in a theory of distant parallelism, this 
would be only a special case, very particular indeed. However, still following this line of thought, 
and defining the components (11.23) by equation 

  (11.24) 

Delphenich concludes that the square root of density becomes ‘more fundamental than the density 
itself’. Starting from this, another important observation of Delphenich relates to the fact that the 
deformation is, in general, not an usual diffeomorphism, even in the classical case when, as a rule, 
it is modeled by a diffeomorphism: in fact the model must always be mediated by some sound 
physical considerations. 
 In the present context, the differential forms from (11.23) should first be exact differentials, 
which entails the condition: 

 
 

(11.25) 

However, it is to be noticed that (11.24) does not satisfy this condition. More precisely we have: 

 
 

(11.26) 

At this point Delphenich noticed that the symmetric differential of the 1-form W, 

 
 

(11.27) 
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defines the Takabayasi tensor: 

 
 

(11.28) 

Then the equation (11.26) shows that the Takabayasi tensor is related to the torsion of space. More 
precisely, even if the equation (11.25) is not satisfied, the space still possesses a connection, given 
by the coefficients 

  (11.29) 

which splits, by symmetrization in the lower indices, into two parts defining the symmetric 
connection and the torsion tensor, respectively: 

 
 

(11.30) 

This shows that such a metric theory describes a nonholonomic mechanics, whereby the torsion 
turns into a measure of the nonholonomy. Now, having in view the special situation given by 
(11.24), both the symmetric connection and the torsion are determined solely by the density: 

 
 

(11.31) 

When calculating the torsion covector, we then have: 

  (11.32) 

which proves our conclusion. In other words, the torsion covector should be given by the gradient 
of the density of matter. 

 The Reference Frame and the Torsion 

 The previous conclusion of David Delphenich is instrumental: is gives a unique way to physics 
whereby the presence of matter can be described in simple words. Namely, as equation (11.22) 
shows, if the space of residence of matter is Euclidean, then the presence of matter is manifest by 
the fact that the metric of space becomes conformal, with the conformity factor given by the 
density of matter. Two critical points arise here. First, we do not know anything about the space 
of residence of matter, forasmuch as it does not get to our senses. All we know for sure is that a 
space of the residence of the matter of zero density can be characterized as Euclidean. On the other 
hand, the way in which the torsion is introduced here – see equation (11.26) – suggests a non-
Euclidean geometry. Delphenich himself, follows this line. However, as nothing is sure about the 
residence space of the matter, we can limit ourselves to the Euclidean space, and the problem 
occurs if such a bacground space is compatible with the idea of torsion. This idea motivated a 
critical review of Élie Cartan with the occasion of of a problem of the same nature as the present 
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one: the unitary theory of Albert Einstein, based on distant parallelism. First, here is an excerpt 
from Cartan, which we chose for illustrating the general case here, which will be then discussed 
discussed based on it: 

… It is easy to realize the most general way to define an absolute parallelism in a 
given Riemannian space. Attach, indeed, to the different points of this space 
rectangular reference systems, or frames, and this according to an arbitrary law; it 
is then sufficient to agree that two vectors of any origins A and B are parallel, or 
better equipollents, if they have the same projections along the axes of reference 
systems of origins A and B; these reference systems will be then parallel themselves. 
There are, therefore, in a given Riemannian space, an infinity of possible absolute 
parallelisms, for the law according to which one attaches a rectangular frame to a 
point in space is completely arbitrary; however, we must notice that if all the 
rectangular frames are rotated in the same way around their origins, one gets the 
same absolute parallelism; therefore, one can define once and for all the frame 
attached to a particular point in space. [(Cartan, 1931); our translation and Italics; 
see also (Delphenich, 2011), pp. 202 – 211] 

Therefore, attaching a reference frame is, according to Cartan, a matter of gauging in the 
acceptance of Nicholas Georgescu-Roegen for defining the ‘finite’: ‘define once and for all the 
frame attached to a particular point’. However, it is to be noticed that this frame is taken by Cartan 
as ‘rectangular’, and it is not hard to conclude that this condition is only taken here in order to 
avoid further arbitrariness: such an assumption relegates the gauging only to the orthogonal group. 
This kind of reference frame epitomizes the classical ‘box locating’ of a position, which seems to 
be currently contemplated almost exclusively, especially in the intuitive imagery of a reference 
system. In spite of this particular choice of the frame, the Cartan definition of the absolute 
parallelism still remains the most general one, especially with respect to its definition by continuity 
(Levi-Civita, 1916) and, what is more important, it is the only one closer to a physical spirit of 
definition, especially when it comes to theoretical statistical or stochastic processes calculations. 
For once, the case appears to be one of a kind, both among the ideas of Élie Cartan himself and 
those of the differential geometry in general. As far as we are aware, this idea of definition of 
parallelism cannot be found, either in his previous works, or in the works following the one just 
cited, at least not in such an unequivocal form of expression, to say nothing of the geometricl 
works of others. 
 Indeed, one can say that the previous excerpt defines the absolute parallelism by a ‘mnemonic 
scheme’: the components of a vector, ‘recorded’ somehow, are reproduced by orthogonal 
projections in each and every one of the frames attached to positions in space according to an 
arbitrary, but nevertheless specified, rule. In such a situation, one can say that the frames are also 
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parallel. We find this approach to geometry closer to the spirit of modern physics, forasmuch as, 
first of all, it contains the suggestion that the definition of the frame parallelism in a given space 
filled with matter depends on the possibility of recording and transmitting the information within 
that space. Secondly, Cartan’s definition admits an important ‘reciprocal’: we can define a class 
of parallel frames, once we have at our disposal three numbers physically representing the 
components of a vector. We will offer shortly an important example concerning the most important 
mechanism of transmitting information in space: the propagation of light – of a signal in general 
– which is the universal carrier of information in the known universe. 
 Meanwhile let us go a little deeper into this manner of building the geometry, by showing that 
it is genuinely related to the definition of torsion. On this unique occasion, Élie Cartan insists upon 
feasibility of what, following his wording, we like to call an ‘Euclidean mentality’ which obviously 
leads to abandoning the idea of curvature, as its name would imply, but brings instead the torsion 
to the fore. According to Cartan, the torsion is contained in some kind of indecision of the vector 
representation in a Riemanian space and that in an entirely natural manner, as far as the Euclidean 
mentality is involved. Quoting: 

It is known that in the usual geometry the coordinates of a point M, referred to a 
system of rectangular axes of origin O, are the projections of the vector OM555555⃗  along 
these axes; we can still get them by joining O and M with a broken line, and then 
taking the sum of the projections of different parts of this line. One can even take a 
curved line, considered as a limit of a broken line. Now, imagine an observer 
located in a Riemannian space with absolute parallelism, having however an 
Euclidean mentality. If this observer, placed in O and adopting a system of 
rectangular axes of origin O, wants to calculate the coordinates which he must 
assign to a point M (our Italics), he will join O with M by a continuous line, and 
will proceed as we just have shown: he will consider the line OM as a geometric 
sum of a very large number of minute vectors; he will transport them in O parallel 
with themselves, and then will take their geometric sum: thus he will find a vector 
of origin O, which he will consider as equipollent to the line OM, and whose 
projections upon axes shall be the coordinates he sought for (our Italics). If the 
observer joins O and M by another line, he will be led to consider it as equipollent 
to a second vector, which generally will not be the same with the first vector. In 
other words, the different lines joining O and M are not all equipollent to the same 
vector. 
 The issues can be presented yet another way. If in the Euclidean geometry one 
considers a closed contour, or cycle C, pursued in a certain direction, it is 
equipollent to a null vector, according to a fundamental theorem of the vector 
calculus; in a Riemannian space with absolute parallelism this is no more the case: 
the cycle C is equipollent to a certain vector, which we shall call torsion vector. 
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Only in the Euclidean space we will have, for all cycles, null torsion vector. [our 
translation, Italics in the original, except as indicated; see also (Delphenich, 2011), 
loc. cit.] 

