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"The chief attraction of the theory lies in its logical completeness. If a single 

one of the conclusions drawn from it proves wrong, it must be given up; to 

modify it without destroying the whole structure seems to be impossible."  

Albert Einstein (1919).  

 

In the first part we analyze a novel metric for a spherically symmetric mass 

distribution, here called the K-gravity metric. This has a close formal similarity to the 

Schwarzschild metric, arising from an analytic generalization of the usual factor:  

k =df 1/√(1-2MG/c2r), but has quite distinct properties, including infinitely dispersed 

mass, and lack of an event horizon. In the second part we propose that this may be 

taken as a general alternative solution for physical gravity within GTR, resulting from 

an alternative interpretation of the stress-energy tensor, with T ≠ 0 for empty space, 

and we consider the empirical differences with standard Schwarzschild gravity. We 

propose a novel test of GTR is in order, to test this against the usual Schwarzschild 

solution in the solar system.  

 

Part 1. The K-gravity metric. 

 

1. Introduction. 

The Schwarzschild solution (Schwarzschild, 1915/16) to Einstein’s General Theory of 

Relativity (GTR) is typically expressed in line metric form, in polar coordinates:  

 ds2 = c2d2 = c2dt2/k2 – k2dr2 –  r2d2 – r2sin2d2 (1)  

with k (‘little k’) defined by: k =df 1/√(1-2MG/c2r). We will analyze an alternative 

metric, obtained by substituting k with K (‘big K’):  

 ds2 = c2d2 = c2dt2/k2 – k2dr2 –  r2d2 – r2sin2d2 (2) 

 with K defined by: 

 K =df exp(MG/c2r)  (3) 

We refer to (2) as the K-gravity metric. K is close to k in weak gravity, i.e. where 

MG/c2r <<1, or: r >> MG/c2. This is seen most simply by comparing 1/k2 with 1/K2.  

 1/k2 = 1-2MG/c2r 

 1/K2 = 1 - 2MG/c2r + (2MG/c2r)2(1/2!) - (2MG/c2r)3(1/3!)+ …. 
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They differ in the second-order terms: (2MG/c2r)2 and higher. 1/K2 appears as an 

analytic continuation of 1/k2. Comparing k and K directly:  

 k = 1 + MG/c2r + (3/2)(MG/c2r)2 + …  

 K = 1 + MG/c2r + (1/2)(MG/c2r)2 +… 

Hence for large r, k ≈ K + (MG/c2r)2.  All subsequent terms of k are larger than 

corresponding terms of K, so k > K (for all r). Hence Schwarzschild gravity (1) 

predicts stronger fields than K-gravity (2) for the same source mass, at all r > 

2MG/c2r, i.e. everywhere outside the Schwarzschild radius. 

We now analyze the K-gravity metric as a solution to Einstein’s equation:  

 G = R + ½gR = (8G/c4)T (4) 

G  is determined by the K-gravity metric, and we work out the stress-energy tensor, 

T, and corresponding mass-energy distribution , required to produce this metric. 

Whereas the Schwarzschild solution corresponds to a symmetric mass M at a central 

region in otherwise empty space, we will see the K-gravity solution corresponds to the 

same mass M smeared out in space.  

 

2. Generalized line metric functions. 

 

We adopt the usual spherically symmetric metric in polar coordinates: (t,r,), 

indexed by:  = (0,1,2,3), respectively, and we can write both metrics in the form:  

ds2 = gdx dx = U(r)dt2 – V(r)dr2 – r2d2 – r2sin2d2 (5) 

where U and V are spatial functions of r alone. This means:  

g = U,  g = – V, g = – r2, g = – r2 sin2 (6) 

K-gravity and Schwarzschild gravity are defined by alternative choices of U and V. 

Note K-gravity and Schwarzschild gravity are two different metrics – they cannot be 

transformed to each other by any coordinate transformation. However they are both 

spherically symmetric, and because of this, we can use the generalized form (5) to 

represent the K-gravity metric, and the general solutions for Christoffel symbols, 

Ricci tensors, etc, in terms of U, V, commonly used to derive the Schwarzschild 

metric can be used in our derivations for K-gravity.1 We will compare the two 

solutions side-by-side as we go for clarity.  

 

                                                 
1 (Oas, 2014) is a useful simple source to follow the derivation in this form. Standard texts such as 

(Landau etc alia, 1975), (Misner et alia, 1973), (Spivak, 1979), (Wald, 1984) contain all detail needed. 

(Kay, 1976) is a good reference to the tensor calculus.  
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3. Useful Identities. 

We start with some identities useful in the algebraic calculations. 

  

 Identities for k, K, U, V, and their differentials. (7) 

 K-gravity Schwarzschild gravity 

 K = exp(MG/c2r) k = (1-2 MG/c2r)-½  

 Definitions of U and V 

 K-gravity: Schwarzschild gravity: 

 U = c2/K2= c2exp(-2MG/c2r) U = c2/k2 = c2(1-2MG/c2r) 

 V = -K2= -exp(2MG/c2r) V = -k2 = -1/(1-2MG/c2r) 

 U = -c2/V U = -c2/V 

 V = -c2/U V = -c2/U 

 UV = -c2 UV = -c2 

 U/V = -c2/K4 U/V = -c2/k4 

 Derivatives of K and k by r 

 K = exp(MG/c2r) k = (1-2 MG/c2r)-½  

 K’ = -(MG/c2r2)K k’ = -(MG/c2r2)k3 

 K2’ = -(2MG/c2r2)K2 k2’ = -(2MG/c2r2)k4 

 K-1’ = (MG/c2r2)K-1 k-1’ = (MG/c2r2)k 

 K-2’ = (2MG/c2r2)K-2 k-2’ = (2MG/c2r2) 

 Second derivatives by r 

 K’’ = (2MG/c2r3)K+(MG/c2r2)2K k’’ = (2MG/c2r3)k3+(MG/c2r2)23k5 

 Derivatives of U and V in terms of K and k:  

 U’ = -2c2K’/K3 = (2MG/r2)/K2  U’ = -2c2k’/k3 = 2MG/r2 

 V’ = -2KK’ = (2MG/c2r2)K2  V’ = -2kk’ = (2MG/c2r2)k4 

 U’’= 4(MG/r2K)2 – (4MG/r3K2) U’’ = -4MG/r3 

V’’= -(4MGK2/c2r3)(1 + MG/c2r)       V’’= -(4MGk4/c2r3)(1 + 2MGk2/c2r) 

Derivatives of U in terms of U: 

 U’ = (2MG/c2r2)U U’ = 2MG/r2  

 U’’ = –(4MG/c2r3)(1–MG/c2r)U U’’ = -4MG/r3 

       = 4(MG/c2r2)2U – (4MG/c2r3)U 

Derivatives of V in terms of V: 

 V’ = -(2MG/c2r2)V V’ = -(2MG/c2r2)V2 

 V’’ = 4(MG/c2r2)2V + (4MG/c2r3)V  V’’ = 8(MG/c2r2)2V3 + 4(MG/c2r3)V2 
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       = (4MG/c2r3)(1 + MG/c2r)V       = (4MG/c2r3)(1 + 2VMG/c2r)V2 

 

4. Christoffel symbols.  

Non-vanishing Christoffel symbols in terms of U and V are for a general spherically 

symmetric metric:2  

  

 Christoffel symbols written in U, V (8) 

Γ0
01= Γ0

10= U’/2U 

Γ1
00= U’/2V Γ1

11= V’/2V Γ1
22= -r/V Γ1

33= -r sin2/V 

Γ2
12= Γ2

21= 1/r Γ2
33= -cos sin 

Γ3
13= Γ3

31= 1/r Γ3
23= Γ3

32= cot 

 Others terms are zero. 

