BOUNDARY MATRICES AND THE MARCUS-DE OLIVEIRA DETERMINANTAL CONJECTURE*

AMEET SHARMA[†]

4 **Abstract.** We present notes on the Marcus-de Oliveira conjecture. The conjecture concerns the 5 region in the complex plane covered by the determinants of the sums of two normal matrices with 6 prescribed eigenvalues. Call this region Δ . This paper focuses on boundary matrices of Δ . We prove 7 2 theorems regarding these boundary matrices. This paper uses ideas from [1].

8 Key words. determinantal conjecture, Marcus-de Oliveira, determinants, normal matrices, 9 convex-hull

10 AMS subject classifications. 15A15, 15A16

1. Introduction. Marcus [4] and de Oliveira [2] made the following conjecture. Given two normal matrices A and B with prescribed eigenvalues $a_1, a_2...a_n$ and $b_1, b_2...b_n$ respectively, det(A + B) lies within the region:

14
$$co\{\prod(a_i+b_{\sigma(i)})\}$$

where $\sigma \in S_n$. co denotes the convex hull of the n! points in the complex plane. As described in [1], the problem can be restated as follows. Given two diagonal matrices, $A_0 = diag(a_1, a_2...a_n)$ and $B_0 = diag(b_1, b_2...b_n)$, let:

18
$$\Delta = \left\{ det(A_0 + UB_0U^*) : U \in U(n) \right\}$$
(1.1)

where U(n) is the set of $n \times n$ unitary matrices. Then we can write the conjecture as:

21 CONJECTURE 1.1 (Marcus-de Oliveira Conjecture).

$$\Delta \subseteq co\left\{\prod(a_i + b_{\sigma(i)})\right\} \tag{1.2}$$

23 Let

22

24

12

3

$$M(U) = det(A_0 + UB_0U^*).$$
(1.3)

The paper is organized as follows. In section 2 we define terms and functions that will be used in the rest of the paper. These definitions are necessary to state our results. In section 3, we state 3 lemmas and 2 theorems that form the bulk of the paper. We state them in the order they are proved.

29 **2.** Preparatory definitions.

^{*}Submitted to the editors June 6th, 2018.

[†] (ameet_n_sharma@hotmail.com).

A. SHARMA

30 **2.1. Terms.** Given a unitary matrix U and square, diagonal matrices A_0 and 31 B_0 all of dimension $n \times n$,

32	• If $M(U)$ is a point on $\partial \Delta$ (the boundary of Δ), we call $M(U)$ a boundary
33	point of Δ and we call U a boundary matrix of Δ . See (1.1) and (1.3).
34	• We define the B-matrix of U as UB_0U^* .
35	• We define the C-matrix of U as $A_0 + UB_0U^*$.
36	• We define the F-matrix of U as $C^{-1}A_0 - A_0C^{-1}$ where C is the C-matrix of
37	U. Note that the F-matrix is only defined when C is invertible, or equivalently
38	when $det(C) = M(U) \neq 0$. See (1.3). Also note that since A_0 is diagonal, the
39	F-matrix is a zero-diagonal matrix. The idea for using the F-matrix comes
40	from [1], Theorem 4, p.27.

Throughout the rest of the paper, we'll assume A_0 and B_0 are defined, even if we don't explicitly mention them.

43 **2.2. Functions given a unitary matrix U.** Given a unitary matrix U with 44 B-matrix B, C-matrix C and F-matrix F. Given $M(U) \neq 0$. For every skew-hermitian 45 matrix Z, we define the following functions

$$U_Z(t) = (e^{Zt})U\tag{2.1}$$

48 where t is any real number.

Since the exponential of a skew-hermitian matrix is unitary, $U_Z(t)$ is a function of unitary matrices.

