
	 1	

The Superluminal Phenomenon of Light for  
The Kerr-Newman Black Hole 

Ting-Hang Pei 
Thpei142857@gmail.com 

We use the Kerr-Newman metric based on the general relativity to discuss the 
superluminal phenomenon of light at the black hole. The black hole have the rotation 
term a and the charge term RQ with the Schwarzschild radius RS. The geodesic of light 
is ds2=0 and the equation for three velocity components (dr/dt, rd𝜃/dt, rsin𝜃d𝜙/dt) is 
obtained in the spherical coordinate (r, θ,  𝜙) with the coordinate time t. Then three 
cases of the velocity of light (dr/dt, 0, 0), (0, rd𝜃/dt, 0), and (0, 0, rsin𝜃d𝜙/dt) are 
discussed in this research. According to our discussions, only the case of (dr/dt, 0, 0) 
gives the possibility of the occurrence of the superluminal phenomenon for r between 
RS and (𝑅(

) + 𝑎)sin)𝜃/2)/𝑅2 at sin𝜃>0 when RQ∼RS. The calculations of the velocity 
of light reveal that the maximum speed of light and the range of the superluminal 
phenomenon are much related to the rotational term a. Generally speaking, the 
superluminal phenomena for light can possibly occur in these cases that the radial 
velocity dr/dt is dominant and the other two velocity components are comparably small. 
When the relative velocity between the reference frame and the black hole is not heavy, 
these results of the superluminal phenomenon are suitable for the observations by an 
observer in a reference frame at infinity or very weak gravitation like on Earth. 
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I. Introduction	
Traditionally, the speed of light is limited in the general relativity with a maximum 

of c in free space or the measurement on Earth. The superluminal phenomenon [1] is 
an observation from a reference frame that the speed of particle exceeds this maximum 
c. It is also called the Faster-than-light (FTL) phenomenon and some laboratory 
experiment [2] has been reported and some astronomical observations [1,3-6] about this 
phenomenon have been revealed from the relativistically massive sources. As we know, 
the constant speed of light in the flat spacetime structure is a well certified phenomenon 
described by the special relativity. In this theory, such as an electron in the synchrotron 
accelerator always needs a lot of energy to make its speed very close to c but not 
exceeding c. It is the relativistic factor that obeys the mass-energy equivalence and the 
equivalent mass of the electron depends on its speed. Exceeding the speed of light 
seems not to be able to observe macroscopically on Earth. Nowadays, it continuously 
attracts some scientists to investigate this FTL phenomenon. When some report reveals 
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this phenomenon, one always wants to explain it by the present theorem or try to break 
some concept such as the limitation of the speed of light to fit the phenomenon.  

Gravitational time delay is another attracted astronomically phenomenon that the 
speed of light would slow down when light passes through a giant star [7-11]. This 
reveals that the observation of the light speed is affected by the gravity and the 
measured speed of light is not constant for an observer in a reference frame. Because 
the special relativity is based on the Minkowski metric describing a flat spacetime, it is 
not suitable to explain all the astronomical phenomena. Gravitational time delay is a 
well-known fact predicted by general relativity, and the place nearby the supermassive 
star with strong gravity is good for observation. This phenomenon motivates us to think 
about a question whether it is possible to observe the speed of light exceed c near the 
supermassive planets such as the black hole. It is the astronomical phenomenon and the 
astronomical observations have indicated some supermassive planets having 
possibilities to investigate this kind of superluminal phenomenon for massive particles 
[1,3-6]. 

In this research, we study this phenomenon for light based on the general relativity 
with the Kerr-Newman metric [12-14] and the constant speed of light exists in a rest 
frame with the proper time. Our discussions focus on the black hole and gives some 
special results for the possible occurrence of this superluminal phenomenon. 

II. The Kerr-Newman metric and the speed of light	
When we discuss the geodesic of light at the black hole, an appropriate choice is 

using the Kerr-Newman metric [12-14] because it considers the angular momentum J 
and charges Q of a black hole simultaneously. The rotation of a black hole inherits from 
the previous star and it may be charged because absorbs charged plasma like from the 
high-temperature accretion clouds or neighboring star. The expression of the Kerr-
Newman metric in the spherical coordinate (r, 𝜃, 𝜙) is 	

      d𝑠) = −𝑐)d𝜏)

= :
d𝑟)

Δ + d𝜃)= 𝜌) − (𝑐d𝑡 − 𝑎sin)𝜃d𝜙)) Δ
𝜌)

+ @(𝑟) + 𝑎))d𝜙 − 𝑎𝑐d𝑡A) sin)𝜃
𝜌) ,                                                            (1) 

where ds is the invariant interval, 𝜏 is the proper time, t is the coordinate time, a=J/Mc 
with mass M of the black hole is the rotational term, and  

                                                 𝜌) = 𝑟) + 𝑎)cos)𝜃.                                                      (2) 