As an observation connected to this definition of the torsion, we now describe, as promised above, 
the concept of matter that can emerge from a quotidian example: that of the Earth as a planet 
(Mazilu & Porumbreanu, 2018). First, let us apply the above idea of Élie Cartan to an operational 
definition of the vertical direction on Earth surface accessible to our regular displacements. This, 
of course, will get us some unit vectors to be represented as points on the unit sphere. With any 
three of these directions, we can construct an estimator of the position of center of Earth, viz. the 
point toward which the the force of weight of earthly bodies presumably acts. This center is, 
nonetheless, never unique, but varies within a region inside the Earth, to which we never have 
access, for the space itself has never access there. According to Cartan’s idea this region has a 
finite extension which can be given by a torsion vector. In general, the matter of Earth’s nucleus – 
or even more generally, of a spatially extended particle – is characterized by the torsion vector. In 
physics, as we have shown above, this idea made its way only in our times (Delphenich, 2013), 
and it is related to a concept of density able to properly generalize the Newtonian concept in order 
to allow for a SRT. 

 The Torsion and the Waves 

 Speaking of the Earth and related sciences, it is just a matter of course to come to earthquakes 
and seismograms. Fact is that the position assigned to the recording place of a seismogram 
reproduces the Cartan’s definition of a position from the long excerpt above, obviously with some 
proper choice of alternatives. One of these – the most important one in fact – would be that, in the 
case of a seism, the procedure of relying on joining the points in space, which, as presented by the 
great geometer may appear to some as subjective, or at least as inessential, is practically replaced 
by the signal propagation from the source to seismograph. For once, the knowledge of an equation 
of propagation of the signal is therefore mandatory for physically tackling the problem of 
positioning: the different Cartanian lines joining the position of the source of seism with the 
position of seismograph, are simply paths followed by the perturbation representing the signal, and 
thus they should be physically defined. 
 In such a process of ‘objectivication’, we meet some well-known concepts of physics. For 
instance, a Cartanian line joining two positions between which the perturbation propagates in a 
material medium, is to be interpreted as a mathematical ray describing the propagation. The 
procedure of construction of a physical ray in geophysics even carries a specific name in technical 
terms: ray tracing. Obviously, between the source and the recording site, there are a multitude of 
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mathematical rays, and these are contained in a volume reminding us the coherence volume from 
the physical optics, thus defining a physical ray. In seismology this volume is known for a while 
as the Fresnel volume, the name reminding its origins in the physical theory of light [see (Červený, 
2005); especially §3.1.6]. This volume depends on the frequency recorded at the seismograph, and 
obviously its definition should contain this frequency in a certain way. In the simplest of the cases, 
the original case of defining a Fresnel volume in fact, the definition involves a modification of the 
Fermat’s principle, [(Kravtsov & Orlov, 1982); (Kravtsov, 1988)]. However, the suggestion 
immediately presenting itself according to Cartan’s philosophy illustrated in the excerpt above, is 
that the Fresnel volume is inherently connected to the torsion of the space containing the matter 
within which the signal is propagating. The existence of this very volume is therefore a necessary 
physical condition for the possibility of describing the propagation. For the case in point, it should 
then be formally correlated with the deformation of the surface seismically delimiting the Earth. 
 Fact is that, in localizing the source of an earthquake, we do not have at our disposal but the 
signal recorded in a place on the inhabited surface of the Earth. The record itself is in the form of 
an apparently periodic perturbation, with an amplitude variable in a time sequence locally 
devised: this is the seismogram. Physically speaking, we can say that such a record reproduces the 
deformations of the Earth surface, by a succession of relative positions; again, this succession is 
defined by means of a locally measured time, with an arbitrary clock. It is therefore quite natural 
to think that such a succession of local positions is a direct consequence of the perturbation 
propagation from the interior of the Earth to surface, so that the quake itself can be globally 
envisioned as a consequence of this propagation from its source to the surface. Geophysics – the 
science in charge with the solutions of the mathematical problems posed by the earthquakes – 
approaches the problem by simplifying it to essentials. In the most common of simplifications, we 
have a propagation of an undulatory signal through an ideally homogeneous material, viz. through 
matter, as we conceive it here. That ‘most common’ simplification involves a differential equation 
describing the propagation, usually the D’Alembert equation: 

  (11.33) 

Here ‘u’ is the instantaneous elongation of the signal, function of position and time in the volume 
occupied by matter, and ‘c’ is the velocity of propagation of the signal, depending on the elastic 
properties of the matter. 
 The mathematical problem comes now down to constructing a correlation between different 
positions from the space occupied by matter, at different times. Classically speaking, for this we 
need a reference frame whereby the position is located, and a clock to mark the moments of time, 
the way these two operations are usually thought to be accomplished. Specifically, the reference 
frame is usually Euclidean, and the representation of the coordinates as lengths along any three 
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reciprocally orthogonal directions is just implicit, so to speak. The correlation must be constructed 
based upon the equation (11.33), which is actually considered as its infinitesimal form. In these 
circumstances G. L. Shpilker took notice of the fact that a real seismogram complicates the things 
quite unexpectedly (Shpilker, 1982): the position of the point of recording must be defined not by 
lengths, but by three numbers having certain algebraical properties, necessary in order to comply 
with the definition of the recorded signal! Taken as the components of a vector, these three 
numbers actually define a class of parallel reference frames in the sense of Cartan. Some 
explanations are in order here. 
 Shpilker’s theory starts from the observation that a seismogram can never be represented by 
the simple harmonic oscillation which, in the geometry of the equation (11.33), would represent 
locally a plane wave. A general form of the recorded signal, having any realistic appearance at all, 
would be as a complex-valued function of a locally devised time sequence that serves to ordering 
the elongations recorded in the seismogram. Such a realistic appearance would be given by: 

  (11.34) 

with A, t0, a0, b and w – five constants, to be extracted from the seismogram itself. The form of 
this signal as a function of time is all we are able to know with a certain degree of confidence: the 
rest, starting from the very idea of propagation, the equation representing it etc., represents just a 
series of hypotheses. However, we need to emphasize from the very beginning, and subsequently 
certify, that the philosophy beyond this procedure is universal. Let us expound on this statement. 
 First, the equation (11.33) – or any equation of propagation for that matter – incorporates only 
a part of the hypotheses. Admiting, in order to not complicate things in settling our ideas, that the 
propagation is described by D’Alembert equation as given in (11.33), the problem of correlating 
two points in space is usually solved in physics by the Green function corresponding to this 
equation. However, within Shpilker’s philosophy the emphasis is significantly changed: it falls 
upon the correlation of the recorded signal with the equation of propagation, which is a step of 
knowledge generally bypassed in the regular usage of an equation of propagation. For, it is quite 
clear that the equation (11.34), a product of experiment in the Cartan’s order of things geometrical, 
bestows a physical content upon the space position where the signal is recorded. And this physical 
content is described by (11.34) through the intermediary of a local time sequence, in exactly the 
same manner in which a uniform motion of a classical material point, for instance, bestows a 
physical content to a certain time sequence, obtained with an arbitrary clock. Let us analyze the 
way in which, according to G. L. Shpilker, such a physical content should be brought to bear on 
the geometry. 
 Once we have at our disposal the equations (11.33) and (11.34) – in general, as we said, an 
equation of propagation and a physical content of a local sequence of time – the Shpilker’s 
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argument follows quite a simple logic, customary we might say: one must accept that any recorded 
signal is a solution of the D’Alembert equation, for this equation defines the concept of signal 
within matter, and the recorded signal itself is, obviously, such a signal. The only condition is that 
the surface of earthquakes should be a matter surface, a quality that makes out of it a surface of 
separation of the matter from space. Notice now that the representation (11.34) of the recorded 
signal does not contain explicitly any space position, be it that of the source of the seism or of the 
position of seismograph, but just some parameters to be read on the seismogram. It would be 
therefore virtually impossible to set this physical content of the signal in connection with the 
equation of propagation (11.33), if one does not assume that the position of the recording point in 
space is somehow contained implicitly among the parameters representing this physical content: 
α0, ω, β. Shpilker writes the solution of the equation (11.33) in the form: 

