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Abstract: This paper investigates the characteristics of the power series representation of the Riemann Xi function. A detailed
investigation of the behaviour of the zeros of the real part of the power series and the behaviour of the curve, combined with a
substitution of polar coordinates in the power series and in the definition of the critical strip (leading to a critical area), and the
relationship with the zeros of the imaginary part of the power series leads to the conclusion that the Riemann Xi function only has
real zeros.

Introduction

This paper is a preprint of a paper submitted to The IET Journal of
Engineering. If accepted, the copy of record will be available at the
IET Digital Library. This paper addresses one of the key unresolved
questions arising from Riemann’s original 1859 paper regarding the
distribution of prime numbers (’Ueber die Anzahl der Primzahlen
unter einer gegebenen Grösse’[1] - translation in Edwards [2]) - the
truth or otherwise of the Riemann Hypothesis ( ’One finds in fact
about this many real roots within these bounds and it is very likely
that all of the roots are real’ - referring to the roots of the Riemann
Xi function).

This paper starts from the power series representation of the Xi func-
tion (’This function is finite for all values of t and can be developed
as a power series in tt which converges very rapidly’)(Reimann)[1]
and (Edwards)[3].

Section 1 defines the power series that is being investigated, exam-
ines the key points of the behaviour of the series coefficients and
examines the shape of the real part curve when there is no imaginary
component.

Section 2 deals with the effects of a change of coordinates to polar
coordinates (both on the function and on the shape of the critical
strip).
Section 3 investigates the paths of the zeros of both real and imagi-
nary parts of the Xi function.

Section 4 develops the implications of the earlier investigations and
the change of coordinates, leading to the conclusions (the proof of
the Riemann Hypothesis) in Section 5.

1 Power Series

1.1 Original Equation

Riemann’s original equation in his paper (Riemann)[1]:

ξ(t)=4
∫∞
1 (d/dx(x3/2ψ′(x)))x−1/4cos( t2 logx)dx

where ψ(x) =
∑∞
m=1 e

−m2πx

To avoid ξ-Ξ confusion, the equation from Edwards[3] is used:

ξ(s)=4
∫∞
1 (d/dx(x3/2ψ′(x)))x−1/4cosh( 12 (s− 1

2 )logx)dx

This leads to (Edwards)[3]:

ξ(s) =
∑∞
n=0 a2n(s− 1

2 )2n

where a2n=4
∫∞
1 (d/dx(x3/2ψ′(x))x−1/4 logx2n

22n(2n)!
)dx

Now, if t=(a+bi), then (s- 12 ) = it = (ai-b), and:

ξ(s)=
∑∞
n=0 a2n(ai− b)2n

Due to the fact that all a2n are positive (Edwards p41)[4], it imme-
diately follows from the above that if a=0, there are no real zeros
of the function and if b=0 then there are potentially many real zeros
(depending on the actual values of a2n).

It is important to note at this point that it has been proven that

ξ(s)=
∑∞
n=0 a2n(ai− b)2n

(a polynomial in tt) has been proven to converge as the coefficients
decrease rapidly; this result is necessary in the convergence of the
product representation (Hadamard) [5].

1.2 Coefficients

In appendix A Table 1 shows the values for the first 50 coeffi-
cients (a2n). Note that they are monotonically strictly decreasing
and rapidly decreasing (necessary for rapid convergence - this will
continue for all the coefficients). As |(ai-b)|increases, then the num-
ber of terms in the series expansion needed for convergence of the
result increases. This is consistent with the values of the coefficients.

Figures 1 and 2 illustrate this.

Fig. 1: ξ(s) First 20 terms in power series.

1.3 Real Curve Shape

Looking at ξ(s)=
∑∞
n=0 a2n(ai− b)2n in more detail:
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Fig. 2: ξ(s) First 50 terms in power series. Note greater r before non
convergence.

Firstly setting b=0 to give ξ(s)=
∑∞
n=0 a2n(ai)2n

Secondly investigating some of the properties of the terms of the
Riemann definition of ξ(s) (Edwards P16)[6] for s = ( 12 + ri); this
is the equivalent of varying a and setting b=0 in the power series (we
will see below in the polar coordinates section why r is used as the
variable):

ξ(s) = Π( s2 )(s− 1)π
−s
2 ζ(s)

a) The Π( s2 ) term, where Π is the factorial function. The magnitude
of the factorial function for real numbers of increasing size increases
rapidly.

