
 1

On The Proving Method of Fermat's Last Theorem 
Haofeng Zhang  
Beijing, China 

 
Abstract: In this paper the author gives an elementary mathematics method to solve Fermat's 
Last Theorem (FLT), in which let this equation become an one unknown number equation, in 
order to solve this equation the author invented a method called “Order reducing method for 
equations”, where the second order root compares to one order root, and with some necessary 
techniques the author successfully proved when x^(n-1)+y^(n-1)- z^(n-1) <= x^(n-2)+y^(n-2)- 
z^(n-2) there are no positive solutions for this equation, and also proves with the increasing of x 
there are still no positive integer solutions for this equation when x^(n-1)+y^(n-1)- z^(n-1)<= 
x^(n-2)+y^(n-2)- z^(n-2) is not satisfied.  
 

1. Some Relevant Theorems 
There are some theorems for proving or need to be known. All symbols in this paper represent 
positive integers unless they are stated to be not. 
 
Theorem 1.1. In the equation of 

 
⎪
⎩

⎪
⎨

⎧

>
=

=+

2
1),,gcd(

n
zyx
zyx nnn

                 (1-1) 

zyx ,,  meet  
yx ≠ , 

zyx >+ , 
and if 
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then  
yxz >> . 

Proof: Let  
yx = , 

we have 

 nn zx =2  

and 

 zxn =2  

where n 2 is not an integer and x, z are all positive integers, so yx ≠ .  
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so we get 
 .zyx >+  

Since 

nnn zyx =+ ,  

so we have 

 nnnn yzxz >> ,  

and get 
 yxz >>  

when  
yx > . 

 
Theorem 1.2. In the equation of (1-1), zyx ,,  meet  

 1),gcd(),gcd(),gcd( === zxzyyx . 

Proof: Since nnn zyx =+ , if ( ) 1,gcd >yx  then we have ( ) ( )[ ] nnnn zyxyx =×+ ,gcd11  

which causes ( ) 1,,gcd >zyx  since the left side contains the factor of ( )[ ]nyx,gcd  then the 

right side must also contains this factor but contradicts against (1-1) in which 1),,gcd( =zyx , 

so we have ( ) .1,gcd =yx  Using the same way we have 1),gcd(),gcd( == zyzx . 

 
Theorem 1.3. If there is no positive integer solution for  

 ppp zyx =+  

when 2>p  is a prime number then there is also no positive integer solution for  

 ( ) ( ) ( )kpkpkp zyx =+ . 

Proof: Since ppp zyx =+ has no positive integer solution, so there still no positive integer 

solution for 

( ) ( ) ( )pkpkpk zyx =+  

which means there is also no positive integer solution for  

 ( ) ( ) ( )kpkpkp zyx =+ . 

So we only need to prove there is no positive integer solution for equation (1-1) when n  is a 
prime number. 
 
Theorem 1.4. There are no positive integer solutions for equation (1-1) when x  or y  is a 
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prime number . 
Proof: When x  is a prime number, since 

( )( )1221 ... −−−− ++++−=−= nnnnnnn yzyyzzyzyzx , 

so we have 

 ( ) xxyz =− ,gcd , 

which means 
 xyz ≥− , 
we have 
 zyx ≤+ , 
that contradicts against Theorem 1.1 in which zyx >+ , so it is with y , which means there 
are no positive integer solutions for equation (1-1) when x  or y  is a prime number . 
 
Theorem 1.5. There are no positive integer solutions for equation (1-1) when z  is a prime 
number . 
Proof: When z  is a prime number, from Theorem 1.12 we only consider the case of 2>n  is  
a prime number, since 

( )( )11 ... −− +++==+ nnnnn yxyxzyx , 

so we have 

 ( ) zzyx =+ ,gcd , 

from Theorem 1.1 we know zyx >+ , so we get 

 zyx 2≥+ , 

that contradicts against Theorem 1.1 in which zyxyxz 2<+⇒>> , which means there are 

no positive integer solutions for equation (1-1) when z  is a prime number . 
 
Theorem 1.6. There are no positive integer solutions for 

 nnn zy =+1 . 

Proof: Since  

 ( )( )1221 ...1 −−−− ++++−=−= nnnnnn yzyyzzyzyz  

where 
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that causes z, y to be non positive integers, so there are no positive integer solutions for 

nnn zy =+1 . 
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Theorem 1.7. There are no positive integer solutions for 

nnn zy =+2 . 

Proof: Since 

( )( )1221 ...2 −−−− ++++−=−= nnnnnnn yzyyzzyzyz , 

if 
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then taking the least value for 3,2 == zy , we have 

 nnnn 22...323 121 >++×+ −−−  

when 2>n  that is impossible. If  
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then 2>z  and taking the least value of 3,2 == zy , we get 

 jnnn 22...323 121 >++×+ −−−  

with 2>n  that is also impossible, so there are no positive integer solutions for 

nnn zy =+2 . 