                                                  Δ = 𝑟) − 𝑟𝑅2 + 𝑎) + 𝑅(
).                   (3)  

The Schwarzschild radius is 𝑅2 = 2𝐺𝑀/𝑐) and G is the gravitational constant. 
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𝑅(
) =KQ2G/c4 is the term related to the charge Q and K is the Coulomb’s constant. In 

addition, the coordinate time is the time read by the clock stationed at infinity because 
the proper time and coordinate time becomes identical [15]. The geodesic of light is 
ds2=0, then through deduction we have the velocity of light obeying the following 
equation at the black hole 

                
𝜌H

Δ(Δ−𝑎)sin)𝜃) I
d𝑟
𝑑𝑡K

)
+

𝜌H  
𝑟)(Δ−𝑎)sin)𝜃) I𝑟

d𝜃
d𝑡K

)
 

                           −
(Δ𝑎)sin)𝜃 − (𝑟) + 𝑎))))  

𝑟)(Δ−𝑎)sin𝜃) I𝑟sin𝜃
d𝜙
𝑑𝑡 K

)
                   

−
2𝑎𝑐(−Δ + (𝑟) + 𝑎)))sin𝜃  

𝑟(Δ−𝑎)sin)𝜃) I𝑟sin𝜃
d𝜙
𝑑𝑡 K = 𝑐).                                (4) 

In Eq. (4), MNO
NPQ, M𝑟 NR

NPQ, and M𝑟sin𝜃 NS
TPQ are the three velocity components of light in 

the spherical coordinate. This way to obtain the velocity of light from ds2=0 has been 
used to get the velocity of light in the Schwarzschild metric [16-19]. It reveals that the 
velocity of light at the black hole is much different from the Minkowski spacetime and 
the form in Eq. (4) is much complicated and dependent on the spherical coordinate, the 
mass, the angular momentum as well as the charge of a black hole. In the following, we 
discuss the possibility of the superluminal phenomenon for each velocity component 
individually. 

Before discussing, there is a basic requirement that the time is real at any reference 
frame. When we consider the geodesic along the radial direction without including the 
d𝜙  term, then it requires the dt2 term in Eq. (1) having 

                               𝜌) > 0,                              (5) 

                               (Δ − 𝑎)sin)𝜃) > 0.                                                   (6) 

From Eq. (6), it can be expanded as 

                         𝑟) − 𝑟𝑅2 + 𝑅(
) + 𝑎)cos)𝜃 > 0.                (7) 

For any real r, Eq. (7) further requires the condition existing at r=RS/2  

                          𝑅2
) ≤ 4(𝑎)cos)𝜃 + 𝑅(

)).                     (8) 

It is the condition for the black hole at r=RS/2 but at other place r>0 the condition is 
different. Such as at r=RS, it only requires  

                                                          𝑅(
) + 𝑎)cos)𝜃 > 0,                         (9) 

and r>RS Eq. (7) automatically exists till to the place far away from the black hole. 
Although the event horizon depends on 𝜃, it is convenient to discuss the phenomenon 
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using RS as a reference position and the event horizon approximates to a spherical 
surface while a<<RS and RQ<<RS. Because the conditions of Eq. (8) exists for all 𝜃, 
then it gives the lowest requirement 

                          𝑅2
) ≤ 4𝑅(

)                                                              (10) 

at r=RS/2 and 𝜃= 𝜋/2, and Eq. (9) gives 

                          𝑅(
) > 0,                                  (11) 

at r=RS. This is just the condition of the Kerr-Newman metric for the charged black 
hole. The other requirement is for the dr2 term in Eq. (1) that is 

                                                                       Δ > 0.                             (12) 

It also gives the most strict condition at r=RS/2 

                                                             𝑅2
) ≤ 4(𝑎) + 𝑅(

)).                        (13) 

From Eqs. (10) and (13), the minimum rotated condition can be obtained 

                                                               0 ≤ |𝑎|.                                                                    (14) 

However, at r=RS, it is similar to Eq. (10) which only requires 

                            𝑅(
) + 𝑎) > 0.                          (15) 

The other factor worth mentioning is 𝜌) when it is at the denominator. It will arise a 
mathematical singularity at r=0 and 𝜃= 𝜋/2. If the black hole has finite-size nucleus, 
this singularity will automatically remove because J=0, Q=0 as well as zero gravity at 
r=0. According to Eqs. (10) and (14), it means that even the massive star is very heavy, 
the formation of a black hole exists some basic conditions.  

