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For the relativistic uniform system with an invariant mass density the exact expressions are 

determined for the potentials and strengths of the gravitational field, the energy of particles and 

fields. It is shown that, as in the classical case for bodies with a constant mass density, in the 

system with a zero vector potential of the gravitational field, the energy of the particles, 

associated with the scalar field potential, is twice as large in the absolute value as the energy 

defined by the tensor invariant of the gravitational field. The problem of inaccuracy of the use 

of the field’s stress-energy tensors for calculating the system’s mass and energy is considered. 

The found expressions for the gravitational field strengths inside and outside the system allow 

us to explain the occurrence of the large-scale structure of the observable Universe, and also to 

relate the energy density of gravitons in the vacuum field with the limiting mass density inside 

the proton. Both the Universe and the proton turn out to be relativistic uniform systems with 

the maximum possible parameters. The described approach allows us to calculate the maximum 

possible Lorentz factor of the matter particles at the center of the neutron star and at the center 

of the proton, and also to estimate the radius of action of the strong and ordinary gravitation in 

cosmological space. 

Keywords:  Relativistic uniform system; covariant theory of gravitation; gravitational field; 

energy. 
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1. Introduction 

The relativistic theory describes the physics of phenomena more precisely than classical 

mechanics. This leads to the fact that an ideal uniform model of a body with a constant mass 

density must be replaced by the relativistic uniform model.  In the relativistic model the mass 

density can be the coordinate function, but it is considered a constant invariant mass density in 

the reference frames, associated with the particles that make up the body. Due to the motion of 

the particles the effective mass density in the system differs from the invariant values, which 
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introduces additional corrections into the values of the field functions and into the system’s 

energy. 

Various properties of the relativistic uniform system were discussed earlier in [1-2]. The 

purpose of this paper is to verify the relation between the energy of the particles in the scalar 

gravitational potential and the proper energy of the gravitational field, in the framework of the 

covariant theory of gravitation and relativistic uniform model. We will use the covariant theory 

of gravitation instead of the generally accepted general theory of relativity. This is due to the 

fact that in the general theory of relativity there is no stress-energy tensor of the gravitational 

field, which does not allow to uniquely calculate the energy density and the energy flux of the 

field inside or outside the body [3, 4]. On the other hand, with the help of the covariant theory 

of gravitation it is possible to construct the models of stars and to estimate their parameters [5], 

and to refine the virial theorem [6]. Besides in the framework of the covariant theory of 

gravitation the gravitational field was included into the general field as a separate component 

[7]. The metric near the solitary massive body was determined in [8], with the help of which it 

was shown in [9] that the covariant theory of gravitation successfully explains the anomalous 

precession of Mercury's perihelion, the deviation of particles and light in the gravitational field, 

the gravitational time delay and the gravitational redshift of light, as well as the Pioneer 

anomaly [10]. 

Another characteristic feature of the covariant theory of gravitation is the presence of the 

four-potential of the gravitational field, which contains the vector potential in addition to the 

scalar potential of the field. With the help of the vector potential, the supplementary additives 

to the gravitational field strengths and to the gravitational torsion field are formed, which in 

gravitoelectromagnetism, as a special case of the general theory of relativity, are called the 

gravitoelectric field strengths and gravitomagnetic field strengths, respectively. These additives 

are required to take into account the delay in the propagation of the gravitational interaction, 

just as it occurs in electromagnetism with the propagation of the electromagnetic interaction. 

Due to the vector potential and the torsion field various effects are possible, including 

gravitational induction [11, 12]. 

The covariant theory of gravitation also differs from modified versions of the general theory 

of relativity, such as ( )f R , ( )f T , ( , )f R T  models or the Einstein’s model with the 

cosmological constant   (Einstein-Λ model). The common purpose of these models is their 

application in cosmology, where they allow taking into account the effects, which are now 

attributed to the dark energy and dark matter. But in a number of works, these gravitation 

models are also applied to a system of limited size. For example, in [13] the Palatini ( )f R  
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gravity is used to describe dynamical instability in a collapsing self-gravitating spherical system 

of stellar sizes, and in [14] ( , )f R T  gravity is applied to a self-gravitating anisotropic 

cylindrical system, which can contain an internal cavity as a result of explosive expansion. In 

[15], the field equations and dynamic equations for the matter of a compact star are studied 

using 2 ( )R R T  

    gravity, and in [16] ( )f T  gravity is used to simulate the equation of 

the state of the relativistic matter. Interpretation of the results, as always, is most clear in the 

weak field approximation, while Newtonian and post-Newtonian approximations usually serve 

as the starting point. 