 

Substituting the coordinate functions for U, V we obtain:  

  

 Christoffel symbols in coordinate functions (9) 

 K-gravity: Schwarzschild gravity: 

 Γ0
01= Γ0

10= MG/c2r2 Γ0
01= Γ0

10= k2MG/c2r2 

 Γ1
00= -MG/r2K4 Γ1

00= -MG/r2k2 

 Γ1
11= MG/c2r2 Γ1

11= k2MG/c2r2 

 Γ1
22= r/K2 Γ1

22= r/k2 

 Γ1
33= r sin2/K2 Γ1

33= r sin2/k2 

 Others terms are zero. 

 

5. Ricci tensors.  

The Christoffel symbols determine the Ricci tensor, which has four non-zero terms.  

  

 Ricci Tensor written in U,V (10) 

R00 = -U’’/2V + U’V’/4V2 + U’2/4UV - U’/rV 

R11 = U’’/2U – U’2/4U2 – U’V’/4UV – V’/Vr 

R22 = rU’/2UV + 1/V – rV’/2V2 + 1  

R33 = R22 sin2 

  

                                                 
2 See (Oas 2014), p. 3-4.   
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 Ricci tensor components written in coordinate variables (11) 

 K-gravity: Schwarzschild gravity: 

 R00 = 2(MG/cr2)2/K4 R00 = 0 

 R11 = -4MG/c2r3  R11 = 0 

 R22 = 1-1/K2 R22 = 0 

 R33 = R22 sin2 R33 = 0 

 R00/R11 = -(MG/2r)/K4 

 

6. Ricci scalar. 

 

 Ricci Scalar written in U and V (12) 

 R = R
 = gR  

  = gR + gR+ gR+ gR 

  = gR + gR+ gR+ gsin2 R 

  = R/U - R/V - R/r - sin2 R/(rsin2) 

  = R/U - R/V - 2R/r  

Substituting for R and simplifying: 

 R = -U’’/UV + U’V’/2UV2 + U’2/2VU2 - 2U’/rUV + 2V’/V2r - 2/r(1+1/V)  (13) 

Then substitute for U, V, U’, V’, U’’ to obtain: 

  

 Ricci Scalar in coordinate functions (14) 

R for K-Gravity 

R = (2/r2K2)(K2 - 1 - (2MG/c2r)) 

R   ≈ (4M2G2/c4r4K2) 

R is positive and proportional to 1/r4 in its highest term.  

(For Schwarzschild gravity, R = 0.) 

 

7. Stress-Energy tensors. 

Using the Einstein equation, we can now determine the T components directly. Only 

diagonal terms can be non-zero, and we obtain three independent equations: 

  

 Field Equations written in U, V  (15) 

 (8G/c4)T = R + ½gR = UV’/rV2 - (U/r2)(1+1/V) 

 (8G/c4)T = R + ½gR = -U’/rU - (V/r2)(1+1/V) 
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 (8G/c4)T = R + ½gR 

   = (r/2V)(-U’/U + V’/V – rU’’/U + rU’V’/2UV + rU’2/2U2) 

The fourth equation, for T, is equivalent to the third. In the Schwarzschild derivation 

these are set to zero, and this leads to the solutions: V = k2 and U = c2/k2. We now use 

these to solve T for K-gravity. The solutions are given below in a number of forms, 

including series in 1/r, and approximations from above and below.  

  

 K-gravity Stress-Energy Tensor in coordinate functions  

T for K-Gravity (16) 

T = Mc4/4r3K4 + c6/8Gr2K4 – c6/8Gr2K2 

= (Mc4/4r3K4) + (c6/8Gr2K4)(1-K2) 

  =  (c6/8Gr2K4)(1+(2MG/c2r)- K2) 

  =  -(c6/8Gr2K4)((2MG/c2r)2/2!+(2MG/c2r)3/3! + (2MG/c2r)4/4! + …) 

  =  -(M2Gc2/4r4K4)(1 + 2(2MG/c2r)/3! + 2(2MG/c2r)2/4! …) 

  =  -(M2Gc2/4r4K4) - (c6/8Gr2K4)((2MG/c2r)3/3! + (2MG/c2r)4/4! + …) 

 -(M2Gc2/4r4K2) ≈< T ≈<  -(M2Gc2/4r4K4)  for large r 

  

T for K-Gravity (17) 

 T = -T K4/c2 = T g/g 

  = -Mc2/4r3 - (1-K2)(c4/8Gr2) 

  =  (M2G/4r4) + (c4/8Gr2)((2MG/c2r)3/3! + (2MG/c2r)4/4! + …) 

 (M2G/4r4) ≈< T ≈< (M2GK2/4r4)   for large r 

  

 T for K-Gravity (18) 

 T = T r2/K4 = Tg/g 

 

Note that: 

 T = -T K4/c2 = TV/U = Tg/g  

 T = -Tg/g,  T = -Tg/g 

 I.e.: T = Tg/g   (no summation)  

 T is negative, T, T, T are positive. 

 



 7 

8. Pressure-Density in K-gravity.  

In K-gravity the gravitational mass, M, is smeared out across space like a fluid. We 

now determine the distribution of this fluid. We can follow Vojinovic (2010) p.7. for a 

simple derivation.3 

“The stress-energy tensor of a fluid element with density , pressure p, and 4-velocity u, is: 

 T = (+p)uu + pg 

We wish to describe the static fluid (u = u= u= 0). So the stress-energy obtains the form: 

 T = u u + p(u u + g),  T = pg,  T = pg,  T = pg 

while other components vanish. Next the 4-velocity vector must be normalized, u u g
 = -1, 

which means that u u = -g.”  

 

Applying this to the K-gravity metric gives four equations:  

  

 K-Gravity: Pressure-Density Tensor Equations 

 T = -c2/K2, T = pK2, T = pr2, T = -pg (19) 

Or inversely: 

  = -T K2/c2, p = T/K2, p = T/r2 (20) 

For the Schwarzschild solution, these are all zero: T= 0 so p=0 and  =0. 

We now calculate p and  for K-gravity. Since from Section 7: T = Tg/g, there 

is really only one equation to solve, and: p = . We will solve for . 

Substituting T from Equation (16) in the first equation above gives:  

  = -Mc2/4r3K2 - c4/8Gr2K2 + c4/8Gr2 (21) 

  = (c4/8Gr2)(1 - 1/K2 - 2GM/c2rK2)  

 =  (c4/8Gr2)(1 - 1/K2k2) 

Or expanded as a series in 1/r: 

   = (M2G/4r4) - (c4/8Gr2)((2MG/c2r)3(2/3!) - (2MG/c2r)4(3/4!)+ … ) 

Approximations from below and above, for large r, are:  

   ≈< (M2G/4r4) for large r (22) 

   ≈> (M2G/4r4K2)  for large r (23) 

For large r,   is constrained between these two limits, which are close when K  is 

small. Hence  varies with M2/r4 in the first approximation, for r >> MG/c2. The first-

order variation with M2 may seem odd: when we integrate  (next) we find the full 

integral is proportional to M. But this integral is dependant on the behavior at small r, 

i.e. where r < MG/c2, and higher-order terms in 1/r and M dominate.  

Note K only becomes substantially larger than 1 in the region of the 

Schwarzschild (black hole) radius. E.g. at: r = 2MG/c2, K = exp(1/2) = √e = 1.64872. 

