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Abstract

This paper is concerned with the problem of exact MAP inference in general higher-
order graphical models by means of a traditional linear programming relaxation approach.
In fact, the proof that we have developed in this paper is a rather simple algebraic proof
being made straightforward, above all, by the introduction of two novel algebraic tools.
Indeed, on the one hand, we introduce the notion of delta-distribution which merely stands
for the difference of two arbitrary probability distributions, and which mainly serves to
alleviate the sign constraint inherent to a traditional probability distribution. On the other
hand, we develop an approximation framework of general discrete functions by means of
an orthogonal projection expressing in terms of linear combinations of function margins
with respect to a given collection of point subsets, though, we rather exploit the latter
approach for the purpose of modeling locally consistent sets of discrete functions from a
global perspective. After that, as a first step, we develop from scratch the expectation
optimization framework which is nothing else than a reformulation, on stochastic grounds,
of the convex-hull approach, as a second step, we develop the traditional LP relaxation
of such an expectation optimization approach, and we show that it enables to solve the
MAP inference problem in graphical models under rather general assumptions. Last but
not least, we describe an algorithm which allows to compute an exact MAP solution from
a perhaps fractional optimal (probability) solution of the proposed LP relaxation.

1. Introduction

The MAP inference problem in general higher-order graphical models (Bayesian models,
Markov random field models (MRFs), and beyond), also, called the discrete higher-order
multiple-partitioning (or multi-label) problem (HoMPP) can be stated as follows. Given:

1. a discrete domain of points (sites) assumed, without loss of generality, to be the integer
set Ω =

{
1, . . . , n

}
, where n stands for an integer which is greater than, or equal to 2,

2. a discrete label-set assumed, without loss of generality, to be the integer set L ={
0, . . . , L− 1

}
, where L stands for an integer which is greater than, or equal to 2,

3. a hypersite-set S consisting of subsets of Ω with cardinality greater than, or equal to
1,

4. a set of real-valued local functions
{
gs : L|s| −→ R,∀s ∈ S

}
.

then, the goal is to find a multi-label function of the form:

x̃ : Ω −→ L
i 7−→ x̃(i)
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in a way which either minimizes, or maximizes a higher-order cost function defined for all
multi-label function x̃ as:

g(x̃) =
∑
s∈S

gs
(
x̃(s)

)
(1)

where it has been assumed that, ∀s ∈ S, one has x̃(s) =
(
x̃(i)

)
i∈s.

For the sake of convenience in the remainder, we propose to encode the multi-label
function x̃(·) by means of a n-dimensional integer vector x = (x1, . . . , xn) ∈ Ln, while
simply bearing in mind that ∀i ∈ Ω, one has x̃(i) = xi, and we refer throughout to x as the
multi-label vector (MLV). The problem then amounts to finding an integer vector solution
in Ln which either globally solves the following minimization problem:

inf
x∈Ln

{
g(x) =

∑
s∈S

gs
(
xs
)}

(2)

or globally solves the following maximization problem:

sup
x∈Ln

{
g(x) =

∑
s∈S

gs
(
xs
)}

(3)

More generally, one might be interested in finding both modes (i.e.; the minimum and the
maximum solutions) of g, and we propose to denote such a problem by:

Modes
x∈Ln

{
g(x) =

∑
s∈S

gs
(
xs
)}

(4)

Furthermore, in order to rule out any trivial instances of the HoMPP, therefore, we make
throughout the following mild assumptions:

• ∪s∈S{i ∈ s} = Ω,

• g and gs,∀s ∈ S are non-constant functions.

For the sake of clarity in the remainder, we shall be referring to minimization problem
(2), maximization problem (3) and modes finding problem (4) using the acronyms Min-
MPP, MaxMPP, and ModesMPP, respectively. Furthermore, we want to emphasize that
in practice, such a higher-order function g(x) often arises as minus the log-likelihood of a
instance of a graphical model (e.g.; a Bayesian model, a MRF model, and so forth) given
the observed data (up to the minus log of a normalization constant). Then, depending on
the application, either one may only be interested in a MAP solution of the HoMPP (i.e.; a
one which maximizes the likelihood, equivalently, which minimizes g(x)), or in both modes
of the likelihood. In fact, one of the contributions of this paper is that it also shows that
both modes of g are intimately related to each other (please refer to section 8, especially to
the discussion which follows Theorem 11 for more details).

The remainder of this paper is structured as follows. After reviewing some the ex-
isting literature on the MAP inference problem in graphical models, we first reformulate,
on stochastic grounds, both MinMPP (2) and MaxMPP (3) as expectation minimization
and maximization linear programs (LPs), respectively. After that, we introduce the notion
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of delta-distribution, and we reformulate ModesMPP (4) as a delta-expectation minimiza-
tion LP. Next, we introduce the ortho-marginal framework as a general discrete function
approximation by means of an orthogonal projection in terms of linear combinations of
function margins with respect to a given hypersite-set, though, as mentioned in the ab-
stract, we rather use the latter for the purpose of modeling local consistency from a global
perspective. Then, we proceed in a traditional way for obtaining useful LP relaxations of
the HoMPP, by merely enforcing locally the probability and the delta-probability axioms,
respectively. Having in mind the two mathematical tools above, namely, the notion of delta-
distribution and the ortho-marginal framework, we reformulate the proposed LP relaxations
from a global viewpoint, and we show that their optimal solutions coincide with the ones
of their original (hard) versions. Last but not least, since one is only guaranteed to recover
a set of optimal marginal distributions (resp. a set of optimal marginal delta-distributions)
of the HoMPP, we also develop an algorithm allowing to compute modes of g from a per-
haps fractional solution of its LP relaxation. Before moving to the crux of the approach,
we want to emphasize that the present paper is self-contained, moreover, all the presented
results throughout are shown using rather simple algebraic techniques widely accessible to
anyone who is familiar with the basic concepts of linear algebra, linear programming, and
probability theory.

2. Related work

Maximum-A-Posteriori (MAP) estimation in higher-order probabilistic graphical models
(Lauritzen, 1991; Bishop, 2006; Wainwright & Jordan, 2008), also referred to in the opera-
tional research and computer vision literatures as the higher-order multiple-partitioning (or
the multi-label) problem (HoMPP), has been, for many decades, a central topic in the lit-
erature of AI and related fields (statistics, machine learning, data-mining, natural language
processing, computer vision, coding theory, operations research, computational biology, to
name a few). In the culture of mathematical programming, the HoMPP is nothing else
than unconstrained integer programming (Nemhauser & Wolsey, 1988; Grootschel, Lovasz,
& Schrijver, 1993), whereas in the culture of data science, the HoMPP often arises as an
inference (or an inverse) problem, in the sense that one is interested in finding the most
likely configuration of model parameters which explains the observed data. The choice of a
graphical model for a given practical situation may be motivated by the nature of the (ran-
dom) process which generates the data, but may also be severely constrained by available
computing resources and/or real-time considerations. Thus, factor graphs (Kschischang,
Frey, & Loeliger, 2001) have arisen as an almost inescapable AI tool both for modeling
and solving a variety of AI problems, above all, due to their modularity, flexibility as well
as their ability to model a variety of real-world problems. In this regard, two extremely
popular classes of graphical models are the Bayesian graphs (or the directed factor graphs)
(Pearl, 1982; Pearl & Russell, 2002), and the Markov random field (MRF) graphs (or the
undirected factor graphs) (Hammersley & Clifford, 1971; Kinderman & Snell, 1980). His-
torically, MRFs had long been known in the field of statistical physics (Ising, 1925; Ashkin
& Teller, 1943; Potts, 1952), before they were first introduced in computer science (Besag,
1974) and later popularized by many other authors (Geman & Geman, 1984; Besag, 1986;
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Geman & Graffigne, 1986; Li, 1995). Nowadays, factor graphs are a branch in its own right
of statistical and probability theories, and of which use in AI is ubiquitous.

With that being said, exact MAP inference, or even approximate MAP inference in
general graphical models is a hard combinatorial problem (Karp, 1972; Cooper, 1990;
Dagum & Luby, 1993; Shimony, 1994; Roth, 1996; Chickering, 1996; Cipra, 2000; Megretski,
1996; Boykov, Veksler, & Zabih, 2001; Park & Darwiche, 2004; Cohen, Cooper, Jeavons, &
Krokhin, 2006). As a matter of fact, unless P = NP, one may not even hope achieving an
approximate polynomial-time algorithm for computing the modes of an arbitrary instance
of a graphical model. Therefore, except in particular cases which are known to be solvable
exactly and in polynomial-time (Hammer, 1965; Greig, Porteous, & Seheult, 1989; Boykov,
Veksler, & Zabih, 1998; Ishikawa, 2003; Schlesinger, 2007; Osokin, Vetrov, & Kolmogorov,
2011), the MAP inference problem in graphical models has been mostly dealt with, so far,
by using heuristical approaches, and which may be ranked in three main categories. First,
probability-sampling-based approaches also called the Markov Chain Monte Carlo (MCMC)
methods (Hastings, 1970; Green, 1995; Gelfand & Smith, 1990) have been among the firstly
used MAP estimation algorithms in factor graphs (Geman & Geman, 1984; Besag, 1986),
and their good practical performances both in terms of computational efficiency and ac-
curacy have been, extensively, reported in the literature (Baddeley & Van Lieshout, 1993;
Winkler, 1995; Descombes, 2011). Graph-theory based approaches which are mostly vari-
ants of the graph-cut algorithm have been also extensively used for optimizing a plethora
of MRF instances which are mainly encountered in computer vision (Boykov et al., 2001;
Kolmogorov & Zabih, 2004; Liu & Veksler, 2010; Veksler, 2012). More recently, fostered
by the important breakthroughs in linear programming (Chvàtal, 1983; Dantzig, 1990;
Karmarkar, 1984; Bertsimas & Tsitsiklis, 1997) and, more generally, in convex program-
ming (Ye, 1989; Nesterov & Nemirovsky, 1994; Nesterov, 2004, 2009; Lesaja, 2009; Beck
& Teboulle, 2009), as well as by the important recent surge in high-performance comput-
ing, such as multi-processor and parallel computing (GPU) technologies (Bolz, Farmer,
Grinspun, & Schrooder, 2003; Li, Lu, Hu, & Jiang, 2011), linear and convex programming
relaxation approaches–including spatially-continuous continuous approaches (Nikolova, Ese-
doglu, & Chan, 2006; Cremers, Pock, Kolev, & Chambolle, 2011; Lellmann & Schnorr, 2011;
Nieuwenhuis, Toeppe, & Cremers, 2013; Zach, Hane, & Pollefeys, 2014) and spatially-
discrete ones (Schlesinger, 1976; Hummel & Zucker, 1983; Hammer, Hansen, & Simeone,
1984; Pearl, 1988; Sherali & Adams, 1990; Koster, Van Hoesel, & Kolen, 1998; Chekuri,
Khanna, Naor, & Zosin, 2005; Kingsford, Chazelle, & Singh, 2005; Kolmogorov, 2006a;
Werner, 2007; Cooper, 2012)– have arisen as a promising alternative both to graph-theory
based and MCMC based MAP estimation approaches in factor graphs. Generally speaking,
the latter category of approaches may also be seen as an approximate marginal inference
approach in factor graphs (Wainwright, Jaakkola, & Willsky, 2005; Wainwright & Jordan,
2008), in the sense that, one generally attempts to optimize the objective over a relaxation
of the marginal polytope constraints, in such a way that, an approximate MAP solution
may be found by a mere rounding procedure, or by means of a more sophisticated message
passing algorithm (Wainwright et al., 2005; Kolmogorov, 2006b; Komodakis, Paragios, &
Tziritas, 2011; Sontag & Jaakkola, 2008). In fact, the approach which is described in this
paper belongs to the latter category of approaches, yet, it may solve the MAP inference
problem in a general instance of a factor graph model.
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3. The HoMPP expectation optimization framework

The goal of this section is to transform both MinMPP (2) and MaxMPP (3) into equivalent
continuous optimization problems, and, eventually, into linear programs by means of the
expectation-optimization framework.

Therefore, we first assume MinMPP (2), and in order to fix ideas once and for all
throughout, we propose to develop from scratch the expectation minimization (EM) ap-
proach, allowing to recast any instance of MinMPP (2) as a linear program (LP). In the
introduction section, we have assumed that the labeling process is purely deterministic,
but unknown. Therefore in this section, we rather advocate a random multi-label process,
consisting in randomly drawing vector samples x ∈ Ln with a certain probability, then
assigning to each site i ∈ Ω realization xi of its random label. Let us stress that randomiza-
tion serves here only temporarily for developing the EM approach which is deterministic.
Therefore, suppose a random multi-label vector (RMLV) X =

(
Xi
)
i∈Ω

, with value domain
Ln, and consider the stochastic (random) version of the objective function of MinMPP (2)
expressing as:

g
(
X
)

=
∑
s∈S

gs
(
Xs
)

Then, one writes the expectation of g
(
X
)

as:

E
[
g
(
X
)]

=
∑

x∈Ln g(x)P
(
X = x

)
=
∑

x∈Ln
(∑

s∈S gs(xs)
)
P
(
X = x

)
=
∑

s∈S
∑

xs∈L|s| gs(xs)P
(
Xs = xs

)
Please observe that E

[
g
(
X
)]

expresses solely in terms of the marginal distributions of the
random vectors Xs,∀s ∈ S. Next, suppose that one is rather given a set (or a family) P of
candidate probability distributions of RMLV X 1, such that:

∀p ∈P,


p : Ln −→ R,
p(x) ≥ 0, ∀x ∈ Ln,∑

x∈Ln p(x) = 1.

and the goal is to choose among P the joint distribution of RMLV X which solves the
following minimization problem:

min
p∈P

{
Ep
[
g
(
X
)]

=
∑
x∈Ln

g(x) p(x)
}

(5)

We refer to minimization problem (5) as EMinMPP, standing for expectation minimization
multiple-partitioning problem. Now, in order to see how EMinMPP (5) relates to MinMPP
(2), one may write ∀x ∈ Ln: g(x) =

∑
y∈Ln g(y) 1x(y) = E1x

[
g
(
X
)]

, where 1x(·) stands for
the indicator function of x, defined as:

∀y ∈ Ln, 1x(y) =

{
1, if y = x,
0, else.

1. But more formally speaking, one would rather consider a set of independent copies of X , each of which
is endowed with its own distribution in P.
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in such a way that, by denoting by I =
{
1x(·), x ∈ Ln

}
which stands for the set of

indicator functions of the integer vector set
{
x ∈ Ln

}
, one may completely reformulate

MinMPP (2) as an instance of EMinMPP (5), with P = I . Furthermore, since ∀p ∈ P,
Ep
[
g
(
X
)]

writes as some convex combination of the elements of the set
{
g(x), x ∈ Ln

}
,

one derives immediately that:

min
p∈P

{
Ep
[
g
(
X
)] }
≥ inf

x∈Ln

{
g(x)

}
(6)

which means that EMinMLP (5) is an upper-bound for MinMPP (2). Then, Theorem 1
below gives a sufficient condition under which EMinMPP (5) exactly solves MinMPP (2),
and how one may obtain, accordingly, an optimal vector solution of MinMPP (2) from a
perhaps fractional optimal probability solution of EMinMPP (5).

Theorem 1 Suppose that P ⊇ I. Then EMinMPP (5) achieves an optimal objective
value equal to infx∈Ln

{
g(x)

}
. Furthermore, if p∗ is an optimal (probability) solution of

EMinMPP (5), then any x ∈ Ln, such that, p∗(x) > 0, is an optimal solution of MinMPP
(2).

Proof 1 The assumption that P ⊇ I guarantees that a strict equality is achieved in formula
(6). Moreover, if a distribution p∗ of RMLV X is optimal for problem (5), then so must
be any indicator function which is expressed with a strictly positive coefficient in the convex
combination of p∗ in terms of indicator functions of the set Ln, in other words, any integer
vector sample of p∗ must also be optimal for MinMPP (2).