In contrast to these modified theories of gravitation, in the weak field limit the covariant 

theory of gravitation turns into the Lorentz-invariant theory of gravitation and does not contain 

any elements associated with the dark energy and dark matter. However, the application of the 

covariant theory of gravitation to the relativistic uniform system leads to specific features for 

the potentials and the gravitational field strengths. As will be shown later, these features are of 

greatest importance for the objects, in which the product of the object’s radius by the square 

root of the mass density reaches its maximum. In particular, we will apply the expressions for 

the gravitational field strengths to the observable Universe, to the neutron star and to the proton, 

which will allow us to explain some properties of these objects. 

 

2. The field functions 

As a uniform relativistic system the spherical system is considered, which consists of the 

particles that can also have the electrical charge. The stability of the system is maintained by 

the action of its proper gravitation, the internal pressure field and the acceleration field of the 

particles [17, 18]. The field functions are calculated on the assumption that there is no general 

rotation of the particles in the system, they move randomly and therefore the total vector field 

potentials on the average tend to zero. 

The equation for the gravitational scalar potential inside the sphere and its solution in the 

special relativity limit have the following form [2]: 

 

04i G      ,                                                          (1) 
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In (1) the Lorentz factor of the particles  is 
2 2

1

1 v c
  


, v  is the average velocity of 

an arbitrary particle inside the sphere, c  is the Lorentz factor of the particles at the center of 

the sphere, c  is the speed of light,   is the acceleration field coefficient, G  is the gravitational 

constant, 0  is the mass density of the particle in the reference frame associated with the 

particle, a  is the radius of the sphere, the index i  differentiates the internal gravitational scalar 

potential i  from external potential o , which is generated by the sphere outside its limits 

with r a . Both potential i  and    are the functions of the current radius r a  inside the 

sphere and do not depend on the angular variables. 

 

The dependence of    on the radius was found in [1]: 
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It is precisely because of the presence of a sine in the expression for the Lorentz factor in 

(2), that the periodic functions also appear in the solution of (1) for i . The approximate 

expressions on the right-hand side of (1) and (2) appear if we take the first expansion terms of 

the periodic functions with regard to the smallness of their argument. As we can see, the 

expression for i  only in the first approximation coincides with the classical expression for the 

scalar potential inside the uniform sphere in the right-hand side of (1), which is a consequence 

of the difference between the relativistic and classical uniform systems. 

For the external gravitational potential o  of the fixed sphere, filled with moving particles, 

we obtain the following: 
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As the current radius r  increases, this potential tends to zero. In addition, on the surface of 

the sphere at r a  the external gravitational potential o  in (3) coincides exactly with the 

internal gravitational potential i  in (1). 
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The mass m  is defined as the product of the mass density 0  by the sphere’s volume sV . 

However, the actual gravitational field outside the sphere is defined by the mass bm , which 

according to [1] is equal to: 
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(4) 

The mass bm  represents the sum of the invariant masses of all the particles in the system, 

which is equal to the gravitational mass of the system gm . In view of the definition of the mass 

bm , from (3) it follows: 
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Since after averaging over a sufficient number of particles, the internal vector gravitational 

potential iD  and the external vector gravitational potential oD  of the system are equal to zero 

because of the chaotic motion of the set of particles, the acting gravitational field strength iΓ  

inside the system and strength oΓ  outside the system are actually defined only by the gradient 

of the corresponding scalar potential. In view of (1) and (3), for the strengths we obtain the 

following [1]: 
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The torsion field, which has the same meaning in the covariant theory of gravitation as the 

gravitomagnetic field in gravitoelectromagnetism, and similar in meaning to the magnetic field 

in electromagnetism, on the average is equal to zero, both inside and outside of the system under 

consideration: 

 

0i i  Ω D ,                      0o o Ω D .                               (8) 

 

The gravitational field strength iΓ  and the torsion field 
iΩ  together constitute the 

gravitational field tensor   inside the system, and the quantities oΓ  and oΩ  constitute the 

same tensor outside the system. Since all the expressions in the covariant theory of gravitation 

are derived from the principle of least action in the same way as it is done for the 

electromagnetic field in the curved spacetime, the gravitational field tensor is similar in its form 

to the electromagnetic field tensor [19]. Accordingly, the gravitational field is considered as a 

vector field, and the covariant theory of gravitation represents a vector-tensor theory with regard 

to the metric and the cosmological constant. 

