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This paper analyses charge stability and applies the resulting stability principle to resolve diver-
gence issues in quantum �eld theory without renormalization. For quantum electrodynamics (QED),
stability is enforced by requiring that the positive electromagnetic �eld energy be balanced by a neg-
ative interaction energy between the observed electron charge and a local vacuum potential. Then in
addition to the observed core mechanical mass m, an electron system consists of two electromagnetic
mass components of equal magnitude M but opposite sign; consequently, the net electromagnetic
mass is zero. Two virtual, electromagnetically dressed mass levels m ±M , constructed to form a
complete set of mass levels and isolate the electron-vacuum interaction, provide essential S-matrix
corrections for radiative processes involving in�nite �eld actions. Total scattering amplitudes for
radiative corrections are shown to be convergent in the limit M → ∞ and equal to renormalized
amplitudes when Feynman diagrams for all mass levels are included. In each case, the in�nity in the
core mass amplitude is canceled by the average amplitude for electromagnetically dressed mass lev-
els, which become separated in intermediate states and account for the stabilizing interaction energy
between an electron and its surrounding polarized vacuum. In this manner, S-matrix corrections in
QED are shown to be �nite for any order diagram in perturbation theory, all the while maintaining
the mass and charge at their physically observed values. Charge stability corrections, applied to
one-loop diagrams of non-Abelian gauge theory, also yield �nite results without renormalization.
The results demonstrate that quantum �eld theory is scale invariant.

I. INTRODUCTION

A long-standing enigma in particle physics is how an elementary charged particle such as an electron
can be stable in the presence of its own electromagnetic �eld (see [1, 2] and cited references). Critical
accounting for charge stability is essential since radiative corrections in quantum �eld theory (QFT) involve
self-interactions that can change the mass and charge of an electron. This analysis identi�es and accounts for
the hidden interaction that energetically stabilizes a charged particle such that its mass and charge assume
their physically observed values - it expands the scope of [3] to include non-Abelian gauge theory.
The agreement between renormalized QED theory and experiment con�rms the e�ect of vacuum �uctu-

ations on the dynamics of elementary particles to astounding accuracy. For example, electron anomalous
magnetic moment calculations currently agree with experiment to about 1 part in a trillion [4, 5]. This
achievement is the result of more than six decades of e�ort since the relativistically invariant form of the
theory took shape in the works of Feynman, Schwinger, and Tomonaga (see Dyson's uni�ed account [6]).
The agreement leaves little doubt that QED predictions are correct; however, the renormalization technique
[7, 8] used to overcome divergence issues in radiative corrections o�ers little insight into the underlying
physics behind electron stability in the high-energy regime. Recall that divergent integrals occur in scatter-
ing amplitudes for self-energy processes and arise in sums over intermediate states of arbitrarily high-energy
virtual particles. This stymied progress until theoretical improvements were melded with renormalization
to isolate the physically signi�cant parts of radiative corrections by absorbing the in�nities into the electron
mass and charge. Although the renormalization method used to eliminate ultraviolet divergences results
in numerical predictions in remarkable agreement with experiments, rede�nition of fundamental physical
constants remains an undesirable feature of the current theory.
Our main purpose is to develop an alternative to mass and charge renormalization in QFT. We begin by

revisiting the classical self-energy problem where we de�ne an energetically stable electric charge. We then
apply the resulting stability principle to derive a S-matrix correction for loop processes. S-matrix corrections
for stability are simply constructed using core amplitudes from the literature, involve two additional Feynman
diagrams associated with dressed core mass (DCM) states, and account for the action of the vacuum back on
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the charge via an opposing vacuum current. After de�ning divergent integrals for DCM diagrams, we verify
that net S-matrix corrections in QED for vacuum polarization, electron self-energy, and vertex processes are
�nite to all orders in perturbation theory. Finally, we apply the method to one-loop diagrams in non-Abelian
gauge theory.

II. FORMULATION

Regarding an electron as a point particle [9], the classical electrostatic self-energy e2/2a ≡ αΛ◦ diverges
linearly as the shell radius a → 0, or energy cuto� Λ◦ → ∞, where −e is the charge and α = e2/4π~c is
the �ne-structure constant. However, Weisskopf [10, 11] showed using Dirac's theory [12] that the charge is
e�ectively dispersed over a region the size of the Compton wavelength due to pair creation in the vacuum
near an electron, and the self-energy only diverges logarithmically. Feynman's calculation [13] in covariant
QED yields an electromagnetic mass-energy

mem =
3αm

2π

(
ln

Λ◦
mc2

+
1

4

)
, (1)

where m is the electron mass. In the absence of a compensating negative energy, (1) signals an energetically
unstable electron. It is the key ultraviolet divergence problem in QED, whose general resolution will result
in �nite amplitudes for all radiative corrections. In this section we derive a stability condition and apply it
to develop corrections to scattering amplitudes for otherwise divergent processes.
To ensure that the total electron mass is its observed value, renormalization theory posits that a negatively

in�nite �bare� mass must exist to counterbalance mem. For lack of physical evidence, negative matter
is naturally met with some skepticism (see Dirac's discussion [14] of the classical problem, for example).
Nevertheless, energies that hold an electron together are expected to be negative, and we can understand
their origin by �rst considering the source for the electrical energy required to assemble a classical charge
in the rest frame. Recall that the work done in assembling a charge from in�nitesimal parts is equal to the
electromagnetic �eld energy. Since the agents that do the work must draw an equivalent amount of energy
from an external energy source (well), the well's energy is depleted and the total energy