                                                 
3 Vojinovic use the reverse metric signature, so we must reverse signs when we apply this.  
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When r becomes smaller than this, the value of  begins to diverge to infinity. As r  

0,   ∞, and there is a central naked singularity. But we will see when we integrate 

for the mass that there is no conventional ‘black hole’ event horizon. 

 

9. Integrating the mass-energy density. 

We now show that the total mass-energy adds up to Mc2, by integrating  over the 

spatial volume. This is required to match the Newtonian and Schwarzschild solutions 

in the limit. We first find the indefinite integral: 

 The mass-energy integral 

 I  = ∫ ()(4 r2dr)  (24) 

Substituting from (21): 

 I = ∫ (-Mc2/4r3K2 - c4/8Gr2K2 + c4/8Gr2)(4 r2dr)  (25) 

= ∫ (-Mc2/rK2 - c4/2GK2 + c4/2G)dr 

 

This has the exact solution: 

 The mass-energy integral solution 

 I  = -rc4/2GK2 + rc4/2G + E  (26) 

  = (rc4/2G)(1-1/K2) + E 

where E is an arbitrary constant of integration. To verify this calculate:  

 d/dr(rc4/2GK2)  = c4/2GK2 + (-2rc4/2GK3)(dK/dr)  

  = c4/2GK2 + (Mc2/rK2) 

And:  

 d/dr(rc4/2G)  = c4/2G 

Next we obtain the limit of I as: r  ∞. We expand the solution in terms of r. 

 I  = (rc4/2G)(1-1/K2) + E (27) 

  = (rc4/2G)(1-1+2MG/c2r -(2MG/c2r)2/2! + (2MG/c2r)3/3!) - …) + E 

  = Mc2 - M2G/r + 2M3G2/3c2r2 - … + E 

As we limit r  ∞ all terms in r disappear and only constant terms remain: 

 I∞ = Mc2 + E  

We will set the constant E equal to 0,4 so the indefinite integral is Mc2 at r = ∞. Hence 

the indefinite integral is:  

 I = (rc4/2G)(1-1/K2) (28) 

                                                 
4 For an empty universe. But in any realistic universe model there is a lot of background mass-energy 

that has to be included. However it is just the differentials of I that matter for the metric in GTR.  
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We next obtain the limit of I as r  0. To simplify, we can define: r = MG/c2, i.e. r 

is defined as a multiple  of the fundamental distance: 2MG/c2. Thus:  0 as r  

0, and: lim r0 (I)= lim 0 (I). Terms reduce to: 1/K2 = exp(-2MG/c2r) = exp(-1/), 

and: rc4/2G = Mc2. Substituting in I: 

 I = (Mc2)(1-exp(-1/))) 

We need the value of: (1-exp(-1/)) as:  0. This goes 0, because:  

exp(-1/) = 1/exp(1/) and: exp(1/) ∞ as:  0, so: exp(-1/)  0, so:  

(1-exp(-1/))  0. Hence: 

 I(0) = 0 and:  I(∞) = Mc2 (29) 

Hence the definite integral over the whole volume of space is:  

  

 The total mass-energy integral  

 I0 to ∞ = r=0 to ∞∫ ()(4 r2dr)  (30) 

  = [(rc4/2G)(1-1/K2)]0 
∞ 

  = Mc2 

The total mass-energy of the system is Mc2.   

Note the mass-energy within a radius r is: 

 I 0 to r  = 0 to ∞∫ ()(4 r2dr) 

  = [(rc4/2G)(1-1/K2)]0 
r 

  = (rc4/2G)(1-1/K2) 

  = (rc4/2G)(2MG/c2r)(1 - (2MG/c2r)/2!+(2MG/c2r)2/3! - …) 

  = Mc2(1 - (2MG/c2r)/2!+(2MG/c2r)2/3! - …) (31) 

The factor on the right is larger than 1/K2 and smaller than 1/K from at least: 

r>10(MG/c2)/3, hence: 

 Mc2/K >   I 0 to r  > Mc2/K2       for r >>MG/c2 (32) 

For r >> MG/c2, the total amount of gravitational mass outside the spherical shell of r 

is closely approximated by: M2G/c2r. Conversely M(1–MG/c2r) M/K is 

approximately the gravitational mass within the sphere of radius r. The overall effect 

on proper acceleration at r is similar to adopting a central mass M/K2 in the 

Schwarzschild solution (Section 12). The effect of the reduced mass within the shell 

combined will weaken the effective mass by M/K2 (not just M/K). Two further results 

help confirm the physical consistency of this solution.  

Black hole radius is consistent. Although the mass-density increases indefinitely 

as we approach the center, the Schwarzschild (black hole) radius rs for the central 

mass within r is always smaller than r, so there is no conventional ‘black hole’ event 

horizon formed inside. The Schwarzschild radius is: rs = 2MG/c2. The mass within a 

radius r is: M = (rc2/2G)(1-1/K2). Substituting for M we get: rs = (2G/c2)(rc2/2G)(1-

1/K2) = r(1-1/K2), or: rs/r = (1-1/K2) < 1. Hence the mass distribution appears 
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consistent, and no problems of singularities arise, except the central (naked) 

singularity, which appears as in conventional GTR. 

Pressure is consistent with a quasi-Newtonian force. Note if we differentiate the 

mass integral at r by r we get a force term, and this is exactly equal to: dI/dr = 4r2p. 

Since 4r2 is the surface area at r, this can be interpreted as meaning that the total 

internal force of the mass distribution over the surface at r generates the pressure 

term, p. Note (differentiating the series (27)) that this is like a gravitational self-

attraction: F = M2G/r2 - 4M3G2/3c2r3 + …  M2G/r2 for large r, as if the mass M was 

attracting to itself at a distance of r by a quasi-Newtonian force law. Note this begins 

to reduce at small r, e.g. at the point where: r = 4MG/3c2, the Newtonian term cancels 

with higher order terms as: M2G/r2 - 4M3G2/3c2r3 = 0.  

 

We have confirmed that a specific mass-energy distribution  in GTR will generate 

the K-gravity metric.  

Part 2. K-gravity as a physical theory. 

10. K-gravity as an alternative physical theory.  

The K-gravity metric has been treated as the solution for a special mass distribution in 

GTR. This is not for a central mass, i.e. within a finite boundary, but for an infinitely 

extended mass. But we now propose to consider it as the physical solution for gravity 

for a central inertial mass, and test it against the usual Schwarzschild solution.5 

At first this may seem impossible, because the Schwarzschild solution is known to 

be the central mass solution in GTR. But there is one assumption in the derivation of 

the Schwarzschild solution that can be questioned. The two key assumptions are: 

(A) Symmetric distribution assumption: the inertial mass distribution is radially 

symmetric and static and of finite extent. 

(B) Stress-energy tensor assumption: T = 0 for empty space, i.e. all space 

outside the central mass. 