51 let

56

47

$$B_Z(t) = U_Z(t)B_0 U_Z^*(t)$$
(2.2)

53 let $C_Z(t) = A_0 + B_Z(t)$

54 We note that
$$B_Z(0) = B$$
 and $C_Z(0) = C$

55 let

$$R_Z(t) = det(C_Z(t)) \tag{2.3}$$

57 We can see by (1.1) that $R_Z(t) \subseteq \Delta$.

58
$$R_Z(0) = A_0 + UB_0 U^*$$

59 So by (1.3) we see that $R_Z(0) = M(U)$.

60 So all the $R_Z(t)$ functions go through M(U) at t = 0.

We shall refer to these functions in the rest of the paper with the same notation (for example $R_Z(t)$ for a skew-hermitian matrix Z. $R_{Z_1}(t)$ for a skew-hermitian matrix Z_1). Note that $R_Z(t)$ requires A_0, B_0, U and Z in order to be defined. But we won't explicitly mention A_0 and B_0 . All the results in this paper assume there are two diagonal matrices A_0 and B_0 defined in the background.

BOUNDARY MATRICES AND THE MARCUS-DE OLIVEIRA DETERMINANTAL CONJECTUR

66 **2.3. Skew-Hermitian matrices** Z^{ab} and $Z^{ab,i}$. Given two integers a,b where 67 $1 \le a, b \le n$ and $a \ne b$.

We define the $n \times n$ skew-hermitian matrix Z^{ab} as follows. $Z^{ab}_{ab} = -1$ (the element at the ath row and bth column is -1.) $Z^{ab}_{ba} = 1$ (the element at the bth row and ath column is 1.) And all other elements are 0. Note that $Z^{ab} = -Z^{ba}$.

We define the $n \times n$ skew-hermitian matrix $Z^{ab,i}$ as follows. $Z^{ab,i}_{ab} = i$ and $Z^{ab,i}_{ba} = i$. All other elements are zero. Note that $Z^{ab,i} = Z^{ba,i}$.

It is straightforward to verify that Z^{ab} and $Z^{ab,i}$ are skew-hermitian.

74 **3. Main Results.**

LEMMA 3.1. Given a unitary matrix U with $M(U) \neq 0$. Let F be its F-matrix. Then $R'_Z(0) = M(U)tr(ZF)$ for any skew-hermitian matrix Z.

177 LEMMA 3.2. Given an $n \times n$ zero-diagonal matrix W. If for every $n \times n$ skew-178 hermitian matrix Z, tr(ZW) = 0 then W is the zero-matrix.

⁷⁹ LEMMA 3.3. Given a boundary matrix U with $M(U) \neq 0$ and with F-matrix $F \neq$ ⁸⁰ 0. Given there's a unique tangent line L to Δ at M(U) with direction vector v. Then ⁸¹ for every skew-hermitian matrix Z, tr(ZF) = cv where c is some real number.

THEOREM 3.4. Given a boundary matrix U with $M(U) \neq 0$ and with F-matrix $F \neq 0$. Given there's a unique tangent line to Δ at M(U). Then F can be written uniquely in the form $F = e^{i\theta}H$ where H is a zero-diagonal hermitian matrix and $0 \leq \theta < \pi$.

THEOREM 3.5. Given a boundary matrix U with $M(U) \neq 0$ and with F-matrix F $\neq 0$. Given there's a unique tangent line L to Δ at M(U). By the previous theorem we know that $F = e^{i\theta}H$ for some real $0 \leq \theta < \pi$. Then L makes an angle $arg(M(U)) + \theta + \pi/2$ with the positive real axis.

4. Proof of Lemma 3.1. The proof given here uses ideas from [1], Theorem 4,
p.26-27. But the proof given here is complete on its own.

Proof. We're given a unitary matrix U where $M(U) \neq 0$. So its F-matrix is welldefined and we call it F. Let B be its B-matrix, and C be its C-matrix. Given an arbitrary skew-hermitian matrix Z.