E = mc2 + E+
em + Ew (2)

of the system including matter, electromagnetic �eld E+
em, and energy well Ew is constant. For an elementary

particle, could the depleted energy well be the surrounding vacuum?
From another point of view, consider an electron and its neighboring vacuum treated as two distinct

systems that can act on one another. Suppose the electron acts on the vacuum to polarize it creating a
potential well, then there must be an opposing reaction of vacuum back on the electron. The resulting
vacuum potential Φvac con�nes the observed core charge akin to a spherical capacitor as shown in Fig. 1,
and the interaction energy

Ew → E−em ≡ −eΦvac (3)

is assumed to just balance E+
em resulting in a stability condition

E+
em + E−em = 0 (4)

m+
em +m−em = 0 ,

where the mass-energy equivalence E±em = m±emc
2 has been used to obtain an equivalent expression in terms

of electromagnetic masses. Therefore, the net mass-energy of a free electron is attributed entirely to the
observed core mechanical mass m. In contrast to Poincaré's theory [15] wherein internal non-electromagnetic
stresses hold an electron together, external vacuum electrical forces are assumed to provide charge stabi-
lization and energy balance via a steady state polarization �eld surrounding the electron. Corresponding to
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FIG. 1: E�ective vacuum potential con�nes core electron charge similarly to spherical capacitor. Since the
stability principle requires E+

em − eΦvac = 0, the total energy of core electron in the well and dressed in its
electromagnetic �eld is just its observed mass-energy.

a divergent self-action process, we require a mechanism whereby the core charge interacts locally with the
polarized vacuum according to (3).
The energy of the core charge in the potential well of Fig. 1 is

E−core = mc2 + E−em ≡ mbc
2 , (5)

where mb may be identi�ed with the bare mass, and

mb +m+
em = m (6)

captures the mass renormalization condition which is equivalent to (2) with (3) and (4). However, notice that
the bare mass corresponds to a core electron dressed in negative electromagnetic energy; hence, its charac-
terization as a �mechanical mass� is a misnomer (see [16] for example). Only the core mass is observable, and
only it is expected to appear in the Lagrangian if one takes (4) seriously. In renormalization theory, however,
one starts with a bare electron, self-interaction dresses it with positive electromagnetic energy, and (6) is
subsequently applied to rede�ne the mass. On the other hand, suppose we start with the observed electron
charge; then taking into account (2), (3), and (4), m+

em and m−em are always present, and the total mass
reduces to the observed core mechanical mass. Starting with this premise, we can formulate a �nite theory
of radiative corrections that accounts for all possible electromagnetically dressed intermediate states, and
no asymmetry necessitating a rede�nition of mass and charge is introduced. For the ensuing development,
relativistic notation de�ned in [17] is employed, and natural units are assumed; that is, ~ = c = 1.
Equations (2) and (4) suggest that a stable electron consists of three rest mass components: a core mass

m and two electromagnetic masses m±em that are assumed large in magnitude but �nite until the �nal step
of the development. We can think of m±em as components of an electromagnetic vacuum (zero net energy)
which are tightly bound to the core mass and inseparable from the core and each other, at least for �nite
�eld actions. Considering all non-vanishing masses constructed from the set {m, m+

em, m
−
em}, we are led

to de�ne a complete set of mass levels m + λM , where λ = {0, ±1} and M ≡ |m±em|. In the following,
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an electromagnetically dressed core mass (DCM) refers to a composite particle with mass levels m ±M .
Associated DCM 4-momenta are pdcm = p± PM , where {p, PM} correspond to {m, M}, respectively.
To transition this charge stability model into quantum theory, �rst consider a free particle state |p, m〉

with momentum satisfying p2 ≡ pµp
µ = m2, where pµ = (p◦, ~p) and pµ = gµνp

ν are contravariant and
covariant momentum 4-vectors, respectively. Metric tensor gµν has non-zero components

g00 = −g11 = −g22 = −g33 = 1 .

Spin is omitted in |p, m〉 since it is inessential to the subsequent development, and the rest mass is included
because it is the fundamental particle characteristic which varies in stability corrections to the S-matrix [see
(16)]. We employ the relativistic normalization

〈p′, m |p, m〉 = 2E (~p, m) (2π)
3
δ
(
~p− ~p ′

)
,

where E (~p, m) =
√
~p 2 +m2. Now construct the superposition

|χ〉 =
1√
2

∑
λ=±1

∣∣Υdcm
λ (p)

〉
(7)

of DCM states ∣∣Υdcm
λ (p)

〉
= |p+ λPM , m+ λM〉 , (8)

where the core 4-momentum is dispersed per an uncertainty ∆p ≡ λPM . DCM states are normalized accord-
ing to 〈