Clearly, Theorem 1 is nothing else than the probabilistic counterpart of the well-known
convex hull reformulation in integer programming (Sherali & Adams, 1990; Grootschel
et al., 1993; Bertsimas & Tsitsiklis, 1997; Wainwright & Jordan, 2008). Having said that,
in the remainder, we will assume that P stands for the entire convex set of candidate joint
distributions of X which is given by:

P =
{
p : Ln → [0, 1], s.t.,

∑
x∈Ln

p(x) = 1
}

(7)

Clearly, one has P ⊇ I, and P coincides with the convex hull of I . One may reexpress
EMinMPP (5), accordingly, as a linear program (LP) as follows:

min
{ ∑

s∈S
∑

xs∈L|s| gs(xs) ps(xs)
}


ps(xs) =

∑
i 6∈s
∑

xi∈L p(x1, . . . , xi, . . . , xn), ∀xs ∈ L|s|, ∀s ∈ S∑
x∈Ln p(x) = 1

p(x) ≥ 0, ∀x ∈ Ln

(8)

Equally, one finds that the following LP:

max
{ ∑

s∈S
∑

xs∈L|s| gs(xs) ps(xs)
}


ps(xs) =

∑
i 6∈s
∑

xi∈L p(x1, . . . , xi, . . . , xn), ∀xs ∈ L|s|, ∀s ∈ S∑
x∈Ln p(x) = 1

p(x) ≥ 0, ∀x ∈ Ln

(9)
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completely solves MaxMPP (3). Throughout, we shall refer to LP (8) and LP (9) using
the acronyms EMinMLP and EMaxMLP, respectively. We conclude this section by merely
saying that both EMinMLP (8) and EMaxMLP (9) are untractable in their current form,
and the goal in the remainder of this paper is to develop their efficient LP relaxations.

4. The HoMPP delta-expectation minimization framework

In this section, we develop the delta-expectation minimization framework for addressing
ModesMPP (4), in other words, both MinMPP (2) and MaxMPP (3) in a common mini-
mization framework.

4.1 Joint delta-distribution

Definition 1 (Joint delta-distribution) We call a joint delta-distribution of RMLV X
any function q : Ln → R which can write in terms of the difference of two (arbitrary) joint
distributions of RMLV X as:

q(x) = p(x)− p′(x), ∀x ∈ Ln

where both p and p′ stand for (ordinary) joint distributions of RMLV X .

Theorem 2 provides a useful alternative definition of a joint delta-distribution of RMLV
X , without resorting to its ordinary joint distributions.

Theorem 2 A function q : Ln → R defines a joint delta-distribution of RMLV X , if and
only if, q satisfies the following two formulas:

1.
∑

x∈Ln q(x) = 0,

2.
∑

x∈Ln |q(x)| ≤ 2.

The proof of Theorem 2 is detailed in Appendix section A.1.
Interestingly, one has managed to get rid of the pointwise sign constraint of ordinary

distributions of RMLV X by means of its joint delta-distributions. One then notes that
the decomposition of a joint delta-distribution of RMLV X in terms of the difference of its
two ordinary joint distributions is, generally, non-unique, hence Proposition 1 which fully
characterizes joint delta-distributions of RMLV X admitting such a unique decomposition.

Proposition 1 A joint delta-distribution q of RMLV X admits a unique decomposition of
the form q = p − p′, where both p and p′ stand for joint distributions of RMLV X , if and
only if, one has

∑
x∈Ln |q(x)| = 2, in which case, p and p′ are uniquely given by:{

p(x) = sup
{

0, q(x)
}
, ∀x ∈ Ln

p′(x) = sup
{

0,−q(x)
}
, ∀x ∈ Ln

The proof of Proposition 1 is sketched in Appendix section A.3.
Last but not least, Proposition 2 below establishes that any zero-mean function q : Ln →

R defines, at worst, up to a multiplicative scale, a joint delta-distribution of RMLV X .
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Proposition 2 Suppose a nonzero function q : Ln → R, such that,
∑

x∈Ln q(x) = 0.
Then, there exists λq = 2∑

x∈Ln |q(x)| > 0, such that, ∀λ ∈ [0, λq], the normalized function

q̃λ : Ln → R defined as:
q̃λ(x) = λ q(x),∀x ∈ Ln

defines a joint delta-distribution of RMLV X .

The proof of Proposition 2 is sketched in Appendix section A.2.

4.2 Reformulation of a HoMPP as a delta-expectation minimization problem

We begin by introducing the notion of delta-expectation of a real-valued random function
of RMLV X .

Definition 2 (Delta-expectation) Suppose q is a joint delta-distribution of RMLV X ,
and suppose a real-valued function f : Ln → R. Then, one defines the delta-expectation of
random function f

(
X
)

as:

∆Eq
[
f
(
X
)]

=
∑
x∈Ln

f(x) q(x) (10)

Next, similarly to the EM framework, one rather assumes a set of candidate joint delta-
distributions of RMLV X denoted by Q, and considers the delta-expectation minimization
problem:

min
q∈Q

{
∆Eq

[
g
(
X
)]}

(11)

In the remainder, we take Q as the entire (convex) set of joint delta-distributions of RMLV
X which, according to Theorem 2, is defined as:

Q =
{
q : Ln → R, s.t.,

∑
x∈Ln

q(x) = 0, and,
∑
x∈Ln

|q(x)| ≤ 2
}

(12)

thus enabling delta-expectation minimization problem (11) to be expressed as a LP as
follows:

min
{ ∑

x∈Ln g(x) q(x)
}{∑

x∈Ln q(x) = 0∑
x∈Ln |q(x)| ≤ 2

(13)

which may also expand, using the marginal delta-distributions of Xs, ∀s ∈ S, as:

min
{ ∑

s∈S
∑

xs∈L|s| gs(xs) qs(xs)
}


qs(xs) =

∑
i 6∈s
∑

xi∈L q(x1, . . . , xi, . . . , xn), ∀xs ∈ L|s|, ∀s ∈ S∑
x∈Ln q(x) = 0∑
x∈Ln |q(x)| ≤ 2

(14)

In the remainder, we refer to problem (13) using the acronym DEMinMLP. Theorem 3
below may be seen as the delta-distribution analog of Theorem 1.
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Theorem 3 Suppose q∗ is an optimal solution of DEMinMLP (13). It follows that:

1. q∗ achieves an optimal objective value which is equal to: infx∈Ln
{
g(x)

}
−supx∈Ln

{
g(x)

}
,

2. ∀x ∈ Ln, q∗(x) > 0⇒ g(x) = infy∈Ln
{
g(y)

}
,

3. ∀x ∈ Ln, q∗(x) < 0⇒ g(x) = supy∈Ln
{
g(y)

}
.

Moreover, q∗ satisfies
∑

x∈Ln |q∗(x)| = 2, thereby, admitting a unique decomposition of the
form q∗ = p∗ − p′∗, where both p∗ and p′∗ stand for two joint distributions of RMLV X
which are given by: {

p∗(x) = sup{0, q∗(x)}, ∀x ∈ Ln

p′∗(x) = sup{0,−q∗(x)}, ∀x ∈ Ln

and which are optimal for EMinMLP (8) and EMaxMLP (9), respectively.

The proof of Theorem 3 is easily established by using the definition of a delta-distribution
followed by the use of the result of Theorem 1.

5. The ortho-marginal framework

In this section, we describe an algebraic approach (called the ortho-marginal framework)
for general discrete function approximation via an orthogonal projection in terms of linear
combinations of function margins with respect to a given hypersite-set. Nevertheless, the
main usefulness of such an approach in the present paper is that it enables to model any set
of locally constant functions (see Definition 8) in terms of a global (yet non-unique) mother
function f : Ln → R. Therefore, in order to fix ideas once and for all in the remainder,
subsection 5.1 is devoted to the introduction of all the useful definitions to the development
of the ortho-marginal framework, and subsection 5.2 is devoted to the description of its
main results.

Beforehand, we want to note that, throughout this section, we assume that C is a
hypersite-set with respect to Ω, moreover, we assume some order (e.g.; a lexicographic
order) on the elements of C which means that, whatever c, c′ ∈ C, if c 6= c′, then either one
has c < c′, or one has c′ < c.

5.1 Definitions

Definition 3 (Maximal hypersite-set) One says that C is maximal, if and only if:

∀c, c′ ∈ C, c′ ⊆ c⇒ c′ = c

or, in plain words, if one may not find in C both a hypersite, and any of its subsets.

Definition 4 (Frontier hypersite-set) One defines the frontier of C, denoted by Front
(
C
)
,

as the smallest maximal hypersite-set which is contained in C. In plain words, Front
(
C
)

is
the hypersite-set which contains all the hypervertices in C which are not included in any of
its other hypervertices.
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Definition 5 (Ancestor hypersite) Suppose a hypersite c ∈ C/Front
(
C
)

(if any). Then,
we call an ancestor hypersite of c, any hypersite c̃ ∈ Front

(
C
)
, such that, c ⊂ c̃.

Definition 6 (Ancestry function) We call an ancestry function with respect to C, any
function:

anc : C/Front
(
C
)
−→ Front

(
C
)

c 7−→ anc(c)

such that, ∀c ∈ Front
(
C
)
, anc(c) is an ancestor of c in Front

(
C
)
.

Please note that the ancestor of some hypersite may not be unique, hence, the function
anc(·) may not be unique too.

Remark 1 It does not take much effort to see that higher-order function g (1) may rewrite
solely in terms of local functions with respect Front(S) as:

g(x) =
∑

s∈Front(S)

g′s(xs), ∀x ∈ Ln

by simply merging each term gs of g with respect to any s ∈ S/Front(S) with the term
corresponding to any of its ancestors in Front(S).

Definition 7 (Margin) Suppose a function u : Ln → R, and a hypersite c ∈ C. Then,
one defines the margin of u with respect to c as the function uc : L|c| → R defined as:

uc(xc) =
∑

i∈Ω/c

∑
xi∈L u(x1, . . . , xi, . . . , xn), ∀xc ∈ L|c| (15)

Definition 8 (Pseudo-marginal) One says that a set of local functions of the form
{
uc :

L|c| → R, ∀c ∈ C
}

is a pseudo-marginals-set (or a set of locally consistent functions) with
respect to C, if and only if, it satisfies the following identities:{

∀c, t ∈ Front(C), c ∩ t 6= ∅ ⇒
∑

i∈c/t

∑
xi∈L uc(xc) =

∑
i∈t/c

∑
xi∈L ut(xt)

∀c ∈ C/Front(C), uc(xc) =
∑

i∈anc(c)/c

∑
xi∈L uanc(c)(xanc(c)), ∀xc ∈ L|c| (16)

where c/t stands for the hypersite of which sites belong to c but do not belong to t, and
anc(·) stands for an arbitrary ancestor function with respect to C (see Definition 6).

Clearly, any set of actual margins with respect to C of an arbitrary function : Ln → R
also defines a pseudo-marginals-set with respect to C.

Convention 1 We abuse of notation by denoting by ∅ the empty hypersite (i.e.; a one
which does not contain any site), and we convene, henceforth, that whatever a function
u : Ln → R, the margin of u with respect to ∅, simply, denoted by u∅, is the real quantity
u∅ =

∑
x∈Ln u(x).

Definition 9 (Frontier-closure of a hypersite-set) One defines the frontier-closure of
C as the hypersite-set with respect to Ω, denoted by Fclos∩

(
C
)
, such that:

1. Front
(
C
)
⊆ Fclos∩

(
C
)
, ∅ ⊂ Fclos∩

(
C
)
,

2. ∀c, c′ ∈ Fclos∩
(
C
)
, c ∩ c′ ∈ Fclos∩

(
C
)
.

Algorithm 1 in Appendix section B.16 then shows how one may iteratively construct the
frontier-closure of an arbitrary hypersite-set.

10
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5.2 Main results of the ortho-marginal framework

First of all, Theorem 4 below establishes that marginalization of any function f : Ln → R
with respect to C is intimately related to an orthogonal projection of f .

Theorem 4 Let f : Ln → R stand for an arbitrary real-valued function. Then, f may
write as a direct sum of two functions u : Ln → R, and v : Ln → R as: f = u ⊕ v, such
that:

1. the margins-set with respect to C of u coincides with the one of f ,

2. all the margins of v with respect to C are identically equal to zero.

3. the closed-form expression of function u is given by:

u(x) =
∑

c∈Fclos∩
(
C
) ρc fc(xc)Ln−|c|

, ∀x ∈ Ln

where ∀c ∈ Fclos∩
(
C
)
, fc : L|c| → R stands for the margin of f with respect to c, and

the integer coefficients ρc, ∀c ∈ Fclos∩
(
C
)

are iteratively given by:

ρc =

{
1 , if c ∈ Front(C),
1−

∑
t∈Fclos∩

(
C
)

s.t. c⊂t
ρt , if c ∈ Fclos∩

(
C
)
/Front(C) (17)

Furthermore, introduce operator denoted by OC and defined as:(
OCf

)
(x) =

∑
c∈Fclos∩

(
C
) ρc fc(xc)

Ln−|c| , ∀x ∈ Ln (18)

Then, OC is an orthogonal projection.

The proof of Theorem 4 is sketched in A.4.

Notation 1 We refer in the remainder to the operator OC as the ortho-marginal operator
with respect to hypersite-set C.

Theorem 5 below builds on the result of Theorem 4 for establishing that any pseudo-
marginals-set with respect to C may be viewed as the actual margins-set with respect to C
of a global, yet non-unique, function : Ln → R.

Theorem 5 Suppose
{
uc : L|c| → R,∀c ∈ C

}
is a pseudo-marginals-set, thus verifying

identities (16). Then, whatever a function v : Ln → R, the function u : Ln → R defined as:

u(x) =
(
v(x)− (OCv)(x)

)
+

∑
c∈Fclos∩

(
C
) ρc uc(xc)Ln−|c|

, ∀x ∈ Ln (19)

verifies that its margins-set with respect to C coincides with the set
{
uc, ∀c ∈ C

}
, said

otherwise, one has:∑
i∈Ω/c

∑
xi∈L

u(x1, . . . , xi, . . . , xn) = uc(xc), ∀xc ∈ L|c|, ∀c ∈ C

where the linear coefficients ρc, ∀c ∈ Fclos∩
(
C
)

are defined according to formula (17) above.

11
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The proof of Theorem 5 is sketched in A.5.

Definition 10 (Ortho-marginal space) The ortho-marginal space with respect to C de-
noted by MC, is defined as the linear function space which is given by:

MC =
{
u : Ln → R, s.t.,OCu ≡ u

}
We also denote by M̄C the complement space of MC, defined as:

M̄C =
{
v : Ln → R, s.t.,OCv ≡ 0

}
Remark 2 One notes that any function u ∈MC, reflexively, writes in terms of its margins
with respect to Fclos∩

(
C
)

as:

u(x) =
∑

c∈Fclos∩
(
C
) ρc uc(xc)Ln−|c|

, ∀x ∈ Ln

where ∀c ∈ Fclos∩
(
C
)
, uc stands for the margin of u with respect to c.

Proposition 3 Suppose a real-valued function h : Ln → R. Then, one has h ∈MC, if and
only if, there exists a set of local functions

{
hc : L|c| → R,∀c ∈ C

}
(not to be confused here

with the margins of h with respect to C), such that:

h(x) =
∑

c∈C hc(xc), ∀x ∈ Ln

The proof of Proposition 3 is sketched in A.6.

Proposition 4 One has:

∀h, h′ ∈MC , h ≡ h′ ⇔ hc(xc) = h′c(xc), ∀xc ∈ L|c|, ∀c ∈ Front(C)

where ∀c ∈ C, hc and h′c stand for the margins with respect to c of h and h′, respectively.

Proof 2 The proof of Proposition 4 follows immediately from the definition of MC, since
if h, h′ ∈ M , then both h and h′ write as a linear combination of their respective margins
with respect to Fclos∩

(
C
)
, which then must coincide if h ≡ h′, and vice-versa.

6. LP relaxation of the HoMPP over the local marginal-polytope

In order to fix ideas throughout, thus, this section consists of subsection 6.1 in which
we introduce some (or better said, we recall some already known) useful definitions, and
subsection 6.2 where we develop the LP relaxation approach of the HoMPP.

12
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6.1 Definitions

Definition 11 (Pseudo-marginal probability set) Suppose P :=
{
ps : L|s| → R,∀s ∈

S
}

is a pseudo-marginals-set which, thus, satisfies identities (16). If, moreover, P verifies
the following identities:

∀s ∈ Front(S),

{∑
xs∈L|s| ps(xs) = 1

ps(xs) ≥ 0, ∀xs ∈ L|s| (20)

then P is called a pseudo-marginal probability set with respect to S.

