Further Tractability Results for Fractional
Hypertree Width

Wolfgang Fischl!, Georg Gottlob?, and Reinhard Pichler3

1 TU Wien, Austria
wfischl@dbai.tuwien.ac.at
2 TU Wien, Austria & University of Oxford, UK
gottlob@dbai.tuwien.ac.at & georg.gottlob@cs.ox.ac.uk
3 TU Wien, Austria
pichler@dbai.tuwien.ac.at

—— Abstract

The authors have recently shown that recognizing low fractional hypertree-width (thw) is NP-
complete in the general case and that the problem becomes tractable if the hypergraphs under
consideration have degree and intersection width bounded by a constant, i.e., every vertex is
contained in only constantly many different edges and the intersection of two edges contains only

constantly many vertices. In this article, we show that bounded degree alone suffices to ensure
tractability.

1998 ACM Subject Classification H.2.4 Systems - Query processing

Keywords and phrases Conjunctive queries; hypergraphs; query evaluation; tractability; acyclic
queries; fractional hypertree width; decompositions

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

Answering Conjunctive Queries (CQs) and solving Constraint Satisfaction Problems (CSPs)
are two fundamental tasks in computer science. They are classical NP-complete problems
[1]. Consequently, it has been a very active research area over several decades to identify
tractable cases of these problems — with various hypergraph decomposition methods being
the most powerful ones [6, 8]. To date, the biggest known tractable class of CQ answering and
CSP solving is obtained by restricting the fractional hypertree width (fhw) of the underlying
hypergraph by a constant. However, as we have recently shown [4], fhw has a drawback
in that it is NP-complete to recognize low fhw. Formally, for decomposition € {HD, GHD,
FHD} and k > 1, we have studied the following family of problems:

CHECK (decomposition, k)
input hypergraph H = (V, E);
output decomposition of H of width < k if it exists and

answer ‘no’ otherwise.

Here, decomposition ¢ {HD, GHD, FHD} means that we are interested in the CHECK-problem
for hypertree decompositions (HDs), generalized hypertree decompositions (GHDs), and
fractional hypertree decompositions (FHDs), respectively. The CHECK(HD, k) problem is
known to be tractable for any constant k > 1, while CHECK(GHD, k) was shown in [7] to be
NP-complete for any k > 3. In [4], we have shown that NP-completeness for GHDs holds
even for k = 2 and, more importantly, we have shown NP-completeness for FHDs for k > 2.

© Wolfgang Fischl, Georg Gottlob and Reinhard Pichler;
37 licensed under Creative Commons License CC-BY

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs...
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

XX:2

Further Tractability Results for Fractional Hypertree Width

These NP-completeness results raise the question for meaningful tractable fragments
of the CHECK-problem in case of GHDs and FHDs. In [4], we have shown several such
tractability results centered around the notions of bounded degree and bounded intersection
width, which are defined as follows:

» Definition 1. The degree d of a hypergraph H = (V(H), E(H)) is defined as the maximum
number of hyperedges in which a vertex occurs, i.e., d = maxyey () {e € E(H) |ve E(H)}|

We say that a class C of hypergraphs has bounded degree, if there exists d > 1, such that
every hypergraph H € C has degree < d.

» Definition 2. [4] The intersection width {width(H) of a hypergraph H is the maximum
cardinality of any intersection e; N ey of two distinct edges e; and e; of H. We say that a
hypergraph H has the i-bounded intersection property (i-BIP) if iwidth(H) < i holds.

We say that a class € of hypergraphs has the bounded intersection property (BIP) if there
exists some integer constant ¢ such that every hypergraph H in € has the i-BIP.

The following recent tractability results form the starting point of the current article:

» Theorem 3. [}] For every hypergraph class C that has bounded degree, and for every
constant k > 1, the CHECK (GHD, k) problem is tractable., i.e., given a hypergraph H € C, it
is feasible in polynomial time to check ghw(H) < k and, if this holds, to compute a GHD of
width <k of H.

» Theorem 4. [}] For every hypergraph class C that enjoys the BIP, and for every constant
k > 1, the CHECK(GHD, k) problem is tractable, i.e., given a hypergraph H € C, it is feasible
in polynomial time to check ghw(H) < k and, if this holds, to compute a GHD of width
<k of H.

» Theorem 5. [}/ For every hypergraph class C that has bounded degree and enjoys the
BIP, and for every constant k > 1, the CHECK (FHD, k) problem is tractable, i.e., given a
hypergraph H € @, it is feasible in polynomial time to check fhw(H) < k and, if this holds, to
compute an FHD of width <k of H.

In other words, while bounded degree alone and also the BIP alone suffices to make the
CHECK(GHD, k) problem tractable, we had to impose both restrictions simultaneously to
achieve tractability of the CHECK(FHD, k) problem. In this article, we strengthen the latter
result by showing that bounded degree alone suffices to ensure tractability of CHECK(FHD, k).
Formally, we thus get the following main result of this article:

» Theorem 6. For every hypergraph class C that has bounded degree and for every constant
k>1, the CHECK (FHD, k) problem is tractable, i.e., given a hypergraph H € C, it is feasible
in polynomial time to check fhw(H) < k and, if this holds, to compute an FHD of width < k
of H.