These determine the Schwarzschild solution uniquely from GTR. The symmetry 

assumption (A) defines the type of system being analyzed, and is not questioned. But 

we now consider the following alternative to (B):   

(B*) K-gravity Assumption: T ≠ 0 for empty space. Instead T for an isolated 

central mass corresponds to the K-gravity metric.6  

This is now proposed as an alternative physical theory, and this is what we will now 

refer to as K-gravity. This does not contradict GTR: it only contradicts the orthodox 

interpretation of the stress-energy tensor within GTR. The new interpretation is that a 

localized inertial mass M produces an extended gravitational-mass-density field 

                                                 
5 The original motivation for this proposal was that K-gravity is the solution for gravity in a novel 

unified theory (unpublished except in preprint), which treats gravity as a result of ‘stretching space’ in 

a higher dimensional manifold, with K being the strain function. This is not discussed here, and it may 

be considered as an independent proposal, motivated simply as a mathematical generalization. 
6 T for complex mass distributions requires a superposition principle consistent with the K-gravity 

metric in the limit of a single mass, as in the following section. 
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throughout space around it. This does not contradict GTR directly because the 

assignment of the stress-energy tensor is not part of the definition of GTR proper, but 

something interpreted from other physics. GTR postulates that there is a g 

characterizing space-time, and that there is a T characterizing a mass-energy 

distribution, and a precise connection between these through the Einstein equation. 

However the specification of T is not determined within GTR: it comes from other 

specialized branches of physics, i.e. particle and field theories. So what makes us 

assume that: T = 0 for ‘empty space’ around a mass? It is our essentially classical 

assumption that mass energy is strictly localized within certain boundaries. It is this 

assumption that is questioned here, not GTR per se. The peculiarity of course is that 

we are now proposing a non-standard stress-energy tensor, with a contribution from 

“gravitational mass” not recognized in particle physics. Of course this raises further 

conceptual questions, but it gives a physically testable theory, and in the remainder if 

this paper we will examine these empirical consequences without trying to fully 

resolve the theory.7 

To summarize, we can view the K-gravity metric in two ways. First it is a purely 

conventional solution for a particular type of mass density distribution. Second, we 

subsequently propose a novel interpretation, modifying the usual stress-energy tensor 

law for a central mass, M. This is illustrated below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r r 

M 

 

 

                                                 
7 The relationship between the metric tensor and the stress-energy tensor and the mass-energy 

distribution is far from clear anyway; see Lehmkuhl (2010) for an interesting recent discussion.  

Figure 1(b). A single inertial mass, 

M, produces a metric field g. K-

gravity takes g to correspond to the 

conventional solution for the special 

case of the fluid (r), on the left. The 

inertial mass M is postulated to 

generate the ‘gravitational mass’ 

field (r). 

Figure 1(a). A conventional fluid with 

total mass M, smeared through space, 

thinning as r increases. Conventional 

GTR relates g(r) to the mass-energy 

density-pressure function, (r), via 

the tensor T(r). The K-gravity 

solution corresponds to a special 

case for (r). 



 12 

‘Gravitational mass’ thus becomes a density field in space, distinguished from the 

inertial mass at a central point. This is somewhat analogous to the quantisation of 

classical particles. A classical particle has a mass with a location and trajectory, but is 

treated in quantum mechanics as being ‘smeared out’ through space, as described by a 

quantum wave function. This required a radical change in the conception of physical 

particles. K-gravity proposes the ‘gravitational mass’ of point-like particles is also 

smeared through space; and this is a similarly radical change in the conventional 

conception of gravitational mass.8 

This requires us to distinguish between inertial mass, which we conceive as the 

centralized mass of a localized body, and gravitational mass, which now becomes a 

mass density function across space. The conceptual distinction between inertial and 

gravitational mass was emphasized by Einstein (1919), and played an important role 

in his thought. ‘Inertial mass’ has a trajectory, and carries energy and momentum, and 

it is what is accelerated by forces. ‘Gravitational mass’ is the charge for the 

gravitational field. Einstein recognized the conceptual importance of identifying them 

(in the Newtonian and GTR theories). But this also introduces the conceptual 

possibility of separating them, which K-gravity does. There are two key questions:  

 Is this proposal coherent as a physical theory of gravity?  

 Is it empirically testable and observationally realistic?  

It is certainly empirically testable, and we will examine how we may compare 

predictions of Schwarzschild gravity (1) against K-gravity (2) in the solar system. But 

we first need to extend the theoretical idea a little. We have defined the K-gravity 

prediction of g for a single central point mass. But to be claimed as a coherent 

theory worth testing, we want to show it can be plausibly generalized to deal with 

distributions of multiple masses. This lets us consider it as a potential general law of 

nature: the metric (2) by itself appears as a merely ad hoc solution.  

 

11. Superposition principle for multiple masses.  

 

We now propose a superposition principle for obtaining solutions for g more 

generally, for multiple masses, with a suitable universal law-like character. The first 

point is that we cannot do this through simple superposition of the mass-energy 

density functions  (Section 8) for individual masses, because they are not suitably 

linear. Normally if we define two distinct mass distributions in space, we can simply 

add their masses together to get a combined mass distribution. This is how we 

superpose classical inertial mass distributions. But the K-gravity mass-energy density 

functions , or equivalently the T, for individual masses, cannot work like this.9 We 

                                                 
8 It should be emphasized that this ‘smearing out’ of the gravitational mass across space does not 

correspond to the quantum wave function for the mass. Note also that GTR cannot deal consistently 

with quantum wave functions in the most fundamental respect: viz. quantum distribution of matter is 

given by superpositions of position states, but when these undergo wave function collapse, there is no 

concept in GTR for the metric tensor to undergo collapse. GTR is deterministic. This is just one sign of 

fundamental incompleteness of GTR, due to the failure to unify GTR and quantum theory. 
9 Quantum systems do not work like this either: multi-particle systems are superpositions in a Hilbert 

product space: they do not have the part-whole structure of a classical system. In GTR we normally 
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cannot take the solution (21) and add (n)’s for a collection of N masses together to get 

a total: total = (n) for the whole system of masses, and then use this to derive T for 

the whole system, and subsequently derive g from the Einstein equation. The reason 

is that  or equivalently T , for the K-gravity central mass is not linear with mass.  

E.g. using the approximation: T ≈ M2G/4r4, which is accurate for large r, and 

defining M as a composite mass: M = M1+M2, we see:  

 T(M1+M2) ≈ (M1+M2)
2G/4r4  

  = M1
2G/4r4+ M2

2G/4r4+ 2M1M2G/4r4 

  ≈ T(M1)+ T(M2)+ 2M1M2G/4r4 (33) 

Hence: T(M1+M2) > T(M1)+ T(M2). E.g. when: M1 = M2 = M/2, we have: 

T(M1+M2) ≈  2T(M1)+ 2T(M2), not: T(M1+M2) = T(M1)+ T(M2). 

We cannot write a superposition principle directly in terms of  or T. But instead 

there is a way to define g directly from the mass distribution without going through 

the stress-energy tensor at all. The following treatment is only for static systems: but 

it shows there is a plausible generalization from the simple metric (2) to a more 

general law for multiple masses, which must be sufficient for our present purpose. 

The most important property of K is the linear separability w.r.t. M. If we define 

an aggregate mass: M = M1+M2 then:  

 K(M1+M2) = exp((M1+M2)G/c2r)= exp(M1G/c2r)exp(M2G/c2r)  (34) 

This corresponds to a basic superposition property: treating a single mass M as a 

superposition of two component masses, M1+M2.  

 The effect of imposing an aggregate mass of: (M1+M2) on empty space at a 

given point (by: K = exp((M1+M2)G/c2r)) is identical to imposing M1 on 

empty space first (by: K1 = exp(M1G/c2r)), and then imposing M2 linearly on 

the resulting space at the same point (by: K12 = K1K2 = 

exp(M1G/c2r)exp(M2G/c2r)). 

This symmetry of K is the essential key. k does not have this symmetry. E.g. k(2M) 

and k(M)k(M) differ by a factor of approximately 1+(2MG/c2r)2 for large r. So the 

following kind of superposition method is impossible to apply in standard GTR. 