Definition 12 (Pseudo-marginal polytope) The pseudo- (or the local-) marginal poly-
tope with respect to S denoted by P̃S is defined as the space of all the pseudo-marginal
probability sets with respect to S.

Definition 13 (Pseudo-marginal delta-probability set) Suppose Q =
{
qs : L|s| →

R,∀s ∈ S
}

is a pseudo-marginals-set which, thus, satisfies identities (16). If, moreover, Q
verifies the identities:

∀s ∈ Front(S),

{∑
xs∈L|s| qs(xs) = 0∑
xs∈L|s|

∣∣qs(xs)∣∣ ≤ 2
(21)

then Q is called a pseudo-marginal delta-probability set with respect to S.

Definition 14 (pseudo-marginal delta-polytope) The pseudo-marginal delta-polytope
with respect to S denoted by Q̃S is defined as the space of all the pseudo-marginal delta-
probability sets with respect to S.

Remark 3 Let us note that the system of identities that defines either a pseudo-marginal
probability set, or a pseudo-marginal delta-probability set necessarily presents many redun-
dancies, thus, making it prone to further simplifications. For the sake of example, by taking
into account the developed arguments in section 5, one may see immediately that the identi-
ties of the form

∑
xs∈L|s| ps(xs) = 1,∀s ∈ Front(S) may be reduced to a single identity of the

form
∑

xs0∈L|s0|
ps0(xs0) = 1, equally, the identities of the form

∑
xs∈L|s| qs(xs) = 0, ∀s ∈

Front(S) may be reduced to a single identity of the form
∑

xs0∈L|s0|
qs0(xs0) = 0, with s0

standing for an arbitrary hypersite in S, and so on. Nevertheless, for the sake of simplicity,
we will not proceed to such simplifications in this paper, though, the latter may turn out to
be desirable in practice, above all, for bigger values of n.

6.2 Relaxation

One proceeds in a traditional way for obtaining LP relaxations of EMinMLP (8) and
EMaxMLP (9), hence of MinMPP (2) and MaxMPP (3), respectively, by just enforcing
locally the probability axioms, as follows:

min
{ ∑

s∈S
∑

xs∈L|s| gs(xs) ps(xs)
}

{
ps : L|s| → R, ∀s ∈ S

}
∈ P̃S

(22)

13
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and
max

{ ∑
s∈S

∑
xs∈L|s| gs(xs) ps(xs)

}
{
ps : L|s| → R,∀s ∈ S

}
∈ P̃S

(23)

where P̃S stands for the pseudo-marginal polytope (see Definition 12).
Equally, one may obtain a useful LP relaxation of DEMinMLP (13), hence of ModesMPP

(4), by just enforcing just enforcing locally the delta-probability axioms, as follows:

min
{ ∑

s∈S
∑

xs∈L|s| gs(xs) qs(xs)
}

{
qs : L|s| → R,∀s ∈ S

}
∈ Q̃S

(24)

where Q̃S stands for the pseudo-marginal delta-polytope (see Definition 14.
In the remainder, we refer to LP (22), LP (23), and LP (24) using the acronyms Pseu-

doEMinMLP, PseudoEMaxMLP, and Pseudo∆EMinMLP, respectively. One then easily
checks that all of PseudoEMinMLP (22), PseudoEMaxMLP (23), and Pseudo∆EMinMLP
(24) are bounded, moreover, they constitute a lower-bound for EMinMLP (8), an upper
bound for EMaxMLP (9), and a lower bound for DEMinMLP (13), respectively.

7. Optimality study of the LP relaxations

This section is divided into two main subsections. First, subsection 7.1 develops equivalent
global reformulations of the described LP relaxations in section 5, thereby, setting the stage
for their optimality study in subsection 7.2.

7.1 Global reformulation of the LP relaxations

The main result in this section regarding the equivalent global reformulation of PseudoEMin-
MLP (22), PseudoEMaxMLP (23), and Pseudo∆EMinMLP (24) is highlighted in Theorem
6 below.

Theorem 6 1. PseudoEMinMLP (22) is equivalent to the following LP:

min
{ ∑

x∈Ln g(x) p(x)
}{∑

i 6∈s
∑

xi∈L p(x1, . . . , xi, . . . , xn) ≥ 0, ∀xs ∈ L|s|, ∀s ∈ Front(S)∑
x∈Ln p(x) = 1

(25)

2. PseudoEMaxMLP (23) is equivalent to the following LP:

max
{ ∑

x∈Ln g(x) p(x)
}{∑

i 6∈s
∑

xi∈L p(x1, . . . , xi, . . . , xn) ≥ 0, ∀xs ∈ L|s|, ∀s ∈ Front(S)∑
x∈Ln p(x) = 1

(26)

3. Pseudo∆EMinMLP (24) is equivalent to the following LP:

min
{ ∑

x∈Ln g(x) q(x)
}{∑

xs∈Ln |
∑

i 6∈s
∑

xi∈L q(x1, . . . , xi, . . . , xn)| ≤ 2, ∀s ∈ Front(S)∑
x∈Ln q(x) = 0

(27)
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in the sense that any of the global LP reformulations above:

1. achieves the same optimal objective value as its local reformulation counterpart,

2. the margins set with respect to S of any of its feasible solutions is a feasible solution
of its local reformulation counterpart,

3. conversely, whatever a feasible solution of its local counterpart, any function f : Ln →
R of which margins set with the respect to S is its feasible solution and achieves an
objective value equal to the one achieved by the former in its local counterpart.

The proof of Theorem 6 is sketched in Appendix section A.7
Throughout, we refer to LP (25), LP (26), and LP (27) using the acronyms GlbPseu-

doEMinMLP, GlbPseudoEMaxMLP, and GlbPseudo∆EMinMLP, respectively.

7.2 Main optimality results

One begins by observing an interesting phenomenon which is as follows. First of all, con-
sider the LP which stands for the difference of GlbPseudoEMinMLP (25) and GlbPseudoE-
MaxMLP (26), in that order, as follows:

min
{ ∑

x∈Ln g(x)
(
p(x)− p′(x)

)}

∑
i 6∈s
∑

xi∈L p(x) ≥ 0, ∀xs ∈ L|s|, ∀s ∈ Front(S)∑
i 6∈s
∑

xi∈L p
′(x) ≥ 0, ∀xs ∈ L|s|, ∀s ∈ Front(S)∑

x∈Ln p(x) = 1∑
x∈Ln p

′(x) = 1

(28)

Clearly, solving both GlbPseudoEMinMLP (25) and GlbPseudoEMaxMLP (26) amounts to
solving LP (28) once, and vice-versa, this is on the one hand. On the other hand, suppose
q is a feasible solution of GlbPseudo∆EMinMLP (27), and p and p′ are feasible solutions of
GlbPseudoEMinMLP (25) and GlbPseudoEMaxMLP (26), respectively, hence of LP (28)
too. It follows, by Proposition 2, that both q and p−p′ are, at worst, up to a multiplicative
scale (greater than, or equal to 1), feasible solutions of DEMinMLP (13). But, since only
their respective orthogonal-projection parts, namely OSq and OS(p−p′) are, in fact, effective
in GlbPseudo∆EMinMLP (27) and LP (28), respectively, as one may write:{〈

g, q
〉

=
〈
g,OSq

〉〈
g, p− p′

〉
=
〈
g,OS(p− p′)

〉
plus, by Theorem 5, the margins with respect to Front(S) of OSq coincide with the ones of
q, and the margins with respect to Front(S) of OS(p− p′) coincide with the ones of p− p′,
then, in the light of the result of Theorem 3, one would want to know to which extent at
least one of the following two max-min problems:

maxp,p′
{

minq
{ ∑

x∈Ln |q(x)|
}}

p is a feasible of GlbPseudoEMinMLP (25)

p′ is a feasible of GlbPseudoEMaxMLP (26)

OSq = OS(p− p′)

(29)
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and

maxq′
{

minq
{ ∑

x∈Ln |q(x)|
}}{

q′ is a feasible of GlbPseudo∆EMinMLP (27)

OSq = OSq
′

(30)

achieves an optimal objective which is equal to 2, as by Theorem 3, this would immediately
imply that one may efficiently solve any HoMPP instance by means of its LP relaxation.
Furthermore, it is easy to check that max-min problem (29) is an upper bound for max-min
problem (30), implying that, if the latter achieves an optimal objective value which is equal
to 2, then the former will also achieve an optimal objective value which is equal to 2. But
nevertheless, we will establish, hereafter, two separate results for each of max-min problems
(29) and (30) above, just in order to stress on the fact that, for finding the modes of g, one
actually has the choice between solving two LP instances, namely, PseudoEMinMLP (22)
and PseudoEMaxMLP (23), or solving a single LP instance, namely, Pseudo∆EMinMLP
(24), as both choices above turn out to be equivalent.

Theorem 7 The optimal objective value of max-min problem (29) is equal to 2.

Theorem 8 The optimal objective value of max-min problem (30) is equal to 2.

The proofs of Theorem 8 and Theorem 7 are described in Appendix sections A.8 and A.9,
respectively.

In short, Theorem 7 and Theorem 8 establish exactness of the claim that we have just
made above which is that both feasible sets of Pseudo∆EMinMLP (24) and LP (28) are
within the “tolerance interval” which is allowed by Theorem 3 in order to hope solving the
HoMPP by means of its LP relaxation. Said otherwise, by taking into account the arguments
that we have developed above, either result of Theorem 7 or of Theorem 8 is enough to
guarantee that one may completely solve the HoMPP by means of PseudoEMinMLP (22)
(equivalently, by means of PseudoEMaxMLP (23)) or by means of Pseudo∆EMinMLP (24).
Therefore, we summarize the latter findings in Theorem 9 and Theorem 10 below.

Theorem 9 PseudoEMinMLP (22) completely solves EMinMLP (8), in the sense that:

1. they both achieve the same optimal objective value equal to infx∈Ln
{
g(x)

}
,

2. any optimal solution
{
p∗s,∀s ∈ S

}
of PseudoEMinMLP (22) defines an actual marginals-

set with respect to S which is originated from a joint distribution p∗ of RMLV X which
is optimal for EMinMLP (8).

Similar conclusions as above are, obviously, drawn regarding PseudoEMaxMLP (23),
on the one hand, and EMaxMLP (9), on the other hand, which then achieve an optimal
objective value equal to supx∈Ln

{
g(x)

}
.

The proof of Theorem 9 is described in Appendix section A.10.

Theorem 10 Pseudo∆EMinMLP (24) exactly solves DEMinMLP (13), in the sense that:
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1. Pseudo∆EMinMLP (24) achieves the same optimal objective value as DEMinMLP
(13), which is equal to infx∈Ln

{
g(x)

}
− supx∈Ln

{
g(x)

}
,

2. any optimal solution
{
q∗s ,∀s ∈ S

}
of Pseudo∆EMinMLP (24) defines an actual delta-

marginals-set with respect to S which is originated from a joint delta-distribution q∗

of RMLV X which is optimal for DEMinMLP (13).

The proof of Theorem 10 is described in Appendix section A.11.

8. Computation of a full integral MAP solution of the HoMPP

It might be the case that a HoMPP instance has multiple MAP solutions (i.e.; g might have
multiple minima and/or multiple maxima), thus, the resolution either of PseudoEMinMLP
(22), or PseudoEMaxMLP (23) (resp. of Pseudo∆EMinMLP (24)) might only yield the
marginals with respect to S of a fractional (i.e.; non-binary) optimal distribution (resp. a
fractional (i.e.; non-signed binary) delta-distribution) happening to be some convex combi-
nation of optimal binary distributions (resp. delta distributions). Thus in such a case, one
moreover needs join the pieces in order to obtain an full MAP solution of a HoMPP in-
stance. Therefore, the goal in the remainder of this section is to address the latter problem
under general assumptions about a HoMPP instance.

8.1 Theory

For the sake of example, assume PseudoEMinMLP (22) of which resolution has yielded an
optimal solution denoted by P∗ =

{
p∗s, ∀s ∈ S

}
. Then by Theorem 9, P∗ stands for a set

of marginal distributions of Xs, ∀s ∈ S being originated from a joint distribution of RMLV
X denoted by p∗ which is, thus, optimal for EMinMLP (8). Moreover, by Theorem 1,
obtaining a full optimal solution of MinMPP (2) amounts to obtaining a sample x0 from p∗,
however, for the sake of computational efficiency, one wants to avoid accessing p∗ (which is
hard). Therefore, in the remainder of this section, we describe an approach for computing
a sample of p∗ directly from P∗.

Then, a first naive (yet, polynomial-time) algorithm for achieving the aforementioned
goal is based on the result of Proposition 5 below.

Proposition 5 Suppose s ∈ Front(S) and x0
s ∈ L|s|, such that, P

(
Xs = x0

s

)
> 0. Then,

there exists x ∈ Ln, such that, xs = x0
s and P

(
X = x

)
> 0.

Proof 3 Such a result of Proposition 5 follows immediately from the identity:

P
(
Xs = xs

)
=
∑

i 6∈s
∑

xi∈L P
(
X = x

)
, ∀xs ∈ L|s|

as otherwise, i.e.; if ∀x ∈ Ln, such that, xs = x0
s, one had P

(
X = x

)
= 0, then one would

have P
(
Xs = x0

s

)
= 0, which is a contradiction with the assumption that P

(
Xs = x0

s

)
> 0.

Based on such a result of Proposition 5, one may proceed as follows. Suppose s ∈
Front(S) and x0

s ∈ L|s|, such that, P
(
Xs = x0

s

)
= p∗s(x

0
s) > 0. Thus, if one replaced in g

the value of xs with its optimal value x0
s, solved a new instance of PseudoEMinMLP (22)
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accordingly, and repeated this procedure with respect to some s(1) ∈ Front(S)/{s}, then
with respect to some s(2) ∈ Front(S)/{s, s(1)}, and so on, until all the variables xi of g are
exhausted, one would be guaranteed to ultimately obtain in polynomial-time a full mode
of g. Obviously, such an algorithm is utterly slow, as it requires solving multiple instances
of PseudoEMinMLP (22), successively (yet, with less variables each time). On the other
hand, sampling from a general probability distribution by sole access to its marginals is
not a straightforward procedure. Fortunately, as it will be shown hereafter, distributions of
RMLV X which are candidates for optimality in EMinMLP (8) (equivalently, in EMaxMLP
(9)) are not any (see Proposition 6 below), thereby, making it possible to efficiently compute
their samples by sole access to their marginals-sets with respect to Front(S).

Let us then begin by introducing the sign function defined as:

∀a ∈ R, sign(a) =


−1, if a < 0,

+1, if a > 0,

0, if a = 0.

as well as the indicator functions:

∀a ∈ R, 10(a) =

{
1, if a = 0,

0, else.
, 1+(a) =

{
1, if a > 0,

0, else.
, 1−(a) =

{
1, if a < 0,

0, else.

Proposition 6 Suppose q∗ is an optimal solution of DEMinMLP (13). Then, whatever a
function v : Ln → R, one has:〈∣∣vM̄S

∣∣ , 10(q∗)
〉
≥
∣∣〈vM̄S

, sign(q∗)
〉∣∣

where
〈
· , ·
〉

stands for the scalar product, vM̄S
≡ v−OSv, finally, the functions 10(q∗) and

sign(q∗) are defined as:

∀x ∈ Ln,

{
10(q∗)(x) = 10

(
q∗(x)

)
sign(q∗)(x) = sign

(
q∗(x)

)
The proof of Proposition 6 is described in Appendix section A.13.

In a nutshell, such a result of Proposition 6 says that only “sparse enough” joint delta-
distributions of RMLV X are potential candidates for optimality in DEMinMLP (13) (please
note that it may be easily shown that such a statement would not apply if g was not a
non-higher-order function). Furthermore, in the light of the result of Theorem 3 which
establishes that any optimal solution of DEMinMLP (13) denoted by q∗ decomposes as
the difference of two joint distributions denoted by p+∗ and p−∗ having disjoint supports,
and which are respectively optimal for EMinMLP (8) and EMaxMLP (9), one derives that
either joint distribution (i.e.; p+∗ or p−∗) is necessarily more sparse than q∗. With that being
said, the remainder of this section is devoted to the elaboration of an efficient deterministic
sampling algorithm from an optimal distribution (resp. an optimal delta-distribution) of
RMLV X by sole access to its marginals-set with respect to Front(S).