 

3. The energy of the particles in the field and the energy of the field itself 

In [18] the Hamiltonian of the system of particles was found taking into account the four 

fields acting in the system, including the acceleration field, the gravitational field, the 

electromagnetic field and the pressure field, and it was shown that for a stationary system in the 

curved spacetime the Hamiltonian is exactly equal to the relativistic energy of the system. For 

energy the following was found: 
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where , , ,     are the scalar potentials of the acceleration field, gravitational field, 

electric field and pressure field, respectively; 
0q  is the charge density of a particle in the 

reference frame associated with the particle; 0u  is the time component of the four-velocity of 

an arbitrary particle; Φ  is the gravitational tensor; 0  is the magnetic constant; F  is the 

electromagnetic tensor; u  is the acceleration tensor;   is the coefficient of the pressure field; 

f  is the pressure field tensor; 
1 2 3g dx dx dx  is the moving invariant three-volume expressed 

in terms of the product 
1 2 3dx dx dx  of the differentials of the space coordinates, and in terms of 

the square root g  of the determinant g  of the metric tensor taken with a negative sign. 

 

In the expression for the energy (9) the first integral is related to the particles’ energies in 

the fields’ scalar potentials, and the second integral contains four tensor invariants, each of 

which reflects the energy of the respective field. 

We will calculate in the limit of the special theory of relativity the energy of the particles in 

the gravitational field of the system, in which the gravitational vector potential and the 

gravitational torsion field on the average are equal to zero. In this case 
0u c   and the energy 

of the particles is defined as the volume integral taken of the product of the effective mass 

density inside the sphere 0     by the internal scalar potential i . In view of (1-2) we 

obtain the following: 
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We will now calculate the volume integral taken of the tensor invariant of the gravitational 

field, separately for the field inside and outside the sphere. The integral of the tensor invariant 

is expressed in terms of the gravitational field strength Γ  and the torsion field Ω  entering into 

the gravitational tensor  : 
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This integral part is included in this form in the energy of the system (9) and defines there 

the contribution of the gravitational field. Substituting here (6-8), we find: 
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(12) 

 

We can sum up the integrals in (12), that is, calculate the integral of the tensor invariant over 

the entire volume, occupied by the field, and then compare the result with (10). We obtain the 

following: 
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According to (13), the integral of the tensor invariant is two times less in the absolute value 

than the energy of the particles in the gravitational potential. 

 

4. The stress-energy tensor 

If we substitute (13) into the energy (9), we will see that the gravitational field energy in the 

form of the tensor invariant is subtracted from the energy of particles in the gravitational 

potential, so that the total gravitational energy of the system becomes equal to half of the energy 

of particles in the gravitational potential, and in this form it makes contribution into the 

relativistic energy of the system. The same is true for the electric field of the system under 

consideration, if we proceed from the similarity of the equations of both fields. Indeed, the 

electrostatic energy is also calculated as half of the energy of particles in the electric potential. 

The total system’s gravitational energy for the system under consideration can also be 

estimated with the help of the stress-energy tensor of the gravitational field, determined by the 

formula [9], [12], [19]: 
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where g   is the metric tensor. 

 

In the limit of the special theory of relativity, the time component of the given tensor is 

equal to: 
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If we take into account that in the system under consideration the torsion field Ω  is assumed 

to be equal to zero, then the volume integral of 
00U  will differ only by the sign from the integral 

of the tensor invariant in (11). Therefore, in view of (13) the total gravitational energy of the 

system can be expressed as follows: 
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Similarly, the electrostatic energy W  in the absence of the magnetic field B  can be 

calculated by volume integration of the time component 
00W  of the stress-energy tensor of the 

electromagnetic field: 
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Equations (14) and (15) get violated as soon as the torsion field Ω  and, consequently, the 

magnetic field B  appear in the system, for example, due to the coordinated motion of particles 

or charges. 