The linearity of K means first that there is a well-defined function generalizing K 

for multiple masses (at multiple positions). This will be called the K scalar field. This 

is defined over all the masses, N, in the space. It is just the product of all the 

individual K(Mn,r(n))’s for the individual masses. At any field point K is defined:  

K ≡ K(M1,r(1))K(M2,r(2))… K(MN,r(N))         The K scalar field (35) 

The r(i)’s are the distances from the field point O to the masses Mn. We may write this: 

 K ≡ K(M1/r(1)+ …+MN/r(N)) = exp((G/c2)(∑ n=1 to N(Mn/r(n))))  (36) 

This magnitude depends only the masses Mn and their distances: r(n) = |r(n)| from the 

field point. I.e. it is independent of the relative directions of the masses. We now 

                                                                                                                                            
assume (special-relativistic versions of) classical particle and field theory for the stress-energy tensor. 

The combination of GTR with quantum theory is fundamentally unresolved anyway. 



 14 

propose a superposition principle for static mass distributions defined simply in terms 

of K and its gradient.  

The gradient field of K is defined in local rectangular coordinates for the empty 

space at a field point O as usual, with i = 1,2,3 and xi the basis vectors for 

coordinates: xi. This is developed only for a static mass distribution here: it can be 

generalized to a 4-vector form using retarded potentials (by the close analogy with 

EM theory), and this makes it covariant, but we cannot develop the full theory here. It 

must be enough for our present purposes to illustrate that a plausible superposition 

principle exists. 

 K = grad(K) = (∂K/∂xi)xi                                  The K gradient field (37) 

To differentiate note: grad(r(n))= r(n) and: grad(Mn/r(n))= -(Mn/r(n)
2)r(n). So (summing 

over the masses n): 

 grad(K) = grad(exp((G/c2)∑(Mn/r(n))))  (38) 

  = -(KG/c2)∑((Mn/r(n)
2)r(n)) 

This is simply related to the Newtonian acceleration field, as illustrated.  

 

 

r(1) 

M1 

M2 

O 

r(2) 

(GM2/r(2)
2
)r(2) 

(GM1/r(1)
2
)r(1) 

 f  = (GM1/r(1)
2
)r(1)  

    + (GM2/r(2)
2
)r(2) 

 

Figure 2. The vector sum f of Newtonian acceleration fields, 

illustrated for two masses. The K-gradient field is closely related.  

 

The K gradient field is just K/c2 times the Newtonian gravitational acceleration 

vector field. The latter will be denoted f, defined: 

 f = -G∑((Mn/r(n)
2)r(n)) Newtonian acceleration field (39) 

Thus: 

 grad(K) = Kf/c2 (40) 

grad(K) and f are vector fields.  

 The magnitude of f may be written: f = |f| = (f∙f)1/2 (a scalar field).  

 The direction of f may be written: f = f/f.  

 The magnitude of grad(K) may be written: grad(K) = |grad(K)| (scalar field).  

The scalar fields are thus also simply related: 

 grad(K) = Kf/c2 (41) 

We only need to work with one or other of f or grad(K), and we will use f.  We now 

state a set of rules to determine g directly for multiple source masses. We state this 
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initially in the special local rectangular coordinate system, at the field point O, with 

x1 chosen in the direction of f. The g representation is diagonalised in this 

coordinate system. The first two rules are general for static systems: 

 First, the off-diagonal terms with a time component are zero:  

 g = g =  g = g  = g =  g  = 0 (42) 

 Second, the t-t component g is defined:  

 g = c2/K (43) 

The third rule for the case where f is in the first coordinate direction x1 is: 

 Third, in our special rectangular coordinates with x = x1 chosen in the 

direction of f the spatial components are: 

 g = -1-(f.x1/f)
2(K2-1),  all other gij = -ij.   (44) 

 

Hence the full metric tensor is:  

 

 

Coordinates: t=x0  x=x1  y=x2  z=x3 (45) 

 [g] =  c2/K2, 0,   0,   0 

  0, -1-(f.x1/f)2(K2-1),  0,   0 

  0, 0,   -1   0 

  0, 0,   0,   –1 

 

Note first that the ‘time dilation’ component, viz. g00/c
2= (∂/∂t)2, is always given by 

1/K2. All masses Mn contribute to this by the factor: exp(GMn/c
2r(n)), independent of 

their direction from the field point. Thus a field point at the center of mass of a galaxy 

with a first moment of inertia Mr will have the same time dilation effect as a field 

point at distance r from a single mass M. This is in conformity with ordinary GTR, 

within a factor of: K2/k2. 

Now for the space components, which determine the accelerations, in this special 

case: (f.x1/f)
2 = 1, because f is chosen in the direction of x1 and f.x1 = f. So we can just 

write: g11 = -K2. It is written in the functional form above to compare with the form of 

the more general case, which is:  

 gij = -ij - (fxi/f)(fxj/f)(K
2-1)  (46) 

This is the third rule generalized for rectangular coordinates (xi) rotated with respect 

to f in a plane of f by an angle . The dot product: fxi gives the magnitude of f in the 

xi direction, and we may write this as: fxi = fi.  

For consistency as a tensor relation, this metric (46) in rotated spatial coordinates 

in the x-y plane of f, by an angle , must match that obtained through the usual 

coordinate transformation rule: g’ = gkl (∂xk/∂x’)(∂xl/∂x’), with the Jacobian 

(∂xk/∂x’) for rotation defined: 
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 (47)  

    1, 0, 0, 0 

    0, cos, -sin, 0 

    0, sin, cos,  0 

    0, 0, 0, 1 

 

This transforms the simple K-gravity metric (2) or (45) to: 

K-Gravity metric tensor for M in rotated Cartesian coordinates (48) 

 [g]’ =  c2/K2, 0,   0,   0 

  0, -1-cos2(K2-1),  -cossin(K2-1),  0 

  0, -cossin(K2-1),  -1-sin2(K2-1),   0 

  0, 0,   0,   –1 

 

We need to confirm we get the same result by using our general rule (46) to assign the 

components in a rotated frame. First consider the simple central mass case, where: fxi 

= f, and use (46) to assign components in a rotated frame. In the simple frame, x = x1 

is chosen in the direction f, so: fx1 = f, and fx2 = fx3 = 0. Now suppose we rotate in 

the x-y plane by , as in the transformation (35). We find that:  

 fx1 = f cos fx2 = f sin (49)

This is simply the vector geometry of rotating f. Thus we find the components directly 

from (46) as: 

 g11 = -11 - (f cos/f)(f cos/f)(K2-1) = -1 - cos2(K2-1) (50) 

g22 = -22 - (f sin/f)(f sin/f)(K2-1) = -1 - sin2(K2-1) 

g12 = -12 - (f cos/f)(f sin/f)(K2-1) = -cos sin(K2-1) 

g21 = -21 - (f sin/f)(f cos/f)(K2-1) = -cos sin(K2-1) 

This confirms we get the same result using (46) directly as we get by transforming the 

diagonalised metric to the rotated coordinate system (48). This holds generally when 

fxi = fi < f, because fi/f acts as a constant when we differentiate the gij. We may write 

the rule (46) in a generalized matrix form:  

 

  K-metric for a static system in rectangular coordinates  (51) 

 c2/K2, 0,   0,   0 

0, -1-(fx1/f)2(K2-1),  -(fx1/f)(fx2/f)(K2-1), -(fx1/f)(fx3/f)(K2-1) 

 0, -(fx2/f)(fx1/f)(K2-1), -1-(fx2/f)2(K2-1),  -(fx2/f)(fx3/f)(K2-1) 

 0, -(fx3/f)(fx1/f)(K2-1), -(fx3/f)(fx2/f)(K2-1), -1-(fx3/f)2(K2-1) 

 

and this is consistent with general coordinate rotations. This is the metric represented 

in orthogonal rectangular coordinates (in any direction). To get general coordinates 

we apply tensor transformations as usual.  
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To verify this is physically realistic we examine accelerations next. These are also 

needed to discuss empirical tests, in the subsequent section.  

