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Haofeng Zhang
Beijing, China

Abstract: In this paper for equation AX"+By"=Cz* , where m,n,k > 2, x,y,z > 2, A,B,C=1 and
gcd(Ax,By,Cz)=1, the author proves there are no positive integer solutions for this equation using
“Order reducing method for equations” that the author invented for solving high order equations,
in which let the equation become two equations, through comparing the two roots to prove there
are no positive integer solutions for this equation under the assumption of no positive integer
solutions for AX™+By"=C*3* when Ax™'+By"'>Cz*" .

1. Some Relevant Theorems

There are some theorems for proving or need to be known. All symbols in this paper represent
positive integers unless stated they are not.

Theorem 1.1. In equation

AX" + By" =Cz*

X, y,Z2>2

m,n,k >2 (1-1)
ABC2>1

gcd(Ax, By,Cz) =1

AX, By,Cz meet

gcd(Ax, By) = gcd(Ax,Cz) =gcd(By,Cz) =1.
Proof: Since

AX™ + By" =Cz¥,
if gcd(Ax,By)>1 then

gcd(Ax, By) x (xl'“‘lx2 + y1”‘1y2)= cz*
which means ng(AX, By,CZ)>1 that contradicts against gcd(AX, By,CZ):l in equation
(1-1) since the right side of Cz must contain the factor of gcd(Ax,By)>1. So we have

gcd(Ax, By)=1 and using the same way we can also prove gcd(Ax,Cz)=ged(By,Cz)=1.

Theorem 1.2. There are no positive integer solutions for equation (1-1) when



(x=y)zz,0or (x=2)2y,or (z=y)=x.
Proof: When
(x=y)=z,
from equation (1-1) we have
AX™ +Bx" = Cz*,
let m>n, we get
(Ax™ 4 BJx" = Cz*
which means

gced(x,Cz2)=x>1
that contradicts against Theorem 1.1 in which gcd(Ax,Cz) =1. Using the same ways we can
also prove (X = Z);t y and (Z = y);t X. So there are no positive integer solutions for equation

(1-1)when (x=y)=z,or (x=2)=y,or (z=y)=X.

Theorem 1.3. Function f(Xx)=D"and g(x)=D" +E" are all monotonically increasing

“Convex functions”, where D, E are all positive real numbers and U,V are real numbers.

Proof: Since monotonically increasing “Convex function” meets

f=3 o
dx
tr0=9T0 g

dx

for f (x)=D"and g(x)=D" +E", we have

f'(x)=D"InD >0,
f"(x)=D"In’D >0,

g'(x)=DInD+E'INE >0,
g"(x)=D"In>D+E"InE >0,

so f(x)=D"and g(x)=D" +E" are all monotonically increasing “Convex functions”.

Theorem 1.4. Given A,B,C,X,Y,z for equation (1-1) as showed in Figure 1-1, there is only



one intersection for Ax ™" + Byk+r2 =Cz", in which r,r, are finite integers. Let M, N, K
be the solution of equation (1-1). In this paper we will use AX"™ +By" in place of

AXKE 4 Byk+r2 since they are of the same values but just at different places of w.

W
0 M N K

Figure 1-1 Graphfor Ax™ +By" =Cz"
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Figure 1-2 Graphfor Ax**" +By**"> =Cz* and 2AX*"" 2By**"



Proof: In Figure 1-1 we can see clearly that since M, N, K is the solution of X" +y" = z~,

so we have (DM = AxM )+ (EN = ByN)=(CZK = FK), and by moving DM,EN to the

k+r,

same line of FK , we get the curve of AX*'" +By**"  the horizontal axis stands for the

exponent of z. Because AX“'" +By*" Cz* are all monotonically increasing “Convex
functions” , they have at most two intersections, but one of them is at w — —oo, this can be

explained by Figure 1-2. Obviously we can see curve AXER Byk+r2 is “Between” curves

2Ax "% 2By**" | which means point A is the intersection of 2Ay**"2,Cz*, and point A is the
only intersection since
(2By** =Cz*)=[In2B+(k +1,)Iny=InC +kInz]=

|(zanBerzlny—InC ;
Inz—Iny

in which Kk is the only solution (since 1,1, are finite integers) when given z,y,r,, A,B,C.

Point C is the intersection of 2Ax**" Cz* and point C is the only intersection since

(2AX"% =Cz*)=[In2A+(k+1)Inx=InC +kInz]=
(kzln2A+r1Inx—InCJ :
Inz—Inx

in which Kk is the only solution (since r,r, are finite integers) when given z,y,r,,A,B,C.
Point B is the intersection of Ax*™" + Byk”Z,Czk. If there exists third intersection of curves

AX**" + By**"2 Cz* which is point D, then the curve DE will intersect 2Ax**" at point E,
that means

AXEHT 4 Byt = 2AX"
and

Byk+r2 _ Aka,

in which

[InB+(k+rz)lny:InA+(k+r1)Inx]:>(k= |nA+r1Inx—r2|ny_|nBj’

Iny —Inx

K+r, k+r,

point E is also the intersection of 2Ax“*" 2By**"2  which means curve 2By intersects



AX'<”1+Byk*r2 twice times and have two intersections that are points F, E, this is a
contradiction since curves AX“*" + By**> and 2By**" have only one intersection. Using the
same way we have the same conclusion when exchanging curves AX“*" +By**"z Cz* or
2Ax % 2By**" in Figure 1-2.