  (11.35) 

where ξ is an arbitrary complex vector. Obviously, this solution satisfies D’Alembert equation, 
both in the variables (x,t), and in the variables (y,t0), no matter of the vector ξ and amplitude A, 
which is here a complex number: 

  (11.36) 

Consequently, the equation (11.35) epitomizes a correlator analogous to the classical Green 
function, of two ‘legal signals’, the legality being defined according to the criterion of definition 
of admissible signals by D’Alembert’s equation: theoretically this signal must be found all over 
the places within matter, therefore both at the location of emission and the location of recording. 
Except that now the functional form of the signal at the emission position, or during propagation 
for that matter, is somewhat more realistic, inasmuch as it is not a priori defined, but empirically, 
with a physical content defined in the manner we define the recorded signal. 
 Now the solution of the problem comes down to matching this theoretical representation with 
the recorded signal from equation (11.34). In order to do this, Shpilker uses the freedom offered 
by the arbitrariness of the vector x: in the surface delimiting the Earth seismically – the surface of 
quakes, as we like to call it – he takes the signal as being of the form 

  (11.37) 

This signal reduces to that from equation (11.34) for |x–yñ = |0ñ, which means that |yñ may be taken 
as the position of the point of recording. Then, again, the function (11.37) is a solution of the 
D’Alembert equation, this time, however, in a special conditions whereby over the recorded signal 
one overlays another signal, which needs to be conveniently described in order to account for the 
conditions in which the measurement is performed. 
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 Before any explanation on these conditions, a word about the notations from equation (11.37): 
the vector z, as well as ξ for that matter, is unknown. The vector k+il is an arbitrary complex 
vector, submitted by Shpilker to the constraints: 

  (11.38) 

where τ is an arbitrary real number. Further on, one denotes 

  (11.39) 

so that this is just a vector with complex components given by the diagonal entries of the complex 
matrix zÄ(k+il) º |zñák+il|. 
 Now, coming back on the track of our discussion, Shpilker claims that in order to get a correct 
‘reconstruction’ of the field from the recorded signal as defined by equation (11.34), the 
coordinates of the position of recording must be expressed by the ratios: 

  (11.40) 

submitted to the conditions 
  (11.41) 

which are thus necessary and sufficient for a reconstruction of the field from recorded data. 
Therefore Shpilker’s local coordinates are not regular coordinates. According to Cartan’s point 
of view, it is more proper to say that they define in fact a reference frame: that reference frame in 
which the coordinates of the position of recording point are given by the vector y having the 
components (11.40), submitted to the conditions from equation (11.41). 
 Let us show that in order to have a solution of the problem in the form from equation (11.37), 
the Shpilker’s demands have to be met indeed. In order to do this, notice that from the equations 
(11.34) and (11.35) one gets: 

  (11.42) 

by the virtue of the fact that ξ has complex components in general. In fact, according to equation 
(11.37) these components are defined by equation (11.39), so that the arbitrariness of the vector ξ, 
having six real components, is transferred into the ambiguity of the vectors z, k and l, which 
involve nine real components. The situation becomes normal if we have three relations connecting 
these last two vectors, which must be measurement constraints, as those given by Shpilker in 
equation (11.38), which can be taken just naturally as such. Therefore, using the equations (11.40) 
in (11.42), the components of vector z can be found as solutions of the linear system: 
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which is obviously equivalent to the system: 

  (11.43) 

This system is in turn compatible, and has unique solution if, and only if, its principal matrix is 
nonsingular. The determinant of this matrix can be easily calculated, and gives: 

   

Therefore the compatibility of the system (11.43) comes to the fact that none of the projections of 
the real vector k on the planes of coordinate should be collinear with the corresponding projection 
of the real vector l. Solving the system (11.43) results in 

   

and its even permutations over indices 1, 2, 3. Considering now the definitions from equation 
(11.40), we will have right away: 

  (11.44) 

and two more, given by the circular permutations over indices 1,2,3. This proves the necessity and 
sufficiency of the conditions (11.41) of Shpilker, showing moreover that the vector k must have 
all its components nonnull for a reconstruction of the field in finite terms. Consequently, the triple 
|yñ represents here the position of the recording point of the earthquake, according to its definition 
contained in the particular relation between D’Alembert equation – describing the signal 
propagation – and the functional form of the recorded signal. 
 For G. L. Shpilker – as well as for the whole geophysicists’ community, in fact – such a 
resolution of the problem of quakes is essential. Indeed, the seismogram is actually a singular 
expresssion of a limiting condition in space and time for an equation of propagation – for the case 
in point the D’Alembert equation (11.33) – and for instance a conceivable Cauchy problem of this 
case cannot be solved with a boundary condition in a single point. Usually, for solving such a 
problem one would need conditions over the entire surface of the Earth, defined by the existence 
of quakes. First of all, such a surface cannot be defined itself, even if we disregard the idea of 
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seismogram, to say nothing of the fact that one cannot place seismographs all over the places where 
an earthquake is felt, in order to make the necessary measurements. It is therefore instrumental, 
indeed, to built a signal as the solution of the equation of propagation, starting from data recorded 
sporadically, insular data at best. Which is what Shpilker’s theory accomplishes in a brilliant way. 
This approach has, however, much more general connotations, even fundamental we should say, 
from the point of view of the theoretical physics. They can be extracted even limiting our 
considerations to the classical differential geometrical idea of adaptation of a reference frame to a 
surface embedded in space, and the description of the deformation of such a frame (Delphenich, 
2013). However, with the idea of torsion in constructing a physical model of matter, we are heading 
towards other, more fundamental realm. 

12. Theory of Nikolai Alexandrovich Chernikov 

One can justly say that the unitary theory of Albert Einstein, based on the concept of absolute or 
distant parallelism [see (Einstein, 1930); see also (Delphenich, 2011) for English translations, a 
comprehensive bibliography and pertinent commentaries on this subject] represents still another 
logical attempt – among so many others explored by the great physicist along time – to consolidate 
the initial idea of theory of relativity, according to which the metric of the world is determined by 
matter. Einstein must have had realized, as he did in many other cases transparent in the various 
interventions to amend the theory – see (Goenner, 2004, 2014) and (Renn, 2007), for details, 
critical discussions and a comprehensive bibliography – that by proposing the metric tensor as 
unique representative of the matter, he drifted apart from the initial geometrical principle, which 
states that the matter establishes in fact the space connection, as suggested by the Newtonian 
theory. Fact is that the space connection can be defined quite independently of the metric. Being 
nonetheless impossible to give up the idea of metric, Einstein may have searched for a way in 
which the metric tensor should be correlated with the connection of space, and such a way ensues 
from the very manner in which the natural connection of a Riemannian metric is calculated 
(Misner, Thorne & Wheeler, 1973). As a consequence of his idea of distant parallelism – or 
absolute parallelism; the notion is best described by Élie Cartan, in a portrayal that, as indicated 
before, we would like to term as ‘informational’ (Cartan, 1931) – Einstein proposes the equations 
of compatibility between metric and connection and not the metric per se, as being theoretically 
essential. In this case the metric tensor is no more constrained to be a symmetric matrix. In modern 
terms one can say that the matrix symmetry expressing the invariance of the quadratic metric itself 
when an arbitrary skew-symmetric part is added to the metric tensor, is broken if the fundamental 
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equations of the theory are the compatibility equations between metric and connection. One can 
further say that the tensor from which the metric is calculated can be no more just a metric tensor, 
but a general tensor that should be properly called a fundamental tensor. 
 Just about the same time with the modern beginnings of the theories of distant parallelism, and 
from exactly the same general philosophical reasons, Max Born and Leopold Infeld constructed 
the celebrated model of the nonlinear electrodynamics, with the declared task of avoiding the 
singularities brought in electrodynamics by the classical concept of material point (Born & Infeld, 
1934). The Born-Infeld electrodynamics accomplishes, in specific details, the Hilbert’s idea from 
1915 regarding the very foundations of physics [for a critical discussion and even an English 
translation of Hilbert’s works on the subject see (Renn, 2007), Volume 4]. The essential theme of 
Hilbert’s idea was a variational principle using in its formulation the Riemannian volume element 
in building an invariant Lagrangian density. Max Born and Leopold Infeld have then shown that 
in the case of the space-time continuum of the special relativity this principle is equivalent with 
the invariance of the non-Riemannian volume, based on a general fundamental tensor. The 
generality is here understood in the sense that this tensor has no matrix symmetry: it has a 
symmetrical matrix part which alone is used in calculating the metric. On the other hand, the skew-
symmetric part of the fundamental tensor has properties which, in specific conditions, are formally 
identical with those of the electromagnetic field. Those conditions are indeed characteristic for the 
classical definition of such a field. 