We shall then make a mild assumption in the remainder about higher-order function g,
without undermining anyhow generality, as such an assumption just attempts to make sure
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that there is no redundancy between the local functions gs, ∀s ∈ Front(S) which form g.
Said otherwise, for ∀s ∈ Front(S), gs cannot fully express in terms of remaining terms of
g, i.e.; gs′ , ∀s′ ∈ Front(S)/{s}. Nevertheless, let us claim upfront that the presence of such
redundancy in g does not undermine anyhow generality of the MAP solution finding algo-
rithm that we develop further in this section, as such redundancy may be easily unraveled
and coped with accordingly as it shall be explained in more details, hereafter2.

Definition 15 (Atomicity of a local function) Suppose a hypersite s ∈ Front(S), and
introduce the hypersite-set:

C(s) =
{
s′ ∩ s, ∀s′ ∈ Front(S)/{s}

}
standing for the hypersite-set which consists of all the nonempty intersections between s
and each of the remaining hypersites in Front(S)/{s}. Furthermore, if C(s) is a nonempty
hypersite-set, then introduce the ortho-marginal operator OC(s) defined over the (local) func-
tion space

{
f : L|s| → R

}
, and denote by MC(s) the ortho-marginal space with respect to

C(s), i.e.; :

MC(s) =
{
f : L|s| → R, s.t.,OC(s)f = f

}
Then, one says that a local function hs : L|s| → R is atomic in Front(S), if and only if,
either C(s) is the empty hypersite-set, or C(s) is a nonempty hypersite-set and hs 6∈MC(s).

Assumption 1 Higher-order function g (1) verifies that ∀s ∈ Front(S), gs is atomic in
Front(S).

Theorem 11 Suppose
{
q∗s ,∀s ∈ S

}
is an optimal solution of Pseudo∆EMinMLP (24).

Then, under Assumption 1, one has:∑
xs∈L|s| |q

∗
s(xs)| = 2, ∀s ∈ Front(S) (31)

The proof of Theorem 11 is detailed in appendix section A.12.
In a nutshell, such a result of Theorem 11 says that under Assumption 1, and at op-

timality of Pseudo∆EMinMLP (24), all the marginal delta-distributions with respect to
Front(S) must admit a unique decomposition in terms of the difference of two marginal
distributions (see Proposition 1 for more details). Still under the same assumption, an im-
mediate consequence of such a result of Theorem 11 is that, whatever a minimum solution
x(inf) of g, and whatever its maximum solution x(sup), one necessarily has ∀s ∈ Front(S),

“x
(inf)
s 6= x

(sup)
s ” standing for “∃i ∈ s, such that, x

(inf)
i 6= x

(sup)
i ”.

Theorem 12 Let p+∗ and p−∗ be two distributions of RMLV X which are optimal for
EMinMLP (8) and EMaxMLP (9), respectively, and denote by

{
p+∗
s , ∀s ∈ S

}
and

{
p−∗s , ∀s ∈

S
}

their respective marginals-sets with respect to S. Then, under Assumption 1:

• in order for any x ∈ Ln to be a sample of p+∗ (i.e.; a minimum solution of g, such
that, p+∗(x) > 0), it is necessary and sufficient that:

p+∗
s (xs) > 0, ∀s ∈ Front(S)

2. Let us say, upfront, by simply amending Front(S), i.e.; by removing from it all such hypersites corre-
sponding to the terms of g which present such redundancy.
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• in order for any x ∈ Ln to be a sample of p−∗ (i.e.; a maximum solution of g, such
that, p−∗(x) > 0), it is necessary and sufficient that:

p−∗s (xs) > 0, ∀s ∈ Front(S)

Theorem 13 Suppose q∗ is a delta-distribution of RMLV X which is optimal for DEM-
inMLP (13), and denote by

{
q∗s , ∀s ∈ S

}
its delta-marginals-set with respect to S. Then,

under Assumption 1:

• in order for any x ∈ Ln to be a Inf-sample of q∗ (i.e.; a minimum solution of g, such
that, q∗(x) > 0), it is necessary and sufficient that:

q∗s(xs) > 0, ∀s ∈ Front(S)

• in order for any x ∈ Ln to be a Sup-sample of q∗ (i.e.; a maximum solution of g, such
that, q∗(x) < 0), it is necessary and sufficient that:

q∗s(xs) < 0, ∀s ∈ Front(S)

• in order for any x ∈ Ln to be a sample of q∗ (i.e.; a mode of g, such that, q∗(x) 6= 0),
it is necessary and sufficient that:

q∗s(xs) 6= 0, ∀s ∈ Front(S)

Theorem 12 and 13 are jointly shown in Appendix section A.14, as they turn out to be both
sides of a same coin under Assumption 1.

8.2 Algorithm

Let us introduce the following definition.

Definition 16 (Consistent sub-samples) Suppose C is hypersite-set with respect to Ω,
and denote by Front

(
C
)

its frontier hypersite-set. Furthermore, suppose P =
{
ps, ∀s ∈ C

}
is

a set of probability marginals with respect to C. Then, one says that a set of integer vectors

of the form
{
x

(s)
s ∈ L|s|,∀s ∈ Front

(
C
)}

is a consistent sub-samples-set with respect to P,
if and only if:

1. ps(x
(s)
s ) > 0, ∀s ∈ Front

(
C
)
,

2. ∃x ∈ Ln, such that, xs = x
(s)
s , ∀s ∈ Front

(
C
)
, which also amounts to saying that:

∀s1, s2 ∈ Front
(
C
)
, s1 6= s2 ∧ s1 ∩ s2 6= ∅ ⇒ x

(s1)
s1∩s2 = x

(s2)
s1∩s2.

Now, suppose P+∗ =
{
p+∗
s , ∀s ∈ S

}
and P−∗ =

{
p−∗s , ∀s ∈ S

}
are the optimal solutions

of PseudoEMinMLP (22) and PseudoEMaxMLP (23), respectively, and denote by p+∗ and
p−∗ the respective joint distributions of RMLV X from which P+∗ and P−∗ are originated.
Clearly, by Theorem 12, generation of samples from p+∗ (resp. from p−∗) which also happen
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to be minimum (resp. maximum) solutions of g is equivalent to finding consistent sub-
samples-sets with respect to P+∗ (resp. P−∗). Then, Theorem 14 below builds on both
results of Proposition 6 and Theorem 12 for establishing that one may achieve such a goal
in a totally greedy and causal way.

For the sake of clarity in the remainder, we shall assume some (arbitrary) order on the
hypersites of Front

(
S
)
, and let us denote Front

(
S
)

=
{
s1, . . . , sm

}
, with m = |Front

(
S
)
|.

Theorem 14 Let P∗ either stand for P+∗ or P−∗, and put P∗ =
{
p∗s,∀s ∈ S

}
. Fur-

thermore, suppose k ∈ {1, . . . ,m − 1}, and let Pk =
{
p∗si , ∀i = 1, . . . , k

}
and Pk+1 ={

p∗si , ∀i = 1, . . . , k + 1
}

stand for two marginals subset of P∗, moreover, suppose that{
x

(i)
si ∈ L|si|, ∀i = 1, . . . , k

}
is a consistent sub-samples-set with respect to Pk. Then, under

Assumption 1, there exists x
(k+1)
sk+1 ∈ L|sk+1|, such that,

{
x

(i)
si ∈ L|si|,∀i = 1, . . . , k + 1

}
is a

consistent sub-samples-set with respect to Pk+1.

The proof of Theorem 14 is described in Appendix section A.15.
In plain words, such a result of Theorem 14 says:

• first, that under Assumption 1, one may construct in a totally greedy, yet, causal
way samples of any optimal joint distribution of RMLV X , solely, by means of its
marginals-set with respect to Front

(
S
)
,

• second, that one may terminate the search as soon as one finds a consistent sub-
samples-set with respect to a marginals subset, in this case, P∗1 =

{
ps,∀s ∈ C

}
, for

some C ⊆ Front
(
S
)
, such that, ∪s∈C

{
i ∈ s

}
= Ω, because, all the variables xi, ∀i ∈ Ω

are then set.

Then, Algorithm 2 which is described in Appendix section B.17 sketches such a greedy
computation of either mode of g, solely, by using the marginals-set P∗ which is originated
from an optimal joint distribution of RMLV X . Clearly, if one chooses to solve instead
Pseudo∆EMinMLP (24), then such an algorithm 2 can be effortlessly transcribed in terms
of the delta-marginals-set which is originated from an optimal joint delta-distribution of
RMLV X .

9. Conclusion

We have introduced two novel algebraic concepts, namely, the notion of joint delta-distribution,
and the ortho-marginal framework, which later have enabled us to show the main result in
this paper regarding the exact resolution of the MAP inference problem in general higher-
order graphical models by means of a traditional LP relaxation over the local marginal
polytope. Furthermore, we have thoroughly studied the case where the found optimal so-
lution is not originated from a binary distribution (resp. signed binary delta-distribution),
and proposed an efficient deterministic sampling algorithm of (integral) MAP solutions
directly from perhaps non-binary optimal marginal distributions (resp. optimal marginal
delta-distributions). Let us emphasize, nevertheless, that the proposed LP relaxation in this
paper is still prone to further accelerations, but which we have not reported in this paper
because of lack of space. Such accelerations may concern, for instance, the (logarithmic)
reduction of the number of LP variables for bigger values of the number of labels L, as
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well as other possible variable simplifications, assuming for instance the MRF framework.
Therefore, as future work, we envisage to investigate such possible method accelerations,
and to report them, accordingly, in subsequent papers. Last but not least, another possible
opening of the main result in this paper concerns method extension to the continuous-
domain case for solving some classes of continuous computer vision and pattern recognition
problems.

Proofs

A.1 Proof of Theorem 2

Proof 4 Let us first show the necessary condition of Theorem 2. Thus, suppose q is a joint
delta-distribution of RMLV X , hence admitting a decomposition of the form:

q(x) = p(x)− p′(x), ∀x ∈ Ln (32)

where both p and p′ stand for joint distributions of RMLV X . Then, one has∑
x∈Ln q(x) =

∑
x∈Ln

(
p(x)− p′(x)

)
=
∑

x∈Ln p(x)−
∑

x∈Ln p
′(x) = 0∑

x∈Ln |q(x)| =
∑

x∈Ln
∣∣p(x)− p′(x)

∣∣ ≤∑x∈Ln p(x) +
∑

x∈Ln p
′(x) = 2

Second, in order to show the sufficient condition of Theorem 2, suppose a function q : Ln →
R verifying: {∑

x∈Ln q(x) = 0∑
x∈Ln |q(x)| ≤ 2

We need the following two identities for the remaining part of the proof:

∀a, b ∈ R, inf
{
a, b
}

=
a+ b− |a− b|

2
, sup

{
a, b
}

=
a+ b+ |a− b|

2
(33)

Let us first show the following three claims:

1. |q(x)| ≤ 1, ∀x ∈ Ln,

2.
∑

x∈Ln sup
{

0,−q(x)
}
≤ 1,

3.
∑

x∈Ln inf
{

1, 1− q(x)
}
≥ 1.

First, suppose x ∈ Ln. Then, using the fact that
∑

y∈Ln q(y) = 0, one finds that one has
q(x) = −

∑
y∈Ln/{x} q(y), in such a way that, one may write:

|q(x)| =
|q(x)|+ |−

∑
y∈Ln/{x} q(y)|
2 ≤

∑
y∈Ln |q(y)|

2 ≤ 1

Second, using the identity of the sup in formula (33), one has:∑
x∈Ln sup

{
0,−q(x)

}
= 1

2

∑
x∈Ln(q(x) + |q(x)|) =

∑
x∈Ln

|q(x)|
2 ≤ 1
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Third and last, using the identity of the inf in formula (33), one has:∑
x∈Ln inf

{
1, 1− q(x)

}
=
∑

x∈Ln
2−q(x)−|q(x)|

2 = Ln −
∑

x∈Ln
|q(x)|

2 ≥ Ln − 1 ≥ 1

as, by assumption, both L and n are integers greater than 1, which thus shows the three
claims above. Now, suppose two functions p : Ln → R, and p′ : Ln → R, such that,
p(x) − p′(x) = q(x), ∀x ∈ Ln.Thus, one may write: p′(x) = p(x) + q(x), ∀x ∈ Ln and one
easily checks that:

∑
x∈Ln p

′(x) =
∑

x∈Ln p(x), in such a way that, p and p′ define two joint
distributions of RMLV X , if and only if, the following linear system:

0 ≤ p′(x) + q(x) ≤ 1,∀x ∈ Ln

0 ≤ p′(x) ≤ 1, ∀x ∈ Ln∑
x∈Ln p

′(x) = 1

equivalently, the following linear system:{
sup

{
0,−q(x)

}
≤ p′(x) ≤ inf

{
1, 1− q(x)

}
,∀x ∈ Ln∑

x∈Ln p
′(x) = 1

(34)

(where the unknown is p′) has a solution. First, since we have already shown that ∀x ∈ Ln,
|q(x)| ≤ 1, by using both the identities of the sup and the inf in formula (33), one derives
that one has ∀x ∈ Ln:

sup
{

0,−q(x)
}
− inf

{
1, 1− q(x)

}
=

(−q(x) + |q(x)|)− (2− q(x)− |q(x)|)
2

= |q(x)| − 1 ≤ 0,

and one concludes that the system of linear inequalities:

sup
{

0,−q(x)
}
≤ p′(x) ≤ inf

{
1, 1− q(x)

}
,∀x ∈ Ln

has a solution. Furthermore, in order for a solution p′ of the latter system to satisfy that∑
x∈Ln p

′(x) = 1, it is necessary and sufficient that one has:{∑
x∈Ln sup

{
0,−q(x)

}
≤ 1∑

x∈Ln inf
{

1, 1− q(x)
}
≥ 1

which has already been shown to be true above, hence finally the proof of Theorem 2.

A.2 Proof of Proposition 2

Proof 5 Suppose a nonzero function q : Ln → R, such that,
∑

x∈Ln q(x) = 0. Furthermore,
suppose λ > 0, and denote qλ(x) = λ q(x), ∀x ∈ Ln. One first checks that:{∑

x∈Ln q̃λ(x) = λ
∑

x∈Ln q(x) = 0∑
x∈Ln |q̃λ(x)| = λ

∑
x∈Ln |q(x)|

in such a way that, ∀λ ∈ [0, 2∑
x∈Ln |q(x)| ], one has:

∑
x∈Ln |qλ(x)| ≤ 2

∑
x∈Ln |q(x)|∑
x∈Ln |q(x)| = 2, which

means that q̃λ does define a valid joint delta-distribution of RMLV X , hence the proof of
Proposition 2.
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A.3 Proof of Proposition 1

Proof 6 Suppose q is a non-zero joint delta-distribution of RMLV X , and let us put q =
p−p′, where p and p′ stand for two ordinary joint distributions of RMLV X . Then, we have
already shown (see the proof in Appendix section A.1) that all the solutions of the couple
(p, p′) are given by:

1. p′ is any solution of the linear system (34),

2. once p′ is known, p is uniquely defined as: p = p′ + q.

Thus, denote |q| =
∑

x∈Ln |q(x)|. One finds that the general formula of p′ is given by:
∀x ∈ Ln,


p′(x) = τ(x) sup

{
0,−q(x)

}
+ (1− τ(x)) inf

{
1, 1− q(x)

}
=
(
1− |q(x)|

)
τ(x) + −q(x)+|q(x)|

2

τ(x) ∈ [0, 1]∑
x∈Ln

(
1− |q(x)|

)
τ(x) = 1− |q|2

(35)

in such a way that, since |q| ≤ 2, one has:

• if |q| = 2, then all the possible solutions for τ are given by:{(
1− |q(x)|

)
τ(x) = 0, ∀x ∈ Ln

τ(x) ∈ [0, 1], ∀x ∈ Ln

and one finds that the unique solution of (p, p′) is given ∀x ∈ Ln by p′(x) = −q(x)+|q(x)|
2 =

sup{0,−q(x)}, and p(x) = q(x)+|q(x)|
2 = sup{0, q(x)}.