So we have the conclusion of point E is not existed and there is only one intersection when

M, N, K isasolution of equation (1-1) for any given A,B,C,X,V,Z.

Theorem 1.5. In Figure 1-3, in which
AX" + By"" <Cz*,
X, Y, Z of equation (1-1) meet

AXm—l + Byn—l _Czk—l <£
AX"?+By"2-Cz"? 2’

ZK

k-2 k-1 k

Figure 1-3 Graphfor AX™+By" =Cz* when Ax"™" +By"" <Cz*"

Proof: The slope of CD, DE are

(Ax'“‘l + By”‘l)— (Axm‘2 + By”‘z)

D (k=2 = A(x=1)x"? +B(y -1)y"?,

SCD =

AX™ + By" )- (A" + By"™*
( )~ )

k=D = A(x-1)x"* + B(y -1)y" ",

SDE =

and



SDE > SCD’
since Xx>1,y>1.Theslope of AB,BE are

k-1 k-2
CZ —CZ C(z—l)zk"z,

Spe = =
(k-1)-(k-2)

kK _ k-1
BE :u :C(Z _1)Zk_1'
k—(k-1)

and
Sge > Sps,
since Z>1, sowe have
Sge +Spe > S5 +Scp
and
Ax-1)x"* +B(y—1)y" "+ C(z-1)z* > A(x—1)x"? + B(y -1)y"? + C(z -1)z*?,
we get

A" 4By -CZtt Cz-1)t-2?) 1
m-2 N2 _ ~ k-2 S aom2 N2 _~ k-2 ts
AX" + By Cz AX" + By Cz 2

where
{C(z ) AR L N
AX"2 + By"? —Cz"2<0’
S0 we have

Ax" '+ By"t —Cz*!
AX"% + By"? - Cz"?

1
<—.
2

Theorem 1.6. In Figure 1-4, in which
AX" 4+ By"™ > Cz* T,
X, Y, Z of equation (1-1) meet

AX™ 4+ By"t —Cz*?! <1
AX"? 4+ By -Cz"? T




ZK

Figure 1-4 Graph for AX™ + By" =Cz* when AX™" +By"" > Cz"”

AX"t 4+ By"t —Cz*?!

AX" 7+ By CZ? <1 is the slope of AB is not

Proof: Obviously the meaning of

AX™ 4+ By"t —Cz*?!

— — — >1 then there are three cases have to be
AX"*+ By -Cz

greater than that of CD. If

considered. From Theorem 1.3 we have already known that Axm+By”,CZk are all

monotonically increasing “Convex functions”.

The first case (Case 1) is there is a positive real number 0<r <1 for kK—r between k-1
and K whose slope equals to that of AB which means

Cz*" -Cz** _ C(zl’r —1)2‘“1

AXm—l+ B n—l_AXm—Z_B n-2 —
y d 1-r 1-r

that can be explained by Figure 1-5 where AB// DF .



ZK

Ax"t 4+ By"t—Cz*! 51
AX"? 4+ By —Cz*? T

Figure 1-5 Graphof AX™+By" =Cz* when
point F is between k-1 and k for Case |

The second case (Case 1) is there is a positive real number 0<r <1 for k—r—1 between
k-1 and k—2 whose slope equals to that of AB which means
Czk—l _ Czk—r—l C(l— Zfr )Zkfl

AXm—l + Byn—l _ AXm—2 _ Byn—Z — —
r r

that can be explained by Figure 1-6 where AB// DF //CD".



Ax"t 4+ By"t—Cz*?!

Figure 1-6 Graphof Ax™+ By" =Cz* when >1,
g p y Axm72 + Byn72 _ CZk72

point F is between k-2 and k-1 for Case Il

The third case (Case I11) is there is a tangent line of curve Cz* at D that is D'DF whose
slope equals to that of AB which means

Cdz"
o

that can be explained by Figure 1-7 where AB// D'DF .