We note that neither the stress-energy tensor of the gravitational field U
 

 nor the stress-

energy tensor of the electromagnetic field W  
 are part of expression (9). Therefore, in the 

general case, the use of the stress-energy tensors to calculate any part of the energy or the total 

system’s energy is inappropriate. Instead of these tensors, the relativistic energy of the system 

(9) includes the integrals of the fields’ tensor invariants. In this case, expression (9) is derived 

in a covariant way as the Hamiltonian from the principle of least action, and each field is taken 

into account in the Lagrangian and the energy independently of the other fields. 

 

5. Gravitational field of the Universe 

In case of small sizes of a  and r  and the low mass density 0  in the expressions for the 

potentials and the gravitational field strengths, the approximate expressions on the right-hand 

side of (1), (5), (6), (7) are valid. However, if a  or 0  are large enough, it is necessary to use 

the exact formulas containing sines and cosines. Let us take, for example, the gravitational field 

strength oΓ  outside the body in (7), and let us denote: 04
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As long as the angle   is small, we can approximately rely on the right-hand side of (7). If 

the angle   is increased, then the quantity A  would first increase, and then would begin to 
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can find the angle  , at which the quantity A  vanishes. This angle is approximately equal to 

0 4.494   radians. 

At 0   the gravitational field strength oΓ  outside the body in (7) changes its sign, so that 

instead of the gravitational attraction the repulsion appears. We assume that the condition 

0   leads to a physically unjustified situation. Thus, the following inequality must hold: 
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This inequality imposes certain restrictions on the acceptable values of the radius a  of the 

physical system and the invariant mass density 0  in this system. For an example, we will 

estimate   for the entire observable Universe, which at a scale of 100 Mpc or more can be 

considered as a relativistic uniform system due to slight variation in the average mass density 

at different points. 

From observations it follows that the Universe is very close to a state, in which spacetime is 

flat and almost Euclidean. In this case, according to the Lambda-CDM model the total mass-

energy density of the Universe is close to the critical value 2610c
  kg/m3 [20]. The size of 

the Universe can be estimated as the Hubble length 26

0

10H

с
R

H
   m, where 0H  is the Hubble 

parameter. Taking c  in place of 0 , and also HR  in place of a  and using the approximate 

equality 
3

5
G   according to [5], we find the value 4 1.7

2

H
U c

R

c


      radians. 

Since the angle U  is sufficiently large, for modeling the gravitational field of the Universe 

it is necessary to use the refined formulas with sines and cosines. As can be seen from the 

formula for the gravitational field strength inside the system (6), as the current radius r  

increases to the value HR  or more, the values 04r

r

c
   , sin cosr r r rA      and the 

magnitude of the field strength iΓ  first increase, but then begin to decrease. Under the boundary 

condition (16), that is at 0 4.494   radians, both rA , and iΓ , vanish, and at the boundary of the 

Universe, at Hr R , gravitation tends to zero . 

On the other hand, the large-scale structure of the Universe is an observational fact, when 

the matter of clusters of galaxies near the boundary of the Universe does not form large 

spherical systems, but forms a network structure of clusters of galaxies. This can be explained 
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as follows: at large distances gravitation seems to lose its strength, and the distant parts of the 

Universe have weaker influence, as compared to the closer parts, than they should by the 

Newton’s law. We suppose that this effect is exactly described by the formula for the 

gravitational field strength inside the system (6). 

But why should gravitation weaken at large distances? There is a model that combines the 

infinite nesting of matter and the Le Sage’s theory of gravitation, and explains the weakening 

of gravitation by scattering of gravitons on the particles of space environment [21]. In this case, 

it turns out that the observable Universe in its scale is close enough to the limiting sizes of a 

system of stars and galaxies that can be kept from disruption by the ordinary gravitation force. 

 

6. Strong gravitation at the level of nucleons 

Let us now pass on from large sizes and low mass density to the case of small sizes and high 

mass density, and again we will use (6) for the gravitational field strength, but already inside 

the proton. The proton fits well into the relativistic uniform model, since its average density of 

the order of 176 10p    kg/m3 at the proton radius 168.73 10pr
   m, according to [22], is 

only 1.5 times less than the mass density in the center. As the gravitational constant at the 

atomic level we will use the strong gravitational constant 291.514 10sG    m3/(kgs), assuming 

that it is the strong gravitation that holds together the matter of nucleons and other particles 

[12]. 