Υdcm
λ′ (p′)

∣∣ Υdcm
λ (p)

〉
= 2E

(
~p+ λ~PM , m+ λM

)
(2π)

3
δ
(
~p− ~p ′ + (λ− λ′) ~PM

)
,

' 2E
(
~PM , M

)
(2π)

3
δ
(
~p− ~p ′

)
δλλ′

where the latter form follows upon assuming M � m and requiring the vector components satisfy∣∣P iM ∣∣� ∣∣pi − p′i∣∣ , i = 1, 2, 3

thereby excluding a zero in the delta-function argument at in�nity for λ′ 6= λ. While
∣∣pi − p′i∣∣ is arbitrarily

large in an integral over p′i in the delta function, it is assumed small compared to
∣∣P iM ∣∣. The expected

momentum and mass are given by

〈χ |{pop,mop}|χ〉
〈χ |χ 〉

= {p,m} ,

where { pop, mop} are corresponding operators. Therefore, the composite state (7) is energetically equivalent
to the core mass state |p, m〉 as required by (2) and (4). A core electron dressed with positive or negative
energy as in (8) is a transient state that is sharply localized within a spacial interaction region r ' ~/Mc in
accordance with Heisenberg's uncertainty principle [18] ∆pµ∆xµ ≥ ~/2 (no implied sum over µ). Scattering
amplitudes for low-energy processes are assumed una�ected because the energies are insu�cient to induce a
separation of tightly bundled states (8) in (7). For in�nite �eld actions, however, DCM states may become
separated in intermediate states with in�nitesimally small lifetimes; in this case, we shall need to account
for both core and DCM scattering amplitudes. To account for all possible intermediate states in QED and
satisfy (4), both mass levels m±M are required; this generalizes the classical model depicted in Fig. 1 which
assumed that only a positive energy electron interacts with the vacuum potential well.
Since the interaction region reduces to a point as M →∞ for DCM states, self-interaction e�ects vanish,

and an electromagnetically dressed electron interacts only with the polarized vacuum. The vacuum potential
is generated by a net positive current in close proximity to the core electron charge since Φvac > 0. Therefore,
suppose a dressed electron is located at space-time position x1 such that it is constrained to interact only
with an opposing vacuum current as indicated in Fig. 2. The current density at a neighboring point x2 6= x1

is distinct from that of the dressed core and reversed in sign; that is,
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FIG. 2: Dressed core electron interacts with opposing vacuum current resulting in an exchange of the core
and vacuum electrons and a sign reversal of the DCM scattering amplitude relative to the core.

sgn [jµ (x2)] = −sgn [jµ (x1)] . (9)

With core current de�ned by the normal product [19, 20]

jµ (x1) = −e
2

[
ψ̄γµψ − ψ̄cγµψc

]
x1

= −eN
[
ψ̄γµψ

]
x1
,

where γµ are Dirac matrices, the vacuum current operator at x2 may be generated by interchanging the �eld
operator ψ with its charge conjugate ψc to satisfy (9) and model an exchange of dressed core and vacuum
electrons via the e+e− annihilation process suggested in Fig. 2 , then

jµ (x2) = eN
[
ψ̄γµψ

]
x2
.

Similarly to (9), the Hamiltonian density at nearby points must satisfy

sgn [Hint(x2)] = −sgn [Hint(x1)] , (10)

where Hint(x) = jµ (x)Aµ (x) in the interaction representation [21], and Aµ (x) is the radiation �eld. From
(10) we anticipate a sign reversal in the DCM scattering amplitude relative to that for the core mass since
second-order S-matrix [22] corrections involve a product Hint (x1)Hint (x2).
For radiative corrections containing primitive divergences, evaluation of S-matrix charge stability correc-

tions associated with DCM states entails a core mass replacement

m→ m+ λM (11)

in fermion lines internal to loops as indicated in Fig. 3; that is, in each fermion propagator [23]

iSF (p,m) =
i

�p−m+ iε
,

where �p = γµp
µ. Resulting loop-operator amplitudes are averaged over mass levels; that is, λ = ±1. For an

external line entering a loop, the momentum is similarly modi�ed

p→ p+ λPM , (12)
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since the propagator is required to have a pole atm+λM . To regulate singularities for soft photon emissions,
a �ctitious photon mass µ 6= 0 is introduced [13] to form a modi�ed photon propagator

iDαβ
F (k) =

−igαβ

k2 − µ2 + iε
,

wherein the Feynman gauge is assumed. Since infrared divergent amplitudes involve a ratio |m/µ|, a re-
placement

µ→ ηµ , (13)

where η = M/m, is also required to ensure reduction to known results.
In summary, the total loop-operator associated with a self-energy or vertex part is de�ned by

Ω = Ωcore +Ωdcm , (14)

where Ωcore accounts for self-interaction e�ects involving the core mass and Ωdcm enforces stability via inter-
action of DCM states with an opposing current of the polarized vacuum. Ωdcm is evaluated by substituting
(11), (12), and (13) into known Ωcore. In addition to mass m, Ωcore depends on external momenta {k, p, q}
for Feynman diagrams in Fig. 3. For notational simplicity, any dependence on an external momentum pa-
rameter is suppressed during construction of Ωdcm because {p, q} are implicitly dependent on the core mass.
Since Ωcore and Ωdcm are both divergent for loop corrections, their improper integrals must be temporarily
regulated using an energy cuto� Λ◦ or by dimensional regularization. For reasons clari�ed below, we assume
an energy cuto�, then the net amplitude (14) is convergent and reduces to expected results if we de�ne