However, the behaviour for complex numbers with a fixed real part
and an imaginary part of increasing size is very different - the
magnitude of the function decreases very rapidly with increasing
imaginary number size.

In addition, it is oscillatory for both real and complex components.

This behaviour can be seen by investigating the product representa-
tion of the factorial function for the complex number s as known to
Euler [8]:

Π(s) = lim
N→∞

N !

(s+ 1)(s+ 2)...(s+N)
(N + 1)s

For s=(a+bi), where |a|<1, then, for any N, as b increases in mag-
nitude both real and imaginary components of the (N + 1)s term
are oscillatory with a constant magnitude of oscillation, while the
denominator increases rapidly in magnitude.
In the limit, this leads to an oscillating function of rapidly decreasing
magnitude.

See Figure 3 and Figure 4 for illustrations.

Fig. 3: Π( 12 + ri), r< 18

Fig. 4: Π( 12 + ri), r< 30 Note rapid decrease in magnitude

b) (s-1) The magnitude of this (non oscillatory) term increases
slowly with the magnitude of s.

c) π
−s
2 . The real and imaginary components of this term oscillate

with a fixed magnitude of oscillation.

d) ζ(s). The real and imaginary components of this term oscillate
with a very slowly increasing magnitude (see Figure 5 for illustra-
tion).

Fig. 5: ζ( 12 + ri)

Looking at the product of the individual terms, this means that the
curve is oscillatory with decreasing magnitude of oscillation as r
increases.

In addition, since we know that for b=0 then there is no imaginary
element of the function, the function tends to zero in the limit (as
expected).

This reduction in magnitude can be seen in the curves with the actual
a2n below. Figure 6 and Figure 7 show 2 sections of ξ(s) with b=0.

Fig. 6: ξ(s) No imaginary component, r< 25
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Fig. 7: ξ(s) No imaginary component, r< 40 Note rapid decrease
in magnitude

2 Polar Coordinates

2.1 Substitution

Using de Moivre’s Theorem (Heading p115 [7]) (ai− b)2n can be
rewritten as r2n(cosθ + isinθ)2n and expanded as r2ncos2nθ +
ir2nsin2nθ, taking r to range from 0 to∞ and θ to range from π

2
to π for the most relevant quadrant. The structure of the expression
(see below) means that the π to 2π half is a reflection of the 0 to
π half. The behaviour of the expression is markedly different for
r ≤ 1. From this point, I will consider only r > 1 (since we know
that there are no relevant zeros for r ≤ 1).

2.2 Complete Expression

The above results in: ξ(s)=
∑∞
n=0 a2nr

2n(cosθ + isinθ)2n

=a0 + a2r
2cos2θ + a4r

4cos4θ + a6r
6cos6θ + a8r

8cos8θ...

+i(a2r
2sin2θ + a4r

4sin4θ + a6r
6sin6θ + a8r

8sin8θ...)

Both real and imaginary parts of the expression are single valued for
each r, θ combination. Both real and imaginary parts have a period
of π. For θ = π

2 the expression is equal to ξ(s)=
∑∞
n=0 a2n(ai)2n.

For the actual values of a2n the expression does have multiple real
zeros.

Figure 8 and Figure 9 show the variation of the function with varia-
tion in θ.

Fig. 8: ξ(s) with varying θ

2.3 Critical Strip to Critical Area

The polar coordinate substitution is very interesting here. The criti-
cal strip (between 1

2 + /− 1
2 ) changes to rcosθ=+/− 1

2 .

This means that as r increases, the width of the critical area reduces
as cosθ reduces and so θ reduces, leading to useful limits that can be

Fig. 9: ξ(s) with varying θ and larger r.

exploited.

3 Paths of Zeros

3.1 Real Part Zeros

Using θ = (π2 + ε):

cos2θ = cos(2(π2 + ε)) = cosπcos2ε - sinπsin2ε = - cos2ε and
cos(2(π2 − ε)) = cosπcos2ε + sinπsin2ε = - cos2ε

Similar expressions can be generated for cos2nθ for all values of n
with similar results (except alternating signs).