• if |q| < 2, then suppose an arbitrary x0 ∈ Ln, and one finds, for instance, that ∀x ∈

Ln, τ1(x) = τ1 =
1− |q|

2
Ln−|q| , and τ2(x) =

 1− |q|
2

Ln−1+|q(x0)|−|q| , if x 6= x0,

0, if x = x0.
are two possible

solutions of τ , and hence p1(x) = sup{0, q(x)}+τ1

(
1−|q(x)|

)
, p′1(x) = sup{0,−q(x)}+

τ1

(
1− |q(x)|

)
, and p2(x) = sup{0, q(x)}+ τ2(x)

(
1− |q(x)|

)
, p′2(x) = sup{0,−q(x)}+

τ2(x)
(
1− |q(x)|

)
, are two possible solutions of (p, p′).

hence the proof of Proposition 1.

A.4 Proof of Theorem 4

We show Theorem (4) by construction, using successive projections of an arbitrary function
via marginalization. For the sake of clarity, let us put m = |Front

(
C
)
|, and assume an

arbitrary (e.g.; a lexicographic order) on the elements of Front
(
C
)
, in a way which enables

to write Front
(
C
)

=
{
c1, . . . , cm

}
. Next, suppose an arbitrary function f : Ln → R, and let

us write:
f(x) =

fc1 (xc1 )

Ln−|c1|
+
(
f(x)− fc1 (xc1 )

Ln−|c1|

)
, ∀x ∈ Ln

where fc1 stands for the margin of f with respect to c1. Next, define the (residue) function:

f (1)(x) = f(x)− fc1 (xc1 )

Ln−|c1|
, ∀x ∈ Ln
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Then, one checks that:

f
(1)
c1 (xc1) = fc1(xc1)− Ln−|c1| fc1 (xc1 )

Ln−|c1|
= 0, ∀xc1 ∈ L|c1|

Now, consider the following function series:

f (i+1)(x) = f (i)(x)− f
(i)
ci+1

(xci+1 )

Ln−|ci+1|
, ∀x ∈ Ln, ∀i ∈

{
1, . . . ,m− 1

}
(36)

where ∀i ∈
{

1, . . . ,m− 1
}

, f
(i)
ci+1 stands for the margin of f (i) with respect to ci+1, and let

us show by induction (with respect to i) the following statement:

∀i ∈
{

1, . . . ,m
}
, f

(i)
cj (xcj ) = 0, ∀xcj ∈ L|cj |, ∀j ∈

{
1, . . . , i

}
First of all, we have already shown above that for i = 1, one has:

f
(i)
cj (xcj ) = 0, ∀xcj ∈ L|cj |,∀j ∈ {1}

Thus, next, suppose that:

f
(i)
cj (xcj ) = 0, ∀xcj ∈ L|cj |, ∀j ∈

{
1, . . . , i

}
(37)

for some i ∈
{

1, . . . ,m− 1
}

, and show that one has:

f
(i+1)
cj (xcj ) = 0, ∀xcj ∈ L|cj |, ∀j ∈

{
1, . . . , i+ 1

}
(38)

First, for j = i+ 1, one finds:

f
(i+1)
ci+1 (xci+1) = f

(i)
ci+1(xci+1)− Ln−|ci+1| f

(i)
ci+1

(xci+1 )

Ln−|ci+1|
= 0, ∀xci+1 ∈ L|ci+1|

Next, suppose j ∈
{

1, . . . , i
}

. Then, by using formula (37) above, and the commutativity
property of marginalization, one finds:

f
(i+1)
cj (xcj ) = f

(i)
cj (xcj )−

(
f
(i)
ci+1

)
cj

(xcj )

Ln−|ci+1|
= 0−

(
f
(i)
cj

)
ci+1

(xcj )

Ln−|ci+1|
= − 0

Ln−|c2|
= 0, ∀xcj ∈ L|cj |

hence, the proof of formula (38). Next, by putting:

∀x ∈ Ln,

{
u(x) = f (m)(x)

v(x) = f(x)− f (m)(x)

one finds that f may write as f = u+ v, such that:

∀c ∈ Fclos∩
(
C
)
, ∀xc ∈ Ln−|c|,

{
us(xc) = fc(xc)

vs(xc) = 0

where ∀c ∈ Fclos∩
(
C
)
, fc, uc, and vc respectively stand for the margin of f , the margin of u,

and the margin of v with respect to c. Moreover, by mere induction with respect to formula
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(36), one finds that there exists constant coefficients ρc, ∀c ∈ Fclos∩
(
C
)
, such that, u writes

as some linear combination of the margins of f with respect to Fclos∩
(
C
)

as follows:

u(x) =
∑

c∈Fclos∩
(
C
) ρc fc(xc)

Ln−|c| ,∀x ∈ Ln (39)

Now, in order to derive an iterative expression for the coefficients ρc, ∀c ∈ Fclos∩
(
C
)

in
formula (39) above, then, first by construction, one has:

ρc = 1, ∀c ∈ Front
(
C
)

Second, suppose c ∈ Fclos∩
(
C
)
/Front

(
C
)
. Then, by marginalization of both sides of formula

(39) with respect to all the variables with indices in Ω/c, and by mere identification (since
we have already shown that uc = fc), one finds that the only margins which must still persist
on the right handside of formula (39) after marginalization with respect to c correspond to
all the hypersite t ∈ Fclos∩

(
C
)
, such that, c ⊆ t, and one derives (since f is assumed to be

arbitrary) that:
1 = ρc +

∑
t∈Fclos∩

(
C
)

s.t. c⊂t
ρt

hence:
ρc = 1−

∑
t∈Fclos∩

(
C
)

s.t. c⊂t
ρt

where the symbol ⊂ stands for the strict inclusion, which thus terminates the proof of the
first part of Theorem 4.

Now, in order to show the second part of Theorem 4, let us put:

f̄(x) = f(x)− (OCf)(x) = f(x)−
∑

c∈Fclos∩
(
C
) ρc fc(xc)

Ln−|c| , ∀x ∈ Ln

where we have denoted by fc the margin of f with respect to c, ∀c ∈ Fclos∩
(
C
)
. Then,

on the one hand, we have already shown above that ∀c ∈ Fclos∩
(
C
)
, the margin of f̄ with

respect to c denoted by f̄c is identically equal to 0. On the other hand, suppose a second
arbitrary function g : Ln → R, and denote ∀c ∈ Fclos∩

(
C
)

by gc the margin of g with
respect to c. Then, one has:∑

x∈Ln f̄(x) (OCg)(x) =
∑

x∈Ln f̄(x)
(∑

c∈Fclos∩
(
C
) ρc gc(xc)

Ln−|c|

)
=

∑
c∈Fclos∩

(
C
)∑

xc∈L|c|
ρc f̄c(xc) gc(xc)

Ln−|c| = 0

and since both f and g are arbitrary, one concludes that the operator OC is an orthogonal
projection, thus, establishing the proof of the second part of Theorem 4.

A.5 Proof of Theorem 5

We will show Theorem 5 by construction, in the spirit of the proof of Theorem 4. Therefore,
suppose

{
uc, ∀c ∈ C

}
is a pseudo-marginals-set. Then, we will iteratively construct a

function ũ : Ln → R which ultimately develops as:

ũ(x) =
∑

c∈Fclos∩
(
C
) βc uc(xc)Ln−|c|

, ∀x ∈ Ln
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where βc, ∀c ∈ Fclos∩
(
C
)

stand for some real coefficients and, such that, the set of margins of
ũ with respect to C coincides with

{
uc,∀c ∈ C

}
. Therefore, let us first put m = |Front

(
C
)
|,

and assume an arbitrary (e.g.; a lexicographic) order on the elements of Front
(
C
)
, in a way

which enables to write Front
(
C
)

=
{
c1, . . . , cm

}
. Then, one starts by defining the following

function:

ũ(1)(x) =
uc1(xc1)

Ln−|c1|
, ∀x ∈ Ln

and one easily checks that:

ũ(1)
c1 (xc1) = Ln−|c1|

(uc1(xc1)

Ln−|c1|
)

= uc1(xc1), ∀xc1 ∈ L|s1|

where ũ
(1)
s1 stands for the margin of ũ(1) with respect to s1. Now, assume that i ∈

{
1, . . . ,m−

1
}

, and let us iteratively construct the function ũ(i+1) as follows:

ũ(i+1)(x) = ũ(i)(x) +
uci+1(xci+1)

Ln−|ci+1|
−
ũ

(i)
ci+1(xci+1)

Ln−|ci+1|
, ∀x ∈ Ln (40)

where ũ
(i)
ci+1 stands for the margin of ũ(i) with respect to ci+1, then show, by induction (with

respect to i), the following identities:

ũ(i)
cj (xcj ) = ucj (xcj ), ∀xcj ∈ L|j |, ∀j ∈

{
1, . . . , i

}
, ∀i ∈

{
1, . . . ,m

}
(41)

First, for i = 1, we have already shown that:

ũ1
c1(xc1) = uc1(xc1), ∀xcj ∈ L|cj |, ∀j ∈

{
1
}

Next, suppose that one has for some i ∈
{

1, . . . ,m− 1
}

:

ũ(i)
cj (xcj ) = ucj (xcj ), ∀xcj ∈ L|cj |, ∀j ∈

{
1, . . . , i

}
and show that one has:

ũ(i+1)
cj (xcj ) = ucj (xcj ), ∀xcj ∈ L|cj |, ∀j ∈

{
1, . . . , i+ 1

}
First, by assuming that j = i+ 1, one finds:

ũ(i+1)
ci+1

(xci+1) = ũ(i)
ci+1

(xci+1) + uci+1(xci+1)− ũ(i)
ci+1

(xci+1) = uci+1(xci+1), ∀xci+1 ∈ L|ci+1|

Second, by assuming that j ∈
{

1, . . . , i
}

, then by marginalization of both sides of formula
(40) with respect to all the variables with indices in Ω/xci+1 , finally by using the assumption
that the set

{
uc,∀c ∈ C

}
defines a pseudo-marginals-set, one finds:

ũ(i+1)
cj (xcj ) = ũ(i)

cj (xcj ) +
uci+1∩cj (xci+1∩cj )

L|ci+1∩cj |
−
ũ

(i)
ci+1∩cj (xci+1∩cj )

L|ci+1∩cj |
, ∀xcj ∈ L|cj |

where ũ
(i+1)
cj stands for the margin of function ũ(i+1) with respect to cj , uci+1∩cj stands

for the margin of pseudo-marginal uci+1 with respect to ci+1 ∩ cj , and ũ
(i)
ci+1∩cj stands for

27



I. Bechar

the margin of function ũ(i) with respect to ci+1 ∩ cj . Next, since by assumption, one has:

ũ
(i)
cj = ucj , thus one also has ũ

(i)
ci+1∩cj = u

(i)
ci+1∩cj , and one finally derives:

ũ(i+1)
cj (xcj ) = ucj (xcj ), ∀xcj ∈ L|cj |

hence the proof of identities (41).

Now, by assuming that i = m, thus one has constructed a function:

ũ(m)(x) =
∑

c∈Fclos∩
(
C
) βc uc(xc)Ln−|c|

, ∀x ∈ Ln

where βc, ∀c ∈ Fclos∩
(
C
)

stand for some real coefficients, such that, ũ
(m)
c = uc, ∀c ∈

Front(C), implying that one has ũ
(m)
c ≡ uc, ∀c ∈ C. Next, one proceeds in exactly the

same way as we have done in the proof of Theorem 4 for deriving an iterative formula for
the coefficients βc, ∀c ∈ Fclos∩

(
C
)
, and one finds:

βc = ρc, ∀c ∈ Fclos∩
(
C
)

where the coefficients ρc, ∀c ∈ Fclos∩
(
C
)

are given by formula (17). Finally, by using
Theorem 4, one derives that whatever a function v : Ln → R, the function defined as:

ũ(x) =
(
v(x)−

∑
c∈Fclos∩

(
C
) ρc vc(xc)Ln−|c|

)
+

∑
c∈Fclos∩

(
C
) ρc uc(xc)Ln−|c|

, ∀x ∈ Ln

where ∀c ∈ Fclos∩
(
C
)
, vc stands for the margin of v with respect to c, satisfies ũc = uc,∀c ∈

C, thus, establishing the proof of Theorem 5.

A.6 Proof of Proposition 3

Suppose the local functions hc : L|c| → R,∀c ∈ C, and define the higher-order function
h : Ln → R as:

h(x) =
∑

c∈C hc(xc), ∀x ∈ Ln

Next, suppose an arbitrary function v : Ln → R, moreover, ∀c ∈ Front(C), denote by vc the
margin of v with respect to c. Obviously, one has: OCvc ≡ vc, ∀c ∈ Front(C), in such a way
that, one may write:〈

h, v
〉

=
∑

x∈Ln h(x) v(x) =
∑

c∈C
∑

xc∈L|c| hc
(
xc
)
vc(xc)

=
∑

c∈C
〈
hc,OCvc

〉
=
∑

c∈C
〈
OChc, vc

〉
=

∑
c∈C
〈
OChc, v

〉
=
〈
OC
(∑

c∈C hc
)
, v
〉

=
〈
OCh, v

〉
hence

〈
h − OCh, v

〉
= 0. But, since v is assumed to be arbitrary, one finally derives that

OCh ≡ h. The converse is obvious by definition of MC , hence the proof of Proposition 3.
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A.7 Proof of Theorem 6

Proof 7 We settle for showing equivalence between PseudoEMinMLP (22) and GlbPseu-
doEMinMLP (25), as one may proceed in exactly the same way for showing equivalence be-
tween PseudoEMaxMLP (23) and GlbPseudoEMaxMLP (26), on the one hand, and equiva-
lence between Pseudo∆EMinMLP (24) and GlbPseudo∆EMinMLP (27), on the other hand.
Therefore, suppose P =

{
ps : L|s| −→ R, ∀s ∈ S

}
is a feasible solution of Pseudo∆EMinMLP

(24) which, by definition, stands for a pseudo-marginal probability set. Since P is also a
pseudo-marginals-set, by Theorem 6, one finds that there exists a function p : Ln → R of
which set of margins with respect to S coincides with P, in other words, one has:

ps(xs) =
∑

i 6∈s
∑

xi∈L p(x), ∀xs ∈ L|s|, ∀s ∈ S

It follows since ps(xs) ≥ 0, ∀xs ∈ L|s|, ∀s ∈ S that:∑
i 6∈s
∑

xi∈L p(x) ≥ 0, ∀xs ∈ L|s|, ∀s ∈ S

Furthermore, one has:

1 =
∑

xs∈L|s| ps(xs) =
∑

i∈s
∑

xi∈L
(∑

i 6∈s
∑

xi∈L p(x)
)

=
∑

x∈Ln p(x), ∀xs ∈ L|s|, ∀s ∈ S

Finally, one has:∑
s∈S

∑
xs∈L|s| gs(xs) ps(xs) =

∑
s∈S

∑
xs∈L|s| gs(xs)

(∑
i 6∈s
∑

xi∈L p(x)
)

=
∑

x∈Ln
(∑

s∈S gs(xs)
)
p(x) =

∑
x∈Ln g(x) p(x)

But, since P is arbitrary, one derives that whatever a feasible solution P of PseudoEMin-
MLP (22), there exists a feasible solution p of GlbPseudoEMinMLP (25), such that, the
objective value of P in the former is equal to the objective value of p in the latter, and one
derives that GlbPseudoEMinMLP (25) is a lower bound for PseudoEMinMLP (22). Con-
versely, suppose p is a feasible solution of GlbPseudoEMinMLP (25), and ∀s ∈ S, denote
by ps the margin of p with respect to s, and put P =

{
ps : L|s| −→ R, ∀s ∈ S

}
. One

then easily checks that P defines a pseudo-marginal probability set, which is thus a feasible
solution of PseudoEMinMLP (22), and the objective value of p in the former is equal to the
objective value of P in the latter, and one derives that GlbPseudoEMinMLP (25) is a lower
bound for PseudoEMinMLP (22). One finally concludes that PseudoEMinMLP (22) and
GlbPseudoEMinMLP (25) are equivalent, in the sense that, they achieve the same optimal
objective value, furthermore, if P∗ =

{
p∗s : L|s| −→ R, ∀s ∈ S

}
is an optimal solution of

PseudoEMinMLP (22), then any function p∗ : Ln → R of which set of margins with respect
to S coincides with P∗ is an optimal solution of GlbPseudoEMinMLP (25), conversely, if
p∗ is an optimal solution of GlbPseudoEMinMLP (25), then the set of margins of p∗ with
respect to S denoted by

{
p∗s : L|s| −→ R, ∀s ∈ S

}
is an optimal solution of PseudoEMinMLP

(22), thus, establishing the proof of Theorem 6.