 Enters Chernikov 

 Now, the essential point of the underlying mathematical theory of both Einstein’s ideas and 
Born-Infeld electrodynamics was made obvious by Nikolai Alexandrovich Chernikov, and will be 
rendered in a specific detail in what follows, along with the consequences of the unitary theory 
which we hold as fundamental for the knowledge in general. That point can be briefly summarized 
by the statement that the Born-Infeld equations of the nonlinear electrodynamics are valid in any 
dimension, in a geometry based on Einstein compatibility equations, whereby they physically 
signify the vanishing of the torsion covector. Perhaps this is the best time to explain why do we 
insist on a theory valid ‘in any dimension’. Actually, what we have in mind is a three-dimensional 
theory. 
 Fact is that the matter ‘fills’ the space of our intuition, which is three-dimensional. This ‘filling’ 
is irregular in most cases, as Newton himself noticed in Principia, being represented by physical 
structures, accessible to our senses. These are matter penetrated by space, as the physics of the 
last two centuries or so tells us. The four-dimensional universe of relativity, however, tells another 
story related, as it were, to the time concept. And, as Einstein explained in his celebrated article on 
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foundations of special relativity (Einstein, 1905), this side of the time concept involves, even 
though not exclusively, the electrodynamics. For, the time, once it gets out of our intuition, 
becomes a concept having two distinct differentias, sometimes mixed in physics uncontrollably 
with one another. On one hand, the time has the classical property of being a continuity parameter. 
This property is extracted from the perception of motion, and surfaced in relativity through the 
idea of geodesics, which further led to noticing the importance of a connection of space. 
Electrodynamics, on the other hand, requires the time in another instance: as a parameter ordering 
a sequence of events. This is the essential content of the Einstein 1905 paper, and the issue gets 
through all of the ulterior developments of the intellect of the great theoretician, to the extent in 
which they are accessible to us, of course. It may help to make the concept of time a little more 
comprehensible along this line, if we notice that Kurt Gödel’s works from 1949, hesitantly ratified 
by Einstein himself [see (Gödel, 1949, 1952); (Einstein, 1949)], are the first works in which the 
two differentias of the time concept came blatantly at odds, shaking our intuition with the idea of 
travelling in the past. For, this would mean, in turn, influencing the past, and this idea nourished a 
lot of popular speculations, inappropriately promoted, as usual, by media for entertaining. The 
scientific consensus here seems to be that a geodesic motion in a Gödel universe is practically 
impossible, but even this opened another line of speculations. Be it as it may, this attitude of 
physics with respect to the concept of time, is a warning for properly distinguishing among the 
concepts it forced upon our intellect. And the basic such concept is, of course, that of the matter 
itself: it cannot fill but a three-dimensional space, and the manner of filling leads to a Riemannian 
manifold. Further on, the presence of matter leads to the consideration of torsion for completing 
the connection of space filled with matter, but the dimension of this space is still three. Therefore 
we need to describe this situation, and then, based on this description, we can go further on and 
describe a kinematics, or even a dynamics of matter. 
 Let us therefore show how the torsion can be related to the fundamental tensor, using the 
calculation line of Chernikov himself. The work we follow closely is that concerning a metric 
space of general dimension, even or odd, endowed with a fundamental tensor field determining 
the metric by its symmetric part (Chernikov, 1977). This work can be considered as a sort of 
synthesis of the results of some previous works of the same author (Chernikov, 1976). We think 
that these works are sufficiently important in order to deserve a representation like the one 
following here (and, perhaps, an even better representation!), somewhat detailed up only to a point, 
of the ideas they promote, and especially of their way of mathematical realization. These ideas 
scarcely occurred in the specialty literature at large, and therefore they were not exposed to any 
critical consideration from the part of the scientific community. 
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 The compatibility equations between metric and connection proposed by Einstein are given by 
vanishing of the covariant derivative of the fundamental tensor, when this one is constructed with 
the connection coefficients: 

  (12.1) 

As we just mentioned, based upon these equations the theory does not necessarily require the 
symmetry of the metric tensor. We can therefore assume the existence of a fundamental tensor g, 
with no special matrix symmetry, and which can thus be written in the general form: 

  (12.2) 
Here h is the symmetric part of the fundamental tensor, which alone determines the metric, for we 
necessarily have: 

   

Further on, a is the skew-symmetric part of the fundamental tensor, guaranteeing the validity of 
this equation of quadratic metric, and remaining to be interpreted from a physical point of view. 
From equation (12.2) the two matrix components of the fundamental tensor can be calculated by 
the obvious relations: 

   

As the connection itself is not expected to be symmetric in the conditions of equation (12.1), one 
needs to try a decomposition of the connection symbols similar to that of the fundamental tensor: 

  (12.3) 

These notations define here the mean connection and the torsion respectively, which is a mixed 
tensor with two indices of covariance and one index of contravariance (Vrânceanu, 1962). The 
connection in general is not a tensor. Denoting here the covariant derivatives by symbol Ñ, the 
covariant derivative in the mean connection of the fundamental tensor should be 

  (12.4) 

This means that the equation (12.1) can be written as 
  (12.5) 

Therefore the covariant derivative of the fundamental tensor in the mean connection is determined 
by the tensor itself and by the torsion tensor. 
 Now, in general the fundamental tensor can even be singular. However, in the case it is 
nonsingular, we can define its reciprocal, denoted g,̃ having the entries g̃ab, say. Indeed, by the rule 
of calculation of the determinant based on a line or a column, we have 

  (12.6) 
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where m here is the matrix of minors of g, and ‘g’ means the determinant of g. This relation is 
independent of the value of determinant: the matrix can be singular too, the relation still works. 
However, in cases when g ¹ 0, and therefore if the matrix g is nonsingular, we can define the 
reciprocal by g ̃º m/g, so that the equation (12.6) can be written in the usual form: 

  (12.7) 

Here the upper ‘t’ index means the transposed matrix, and g̃t obviously means the inverse of g in 
the usual matrix multiplication, and 1 denotes the identity matrix, as usual. If, by analogy with 
equation (12.2), we decompose g̃ into its symmetric and skew-symmetric parts, i.e. g ̃º h̃ + ã, then 
the condition (12.7) is equivalent with the following two relations: 

  (12.8) 

On the other hand, in terms of the reciprocal tensor, the equations of compatibility (12.1) are 

   

so that for the covariant derivative in mean connection we have: 

   

Therefore, for this tensor too, there is an equation of the type (12.4): 
   

By decomposing g̃ into symmetric and antisymmetric parts, this equation is equivalent with the 
following: 

   

which, by contraction over indices g and n, gives the result: 

  (12.9) 

Here Sa are the components of the torsion covector. Now, in the symmetric connection, we have 
for the covariant derivative of the tensor ã given by 

   

so that the left hand side of (12.9) is 

  (12.10) 
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amounts to the known form 

   