Ω = lim
Λ◦→∞

[Ωcore (m,Λ◦) +Ωdcm(m,Λ◦)] , (15)

where

Ωdcm (m,Λ◦) = −1

2
lim
η→∞

∑
λ=±1

Ωcore (m+ λM, Λ)|M=ηm,Λ=ηΛ◦
. (16)

The overall minus sign in (16) ensures that the core charge associated with a DCM state interacts with an
opposing vacuum current as required by (9). The self-energy is de�ned by

M ≡ ηm , (17)

where m > 0 is the unit of mass measure; the corresponding rule for the cuto� is

Λ ≡ ηΛ◦ . (18)

Scaling rules (17) and (18) are required for consistent de�nition of the integrals � they ensure that Λ� M
for arbitrarily large M, synchronize cuto� to Λ◦, and yield a well de�ned limit as η →∞ in (16). As veri�ed
in Sec. IV, the operator Ωdcm is independent of {PM , M} forM � m. In contrast to the regulator technique
of Pauli and Villars [24], the above method employs physically meaningful electromagnetically dressed mass
levels (albeit virtual only), and we assume that the same principle applies to all self-energy processes in QFT
without introduction of auxiliary constraints.
For a Yang-Mills charge coupling g, the self-energy is likewise assumed to be an arbitrarily large value

M , which must be o�set by an interaction energy −M with the vacuum, so that the charge is stable, and
the measured mass is the core mass m. Again, for quantum mechanics, there exists two dressed mass states
m ±M in addition to the core mass. Since the physical argument is not dependent on whether the theory
is Abelian (as in QED) or non-Abelian, the rules (11) and (12) used in the stability correction (16) apply to
charge carrying gauge bosons as well as fermions.
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FIG. 3: Baseline radiative corrections: a) photon self-energy, b) fermion self-energy, and c) vertex involve
the core mass only in internal fermion lines. Two additional diagrams, obtained by replacing the core mass
with electromagnetically dressed mass levels m±M , are required for each radiative process to account for

interaction with an opposing vacuum current and ensure stability.

III. DIVERGENT INTEGRALS

Here we develop integration formulae required for evaluation of stability corrections using cuto� and
dimensional regularization. In the p-representation, loop diagrams involve four-dimensional integrals over
momentum space, and the real parts of scattering amplitudes contain integrals of the form [25]

D (∆) =
1

iπ2

ˆ
d4p

(p2 −∆)
n =

(−1)
n

π2

ˆ
d4pε

(p2
ε + ∆)

n , (19)

where ∆ depends on the core mass, momentum parameters external to the loop, and integration variables.
On the right side of (19), a Wick rotation has been performed via a change of variables p = (ip◦ε, ~pε), so that
the integration can be performed in euclidean space where p2

ε = p◦εp
◦
ε + ~pε · ~pε. Integrals for the divergent

case (n = 2) must be regulated such that they are consistently de�ned for core and dressed core masses. For
the core mass, D is regularized using a cuto� Λ◦ on s = |pε|. In four-dimensional polar coordinates, we have

D (∆,Λ◦) =
1

π2

ˆ
dΩ

ˆ Λ◦

0

ds
s3

[s2 + ∆]
2 . (20)

For DCM states, ∆ depends on |m±M | ' ηm with η � 1, and the domain of integration in (20) must
be scaled according to (18); consequently, we need to evaluate

Ddcm = D [∆ (ηm) , ηΛ◦] .

With a change of variables s = ηt and taking the limit η →∞, we obtain

Ddcm = D (∆◦,Λ◦) , (21)

where
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FIG. 4: Generic self-energy and vertex diagrams: a) boson SE, b) fermion SE, and c) vertex.

∆◦ = lim
η→∞

η−2∆(ηm) . (22)

For example, considering the standard divergent integral [25]

D◦ ≡ D
(
∆ = m2,Λ◦

)
= ln

Λ2
◦

m2
− 1 +O

(
m2

Λ2
◦

)
, (23)

we see that D◦ is invariant under scaling rules (17) and (18); that is,

D◦ = D
(
M2,Λ

)
. (24)

In contrast to the cuto� method, dimensional regularization evaluates a Feynman diagram as an analytic
function of space-time dimension d. For n = 2 and d4p→ ddp in (19), D may be evaluated using [17, 26]

D (∆, σ) = π−σΓ (σ) ∆−σ (25)

=
1

σ
− γ − ln ∆ +O (σ) ,

where σ = 2− d/2 and γ = 0.577... is Euler's constant. For σ 6= 0, the limit Λ◦ →∞ may be taken since σ
regulates the integral. The argument ∆ in (25) has the form