To prove this result, we proceed as follows. In Section 2, we recall some basic definitions
and fix some notation. In Section 3, we make use of a classical result on fractional vertex
covers to derive a constant (depending only on width & and degree d) upper bound on the
support of fractional edge covers in case of bounded degree. In Section 4, we apply the notion
of subedge functions (which was crucial for proving Theorems 3 and 4 in [4]) to FHDs. This
will then allow us to prove our main result in Section 5. Finally, in Section 6, we conclude
and outline some directions for future research.

W. Fischl, G. Gottlob and R. Pichler

2 Preliminaries

We refer the reader to our recent article [4] for most of the basic definitions needed also
in this work. Below, we recall some crucial definitions and introduce some additional ones
mainly to fix the terminology.

» Definition 7. We make use of the following notions related to egde-weight functions and

vertex-weight functions for a hypergraph H = (V(H), E(H)).
An edge-weight function v for a hypergraph H assigns a weight y(e) > 0 to each edge e
of H. We say v is a fractional edge cover of H if for each vertex v e V(H), Y,eev(e) > 1.
For an edge-weight function v for hypergraph H, we denote by weight() its total weight,
ie. Yeepayv(e)-
A vertex-weight function w for a hypergraph H assigns a weight w(v) > 0 to each vertex v
of H. We say w is a fractional vertex cover of H if for each edge e € E(H), Yyecw(v) 2 1.
For a vertex-weight function w for hypergraph H, we denote by weight(w) its total weight,
i.e. EueV(H)w(v)-
The fractional edge-cover number p*(H) is defined as the minimum weight(y) over all
fractional edge covers of H. Likewise, the fractional vertex cover number 7*(H) is defined
as the minimum weight(w) where w ranges over all fractional vertex covers of H.
The p-support supp,(7y) (or simply, the support supp(7y)) of a hypergraph H under an
edge-weight function v is defined as supp,(v) = supp(vy) = {e € E(H)|~(e) > 0}.
The 7-support supp, (w) of a hypergraph H under a vertex-weight function w is defined
as supp.(w) ={veV(H)|w(v) >0}.
A class € of hypergraphs has bounded p*-support if there is a constant ¢ such that for
every hypergraph H € C, there exists an edge-weight function v with weight(y) = p*(H)
and suppp('y) < ¢. The corresponding definition of bounded 7*-support is analogous. ¢

We now recall the definition of FHDs and some related crucial notions:

» Definition 8. Let H = (V(H),E(H)) be a hypergraph and let v: E(H) — [0,1] be an
edge-weight function for H. For v e V(H), we write v(v) to denote the total weight that ~
assigns to v. Moreover, we write by B(7) to denote the set of all vertices covered by 7, i.e.:

)= > e

ecE(H),vee

B(W)={UEV(H)| >, 7(6)21}={U€V(H)|7(U)21} °
ecE(H),vee

» Definition 9. Let H = (V(H), E(H)) be a hypergraph. A fractional hypertree decompos-

ition (FHD) of H is a tuple (T, (Bu)uen(rys ('y)ueN(T)), such that T = (N(T), E(T)) is a

rooted tree and the following conditions hold:

1. for each e € E(H), there is a node u € N(T') with e € By;
2. for each v e V(H), the set {ue N(T) | v e By} is connected in T}
3. for each ue N(T), ~, is an edge-weight function ~,: E(H) — [0,1] with B,, € B(yy). <

The width of an FHD is the maximum weight of the functions ~,,, over all nodes u in T
Moreover, the fractional hypertree width of H (denoted fhw(H)) is the minimum width
over all FHDs of H. Condition 2 is often called the “connectedness condition” and the
set B, is usually referred to as the “bag” at node u. Note that, in contrast to hypertree
decompositions (HDs), the underlying tree T' of an FHD does not need to be rooted. For

XX:3

XX:4

Further Tractability Results for Fractional Hypertree Width

the sake of uniformity, we assume that also the tree underlying an FHD is rooted with the
understanding that the root is arbitrarily chosen. Finally, by slight abuse of notation, we shall
write u € T short for u € N(T'). Hence, FHDs will be referred to as (T, (By)uer, (Yo)uer) O,
simply as (T, (Bu), (7u))-

In our tractability proof of CHECK(FHD, k), we will make heavy use of certain unions
and intersections of sets of vertices. We thus introduce the following notation.

» Definition 10. Let S be a family of sets.

WS denotes the set-family obtained from S by adding to it all possible unions of an arbitrary
number of sets from S. (Note that | S| < 21°1).

w;S for an integer ¢ > 1, denotes the set-family obtained from S by adding to it all possible
unions of <i sets from S. (Note that |W; (S)] < [S[*+1).

mS denotes the set-family obtained from S by adding to it all possible intersections of an
arbitrary number of sets from S. (Note that | @ S| < 2!91).

m;S for an integer ¢ > 1, denotes the set-family obtained from S by adding to it all possible
intersections of < i sets from S. (Note that |m; S| <|S[*+!).