1gggg =×=× tt ~~

haahahha ~~;~~ ==

0g~g~
x
g~

=G+G+
¶
¶ n

ga
µaµ

ag
an

g

µn

n
ga

µaµ
ag

an
g

µn
µn

g G+G+
¶
¶

=Ñ g~g~
x
g~g~

n
ga

µaµ
ag

anµn
g +=Ñ Sg~Sg~g~

µ
ag

ann
ga

µaµn
g -=Ñ Sh~Sh~a~

g
gaaa

µaµg
g º=Ñ SS;Sh~a~

µan
ga

µ
ag

an
g

µn
µn

g G+G+
¶
¶

=Ñ a~a~
x
a~a~

g
gaaa

µa
g

µg
µg

g GºGG+
¶
¶

=Ñ cua~
x
a~a~

|g|ln
xaa ¶
¶

=G



 190 

so that the equation (12.10) becomes 

   

and with this, from (12.9) we finally have: 

  (12.11) 

Therefore in order that equation (12.1) has unique solution, the condition of nonsingularity of the 
fundamental tensor: g ¹ 0 is insufficient. It has to be supplemented with h̃ º det(h̃) ¹ 0. But this 
last condition comes to h º det(h) ¹ 0, with the matrix h defined by equation (12.2), having the 
entries defined by equation (12.3). Thus, the necessary and sufficient condition for the 
compatibility in the sense of Einstein between the fundamental tensor and the space connection, is 
that both the fundamental tensor and its symmetric part should be nonsingular. By this, the metric 
still plays the fundamental part assigned to it by the general relativistic ideas of Einstein, only now 
this part is complemented with the part played by some other fields, specifically some Yang-Mills 
type fields. Let us show this in detail. 
 If h ¹ 0, the matrix h is nonsingular, and one can construct, with the help of h–1, a new matrix 
g×h–1×gt which is the inverse of h̃. Indeed, using the associativity of matrix multiplication with 
respect to matrix addition, as well as the equation (12.7) which defines the inverse of the 
fundamental tensor, we have by direct calculation: 

   

thus proving our statement. Consequently if there is an inverse of the matrix h, one can find the 
torsion covector, starting from equation (12.11), by left multiplication with the matrix g×h–1×gt, 
exactly as in the case of solving the linear algebraic systems, which gives the final result: 

  (12.12) 

This is equivalent to the compatibility condition (12.1). 
 In order to proceed further, we shall provide now a few necessary formulas related to the 
concept of affinor, used by Chernikov himself in order to deduce his formulas. We use here this 
concept as little as possible, and only because it is very convenient in the calculations involving 
the torsion: they are almost ‘arithmetical’. Generally the matrix stymbolical calculation is to be 
preferred instead, as being more expedient. In the Riemannian geometry based upon metric h, the 
metric tensor serves also to raise and lower the indices, and therefore to the construction of the 
mixed tensors of the second orders. These are the affinors: matrices of transformation of the 
vectors into vectors of the same variance, either covariance or contravariance. The most important 
among affinors of the Chernikov theory, and the only one besides unit affinor in our context, is the 
antisymetric affinor ϕ, with entries: 
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  (12.13) 

where a is the antisymmetric part of the fundamental tensor g. Using this affinor, we can construct 
a few important tensors, like the ones encountered in equation (12.12), which are essential in the 
expression of the torsion covector. 
 The starting point is the definition of the inverse of the fundamental tensor, namely equation 
(12.7): g–1 º g̃t. We need here g and g–1, and these matrices can be constructed using the metric 
matrix h and the affinor ϕ. We have, by definition:  

  (12.14) 

where 1 is the unit affinor, and we used the second of the formulas from equation (12.13), in order 
to factor the metric tensor out at the right. Thus we have 

  (12.15) 

The torsion covector (12.12) can now be written in the form 

  (12.16) 

where D denotes the covariant derivative, this time in the natural connection of the metric h – the 
Christoffel symbols of the second kind of the metric – J º g/h, and the affinor ϕ̃ is defined by ϕ̃ º 
hã, according to the first equality in (12.13). Based on (12.14) we can further construct the 
formulas 

  (12.17) 

It thus becomes apparent one of the main advantages of the calculations with affinors, namely that 
we can use the usual arithmetic rules, provided we preserve the order of factors in the calculation, 
of course. Obviously, if we have to do with functions of the same affinor, even this rule is 
unnecessary. For instance, from (12.17) we have right away: 

   

which results from (12.15), by inversion and left multiplication by h–1. By the same token, starting 
from (12.17) we also have: 

   

so that as a concrete example of using these relations, the equation (12.16) can also be written as: 

  (12.18) 

Now, in the specific four-dimensional case, it is obvious that vanishing of the torsion covector 
means the vanishing of covariant derivative in either equation (12.12) or equation (12.16), and 
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Chernikov (loc. cit.) shows that this further means the Born-Infeld equations of nonlinear 
electrodynamics. 
 However, we are interested here in pursuing the idea of continuity, and for this we insist upon 
another feature of Chernikov’s approach: independence of the theory of the ambient space 
dimension. The same algebraical course goes for any space dimension, the details of calculations 
being decided only by the properties of the affinor f. Indeed, in order to find the affinor under the 
covariant derivative in (12.16), which is the affinor designated by symbol ϕ̃, Chernikov uses the 
characteristic equation of the affinor f, with the final result: 

   

where Q is a polynomial of degree (n–2)/2 if the dimension ‘n’ of the ambient space is even, or of 
the degree (n–3)/2 if the dimension ‘n’ is odd. This is the only detail of calculation imposed by the 
dimension of ambient space. The polynomial Q arises as follows: the Hamilton-Cayley equation 
for the affinor ϕ assumes one of the forms 

  (12.19) 
as the dimension of the space is even (n = 2k), or odd (n = 2k+1). Therefore P is a polynomial of 
degree ‘k’ in its argument. From this it follows that: 

  (12.20) 

for P(1)–P(λ2) is always divisible with 1–λ2, by Bézout’s classical theorem. Consequently (12.18) 
can be written in the form: 
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with Q(ϕ2) calculated as shown in equation (12.20). We shall illustrate right away the case n = 3, 
for this is fundamental for a Hertzian theory of matter. 

 Chernikov’s Theory in the Three-Dimensional Case 

 From the point of view of the matrix algebra the three-dimensional case of space is detaching 
among others by a specific property that cannot be found in general for any other dimension. 
Namely, any antisymmetric 3´3 matrix a is equivalent to a vector, v say, by the well-known 
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  (12.22) 

Here ã is the matrix of minors of a, having the entries aij = vivj. The eigenvalue equation of a in 
the metric h can therefore be written in the form: 

   

where ‘h’ and ‘a’ denote the determinants of the two matrices, as usual. Now, because h is 
symmetric and a is antisymmetric, we have a = 0, tr(h̃a) = 0 and tr(hã) = hijvivj º v2, i.e the squared 
length of the vector v in the metric h. Therefore the eigenvalue equation reduces to 

   

so that Chernikov’s affinor ϕ satisfies the Hamilton-Cayley equation: 
   

This equation defines the polynomial P from the second of the equations (12.19) by 

   

In this case, the equation (12.21) becomes: 

 
 

(12.23) 

where ‘v2’ is, as we said, the magnitude of v, calculated with the metric h. 
 Now, assume that the metric tensor is brought in actuality by a deformation represented, as 
known by a symmetric tensor, which we denote by s. Therefore the actual metric tensor will be 

   
Correspondingly, the mean connection will be of the form: 

  (12.24) 

where we used the established notation {...} for the Christoffel’s symbols of the second kind of 
the metric h, and P is a tensor part of the connection, symmetric in the lower indices. Therefore 
the general connection of the actual state will also contain the torsion, so that we shall have: 

  (12.25)  

with an obvious definition of the tensor T: it is composed of the tensor P, simetric in the lower 
indices, and the torsion tensor S, antisymmetric in the lower indices. We try to solve the 
compatibility equation in terms of tensor T. Taking (12.25)  into the compatibility relation (12.1), 
results in 

   