AXm—l + Byn—l _ AXm—2 _ Byn—Z —



Figure 1-7 Graphof AX™+By"=Cz* when

Ax"t 4+ By"t—Cz*?! 51
AX"? 4+ By —Cz*? T

D'DF isatangent line of curve Cz* for Case Il

Case | : In Figure 1-5 we have

AX" 4 By" T — AX" 2 —By"? = C[ .

and

AX" 4+ By" —Cz" - AX"? —By"? = C(

1-r

_¢ 77" +r-2 Skt
1-r
z

If we treat I as constant then f(z)=

1-r
z
we treat Z as constant then f(r)=

is because:

10

27" -1

1-r

]Zk—l _ Czk—l
(1-2)

is a “Monotonically increasing function”; if

is a “Monotonically decreasing function” that



d(z“+r—2j
_ _ ol _ 1-r _
f(r) = 1-r ) (=2 Inz+1)i-r)+ 2 +r-2

dr @-ry
727" Inz(l-r)+2" -1 [(r-1)Inz+1)"" -1

@-ry ey

For function

N [(r=1)Inz+1]z"" -1
9(2) i-ry

it is a “Monotonically decreasing function” since

[(r-Dinz+17-1] (r_q) . .
g-(z)d{ horf }_(Zl)z A=)z [ -1z +1]

dz - @-ry

=-7z"Inz<0.
For function

N [(r=1)inz+1]z"" -1
g( ) (1_ r)z !

we give the plot of it in Figure 1-8, in which it shows that g(r) =0 and g(r) <0 (we have to

say because we can not solve “Exponent equation” where the ““Exponent’ is unknown number, so
the solutions have to be found in numerical way, which is just “Function plot” does). When

O0<r<1 the value of g(r) is less than 0, since f'(r)=g(r)<0and g(z) is a

“Monotonically decreasing function”, so f (r) is a “Monotonically decreasing function”.

g()

—--0.2

A

L]

LI ]
([ 1

—_— s L

o
=]

L]

[(r=1)Inz+1]*" -1

@-ry

Figure 1-8 Graphof g(r)= when z=2,3,4,5100
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From (1-2) we can see clearly that if z (a positive number) increases then the left side decreases
and the right side also decreases. The minimum value for the right side is

d( +r-2)
1-r _ _ 7 _ 1—r
limC Z+—I’2 Z“tT=limC dr 7“1 —limC z'Inz+1 kfly
r—1 1-r r—l dl—r rol _
dr
= Iin?C(zl‘r Inz —1)zk‘1 =C(Inz-1)z**

since

lim(z"" +r-2)=0

r-l

liml-r)=0

r-l

From Theorem 1.8 we know z >5,and since C >1, so we get

1-r .
{Iirrl] C(%rzjzk-l ~C(Inz —1)zk-1} > (IN5—1)x52 >15.
r—. —r

From (1-2) we have

1-r _
(AXm—l + Byn—l _Czk—l)_(AXm—Z + Byn—z _Czk—Z): C(Z 1+ r ZJZk—l + Czk—z '
—r

where both sides plus Cz*?.In Figure 1-5 we know
AX"t 4+ By"™ —Cz*"' = BD,

AX"? +By"2-Cz*?=AC,

there must exist a situation in Figure 1-5 when we increase 2z that causes

BD —» AC,BD > AC,r <1, so the left side is almost 0 but the right side is bigger than

15+ Cz*2, that is a contradiction which means there are no positive integer solutions of equation

(1-1) at Case I.

Case Il : In Figure 1-6 we have

-r k-1
AXm—l + Byn—l _ AXm—Z _ Byn—z — C(l z )Z ,
r

and

12



AX™ 4 By"™ !~ CZ = AX™? —By" 2 = C[l_ z ]Zk—l _ Gzt

r
_ 1= AR § Skt
r

: 1-27 -r . : : : : .
For function f(z)=————,itisclearthat f(z) isa “Monotonically increasing function”
r

(1-3)

: Yo : : . . 1-z7"-r .
since z™" is a “Monotonically decreasing function”. For function f(r)=———itis a
r
“Monotonically decreasing function”, that is because:
1-z7"—r
df ——— i, . i
, r 7 Inz—r—(1-z"—r) (rinz+1)z" -1
f'(r)= - : - e -1
dr r r

For function

rinz+1)z7" -1
0(2) =" ;) ,

it is a “Monotonically decreasing function” since

d{(r Inz +§)Zir _1} [r_ r(rinz +1)j|z_r
9'(2)= r =L <0,

dz r

r r
in which from Theorem 1.8 we know z>5, so we have ——r(rinz+1)<0 where —<r
z z

and r’lnz>0.

(rinz+1)z" -1

r.2

For function g(r)= , we plot the graph of it in Figure 1-9, in which it shows

that g(r)=0 and g(r)<0. When O<r<1 the value of g(r) is less than 0, since

f'(r)=g(r)<0 and g(z) is a “Monotonically decreasing function”, so f(r) is a

“Monotonically decreasing function”.
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Figure 1-9 Graph of g(r)= when z=2,3,4,5,100

From Figure 1-6 we know if Z (a positive real number) increases then r increases too. From
(1-3) we have

(Ax"“l +By" - Cz"‘l)— (Ax’“‘2 +By"? - Czk‘2)= C(#JZH +Cz¥?

where both sides plus Cz"?,in Figure 1-6 we know
AX"t 4+ By"™ —Cz*"' = BD,

AX"? +By" 2 -Cz*? = AC,
there must exist a situation when we increase z (a positive real number) that causes