 

12. Acceleration of a stationary test particle.  

 

We will use: U for the velocity 4-vector and A for the acceleration 4-vector. These 

are the differentials of the x w.r.t. proper time, d. Thus for a stationary test particle 

at the field point: U = dt/d = c/√g00 = K, and Ui = dUi/d = 0 for the spatial 

velocities. The general tensor relationship for acceleration is:  

 A  = UU

 = U(U/x + Γ
U) (52) 

For the stationary particle, only U  0, and this simplifies to:  

 A  = U(U/x + Γ
U)  

 = (U)2Γ
 (53) 

For a Schwarzschild-type metric, the only non-vanishing Christoffel symbol is Γ
. 

So the proper-time acceleration: d2x/d2 of a stationary particle at a field point O is:  

 A1 = (c2/g00)Γ
1

00 = (c2/g00)(∂g00/∂x)(1/2g11)  (54) 

This is then equal to:  

 A1 = (c2/g00)Γ
1

00 = -(c2K2/c2)(c2∂K-2/∂x)(1/2K2)  

 = - ½c2(∂K-2/∂x)  (55) 

In the case of the simple single-mass K, the differential is simply: ∂K-2/∂x = 

2MG/c2r2K2, and the result is: A1 = MG/r2K2. (c.f. the Schwarzschild result is: A1 = 

MG/r2. Thus we see that the Schwarzschild acceleration is greater by a factor of K2.)  

This is the acceleration with respect to proper time. The acceleration in real time t 

for a stationary test particle with: dx/dt = 0 is then: a = d2x/dt2 = A1(d/dt)2 = 

MG/r2K4. (c.f. the Schwarzschild result is: a = MG/r2k2.)  

In the more general case with multiple masses, we do not have a spherically 

symmetric metric, the Christoffel symbols Γ
 other than Γ

 are not generally 

vanishing, and we have to go back to the more general equation (53). However we can 

use the special assumption at the field point O, that we have chosen x = x in the 

direction of f. The differentials of K tangent directions are then zero at this point, and 

for this point the Christoffel symbols Γ
  do vanish except for Γ

.  

For the generalized K scalar field, the differential: ∂K-2/∂x is of course no longer 

simply: 2MG/c2r2K2. It is given through the gradient function: ∂K/∂x = grad(K).x = 

Kf.x/c2. We have: ∂K-2/∂x = -2f.x/c2K2. Thus the result of calculating A1 is more 

generally:  

 A1 = (c2/g00)Γ
1

00 = -½c2(∂K-2/∂x) = f.x/K2 (56) 

This conforms to the Newtonian acceleration (within the factor 1/K2) because f.x is 

just the Newtonian acceleration.  
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We can give a simple example to illustrate. Take a field-point O half-way 

between two masses of magnitude M and 2M respectively, at a distance r0 from each.  

 

 

r0 

O 2M M 

r0 

MG/r
2
 

 

Figure 3. Field point halfway between two unequal masses. 

 

The resultant Newtonian acceleration is towards the larger mass with: f = MG/r2. The 

function K in x is:  

 K = exp((G/c2)(2M/(r0-x)+M/(r0+x)) (57) 

The magnitude at the field point, where x = 0, is simply: K = exp((G/c2)(3M/r0). 

However notice the signs of the variable x are different in the two denominators in K, 

so when we differentiate we get:  

 ∂K/∂x = ((G/c2)(2M/(r0-x)2)- (G/c2)(M/(r0 +x)2))K (58) 

The value at the field point where x = 0 is: ∂K/∂x|x=0 = (GM/c2r0)
2K = Kf/c2. And this 

is what gives the correct acceleration.  

(56) is not a general expression for K either of course, because it does not show 

the general dependence on the other two coordinates, y and z. The general expression 

is rather given by defining radial distance variables:  

 r(1) = √((r0+x)2+y2+z2),    r(2) = √((r0-x)2+y2+z2)  (59) 

and then writing: 

 K = exp((G/c2)(M/r(1) +2M/r(2))) (60) 

When we differentiate this w.r.t. x, y and z we get the same result.  

The result is that because we have chosen x in the direction f at the field point O, 

only the differential w.r.t. x is non-zero at that point. This is why the matrix is 

diagonal at the point O in this coordinate system. However when we have multiple 

masses, the differentials in all directions are involved. And we are no longer writing 

general functions over the entire space: only special cases at the point O.  

 

We conclude this discussion of a superposition principle for K-gravity here. Of course 

it is a further problem to generalize this for dynamic systems. Source masses in motion 

may be treated as retarded sources, like moving electric charges in electrodynamics. 

But this is beyond the scope here. This development is only meant to justify raising 

the question of the empirical accuracy of (2), by showing that it has a plausible 

generalization to a more general theory for multiple masses, with the general character 

of a natural law. There are various choices to fully generalize it, and a theoretical 

development may drag on indefinitely. But there is a clear path to empirically testing 

it. We do not have to establish a full theory for this. This was also the situation when 

GTR was first developed: it was subject to initial tests against Newtonian gravity 
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without fully understanding its theoretical implications. Similarly, K-gravity may be 

immediately tested against Schwarzschild gravity.  

 

13. Empirical tests. 

 

We now consider how K-gravity compares empirically against Schwarzschild gravity. 

The only available testing domain is solar system gravity, with the sun acting as an 

approximately spherical central mass for the major gravitational effect. This is a weak 

gravity domain, and the two metrics (1) and (2) give very similar predictions for this, 

because (a) the functional form of the metrics are very similar, predicting very similar 

qualitative effects in weak gravity, and (b) k and K are very close in these weak fields, 

giving very similar quantitative effects. The critical term: MG/c2r is about 10-8 for the 

gravity of the sun at roughly 1 AU.10 Hence the terms k and K from the sun for inner 

planetary orbits typically differ by about: (k – K) ≈ (MG/c2r)2 ≈10-16. This is not 

directly detectible in itself. Rather, the key difference is for accelerations of slow-

moving bodies, which differ by the factor: K2  1+2MG/c2r (Section 12). 

Accelerations by the sun at orbits around 1 AU calculated with the Schwarzschild 

solution will be about 1+10-8 times larger than those calculated using K-gravity using 

the same Msun/r. The accuracy to which we can measure MsunG is a critical limiting 

factor for testing this.11 The relative uncertainty in MsunG is currently claimed to be 

around 10-11. This precision would make predicted differences well-measurable in 

principle. However this accuracy is obtained from averaging over hundreds of 

thousands of measurements of planets and space probes taken over decades (Pitjeva 

2015). But to test K-gravity directly through accelerations we would need very precise 

measurements taken at single orbits. The relative error of 10-11 in MsunG claimed for 

averaged results is not relevant to this: error in single experiments (with space probes) 

is much poorer than this. And it is not a simple matter of measuring acceleration at a 

single orbit: we have to compare measurements of acceleration at 2 different orbits. 

We need to investigate whether gravitational experiments at single orbits can be made 

sufficiently accurately to decide between the two theories. 