÷
÷
÷

ø

ö

ç
ç
ç

è

æ

º
÷
÷
÷

ø

ö

ç
ç
ç

è

æ

-
-

-
º

233231

322221

312121

12

13

23

)v(vvvv
vv)v(vv
vvvv)v(

~;
0vv
v0v
vv0

aa

0a)~(tr)~(trh)det( 23 =-l+l-lº-l ahahah

0)]h/([ 22 =+ll v

01v =+ ])h/([ 22ff

1
1
11v =º
-
-

\+º )(Q)(P)(P)h/()(P 2
2

2
222 f

f
f

ff

Sk = | h + v2 | ⋅Di
φk
i

| h + v2 |
⎛
⎝⎜

⎞
⎠⎟

shh +=

k
ij

k
ij

k
ij P}{ +=G

k
ij

k
ij

k
ij

k
ij

k
ij TS }{ +=+G=G

ijkijkijk
l
kjil

l
ijlk aDa;aTgTg º=+



 194 

where D denotes, the covariant derivative in the natural connection of the metric h, as before. 
Using here the decomposition (12.2) of the fundamental tensor, results in: 

   

where for the definition of the affinor ϕ the metric tensor h is used as in equation (12.13). This 
tensor is also used for lowering and raising the indices of T. Now, by transposing the indices ‘i’ 
and ‘j’ the last equation results in 

  (12.26)  

from which we have right away: 
  (12.27)  

where, for instance, T(ijk) means the result of averaging the tensor over the even permutations of 
the three indices: 

   

From equations (12.26)  and (12.27)  we have 
  (12.28)  

which is equivalent to (12.1) for the three-dimensional case. 
 Decompose now T in its symmetric and antisymmetric parts in the first two indices: 

   

This notation is selfexplanatory: raising the last of their indices gives the tensors P and S defined 
in equations (12.24) and (12.25) . In terms of these tensors the equation (12.28)  itself can be split 
in two parts: 

  (12.29)  

and respectively 
  (12.30)  

which are still equivalent with the Einstein compatibility condition (12.1). The equation (12.29)  
shows that the tensor P can be calculated once we know the antisymmetric part of the fundamental 
tensor and the torsion tensor S. One essential part of the Chernikov’s theory is that the torsion 
tensor itself can be calculated using only the antisymmetric part of the fundamental tensor. This 
can be shown as follows: replace P from equation (12.29) in equation (12.30) , and we have as 
result an equation for the torsion tensor: 

   

As from (12.29)  and (12.30)  follows right away that 
   

the equation in S thus obtained becomes: 
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  (12.31)  

which accounts for our statement, and implicitly for the result of Chernikov’s theory taken here as 
essential: for the determination of the torsion tensor the fundamental tensor is sufficient. Therefore, 
instead of solving the equation (12.1) for the 27 entries of Γ, we have to solve in turn the equation 
(12.31)  for the 9 entries of S, then , using S, solve (12.29)  for the 18 unknown entries of P, and 
finally calculate Γ from equation 

   

resulting from (12.25) . Practically we have to ‘solve’ only the linear system (12.31)  for the 9 
components of the torsion: the rest of unknowns are simply ‘calculated’ from these. 
 However, not just this should be the idea we need to emphasize here, but one relating to the 
torsion covector S, which results from it: this covector is well defined only by the right hand side 
of the equation (12.31) . Inasmuch as what we transmitted from Chernikov’s theory up to this 
point, should have suggested the idea of its construction, we just need to reproduce the result we 
are interested in, by taking it from the original works [(Chernikov, 1976, 1977); see, for instance, 
(Chernikov, 1976c), p. 13]. Using the metric tensor h for raising of the last index in equation 
(12.31) , and the equation (12.21), Chernikov offers an equation for the torsion covector, which 
we adapt here for the three-dimensional case based on the fact that Q(ϕ2) is the constant polynomial 
that can be identified with the affinor 1: 

  (12.32)  

If the antisymmetric part of the fundamental tensor is a vortex, represented by the curl operation, 
then a(ijk) = 0, so that the tensor Y itself can be simply obtained by raising an index with the help 
of the contravariant metric tensor corresponding to h by the usual inversion of this matrix: 

  (12.33) 

The point of this whole exercise is in a comparison between equations (12.16) and (12.32) : the 
structure of torsion is operationally defined by the actual metric tensor and the antisymmetric part 
of the fundamental tensor. In a word, the fundamental tensor of the three-dimensional space should 
contain the whole information necessary to transform the space into a three-dimensional phase 
space. This is, in fact, just the essential idea of the axiomatics of Carlton Frederick, which, we may 
say, inspired many stochastic approaches of the modern theory of matter in space (Frederick, 
1976). 
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Conclusions with a Briefing on Necessary Further Elaborations 

We have reached now a situation where a summary is needed, to set things in order for carrying 
this work over to a next level, of more technical, in fact very special, mathematical developments 
for the necessities of Scale Relativity Physics. We just hope that the previous elaboration makes it 
clear that this theory is a necessary turn of the theoretical physics at large, whereby a few general 
touches are, nevertheless, indispensable. The work thus far, concerns, even though not exclusively, 
the ‘meta-theoretical’ aspect of SRT mentioned by Laurent Nottale in the concluding words of his 
own work, reproduced by us in the Introduction (Nottale, 2011): SRT is, in fact, a necessary theory 
of interpretation. With the advent of wave mechanics, the interpretation has been established as a 
necessity within the core of physics itself. Our analysis shows that interpretation is necessary even 
in the classical physics: assuming, for instance, that it is possible to eliminate the wave mechanics 
from our knowledge, the interpretation still cannot be eliminated. Its permanence within human 
knowledge is formally assessed by the connection with the mathematical theory of ensembles, 
which in turn involves the general idea of density, at least as long as physics is concerned. 
 Thus, we have chosen in this work a few fundamental historical points of crucial adjustment 
of the human knowledge – ‘moments of knowledge’, as we would like to call them – having a 
precise criterion of selection in mind: those moments destined to turn the idea of interpretation 
into a well-defined concept. For, with the advent of the wave mechanics, the idea of interpretation 
became critical only by the disclosure of its object: translation of the theoretical terms, 
mathematically expressed by the concept of wave function, into ‘experimental’ terms, 
mathematically expressed by the concept of particle (Darwin, 1927). The construction of the 
concept of interpretation itself involves that ‘refoundation on mathematical principles’ mentioned 
by Nottale in the excerpt from our Introduction here. On this key note, the fundamental feature of 
the concept of interpretation turns out to be the idea of freedom of particles: the wave function is 
referring to an ensemble of free particles. Once realizing this, a host of classical mechanical 
concepts fall into their right places, and the historical development of the physics since the birth 
of the two new mechanics – undulatory and quantal – helps in making this idea more precise. 
Hence our choice for a few significant ‘moments of knowledge’. 
 The freedom here is not classical, involving, as it were, only the principles of dynamics, but 
rather wave mechanical: the wave function describes an ensemble under no potential. This was 
suggested by Erwin Madelung, who constructed a first ensemble for the concept of interpretation 
of wave mechanics (Madelung, 1927). On this note, we present the potential itself as purely quantal 
in nature, no matter of the scale of space and time. This conclusion is derived directly from the 
idea of interpretation which, while based on the nonstationary Schrödinger equation with no 