Just as in (16), we will estimate the value   for the proton using the approximate equality 

3

5
sG  : 

 

04 2.4
p

p p

r

c
      . 

 

As we can see, for the proton the angle p  is close enough to the limiting angle 0 . Hence 

it also follows that it is necessary to use sines and cosines in (6) and (7) in order to describe the 

gravitational field of strong gravitation inside and outside the proton. 

Suppose now that we can add matter inside the proton volume, increasing the proton’s mass 

density to a certain value 0m  in such a way that the angle p  becomes equal to the limiting 

angle 0 . This corresponds to the condition 0 04 4.494
p

m

r

c
     radians, from which we 
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obtain the estimate of the limiting invariant mass density 18

0 2.1 10m    kg/m3 and the estimate 

of the corresponding invariant energy density 2 35

0 0 1.9 10m mc     J/m3. In order to turn 

from these invariant values to the observed values, in the first approximation it suffices to 

multiply the invariant values by the Lorentz factor c  of the motion of matter in the center of 

the proton. As is indicated in [1], this is equivalent to the fact that instead of mass m  we use 

the mass bm , determined in (4), which is equal to the gravitational mass 
gm  of the system. 

On the other hand, in [23, 24] in the Le Sage’s model of gravitation, the energy density of 

gravitons in the vacuum field was found, which was equal to 357.4 10c    J/m3. From the 

equality 0c m c    we obtain the estimate of the Lorentz factor in the center of the proton: 

1.9c  . This also follows directly from (4), where we replace bm  with the proton mass, 

replace 04
a

c
   with 4 2.4

p

p p

r

c
     radians, replace a  with the proton radius pr

, and take into account the ratio 
3

5
sG  . 

But why do we use equality 0c m c   ? The point is that by adding matter inside the proton 

up to the limiting invariant mass density 18

0 2.1 10m    kg/m3, according to (6) and (7) we 

decrease the gravitational field on the proton’s surface to zero. In order to explain this, we need 

to refer to the Le Sage’s model of gravitation. In this model, for the emergence of the gravitation 

force the gradient of the gravitons’ flux is required that falls on the test body. As a rule, such a 

gradient arises between two bodies, leading to the gravitation force, that is, to the attraction of 

bodies. However, the gradient of the gravitons’ flux on the proton’s surface will disappear if 

the energy density c  of the gravitons in the vacuum field becomes equal to the maximum 

energy density inside the proton, equal to 0m c  . The proton will emit as many gravitons as the 

surrounding vacuum, and will become indistinguishable from the vacuum with respect to the 

energy density. In the absence of the gravitons’ gradient the gravitational force disappears, 

which is reflected in expression (6) for the field strength in the limiting case at 

0 04
p

m

r

c
    . 

Let us consider another situation involving strong gravitation. In particular, we will estimate 

the maximum radius Gr  of the system, which is held by strong gravitation and has the mass 

density equal to the critical density 2610c
  kg/m3 in the observable Universe. For this, 
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similarly to (16), the following condition must be fulfilled: 
04G

c

r

c
   . Substituting here 

the approximate equality 
3

5
sG  , we find 71.3 10Gr    m. As in the previous section for the 

case of the Universe, we can now assume that the strong gravitation stops acting at distances 

more than Gr  at the matter density c . 

Dividing the Hubble length 26

0

10H

с
R

H
   m by Gr , we will obtain the relation 

187.7 10H

G

R

r
  . Next, we will use the coefficient P  of similarity in sizes between the atomic 

and stellar matter levels, for the proton and its analogue at the stellar level in the form of a 

neutron star. Dividing the radius of a typical neutron star with the mass of 1.35 Solar masses, 

which is approximately equal to 12 km, by the radius of the proton, we will obtain 
191.4 10P  

. The value P  is of the same order as the ratio H

G

R

r
. This means that the object with the radius 

Gr , held in equilibrium by the strong gravitation and consisting of nucleons or hydrogen atoms, 

is similar to the observable Universe, held in equilibrium by the ordinary gravitation and 

consisting of stars and their clusters. 