BD - AC,BD>AC,r =>1r<l1,
so the left side is
(Ax™ 4 By"* —Cz**)~ (Ax™2 + By" 2 —Cz"?)=0, >0,

when r =1 the right side is

C|:(1_Z _rJZk_l+Zk_2:|=(— Zk_l_r-I—Zk_z):O,
r

-r

i 1-z ) . . . .
since f(r)=——— s a “Monotonically decreasing function”, so when r <1, the right
r

side is greater than 0, we do not have contradiction as Case | does. But Case 11 is still impossible,

14



it is obvious that
k k-1
ZCDE =360 - arctan(%j - arctan[ﬁ) -90°,
27 -Cz

Z/CDE < ZABE ,

we know z >2,when k =3,C =1(which is the worst case) we have

K ok-1
/CDE =270° —arctan Cr-Cr ). arctan(ﬁ]
1 Cz“ " -Cz*"

32

=270° — arctan(3° - 3°)- arctan( L 3) >173.7°

and

/ABE > /CDE >173.7°,

which means ZABE, /CDE —180° with z>2,n=3,s0 ABE,CDE are almost lines.

On the other hand, for function

k k-1
f (z) = ZCDE =270° —arctan Cr-C ). arctan[ﬁj
1 Cz"-Cz"

3 Cz“-czt 1
=— 7 —arctan| ———— |—arctan| ——————
2 1 Cz" " -Cz

we give the function plot for it in Figure 1-10.

f(2

180 -

|-178

176

174

172

170
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Figure 1-10 Graph of f(z)=270° —arctan u —arctan 1
1 Cz**-Cz*?

where we take 7 =3.1415926535897932

Obviously f(z)=~ZCDE is a “Monotonically increasing function” when z >3, and with the

increasing of z the value of f(z)=~ZCDE iscloseto 180°.

It is very clear that ZABE — ZCDE is decreasing with the increasing of Z , since

(/ABE — ZCDE = /D'CD + Z/BED)<180° - ZCDE

where /CDE is increasing. When n=3 since ZCDE >173.7°, so we have

(«D'CD + ZBED)<180° — /CDE <180° -173.7° <6.3°,

which means

/D'CD<6.3°.
So we have the conclusion of ZD'CD is decreasing with the increasing of z which leads to

BD
the result of A_C is decreasing, that is impossible because from Section 2.5 we will know with

. . BD . . L .
the increasing of z the value of A_C has to increase in order to have positive integer solutions

for equation (1-1), so this is a contradiction which means there are no positive integer solutions of
equation (1-1) at Case I1.

Case 111 : In Figure 1-7 we have

Cdz"

AXm—l + B n-1__ AXm—Z _ B n-2 —
y y K

k-1
ls1=CZInz,

and
AX" 4+ By —CZ* " =Cz" " Inz - CZz* T + AX™ 2 + By"?
=C(Inz-1)z" + Ax"? + By"?

that is impossible since for any positive integer solutions of equation (1-1) when 2z increases
then the left side is becoming smaller but the right side is becoming bigger(since from Theorem

1.8 we know z>5, so (In VA —1)> 0) which is a contradiction, so there are no positive integer

solutions of equation (1-1) at Case 1.

AX™t 4+ By"t —Cz*?!

>1 is
AX"% + By"? - Cz"?

So from Case I, Case Il and Case 111 we have the conclusion of

16



AX™ 4+ By"t —Cz*?!

impossible and <1
AX"% + By"? - Cz"?
Using the same way we can prove
m-j n~j _ oyk-i
AX"' + By Cz <1,

Ax™ I 4 By It Cz¢
where | is a positive integer, this can be explained by Figure 1-10 in whichw=Kk— j,

w>2, AC>BD.

A

2 w-1 w w+l

Figure 1-10 Graphof AX™+By" =Cz* when

where j isa positive integer and W=K — j

n-2 k-2

Theorem 1.7. If AX™ 2 +By"?>Cz“? then X,y,z of equation (1-1) meet

Y

when
X>Y.

Proof: Since
AX"? + By"? >Cz* 2,

so we have

17



2 2
A{EJ X" + B{EJ y" >Cz".
X y
2 2
If (ij <1,{£) <1 then
X y
2 2
A{EJ X" + B{EJ y" <Cz"
X y

2 2
z z
that is impossible since Ax" + By" =Cz"*. So one of [—j ,(—] must be greater than 1
X y

which means
zZ>Yy

when X>Y.

2. Proving Method

In equation (1-1), let

a=x""?
b — yn72
c =7k

Aax® + Bby® = Ccz*
n-1 -1 [Su (1)
Aa™2x + Bb"?2y = Cck-?z

Since we here reduce the orders of equation so the method is called “Order reducing method for
equations”.