 197 

potential, as a fundamental mathematical tool of the process of interpretation, also imposes a 
special position of the potential: it is correlated with the behavior of the amplitude of the wave 
function by a stationary Schrödinger equation. In this presentation the stationary Schrödinger 
equation is not essentially an eigenvalue equation, but only an equation to be satisfied by the 
amplitude of the complex wave function. Thus, the classical aspect of freedom results in a special 
choice of the amplitude of the wave function, which turns out to be compatible with the Louis de 
Broglie’s ideas deriving from the association of a frequency to a massive particle using the concept 
of energy. This fact was shown by Lachlan Mackinnon, who pointed out the way in which a de 
Broglie wave is related to the measurement of phase, considered as a fundamental proces in an 
enclosure (Mackinnon, 1978). A lighter note for the concept of interpretation, but by far more 
popular in the present state of our minds, is then revealed as a task of the wave mechanics: this 
physical science concerns the reconciliation between the de Broglie and Schrödinger moments of 
our knowledge. Perhaps now it is the right occasion for a brief summary of those two moments, 
via the very accomplishments of the two great scholars, as described in this work. 
 We uphold the idea that the root of the concept of interpretation may have been the classical 
theory of color vision, which, by the beginning of the last century has reached a Riemannian 
geometrical status, especially through the works of Hermann von Helmholtz. For, it was 
Schrödinger who, in his essential work on the theory of color vision (Schrödinger, 1920), took 
notice of the critical needs of the theory of color vision. This was the connection with the Cantorian 
theory of continua, necessary for the arithmetization of colors, and this is basically a theory of 
ensembles in the modern understanding. With Schrödinger an idea attains precise contour: while 
Riemannian extended manifolds of color may have an infinite dimension, even a continuous 
dimension at that, their physical ‘qualities’ are finite dimensional manifolds of maximal dimension 
three. We found it significant for this moment of our knowledge, that the year 1920 seems to have 
been a turning point for the personality of Schrödinger: for the rest of his life he dedicated himself 
to theoretical physics and natural philosophy. So, in our opinion, the celebrated works from 1926, 
in which Schrödinger introduced the concept of wave function, are a direct consequence of this 
turn of his life, prompted by the idea of color vision. For, the wave function as introduced by 
Schrödinger represents nothing else but the possibility of conceiving simultaneously an ensemble 
of material points having one of the powers of continua. 
 If we are to continue on the same note, we can say that Louis de Broglie pressed on an 
apparently more objective concept of physical science related to the issue at hand: the energy. In 
mechanics, the energy of a complex system is a vague concept, to say the least (Poincaré, 1897). 
With statistical mechanics, it became a matter of statistics, at any rate for a few cases in which we 
can claim a definition of some kinds of measurable energy. In one such case, namely that of the 
‘wave phenomenon called classical material point’, in the terminology of de Broglie, a frequency 
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can be associated to a material point (de Broglie, 1923), using the precepts of special relativity. 
But, in this instance, the frequency necessarily plays a twofold part: first as an expression of the 
energy indeed, then as an expression of time in a process of measurement of the phase of wave 
phenomenon. According to relativity this leads to contradiction, which in turn led de Broglie to 
assume that ‘the wave phenomenon called material point’ is actually a group of waves, all ‘in 
phase’. This is the origin of the whole of de Broglie’s work, and certainly that of the subsequent 
construction of Lachlan Mackinnon cited above. 
 Thus, the ‘de Broglie moment’ was characterized by us here by means of two essential 
accomplishments related to the concept of interpretation: the very first example of a Madelung 
ensemble of free material points, necessary for the interpretation of a classical concept – that of 
physical light ray (de Broglie, 1927) – and a classical manner of application of field on matter and 
of matter on field (de Broglie, 1935). While both these concepts are of a classical origin, they are 
nevertheless universal in the general economy of the concept of interpretation. They both revealed 
the tremendous role played by the physical theory of surfaces in the process of interpretation, a 
role that ended up in the future concept of holography. In particular, only this way we are able to 
state that the density of an ensemble is related to the square of the amplitude of the wave function 
interpreted by this ensemble. We might rightfully say that this is a ‘holographic’ property, and that 
Louis de Broglie added in fact to the classical concept of ray a necessary differentia left unfinished 
by the physical optics of Augustin Fresnel. This is the connection of the local description of 
physical ray with the global description of light by a wave surface, accomplished by Fresnel only 
as a transition between infrafinite and finite orders, in mathematical terminology. Louis de Broglie 
shows that this should be a universal connection for the idea of scale transition, making out of 
special relativity a scale relativity in the sense of Laurent Nottale. 
 Thus, in order to be able to merge these two moments of our knowledge – de Broglie and 
Schrödinger – we followed the idea of which Laurent Nottale himself took notice, namely of 
“rendering the whole physics relativistic”. Only, we chose for this job the quintessential model of 
a physical system, chosen, as a matter of fact, by Schrödinger himself for illustrating the virtues 
of wave function in a problem with eigenvalues: the classical hydrogen atom. This model contains 
naturally the idea of limitation of velocities, which is crucial for the kind of matter interpreted by 
light: the ether. Incidentally, by this the ether becomes itself the quintessential matter, with photons 
as ultimate material particles. Then, we just added space extension to the physical components of 
the classical planetary atom, a notion for which we needed a ‘twist’ on the classical natural 
philosophy, due to Heinrich Hertz. According to Hertz, the classical material point is endowed 
with a feature associated to the concept of time in special relativity, and thus becomes a Hertz 
material particle: a means of associating with one another different positions in space at different 
time moments (Hertz, 2003). By this the freedom conferred to material particles in a Schrödinger 
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approach can be classically assessed as the freedom of particles in matter, whose expression is 
similar to the contemporary idea of asymptotic freedom. In our general connotation, the freedom 
of material particles in matter is a classical freedom of the material point under forces in 
equilibrium, but in a limited space, not in the universe; or, we might say, the freedom of a Hertz 
material particle in the universe momentarily at its disposal. This property is what makes the 
description of matter a … matter of scale, and asks for a necessary development of theoretical 
physics into a Scale Relativity Physics. 
 Thus, coming back to the idea of scale transition, both in time and space, another moment of 
knowledge needs to be considered, and we designated it as the ‘Berry moment’, forasmuch as it is 
related to the name of Sir Michael Berry. Three essential achievements were then associated by us 
with this moment of knowledge, each one of them regarding exclusively the transition between 
scales of space and time. The first one of these achievements is referring to idea of evolution of 
the phase of wave function, whereby the space dependence of phase is implicit in the phase of 
phenomena described adiabatically (Berry, 1984). We have insisted here on the fact that this 
achievement of Berry allows actually a geometrical description of the adiabatical parameter space. 
This fact is only implicit in the original works of quantum mechanics [see (Heisenberg, 1925)], 
and cannot be made explicit but only by interpretation, thus involving the idea of wave function: 
hence the necessity of a geometry of parameters. The second achievement listed by us under ‘Berry 
moment’ of knowledge is the liberation of the geometry of parameters’ space from the restriction 
of adiabaticity (Berry & Klein, 1984). This is accomplished by the idea of a time dependent space 
scale transition which leaves the Newtonian forces unchanged. For once, the procedure has the 
general cosmological connotation of the adiabatic procedure of transition, which leaves the Planck 
spectrum invariant. Thus, we are guided to the conclusion that the Newtonian type of forces are 
cosmological in nature. We only point out an essential difference here: while the Planck spectrum 
represents, in a mathematical time order, a direct transition between infrafinite and transfinite, the 
Newtonian forces represent a transition between infrafinite and finite. In general, therefore, the 
independence with respect to the rate of processes involved in interpretation is to be connected to 
the invariance to scale changes. Finally, the third achievement listed by us under the ‘Berry 
moment’ of knowledge is what we termed as the ‘Airy moment’ of the wave function (Berry & 
Balazs, 1979). Thereby, the wave function can be expressed by an integral equation having a 
solution of the nonstationary Schrödinger equation as a kernel acting on Airy functions in space. 
We correlated this situation with the third order nonstationary equation in space variable, which, 
in the Nottale’s approach of the fractal fluid structure would mean dispersion of waves. Classically, 
such a linear  equation is equivalent to an integral equation, having nevertheless the Airy function 
as a kernel (Widder, 1979). So, the lesson we extracted from this ‘Airy moment’ can be expressed 
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in terms of Louis de Broglie’s idea of ‘application of field on a particle’ and of ‘a particle on the 
field’ via some physical quantities. 
 However, this last contribution to the ‘Berry moment’ has by far much more significance for 
human knowledge in general, which strikes the eyes when noticing an ubiquitous implicit 
dependence of wave function and potential on space and time. Specifically, they depend on space 
and time not directly, but via some algebraic expressions representing physical situations. 
Originally this behavior has been relegated by Berry and Balazs to the onset property of the Airy 
function, of describing the caustics of light rays. This way the behavior can be transferred to a 
phase space property, thus describing an ensemble of particles. While maintaining this original 
idea, in this work we pressed on another interpretation (Greenberger, 1980), by the equivalence 
principle: namely, here we have to do with an ensemble of free Hertz particles in matter, describing 
an Einstein elevator in free fall, to wit, a space extended particle in a gravitational field. In this 
interpretation, a special statistics of the Planck type is used for the time moments, which should 
thus be submitted to the same type of quantization as the spectral energy of light. For once, this 
testifies for the physical identity between a Wien-Lummer enclosure and an Einstein elevator, thus 
pointing out towards an identity between the two implements of our practical knowledge of the 
world. However, the implication of the ‘Airy moment’ of the wave function are by far more 
intricate and affluent in consequences. 
 While these consequences are the subject matter of the second part of the present work, we 
need to show here that our approach of the interpretation concept – whereby the wave function is 
interpreted by ensembles of Hertz free particles, and the potential of forces describes implicitly 
these forces – is a natural situation according to the very idea of quantization of the wave 
mechanics. In hindsight, this interpretation warrants the Nottale’s approach of SRT by geodesic 
motions description of a fractal fluid. 
 The idea of quantization of the wave mechanics starts from postulating the Schrödinger 
equation in the form 