If S and S’ are both families of sets, then S m .S’ denotes the pointwise intersection between
Sand S, e, SnS" ={AnB|AeS and Be S'}. o

We sometimes identify sets of edges with hypergraphs. If a set of edges E is used, where
instead a hypergraph is expected, then we mean the hypergraph (V, E), where V is simply
the union of all edges in F. Finally, for a set E of edges, it is convenient to write U FE
(and N E, respectively) to denote the set of vertices obtained by taking the union (or the
intersection, respectively) of the edges in E.

3 Bounded Support

In this section we show that, for every FHD F of width k of a hypergraph H of degree < d,
there exists an FHD F’ of width < k of H satisfying the following important property: for
every node u in the FHD F’| the edge cover ~, has support supp(v) bounded by a constant
that depends only on k£ and d.

To derive this result, we will exploit the well-known dualities p*(H) = 7*(H?) and
7*(H) = p*(H?), where H? denotes the dual of H. To make optimal use of this, we make, for
the moment, several assumptions. First of all, we will assume w.l.o.g. that (1) hypergraphs
do not have isolated vertices and (2) hypergraphs do not have empty edges. In fact for
hypergraphs with isolated vertices (empty edges), p* (7*) would be undefined or at least
not finite. Furthermore, we make the following temporary assumptions. Assume that (3)
hypergraphs have never two vertices of the same edge-type (i.e., the two vertices occur in
precisely the same edges) and (4) hypergraphs have never two edges of the same "vertex-type"
(i.e., there do not exist duplicate edges).

Assumptions (1) — (4) can be safely made and, for the time being, we will make them here.
Recall that we are ultimately interested in the computation of an FHD of width < k for given
k. As mentioned above, without assumption (1), the computation of an edge-weight function
and, hence, of an FHD of width < k makes no sense. Assumption (2) does not restrict the
search for a specific FHD since we would never define an edge-weight function with non-zero
weight on an empty edge. As far as assumption (3) is concerned, suppose that a hypergraph
H has groups of multiple vertices of identical edge-type. Then it is sufficient to consider the
reduced hypergraph H~ resulting from H by * fusing” each such group to a single vertex.
Obviously p*(H) = p*(H™), and each edge-weight function for H~ can be extended in the

W. Fischl, G. Gottlob and R. Pichler

obvious way to an edge-weight function of the same total weight to H. Finally, assumption
(4) also can be made w.l.o.g., since we can again define a reduced hypergraph H~ resulting
from H by retaining only one edge from each group of identical edges. Then every edge
cover of H™ is an edge cover of H. Conversely, every edge cover of H can be turned into an
edge cover of H~ by assigning to each edge e in H~ the sum of the weights of e and all edges
identical to e in H.

Under our above assumptions (1) — (4), for every hypergraph H, the property H% = H
holds and there is an obvious one-to-one correspondence between the edges (vertices) of H
and the vertices (edges) of H?. Moreover, there is an obvious one-to-one correspondence
between the fractional edge covers of H and the fractional vertex covers of H?. In particular,
if there is a fractional edge cover + for H, then its corresponding “dual” v assigns to each
vertex v of H? the same weight as to the edge in H that is represented by this vertex and
vice versa.

Note that if we do not make assumptions (3) and (4), then there are hypergraphs
H with H% # H. For instance, consider the hypergraph Hy with V(Hy) = {a,b,c} and
E(Hy) = {e = {a,b,c}}, i.e., property (3) is violated. The hypergraph H¢ has a unique
vertex e and a unique hyperedge {e}. Hence, Hd¢ is (isomorphic to) the hypergraph with
a unique vertex a and a unique hyperedge {a}, which is clearly different from the original
hypergraph Hy.

To get an upper bound on the support supp(y) of a fractional edge cover of a hypergraph
H, we make use of the following (dual) result for fractional vertex covers. This result is due
to Zoltan Fiiredi [5], who extended earlier results by Chung et al. [3]. Below, we appropriately
reformulate Fiiredi’s result for our purposes:

» Proposition 11 ([5], page 152, Proposition 5.11.(iii)). For every hypergraph H of rank (i.e.,
mazimal edge size) r, and every fractional vertex cover w for H satisfying weight(w) = 7*(H),
the property |supp,. (w)| <rx7*(H) holds.

By duality, exploiting the relationship p*(H) = 7*(H?) and by recalling that the degree
of H corresponds to the rank of H?, we immediately get the following corollary:

» Corollary 12. For every hypergraph H of degree d, and every fractional edge cover ~ for H
satisfying weight(vy) = p*(H), the property |supp,(v)| < dx p*(H) holds.

From now on, we no longer need to make the assumptions (3) and (4) above. In fact,
Proposition 11 and Corollary 12 also hold for hypergraphs that do not fulfill these conditions
as was pointed out above by our considerations on reduced hypergraphs H~. Moreover, from
now on, we exclusively concentrate on fractional edge covers. The excursion to fractional
vertex covers was only needed to make use of Fiiredi’s result reformulated in Proposition 11
above. Hence, in the sequel, we shall simply write supp(7) rather than supp,(7), since no
confusion with supp, can arise.