A.8 Proof of Theorem 7

Proof 8 We first have the following lemma which is shown in Appendix subsection A.8.1.
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Lemma 1 Suppose
{
qs : L|s| −→ R,∀s ∈ Front(S)

}
is a pseudo-marginals-set, such that:∑

xs∈L|s| qs(xs) = 0, ∀s ∈ Front(S)

said otherwise,
{
qs : L|s| −→ R, ∀s ∈ Front(S)

}
is the set of margins with respect to Front(S)

of a function q : Ln → R, verifying
∑

x∈Ln q(x) = 0. Then, the minimization problem:

minQ

{ ∑
x∈Ln |Q(x)|

}
∑

i 6∈s
∑

xi∈LQ(x) = qs(xs), ∀xs ∈ L|s|, ∀s ∈ Front(S)
(42)

and its following LP relaxation:

min
{

2τ
}


∀s ∈ Front(S), ∀xs ∈ L|s|,


p+
s (xs)− p−s (xs) = qs(xs)

p+
s (xs) ≥ 0

p−s (xs) ≥ 0∑
xs∈L|s| ps(xs) = τ, ∀s ∈ Front(S){
p+
s : L|s| → R,∀s ∈ S

}
and

{
p−s : L|s| → R, ∀s ∈ S

}
are pseudo-marginals-sets

(43)
achieve the same optimal objective value.

Next, let P+ =
{
p+
s : L|s| −→ R,∀s ∈ Front(S)

}
and P− =

{
p−s : L|s| −→ R, ∀s ∈

Front(S)
}

be a feasible solution of PseudoEMinMLP (22) and a feasible solution of Pseu-
doEMaxMLP (23), respectively, which thus stand for two pseudo-marginal probability sets
verifying 1 =

∑
xs∈L|s| p

+
s (xs) =

∑
xs∈L|s| p

−
s (xs), ∀s ∈ Front(S), and put:

qs(xs) = p+
s (xs)− p−s (xs), ∀s ∈ Front(S), ∀xs ∈ L|s|

Then, one checks that:∑
xs∈L|s| qs(xs) =

∑
xs∈L|s| p

+
s (xs)−

∑
xs∈L|s| p

−
s (xs) = 0, ∀s ∈ Front(S)

Now, assume minimization problem (42). It follows, since, at least,
(
P+,P−, τ = 1

)
is

a feasible solution of problem (43), that minimization problem (42) achieves an optimal
objective value which is less than, or equal to 2. But, since both P+ and P− are arbitrary,
one concludes that max-min problem (29) achieves an optimal objective value which is, at
most, equal to 2, this is on the one hand. On the other hand, since all the joint distributions
of RMLV X are feasible both for GlbPseudoEMinMLP (25) and GlbPseudoEMaxMLP (26),
thus such an optimal value of 2 must be achieved by max-min problem (30) anyway, as
otherwise, one would be able to construct a joint delta-distribution of RMLV X as: q =
p+

0 −p
−
0 , where p+

0 and p−0 stand for two respective feasible solutions of GlbPseudoEMinMLP
(25) and GlbPseudoEMaxMLP (26), such that

∑
x∈Ln |q(x)| < 2 yet achieving an objective

value in DEMinMLP (13) which is less than, or equal to the optimal objective value of the
latter and which, by Theorem 3, is impossible. One concludes that the optimal objective
value of max-min problem (29) is 2, hence the proof of Theorem 7.
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A.8.1 Proof of Lemma 1

Proof 9 In order to show Lemma 1, first suppose Q is a feasible solution of problem (42).
Since one has

∑
xQ(x) =

∑
x q(x) = 0, by Proposition 2, one finds that there exists two

nonnegative functions p+ : Ln → R+ and p− : Ln → R+, such that:∑
x∈Ln |Q(x)| = 2

∑
x∈Ln p

+(x) = 2
∑

x∈Ln p
−(x)

and one concludes that problem (42) is equivalent to the LP:

minp+,p−
{

2
∑

x∈Ln p
+(x)

}{∑
i 6∈s
∑

xi∈L p
+(x)−

∑
i 6∈s
∑

xi∈L p
−(x) = qs(xs), ∀xs ∈ L|s|, ∀s ∈ Front(S)

p+(x) ≥ 0, p−(x) ≥ 0, ∀x ∈ Ln
(44)

Next, consider the following LP relaxation of problem (44):

minp+,p−
{

2
∑

x∈Ln p
+(x)

}
∀s ∈ Front(S), ∀xs ∈ L|s|,


∑

i 6∈s
∑

xi∈L p
+(x)−

∑
i 6∈s
∑

xi∈L p
−(x) = qs(xs)∑

i 6∈s
∑

xi∈L p
+(x) ≥ 0∑

i 6∈s
∑

xi∈L p
−(x) ≥ 0

p+(x) ∈ R, p−(x) ∈ R, ∀x ∈ Ln
(45)

and let us show that problem (44), hence problem (42), may be completely solved by LP
(45). First of all, one easily checks that problem (45) is bounded, since whatever its feasible
solution (p+, p−), one has ∀s ∈ Front(S):∑

x∈Ln p
+(x) =

∑
i∈s
∑

xi∈L
(∑

i 6∈s
∑

xi∈L p
+(x)

)
≥ 0

For the sake of simplicity in the remainder of the proof, thus whatever a function u : Ln −→
R, and ∀s ∈ Front(S), we simply denote by us the margin of u with respect to s. Now, we
need the following Lemma which is shown in Appendix subsection A.8.2.

Lemma 2 Problem (45) and the following two (Lagrangian-like) problems:

minp+,p−

{
2
∑

x∈Ln p
+(x)− 2 infs∈Front(S)

{
infxs∈L|s|

{
inf
{
L|s| p+

s (xs), L
|s| p−s (xs)

}}}
∀s ∈ Front(S), ∀xs ∈ L|s|,


p+
s (xs)− p−s (xs) = qs(xs)

p+
s (xs) ≥ 0

p−s (xs) ≥ 0

p+(x) ∈ R, p−(x) ∈ R, ∀x ∈ Ln
(46)

and

minp+,p−

{
2
∑

x∈Ln p
+(x)− 2 infs∈Front(S)

{
infxs∈L|s|

{
inf
{
L|s| p+

s (xs), L
|s| p−s (xs)

}}}{
p+
s (xs)− p−s (xs) = qs(xs), ∀xs ∈ L|s|, ∀s ∈ Front(S)

p+(x) ≥ 0, p−(x) ≥ 0, ∀x ∈ Ln
(47)

achieve the same optimal objective value.
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Now, let us resume with the rest of the proof of Lemma 1. First, observe that problems
(45) and (46) are defined over the same feasible set, and that the objective function of the
former is greater than the objective function of the latter, yet by Lemma 2, they achieve the
same optimal objective value. One derives that problems (45) and (46) are equivalent, in
the sense that, they achieve the same optimal objective value, plus their respective optimal
solutions coincide. As an aside, one also establishes that any optimal solution (p+∗, p−∗) of
problem (45), hence, of problem (46) has to satisfy that:

−2 infs∈Front(S)

{
infxs∈L|s|

{
inf
{
L|s| p+∗

s (xs), L
|s| p−∗s (xs)

}}
= 0

This is on the one hand. On the other hand, since by Lemma 2, problems (46) and (47)
achieve the same optimal objective value, their objective functions are equal, and the feasible
set of the latter (which happens to be the same feasible set of the original problem (44)) is
included in the feasible set of problem (45), one derives that problem (45) is minimized
over the feasible set of problem (44), which also means that the former completely solves
the latter. Finally, by observing that problem (45) happens to be nothing else than a global
reformulation of problem (43), one finally establishes the proof of Lemma 1.

A.8.2 Proof of Lemma 2

Proof 10 First of all, one may rewrite problem (45) as:

minp+,p−,M

{
2
∑

x∈Ln p
+(x)

}

∀s ∈ Front(S), ∀xs ∈ L|s|,


p+
s (xs)− p−s (xs) = qs(xs)

p+
s (xs) ≥ 0

p−s (xs) ≥ 0

p+(x) ≥ −M, p−(x) ≥ −M, ∀x ∈ Ln

M ≥ 0

(48)

as one exactly recovers problem (45) for a big enough value of M in problem (48). Next,
by doing change of variables p+ ← p+ +M , p− ← p− +M in problem (48), one finds that
problem (45) is equivalent to the problem:

minp+,p−,M

{
2
∑

x∈Ln p
+(x)− 2M Ln

}

∀s ∈ Front(S), ∀xs ∈ L|s|,


p+
s (xs)− p−s (xs) = qs(xs)

p+
s (xs) ≥M Ln−|s|

p−s (xs) ≥M Ln−|s|

p+(x) ≥ 0, p−(x) ≥ 0, ∀x ∈ Ln

M ≥ 0

(49)

Since the following system of linear inequalities:∀xs ∈ L
|s|, ∀s ∈ Front(S),

{
p+
s (xs) ≥M Ln−|s|

p−s (xs) ≥M Ln−|s|

M ≥ 0
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is equivalent to the following one:

0 ≤M ≤ 1
Ln infs∈Front(S)

{
infxs∈L|s|

{
inf
{
L|s| p+

s (xs), L
|s| p−s (xs)

}}}
and by observing that the right hand side of the latter formula is always nonnegative, and
that the objective function of problem (49) achieves its smaller values for bigger values of
M , thus by substituting M in problem (49) with its optimal value in terms of the variables
p+
s , and p−s which is:

1
Ln infs∈Front(S)

{
infxs∈L|s|

{
inf
{
L|s| p+

s (xs), L
|s| p−s (xs)

}}}
one exactly retrieves problem (47), and one concludes that problem (45) achieves the same
optimal objective value as problem (47). Second, problem (46) may also write as:

minp+,p−

{
2
∑

x∈Ln p
+(x)− 2 infs∈Front(S)

{
infxs∈L|s|

{
inf
{
L|s| p+

s (xs), L
|s| p−s (xs)

}}}

∀s ∈ Front(S), ∀xs ∈ L|s|,


p+
s (xs)− p−s (xs) = qs(xs)

p+
s (xs) ≥ 0

p−s (xs) ≥ 0

p+(x) ≥ −M, p−(x) ≥ −M, ∀x ∈ Ln

M ≥ 0

(50)
in such a way that, by doing the changes of variables p+ ← p+ + M , p− ← p− + M , one
may rewrite problem (50) as:

minp+,p−

{
2
∑

x∈Ln p
+(x)− 2 infs∈Front(S)

{
infxs∈L|s|

{
inf
{
L|s| p+

s (xs), L
|s| p−s (xs)

}}}

∀s ∈ Front(S), ∀xs ∈ L|s|,


p+
s (xs)− p−s (xs) = qs(xs)

p+
s (xs) ≥M Ln−|s|

p−s (xs) ≥M Ln−|s|

p+(x) ≥ 0, p−(x) ≥ 0, ∀x ∈ Ln

M ≥ 0

(51)
One then observes that the variable M does not appear in the objective function of problem
(51), and the latter could only increase with larger values of M (as larger values of M
constrain more the possible values of (p+, p−)), one finds that the optimal value of M in
problem (51) is 0, in such a way that, after substituting M with its optimal value which
is 0 in problem (51), and by noticing that the resulting constraints of the form: ∀s ∈

Front(S), ∀xs ∈ L|s|,

{
p+
s (xs) ≥ 0Ln−|s| = 0

p−s (xs) ≥ 0Ln−|s| = 0
become redundant, one retrieves problem

(47). One concludes that problem (47) and problem (46) achieve the same optimal objective
value, thus establishing the proof of Lemma 2.
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A.9 Proof of Theorem 8

Proof 11 First, we have the following lemma which is shown in Appendix subsection A.9.1.

Lemma 3 The optimal objective value of minimization problem (42) is equal to:

sups∈Front(S)

{∑
xs∈L|s| |qs(xs)|

}
But, since any feasible solution q of GlbPseudo∆EMinMLP (27) verifies:

sups∈Front(S)

{∑
xs∈L|s| |qs(xs)|

}
≤ 2

where ∀s ∈ Front(S), qs stands for the margin of q with respect to s, by applying the result of
Lemma 3, one first derives that the optimal objective value of max-min problem (30) is less
than, or equal to 2, but since the latter value is, at least, achieved by any feasible solution of
DEMinMLP (13) writing in the form 1x(·)− 1y(·), and verifying that, ∃s ∈ Front(S), such
that, xs 6= ys, one finally concludes that the optimal objective value of max-min problem
(30) is equal to 2, hence the proof of Theorem 8.

A.9.1 Proof of Lemma 3

Assume LP (45) which, by Lemma 1, achieves the same optimal objective value as mini-
mization problem (42). Next, by observing that one may fully express the variables p−s (xs)
in terms of the variables p+

s (xs), as:

p−s (xs) = p+
s (xs)− qs(xs), ∀xs ∈ L|s|, ∀s ∈ Front(S)

which then define nonnegative pseudo-marginals as far as the following condition:

p+
s (xs) ≥ sup{0, qs(xs)}, ∀xs ∈ L|s|, ∀s ∈ Front(S)

is satisfied, one may rewrite problem (45) as:

minp+
{

2
∑

x∈Ln p
+(x)

}{
p+
s (xs) ≥ sup{0, qs(xs)}, ∀xs ∈ L|s|, ∀s ∈ Front(S)

p+(x) ∈ R, ∀x ∈ Ln
(52)

where it has been assumed that, ∀s ∈ Front(S), ps stands for the margin of p with respect
to s. One finds that the dual of LP (52) is given by:

max
{
E = 2

∑
s∈Front(S)

∑
xs∈L|s| µs(xs) sup{0, qs(xs)}

}{∑
s∈Front(S) µs(xs) = 1,∀x ∈ Ln

µs(xs) ≥ 0, ∀xs ∈ L|s|, ∀s ∈ Front(S)

(53)

Let E∗ be the optimal value of dual LP (53) which is also the optimal objective value of
problem (45), and denote:

s0 = Argsups∈Front(S)

{ ∑
xs∈L|s| sup{0, qs(xs)}

}
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then define the solution µ(0) =
(
µ

(0)
s (xs)

)
xs∈L|s|,s∈Front(S)

as:

∀s ∈ Front(S), ∀xs ∈ L|s|, µ(1)
s (xs) =

{
1, if s = s0,

0, else.

Then, one checks that µ(0) is a feasible solution of dual LP (53), and achieves an objective
value which is equal to sups∈Front(S)

{ ∑
xs∈L|s| |qs(xs)|

}
. One derives immediately that:

E∗ ≥ sups∈Front(S)

{ ∑
xs∈L|s| |qs(xs)|

}
(54)

This is on the one hand. On the other hand, surprisingly, we show hereafter that dual
LP (53) may also be seen as an expectation maximization reformulation of a multi-label
problem with Ln as domain, and Front(S) as label-set. In fact, let us introduce the random
couple

(
S,X

)
, where S stands for a random variable taking values in Front(S), and X =

(X1, . . . , Xm) is a m-dimensional vector of integer random variables taking values in L,
and assumed to be independent and identically distributed, in such a way that, ∀x ∈ Ln,
one has P

(
X = x

)
= Πm

i=1P(Xi = xi), and let us put P(Xi = xi) = 1
L ,∀i = 1, . . . ,

∀xi = 0, . . . , L − 1, and ∀i = 1, . . . ,m. Furthermore, introduce two real-value functions f
and F :

(
Front(S),Ln

)
→ R defined as: f(s;x) = sup{0,qs(xs)}

Ln−|s| , ∀x ∈ Ln, and F (s;x) =
2Ln f(s;x), ∀x ∈ Ln.