In Quantum Chromodynamics (QCD), the asymptotic freedom [20] in the strong 
interaction permits baryons such as proton and neutron reducing their sizes and 
increasing their densities under ultra high pressure producing from the gravitation of 
the neutron start [21]. Although the gravitation causes all particles gather much dense 
in the neutron start, the gravitational pressure can do work to transfer energy to the 
electromagnetic interaction and the strong interaction in the neutron start with a finite-
size core. The neutron star core has been denoted in the phase diagram of QCD [22-24] 
many years. Recently, the concept of the compact star has been proposed [25] and it 
indicates this star of 1.3~1.6 times the mass of the sun having the radius of 8-11 km. It 
consists of the core of the high-density quark-phase matter and the surface of nuclear 
matter. When we calculate the Schwarzschild radius of the compact star, it 
approximates 3.9~4.7 km, about the half radius of the compact star. It means that this 
compact star can have an equivalent gravitation as a black hole when the core of the 
radius is half as the original compact star. For the black hole, even the gravitation is 
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much larger than that in the neutron start, but shrinking all mass and charges to a 
singularity seems to be unphysical and unreasonable because it needs the gravitation to 
do infinite work. As we know, the gravitational energy as well as the electrostatic energy 
are both proportional to 1/r, all mass and charges collecting at the singularity establish 
infinite energy there. Therefore, it is much reasonable to replace the singularity with 
the finite-size nucleus at the center of the black hole. After all, the black hole is 
evolutional from the previous star of the mass M which only has finitely equivalent 
energy ~ Mc2.  

Except for this singularity at the black hole, there are other singularities in the Kerr-
Newman metric [12]. Some conditions are required to avoid these singularities. 
Because we deal with a physical world and not pure mathematics, it needs us to describe 
the black hole more reasonably.  

III. The Judgement of The Superluminal Requirements From The Velocity 
Component dr/dt of Light	

According to Eq. (4), when we want to discuss the speed of light in the radial 
direction, the maximum speed occurs when the other velocity components are zero. It 
is the convenient way to discuss the superluminal conditions. The rule used here is also 
applied to discuss other velocity components. So we focus on the dr/dt velocity 
component to check whether the superluminal phenomenon of light exists or not first. 
When an observe rests in a reference frame such as on Earth or the place with very 
weak gravitation, Eq. (1) gives the time relationship between the proper time and the 
coordinate time 

                                                  d𝜏) =
(Δ−𝑎)sin)𝜃)

𝜌) d𝑡).                                          (16)  

According to the equivalence principle in general relativity, the time dilation requires 
the coefficient of the dt2 less than one which gives the condition  

                         𝑟 > 𝑅(
)/𝑅2.                          (17) 

The range for this requirement also exists between 0 and RS, and considering Eq. (11) 
at r=RS it requires 

                                                              𝑅2
) > 𝑅(

) > 0.                      (18) 

When r>RS, the time dilation automatically exists because Eq. (18) gives the maximum 
of RQ less than RS. However, it seems that Eq. (17) is not well-defined for the region 
𝑅(

)/𝑅2 >r≥0. It is the reason that we adopt a singularity at the center of the black hole 
where all mass and charges gather there. When we use the model of a finite-size nucleus 
in the black hole, the Coulomb’s repulsive force as well as the strong interaction make 



	 6	

all particles not shrink to a singularity and the problem can be solved by establishing 
the charge distribution between 0 and RS. Then RQ is a function of r and 𝜃 related to 
the totally enclosed charges at (r,𝜃), that is, 

                                                             𝑅( = 𝑅((𝑟, 𝜃).                       (19) 

Eqs. (8) and (9) support this assumption. It also means that a is a function of (r, 𝜃) 
between 0 and RS which might be due to the distribution of its mass M. From the 
viewpoint of the rotational movement, Eq. (19) is reasonable for a rotationally charged 
black hole. It means that the charge distributions in Eq. (19) have to ensure Eq. (17) 
between 0 and RS existing and the time dilation is still correct from r≥0. According to 
Eq. (18) for r=𝛼RS with 0<𝛼<1, Eq. (7) becomes 

                                                (𝑅(
) + 𝑎)cos)𝜃)/(𝛼 − 𝛼)) > 𝑅2

).                 (20) 

This inequality exists for all 𝜃. For very small a, combing Eq. (17) with Eq. (20) gives 

                                               𝛼 > 𝑅(
)/𝑅2

) > (𝛼 − 𝛼)).                     (21) 

From Eq. (21), it reveals the minimum and maximum of the charge distribution varying 
with the radial distance r form r=0 to r=Rs as shown in Fig. 1.   

 

Fig. 1 (a) The minimal distribution of RQ and (b) the maximal distribution of RQ varying 
with the radial distance r for very small a. The color bar is in unit of RS. 

