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Abstract

We prove that partial sums of ζ(2) − 1 = z2 are not given by
any single decimal in a number base given by a denominator of their

terms. This result, applied to all partials, shows that partials are
excluded from an ever greater number of rational values. The limit of
the partials is z2 and the limit of the exclusions leaves only irrational

numbers.

1 Introduction

Beuker gives a proof that ζ(2) is irrational [3]. It is calculus based, but
requires the prime number theorem, as well as subtle ε − δ reasoning and
generalizes only to the ζ(3) case. Here we give a simpler proof that uses just
basic number theory [1] and does generalize to all other cases.

We use the following notation: for n > 1,

zn = ζ(n) − 1 =
∞∑

j=2

1

jn
.

2 Decimals using denominators

Our aim in this section is to show that the reduced fractions that give the
partial sums of zn require a denominator greater than that of the last term
defining the partial sum. Restated this says that partial sums of zn can’t be
expressed as a finite decimal using for a base the denominators of any of the
partial sum’s terms.

We prove the general case.
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Lemma 1. The reduced fraction, r/s giving

sm
k =

k∑

j=2

1

jm
=

r

s
(1)

is such that 2m divides s.

Proof. The set {2, 3, . . . , k} will have a greatest power of 2 in it, a; the set
{2m, 3m, . . . , km} will have a greatest power of 2, ma. Also k! will have a
powers of 2 divisor with exponent b; and (k!)m will have a greatest power of
2 exponent of mb. Consider

(k!)m

(k!)m

k∑

j=2

1

jm
=

(k!)m/2m + (k!)m/3m + · · · + (k!)m/km

(k!)m
. (2)

The term (k!)m/2ma will pull out the most 2 powers of any term, leaving a
term with an exponent of mb − ma for 2. As all other terms but this term
will have more than an exponent of 2mb−ma in their prime factorization, we
have the numerator of (2) has the form

2mb−ma(2A + B),

where 2 - B and A is some positive integer. This follows as all the terms in
the factored numerator have powers of 2 in them except the factored term
(k!)m/2ma. The denominator, meanwhile, has the factored form

2mbC,

where 2 - C . This leaves 2ma as a factor in the denominator with no powers
of 2 in the numerator, as needed.

Lemma 2. If p is a prime such that k > p > k/2, then pm divides s in (1).

Proof. First note that (k, p) = 1. If p|k then there would have to exist r such
that rp = k, but by k > p > k/2, 2p > k making the existence of a natural
number r > 1 impossible.

The reasoning is much the same as in Lemma 1. Consider

(k!)m

(k!)m

k∑

j=2

1

jm
=

(k!)m/2m + · · · + (k!)m/pm + · · · + (k!)m/km

(k!)m
. (3)
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As (k, p) = 1, only the term (k!)m/pm will not have p in it. The sum of all
such terms will not be divisible by p, otherwise p would divide (k!)m/pm. As
p < k, pm divides (k!)m, the denominator of r/s, as needed.

Theorem 1. If

sm
k =

1

2m
+

1

3m
+ · · · +

1

km
=

r

s
, (4)

with r/s reduced, then s > km.

Proof. Bertrand’s postulate states that for any k ≥ 2, there exists a prime p
such that k < p < 2k [4]. If k of (4) is even we are assured that there exists
a prime p such that k > p > k/2. If k is odd k−1 is even and we are assured
of the existence of prime p such that k− 1 > p > (k− 1)/2. As k− 1 is even,
p 6= k − 1 and p > (k − 1)/2 assures us that 2p > k, as 2p = k implies k is
even, a contradiction.

For both odd and even k, using Bertrand’s postulate, we have assurance
of the existence of a p that satisfies Lemma 2. Using Lemmas 1 and 2, we
have 2mpm divides the denominator of (4) and as 2mpm > km, the proof is
completed.

In light of this result we give the following definitions and corollary for
the z2 case.

Definition 1.

Dk2 = {0, 1/k2, . . . , (k2 − 1)/k2} = {0, .1, . . . , .(k2 − 1)} base k2

Definition 2.
n⋃

k=2

Dk2 = Ξn

Corollary 1.

s2
n /∈ Ξn

Proof. This is an immediate consequence of Theorem 1.
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+1/4
+1/9 +1/4 +1/4 +1/4 +1/4 . . . +1/4
/∈ D4 +1/9 +1/9 +1/9 +1/9 . . . +1/9

/∈ D9 +1/16 +1/16 +1/16
...

/∈ D16 +1/25 +1/25
...

/∈ D25 +1/36
...

/∈ D36

+1/(k − 1)2

+1/k2

/∈ Dk2

. . .

Table 1: A list of all rational numbers between 0 and 1 is given by the number
sets along the diagonal. Partials of z2 are excluded from sets below and to
the upper right of the partial.

3 A Suggestive Table

The result of applying Corollary 1 to all partial sums of z2 is given in Table 1.
The table shows that adding the numbers above each Dk2 , for all k ≥ 2 gives
results not in Dk2 or any previous rows’ such sets. So, for example, 1/4+1/9
is not in D4, 1/4 + 1/9 is not in D4 or D9, 1/4 + 1/9 + 1/16 is not in D4,
D9, or D16, etc.. That’s what Corollary 1 says. Note that every rational
a/b ∈ (0, 1) is included in at least one Dk2 . For example, ab/b2 = a/b, a < b
and so a/b ∈ Db2 .

4 Set theoretical proof

We will designate the set of rational numbers in (0, 1) with Q(0, 1), the set
of irrationals in (0, 1) with H(0, 1), and the set of real numbers in (0, 1) with
R(0, 1). We use R(0, 1) = Q(0, 1) ∪ H(0, 1) in the following.

Theorem 2. z2 is irrational.

Proof. Theorem 1 implies

s2
n ∈ R(0, 1) \ Ξn.
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As
lim

n→∞

s2
n = z2

and

lim
n→∞

Ξn =

∞⋃

j=2

Dj2 = Q(0, 1),

zn ∈ R(0, 1) \ Q(0, 1) = H(0, 1).

That is z2 is irrational.

5 Obviously wrong?!

A typical reaction to the above proof is that the geometric series shows
that it is wrong. It can’t be that elegant, simple, and correct. But the same
treatment of the geometric series given by .1, base 4 has the following parallel
and supporting development:

gn =

n∑

j=1

1

4j

lim
n→∞

gn = G =
1

3

Ξ(4,n) =

n⋃

j=1

D4j = { ≤ n finite decimals base 4 }

gn ∈ R \ Ξ(4,n−1)

lim
n→∞

Ξ(4,n−1) =

∞⋃

j=1

D4j = { all finite decimals base 4 } = Ξ(4,∞)

G ∈ R \ Ξ(4,∞).

This doesn’t give a counter example to Theorem 2; it confirms its logic: 1/3
can’t be expressed as a finite decimal in base 4.

6 Conclusion

This result for the irrationality of z2 can be generalized; Theorem 1 gives a
result for the general case; and all subsequent corollaries, tables, definitions,
and lemmas can be easily modified for any n > 2.
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