Proposition 11 and Corollary 12 state bounded support properties for the optimal
weight functions 7% and p*. Note, however, that fractional hypertree decompositions F =
(T, (Bu), (72)) deviate from this setting in two ways: at decomposition node u in F (i) not
every vertex of H is necessarily covered, i.e., we have B, € B(,) but, of course, we do not
necessarily have V(H) ¢ B(v,), and (ii) the edge-weight functions at single decomposition
nodes are not required to be optimal in any sense with respect to whatever subhypergraph
of H is considered. To deal with these issues, we state the following definition and derive a
lemma.

XX:5

XX:6

Further Tractability Results for Fractional Hypertree Width

» Definition 13. For a given hypergraph H and edge-weight function -y, we say that a vertex
of V(H) is “in” if the total weight y(v) > 1, i.e., v € B(y). Otherwise we say that v is “out”.
We shall write OUT(7y) to denote the set V(H) \ B(7) of vertices which are “out”.

The following lemma allows us to extend the upper bound k x d on the support of a
fractional edge cover « of width k& of a hypergraph of degree d to the fractional edge cover -,
in every node u of an FHD of width k of a hypergraph of degree d.

» Lemma 14. Let H be a hypergraph of degree d and let F ={T,(B.), (v.)) be an FHD of
H of width k. Then there exists an FHD F' =(T,(B,),(v.,)} of H of width <k such that
for every decomposition node u in T, we have |supp(~.,)| < k x d and, moreover, F and F’
have exactly the same tree structure T and B(~.) = B(y.) for every u.

Proof. Let H and F = (T, (B,), (74)) be as above. For each decomposition node u, con-
sider the sub-hypergraph H, of H where V(H,) = B(v,) and E(H,) = {enV(H,)|e €
supp(vu)} = {en B(y.)|e € supp(y,)}. Note that one or more edges from supp(7y,) may
give rise to a same edge e’ of H,, when deleting out-vertices from the support edges. We
call all such edges the originators of €' and denote the set of all originator edges for e’ by
orig(e’).

Now let ~} : E(H,) — (0,1] be the edge-weight function which assigns each edge ¢’
of H, weight v} (e’) = Yecorig(er)Vu(€), i.e., the sum of all weights by 7, of its originators.
Clearly, 7}, is an edge cover of total weight at most k for H,. Now take an optimal fractional
edge cover v, for H,. The total weight of this cannot be greater than k either. Hence, by
Corollary 12, supp(~v;:) < k x d. Now transform +,, into an edge-weight function =, of the
entire hypergraph H by assigning for edge ¢’ of H, the entire weight of ¢’ to only one of
its originators, whilst assigning zero to all other originators. Clearly, the support of +,, is
bounded by k x d and B(~,,) = B(yy). By is thus covered by B(7,,), and thus our FHD
F'=(T,(Buy),(v.,)) is now fully specified and has all requested properties. <

4 Subedge Functions

Towards a polynomial-time algorithms for deciding the CHECK(FHD, k) problem, the upper
bound on the support of each edge-weight function -, will be of great help. However, we yet
have to overcome the following obstacle: in the alternating algorithm in [6] for deciding the
CHECK(HD, k) problem, we guess at every node u of the hypertree decomposition a set S,
of edges with |S,| < k such that the edges in S get weight 1 by 7, and all other edges get
weight 0. Hence, we get B(~,) = US,. From this, we determine the bag B, € B(7,) via the
so-called special condition [6], which distinguishes HDs from GHDs. More specifically, let u’
denote the parent of u in the hypertree decomposition and let C' denote the vertices in the
edges that have to be covered by some node in the subtree rooted at u. Then we may set
B, = B(vy) N (Byul).

In our case, when trying to construct a fractional hypertree decomposition of width < k
for a hypergraph with degree bounded by d, we know by Lemma 14 that we may restrict
ourselves to edge-weight functions ~, with |supp(v,)| < k x d. Moreover, we can be sure that
B(v,) €US with S = supp(~,,) holds. However, in contrast to the HD-setting studied in [6],
B(7vy) = US does in general not hold. Consequently, it is, of course, also unclear how to
determine B,,. In this section, we provide a solution to both problems: how to determine
B(v,) and how to determine B, for each node u in an FHD?

Towards solving the first problem, we establish a bound on the number of possible sets
B(~v) that can arise in a hypergraph when varying the weight function ~.

W. Fischl, G. Gottlob and R. Pichler

» Definition 15. Let INSET(H) denote the set of all possible sets B(y) such that + is an
edge-weight function. (Recall that we refer to the vertices in B(7y) as the vertices that are
“in” and that, consequently, B(y) is now referred to as an “in”-set).

» Definition 16. An intersection type of a hypergraph H = (V(H),E(H)), short “type”, is a
set of edges of H, i.e., a subset of E(H). For a hypergraph H, TYPES(H) = 2F() consists
of all possible types of H.