From Theorem 1.2 we have already known that X # y,X#2Z,y#Z,s0let X>Yy and there are
four cases that need to be considered.

y=x-f

Casel: yZ=Xx+e¢e ; (2-2)
AX™ + By"" > Cz*"

y=x-—f

Case2: yZ=X+¢e ; (2-3)
AX™" + By" <Cz*

18



y=x-f

Case3: <z=X—-¢€ ; (2-4)
AX™ + By"™ > Cz*

y=x—f

Case4: <z=X—-¢€ : (2-5)
AX" 4+ By" <Cz*

2.1. Case 1
From (2-1) and (2-2) we have
Aax® + Bb(x - f ) =Cc(x +e)
m-1 n-1 k-1
Aam™2x+Bb"2(x— f)=Cck2(x+e)

and

(Aa+Bb—Cc)x? — 2(Bbf +Cce)x+(Bbf 2 —Cce?)=0
m-1 n-1 k-1

Aam™2x +Bb™2(x— f)-Cc*2(x+e)=0

the roots are

_ (Bbf +Cce)= J(Bbf +Cce) —(Aa+Bb—Cc)(Bbf > —Cce?) 6)
- AX™? 4+ By" 2 —Cz"2

and

k-1 n-1

Cck-2e + Bbn-2 f Bbfy + Ccez
X= m-1 n- = Ax™ L 4 Byn—l _Cz¢ U (2-7)
Aam-? + Bb"2 —Cc*2

There are two cases for Bbf ?,Cce? when Bbf?>Cce® and Bbf?* <Cce?.

Case A: If Bbf?>Cce?, from (2-6) when

(Bbf +Cce)++/(Bbf +Cce)’ —(Aa+Bb—Cc)(Bbf 2 —Cce?)
AX"? 4+ By"? - Cz"? ’

since from (2-2) we know (Aa +Bb—-Cc=Ax"?+By"* - Czk‘2)> 0, so we have

2(Bbf +Cce)
T AX™24By"?-Cz* 2

and also from (2-2) since (Axm‘1 +By"! - Cz”‘l)> 0, compare to (2-7) we get
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Bbfy+Ccez  _  2(Bbf +Cce)
AX" 4+ By"t—Cz*t T AX™ 2 4+ By"?—Cz¢?

Ax™t 4 Byt —Cz*?
2 yn,z — < 1, so we have
AxX"“ +By"* -Cz

From Theorem 1.6 we know

Bbfy + Ccez < 2(Bbf +Cce)

which is impossible since 'y >2,2>2.

When

(Bbf +Cce)—+/(Bbf +Cce)’ —(Aa+ Bb—Cc)(Bbf 2 — Cce?)
AX"? 4+ By"? —Cz"?

we have

Bbf +Cce
T AX™24By"2-Cz¢?

compare to (2-7) we get

Bbfy + Ccez < Bbf +Cce
AX" 4+ By"t—Cz*t T AX™ 2 4+ By"?—Cz"?

From Theorem 1.7 we have

Bbfy + Ccez < Bbf +Cce
which is impossible since y>2,2>2.
Case B: If Bbf? < Cce?, from (2-6) we have

(Aa+Bb—Cc)x? — 2(Bbf +Cce)x + (Bbf 2 -~ Cce?)=0,

and

B Cce® — Bbf ?

~ (Aa+Bb—Cc)x—2(Bbf +Cce)

2(Bbf +Cce) ’
>
(Aa+Bb-Cc)
from (2-7) we have
_ Bbfy+Ccez _ Bbf (x— f)+Cee(x+e)
AX™ + Byt —Cz*?t AX"t4+ Byt -Cz¢t

in which

20



Cce? — Bbf ?
(o By~ )60 + o)
AX" L+ By" — Cz** > Bbf +Cce

X =

from Theorem 1.6 we have
(Aa+Bb—Cc=AX"?+By" 2 - Cz*?)> (Ax" + By"* —Cz**)> (Bbf +Cce),
so we get

Cce® — Bbf? Cce® — Bbf?

= (Aa+Bb—Cc)x—2(Bbf +Cce) (Ax™*+By"* —Cz**)-(Bbf +Cce)

where
(Aa+bB —cC)x—2(Bbf +Cce)=(AX""+By"* —Cz**)— (Bbf +Cce),
and

‘o (Ax”"l +By"" - Cz"’l)+ (Bbf +Cce) <

2,
(Aa+Bb-Cc)

that is impossible since x> 2.

From (2-6) when

(Bbf +Cce)—+/(Bbf +Cce)’ +(aA+Bb—cC)Cce® — Bbf ?)
AX"? 4+ By"? —Cz"?

is not possible since X <0.