This means that the path of the function a0 + a2r
2cos2θ +

a4r
4cos4θ + a6r

6cos6θ + a8r
8cos8θ...=0 is reflected across θ =

π
2 for varying r.

This equation describes a family of curves.

No function in the family intersects any other function in the family
(the function is single valued for each r,θ combination).

For the actual values of a2n, it appears that each function in the fam-
ily will pass through θ = π

2 .

When θ 6= π
2 , then we know that the function extends from the zeros

on the θ = π
2 line.

If a function does not pass through θ = π
2 , then it will have 2

reflected branches on either side of θ = π
2 (non-intersecting with

any other of the family of functions).

3.2 Imaginary Part Zeros

Using θ = (π2 + ε):

sin2θ = sin(2(π2 + ε)) = sinπcos2ε + cosπsin2ε = - sin2ε and
sin(2(π2 − ε)) = sinπcos2ε - cosπsin2ε = + sin2ε

Similar expressions can be generated for sin2nθ for all values of n
with similar results (except alternating signs).

This means that the path of the function a2r2sin2θ + a4r
4sin4θ +

a6r
6sin6θ + a8r

8sin8θ...=0 is reflected across θ = π
2 for varying

r.

This equation describes a family of curves.

No function in the family intersects any other function in the family
(the function is single valued for each r,θ combination).
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For the actual values of a2n it appears that each function in the fam-
ily will pass through θ = π

2 .

When θ = π
2 , then we know that the function is identically zero.

If a function does not pass through θ = π
2 , then it will have 2

reflected branches on either side of θ = π
2 (non-intersecting with

any other of the family of functions).

The real part and imaginary part have the same number of pairs of
zeros (the imaginary part has an additional zero at r=0).

See Figure 10 for an illustration of the paths of real and imaginary
zeros for the actual values of a2n in the same graph.
Note that the paths of the zeros do not intersect in these samples (as
shown above), except where the imaginary function is identically
zero.

Fig. 10: ξ(s) real and imaginary part zeros.

3.2 (Real + Imaginary) and (Real - Imaginary) Part Zeros

The complete function will be zero when both real and imaginary
expressions are equal to each other and both zero. Thus we are look-
ing for common zeros of these two expressions:

a0 + a2r
2cos2θ + a4r

4cos4θ + a6r
6cos6θ + a8r

8cos8θ...=0 (1)
and a2r2sin2θ + a4r

4sin4θ + a6r
6sin6θ + a8r

8sin8θ...=0 (2)

It is useful to investigate the combined expressions ((1)+(2)) and
((1)-(2)). If and only if they are simultaneously zero then the com-
plete function is zero.

Starting with ((1)+(2)):
a0 + a2r

2cos2θ + a4r
4cos4θ + a6r

6cos6θ + a8r
8cos8θ...

+ a2r2sin2θ + a4r
4sin4θ + a6r

6sin6θ + a8r
8sin8θ...=0

Differentiating with respect to r:

a2(2rcos2θ + r2(−2sin2θ)dθ/dr)
+ a4(4r3cos4θ + r4(−4sin4θ)dθ/dr)
+ a6(6r5cos6θ + r6(−6sin6θ)dθ/dr) + ...
+ a2(2rsin2θ + r2(2cosθ2)dθ/dr)
+ a4(4r3sin4θ + r4(4cos4θ)dθ/dr)
+ a6(6r5sin6θ + r6(6cos6θ)dθ/dr) + ... = 0

dθ/dr = (a2(2rcos2θ + 2rsin2θ)
+ a4(4r3cos4θ + 4r3sin4θ)
+ a6(6r5cos6θ + 6r5sin6θ) + ...)/(a4(r22sin2θ − r22cos2θ)
+ a4(r44sin4θ − r44cos4θ)
+ a6(r66sin6θ − r66cos6θ) + ...)