∆ (m) = am2 + b
(
k2 ∨ p2

)
+ cq2 , (26)

where {k, p, q} are external momentum parameters indicated in Fig. 4, and {a, b, c} depend on Feynman
parameters. Shaded blobs in Fig. 4 involve one-particle irreducible amputated correlation functions, and
the external bosons to blob (a) may be either charged or uncharged, and either massive or massless.
For DCM states, Ddcm must yield consistent results for both cuto� and dimensional regularization meth-

ods. Considering the requirements used to derive (21) and employing appendix formulae in [26], we conclude

Ddcm = D (∆◦, σ) . (27)

Approximations for dressed parameters
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(m+ λM)
2 ' η2m2 (28)

(p+ λPM )
2 ' P 2

M = M2 + δ ' η2m2 , (29)

ensure that the regulated integral Ddcm in (21) or (27) and Ωdcm in (16) are independent of individual mass
levels (λ = ±1) for M � m. In the expansion of P 2

M about M2 on the right side of (29), any o�-shell term
δ is assumed bounded and therefore negligible compared to M2.
Computing (22) using (26) with (28) and (29), external momentum parameters go on-shell in ∆◦; that is,

p2 → m2 , k2 → m2
b , q

2 → 0 ,

which we recognize as on-shell renormalization conditions. Dressed momentum transfer qdcm is assumed
bounded, so lim

η→∞
η−2q2

dcm = 0. If particle masses external and internal to the blob in Fig. 4 (a) are both

zero, choose a = 1, c = 0, and make the replacement

mb → mb + λM |mb=0,M=ηµ◦ (30)

in ∆ (m = mb), where M ≡ η µ◦ is the gauge boson self-energy, and µ◦ represents one unit of mass measure.
Thus, ∆◦ is non-zero for all m ≥ 0, and the net S-matrix amplitude computed from (15) is well de�ned since
it involves a factor

Γ (σ)

∆σ
− Γ (σ)

∆σ
◦

= − ln
∆

∆◦
.

In addition to a divergent part, Ωdcm in (15) may include a �nite part that cancels a like term in Ωcore.

IV. QED APPLICATIONS

Let us apply the foregoing theory with integration formulae given above to verify that the net amplitudes for
second order radiative corrections in QED are convergent and agree with results obtained via renormalization
theory. Cuto� and dimensional regularization approaches will be used to illustrate the method.

A. Vacuum polarization

The photon self-energy associated with Fig. 3 (a) results in a propagator modi�cation [22]

iD′αβF = iDαβ
F + iDαµ

F (iΠµν) iDνβ
F ,

where

Πµν ≡ Πcore
µν +Πdcm

µν

is a polarization tensor generalized to include the stability (aka DCM) correction, and whose core mass term

Πcore
µν (k, m) =

ie2

(2π)
4

ˆ
d4pTr [γµSF (p,m)γνSF (p− k,m)] (31)

follows from the Feynman-Dyson rules [6, 13]. In consequence of Lorentz and gauge invariance [8] or by
direct calculation, it factors into

Πcore
µν (k, m) = Πcore

(
k2, m

) (
kµkν − gµνk2

)
, (32)

where Πcore

(
k2,m

)
is a real scalar function. As is well known, the contribution from terms kµkν vanishes

due to current conservation upon connection to an external fermion line.
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Since the scattering amplitude is in general a complex analytic function, it follows from Cauchy's formula
that the real and imaginary parts are related by a dispersion relation [27]. The imaginary part is divergence
free and may be obtained by replacing Feynman propagators with cut propagators on the mass shell according
to Cutkosky's cutting rule [28] or, alternatively, via calculation in the Heisenberg representation as shown
in Källén [29]. In particular for vacuum polarization, the real part for the core mass is given by

Πcore

(
k2, m

)
=

1

π

ˆ 4Λ2
◦

4m2

ds
g
(

4m2

s

)
s− k2

(33)

with imaginary part

g (w) =
α

3

√
1− w (1 + w/2) .

Applying (16), using (28), and performing a change of variables s = η2t in (33), we have

Πdcm = −1

2
lim
η→∞

[
Πcore

(
k2, m+ ηm

)
+ Πcore

(
k2, m− ηm

)]
(34)

= − 1

π
lim
η→∞

ˆ 4Λ2
◦

4m2

dt
g
(

4m2

t

)
t− η−2k2

.

Letting η →∞, we see that (34) is equivalent to the subtracted core amplitude evaluated on the light cone

Πdcm = −Πcore(k
2 = 0, m)

which is associated with a correction to the bare charge in renormalization theory, but here the correction
represents an interaction between the observed core electron charge associated with a transient DCM state
and a polarization current that is required for charge stability in the intermediate state. Combining (33)
and (34), we obtain a once-subtracted dispersion relation

Π = Πcore + Πdcm (35)

=
k2

π

ˆ ∞
4m2

ds
g
(

4m2

s

)
s (s− k2)

in agreement with renormalized QED.