2.2. Case 2

From (2-1) and (2-3) we have

m-1 n- k-1

Aam™2x+Bb"2(x— f)=Cck2(x+e)

LN

{Aax2 +Bb(x— f) =Cc(x+ef

and

m-1 n-1 k-1

(Aa+Bb—Cc)x? — 2(Bbf +Cce)x+(Bbf 2 —Cce?)=0
Aam™2x+Bb™2(x— f)-Cc*2(x+e)=0

the roots are

(Bbf +Cce)=++/(Bbf +Cce)’ —(Aa+Bb—Cc)(Bbf 2 —Cce?)
AX"? 4+ By"? - Cz"?

and
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k-1 n-1

Cck2e+Bb™2f  Bbfy+Ccez

m-1 n-1 k-1 — m-1 n-1 k-1°
Aan?iBbrz_ceiz X FBY-C

X =

Since from (2-3) we know (Axm‘l +By" ! - Czk‘1)< 0,sowehave X<O thatisimpossible.

2.3. Case 3

From (2-1) and (2-4) we have

Aax® + Bb(x — f f =Cc(x—ef
m-1 n-1 k-1

Aam2x+ Bb"?(x— f)=Cc*2(x—e)
and
(Aa+Bb—Cc)x’ — 2(Bbf —Cce)x+(Bbf > —Cce?)=0
m-1 n-1 k-1

Aam™2x+Bb™2(x - f)-Cc*2(x—e)=0

the roots are

_ (Bbf —Cee)= J(Bbf —Cce) —(Aa+Bb—Cc)(Bbf > —Cce?) 9)
- AX™? 4+ By" 2 —Cz" 2

and

n-1 k-1

Bb"-2 f —Cck-2e Bbfy —Ccez

m-1 n-1 k-1 = m-1 n-1 k-1"°
Aam?iBbrz_coe X FBYT-C

(2-9)

There are two cases for Bbf ?,Cce? when Bbf?>Cce® and Bbf? <Cce?.

Case A: If Bbf?>Cce?, from (2-8) when

(Bbf —Cce)++/(Bbf —Cce)? — (Aa+ Bb - Cc)(Bbf > — Cce?)
AX"? 4+ By"? —Cz"? ’

then Bbf <Cce is not possible since causes X <0 or negative value under the root, so we

have Bbf >Cce, and from (2-4) since (Axm‘1 +By"! - Czk‘1)> 0, compare to (2-9) we get
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Ax™ 4+ By"t —Cz¢?
m_2 yn,z 5 < 1, so we have
AxXT "+ By " -Cz

From Theorem 1.6 we know

0< Bbfy — Ccez < (Bbf —Cce)++/(Bbf —Cce)? — (Aa+ Bb—Cc)(Bbf > —Cce?),
and

0 < Bbfy — Ccez < 2(Bbf —Cce):>(£<B—bf§ Z_2J3(2>y,e< f)
y

where

Bbf (x— f)—Cce(x —e) < 2(Cbf —Cce)
{Bbf (x—f)—Cce(x—€)>0

and
Bbf e Bbf
LSy Lo
Bbf 2 — Cce? Bbf 2 — Cce? Cce f Cce
ek it PV | I Wl et 18 DN SR Y B R oA
Bbf —Cce Bbf —Cce Bbf Bbf 4
Cce Cce

we know X,Y,Z >3 which means X>2 and

)
Cce
Bbf
Cce

>1,

in which

0<1<[B—bf]<i,
Cce) 1-f°

so we get

0< f <1,

that is impossible.

When
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Bbf > Cce

Bbfy—Ccez  (Bbf —Cce)++/(Bbf —Cce)’ — (Aa+ Bb—Cc)(Bbf 2 Cce?)
AX" 14+ By"t—Cz*t AX™? 4+ By"? —Cz"?
Bbfy —Ccez >0



(Bbf —Cce)—+/(Bbf —Cce)? — (Aa+ Bb - Cc)(Bbf > — Cce?)
AX"? 4+ By"? —Cz"? ’

if Bbf <Cce then x<0 which is not possible, so we have

(Bbf —Cce)
- AXI’I’]—Z + Byn—z _Czk—Z ,
Bbf > Cce

compare to (2-9) we get

Bbfy—Ccez  _ (Bbf —Cce)
AX" 4+ By"t —Cz"t T X" 24+ By" 2 -Cz* 2.

Bbfy —Ccez >0
From Theorem 1.6 we have
0 < Bbfy — Ccez < (Bbf —Cce)= z Bof 271 =(z>y,e<f)
y Cce y-1

and
0 < Bbf (x — f )—Cce(x —e) < (Bbf —Cce),

where

Bbf ef
Bbf 2 — Cce? Bbf % — Cce? Cece f
e A PR | P iy S DI St SV | Y S

Bbf —Cce Bbf —Cce

we know X,Y,Z >3 which means X>2 and

)
Cce
>1,
Bbf
Cce
in which
0<1<[B—bf)< ! ,
Cce) 1-f°
so we get
0< f <1,

that is impossible.