If the superluminal phenomenon occurs, it means MNO
NPQ > 𝑐. Then according to the 

dr/dt term in Eq. (4), it gives the requirement 

                                                   
Δ(Δ−𝑎)sin)𝜃)

𝜌H > 1.                                                     (22) 

Because 𝜌H > 0, it becomes 
                                                       (Δ) − Δ𝑎)sin)𝜃 − 𝜌H) > 0.                   (23) 
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Substituting Eqs (2) and (3) into Eq. (23) gives the following relation  

0 < 2𝑟)(−𝑟𝑅2 + 𝑅(
)) + 𝑟)𝑎)sin)𝜃 + 𝑟)𝑅2

) − 2𝑟𝑅2𝑅(
) + 𝑅(

H 
                          +(𝑎) + 𝑎)cos)𝜃)(−𝑟𝑅2 + 𝑅(

)) + 𝑎Hcos)𝜃sin)𝜃.             (24) 

Further rearranging Eq. (24), then we have 

(−𝑟𝑅2 + 𝑅(
) + 𝑎)sin)𝜃/2)(2𝑟) − 𝑟𝑅2 + 𝑅(

) + 𝑎)/2 + 3𝑎)cos)𝜃/2) 
                                                                    > 𝑎HsinH𝜃/4,                                                      (25) 

or 

(𝑟𝑅2 − 𝑅(
) − 𝑎)sin)𝜃/2)(2𝑟) − 𝑟𝑅2 + 𝑅(

) + 𝑎)/2 + 3𝑎)cos)𝜃/2) 
                                                                   < −𝑎HsinH𝜃/4.                   (25′) 

This inequality allows us to discuss the range for occurring superluminal phenomenon. 
First, the case at 𝜃=0 or 𝜋 is discussed, then Eq. (23) becomes  

                   (−𝑟𝑅2 + 𝑅(
))(2𝑟) − 𝑟𝑅2 + 2𝑎) + 𝑅(

)) > 0.           (26) 

The solutions of Eq. (26) are 

                                                           −𝑟𝑅2 + 𝑅(
) > 0 and                       (27a) 

                                             2𝑟) − 𝑟𝑅2 + 2𝑎) + 𝑅(
) > 0,                   (27b) 

or 

                                                −𝑟𝑅2 + 𝑅(
) < 0 and                       (28a) 

                                                         2𝑟) − 𝑟𝑅2 + 2𝑎) + 𝑅(
) < 0.                (28b) 

From Eqs. (27a) and (27b), it gives the ranges of r that  

                                                              𝑅(
)/𝑅2 > 𝑟,                        (29a) 

                                     𝑟 <
𝑅2 − [𝑅2

) − 8@2𝑎) + 𝑅(
) A]c )⁄

4 ,                                   (29𝑏) 

                                       𝑟 >
𝑅2 + [𝑅2

) − 8@2𝑎) + 𝑅(
)A]c )⁄

4 ,                                 (29c)  

accompanying with the condition due to the real r 

                                                      𝑅2
) ≥ 8(𝑅(

) + 2𝑎)).                                                          (30) 

However, Eq. (29a) doesn’t satisfy the requirement in Eq. (17), and Eq. (30) obviously 
violates Eq. (13) at r=RS/2 so we have to look for the other solution. Then Eqs. (28a) 
and (28b) give the other ranges 

                                                        𝑅(
)/𝑅2 < 𝑟,                           (31a) 



	 8	

            
𝑅2 − [𝑅2

) − 8@2𝑎) + 𝑅(
)A]c )⁄

4 < 𝑟 <
𝑅2 + h𝑅2

) − 8@2𝑎) + 𝑅(
)Aic )⁄

4 ,         (31b) 

with the same condition as Eq.(30). Both solutions for r cannot give satisfied ranges. 
To sum up, the discussions from Eqs. (22) to (31) are for the requirements and solutions 
of vr2, not vr,. Then we discuss this phenomenon directly from the expression of the only 
velocity component (dr/dt) term obtaining from Eq. (4). This term is 

                              𝑣O,lmno =
d𝑟
d𝑡p

Rqr,s
= ±𝑐

𝑟) − 𝑟𝑅2 + 𝑎) + 𝑅(
)

𝑟) + 𝑎) .                      (32)   

There are two expressions for (dr/dt), ‘+’ means light leaving away from the center of 
the black hole, and ‘-‘ means light propagating toward the center of the black hole. So 
the superluminal solution leaving away the center satisfies the condition 𝑅(

)/𝑅2 > 𝑟.                   
However, it still violates the requirement in Eq. (17) and Eq. (18) gives r<RS in Eq (32). 
It means that the superluminal phenomenon doesn’t happen when light leaves away 
from the center of the black hole at 𝜃=0 or 𝜋 in our discussion. The other superluminal 
solution toward the center has the same r condition that the superluminal phenomenon 
also doesn’t happen when light propagates towards the center of the black hole at 𝜃=0 
or 𝜋 in our discussion.  