B. Fermion self-energy

The fermion self-energy operator for the core mass corresponding to the Feynman diagram in Fig. 3 (b)
is given by

Σcore (p,m) =
−ie2

(2π)
4

ˆ
d4k γµ SF (p− k,m) γµ

1

k2 − µ2
. (36)

After standard reduction and dimensional regularization, Σcore simpli�es to

Σcore (p,m) =
α

2π

{
S1 +

ˆ 1

0

dx [2m− �px+ σ (�px−m)] D (∆, σ)

}
, (37)

where D (∆, σ) is given by (25) with

∆ = (1− x)
(
m2 − xp2

)
+ xµ2 .
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The integral expression in (37) is equivalent to a form given in Peskin & Schroeder [30], while the term

S1 = −1− σ
4 �p

follows from appendix formulae in [25] and represents a surface contribution arising from a term linear in k
during reduction of (36).
Evaluation of Σdcm using (16) reduces to negating (37) and replacing ∆→ ∆◦ according to (27); we obtain

Σdcm (p,m) = − α

2π

{
S1 +

ˆ 1

0

dx [2m− �px+ σ (�px−m)] D (∆◦, σ)

}
, (38)

where

∆◦ = m2 (1− x)
2

+ xµ2

follows from (22) using (28), (29), and (13). Terms involving (λPM , λM) have canceled in the average over
DCM mass levels yielding a function of the core mass and momentum only. The net correction, including
all three mass levels in Fig. 3 (b), is given by (cf. [13])

Σ = Σcore + Σdcm (39)

=
α

2π

ˆ 1

0

dx (2m− �px) ln
m2 (1− x)

2
+ xµ2

(m2 − xp2) (1− x) + xµ2
,

where the limit σ → 0 has been taken to recover four-dimensional space-time. With a change of variables
x = 1− z, (39) is seen to be identical to the renormalized result given in Bjorken & Drell [31].
The processes in Fig. 3 (b), including iterations, results in a modi�ed propagator [6, 22]

iS′F = iSF + iSF (−iΣ) iS′F (40)

=
i

�p−m− Σ + iε
,

which has the desired pole at �p = m since (39) vanishes on the mass shell

Σ
(
p2 = m2

)
= 0 . (41)

Upon identifying

m+
em = Σcore (�p = m, µ = 0) (42)

m−em = Σdcm (�p = m, µ = 0) (43)

we see that (41) is equivalent to the stability principle (4). Reverting to cuto� Λ◦ using (19), it follows that
(42) reduces to Feynman's result (1); for derivation, see [25]. In the language of renormalization theory, the
bare mass in the propagator [17]

iS′F (p,m) =
i

�p−mb − Σcore + iε

must be renormalized using (6) with (42).
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C. Vertex

A second-order correction to a corner involves a replacement

ieγµ → ie (γµ + Λµ) , (44)

where the vertex function Λµ for the core mass corresponding to Fig. 3 (c) is approximated by [13]

Λµcore (q,m) = γµL+ a(2) i

2m
σµνqν +O

(
q2

m2

)
. (45)

for small q2. The divergent constant

L =
α

4π

(
D◦ +

11

2
− 4 ln

m

µ

)
, (46)

and σµν = i
2 [γµ, γν ] are spin matrices. Note that L = α

2π r, where r is given by Eq. (23) in [13]. The

coe�cient a(2) = α
2π is the second-order contribution to the anomalous magnetic moment �rst derived by

Schwinger [32] and veri�ed experimentally by Foley & Kusch [33].
Inserting (45) into (16), using (13), and accounting for the invariance of D◦ (24) under scaling rules

(17) and (18), the stability correction is Λµdcm = −γµL, where �nite terms in (45) of order O
(
q
m

)
with

replacements m → m + λM and q → qdcm ≡ q + λ (P ′M − PM ) vanish in the limit M → ∞ since qdcm is
assumed bounded. Therefore, the total vertex function Λµ = Λµcore + Λµdcm is convergent, and Λµ satis�es
the usual renormalization condition for a vertex

Λµ|q2=0,�p=�p
′=m = 0 .

This completes veri�cation that lowest-order S-matrix corrections are �nite without renormalization.

V. GENERALIZATION TO HIGHER ORDERS

The next task is to show that higher-order radiative corrections are convergent. The proof closely follows
methods in the references; therefore, we keep our remarks brief highlighting required modi�cations.
Irreducible (skeleton) diagrams include second-order self-energy (SE) and vertex (V) parts discussed in

Sec. IV plus in�nitely many higher-order primitively divergent V-parts. Using Dyson's expansion method
[22], second-order SE- and V-part operators for the core mass are

Σcore = mA− (�p−m)B + Σ , (47)

Πcore = C +Π , (48)

Λµcore = γµL+ Λµ , (49)

where {A, B ,C , L} are logarithmically divergent coe�cients depending onD◦ � speci�cally, A = 3α
4π

(
D◦ + 3

2

)
using (1) and B = L from (46). Insigni�cant �nite terms can depend on the regularization method used; for
example, compare C = −Πdcm = α

3π

(
D◦ + ln4− 2

3

)
from (34) with [25]. Higher-order primitively divergent

V-parts are also of the form (49) since K = 0 in the divergence condition

K = 4− 3

2
fe − be ≥ 0 ,

wherein fe (be) are the number of external fermion (boson) lines; in this case, L (D◦) is a power series in α.
To determine the interaction of an electromagnetically dressed core with the polarized vacuum, we apply