In the general case, if in the condition 0 04
a

c
    the mass density 0  is increased, 

then consequently the limiting size a  of the object decreases, for which the gravitational field 

strength is calculated in (6), for both the strong and ordinary gravitation. At sizes exceeding Gr

, the strong gravitation ceases to act in the cosmological space. The ordinary gravitation is much 

weaker than the strong gravitation, but the range of action of the ordinary gravitation in 

cosmological space is much greater. Thus, the strong gravitation at the sizes exceeding Gr  does 

not fully disappear – the ordinary gravitation remains and acts instead of it. However, the action 

of the ordinary gravitation is also limited, at approximately 
26

0

10H

с
r R

H
    m it starts to 

decrease, as was shown in the previous section. Accordingly, at such large sizes the ordinary 

gravitation should be replaced by some other weaker gravitation with a larger radius of action. 

 

7. The neutron star 

In the previous section the estimate of the Lorentz factor at the center of the proton was 

obtained: 1.9c  . Similarly, it is possible to calculate the Lorentz factor for the particles at the 
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center of a typical neutron star with the mass of 1.35 Solar masses, the radius of 12sR   km, 

and the average density of 173.7 10s    kg/m3. For the star we need to take into account the 

ratio 
3

5
G   and the angle of 4 0.546s

s s

R

c
     radians. Substituting now in (4) the 

star mass instead of bm , s  instead of 04
a

c
  , c s  instead of c , and replacing a  by the 

star radius sR , we find 1.04c s  . This allows us to calculate the kinetic energy 

2( 1)k cs pE m c   of the proton as a certain typical particle, moving at the center of the neutron 

star, and to estimate the temperature at the center of the star: 112.8 10sT    K using the equation 

3

2
k sE kT , where k  is the Boltzmann constant and 

pm  is the proton mass. Previously, this 

temperature was calculated in [5] using the assumed, based on the calculations of other authors, 

changing of the mass density inside the star, where the following was obtained: 115 10sT    K. 

These values of the central temperatures can be considered the upper limit, which is valid for 

the moment of the star formation. In this short period of time the star is still in a hot state, the 

nucleons are moving randomly in its matter, and the approach described above is valid. 

Consequently, the Lorentz factor 1.04c s   for the particles at the center is the limiting value 

for the neutron star’s matter. The same applies to the Lorentz factor 1.9c   at the center of 

the proton. 

 

8. Conclusions 

One of the conclusions in [25] was that the energy of the motionless matter of the uniform 

body in the form of a sphere in its proper static gravitational field is twice as large in its absolute 

value as the energy of the gravitational field itself. What will happen, if we turn into the 

relativistic uniform system, in which the matter particles are not motionless, but are moving 

with the Lorentz factor (2), depending on the current radius? The answer to this question follows 

from (13) – both in the classical and in the relativistic case, the relation between the energy of 

the particles in the field and the energy of the field itself remains unchanged. 

In Section 4 we showed that, in the general case, the knowledge of the stress-energy tensors 

of fields is not enough to calculate the relativistic energy, and hence the corresponding inertial 

mass of the system. Thus, the covariant theory of gravitation differs significantly from the 

general theory of relativity, where it is possible to calculate the energy and mass by volume 

integration of the total stress-energy tensor of the system [26]. 
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Applying the expressions for the potentials and the gravitational field strengths (1), (5), (6), 

(7) to the observable Universe and to the proton allows us to specify certain characteristic 

features of these objects. It turns out that these objects are in states close to the maximum 

possible, which requires an accurate account of the effects of the relativistic uniform model 

with respect to the gravitational field. Two extreme cases are possible – the largest possible 

sizes of the object a  and the low mass density 0  (the Universe), and the extremely large mass 

density with small sizes (the proton, the neutron star). In (16) the condition 

0 04 4.494
a

c
       radians is provided, to which the object’s sizes and mass density 

must correspond, if this object is held in equilibrium by its proper gravitational field. This 

allows us to estimate the radius of action of the strong and ordinary gravitation in the 

cosmological space. With the help of (4) it is also possible to calculate the maximum possible 

Lorentz factor of the matter particles at the center of the neutron star and at the center of the 

proton.  

Thus, the results obtained with respect to the dependencies of the gravitational field inside 

and outside the bodies are in good agreement with the conclusions of the Le Sage’s theory of 

gravitation, with the infinite nesting of matter, with the strong gravitation at the level of 

nucleons and with the concept of the dynamic force vacuum field. 

At the next stage, it is planned to relate the conclusions of the covariant theory of gravitation 

and the results of the Einstein-Λ model, described, for example, in [27] and [28], with respect 

to the energy of particles of the physical system. 
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