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Introduction

In this paper we derive from scratch
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where B2p are the Bernoulli numbers. Both are attributed to Euler [3].

Taylor series for sin

At some point someone determined that there is a relationship between nth order

derivatives and coefficients of polynomials. This can be anticipated by the easiest

observation; if f .x/ D ax2 C bx C c, the coefficient of x0 is given by the zero

order derivative evaluated at x D 0: f .0/ D c. As we take ever increasing

derivatives the constant of the derivative becomes a new coefficient. So, f 0.x/ D

2ax C b and f 0.0/ D b. When we repeat this pattern, we notice that a factorial

is building by way of the formula .cxn/0 D cnxn�1. Factorials need to be divided

out. Here it is for the quadratic: f 00.x/ D 2a gives

f .2/.0/

2Š
D a:

1



In general, for a function f .x/ with derivatives

f .x/ D

1X

kD0

f .n/.0/

nŠ
xn:

This is termed the Taylor (actually Maclaurin) series expansion of f .x/ about the

point 0. It is a Maclaurin expansion when the point used, the center is 0.

The power of these power series (an infinite series with xn) is that they al-

low for approximations to an arbitrary precision. The transcendental functions in

particular are in need of such. What after all can we say about sin.1:2387/ and

the like? We only have exact evaluations possible for this trigonometric function

when the argument is a fraction with �: �=2, �=3, etc.. If we have a power series

for sin we can evaluate any x value.

We know the derivative of sin is cos and taking nth derivatives is not difficult;

the functions just cycle around:

sin0
D cosI cos0

D � sinI .� sin/0
D � cosI and .� cos/0

D sin :

As ˙ sin.0/ D 0, cos.0/ D 1, and � cos.0/ D �1, we can easily generate a

Maclaurin series for sin:

sin.x/ D

1X

kD0

.�1/n x2nC1

.2n C 1/Š
: (2)

The odd 2n C 1 follows from the even terms, thanks to ˙ sin.0/ D 0, vanishing.

Properties of polynomials

Power series are like an infinite polynomial and polynomials have coefficients that

are related to their roots – what x values make them 0. So, for example, expanding

.x � a/.x � b/.x � c/ gives

x3 � .a C b C c/x2 C .ab C ac C bc/x � abc: (3)

We can sense that in general the constant will be the sum of the roots taken all at

a time, hence one term, and the coefficient of x will be the sum of the roots taken

(or multiplied) n � 1 at a time. We are obtaining sums that remind us of the goal

of determining the sum in (1). In comparing this sum with the ones in (3) and the

powers of x in (2), we have a puzzle.
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Puzzle of (1)

We’d like to get the polynomial of sin x to have a x term and a 1 constant. If this

were true then, using (3) as a model,

x3 � .a C b C c/x2 C .ab C ac C bc/x � abc

abc

gives a coefficient of x equal to 1=c C 1=b C 1=a, a sum of the reciprocals of the

roots. The roots of sin are ˙n� .

First
1X

kD0

.�1/n x2nC1

.2n C 1/Š
D x
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.2n C 1/Š

gives

sin x D x.1 � x2=3Š C x4=5Š � : : : /

which gives
sin x

x
D .1 � x2=3Š C x4=5Š � : : : /:

Letting y D x2, we get a infinite polynomial which we set to 0:

0 D 1 � y=3Š C : : : :

This has a constant of 1, so the sum of the roots is 1=3Š D 1=6 and the roots are

given by the squares of sin x’s roots (just using y D x2). Thus
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and this implies (1).
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