Lemma 4 Dual LP (53) is equivalent to the expectation maximization problem:

maxP

{
EP

[
F (S;X)

]
= 2

∑
s∈Front(S)

∑
xLn f(s;x)P(S = s/X = x)

}{
P(S = s/X = x) = P(S = s/Xs = xs), ∀(s, x) ∈ Front(S)× Ln

P(X = x) = 1
Ln , ∀x ∈ Ln

(55)

The proof of Lemma 4 is sketched in Appendix subsection A.9.2 (please refer also to Remark
4 for further explanations concerning the modeling of P(X = x) as a uniform distribution).
Now, denote p(s, x) = P(S = s,X = x), ∀(s, x) ∈ Front(S) × Ln standing for the joint
distribution of the couple

(
S,X

)
, and p(s/x) = P(S = s/X = x) standing for its conditional

distribution. Then, by using the fact that one has s ∈ Front(S):

P(S = s,Xs = xs) =
∑

i 6∈s
∑

xi∈L P(S = s,X = x) =
∑

i 6∈s
∑

xi∈L P(S = s/X = x)P(X = x)

hence
P(S = s/Xs = xs) =

∑
i 6∈s
∑

xi∈L P(S = s/X = x) p0
s̄

it has been assumed that p0
s̄ = 1

Ln−|s| which is a constant, because P(X = x) is assumed to
be uniform, in such a way that, one may reexpress problem (55) as a LP as follows (while
simply bearing in mind that one has P(X = x) = 1

Ln , ∀x ∈ Ln):

maxp

{
Ep
[
F (S;X)

]
= 2

∑
s∈Front(S)

∑
xLn f(s;x) p(s/x)

}

p(s/x)−

∑
i 6∈s
∑

xi∈L p(s/x) p0
s̄ = 0, ∀s ∈ Front(S), ∀x ∈ Ln∑

s∈Front(S) p(s/x) = 1, ∀x ∈ Ln

p(s/x) ≥ 0, ∀s ∈ Front(S), ∀xs ∈ L|s|

(56)
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The dual of LP (56) writes as:

minp+,p−
{

2
∑

xLn p
+(x)

}
{
p+(x) ≥ p−(x) +

(
sup{0, qs(xs)} − p−s (xs)

)
p0
s̄, ∀s ∈ Front(S), ∀x ∈ Ln

p+(x) ∈ R, p−(x) ∈ R, ∀x ∈ Ln
(57)

where ∀s ∈ Front(S), p−s stands for the margin of p− with respect to s. Denote by (p+∗, p−∗)
the optimal solution of LP (57), thus verifying:

p+∗(x) = sups∈Front(S)

{
p−∗(x) +

(
sup{0, qs(xs)} − p−∗s (xs)

)
p0
s̄

}
, ∀x ∈ Ln

One finds that there exists s1 ∈ Front(S), such that:
p+∗(x) = p−∗(x) +

(
sup{0, qs1(xs1)} − p−s1(xs1)

)
p0
s̄1 , ∀x ∈ L

n

p+∗
s1 (xs1) = sup{0, qs(xs1)}, ∀xs1 ∈ L|s1|

2
∑

x∈Ln p
+∗(x) = 2

∑
xs1∈L|s1|

sup{0, qs(xs1)} =
∑

xs1∈L|s1|
∣∣qs1(xs1)

∣∣
One finally derives that:

E∗ ≤ sups∈Front(S)

{ ∑
xs∈L|s| |qs(xs)|

}
(58)

Combining formulas (54) and (58), one concludes that:

E∗ = sups∈Front(S)

{ ∑
xs∈L|s| |qs(xs)|

}
hence the proof of Lemma 3.

A.9.2 Proof of Lemma 4

First, suppose P(S = s/X = x) is a conditional probability of the couple (S,X) verifying
P(S = s/X = x) = P(S = s/Xs = xs), ∀s ∈ Front(S), ∀x ∈ Ln, and put µs(xs) = P(S =
s/Xs = xs), ∀s ∈ Front(S),∀xs ∈ L|s|. Then, one checks that:

µs(xs) ≥ 0, ∀s ∈ Front(S),∀xs ∈ L|s|∑
s∈Front(S) µs(xs) =

∑
s∈Front(S) P(S = s/X = x) = 1, ∀x ∈ Ln

2
∑

s∈Front(S)

∑
xs∈L|s| µs(xs) sup{0, qs(xs)} = EP

[
F (S;X)

]
Conversely, suppose

(
µs(xs)

)
xs∈L|s|,s∈Front(S)

is a feasible solution of dual LP (53), and put:{
P(X = x) = 1

Ln , ∀x ∈ Ln

P(S = s,X = x) = P(X = x)µs(xs), ∀s ∈ Front(S), ∀x ∈ Ln

Then, one checks that:
P(S = s/X = x) ≥ 0, ∀s ∈ Front(S), ∀x ∈ Ln∑

s∈Front(S)

∑
x∈Ln P(S = s,X = x) =

∑
x∈Ln

(∑
s∈Front(S) µs(xs)

)
=
∑

x∈Ln P (x) = 1

P(S = s/X = x) = P(S = s/Xs = xs), ∀s ∈ Front(S), ∀x ∈ Ln

EP

[
F (S;X)

]
= 2

∑
s∈Front(S)

∑
xs∈L|s| µs(xs) sup{0, qs(xs)}

One concludes that dual LP (53) and expectation maximization problem (55) are equivalent.
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Remark 4 Please, note that we have chosen P(X = x) as the uniform distribution as
P(X = x) = 1

Ln ,∀x ∈ Ln just for the sake of obtention of a nice formula of the objective
function of problem (55) expressing as the expectation of F (S;X). But in fact, such an
equivalence relationship between problems (53) and (55) is guaranteed independently of the
choice of P(X = x), as far as one has P(X = x) > 0, ∀x ∈ Ln. This is, because, problem
(55) solely depends upon the conditional probabilities P(S/X), such that, P(S = s/X =
x) = P(S = s/X = xs).

A.10 Proof of Theorem 9

First of all, denote by ∆LP the LP standing for the difference of GlbPseudoEMinMLP
(25) and GlbPseudoEMaxMLP (26), in that order. Obviously, ∆LP is a lower bound for
DEMinMLP (13), this is on the one hand. On the other hand, let p and p′ be two respective
feasible solutions of GlbPseudoEMinMLP (25) and GlbPseudoEMaxMLP (26), and let us
put q = p− p′. Since Theorem 7 guarantees that the margins of q with respect to Front(S)
are originated from a joint delta-distribution q′ of RMLV X , for instance:

q′ = OSq +Argminq̄∈M̄S

{ ∑
x∈Ln |q(x) + q̄(x)|

}
thus verifying

∑
x∈Ln |q′(x)| ≤ 2, Theorem 2 then guarantees that:〈

g, p− p′
〉

=
〈
g, q
〉

=
〈
g, q′

〉
≥ infx∈Ln

{
g(x) } − supx∈Ln

{
g(x) }

which means that ∆LP is an upper bound for DEMinMLP (13). Thus, one derives that
∆LP exactly solves DEMinMLP (13), implying that GlbPseudoEMinMLP (25), hence,
PseudoEMinMLP (22), must solve EMinMLP (8), and GlbPseudoEMaxMLP (26), hence,
PseudoEMaxMLP (23) must solve EMaxMLP (9). Finally, by Theorem 5, the proof of
the remaining claim of Theorem 9 concerning coincidence, on the one hand, of the optimal
pseudo-marginals of PseudoEMinMLP (22) (resp. the optimal pseudo-marginals of Pseu-
doEMaxMLP (23)), on the other hand, of the ordinary margins with respect to Front(S) of
an optimal solution of EMinMLP (8) (resp. an optimal solution of EMaxMLP (9)) follows
immediately, hence the proof of Theorem 9.

A.11 Proof of Theorem 10

The proof of Theorem 10 is quasi-identical to the proof of Theorem 9, first, by taking q di-
rectly as a feasible solution of GlbPseudo∆EMinMLP (27), next, by using Theorem 8 instead
of Theorem 7 for establishing that GlbPseudoEMinMLP (25), hence, Pseudo∆EMinMLP
(24) exactly solves DEMinMLP (13), finally, by using Theorem 5 for establishing coinci-
dence of the optimal pseudo-marginals of Pseudo∆EMinMLP (24) on the one hand, and
the marginals of an optimal solution of DEMinMLP (13), on the other hand.

A.12 Proof of Theorem 11

Proof 12 Denote throughout by g(inf) = infx∈Ln
{
g(x)

}
, and g(sup) = supx∈Ln

{
g(x)

}
.

We need Lemma 5 below which is shown in Appendix subsection A.12.1.
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Lemma 5 Assume GlbPseudo∆EMinMLP (27). Then, under Assumption 1, there exists
real constants µ and λs > 0, s ∈ Front(S), such that, any optimal solution of GlbPseudo∆EMinMLP
(27) is also an optimal solution of the following Lagrangian functional:

L
(
q;µ, λ

)
=
∑

x∈Ln g(x) q(x) + µ
∑

x∈Ln q(x) +
∑

s∈Front(S) λs
(∑

xs∈L|s| |qs(xs)| − 2
)
(59)

defined ∀q : Ln → R.

Now, assume q∗ is an optimal solution of GlbPseudo∆EMinMLP (27), and denote ∀s ∈
Front(S) by q∗s the margin of q∗ with respect to s. It follows, by Lagrangian duality, that:

λs
(∑

xs∈L|s| |q
∗
s(xs)| − 2

)
= 0, ∀s ∈ Front(S)

and we have already shown that one has λs > 0, ∀s ∈ Front(S), one derives:∑
xs∈L|s| |q

∗
s(xs)| = 2, ∀s ∈ Front(S)

hence the proof of Theorem 11.

A.12.1 Proof of Lemma 5

Proof 13 We will make use of Lemma 6 below which is shown in Appendix subsection
A.12.2.

Lemma 6 Suppose a hypersite s0 ∈ Front(S), and define the hypersite:

s̃0 =
{
i ∈ s0, s.t., ∀s ∈ Front(S)/{s0}, i 6∈ s

}
where Front(S)/{s0} stands for the hypersite-set which contains all the hypersites in Front(S),
except s0, then introduce:

T (s0) =
{
s ∩ s0, ∀s ∈ Front(S)/{s0}

}
standing for hypersite-set consisting of all the hypersites which are intersections between s0

and any of the remaining hypersites in Front(S). Furthermore, suppose the local function
space F (s0/s̃0) =

{
f : L|s0/s̃0| → R

}
, and consider the ortho-marginal operator OT (s0) defined

over F (s̃0/s0), finally, denote by M (s0/s̃0) the ortho-marginal space which is a function
subspace of F (s0/s̃0) and which is induced by OT (s0) as:

M (s0/s̃0) =
{
f : L|s0/s̃0| → R, s.t., f = OT (s0)f

}
Then, s0/s̃0 is “strictly included” in s0, moreover, whatever a function u : Ln → R, one
has:

1.
(
OFront(S)/{s0}u

)
s0
∈M (s0/s̃0),

2.
(
OFront(S)/{s0}u

)
c
≡ uc, ∀c ∈ T (s0).

where OFront(S)/{s0} stands for the ortho-marginal operator with respect to the hypersite-set

Front(S)/{s0}, and ∀c ∈ T (s0) ∪ {s0},
(
OFront(S)/{s0}u

)
c

stands for the margin of function(
OFront(S)/{s0}u

)
(x) with respect to c.
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Then, in order to show Lemma 5, assume GlbPseudo∆EMinMLP (27), and denote:

Q =
{
q : Ln → R, s.t.,

∑
x∈Ln q(x) = 0, and

∑
xs∈Ln |qs(xs)| ≤ 2, ∀s ∈ S

}
standing for the feasible set of GlbPseudo∆EMinMLP (27), where it has been again as-
sumed that ∀q ∈ Q, and ∀s ∈ S, qs stands for the margin of q with respect to s. Next, since
GlbPseudo∆EMinMLP (27) is a convex minimization problem satisfying the Slater condi-
tion, for there exists, at least, its feasible solution q0 = 0 satisfying:

∑
xs∈L|s| |q

0
s(xs)| = 0 <

2, ∀s ∈ Front(S), one derives that there exists µ ∈ R, and λ = (λs)s∈Front(S) ∈ R+|Front(S)|
,

such that, the Lagrangian functional of GlbPseudo∆EMinMLP (27) defined ∀q : Ln → R
as:

L
(
q;µ, λ

)
=
∑

x∈Ln g(x) q(x) + µ
∑

x∈Ln q(x) +
∑

s∈Front(S) λs
(∑

xs∈L|s| |qs(xs)| − 2
)

satisfies minq
{
L
(
q;µ, λ

)}
= minq∈Q

{∑
x∈Ln g(x) q(x)}, Now, assume that ∃ s0 ∈ Front(S),

such that, λs0 = 0, an let us show that this leads to an absurdity. Begin by denoting
s̃0 =

{
i ∈ s0, s.t.,∀s ∈ Front(S)/{s0}, i 6∈ s

}
standing for the subset of s0 consisting of

sites in s0 which do not belong to any s ∈ Front(S)/{s0}. Furthermore, assume a function
u : Ln → R, and put: q(x) = u(x) −

(
OFront(S)/{s0}u

)
(x), ∀x ∈ Ln, where OFront(S)/{s0}

stands for the ortho-marginal operator with respect to Front(S)/{s0}. Then, by Theorem 4,
one finds:

∀s ∈ Front(S), ∀xs ∈ L|s|, qs(xs) =

{
0, if s ∈ Front(S)/{s0},
us0(xs0)−

(
OFront(S)/{s0}u

)
s0

(xs0), if s = s0.

where ∀s ∈ Front(S), us and qs respectively stand for the margins of u and q with respect
to s, and observe that

∑
xs0∈L|s0|

qs0(xs0) = 0. One derives:

L
(
q, µ, λ

)
=

∑
xs0∈L|s0|

(
gs0(xs0) + µ

)
qs0(xs0)

=
∑

xs0∈L|s0|
(
gs0(xs0) + µ

) (
us0(xs0)−

(
OFront(S)/{s0}u

)
s0

(xs0)
)

=
∑

xs0∈L|s0|
gs0(xs0)

(
us0(xs0)−

(
OFront(S)/{s0}u

)
s0

(xs0)
)

Then, since minimization problem minq∈Q
{∑

x∈Ln g(x)q(x)} is bounded, and u is assumed
to be arbitrary, one derives:∑

xs0∈L|s0|
gs0(xs0)

(
us0(xs0)−

(
OFront(S)/{s0}u

)
s0

(xs0)
)

= 0, ∀u : Ln → R

which, by Lemma 6, is possible, if and only if, gs0 ∈ M (s0/s̃0), and which is an absurdity,
as by assumption, gs0 is atomic in Front(S), and one derives that λs0 > 0. But, since s0 is
assumed to be arbitrary, one finally derives that λs > 0, ∀s ∈ Front(S), hence the proof of
Lemma 5.

A.12.2 Proof of Lemma 6

Proof 14 First, the statement that s0/s̃0 is “strictly included” in s0 follows immediately
by definition of Front(S). Second, suppose a function u : Ln → R, and observe that:
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1. ∀x ∈ Ln,
(
OFront(S)/{s0}u

)
(x) is only a function of xΩ/s̃0 standing for the sub-vector

of x with indices in Ω/s̃0,

2. ∀y ∈ L|s0|,
(
OFront(S)/{s0}u

)
s0

(y) is only a function of ys0/s̃0 standing for the sub-vector

of y with indices which are in s0/s̃0,

3. By Theorem 4, one has:(
OFront(S)/{s0}u

)
s
≡ us, ∀s ∈ Front(S)/{s0} (60)

Thus, one the hand, the function
(
OFront(S)/{s0}u

)
s0

(x) only depends on xs0/s̃0, and one

finds that there exists real coefficients β
(s0)
c ,∀c ∈ T (s0), such that:(

OFront(S)/{s0}u
)
s0

(y) =
∑

c∈T (s0) β
(s0)
c uc(yc), ∀y ∈ L|s0/s̃0|

where ∀c ∈ T (s0), uc stands for the margin of u with respect to c. Thus, one may use the
result of Proposition 3 for establishing that

(
OFront(S)/{s0}u

)
s0
∈ M (s0/s̃0). On the other

hand, by taking the margins of both hand sides of formula (60) with respect to s0 ∩ s, ∀s ∈
Front(S)/{s0}, one establishes that:(

OFront(S)/{s0}u
)
s0∩s ≡ us0∩s, ∀s ∈ Front(S)/{s0}

hence: (
OFront(S)/{s0}u

)
c
≡ uc, ∀c ∈ T (s0)

thus, proving Lemma 6.

