Quadratic Transformations of Hypergeometric Function and Series with Harmonic

Numbers

Martin Nicholson

In this brief note, we show how to apply Kummer’s and other quadratic transformation
formulas for Gauss’ and generalized hypergeometric functions in order to obtain transfor-
mation and summation formulas for series with harmonic numbers that contain one or two
continuous parameters.

There is an extensive literature on application of Newton-Andrews method for finding identities with
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For a general description of this method and partial overview of the literature one can consult the papers
[244]. The aim of this paper is to study transformation formulas that are obtained from quadratic trans-
formations of hypergeometric function by integration using Euler’s integral representation for Harmonic
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We will use the standard notation for hypergeometric function
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where (a), =a(a+1)...(a+n— 1) is the Pochhammer symbol.

Theorem 1. Let a and b be arbitrary complex numbers such that a+b—1/2 is not a negative integer. Then
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Proof. Starting from the quadratic transformation formula 2.11.2 in [1]
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replace z in equation with £ and multiply both sides by (1 — 2)¢71 to get
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where now z € [0, 1]. This series converges uniformly. Next we integrate this series termwise with respect
to z from 0 to 1. The integral on the LHS is easy to calculate and equals B(c,n + 1). The integral on the
RHS is
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After multiplication of both sides by ¢ we deduce the series transformation
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Next differentiate both sides of this equation with respect to ¢ at ¢ = 0 using formulas

dT(c+1)I(n+1)
de T(c+n+1)

- _Hna
c=0
& T(c+1)l(n+1)
de? T(c+n+1)

= H:+ HY,
c=0

from which the results stated in the theorem follow immediately. O

Corollary 1. Let ¢¥(x) = 1;((5)) denote the digamma function. Then
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Here C is Catalan’s Constant. Series that contain both central binomial coefficients and Harmonic numbers
are studied in [5H8], and the series where additionally the central binomial coefficients are squared have
been studied in [9HI2].
Formulas — are direct consequences of the Corollary (I} To derive @ and observe that differen-
tiating Kummer’s summation formula ([I], 2.8.50)
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with respect to b yields the summation formula [13]
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from which by specializing a = b = % one obtains the sum
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Together with this allows to calculate the sum @ Formula ([7]) is derived in analogous manner and the
proof of is similar to the proof of Corollary ().

Theorem 2. Let Re(a+b) < 3. Then
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Proof. Consider formula 2.11.7 in [1]
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then divide by 1 — 22 and integrate. The integral on the LHS is
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while the integral on the RHS
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To compute the sum on the RHS one can differentiate Gauss’ summation formula ([1], formula 2.8.46)
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After simplifying the product of Gamma functions using Euler’s reflection formula, and after change of
parameters a — a — %, b—b— % one recovers the formula stated in the theorem. ]

Note. Summation formulas of the same type as in Theorem [2| were found in [14] by applying Newton-
Andrews method to analogs of Watson’s sum
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Formula with € = 1 is due to Wei [14].
Below we give a sketch of an alternative proof of Theorem [2] using Newton-Andrews method following
the approach in [14]. Differentiating with respect to ¢ at ¢ = 1 yields the sum
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in terms of gamma and digamma functions. The first term in the brackets is summed by with ¢ = 1.

The sum with the second term can be expressed as
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Now the hypergeometric function is calculated using with € = —1, therefore it is possible to express

this limit in terms of gamma functions and its derivatives. Hence the sum in Theorem [2| is expressible in
terms of gamma and digamma functions, as required.

Theorem 3. Let Re (a+b) > 0, then
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Proof. In the quadratic transformation formula 4.5.1 from [I]
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we put a = 1 and then take the difference at z = 1 and at z to obtain
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After dividing by 1 — z and integrating termwise we get the following integral on the RHS
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One can easily bring this to the symmetric form stated in the theorem. O
Theorem 4. Let Reb > %, then
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Proof. In the formula 2.11.5 from [I]
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we put a = % and then consider its difference at z =1 and at z
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After dividing by 1 — z and integrating with respect to z one obtains Hs, on the RHS, while the integral
on the LHS was calculated in the proof of theorem [3| Thus
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Evaluating the second series using Gauss’ sum @D completes the proof. O
When b is a positive integer Theorems [3] and [4] allow one to express the value of an infinite sum with
Harmonic numbers as a finite sum.
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