For a type t € TYPES(H) define its class class(t) = N.e; € as the intersection of all edges
in ¢t. The set of all classes of H is denoted by CLASSES(H). For a class K € CLASSES(H)
there may be more than one type ¢t with class(t) = K, however there is only one maximal
type, namely {e’ € E(H)|K < e'}; we denote by type(K) this unique maximal type. o

Note that TYPES(H) and CLASSES(H) depend only on H and not on any edge-weight
function. Moreover, every set B(7), for whatever edge-weight function, must be equal to
the union of some classes of H. In fact, for any particular edge-weight function ~, the set
B(~) consists of the union of all sets class(t) for all types ¢ that satisfy v(¢) > 1 where
v(t) = Xeery(€). Finally, the inequality | CLASSES(H)| < |TYPES(H)| clearly holds. We
thus get the following lemma.

» Lemma 17. Let H be a hypergraph. Then the following properties hold:

1. If~ is an edge-weight function, then B(vy) ¢ W CLASSES(H).

2. INSET(H)<wCLASSES(H).

3. |INSET(H)| < 2ICEASSES()| ¢ ol TYPES(H)| < 92 o 011 three sets, INSET, CLASSES
and TYPES, can be computed from H in polynomial time if the cardinality of E(H) is
bounded by a constant.

Clearly, the above inclusion INSET(H) ¢ W CLASSES(H) only gives us an ezponential upper
bound 22°“” on the number of possible “in”-sets B(,) at any node u in an FHD. Hence,
in a polynomial-time algorithm, we cannot afford to iterate through all of these candidates.
However, by Lemma 14, we may assume w.l.o.g. that |S,| < k x d with S, = supp(y,) holds
for every edge-weight function +, of interest. Hence, there are only polynomially many sets
Sy € E(H) with |S,| < k x d to be considered for the support supp(~y,). Moreover, for each
Su, there exist only polynomially many (namely at most 22|su|) possible “in”-sets B(~,) with
supp(yu) = Su. Hence, with Lemma 17, the first problem stated above is essentially solved.

It remains to find a solution to the second problem stated above, i.e., how to determine
B, for each node w in an FHD of width k7 We tackle this problem by adopting the idea
of subedge functions as described in [7] and heavily used in [4] for deriving tractability
results for the CHECK(GHD, k) problem. A subedge function takes as input a hypergraph
H=(V(H),E(H)) and produces as output a set E’ of subedges of the edges in F(H), such
that B’ is then added to E(H). Clearly, adding a set E’ of subedges does not change the
fhw of H (nor does it change the generalized hypertree width — that is why this idea was
fruitfully applied to the CHECK(GHD, k) problem in [4]). Below, we shall define a whole
family of subedge functions A4, which, for fixed upper bounds d on the degree and %k on the
fhw, take a hypergraph H as input and return a polynomially bounded, polynomial-time
computable set E’ of subedges of E(H). Adding these subedges to E(H) will then allow us
to define a polynomial upper bound on the set of all possible bags B, at a given node u in
an FHD of H.

Towards this goal, we follow the approach taken in [4] when devising a polynomial-time
decision procedure for the CHECK(GHD, k) problem in case of a slightly more general class
than the hypergraphs of bounded degree, namely the class of hypegraphs that enjoy the
bounded multi-intersection width (BMIP) defined as follows:

XX:7

XX:8

Further Tractability Results for Fractional Hypertree Width

» Definition 18. [4] The c-multi-intersection width c-miwidth(H) of a hypergraph H is
the maximum cardinality of any intersection e; n---ne. of ¢ distinct edges eq,...,e. of H.
We say that a hypergraph H has the i-bounded c-multi-intersection property (ic-BMIP) if
c-miwidth(H) < i holds.

We say that a class € of hypergraphs has the bounded multi-intersection property (BMIP)
if there exist constants ¢ and ¢ such that every hypergraph H in € has the ic-BMIP. o

Clearly, if a hypergraph H has degree bounded by d, then the intersection of any selection of
d+ 1 edges yields the empty set. Hence, H with degree bounded by d satisfies the 0-bounded
(d + 1)-multi-intersection property, written as 0(d + 1)-BMIP.

The key idea of the polynomial-time decision procedure in [4] for the CHECK(GHD, k)
problem in case of hypergraphs enjoying the BMIP is to reduce the CHECK(GHD, k) problem
for hypergraph H to the CHECK(HD, k) problem for an appropriate hypergraph H'. This
hypergraph H’ is constructed from H by adding a polynomially big set h(H) of subedges of
H. This set h(H) is obtained from E(H) by inspecting an arbitrary GHD of width < k of H
and trying to eliminate all violations of the special condition. Recall that the special condition
means that B, ¢ (B (Aw) N Uper, Bp) holds at every node u in the GHD, where T;, denotes
the subtree rooted at u. As in [4], we use A (rather than 7) to denote an integral edge-weight
function \: E(H) - {0,1}. A special condition violation (SCV) occurs if, for some edge
ee E(H), Ayu(e) =1 holds and some variable v € e occurs in Uper, By but is missing in B,,.
The elimination of such SCVs proceeds in two steps: first, we turn the given GHD into a
“bag-maximal” one, i.e.: we add all vertices of B(\,) \ By, to B, as long as this does not
lead to a violation of the connectedness condition. The second step is more tricky: the goal
is to add to E(H) an appropriate subedge e’ € e such that v ¢ ¢’ holds and replacing e in A,
by e’ yields again a valid GHD. Now the crux of the polynomial-time decision procedure for
the CHECK(GHD, k) problem is to find a (polynomial-time computable!) subedge function h
such that adding all edges in h(H) to E(H) allows us to eliminate all possible SCVs in all
possible GHDs of H of width < k.