Next, Eq. (24) is discussed for any 𝜃 situations. A tricky way to solve Eq. (24) is to 
define 

 𝑎HsinH𝜃/4 = (𝛼𝑎))(𝛽𝑎)).                   (33) 

Then Eq. (24) can be directly divided into two terms	

                                          (−𝑟𝑅2 + 𝑅(
) + 𝑎)sin)𝜃/2) ≥ 𝛼𝑎),                   (34) 

                            (2𝑟) − 𝑟𝑅2 + 𝑅(
) + 𝑎)/2 + 3𝑎)cos)𝜃/2) ≥ 𝛽𝑎).             (35) 

Eq. (34) gives the range for the superluminal phenomenon 

                                               𝑟 < [𝑅(
) + 𝑎)(sin)𝜃/2 − 𝛼)]/𝑅2.                  (36) 

When Eq. (36) combines with Eq. (17), the range of r for the superluminal phenomenon 
is given 

                                   𝑅(
)/𝑅2 ≤ 𝑟 < [𝑅(

) + 𝑎)(sin)𝜃/2 − 𝛼)]/𝑅2.               (37) 

It means that the superluminal phenomenon possibly occurs when this condition in Eq. 
(37) satisfies. From Eq. (37), it further gives 

                           sin)𝜃/2 − 𝛼 > 0,                        (38) 

or                      

sin)𝜃/2 > 𝛼 > 0.                        (38’) 
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From Eq. (38’), the range of α is defined. Then the condition of β is given by 

                           𝛽 > sin)𝜃/2.                           (39) 

From Eq (35), it gives the condition of β between RQ, a, and RS for the superluminal 
phenomenon 

                                [8(𝑎)/2 + 3𝑎)cos)𝜃/2 + 𝑅(
)) − 𝑅2

)]/8 > 𝛽𝑎).             (40) 

In the meanwhile, it also gives the condition of 𝛼 using Eqs. (33) and (39), that is,  

2𝑎HsinH𝜃/[8(𝑎)/2 + 3𝑎)cos)𝜃/2 + 𝑅(
)) − 𝑅2

)] < 𝛼𝑎).       (41) 

From Eqs. (39) and (40), and (38’) and (41), they give the ranges for 𝛼  and    
𝛽 respectively 

          [8(𝑎)/2 + 3𝑎)cos)𝜃/2 + 𝑅(
)) − 𝑅2

)]/8𝑎) > 𝛽 > sin)𝜃/2,        (42)  

and 

          sin)𝜃/2 > 𝛼 >2𝑎)sinH𝜃/[8(𝑎)/2 + 3𝑎)cos)𝜃/2 + 𝑅(
))  − 𝑅2

)].    (43) 

Furthermore, comparing the upper limitation with the lower limitation in Eq. (42) gives 
another condition for the other requirement of 𝑅(

) then Eq. (19) at r=RS/4 

                       8(2𝑎)cos)𝜃 + 𝑅(
)) > 𝑅2

).                  (44) 

This requirement is due to the consideration of the superluminal phenomenon. After 
discussing above conditions, the upper limitation of r can be obtained. Considering 
RQ~RS as Eq. (18), Eq. (37) means that the superluminal phenomena can be observed 
outer the black hole in the range 

                                           𝑅2 < 𝑟 < 𝑅2 + 𝑎)sin)𝜃/2𝑅2,                  (45) 

which is function of 𝜃 . An example of the region occurring the superluminal 
phenomenon for a black hole with a=2RS and RQ=0.999RS is given in Fig. 2(a), where 
the deep blue region is the spherical region with a radius of RS and the yellow region 
means the region for the occurrence of the superluminal phenomena. Here we discuss 
the region of r>RS and use RS as the reference boundary because it might has the case 
that the event horizon is close to a spherical surface when both a<<RS and RQ<<RS. The 
furthest distance from the center of the black hole in Fig. 2(a) is about 3RS at the equator 
of 𝜃=𝜋/2. All the rotating axes in Figs. 2(a) to 2(d) are parallel to the y-axis. According 
to Eq. (4) in the case of (dr/dt, 0, 0), the calculated velocity distribution of light is shown 
in Fig. 2(b) where the unit of the color bar is c. The velocity distribution matches the 
region of the superluminal occurrence in Fig. 2(a) and the maximum is about 2.20c at 
r=RS and 𝜃=𝜋/2. When a is increased to 8RS and RQ is kept at 0.999RS, the maximum 
velocity of light is about 8c at r=RS and 𝜃=𝜋/2 as shown in Fig. 2(c). The furthest 
distance of the superluminal phenomenon is 33RS from the center of the black hole in 
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Fig. 2(c). For the case of a=20RS and RQ=0.999RS, the maximum speed of light is about 
20c at r=RS and 𝜃=𝜋/2 as shown in Fig. 2(d). The furthest distance of the superluminal 
phenomenon is 201RS from the center of the black hole in Fig. 2(d). From Figs. 2(c) to 
2(d), the occurrences of the high speed of light is centered more and more at the region 
close to 𝜃=𝜋/2. Our discussion is using the Kerr-Newman metric that is a spacetime 
solution in the general relativity, so considering light bending near the high-speed 
rotational supermassive black holes, it possibly explains some astronomical 
observations about the superluminal phenomena from the relativistically massive jet 
[1,3-6]. This result can be extended to some stars with very high density, large a, and 
RQ. 