 
Theorem 1.8. There are no positive integer solutions for equation (1-1) when ∞→n  and 

zyx ,,  in equation (1-1) meet 

.3,1,2,22 >>><< zyxxzy nn  

Proof: Since  nnn zyx =+ , let yx > , we get 
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since  
yxz >> ,  

so we have 

 xz n 2< , 

and 
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which means there are no positive integer solutions for equation (1-1) when ∞→n .  

According to Theorem 1.6, 1.7 we have 3,1,2 >>> zyx . 

If 
2

n
n zy ≥ , since yx > , so we have 

2

n
n zx ≥ ,and 

 nnn zyx >+ , 

that is impossible. So we have 

 zyn <2 . 

Theorem 1.9. There are no positive integer solutions for equation (1-1) when 100,, ≤zyx . 

Proof: From Theorem1.8, we know xzy nn 22 << , so we have 

 xy
n

<<
2

100
, 

when 3=n , we have the smallest values for x , so we get 
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2
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, 

from Theorem 1.4, 1.5 we know zyx ,,  are all not prime numbers. There are below 

combinations of zyx ,,  when 100,, ≤zyx : 
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Here we take nnn 1097 =+  for example to explain how to prove. We plot the graph for this 

equation as showed in Figure 1-1.  
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Figure 1-1  Graph of nnnnf 1097)( −+=  

 

Obviously for equation nnnnf 1097)( −+=  in Figure 1-1, we have 43 << n  is not an 

integer so there are no positive integer solutions, using this method we have the conclusion of 
there are no positive integer solutions for equation (1-1) when 100≤z . 
 

Using the method of which we prove Theorem 1.6, 1.7 we can prove when 100, ≤yx , there are 

no positive integer solutions for equation (1-1). 
 
Theorem 1.10. In the equation of (1-1), zyx ,,  meet  

 ininin zyx −−− >+ , 

 ininin zyx +++ <+ , 

where  
1≥> in . 

This theorem holds true when zyx ,,  are positive real numbers but n  must be a positive 
integer. 
Proof: From equation (1-1), since 

 nnn zyx =+ , 

from Theorem 1.1, since yxz >> , we have 
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 ( )ininiiniinin zyzxzyx +−−++ =+<+ , 

so we have 

 ininin zyx −−− >+ . 
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 ininin zyx +++ <+ . 

This theorem means given zyx ,,  if equation (1-1) has one positive integer solution then this 
solution is the only one. 
 
Theorem 1.11. There are no positive integer solutions for equation (1-1) when  
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must be satisfied. 
Proof: In equation (1-1), let 
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Since we reduce the order of equation so the method is called “Order reducing method for 
equations”. Let yx >  and 
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There are two cases for 22,cebf  when 22 cebf ≥  and 22 cebf < . 

Case A: If 22 cebf ≥ , from (1-2) when  
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222
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also from Theorem 1.10 we have 0111 >−+ −−− nnn zyx , compare to (1-3) we get 
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that is impossible since from Theorem 1.8 we know 2≥y  and 3>z .  
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 cebfcezbfy +≤+  

that is impossible since from Theorem 1.8 we have already known 2≥y  and 3>z . 

Case B: If 22 cebf < , from (1-2) when  
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where possible values for x  are 1, 2 but according to Theorem 1.6, 1.7 we know there are no 
positive integer solutions.  
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is not possible since 0≤x . 
 
So we have the conclusion of there are no positive integer solutions for equation (1-1) when 
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which must be satisfied to have positive integer solutions for equation (1-1). 
 

2. Proving Method 
From Theorem 1.11 we know in order to have positive integer solutions for this equation, 
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 must be satisfied. We give the graph of this equation as showed in 
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, where '// CDAB . 
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Figure 2-1  Graph of nnn zyx =+  when 1222
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1. In Figure 2-1 we have 
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when 1>
AC
BD

 we have 

0' >∠+∠=∠−∠ BEDCDDCDEABE ,         
which means  

CDEABE ∠>∠ .   

It is also very clear that if CDEABE ∠≤∠  then 1<
AC
BD

. 

 
From Theorem 1.9 we know if 100≤z  then there are no positive integer solutions for equation 
(1-1), when 3=n (which is the worst case) we have 
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and 

 099.179>∠>∠ CDEABE , 

which means 0180, →∠∠ CDEABE , so CDEABE,  are almost lines with 3,100 ≥> nz , 

that leads to 1
2
1
<→

AC
BD

, this contradicts against ACBD > . So when z  is large enough 

then 1222
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, from Theorem 1.11 we know there are no positive integer 

solutions for equation (1-1). 
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we give the function plot for it in Figure 2-2.  
 