(16) with (24) to obtain

Σdcm = − [mA− (�p−m)B] , (50)

Πdcm = −C , (51)

Λµdcm = −γµL , (52)

12



where the vanishing of the �nite parts {Σ, Π, Λµ} as M →∞ is both a physical requirement and a conse-
quence of their convergent integrals. In this way, (14) yields convergent results

Σ = Σcore +Σdcm (53)

Π = Πcore +Πdcm (54)

Λµ = Λµcore + Λµdcm (55)

for all irreducible diagrams; therefore, SE-part insertions

iSF → iSF + iSF (−iΣ) iSF (56)

iDαβ
F → iDαβ

F + iDαµ
F

(
−igµνk2Π

)
iDµβ

F (57)

into lines, and V-part insertions

γµ → γµ + Λµ (58)

into corners of a skeleton diagram yield no additional divergences.
For reducible vertex diagrams, the V-part resolves into a skeleton along with SE- and V-part insertions.

With replacements (56), (57), and (58) in the skeleton, the vertex operator again reduces to the form (49),
where L → Ls is the skeleton divergence. In general, Ls depends on multiple functions D◦ corresponding
to all possible charged fermion masses arising from photon self-energy insertions which may in turn contain
SE- and V-parts. Since each D◦ is invariant under (17) and (18) and Λµ vanishes as M → ∞, (16) yields
Λµdcm = −γµLs similarly to (52); therefore, the complete reducible V-part given by (55) is convergent.
For reducible self-energy diagrams, a skeleton with SE insertions is handled in the same way as reducible

vertex diagrams. However, vertex insertions into fermion and photon SE skeletons involve overlapping
divergences that require further analysis [34, 35]. Integration of Ward's identities yields expressions of the
same form as (47) and (48); in this case, the coe�cients {A, B ,C} are all power series in α depending on
D◦, and vertex insertions in SE-parts are convergent upon including stability corrections (50) and (51). We
conclude that in�nite �eld actions excite mass levels m±M uniformly in all connected fermion lines internal
to overlapping loops; for a speci�c example, apply (15) to calculate the real part of the fourth-order vacuum
polarization kernel [36] using the dispersion method given in Sec. IV. Therefore, a diagram with overlapping
divergences is not a special case for implementation of stability corrections.
The complete propagators, replacing fermion and photon lines in a skeleton diagram, are given by

iS′F (p) =
i

�p−m− Σ∗ + iε
,

iD′αβF (k) =
−igαβ

k2 [1 +Π∗] + iε
,

where {Σ∗, Π∗} are given by sums over all proper SE-parts. Similarly, the most general vertex replacing
a corner in a skeleton diagram is given by a sum over all proper V-parts. Since both core and DCM
contributions are included for each sub-diagram, the complete propagators and vertices are well de�ned
(convergent).

VI. NON-ABELIAN APPLICATION

Finally, we apply the stability method to compute radiative corrections in non-Abelian gauge theory [37].
In the following examples, we focus on key one-loop diagrams discussed in [30, 38].
For gauge bosons in lieu of photons in Fig. 3, the core amplitude di�ers from QED only by a group factor;

therefore, �nite S-matrix amplitudes, including stability corrections in (15), are given by

Πab(GB) = tr
(
t at b

)
Π(QED) (59)

Σ(GB) = t at aΣ(QED) (60)

Λaµ(GB) = t bt at bΛµ(QED) , (61)

where
{
t a, t b

}
are hermitian generator matrices of some representation R of a semisimple Lie group G. The

t-matrices occur in a fermion/gauge-boson vertex igγµta, and they satisfy commutation relations[
t a, t b

]
= if abct c ,
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where f abc are structure constants of the group. The structure constants, which arise in three- and four-
gauge-boson vertices, satisfy

f acdf bcd = C2 (G) δab ,

where C2 (G) is the Casimir operator for the adjoint representation of group G. In (59),

tr
(
t at b

)
= C (R) δab ,

where C(R) is a constant. For the special unitary group SU (N) of degree N , C2 (G) = N , and C (R) = 1
2

for matrices of the fundamental representation.
In addition to the fermion loop diagram in Fig. 3 (a), massless vector bosons in Fig. 5 give [30]

Πab
µν

(
k2
)

= C2 (G) δab
(
gµνk

2 − kµkν
)
Πcore

(
k2
)

(62)

Πcore

(
k2
)

=
ig2

(4π)
d/2

ˆ 1

0

dx
Γ (σ)

∆σ

[
(−1 + σ) (1− 2x)

2
+ 2
]
, (63)

where x is a Feynman parameter, and ∆ = −k2x (1− x). For massive bosons, the propagators in the loops
would be modi�ed

1

p2 −m2
b

1

(p+ k)
2 −m2

b

=

ˆ 1

0

dx

[P 2 −∆ (mb)]
2 ,

where the usual change of variables P = p+ xk has been made for loop integration parameter p, and

∆ (mb) = m2
b − k2x (1− x) . (64)