(a).                               (b) 

(c)                                (d) 
Fig. 2 (a) The superluminal region is denoted by yellow color. The center of the picture 
is a spherical region with a radius of RS (deep blue color). In this case, a = 2RS and 
RQ=0.999RS. The maximum distance for the superluminal phenomenon from the center 
of the black hole in this case is 3RS at 𝜃=𝜋/2. (b) The speed distribution of light around 
the black hole with a=2RS and RQ = 0.999RS. (c) The speed distribution of light around 
the black hole with a=8RS and RQ=0.999RS. The maximum distance of the superluminal 
phenomenon is 33RS from the center of the black hole in this case. (d) The speed 
distribution around the black hole with a=20RS and RQ=0.999RS. The maximum 
distance of the superluminal phenomenon is 201RS from the center of the black hole in 
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this case. All these cases the rotational axes are parallel to the y-axis and the color bars 
show in unit of c.                           

IV. The Judgement of The Superluminal Requirements For The Velocity 
Component r(d𝜽/dt) of Light  

The second study case is the velocity component rd𝜃/dt term in Eq. (4). All the other 
velocity components are zero. This term is easy to check whether the superluminal 
phenomenon exists or not. Assuming that it happens, then 

                                                    
𝑟)(Δ−𝑎)sin)𝜃)

𝜌H > 1.                                                  (46) 

Expanding above equation, then we have 

                                𝑟)(−𝑟𝑅2 + 𝑅(
)) − 𝑟)𝑎)cos)𝜃 − 𝑎HcosH𝜃 > 0.              (47) 

It can be further rearranged as 

                                 (−𝑟𝑅2 + 𝑅(
) − 𝑎)cos)𝜃)𝑟) > 𝑎HcosH𝜃.                (48) 

Similar to the discussions of the velocity component dr/dt, a tricky way is to assume  

                           𝛼)𝛽 = cosH𝜃.                           (49) 

Then Eq. (48) gives the requirements of r 

                                             𝑟) > 𝛼)𝑎),                                 (50) 

                                                   −𝑟𝑅2 + 𝑅(
) − 𝑎)cos)𝜃 > 𝛽𝑎).                  (51) 

Combining Eqs. (51) with (17), and considering the condition of Eq. (8), the range of r 
for the occurrence of the superluminal phenomenon is given by 

                             𝑅(
)/𝑅2 < 𝑟 < (𝑅(

) − 𝑎)cos)𝜃 − 𝛽𝑎))/𝑅2.              (52) 

Because 𝛽 ≥ 0, this requirement is not satisfied. Eq. (52) means that in this case of the 
velocity component rd𝜃/dt the superluminal phenomenon doesn’t occur. 

V. The  Judgement of The Superluminal Requirements For The Velocity 
Component rsin𝜽(d𝜙/dt) of Light 

The velocity component rsin𝜃 (d𝜙 /dt) term is the third case for discussing the 
possibility of the superluminal phenomenon. All the other velocity components are zero. 
From Eq. (4), the velocity equation for this case is 

−
(Δ𝑎)sin)𝜃 − (𝑟) + 𝑎))))  

𝑟)(Δ−𝑎)sin𝜃) I𝑟sin𝜃
d𝜙
𝑑𝑡 K

)
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             −
2𝑎𝑐@−Δ + (𝑟) + 𝑎))Asin𝜃  

𝑟(Δ−𝑎)sin)𝜃) I𝑟sin𝜃
d𝜙
𝑑𝑡 K = 𝑐).                                       (53) 

Next, we replace rsin𝜃(d𝜙/dt) with hc, where h is a real value. Then the equation 
becomes  

     −
(Δ𝑎)sin)𝜃 − (𝑟) + 𝑎)))) 

𝑟)(Δ−𝑎)sin)𝜃) ℎ)  −
2𝑎@−Δ + (𝑟) + 𝑎))Asin𝜃  

𝑟(Δ−𝑎)sin)𝜃) ℎ = 1.                (54) 

If the superluminal phenomenon happens, then it means h>1. Eq. (54) is the second-
order equation in the general form Aℎ) + 𝐵ℎ + 𝐶 = 0. It requires 0≤ 𝐵) − 4𝐴𝐶 to 
make sure the real solutions existing. According to this, we have 

0 ≤
{2𝑎[−Δ + (𝑟) + 𝑎))]sin𝜃}) − 4[Δ𝑎)sin)𝜃 − (𝑟) + 𝑎)))](Δ − 𝑎)sin)𝜃)  

𝑟)(Δ−𝑎)sin)𝜃)) .  