Case B: If Bbf? < Cce?, from (2-8) we have
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(Bbf —Cce)++/(Bbf —Cce)? +(Aa+ Bb—Cc)(Cce? — Bbf 2)
AX"? 4+ By"? —Cz"? ’

compare to (2-9) we get

Bbfy—Ccez  (Bbf —Cce)++/(Bbf —Cce) +(Aa+Bb—Cc)Cce? — Bbf ?)
AX" !4+ By"t—Cz"t AX™? 4+ By"? —Cz"?

From Theorem 1.6, when Bbf > Cce, we have

0 < Bbfy — Ccez < (Bbf —Cce)fl++1+r)
{z < Bbf - z—(l+«/1+r)}:>(z>y)’(f oe)

y  Cce y—{L+1+1)
(Aa+Bb—Cc)Cce? — Bbf 2)=r(Bbf —Cce)?

2 2 2 2
Bbf * -~ Cee” Cce<xs(1+¢1+—r+—8bf Ccejmm

Bbf —Cce Bbf —Cce

but since Bbf? < Cce® sowe have

Bbf e
—<—x<1
Cce

that is impossible since contradicts against Bbf >Cce . If r=0 then we get

Cce? —Bbf?=0 and x<2 thatis also impossible.

When Bbf =Cce, we have

Bbfy —Ccez < /(Aa+ Bb—Cc)(Cce? — Bbf ?) = Bbf (e - f )< (Aa+Bb—Cc)=
= (Aa+Bb—Cc)> (Cce? - Bbf 2)= (x <1)

that is impossible.

When Bbf < Cce, we have
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0 < Bbfy — Ccez < (Coe — Bbf f-1+1+T

£< Bbf < Z+(—l+\/1+l’) :>(y>z),(e> f)
y Cce y+(—1+\/1+ r)

(Aa+Bb - Cc)(Cce? - Bbf 2)= r(Cce - Bbf )

Bbf > —Cce® Bbf > —Cce®
— > X2 1-Altr+————
( Bbf —Cce j [ Bbf —Cce ]

that is impossible since from Theorem 1.7 we know y<z . If r=0 then we get

Cce?’ —Bbf2=0 and x <O thatisalso impossible.

From (2-6) when

(Bbf —Cce)—+/(Bbf —Cce)? +(Aa+ Bb - Cc)(Cce” — Bbf?)
AX"? 4+ By"? —Cz"?

is not possible since X <0.

2.4. Case 4

From (2-1) and (2-5) we have

Aax® + Bb(x — f f =Cc(x —ef
m-1 n-1 k-1

Aa™2x+ Bb"2(x— f)=Cc*2(x—e)
and
(Aa+Bb—Cc)x* —2(Bbf —Cce)x+(Bbf >~ Cce?)=0
m-1 n-1 k-1

Aam™2x +Bb™2(x - f)-Cc*2(x—e)=0

the roots are

(Bbf —Cce)++/(Bbf —Cce)? +(Cc — Aa— Bb)(Bbf > — Cce?)
X = (2-13)
AX"? 4+ By"? —Cz"?

and

n-1 k-1

Bb"-2 f —Cck-2e Bbfy —Ccez

m-1 n-1 k-1 = m-1 n-1 k-1 "
Aam?iBpr2_Coz X FBYT-C

X =

(2-14)

There are two cases for Bbf ?,Cce? when Bbf?>Cce® and Bbf? <Cce?.

Case A: If Bbf?>Cce?, from (2-13) when
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(Bbf —Cce)++/(Bbf —Cce)? +(Cc — Aa— Bb)(Bbf > — Cce?)
AX"? 4+ By"? —Cz"?

is impossible since X <0.

When

(Bbf —Cce)—+/(Bbf —Cce)? +(Cc— Aa— Bb)(Bbf > — Cce?)
AX"? 4+ By"? —Cz"? ’

compare to (2-14) we get

Bbfy—Ccez  (Bbf —Cce)—+/(Bbf —Cce)’ +(Cc - Aa— Bb)(Bbf > — Cce?)
AX" !4+ By"t—Cz"t AX"? + By"? —Cz"? '

Ax" ' 4+ By"t —Cz*!

From Theorem 1.5 we know — — 5
AX"“+By " -Cz

< E ,sowhen Bbf >Cce, we have

0 < Ccez —Bbfy <

“ieviar Zl” (Bbf —Cce)

(Cc— Aa—Bb)(Bbf  — Cce? )= r(Bbf —Cce)

{Bbf2 —Cce® _ r(Bbf —Cce)}:> r(Bbf —Cce)  rx
Bbf —Cce  Cc—Aa-Bb Cc—-Aa-Bb —1++1+r |’
2
)
Cce >(Bbf2—Cce2j>X>(l—\/m+ BbfZ—Cce"‘J
Bbf 4 Bbf —Cce 2 Bbf —Cce
Cce

we get

1-J1+r rx
> +
2 —1+1+1
2

X

which means
(—1+ N1+r jz
2

1414
2
since X >1, so we have

(—1+ V14T JZ N —1++/1+r .
2 2

> X,
r

r
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and
r>A4ar
that is impossible.