=(1/r)(a2(2r2cos2θ + 2r2sin2θ) + a4(4r4cos4θ + 4r4sin4θ)
+ a6(6r6cos6θ + 6r6sin6θ) + ...)/(a2(r22sin2θ − r22cos2θ)
+ a4(r44sin4θ − r44cos4θ) + a6(r66sin6θ − r66cos6θ) + ...)−

(3)

Similarly starting with ((1)-(2)):

a0 + a2r
2cos2θ + a4r

4cos4θ + a6r
6cos6θ + a8r

8cos8θ...-
(a2r

2sin2θ + a4r
4sin4θ + a6r

6sin6θ + a8r
8sin8θ...)=0

Differentiating with respect to r:

a2(2rcos2θ + r2(−2sin2θ)dθ/dr)
+ a4(4r3cos4θ + r4(−4sin4θ)dθ/dr)
+ a6(6r5cos6θ + r6(−6sin6θ)dθ/dr) + ...
− (a2(2rsin2θ + r2(2cosθ2)dθ/dr)
+ a4(4r3sin4θ + r4(4cos4θ)dθ/dr)
+ a6(6r5sin6θ + r6(6cos6θ)dθ/dr) + ...) = 0

dθ/dr = (a2(2rcos2θ − 2rsin2θ) + a4(4r3cos4θ − 4r3sin4θ)
+ a6(6r5cos6θ − 6r5sin6θ) + ...)/(a4(r22sin2θ + r22cos2θ)
+ a4(r44sin4θ + r44cos4θ) + a6(r66sin6θ + r66cos6θ) + ...)

=(1/r)(a2(2r2cos2θ − 2r2sin2θ) + a4(4r4cos4θ − 4r4sin4θ)
+ a6(6r6cos6θ − 6r6sin6θ) + ...)/(a2(r22sin2θ + r22cos2θ) +
a4(r44sin4θ + r44cos4θ)
+ a6(r66sin6θ + r66cos6θ) + ...)− (4)

Reusing: cos2θ = cos(2(π2 + ε)) = cosπcos2ε - sinπsin2ε = - cos2ε
and cos(2(π2 − ε)) = cosπcos2ε + sinπsin2ε = - cos2ε
sin2θ = sin(2(π2 + ε)) = sinπcos2ε + cosπsin2ε = - sin2ε and
sin(2(π2 − ε)) = sinπcos2ε - cosπsin2ε = + sin2ε

Similar expressions can be generated for sin2nθ and cos2nθ for all
values of n with similar results (except alternating signs).

The derivative expression (3) for ε is the negative of (4) for - ε and
that for (4) for ε is the negative of (3) for - ε - that is, the derivative
expressions (3)and (4) are reflected through θ = π

2 and if they cross
θ = π

2 then there will be a coincident pair of real zeros on θ = π
2 .

If they do not cross θ = π
2 , then there will be a reflected pair of

imaginary zeros tracing reflected paths.

In addition, as the functions are single valued for each r, θ combina-
tion then there are no intersections with any other of the same family
of functions.

This means that there will be no additional complete function zeros
generated - each pair of imaginary part zeros will only coincide with
one pair of real part zeros.

One can also see from the above expressions that as r increases, the
derivative of each function tends to 0 (1/r tends to 0 as r becomes
large) (i.e one would expect to see an increasing number of almost
parallel, almost horizontal functions as r increases).

See Figure 11 for for illustrations of the paths of the ((1)+(2)) and
((1)-(2)) zeros for the actual values of a2n.

4 Development and Implications

4.1 Assumed Function Φ

Assuming a function Φ=
∑∞
n=0 d2n(ri)2n with only real zeros and

d0 = a0

This function will also be oscillatory with rapidly decreasing magni-
tude of oscillation.

Expanding: Φ=
∑∞
n=0 d2n(ri)2n=d0 − d2r2 + d4r

4 − d6r6 + d8r
8...
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Fig. 11: ξ(s) (real + imaginary) and (real - imaginary) zero paths.

Investigating Φ = d0 + d2r
2cos2θ + d4r

4cos4θ + d6r
6cos6θ +

d8r
8cos8θ..., which has only real zeros at θ = π

2

For this section, keep in mind the critical area, with a boundary
defined by rcosθ=+/− 1

2 .

Looking at the behaviour of the zeros of the function as we vary the
coefficients of the expression:

Firstly d0:

As a real constant added to the sum of the variable components of
the real expression, this has the effect of moving the sum of the vari-
able components vertically.

When the sum of the variable components is negative and varies in
magnitude about d0 for varying r, then there are real zeros.

If not, then there will not be real zeros.

In section 1.3 it was shown that the curve is oscillatory with ever
decreasing magnitude as r increases.