                                                                                                                                                   (55) 

After rearrangement, it gives 

                           0 ≤
4@r) + 𝑎) − 𝑟𝑅2 + 𝑅(

)A(𝑟) + 𝑎)cos)𝜃))  
𝑟)(Δ−𝑎)sin)𝜃)) ,                          (56) 

or          

                                                  0 ≤
4Δ𝜌H  

𝑟)(Δ−𝑎)sin)𝜃)) .                                                      (56�) 

Because 𝜌H ≥0 as well as the denominator 𝑟)(Δ−𝑎)sin)𝜃)) ≥ 0, it requires Δ ≥0 
and r>0. The former condition has been shown in Eq. (8). Eq. (56’) makes sure that Eq. 
(54) has real solutions and then we can further discuss whether the superluminal 
phenomenon exists or not in this case.                        

In the following, we solve Eq. (54) directly to obtain two solutions of h, that is,  

ℎ± = 

− 2𝑎(−Δ + (𝑟) + 𝑎)))sin𝜃  
𝑟(Δ−𝑎)sin)𝜃) ± 2(𝑟) + 𝑎) − 𝑟𝑅2 + 𝑅(

))c/)(𝑟) + 𝑎)cos)𝜃)  
𝑟(Δ − 𝑎)sin)𝜃)  

2 (Δ𝑎)sin)𝜃 − (𝑟) + 𝑎))))  
𝑟)(Δ−𝑎)sin)𝜃)

 

=
−𝑟𝑎(−Δ + (𝑟) + 𝑎)))sin𝜃 ± 𝑟 (𝑟) + 𝑎) − 𝑟𝑅2 + 𝑅(

))c/)(𝑟) + 𝑎)cos)𝜃)
(Δ𝑎)sin)𝜃 − (𝑟) + 𝑎))))

=
𝑟𝑎(𝑟𝑅2 − 𝑅(

))sin𝜃 ± 𝑟 (𝑟) + 𝑎) − 𝑟𝑅2 + 𝑅(
))c/)(𝑟) + 𝑎)𝑐𝑜𝑠)𝜃)

(𝑟) + 𝑎))(𝑟) + 𝑎)cos)𝜃) + (𝑟𝑅2 − 𝑅(
))𝑎)𝑠𝑖𝑛)𝜃 . (57) 

It can be further expressed as 
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ℎ± = ±
𝑟@𝑟) + 𝑎) − 𝑟𝑅2 + 𝑅(

)Ac )⁄

𝑟) + 𝑎)         

       +𝑟@𝑟𝑅2 − 𝑅(
)A𝑎 sin 𝜃

1 ∓ @𝑟) + 𝑎) − 𝑟𝑅2 + 𝑅(
) Ac )⁄

𝑎 sin 𝜃 (𝑟) + 𝑎))⁄
(𝑟) + 𝑎))(𝑟) + 𝑎)cos)𝜃) + @𝑟𝑅2 − 𝑅(

)A𝑎)sin)𝜃
.     (58) 

The other two expressions of ℎ± are 

ℎ± =
𝑟

𝑎 sin 𝜃 

+
𝑟(𝑟) + 𝑎))(𝑟) + 𝑎)cos)𝜃)

𝑎 sin 𝜃
±@𝑟) + 𝑎) − 𝑟𝑅2 + 𝑅(

)Ac )⁄
𝑎 sin 𝜃 (𝑟) + 𝑎))⁄ − 1

(𝑟) + 𝑎))(𝑟) + 𝑎)cos)𝜃) + @𝑟𝑅2 − 𝑅(
)A𝑎)sin)𝜃

.  

                                                                                                                                                     (59) 

Then the condition is considered whether h can be greater than one or not. Eq. (59) 
reveals a possible situation for 

                                                                  
𝑟

𝑎 sin 𝜃 > 1.                                                       (60) 

However, we have discuss it with the second long term in the right-hand side and this 
velocity component at sin𝜃=0 in Eq. (59) is the same as the velocity component r(dθ/dt). 
It is not easy to deal with so we use the expression in Eq. (58) to judge the occurrence 
of the superluminal phenomenon. When considering the solution for h+ >1, the 
requirement from Eq. (58) is 

𝑟)(𝑟) + 𝑎)cos)𝜃))@𝑟) + 𝑎) − 𝑟𝑅2 + 𝑅(
)A 

  −[(𝑟) + 𝑎))(𝑟) + 𝑎)cos)𝜃) − (−𝑟𝑅2 + 𝑅(
))𝑎sin𝜃(𝑟 − 𝑎sin𝜃)]) > 0.            (61)  

When sinθ∼0, this requirement becomes  

                             −𝑎)(𝑟) + 𝑎))� + @−𝑟𝑅2 + 𝑅(
)A𝑟)(𝑟) + 𝑎))) > 0.                     (62) 

However, both terms in the left-hand side are negative when r>RS, so the superluminal 
phenomenon doesn’t occur at r>RS when sinθ∼0. Next, we discuss all other cases of 
sin 𝜃. Through expanding and rearranging Eq. (61), it gives the requirement 

sin𝜃 >
1

𝑎(𝑟 − 𝑎sin𝜃) �
𝑎)(𝑟) + 𝑎)cos)𝜃)