To evaluate the stability contribution, we make the replacement (30) in (64); therefore, from (16) and (27),
Πdcm is simply obtained by negating (63) and replacing

1

∆σ
→ 1

∆σ
◦
,

where ∆◦ = µ2
◦ using (22). From (14), the net amplitude

Π
(
k2
)

(GB) = − ig2

(4π)
2

ˆ 1

0

dx ln

(∣∣∣∣∆

µ2
◦

∣∣∣∣) [− (1− 2x)
2

+ 2
]

(65)

is �nite. Note that all three diagrams must be combined to eliminate quadratic divergences before the stability
correction is computed. More generally, individual diagrams may need to be combined to eliminate quadratic
divergences that occur when applying (16); for example, computation of individual vacuum polarization
amplitudes Πµν

LL, Π
µν
LR, Π

µν
RL, Π

µν
RR for left- and right-handed currents in weak-interaction gauge theory yields

core amplitudes of order m2 which at �rst appears problematic. For the stability correction, numerator
factors proportional to λM vanish immediately for each current upon summing over λ; however, O

(
M2
)

terms vanish only upon taking the sum of DCM corrections for {LL, LR, RL, RR} currents. For equal
masses in each loop segment, the sum reduces to (34), and the total amplitude, equivalent to (35), is �nite.
For an exhaustive list of Feynman diagrams for electroweak theory, see [39].
The total amplitude for the three-gauge-boson/fermion vertex shown in Fig. 6 is given by

igΛµ (GB) =
ig3fabctbtc

(2π)
4 2

ˆ
dxdydz δ (x+ y + z − 1) (Iµcore + Iµdcm) (66)

Iµcore = Iµ1 + Iµ2 (67)
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FIG. 5: Order g2 gauge boson self-energy corrections: a) gauge boson loop, b) four-gauge-boson vertex,
and c) ghost loop.

Iµ1 =

ˆ Λ◦ d dl

(l 2 −∆)
3 γν �lγρ (−gµν lρ + 2gνρlµ − gρµlν) , (68)

= −3iπ2Γ (σ)

∆σ
γµ

Iµ2 =

ˆ
d 4l

(l 2 −∆)
3 Nf (m, q) , (69)

= − iπ
2

2∆
Nf (m, q)

where l = k − p′x− py,

∆ = −xyq2 +m2z2 + µ2 (1− z) , (70)

µ is a small boson mass, and

Nf (m, q) = m2γµ f1 + q2γµ f2 − iσµνqνmf3 , (71)

wherein
{
f1 = 2x− 7z2, f2 = 2 (xy − x− y) , f3 = 2z (1− z)

}
depend on Feynman parameters (x, y, z). The

cuto� is retained in the divergent part Iµ1 as a reminder that for computation of the stability correction,
Λ◦ → ηΛ◦ followed by a change of variables l→ ηl. Now apply (16) and (27) to obtain

Iµdcm = 3iπ2Γ (σ)

∆σ
◦
γµ +

iπ2

2∆◦
Nf (m, q = 0) , (72)

where from (22), ∆◦ = ∆
(
q2 = 0

)
. Finally the stabilized integral is given by

Iµ = Iµcore + Iµdcm (73)

= ln

(
∆

∆◦

)
+ finite ,
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FIG. 6: Three-gauge-boson vertex.

and the complete amplitude (66) is �nite without renormalization.

Since renormalization theory accounts for the core S-matrix amplitude only, the seven diagrams considered
in Figs. 3, 5, and 6 yield a running coupling constant characterized by the Callan-Symanzik [40, 41] β function
[42, 43]

β (g) =
∂g

∂ lnµ
= − g3

16π2

[
11

3
C2 (G)− 4

3
nfC (r)

]
,

wherein µ is the energy scale, and nf is the number of fermion species contributing in Fig. 3 (a). In contrast,
the coupling constant is static in the proposed stability formulation of scattering amplitudes; thus, β = 0,
and QFT is scale invariant.

VII. CONCLUDING REMARKS

For QED, we developed a model for a stable elementary charge wherein a hidden interaction between the
electromagnetically dressed charge and an opposing polarization current o�sets the positive electromagnetic
(EM) �eld energy. Concise rules for constructing S-matrix corrections for the electromagnetically dressed core
were developed and applied to resolve divergence issues to all orders, and we maintained the fermion mass and
charge as observed fundamental constants throughout. Our �ndings provide compelling evidence for negative
and positive EM mass components in virtual intermediate states of in�nitesimally short duration. Since
there is no renormalization in this approach, the EM coupling is a constant independent of the energy scale;
therefore, QED is scale-invariant. Likewise, for non-Abelian gauge theory, we found that one-loop diagrams
are �nite without renormalization if stability corrections are included. Model predictions agree precisely
with renormalized QFT and therefore are consistent with current experiments also. These predictions are
in sharp contrast to renormalization group arguments [44, 45] which contend that the coupling constant, e
in QED or g in non-Abelian gauge theory, scales with energy. The stability approach for computing �nite
amplitudes in QFT is simpler compared to renormalization, and it more accurately characterizes the physics
involved in radiative processes since it includes the reaction (16) of the vacuum back on a core charge.
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