But before we go on to look at this, the first thing to emphasize is that the classic 

tests of GTR against Newtonian gravity do not distinguish the Schwarzschild solution 

from K-gravity. The relativistic phenomena of K-gravity are qualitatively identical to 

those of Schwarzschild gravity (in weak gravity).12 Bending of light, gravitational red 

shift, time dilation and orbital precession all work in K-gravity almost exactly as in 

Schwarzschild gravity. These phenomenon represent distinctive mechanisms in GTR 

that are absent from Newtonian theory, and hence they provide the primary 

observations to compare those two theories. But there are no such qualitative 

differences (i.e. no distinct causal mechanisms) between Schwarzschild gravity and 

                                                 
10 While MG/c2r is only about 7×10-10

 for the gravity of the Earth at the surface.  
11 The CODATA (2014) recommended value of the gravitational constant G alone has a relative 

uncertainty of 4.7×10-5, which is poor. This is the uncertainty provided by laboratory-scale 

experiments, which cannot provide a test of K-gravity. Hence there is about the same error in estimates 

of solar or planetary masses. The accuracy of MsunG is much better; see Pitjeva (2015). 
12 In strong gravitational fields, close to the Schwarzschild radius, the theories diverge sharply – e.g. 

there is  no event horizon in K-gravity - but we cannot yet observe such fields in any detail, and there is 

no experimental confirmation for the existence of the Schwarzschild black hole event horizon yet. 
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K-gravity, only fine quantitative differences. The classic tests of Schwarzschild 

gravity against Newtonian gravity are not sensitive enough to distinguish 

Schwarzschild gravity against K-gravity. 

However there is one set of observations which is potentially precise enough, 

viz. the Pioneer spacecraft trajectories. This initially promised to give a sensitive 

quantitative measurement of gravitational acceleration over a large radial trajectory. 

This appears to be the only direct measurement to date of sufficient precision to 

directly test between the two metrics. If the Pioneer data had unambiguously 

confirmed Schwarzschild gravity, this would have contradicted K-gravity. But instead 

anomalies famously appeared in the data, inconsistent with Schwarzschild gravity. In 

an earlier study (unpublished pre-print; 2004), it was found that these anomalies are 

close to the predictions of K-gravity. But this evidence is now weak, because, after 

many years searching for a conventional explanation, it has now been claimed 

(Turyshev et alia, 2012) that the anomalies are due to anisotropic radiation from the 

spacecraft, and many physicists now accept this. But this proposed explanation is by 

no means certain, and there is no experimental replication of the phenomenon. This is 

discussed briefly below, and it is proposed a new experiment is the only way to 

decisively test the matter. First however we look briefly at the basic concept of testing 

the theories through measurement of accelerations. Although this is not the most 

practical method, it reveals essential concepts.  

The conceptual starting point is that the predicted difference in accelerations, for 

slowly moving test particles in weak gravity, is K2 (Section 12). For Earth orbit (1 

AU), K2 is about 1+10-8. For Saturn orbit (10 AU), it is reduced to about 1+10-9.  

Now for a stationary observer at a fixed orbit, adopting K-gravity instead of 

Schwarzschild gravity is essentially the same as recalibrating the estimated magnitude 

of MsunG for the sun by the factor K2 at that orbit. Testability at first sight seems to 

depend upon whether acceleration measurements are made accurately enough to 

detect the difference between MsunG and MsunGK2. But measuring absolute 

accelerations at one orbit is no good: for these are what we use to determine MsunG in 

the first place (under the assumption of the Schwarzschild metric). Any such 

observation at a single orbit is equally consistent with K-gravity: we would just 

recalibrate MsunG by the factor K2. Instead we must compare accelerations across 

different orbits.13 This point is critical and needs a brief analysis.  

MsunG may be measured quite accurately: to a relative uncertainty of around 10-9 -

10-10, using space probes, at a single orbit (over a period of several orbits, i.e. several 

years for 1 AU). So it might seem a difference of K2 could be immediately detected in 

absolute accelerations. But to repeat the point above, this is wrong. MsunG at a single 

orbit may be calculated from measuring acceleration (of orbiting bodies or space 

probes), and then using the assumption of Schwarzschild gravity to infer MsunG. If we 

assume K-gravity instead, we would just infer that MsunG is larger by K2, using K for 

the orbit where we measured the acceleration. Note because K-gravity is weaker, we 

infer a larger MsunG from the same observed acceleration. MsunG inferred from 

Schwarzschild gravity from a single orbit will be consistent by definition with 

MsunGK2 inferred from K-gravity.  

                                                 
13 The same applies to time dilation or red shift effects, but red shift effects are measured to relative 

error only about 10-6  (Will 2014 p.13-15) and are not sensitive enough. Measurement of the precession 

of the perihelion of Mercury is less accurate again.  
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To use acceleration measurements, we can to measure accelerations at two 

different orbits, and compare their values. (The inference to a value of MsunG is really 

a proxy for acceleration.) Suppose we first determine (proper) accelerations: 

MsunG/r1
2 and MsunG/r2

2 at two different orbits, using the assumption of Schwarzschild 

gravity to infer MsunG. Their difference is:  

 N = (MsunG/r1
2 - MsunG/r2

2) = (MsunG)(1/r1
2 - 1/r2

2)  (61) 

We can measure this accurately to the sum of relative uncertainties in the terms This 

uncertainty involves the r terms as well as MsunG. Let us define this uncertainty (to 

one standard error) as: MsunG/r1
2. Now this depends on the measurements we have 

done at both orbits. If we do a very careful measurement at a primary orbit r1 we may 

get a small error, but for a good comparison we need a similarly careful measurement 

at r2 and as we will now see, we need r2 to be in a suitable range to maximize the 

predicted acceleration differences. 

To see the predictions of K-gravity, we can recalibrate MsunG to the value: 

MsunGK1
2 , at the primary orbit r1, and then use this value for MsunG at r2. The 

accelerations predicted by K-gravity will then be very close to: MsunGK1
2/r1

2K1
2 = 

MsunG/r1
2 and MsunGK1

2/K2
2r2

2. Their difference will then be predicted as:  

 K = (MsunG/r1
2 – MsunGK1

2/K2
2r2

2) = (MsunG)(1/r1
2 – K1

2/K2
2r2

2)  (62) 

Expanding the K term, this is approximately: 

 K  (MsunG)(1/r1
2 – 1/r2

2 – (1/r2
2 )(2MsunG/c2)(1/r1–1/r2)) (63) 

Then the absolute difference: K - N is: 

 K - N  = -(MsunG)(1/r2
2)(2MsunG/c2)(1/r1–1/r2) (64) 

This is the difference between the two theories for the accelerations predicted at r2. 

Define  = r1/r2, so this is:   

 K - N  = -(MsunG2/r1
2)(2MsunG/c2r1)(1- ) (65) 

Now we need to compare this magnitude to the error term: MsunG/r1
2.  

Dividing gives: 

  (K - N)/(MsunG/r1
2) = -22(1- )(MsunG/c2r1)(1/ 

Effects become conclusively detectible when this is substantially greater than 1, say 

on the scale of 10.14 Let us set this to 20 to define a conclusively detectible limit so:  

   2(1- )(MsunG/c2r1) = 10 Conclusively detectible limit for  

Now we can put in approximate numbers, for r1 = 1 AU as: MsunG/c2r1  10-8, so: 

  2(1-)10-9 

This tells us the maximum limit of required at different choices of  = r1/r2 to 

achieve a clear detection of the K-gravity effect. 