2(𝑟𝑅2 − 𝑅(
)) +

𝑟)(𝑟)+𝑎)cos)𝜃)
2(𝑟) + 𝑎))

+
(𝑟𝑅2 − 𝑅(

))𝑎)sin)𝜃(𝑟 − 𝑎sin𝜃))

2(𝑟) + 𝑎))(𝑟) + 𝑎)cos)𝜃) � .                                                    (63) 

The three terms in the right-hand side of Eq. (63) are all positive. According to the 
geometric inequality in which the first term is equal to the third term here, Eq. (63) can 
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further simplify to the strict condition 

sin𝜃 >
1

𝑎(𝑟 − 𝑎sin𝜃) �
𝑎)(𝑟) + 𝑎)cos)𝜃)

2(𝑟𝑅2 − 𝑅(
)) +

𝑟)(𝑟)+𝑎)cos)𝜃)
2(𝑟) + 𝑎))

+
(𝑟𝑅2 − 𝑅(

))𝑎)sin)𝜃(𝑟 − 𝑎sin𝜃))

2(𝑟) + 𝑎))(𝑟) + 𝑎)cos)𝜃) � 

                          ≥
1

𝑎(𝑟 − 𝑎sin𝜃) �
𝑎)sin𝜃(𝑟 − 𝑎sin𝜃)

(𝑟) + 𝑎))
c
)

+
𝑟)(𝑟)+𝑎)cos)𝜃)

2(𝑟) + 𝑎)) �.         (64) 

It means the mostly possible place for the superluminal phenomenon in this case at 
sin𝜃 =1. It also requires r>asin𝜃. This requirement needs the three terms in right-hand 
side to be small enough. When we look at the pre-factor in the right-hand side of Eq. 
(64), it gives the minimum value when 

                                                                 𝑎 =
𝑟

2 sin 𝜃 .                                                        (65) 

Using sin𝜃 =1 and combing the pre-factor, it gives the minimum 

                 
𝑎sin𝜃

(𝑟) + 𝑎))c/) +
1

𝑎(𝑟 − 𝑎sin𝜃)
𝑟)(𝑟)+𝑎)cos)𝜃)

2(𝑟) + 𝑎))  ≥
1

√5
+

8
5 > 1.          (66) 

It means that Eq. (66) doesn’t satisfy Eq. (63) because sinθ≤1 and the superluminal 
phenomenon doesn’t occur in this discussions of the velocity component rsin𝜃(d𝜙/dt) 
when r>RS.  

VI. Discussion 

Above discussions show that only the case of the velocity of (dr/dt, 0, 0) for light can 
possibly occur the superluminal phenomenon at 𝜃>0. The maximum speed of light is 
much related to the rotational term a and the charged term RQ of a black hole. The other 
two cases of the velocities of (0, rd𝜃/dt, 0) and (0, 0, rsin𝜃d𝜙/dt) for light don’t have 
the possibility of the superluminal phenomenon. However, light can have at least one 
velocity component when closing or leaving a black hole. Generally speaking, the 
superluminal phenomenon also possibly occur in these cases of (dr/dt, rd𝜃/dt, 0), (dr/dt, 
0, rsin𝜃d𝜙 /dt), or (dr/dt, rd𝜃 /dt, rsin𝜃d𝜙 /dt). In those cases, the radial velocity 
component is dominant for the occurrences of the superluminal phenomena.       

VII. Conclusion 

The superluminal phenomenon is an attracted research. This phenomenon can be 
discussed based on the general relativity with a given spacetime structure. In this 
research, the Kerr-Newman metric is chosen for describing the spacetime structure at 
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the black hole. The Kerr-Newman metric considers both a and RQ terms that all kinds 
of the black hole at present knowledge are included. Because the black hole possesses 
strong gravity, it is a good astronomical example for studying the superluminal 
phenomenon. According to the Kerr-Newman metric, the geodesic as well as the 
velocity components of light can be established. In order to study this phenomenon, 
three velocity components are independently discussed, and they are (dr/dt, 0, 0), (0, 
rd𝜃/dt, 0), and (0, 0, rsin𝜃d𝜙/dt). From our analysis, only the case of (dr/dt, 0, 0) has 
the possibility of the occurrence of the superluminal phenomenon between RS and 
[𝑅(

) + (𝑎)sin)𝜃)/2]/𝑅2 at sin 𝜃 >0 when RQ~RS. The result reveals that the 
superluminal phenomenon can possibly happen outer the black hole from the observer 
in a reference frame. The maximum speed of light and the range of the superluminal 
phenomenon are much related to the rotational term a and the charged term RQ of a 
black hole. Generally speaking, the superluminal phenomena for light can possibly 
occur in these cases that the radial velocity dr/dt is dominant and the other two velocity 
components are comparably small or zero. Furthermore, the superluminal phenomenon 
here just means the results of the measurements from an observer in a reference frame 
like on Earth. This conclusion can be also applied on some stars with very high density, 
large a, and big RQ. 
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