 

Figure 2-2  Graph of ⎟
⎠
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where we take =π 3.1415926535897932 
 

Obviously CDEzf ∠=)(  is a “Monotonically increasing function” when 3≥z , and with the 

increasing of z  the value of CDEzf ∠=)(  is close to 0180 . It is very clear that 

CDEABE ∠−∠  is decreasing with the increasing of z , since  

( ) CDEBEDCDDCDEABE ∠−<∠+∠=∠−∠ 0180' , 

where CDE∠  is increasing. When 3=n  since 099.179>∠CDE , so we have 

 ( ) 0000 01.099.179180180' <−<∠−<∠+∠ CDEBEDCDD , 

which means 

 001.0', <∠∠ CDDBED , 

and when z  or n  is large enough, we have 

 =∠−∠ CDEABE ( ) 0' →∠+∠ CDDBED , 

which means ACBD <  that contradicts against ACBD > . So when z  or n  is large 

enough then 1222
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<
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= −−−

−−−

nnn

nnn

zyx
zyx

AC
BD

, from Theorem 1.11 we know there are no positive 

integer solutions for equation (1-1). 
 



 13

3. In Figure 2-1 we have 
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From (1-1) we have 
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We give the plot of CDEABEyxf ∠−∠=),(  using Excel VBA program that showed below: 

n = 3 

For x = 1 To 10 ^ 5 Step 1 

    For y = 1 To x - 1 Step 1 

        z = (x ^ n + y ^ n) ^ (1 / n) 

        t1 = z ^ n - z ^ (n - 1) 

        t2 = 1 / (z ^ (n - 1) - z ^ (n - 2)) 

        t3 = (x ^ n + y ^ n) - (x ^ (n - 1) + y ^ (n - 1)) 

        t4 = 1 / ((x ^ (n - 1) + y ^ (n - 1)) - x ^ (n - 2) - y ^ (n - 2)) 

        CDE = Application.Atan2(t1, 1) - Application.Atan2(t2, 1) 

        ABE = Application.Atan2(t3, 2) - Application.Atan2(t4, 2) 

        R = CDE - ABE 

   Cells(i, 1) = "z=" & z 

   Cells(i, 2) = "x=" & x 

   Cells(i, 3) = "y=" & y 

   Cells(i, 4) = R 

i = i + 1 

If i > 65536 Then End 

    Next y 
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Next x 

Figure 2-3 shows the results, obviously 3,),( =∠−∠= nCDEABEyxf  is decreasing. 

 

Figure 2-3  Graph of 3,),( =∠−∠= nCDEABEyxf  
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, 

from (1-1) we have 

 ( )nnn xzy
1

−= . 

We give the plot of 
AC
BDxzf =),(  using Excel VBA program that showed below: 

n = 3 

For z = 10 ^ 7 To 10 ^ 9 Step 1 

    For x = z / (2 ^ (1 / n)) To z - 1 Step 1 

        y = (z ^ n - x ^ n) ^ (1 / n) 
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        t1 = z ^ n - z ^ (n - 1) 

        t2 = x ^ n + y ^ n - x ^ (n - 1) - y ^ (n - 1) 

        t3 = z ^ n - z ^ (n - 2) 

        t4 = x ^ n + y ^ n - x ^ (n - 2) - y ^ (n - 2) 

        BD = (t1 ̂  2 + t2 ̂  2 + 2 - 2 * Sqr((t1 ̂  2 + 1) * (t2 ̂  2 + 1)) * Cos(Application.Atan2(t2, 

1) - Application.Atan2(t1, 1))) 

        AC = (t3 ̂  2 + t4 ̂  2 + 8 - 2 * Sqr((t3 ̂  2 + 4) * (t4 ̂  2 + 4)) * Cos(Application.Atan2(t4, 

2) - Application.Atan2(t3, 2))) 

        R = (BD / AC) ^ 0.5 

        Cells(j, 1) = "z=" & z 

        Cells(j, 2) = "x=" & x 

        Cells(j, 3) = "y=" & y 

        Cells(j, 4) = R 

        j = j + 1 

        If j > 65536 Then End 

    Next x 

Next z 

We give the plot of 3,),( == n
AC
BDxzf  when zzxz

n
~

2
,107 == , 3=n , it is showed in 

Figure 2-4.  

 

Figure 2-4  Graph of 3,),( == n
AC
BDxzf  

 

With the increasing of nz,  the value of 
AC
BDxzf =),(  will be smaller, and we are sure of 

when ∞→nz,  or get larger, the conclusion holds. In fact even 610=z , we can still have a 

result of 40),( <=
AC
BDxzf .  
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3. Conclusion 
In this paper we first prove there are no positive integer solutions for equation (1-1) when 

1222

111

≤
−+
−+

−−−

−−−

nnn

nnn

zyx
zyx

, and then prove with the increasing of x the conclusion still holds when  

1222

111

>
−+
−+

−−−

−−−

nnn

nnn

zyx
zyx

 under the assumption of 610<z  there are no positive integer solutions 

for equation (1-1). 