We can use Jacobi's formula [5] on (2.3) to find $R'_{Z}(t)$

 $R'_{Z}(t) = tr(det(C_{Z}(t))C_{Z}^{-1}(t)C'_{Z}(t))$ (4.1)

97 $R'_Z(0) = tr(det(C_Z(0))C_Z^{-1}(0)C'_Z(0))$

98 We can substitute C for $C_Z(0)$.

99
$$R'_Z(0) = tr(det(C)C^{-1}C'_Z(0))$$

100
$$R'_Z(0) = det(C)tr(C^{-1}C'_Z(0))$$

- 101 We know that $C'_Z(t) = B'_Z(t)$ so
- 102 $R'_Z(0) = det(C)tr(C^{-1}B'_Z(0))$

A. SHARMA

103	By subsection 2.1 and (1.3) we know that $det(C) = M(U)$	
104	$R'_Z(0) = M(U)tr(C^{-1}B'_Z(0))$	(4.2)
105	Using (2.2) ,	
106	$B'_{Z}(t) = \frac{dU_{Z}(t)}{dt} B_{0}U_{Z}^{*}(t) + U_{Z}(t)B_{0}\frac{dU_{Z}^{*}(t)}{dt}$	(4.3)
107	Using (2.1) ,	
108	$\frac{dU_Z(t)}{dt} = Ze^{Zt}U$	
109	$U_Z^*(t) = (U^*)e^{-Zt}$	
110	$\frac{dU_{Z}^{*}(t)}{dt} = -(U^{*})Ze^{-Zt}$	
111	Substitute these and (2.1) into (4.3)	
112	$B'_{Z}(t) = Ze^{Zt}UB_{0}(U^{*})e^{-Zt} - (e^{Zt})UB_{0}(U^{*})Ze^{-Zt}$	
113	$B'_{Z}(0) = ZUB_{0}U^{*} - UB_{0}(U^{*})Z$	
114	Using the definition of the C-matrix in subsection 2.1	
115	$B'_{Z}(0) = Z(C - A_0) - (C - A_0)Z$	
116	$B'_{Z}(0) = ZC - ZA_0 - CZ + A_0Z$	
117	$C^{-1}B'_Z(0) = C^{-1}ZC - C^{-1}ZA_0 - Z + C^{-1}A_0Z$	
118	$tr(C^{-1}B'_Z(0)) = tr(C^{-1}ZC) - tr(C^{-1}ZA_0) - tr(Z) + tr(C^{-1}A_0Z)$	
119	The first and third terms cancel since similar matrices have the same trace	
120	$tr(C^{-1}B'_Z(0)) = -tr(C^{-1}ZA_0) + tr(C^{-1}A_0Z).$	
121	Using the idea that $tr(XY) = tr(YX)$	
122	$tr(C^{-1}B'_Z(0)) = -tr(ZA_0C^{-1}) + tr(ZC^{-1}A_0)$	
123	$tr(C^{-1}B'_Z(0)) = tr(ZC^{-1}A_0) - tr(ZA_0C^{-1})$	
124	$tr(C^{-1}B'_Z(0)) = tr(Z(C^{-1}A_0 - A_0C^{-1}))$	
125	$tr(C^{-1}B'_Z(0)) = tr(ZF)$	
126	Substitute this into (4.2) to get	
127	$R_Z'(0) = M(U)tr(ZF)$	(4.4)
128	This proves Lemma 3.1.	
129	5. Proof of Lemma 3.2.	

130 Proof. Given an $n \times n$ zero-diagonal matrix W. Given that for all $n \times n$ skew-131 hermitian matrices Z, tr(ZW) = 0.

We can write element $W_{ab} = W_{ab,r} + iW_{ab,i}$, where $W_{ab,r}$ and $W_{ab,i}$ are real. These aren't tensors. $W_{ab,r}$ just denotes the real component of W_{ab} and $W_{ab,i}$ denotes the imaginary component.

135 $tr(Z^{ab}W) = 0.$

136 $tr(Z^{ab,i}W) = 0$

137 (See subsection 2.3 for definitions of Z^{ab} and $Z^{ab,i}$).

138 by direct computation we see that

139
$$tr(Z^{ab}W) = (W_{ab,r} - W_{ba,r}) + i(W_{ab,i} - W_{ba,i}) = 0$$

140
$$tr(Z^{ab,i}W) = (-W_{ab,i} - W_{ba,i}) + i(W_{ab,r} + W_{ba,r}) = 0$$

141 Solving these, we get that $W_{ab} = 0$. This is true for every pair (a,b) where 142 $1 \le a, b \le n$ and $a \ne b$. So all the off-diagonal elements of W are zero. Hence W is 143 the zero-matrix.