  

                                                 
14 Theoretically 4-5 standard errors is sufficient; but the likelihood of systematic error through 

miscalculation of small effects, like radiation pressure, means we want a better precision to 

conclusively confirm or disconfirm an effect. 
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Figure 4. Graph of against r2/r1 

 

This illustrates minimal precisions required in acceleration measurements to achieve 

experimental precision of the z-score = 20, for a range of the second orbit radius. 

The best precision is found when r2/r1 is 1.5. (Or inversely, 0.66). I.e. assuming the 

closest orbit is at r1 = 1 AU, the second orbit would need to be around 1.5 AU for the 

most robust experiment. Orbits from about 1.3 – 2.5 AU will be good enough if we 

can achieve relative measurement error better than about 10-10 for the acceleration 

measurements at both orbits. Note this error must include compensation terms for 

forces other than the solar gravity component, e.g. solar radiation, solar wind, dust or 

small particle collisions, planetary tugs, possible EM forces, oblateness of the sun, 

and velocity of the probe. (The term r can be measured with sufficient accuracy). 

Since relative measurement error of 10-10 is at the present limit for measuring 

accelerations of space probes, it is possible for this experiment to be done, but not 

easy, and it would take many years. Data for such a test is not available from previous 

experiments. It requires high-precision measurements at two appropriate distances 

from the sun, but these have not been done. Without a theory here is no way to guess 

the appropriate distances. And no analysis of data from gravitational experiments has 

been undertaken to test this. Any inconsistencies present in current gravitational data 

that might confirm K-gravity have gone unexplained. Current analyses do not 

envisage a possibility like K-gravity, where the gravitational field changes shape 

significantly compared to Schwarzschild gravity with radial distance.15  

But there is a much better way to do the experiment than by measuring 

accelerations separately at two orbits; viz. by carefully observing the trajectory of a 

probe in radial free-fall. The optimal experiment is a probe launched at an optimal 

speed, traveling radially from Earth to about Jupiter orbit, over several years. Such an 

experiment has not been done; but the tracking of the Pioneer spacecraft at more 

distant orbits (traveling from around 10 AU to 80 AU) provides a similar experiment 

in principle. As an experiment to test K-gravity this is far from ideal: it is in weaker 

gravity, and the speed is not optimal. But as far I know this is the only data of 

sufficient precision available to potentially test the hypothesis of K-gravity.  

                                                 
15 Variations conceived in the framework of the Paramistised Post-Newtonian formalism do not allow 

for such differences, and neither do popular viable alternative theories of gravity.  
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There are two reasons it provides a more accurate test of acceleration than 

experiments at closer orbits. First it was taken over a long period of time, so small 

differences in acceleration accumulate. Second, it involves a free-fall trajectory over a 

substantial range of r, from about 10 AU (when the spacecraft left Saturn’s orbit) to 

around 80 AU. This second point is most important. The functions K and k which 

determine accelerations change shape over changes of r. It is easier to detect the 

predicted anomalies in radial trajectories observed over an appropriate range of r than 

to detect differences in accelerations at two orbits directly.  

This also leads to a critical realization when analyzing the effects on radial 

trajectories. Because K gravity is weaker than Schwarzschild gravity, for the same 

assumed MsunG/r, we intuitively expect it to predict that probes traveling in free-fall 

outwards to large r will travel faster under the K-gravity metric. “The Pioneers have 

been slowing down faster than predicted … some tiny extra force … must be acting on 

the probes, braking their outward motion.” (Musser 1998). This is true if the cause of 

slowing is a non-gravitational force. But if the cause is a modified form of gravity, the 

opposite is the case: a weaker rather than stronger form of gravity is required. 

Because MsunG/r is initially calibrated from the inner solar system, on the 

assumption of Schwarzschild gravity, from the point of view of K-gravity this leads 

us to underestimate the magnitude of MsunG/r (by 1/K2). If K-gravity is correct, then 

we should increase the conventional magnitude of MsunG/r by this factor, i.e. K2. In 

weak gravity, the differences between K and k are very small, and we will get almost 

the right acceleration predictions for K-gravity from the conventional Schwarzschild 

analysis - but by applying it with the larger value: MsunGK2/r instead of MsunG/r. This 

is what we saw in the analysis above. 

If K-gravity is correct, we should notice the spacecraft slowing down faster than 

expected on the basis of the Schwarzschild solution. There should be an increasing 

delay in the expected position. This is exactly what was observed with the Pioneer 

spacecraft. Anomalies of about a 16 seconds delay in the expected journey to around 

80 AU appeared, and I have found a similar magnitude of difference (predicting about 

12 - 18 seconds delay, sensitive to uncertainties in initial parameters).  

However as noted above, the Pioneer situation has subsequently become unclear.  

Turyshev et alia (2012) identify a faint source of anisotropic heat radiation from the 

Pioneer spacecraft as the cause of slowing. But if such a tiny factor is able to be 

overlooked for 20 years, who knows if there are further tiny factors also overlooked? 

Tiny effects are amplified over a long period of time, and there are multiple possible 

effects to calculate, e.g. radiation and particle pressure from the sun, small planetary 

pulls, ‘dark matter’, heat anisotropy, dust collisions, so-called ‘frame-dragging’ 

effects, possible tiny EM forces, and even the Hubble expansion of the universe is on 

roughly the same scale. The upshot is that the analysis of the Pioneer trajectories is 

vulnerable to too many possible uncertainties precisely in the magnitude of anomalies 

predicted by K-gravity to provide a conclusive test of K-gravity.  

Experimental replication is the best way to resolve the question of the Pioneer 

anomalies. But replication of the original experiment is not feasible. However we do 

not have to replicate experiments exactly: rather, we replicate them to test for possible 

alternative causes of phenomenon. This is where having an alternative theory to test 

against is critical. It lets us design variations of the original experiment, calculated to 

enhance anomalous effects on the hypothesis of a specific alternative cause.  
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A decisive experiment to test K-gravity, and simultaneously try to replicate the 

Pioneer phenomenon on the hypothesis that K-gravity, may be done in a time-frame 

of around 3-4 years, by precisely tracking a probe in free-fall traveling from roughly 

Earth to Jupiter orbit. The speed is optimized to amplify the anomaly predicted by K-

gravity. This is a more efficient and robust experiment than trying to measure 

accelerations of probes at orbits of 1 AU and 1.5 AU to high precision. Calculation of 

optimal initial trajectory speeds and predicted effects will be given in a subsequent 

paper.  

In summary, K-gravity is on the cusp of current testability of GTR. It represents a 

domain of the largest plausible undetected error that conventional GTR might still 

have in weak gravity. The test would set a new limit to the tested accuracy of GTR. 

This falls outside the main program for testing GTR, viz. through the parameterized 

post-Newtonian formalism. There are a number of alternative theories to GTR 

(including Brans–Dicke theory, string theory, loop gravity, etc) but these are 

practically untestable, while K-gravity is readily testable. And it may reveal 

something quite unexpected instead.16 

                                                 
16 There is another reason to test it from the authors’ perspective. K-gravity was originally developed as 

a consequence of a powerful unified theory that makes a number of strong predictions (published only 

in pre-prints 2004/2014),  of a type so far not considered in physics. If K-gravity is disconfirmed, this 

type of unified theory is probably wrong, despite making other strong and accurate novel predictions. If 

K-gravity is confirmed it has a very strong case, and indeed, we can probably claim to know the form 

of the fundamental unified theory, and certainly dismiss all other present candidates, such as string 

theory. This connection will be given in subsequent papers. 
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