We now show how the ideas of the polynomial-time decision procedure for GHDs can be
carried over to the CHECK(FHD, k) problem for hypergraphs with degree bounded by some
constant d > 1. There are mainly two issues when trying to adapt the construction from the
GHD case. First, we need to define what bag-maximality means in the context of FHDs.
This is actually easy. In analogy to the GHD setting, we say that an FHD F is bag-maximal
if for each decomposition node u of F, for every vertex v € B(7y,) \ By, adding v to B,, would
violate the connectedness condition. Clearly, for every FHD (T, (B,), (7.)), a bag-maximal
FHD F* =(T,(B}),(7.)) can be generated by adding vertices from B(7y,) \ B, to bags B,
as long as possible. We may thus assume w.l.o.g. that our FHD F is bag-maximal.

For the definition of an appropriate subedge function (denoted hq i to indicate that hq g
depends on d and k), take a hypergraph H with degree bounded by d > 1 and let k& denote an
upper bound on the width of an FHD F of H. Now consider an arbitrary node « in F with
edge-weight function ,, let e € supp(~y,,) and suppose that e n B(v,) ¢ By, i.e., e contains
at least one vertex v, which is contained in B(7,) \ B,. Our subedge function hg j will be
constructed in such a way that hg ,(H) contains a subedge e’ of e such that v is eliminated
from e. We can then replace e in 7, by e’ to reduce the gap between B, and B(y,). By
carrying out this operation for every edge e € supp(y,) and vertex v € en (B(v,) \ By), we
will ultimately be able to set B, and B(,) equal.

As a first step towards this goal, we extend the notion of critical paths from the GHD
setting in [4] to FHDs.

W. Fischl, G. Gottlob and R. Pichler

» Definition 19. Let F = (T, (By), (7.)) be an FHD of a hypergraph H. Moreover, let u be
a node in F and let e € supp(~y,) with en B(~,) ¢ B, holds.

By the connectedness condition, F contains a node that covers all of e. Let v’ denote the
node closest to u, such that v’ covers e, i.e., e € B,,. Then (analogously to [4]) we call the
path from u to u’ the (extended) critical path of (u,e) denoted as critp® (u,e).

By slight abuse of notation, we shall write p € 7 for m = critp* (u, e), to denote that p is a
node on path 7. o

The following lemma (which follows closely Lemma B.4 in [4]) allows us to characterize the
subsets e’ of e needed in the subedge function hy k.

» Lemma 20. Let F =(T,(B.), (yx)) be an FHD of a hypergraph H. Moreover, let u be a
node in F and let e € supp(yy). Then the following equation holds:

enB,=en N B(7p)

pecritp* (u,e)

Proof. As in Definition 19, let u’ denote the node closest to u, such that u’ covers e, i.e.,
e € B,,. Moreover, let 7 = critp* (u,e) denote the path connecting v with u’. The proof of
the equation follows very closely the proof of Lemma B.4 in [4].

For the c-direction, assume v € (en B,). Given that v is also in By, by the connectedness

condition, v appears in all bags B, of decomposition nodes p on the path = from u to v'.

Hence, v appears in each B(7,) and, therefore, we clearly have v € (e N MNper B(fyp)).

For the 2-direction, assume to the contrary that there is a vertex v € (e N Nper B(’yp)),
such that v ¢ (en B,). Then we could actually insert v into B, for every node p along the
path 7 (of course, if B, already contains v, then we leave B, unchanged) without violating
the connectedness condition. In particular, in node u we would thus indeed add a new vertex
v into B,. This contradicts the assumption of bag-maximality. <

Our next goal is to find a subedge function hg4j which contains at least all subedges
appearing on the right-hand side. To achieve this while abstracting from the knowledge of a
particular decomposition and from the knowledge of particular edge-weight functions, we
will make two bold over-approximations. First, instead of considering concrete critical paths,
we will consider arbitrary finite sequences § =1, ..., {nax(e) Of groups of <k x d edges of H,
where each such group represents a potential support supp(v,) at some potential node u of
a potential FHD of H. Clearly, each effective path critp*(u,e) for any possible combination

of decomposition node u and edge e of any possible FHD F of H is among these sequences.

The second over-approximation we make is that instead of considering particular edge-weight
functions, we will simply consider (a superset of) all possible supports of < k x d atoms, and

for each such support (a superset of) all “in”-sets that could possibly arise with this support.

A support is simply given by a subset of < k x d edges of H. For each such support, by
kxd
Lemma 17, there are in fact no more than 22 “in”-sets and these are determined by unions

of classes from CLASSES(H'), where H' is the subhypergraph of H given by the support.

To make this more formal, we give the following definition. Recall the notion of CLASSES
(which denotes the set of intersections of edges contained in some type; in our case, each
type consists of at most k x d edges) from Definition 16.