144 **6. Proof of Lemma 3.3.**

145 Proof. Given a boundary matrix U with $M(U) \neq 0$ and with F-matrix $F \neq 0$. 146 Given there's a unique tangent line L to Δ at M(U). Let v be the direction vector of 147 the line L. Note that v is just a non-zero complex number.

148 Let Z be a skew-hermitian matrix. By Lemma 3.1 we know that $R'_Z(0) = M(U)tr(ZF)$.

Since $R_Z(t) \subseteq \Delta$ and $R_Z(0) = M(U)$, we know that $R'_Z(0) = kv$ for some real number k. (if L is the unique tangent to the region Δ at M(U), then it must the tangent to every curve that lies in Δ and goes through M(U) and has a well-defined derivative at M(U)).

154 So,
$$M(U)tr(ZF) = kv$$

155 $tr(ZF) = (\frac{k}{M(U)})v$

7. Proof of Theorem 3.4.

157 Proof. Given a boundary matrix U with $M(U) \neq 0$ and with F-matrix $F \neq 0$. 158 Given there's a unique tangent line to Δ at M(U).

- 159 We pick an arbitrary pair $\{a, b\}$ such that $1 \le a, b \le n$ and $a \ne b$
- 160 We have two skew-hermitian matrices Z^{ab} and $Z^{ab,i}$ defined as per subsection 2.3.
- 161 By direct computation we see that

162
$$tr(Z^{ab}F) = F_{ab} - F_{ba}$$

163 $tr(Z^{ab,i}F) = (F_{ab} + F_{ba})i$

A. SHARMA

164 Given $F_{ab} = F_{ab,r} + iF_{ab,i}$. We can substitute this in to get

165
166
$$tr(Z_{ab}F) = (F_{ab,r} - F_{ba,r}) + i(F_{ab,i} - F_{ba,i})$$

$$tr(Z_{ab,i}F) = (-F_{ab,i} - F_{ba,i}) + i(F_{ab,r} + F_{ba,r})$$
(7.2)

(7.1)

168 We know by Lemma 3.3 that these are collinear vectors in the complex plane.

- 169 So we know that
- 170 $(F_{ab,i} F_{ba,i})(-F_{ab,i} F_{ba,i}) = (F_{ab,r} + F_{ba,r})(F_{ab,r} F_{ba,r})$
- 171 We can simplify this to get:
- 172 $F_{ab,r}^2 + F_{ab,i}^2 = F_{ba,r}^2 + F_{ba,i}^2$
- $|F_{ab}| = |F_{ba}|$
- 174 We can write:

175
$$F_{ab} = |F_{ab}| \angle \theta_{ab}$$

176
$$F_{ba} = |F_{ab}| \angle \theta_{ba}$$

For the remainder of the proof we will divide the possibilities for F into multiple 177178cases. Note that we are given that $F \neq 0$. First we split all cases into two. The first is when only one pair of elements of the F-matrix, F_{ab} and F_{ba} is nonzero. The second 179case is when multiple pairs of elements of the F-matrix are nonzero. We shall further 180subdivide the second case using the fact that all tr(ZF) values are collinear. We can 181 divide these cases into 3 possibilities: 1. All nonzero tr(ZF) values are imaginary. 1822. All nonzero tr(ZF) values are real. 3. All nonzero tr(ZF) values are not real or 183184 imaginary. (note that since F is nonzero, we don't have to deal with the possibility that tr(ZF) is 0 for all skew-hermitian matrices Z). 185