A.13 Proof of Proposition 6

Proof 15 Denote by MS the ortho-marginal function space with respect to MS and by M̄S
its complement space, and let q∗ stand for a joint delta-distribution of RMLV X which is
optimal for DEMinMLP (13). Clearly, q∗ has to verify q∗ = Argminq̄∈M̄S

{ ∑
x∈Ln |q∗(x)+

q̄(x)|
}

, as otherwise, one would have minq̄∈M̄S

{ ∑
x∈Ln |q∗(x) + q̄(x)|

}
< 2 which, then,

is a contradiction with the assumption that q∗ is optimal for DEMinMLP (13). Therefore,
let us study the conditions under which the optimal solution of the problem:

minq̄∈M̄S

{∑
x∈Ln |q∗(x) + q̄(x)|

}
(61)

denoted by q̄∗ verifies that q̄∗ = 0. Thus, suppose an infinitesimal function increment
v : Ln → R, and denote vM̄S

=
(
Id−OS

)
v, where Id stands for the identity operator. Then,

one may write:∑
x∈Ln

∣∣q∗(x) + vM̄S
(x)
∣∣ =

∑
x∈Ln

∣∣vM̄S
(x)
∣∣10

(
q∗(x)

)
+
∑

x∈Ln vM̄S
(x) sign

(
q∗(x)

)
and observe that, ∀α ∈ R+, one has:∑

x∈Ln
∣∣(αv)M̄S

(x)
∣∣10

(
q∗(x)

)
+
∑

x∈Ln(αv)M̄S
(x) sign

(
q∗(x)

)
= α

(∑
x∈Ln

∣∣vM̄S
(x)
∣∣10

(
q∗(x)

)
+
∑

x∈Ln vM̄S
(x) sign

(
q∗(x)

))
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Thus, one may relax, henceforth, the assumption that v is an infinitesimal function, and
establish that q̄∗ = 0, if and only if, whatever a function v : Ln → R, one has:{〈∣∣vM̄S

∣∣,10(q∗)
〉
≥
〈
vM̄S

, sign(q∗)
〉〈∣∣vM̄S

∣∣,10(q∗)
〉
≥ −

〈
vM̄S

, sign(q∗)
〉

where the lower inequality is derived by applying the upper inequality with −v in the place
of v. But, since minimization problem (61) is convex, which means that its local and global
optimality conditions are equivalent, one finally derives that q̄∗ = 0, if and only if, whatever
a function v : Ln → R, one has:〈∣∣vM̄S

∣∣,10(q∗)
〉
≥
∣∣〈vM̄S

, sign(q∗)
〉∣∣

hence, the proof of Proposition 6.

A.14 Proof of Theorem 12 and Theorem 13

Proof 16 Let us first show that, under Assumption 1, both results of Theorem 12 and
Theorem 13 are equivalent in a sense that we clarify shortly. First of all, Theorem 3
guarantees that there is a bijection between:

• on the one hand, the set of couples of joint distributions of RMLV X of the form
(p+∗, p−∗), where p+∗ is optimal for EMinMLP (8), and p−∗ is optimal for EMaxMLP
(9),

• on the other hand, the set of joint delta-distributions of RMLV X which are optimal
for DEMinMLP (13).

Second, let P+∗ =
{
p+∗
s , ∀s ∈ S

}
and P−∗ =

{
p−∗s ,∀s ∈ S

}
stand for an optimal solution

of PseudoEMinMLP (22) and an optimal solution of PseudoEMaxMLP (23), respectively.
Then, Theorem 9 guarantees that:

• P+∗ defines a marginals-set with respect to S of a joint distribution of RMLV X
denoted by p+∗ which is optimal for EMinMLP (8),

• P−∗ defines a marginals-set with respect to S of a joint distribution of RMLV X
denoted by p−∗ which is optimal for EMaxMLP (9).

Let us put q∗ = p+∗ − p−∗ of which delta-marginals-sets with respect to S denoted by Q∗
is given by Q∗ =

{
q∗s := p+∗

s − p−∗s ,∀s ∈ S
}

. Therefore, q∗ stands (by definition) for a
joint delta-distribution of RMLV X which, by Theorem 3, is optimal for DEMinMLP (13),
and hence Theorem 10 guarantees that Q∗ is, in turn, optimal for Pseudo∆EMinMLP (24).
Furthermore, under Assumption 1 and by Theorem 11, one has:∑

xs∈L|s| |q
∗
s(xs)| =

∑
xs∈L|s| |p

+∗
s − p−∗s | = 2, ∀s ∈ Front(S)

and by Proposition 1, one derives:

∀s ∈ Front(S), ∀xs ∈ L|s|,

{
p+∗
s > 0⇒ p−∗s = 0,

p−∗s > 0⇒ p+∗
s = 0.
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One finally derives:

∀s ∈ Front(S), ∀xs ∈ L|s|,


q∗s(xs) > 0⇔ p+∗

s > 0,

q∗s(xs) > 0⇒ p−∗s = 0,

q∗s(xs) < 0⇔ p−∗s > 0,

q∗s(xs) < 0⇒ p+∗
s = 0.

hence the proof of equivalence between Theorem 12 and Theorem 13. Consequently, one
may settle for showing the sufficient condition of Theorem 12 and the necessary condition
of Theorem 13.

Thus, let us first show the necessary condition of Theorem 12. First, by using the
identity: P

(
Xs = xs

)
=
∑

i 6∈s
∑

xi∈L P
(
X = x

)
= 0, one finds:

∀s ∈ Front(S), ∀xs ∈ L|s|, P
(
Xs = xs

)
= 0⇒ P

(
X = y

)
= 0,∀y ∈ Ln, s.t., ys = xs

(62)
and one immediately derives:

∀x ∈ Ln, P
(
X = x

)
> 0⇒ ∀s ∈ Front(S), P

(
Xs = xs

)
> 0

as otherwise, i.e.; if there existed x ∈ Ln, and s ∈ Front(S), such that, P
(
X = x

)
> 0,

and P
(
Xs = xs

)
= 0, then, by formula (62), one would have ∀y ∈ Ln, such that, ys = xs,

P
(
X = y

)
= 0, in particular, P

(
X = x

)
= 0, which is in contradiction with the assumption

that P
(
X = x

)
> 0, hence the proof of the necessary condition of Theorem 12. Next, in

order to show the sufficient condition of Theorem 12, assume GlbPseudo∆EMinMLP (27),
and let us study optimality of the Lagrangian functional we have introduced in formula (59)
(see Lemma 5 in Appendix section A.12). First of all, since L

(
q;µ, λ

)
is a convex function

of q, one concludes that global minimality and local minimality of L
(
q;µ, λ

)
are equivalent.

Thus, suppose a function q : Ln → R, and assume an infinitesimal functional increment
v : Ln → R. Then, one has:

L
(
q + v;µ, λ

)
−L

(
q;µ, λ

)
=
∑

x∈Ln
(
g(x) + µ

)
v(x)

+
∑

s∈Front(S) λs

(∑
xs∈L|s|

(∣∣qs(xs) + vs(xs)
∣∣− ∣∣qs(xs)∣∣))

where ∀s ∈ Front(S), qs and vs stand for the margins of v and q with respect to s, re-
spectively. Since, by assumption, v is infinitesimal, one finds that ∀s ∈ Front(S), and
∀xs ∈ L|s|:∣∣qs(xs) + vs(xs)

∣∣ = |qs(xs)|+ |vs(xs)|10

(
qs(xs)

)
+ vs(xs) sign

(
qs(xs)

)
One may write accordingly:

L
(
q + v;µ, λ

)
−L

(
q;µ, λ

)
=
∑

x∈Ln
(
g(x) + µ

)
v(x)

+
∑

s∈Front(S) λs
∑

xs∈L|s| vs(xs) sign
(
qs(xs)

)
+
∑

s∈Front(S) λs
∑

xs∈L|s| |vs(xs)|10

(
qs(xs)

)
Let us now put:

h(q, v) =
∑

x∈Ln
(
g(x) + µ

)
v(x)

+
∑

s∈Front(S) λs
∑

xs∈L|s| vs(xs) sign
(
qs(xs)

)
+
∑

s∈Front(S) λs
∑

xs∈L|s| |vs(xs)|10

(
qs(xs)

)
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and observe that ∀α ∈ R+, one has h(q, α v) = αh(q, v). Thus, one may relax in the
remainder the assumption that v is infinitesimal, and establish that q∗ is a globally minimal
solution of L

(
q;µ, λ

)
, if and only if, one has: h(q∗, v) ≥ 0, ∀v : Ln → R, in other words,

if and only if, ∀v : Ln → R, one has:∑
x∈Ln

(
g(x) + µ

)
v(x) +

∑
s∈Front(S) λs

∑
xs∈L|s| vs(xs) sign

(
q∗s(xs)

)
+
∑

s∈Front(S) λs
∑

xs∈L|s| |vs(xs)|10

(
q∗s(xs)

)
≥ 0

In particular, by applying the latter inequality, first, with v(y) = 1x
(
y
)
,∀y ∈ Ln, second,

with v(y) = −1x
(
y
)
,∀x ∈ Ln with respect to all x ∈ Ln, one derives:

∀x ∈ Ln,

{
g(x) + µ+

∑
s∈Front(S) λs sign

(
q∗s(xs)

)
+
∑

s∈Front(S) λs 10

(
q∗s(xs)

)
≥ 0

−g(x)− µ−
∑

s∈Front(S) λs sign
(
q∗s(xs)

)
+
∑

s∈Front(S) λs 10

(
q∗s(xs)

)
≥ 0

in such a way that:

∀x ∈ Ln, q∗s(xs) 6= 0, ∀s ∈ Front(S)⇒ g(x) + µ+
∑

s∈Front(S) λs sign
(
q∗s(xs)

)
= 0

In particular, since one has q∗s(x
(inf)
s ) > 0, ∀s ∈ Front(S), and q∗s(x

(sup)
s ) < 0,∀s ∈ Front(S)

(which is the necessary condition that we have shown earlier in this Appendix section), by
applying the latter formula, first, with x(inf), second, with x(sup), one finds:{

g(x(inf)) + µ+
∑

s∈Front(S) λs = 0

g(x(sup)) + µ−
∑

s∈Front(S) λs = 0

hence: {
µ+

∑
s∈Front(S) λs = −g(x(inf))

µ−
∑

s∈Front(S) λs = −g(x(sup))

Now, suppose x0 ∈ Ln, such that, q∗s(x
0
s) > 0, ∀s ∈ Front(S). One finds g(x0) + µ +∑

s∈Front(S) λs = 0, hence, g(x0) = g(x(inf)), which means that x0 is a Inf-sample of q∗.

Also, suppose x1 ∈ Ln, such that, q∗s(x
1
s) < 0,∀s ∈ Front(S). One finds g(x1) + µ −∑

s∈Front(S) λs = 0, hence, g(x1) = g(x(sup)), which means that x1 is a Sup-sample of q∗,
which thus establishes the proof of the first and second statements both of Theorem 12 and
Theorem 13. The third and last statement of Theorem 13 is a mere consequence of its first
and second statements, and the result of Theorem 11.

A.15 Proof of Theorem 14

Proof 17 We show Theorem 14 by induction. Therefore, assume x
(1)
s1 ∈ L|s1|, such that,

p∗s1(x
(1)
s1 ) > 0. Then, by Proposition 5, there exists x ∈ Ln which is a sample of p∗ and,

such that, xs1 = x
(1)
s1 , this is on the one hand. On the other hand, since x is a sample of

p∗, then by Theorem 12, one has p∗s(xs) > 0, ∀s ∈ Front(S), but since one has xs1 = x
(1)
s1 ,

one derives:

∃x ∈ Ln, s.t.,
(
xs1 = x

(1)
s1

)
∧
(
p∗s(xs) > 0, ∀s ∈ Front(S)

)
(63)
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Next, suppose x
(2)
s2 ∈ L|s2|, such that, p∗s2(x

(2)
s2 ) > 0, and if s1 ∩ s2 6= ∅, then one has

x
(s2)
s1∩s2 = x

(s1)
s1∩s2. Clearly, by formula (63), such a vector x

(2)
s2 exists, moreover, verifies

that ∃x ∈ Ln, such that, xs2 = x
(2)
s2 ∧ p∗s(xs) > 0, ∀s ∈ Front(S)/{s2}. Then, there exists

two possible cases: the case where xs1 = x
(1)
s1 , and the case where xs1 6= x

(1)
s1 . Therefore,

suppose the latter case, and define the vector x′ ∈ Ln, such that, x′s1 = x
(1)
s1 , x′s2 = x

(2)
s2 , and

x′i = xi, ∀i 6∈ s1 ∪ s2, and one derives that x′ verifies p∗s(x
′
s) > 0, ∀s ∈ Front(S). Thus, in

both cases, one finds:

∃x ∈ Ln, s.t.,
(
xs1 = x

(1)
s1 ∧ xs2 = x

(2)
s2

)
∧
(
p∗s(xs) > 0, ∀s ∈ Front(S)

)
(64)

Now, let k ∈
{

2, . . . ,m − 1
}

, and suppose that one has a series of vectors x
(i)
si ∈ L|si|, i =

1, . . . , k, such that:

∃x ∈ Ln, s.t.,
(
∧ki=1 xsi = x

(i)
si

)
∧
(
p∗s(xs) > 0, ∀s ∈ Front(S)

)
(65)

and let us show that:

1. ∃x(k+1)
sk+1 ∈ L|sk+1|, such that:{

p∗sk+1
(x

(k+1)
sk+1 ) > 0

∀i = 1, . . . , k, sk+1 ∩ si 6= ∅ ⇒ x
(k+1)
sk+1∩si = x

(i)
sk+1∩si

(66)

2. ∀x(k+1)
sk+1 ∈ L|sk+1| verifying formula (66), one has:

∃x ∈ Ln, s.t.,
(
∧k+1
i=1 xsi = x

(i)
si

)
∧
(
p∗s(xs) > 0, ∀s ∈ Front(S)

)
(67)

First of all, existence of x
(k+1)
sk+1 ∈ L|sk+1| verifying formula (66) above immediately follows,

by assumption, from formula (65). Second, suppose x
(k+1)
sk+1 ∈ L|sk+1| verifying formula (66).

Then, by formula (63), one finds that there exists y ∈ Ln, such that, ysk+1
= x

(k+1)
sk+1 , and

p∗s(ys) > 0, ∀s ∈ Front(S). Then, one distinguishes the following two cases:

1. ysi = x
(i)
si , ∀i = 1, . . . , k,

2. ∃i ∈
{

1, . . . , k
}
, s.t., ysi 6= x

(i)
si .

In the former case, the proof is established immediately. Therefore, suppose the latter case,

and define the vector x′ ∈ Ln, such that, x′si = x
(i)
si ,∀i = 1, . . . , k + 1, and x′si = ysi , ∀i =

k + 2, . . . ,m. Then, by formula (66), one finds that such a vector x′ exists, this is on the
one hand. On the other hand, by construction, one has p∗s(x

′
s) > 0, ∀s ∈ Front(S), thus

establishing the proof of Theorem 14.
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ALGORITHM 1: Computation of the frontier-closure of a hypersite-set C
Input: Hypersite-set C.
Output: Fclos∩

(
C
)
.

Construct Front
(
C
)

;
Put m :=

∣∣Front
(
C
)∣∣ ;

Order Front
(
C
)

as: Front
(
C
)

=
{
c1, . . . , cm} ;

Put Fclos∩
(
C
)

:=
{
c1

}
;

i := 2 ;
repeat

TmpHypersiteSet :=
{
c ∩ ci, s.t., c ∈ Fclos∩

(
C
)
∧ c ∩ ci 6= ∅ ∧ c ∩ ci 6∈ Fclos∩

(
C
)}

;
Fclos∩

(
C
)

:= Fclos∩
(
C
)
∪
{
ci
}
∪ TmpHypersiteSet ;

i ++;

until i == m;
Finally, put Fclos∩

(
C
)

:= Fclos∩
(
C
)
∪
{
∅
}

;

Algorithms

B.16 Construction of the frontier-closure of a hypersite-set

B.17 Obtention of a mode of g from an optimal marginals-set
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ALGORITHM 2: Computation of a MAP solution from an optimal marginals-set

Input: Optimal probability marginals-set P∗ =
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p∗s,∀s ∈ S
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Output: One sample x ∈ Ln of mother distribution p∗

Construct Front
(
S
)
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Order Front

(
S
)
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(
S
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s1, . . . , sm
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Put IS ATOMIC ALL := FALSE;
repeat
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Put CONTINUE := TRUE ;
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S
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(
S
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S
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(
S
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S
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(k)
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x
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sk
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x
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si∩sk

)
;

Update x as: xt := x
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end
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until W == Ω;
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