» Definition 21. Let H be a hypergraph and let § = &1, ..., {nax(¢) be an arbitrary sequence
of groups of < k x d edges of H. For i € {1,... ,max(§)}, by slight abuse of notation, we
overload the notion of CLASSES from Definition 16 as follows: we write CLASSES(&;) to

XX:9

XX:10

Further Tractability Results for Fractional Hypertree Width

denote the set CLASSES(H, §)7 where H g is the subhypergraph of H whose edges are the
<k x d edges of & and whose vertices are precisely all vertices occurring in these edges.
Let 7 be an (extended) critical path of length 7 of some FHD F = (T, (B,), (v.)) of H,

i.e., 7 is of the form 7 = wuq,...,u,. Suppose that each edge-weight function , in F has
k x d-bounded support. Then we denote by £™ the sequence of length r where, for 1 <7 <r,
&i = supp(7u,)- °

Our goal is to compute a set of subedges of the edges in E(H) such that all sets of the
form e N Mper B(7p) with 7 = critp™ (u,e) from Lemma 20 are contained. We may use that
each v, has k x d-bounded support. By Lemma 17, we know that every possible “in”-set
B(+yp) is contained in W CLASSES(H), i.e., every possible B(7y,) along a critical path 7 can
be represented as the union of classes (where each class is in turn the intersection of some
edges selected from supp(v,)). Hence, to obtain e N N,er B(7;), we need to compute the
intersection of all unions of classes along a critical path .

Recall that we generalize the support of edge-weight functions +y, along a concrete critical
path 7 in a concrete FHD F of H to sequences § = {1, ..., &max(¢) as introduced above, where
each &; is an arbitrary set of < k x d edges from H. As the crucial data structure to compute
the desired intersections of unions of classes, we now define the intersection forest IF(£). This
data structure will give us a systematic way to convert the intersections of unions of classes
for all possible sequences £ into a union of intersections. Intuitively, each branch (starting
at a root) in [F(&) represents a possible transversal of the family { CLASSES(&;)}1<i<max(¢)
for some sequence £ = £1,. .., {max(e), i-€., a transversal selects one class from CLASSES(&;)
for each i € {1,...,max(£)}. On every branch, we will then compute the intersection of
the classes selected along this branch. Since each class is in turn an intersection of edges
(namely the edges contained in some type), every branch in IF(£) therefore simply yields an
intersection of edges from H.

Construction of the intersection forest IF(¢).
We define IF(£) as a rooted forest such that each of its nodes v is labeled by
a subset set(v) ¢ V(H),
a set of levels levels(v),
a set edges(v) of edges of E(H) such that set(v) € M edges(v) = Neeedges(v) €
in other words: set(v) is a class and edges(v) is its (maximal) type, see Definition 16,
and a mark mark(v) € {ok, fail }.

Initialization of IF(E). For every non-empty class K € CLASSES(&1), the intersection forest
IF(€) contains a root vertex v where

set(v) = K,

levels(v) = {1},

edges(v) ={ee E(H)|K ce}, and

mark(v) = ok.

Further expansion of IF(§). Each tree in IF() is further expanded and updated by the
following inductive procedure. Let v be a node of IF(¢) with max(levels(v)) =i < max(§)
and mark(v) = ok. Then we distinguish between three cases:

1. Dead End. If for each class K of CLASSES(&;+1), set(v) n K = &, then v has no children,
and its mark is set to mark(v) = fail. Intuitively this is a dead end as it cannot be continued
to yield a non-empty intersection of a transversal of the family { CLASSES(&;)}1<icmax(e)-

2. Passing. For each class K of CLASSES(&;+1) fulfilling set(v)n K = set(v), insert i+1 into
levels(v). Intuitively, this makes sure the same value set(v) is never repeated on a branch,

W. Fischl, G. Gottlob and R. Pichler

and, as a consequence, every child node must have a strictly smaller set()-component
and, thus, at least one more edge in its edges()-label than its parent (see also Fact 1 in
Lemma 22 below).

3. Ezxpand. For each class K of CLASSES(&;+1) fulfilling set(v)nK ¢ set(v), create a child v’
of v, and let set(v") = set(v) N K, levels(v') = {i + 1}, edges(v') = {e € E(H)|set(v') c e},
and mark(v) = ok. Note that we thus clearly have set(v') ¢ set(v) and edges(v) &
edges(v').

For 1 < i < max(§), let iflevel;(£) denote the set of all nodes v of IF(§) such that i €
level(v) and mark(v) = ok. Denote by FRINGE;(£) the collection of all sets set(v) where

v € iflevel;(§). Finally, let the fringe of £ be defined as FRINGE({) = FRINGE, () (§)-

Note that, given that by definition of IF(£) there cannot be any fail node on level max(§),
FRINGE(£) coincides with the set of all set-labels at level max(£).
We now establish some easy facts about IF(&).

» Lemma 22. Let H be a hypergraph and let £ = &1, ..., max(e) be an arbitrary sequence
of groups of <k x d edges of H. Then the intersection forest IF(§) according to the above
construction has the following properties:

Fact 1. If node v’ is a child of node v in IF(§), then edges(v’) must contain at least one
new edge in addition to the edges already present in edges(v).