186 So we have 4 cases to deal with. Note that we already know by subsection 2.1 187 that F is zero-diagonal.

- 188 Case 1: $|F_{ab}|$ is non-zero for only one pair $\{a, b\}$ where $a \neq b$
- 189 In this case,
- 190 $H = e^{-(\theta_{ab} + \theta_{ba})/2}F$ is a hermitian matrix, and we're finished.
- 191 Case 2: $|F_{ab}|$ is non-zero for multiple pairs $\{a, b\}$ where $a \neq b$. For any 192 skew-hermitian Z, when tr(ZF) is non-zero, it is imaginary.
- 193 If $|F_{ab}| \neq 0$, then by (7.1) and (7.2), $\theta_{ab} = -\theta_{ba}$. This holds for all distinct pairs 194 {a,b}, so our F-matrix is already hermitian, and we're done.
- 195 Case 3: $|F_{ab}|$ is non-zero for multiple pairs $\{a, b\}$ where $a \neq b$. For any 196 skew-hermitian Z, when tr(ZF) is non-zero, it is real.
- 197 If $|F_{ab}| \neq 0$, then by (7.1) and (7.2), $\theta_{ab} = \pi \theta_{ba}$. This holds for all distinct 198 pairs {a,b}
- 199 $H = e^{-(\frac{\pi}{2})}F$ is hermitian and we're done.

6

Case 4: $|F_{ab}|$ is non-zero for multiple pairs $\{a, b\}$ where $a \neq b$. For any skew-hermitian matrix Z, when tr(ZF) is non-zero, it isn't real or imaginary.

Suppose $|F_{ab}| \neq 0$ and $|F_{cd}| \neq 0$ 203 if $tr(Z_{ab}F) \neq 0$, then 204slope of $tr(Z_{ab}F) = \frac{\sin(\theta_{ab}) - \sin(\theta_{ba})}{\cos(\theta_{ab}) - \cos(\theta_{ba})} = -\cot(\frac{\theta_{ab} + \theta_{ba}}{2})$ 205if $tr(Z_{ab,i}F) \neq 0$: 206 slope of $tr(Z_{ab,i}F) = \frac{\cos(\theta_{ab}) + \cos(\theta_{ba})}{-\sin(\theta_{ab}) - \sin(\theta_{ba})} = -\cot(\frac{\theta_{ab} + \theta_{ba}}{2})$ 207We know that since $|F_{ab}| \neq 0$, at least one of $tr(Z_{ab}F)$ or $tr(Z_{ab,i}F)$ is non-zero. 208 similarly, 209 if $tr(Z_{cd}F) \neq 0$, then 210 slope of $tr(Z_{cd}F) = -\cot(\frac{\theta_{cd}+\theta_{dc}}{2})$ 211 if $tr(Z_{cd,i}F) \neq 0$: 212 slope of $tr(Z_{cd,i}F) = -\cot(\frac{\theta_{cd}+\theta_{dc}}{2})$ 213 We know that since $|F_{cd}| \neq 0$, at least one of $tr(Z_{cd}F)$ or $tr(Z_{cd,i}F)$ is non-zero. 214 So we have: 215 $\cot(\frac{\theta_{cd}+\theta_{dc}}{2}) = \cot(\frac{\theta_{ab}+\theta_{ba}}{2})$ (Lemma 3.3) 216therefore: 217 $\frac{\theta_{cd} + \theta_{dc}}{2} = \frac{\theta_{ab} + \theta_{ba}}{2} + n\pi$ for some integer n. 218We can freely adjust θ_{cd} by $-2n\pi$. It makes no difference since $|F_{cd}| \angle \theta_{cd} =$ 219 $|F_{cd}| \angle (\theta_{cd} - 2n\pi)$ 220 So after the adjustment we have: 221 $\frac{\theta_{cd} + \theta_{dc}}{2} = \frac{\theta_{ab} + \theta_{ba}}{2}.$ 222 We make the same adjustment for any pair $\{c, d\} \neq \{a, b\}$ where $|F_{cd}| \neq 0$ 223 We set $\beta = \frac{\theta_{ab} + \theta_{ba}}{2}$ 224let $H = e^{-i\beta}F$ For some pair $\{x, y\}$ where $x \neq y$ and $|H_{xy}| \neq 0$, 226 $H_{xy} = |H_{xy}| \angle \alpha_{xy}$ 227 $\alpha_{xy} = -(\frac{\theta_{ab} + \theta_{ba}}{2}) + \theta_{xy}$ 228 $\alpha_{yx} = -(\frac{\theta_{ab} + \theta_{ba}}{2}) + \theta_{yx}$ 229 230 But because of our adjustments,

231
$$\frac{\theta_{ab} + \theta_{ba}}{2} = \frac{\theta_{xy} + \theta_{yx}}{2}$$