When Bbf =Cce, we have

Ccez — Bbfy </(Cc— Aa—Bb)(Bbf > — Cce? ) = Bbf (f —e)<(Cc— Aa—Bb)=>
= (Cc— Aa-Bb)> (Bbf 2 - Cce? )= (x <1)

that is impossible.

When Bbf < Cce, we have

0 < Ccez —Bbfy <

Lrvivr ”21”(0ce —Bbf)

(Cc— Aa-— Bhb)(Bbf > — Cce? )= r(Cce — Bbf )
Cce? —Bbf > r(Cce— Bbf )} e [1+«/1+ r , Cee’ - Bbf 2} (1+«/1+ r ]

Cce—Bbf Cc—Aa—Bb 2 Cce — Bbf 2
2 _ 2 _
that is impossible since M <0 but M >0, so
Cce — Bbf Cc—Aa-Bb

Cee’ —BOFf* r(Cce - Bbf )
Cce—Bbf ~ Cc—Aa—-Bb

If r=0 thenweget Cce’—Bbf?=0 and

e

that is also impossible.

Case B: If Bbf? < Cce?, from (2-13) when

(Bbf —Cce)-++/(Bbf —Cce)? — (Cc — Aa— Bb)Cce” — Bbf ?)
AX"? 4+ By"? —Cz"? ’

obviously it is impossible when Bbf >Cce since X <0 or negative value under the root. So

we have Bbf < Cce, compare to (2-14) we get
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Bbfy—Ccez  (Bbf —Cce)++/(Bbf —Cce)’ - (Cc - Aa— Bb)(Cce? — Bbf2)
AX" !4 By"t—Cz"t AX"? 4+ By"? —Cz"?
Bbfy —Ccez <0

From Theorem 1.5 we have

(Cce - Bbf )—+/(Cce — Bbf ) — (Cc — Aa— Bb)(Cce? — Bbf ?)
2

0 < Ccez - Bbfy <

where

Bbf <Cce

) (Ce—Bof Ji-+i-7)

0<Cce(x—e)-Bbf (x— f ,

y Cce y-05
y =ee f
z<Bbf<z—0.5j:>(y>z)’(e> )

:(Cc — Aa—Bb)(Cce? — Bbf 2 )= r(Cce — Bbf )2]:>
Cce’—Bbf®> r(Cce—Bbf)  rx
Cce—Bbf Cc-Aa-Bb 1-+1-r
L 2
ce’ —bf? 1-v1-r ce*—bf?
<X< +
ce —bf 2 ce —bf

we get
1-v1-r rx
X <

+
2 1-1-r
2

which means

)

2
X<—F—=—

1-41-r

1-r
+r
2

since X >1, so we have
dr<—-r
that is impossible.

When

(Bbf —Cce)—+/(Bbf —Cce)? - (Cc— Aa—Bb)(Cce? — Bbf ?)
AX"% 4+ By"? —Cz"? ’

29



obviously it is impossible when Bbf >Cce since X <0 or negative value under the root. So

we have Bbf < Cce, compare to (2-14) we get

Bbfy—Ccez  (Bbf —Cce)-+/(Bbf —Cce) —(Cc— Aa—Bb)Cce? — Bbf )
x™1 yn—l _ gkt - Ax™2 4 Byn—z —_Cz*2
Bbfy —Ccez <0

From Theorem 1.5 we have

(Cce — Bbf )++/(Cce — Bbf ) — (Cc — Aa— Bb)(Cce? — Bbf ?)

0 < Ccez — Bbfy < 5

where
Bbf <Cce

0 < Coelx—e)— Bbf (x— f)<C®= Bbfz)(“m)
(Cc - aA— Bb)Coe? - Bbf ?)=r(Cce - Bbf ¥ |=

Cce’—Bbf®> r(Cce—Bbf)  rx
Cce—Bbf Cc-Aa-Bb 1++1-r
L 2

Cce? —Bbf? 1++/1-r Cce®—Bbf?
<X< +

Cce — Bbf 2 Cce — Bbf
we get

1+V1-r rx
< +

2 1+41-r
2

X

which means

2
1+V1-r
2
<—

1++1-r1
—+7r
2
since X >1, so we have
dr<-r
that is impossible.

X

AX"t 4+ By"t —Cz*?!

2.5. For Case 1 and Case 3 with — - =
AX"° +By"* -Cz

>1
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In this paper we take the assumption of no positive integer solutions for
Axm—l + Byn—l — C % 3k—1,
so in order to have positive integer solutions for equation (1-1) we have to increase Z , that causes

Ax" 4+ By"t —Cz*!
AX"% 4+ By"? - Cz"?

= to increase.
C

3. Conclusion

Through the above contents we can see clearly that “Order reducing method for equations” is
perfect to prove equation (1-1) to have no positive integer solutions, and the great benefit from
“Order reducing method for equations” is that there is no need to consider the exponents of

m,n,k and all the numbers for them can be proved together.
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