This means that if d0 varies by any amount δ (however small), then
there will be a value of r above which there will be no more real
zeros (ie only imaginary zeros - once δ is larger than the magnitude
of the function).

Also, considering the rcosθ = 1
2 limit, then at some point (for

greater r), then the distance of the imaginary zeros from the θ = π
2

line will be greater than that limit (ie zeros outside the critical area)
and will continue to be greater than that limit.

See Figures 12 and 13, for illustrations if we vary a0.

Fig. 12: ξ(s) + 1E-6 (real + imaginary) and (real - imaginary) zeros.

Secondly d2n:

If we vary a single coefficient d2n by any amount δ (however small),
then we are adding (or subtracting) δr2ncos2nθ to (or from) the

Fig. 13: ξ(s) + 1E-8 (real + imaginary) and (real - imaginary) zeros.

expression.

When θ = π
2 , leading to adding (or subtracting) δr2n, we can see

that this has the same effect as varying d0 , but with a continually
increasing deviation as r increases - the key point being that it leads
to zeros outside the critical area.

This result holds if we vary multiple d2n - there will be a value of r
above which there will be an increasing deviation of the imaginary
zeros from the θ = π

2 line, at some point exceeding the rcosθ = 1
2

limit and thus zeros outside the critical area.

Varying θ has the same effect as varying all the d2n (except d0),
leading to zeros outside the critical area.

See Figures 14 and 15 for illustrations if we vary a2n.

Fig. 14: ξ(s) + 1E-12(r10) (real + imaginary) and (real - imaginary)
zeros.

Fig. 15: ξ(s) + 1E-13(r10) (real + imaginary) and (real - imaginary)
zeros.

From these results for θ = π
2 (equivalent to s= ( 12+it)), combined

with the facts that 1) a0 = d0, 2) the two expressions have the same
structure and 3) ξ(s) has many real zeros and no zeros outside the
critical area, we can conclude that Φ and ξ(s) have the same coeffi-
cients and so are the same function. For clarity, Φ and the real part
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of ξ(s) have all real zeros.

5 Conclusions

Known previously - there can be only zeros of the complete function
where zeros of the real part and zeros of the imaginary part coincide.

Known previously - ξ(s) does not have zeros outside the critical
area/critical strip.

In Section 4 it was shown that the real part of ξ(s) has all real zeros
and that varying θ (i.e adding an imaginary component to the power
series in polar coordinates; equivalent to having a real part of s 6= 1

2
using the original coordinates) results in zeros outside the critical
area/critical strip.

In Section 3 it was shown that there are no additional zeros of the
complete function due to the coincidence of imaginary zeros from
the real and imaginary parts of ξ(s).

Combining these conclusions, all of the roots of the Riemann Xi
function (where s=( 12 + ti)) are real - QED.
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Appendix A - Coefficients

Table 1 The First 50 a2n Coefficients of ξ(s) calculated numerically with MATLAB.

Coefficients Values

a0 0.497120778

a2 0.011485972

a4 0.000123452

a6 8.32355E-07

a8 3.99223E-09

a10 1.4616E-11

a12 4.27454E-14

a14 1.03096E-16

a16 2.09977E-19

a18 3.67814E-22

a20 5.62286E-25

a22 7.59176E-28

a24 9.14334E-31

a26 9.90611E-34

a28 9.72469E-37

a30 8.7046E-40

a32 7.14349E-43

a34 5.40097E-46

a36 3.77845E-49

a38 2.45541E-52

a40 1.48738E-55

a42 8.42529E-59

a44 4.4758E-62

a46 2.23578E-65

a48 1.05272E-68

a50 4.68274E-72

a52 1.9719E-75

a54 7.87603E-79

a56 2.9891E-82

a58 1.07972E-85

a60 3.71788E-89

a62 1.22216E-92

a64 3.84066E-96

a66 1.1553E-99

a68 3.3305E-103

a70 9.2123E-107

a72 2.4475E-110

a74 6.2524E-114

a76 1.5372E-117

a78 3.641E-121

a80 8.3152E-125

a82 1.8325E-128

a84 3.9005E-132

a86 8.0242E-136

a88 1.5967E-139

a90 3.0751E-143

a92 5.7365E-147

a94 1.0371E-150

a96 1.8185E-154

a98 3.0939E-158
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