Plugging this into the above two formulas we have 232

233
$$\alpha_{xy} = \frac{\theta_{xy} - \theta_{yx}}{2}$$

 $\alpha_{yx} = -(\frac{\theta_{xy} - \theta_{yx}}{2})$ 234

Therefore H is zero-diagonal, with transpositional elements of equal magnitude 235and opposite arguments. Therefore H is hermitian. 236

So in all 4 cases we can write $F = e^{i\beta}H$ for some hermitian matrix H and some 237 real β . But we've not arrived at a unique representation for F yet. 238

Suppose

$$F = e^{i\beta_1}H_1 = e^{i\beta_2}H_2$$

$$e^{i(\beta_1-\beta_2)}H_1 = H_2$$

$$H_2 = e^{i(\beta_2-\beta_1)}H_1^* = e^{i(\beta_2-\beta_1)}H_1$$

$$e^{i(\beta_1-\beta_2)}H_1 = H_2 = H_2^* = e^{i(\beta_2-\beta_1)}H_1^* = e^{i(\beta_2-\beta_1)}H_1$$

$$So$$

$$(e^{i(\beta_1-\beta_2)} - e^{i(\beta_2-\beta_1)})H_1 = 0$$

$$(e^{i(\beta_1-\beta_2)} - e^{i(\beta_2-\beta_1)}) = 0$$

$$e^{i(\beta_1-\beta_2)} = e^{i(\beta_2-\beta_1)} = 0$$

$$\beta_1 - \beta_2 = \beta_2 - \beta_1 + 2k\pi, \text{ for any integer k}$$

$$\beta_1 = \beta_2 + k\pi$$
So if we restrict all β to $0 \le \beta < \pi$, we have a unique representation since k is
forced to 0.
$$How one of theorem 3.4.$$

$$How one of theorem 3.4.$$

$$F = e^{i\theta}H$$

$$(8.1)$$

$$F = e^{i\theta}H$$

since k is

(8.1)

We can substitute (8.1) into (7.1) and (7.2) and simplify to get: 259

260
$$tr(Z_{ab}F) = 2H_{ab,i}e^{i(\theta + \pi/2)}$$
(8.2)

$$tr(Z_{ab,i}F) = 2H_{ab,r}e^{i(\theta+\pi/2)}$$
(8.3)

By Lemma 3.2 we know that at least one of the above equations is nonzero for some pair $\{a, b\}$. So then using Lemma 3.1 we know that $R'_Z(0) = M(U)tr(ZF) \neq 0$ for some skew-hermitian matrix Z.

So by (8.2) and (8.3) we see that for some skew-hermitian matrix Z, tr(ZF) forms an angle of $(\theta + \pi/2)$ or $(\theta + 3\pi/2)$ with the positive real axis (depending on whether the coefficient is negative or not). Therefore $R'_Z(0)$ forms an angle $arg(M(U)) + \theta + \pi/2$ or $arg(M(U)) + \theta + 3\pi/2$ with the positive real axis.

Therefore the line L forms an angle $arg(M(U)) + \theta + \pi/2$ with the positive real axis (since this is a line as opposed to a vector, a rotation of π makes no difference).

This completes our proof of Theorem 3.5.

- 272 REFERENCES
- [1] N. BEBIANO AND J. QUERIÓ, The determinant of the sum of two normal matrices with prescribed
 eigenvalues, Linear Algebra and its Applications, 71 (1985), pp. 23–28.
- [2] G. N. DE OLIVEIRA, Research problem: Normal matrices, Linear and Multilinear Algebra, 12
 (1982), pp. 153–154.
- 277 [3] R. HORN AND C. JOHNSON, Matrix Analysis, Cambridge University Press, 1990.
- [4] M. MARCUS, Derivations, plücker relations and the numerical range, Indiana University Math
 Journal, 22 (1973), pp. 1137–1149.
- [5] WIKIPEDIA CONTRIBUTORS, Jacobi's formula Wikipedia, the free encyclopedia, 2018, https:
 //en.wikipedia.org/w/index.php?title=Jacobi%27s_formula&oldid=838689851. [Online; accessed 16-September-2018].