   

where H is the Hamiltonian operator. Admitting autonomy for the wave function, My can be very 
well another valid wave function, satisfying the Schrödinger equation 

   

for the same Hamiltonian. Here M is an operator acting on the wave function in order to construct 
another wave function. It is then easy to see that this operator should be constrained to satisfy the 
nonstationary Heisenberg-Dirac type equation: 
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Such an operator can be very well that involved in an eigenvalue equation, whereby the wave 
function thus defined appears as the original wave function multiplied by a constant: 

   

Thus, if the wave function of the eigenvalue problem is to be interpreted by an ensemble, H0 has 
to satisfy the Heisenberg-Dirac equation of motion 

   

and if the operator is of the particular form 

   

this evolution equation turns out to be an evolution equation for the potential only. According to 
Lax’s theorem, which is the basis of the theory of solitons (Lax, 1968), E has to be then an integral 
of the evolution described by H, depending only implicitly on time, while Hy itself must be a 
solution of the eigenvalue equation for H0. This can be seen rather directly, by differentiating the 
eigenvalue equation for H0, while assuming an explicit dependence of time for the wave function. 
In the conditions just stated, the result is 

   

showing that the evolution of the wave function is compatible with the eigenvalue problem only if 
E does not depend on time. The question is, what kind of dependence? Is this time the time of an 
evolution or the time of motion? 
 The discrimination between these two aspects of time makes all the difference within the 
concept of interpretation. For, if the time is a continuity parameter, we can talk about an ensemble 
of Hertz material particles corresponding to a moment of time indeed. It is such an ensemble that 
can be described by a Planck statistics. On the other hand, if the time is a parameter of motion, it 
is referring to a single Hertz material particle. In the first case the time derivative is a partial 
derivative, while in the second case we have a total derivative expressed as a Lie transport along 
the motion or, in general, along a vector related to this motion. This is the case to which the 
Nottale’s complex fluid is referring. However, within the concept of interpretation, the 
nonstationary Schrödinger equation involves the first aspect of time, which in turn involves the 
partial derivative. Therefore the energy as an eigenvalue may not be constant, but can depend 
implicitly of time, as the ‘Airy moment’ plainly shows indeed. 
 This fact served us as a lesson about conceiving the freedom of the Hertz particles in matter, 
by a generalization of the concept of adiabaticity along the ideas resuscitated by the ‘Berry 
moment’: the motion of the material particles in matter is much faster than the evolution of 
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ensembles of particles perceived by our senses as motion at a certain space scale. In other words, 
the evolution can always be described as an adiabatic motion, but the notion of ‘adiabatic’ is a 
matter of scale. It was Louis de Broglie who implicitly suggested such a condition, as the 
instrumental condition for expressing the density of matter by the square of the amplitude of the 
wave function. In a word, the conclusion of de Broglie’s analysis amounts to the general statement 
that the motion of particle to which a frequency can be associated is adiabatic with respect to the 
speed of possible representative waves. This clarifies the position of the potential with respect to 
the wave function: the amplitude of this function depends on space and time implicitly, through 
the potential. The plane waves and the Airy wave functions are just particular cases of this general 
situation, which can be characterized along the lines of comparison made by Synge, between the 
solution of the nonstationary Schrödinger equation and the de Broglie wave packets (Synge, 1972). 
The bottom line here is that a proper characterization of the concept of interpretation involves in 
turn the concept of density of matter in its utmost generality: Newtonian, as a characteristic of 
continuity of the matter in space, together with Einsteinian as a cardinality of the ensemble of 
Hertz particles interpreting the matter. 
 At this juncture we adopted the geometrical views of David Delphenich, according to which 
the density of matter is related to the torsion of the Riemannian space representing it (Delphenich, 
2013). This turns out to be what we think as the right way to describe the geometry of ensembles, 
when combined with an old Cartanian view on the distant parallelism serving the purposes of the 
general theory of relativity (Cartan, 1931). To wit, it allows us to describe the matter as filling an 
Euclidean space, by physical methods involving the propagation of signals, whereby the torsion is 
related to the fundamental fields. 
 So much for the concept of interpretation contained in this part of the work. Of course the work 
itself includes more than this, mostly along the idea of procedures of describing the continuity 
related to the density, especially an original update on the transport theory. However, the specific 
technicalities for developing SRT, remain to be expounded in the second part of the present work, 
and will be listed here in no particular order, by the way of concluding this first part, for the benefit 
of a proper perspective. They should be as follows. 
 A characterisation of the Hertz material particle within matter, the way Schrödinger describes 
the color: the material points are interpreted as ensembles having the powers of continua, yet the 
Hertz material particles inside material points are defined through three qualities: the mass and the 
two charges, electric and magnetic, in a static definition of the material point, based on the simplest 
second principle of dynamics (Wigner, 1954). This principle sounds: under no forces a particle is 
at rest. The approach results in a non-Euclidean theory of mass and charges, allowing a specific 
correspondence between positions in space and Hertz material particles, left unspecified in the 
definition of Heinrich Hertz for a material particle, but contained implicitly in the Newtonian 
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formulation of the dynamics. It is our task to describe this physics in detail, with a ‘refoundation’ 
based on ‘mathematical principles’, using the Nottale’s own expression. 
 The rate independence of the general adiabatic processes as defined here, which is an essential 
aspect arising with the ‘Berry moment’ of knowledge, reveals the fundamental role played by the 
harmonic oscillators in the transitions of space scale. This aspect needs to be deepened and further 
elaborated in our work, and we will do it using the idea of statistics related to space variables. The 
transition between space scales selects certain space variables. It turns out that this transition 
generates a statistics of the same nature as the time one: a Planck statistics. The analysis allows a 
proper characterization of the geometry, based on a natural concept of physical reference frame. 
Incidentally, some other concepts of reference frame follow naturally along the developments. 
 Of course, we need to be concerned with the universalization of relativity, as requested by 
Laurent Nottale. As it turns out, this occurs in both aspects of the relativity: special and general. 
This allows us to reenact an old attempt of constructing the general relativity starting directly from 
special relativity, within the analysis directly related to the planetary model. 
 All these technicalities, once rounded up, allow a necessary round up of the Scale Relativity 
itself. The first thing to show in this respect is a connection between propagation and Schrödinger 
equation, as the right manner of relating the two aspects of time involved in relativity. This fact 
will resuscitate an old observation of Harry Bateman, which leads us to a theory of measurement, 
adopted and adapted from the quantum theory of spin. The theory of surface tension then ensues 
quite naturally, as the generalization of the idea of quantal spin, in the process of interpretation, in 
a general ‘de Broglie moment’ of the wave mechanics. The Scale Relativity in Nottale’s approach 
turns out to be a Lagrangian theory, whereby the Lagrangian has a statistical meaning related to 
the statistics of time sequences (Dirac, 1933). 
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