Fact 2. The depth of IF(£) is at most d— 1.

Fact 3. Let c =2 Then IF(€) has no more than ¢**' nodes and |FRINGE(¢)| < ¢? = 9d*xk,

Proof. The facts stated above can be seen as follows.

Fact 1. Note that we can only create a child node through an expand operation. But this
requires that set(v') = set(v) n K ¢ set(v). Given that K is the intersection of all edges
of type(K), for set(v') to shrink, type(K) must contain at least one new edge not yet
contained in edges(v), and this edge is therefore included into edges(v’).

Fact 2. This follows from Fact 1 and the fact that, given that H is of degree d, at most d
edges have a non-empty intersection.

Fact 3. For each sequence ¢ as above, for whatever &;, the inequality | CLASSES(&;)| < ¢
holds (cf. Lemma 17). Hence, Fact 3 follows from the depth d -1 established in Fact 2
and the fact that we have at most ¢ such trees, each with branching not larger than c.

This concludes the proof of the lemma. <

Recall that we are studying the set of arbitrary sequences £ = &1, ..., {max(e) of groups of
<k x d edges of H because they give us a superset of possible critical paths m = critp*(u, e)
in possible FHDs of H, such that each group &; of edges corresponds to the support of the
edge-weight function ~; at the i-th node on path m. The following lemma establishes that the
intersection forests (and, in particular, the notion of FRINGE(E)) introduced above indeed
give us a tool to generate a superset of the set of all possible sets Nyer B(7,) in all possible
FHDs of H of width < k. Recall from Lemma 20 that these sets Nyer B(7p) are precisely
what we need to characterize all possible subedges (of edges in H) of the form e n B,,, where
e is an arbitrary edge in H and B, is a possible bag in a possible (bag-maximal) FHD of H
of width < k.

» Lemma 23. Let H be a hypergraph of degree d > 1 and let F be an FHD of H of width
< k. Consider an extended critical path m of FHD F, together with its associated sequence &
introduced in Definition 21. We claim that the following relationship holds:

() B(vp) € WFRINGE(E™)

pem

XX:11

XX:12

Further Tractability Results for Fractional Hypertree Width

Proof. Let m = py,...,p, with r = max(7) and let ~, ..., 7, denote the edge-weight functions
along this sequence of nodes. For i € {1,...,7}, let m; denote the initial fragment p1,...,p;
of w. We proceed by induction on i € {1,...,r}, i.e., we show that, for every i € {1,...,7},
the following relationship holds:

() B(yp) € WFRINGE;(§7)

PET;

Basis Step. The base case i = 1 follows from statement INSET(H) ¢ W CLASSES(H) of
Lemma 17(2). In fact, B(~1) is (by the definition of INSET) an element of INSET (supp(~1))
which is thus contained in WCLASSES (supp(1)) which is identical to W FRINGE,(£™) by
the above initialization of IF(£).

Inductive Step. Assume for some i < 7 that Nper, B(7p) € WFRINGE;(£™) holds. We show
the desired relationship also holds for i+1. Clearly, Nper,,, B(7p) is equal to (Nper, B(7p)) N
B(7i+1). From this, by using the inductive assumption, together with the fact that B(v;41) €
INSET(F,,), and the inclusion INSET (&],,) € WCLASSES (&L), which holds by Lemma 17,
we obtain:

M B(7,) € FRINGE;(¢™) nWCLASSES(T,,).

PETi+1
By using the distributivity of m over W, we get:
() B(vp) € W(FRINGE;(§™)m CLASSES(L1))-

PET 41

However, by the construction of IF(£™), FRINGE;(§™) mn CLASSES(],,) is just the same
as FRINGE;;11(£7). In fact, the Passing and Ezpand rules make precisely these intersections
when producing level i + 1 of IF(£™). Therefore, we obtain that

(1 B(yp) € WFRINGE;1(£7)
DET ;41
indeed holds, which settles the inductive step. <

The desired subedge function hg,j therefore looks as follows:

» Lemma 24. Let H be a hypergraph of degree d > 1 and let k > 1. Let the subedge function
ha be defined as

haw(H) = E(H) A (Uyue @ E(H))

Then (for fized constants d and k), the size of hq (H) is polynomially bounded and hqj(H)
can be computed in polynomial time. Moreover hq(H) contains all subedges en B, of all
e € E(H) for all possible bags B, of whatever bag-maximal FHD of width <k of H.

Proof. Observe that for whatever sequence &, each element of FRINGFE() is, by construc-
tion, the intersection of at most d edges. Moreover, recall that by Fact 3 of Lemma 22,
|FRINGE(€)| < ¢? = 2<% holds. Therefore, for all possible sequences &, we have

WFRINGE(E) € Wyu2i Mg E(H).

Given that d and k are constants, the set W,42.,. Mg E(H) is of polynomial size and is clearly
computable in polynomial time from H. By Lemma 20 together with Lemma 23, it is then
also clear that the subedge function hg(H) contains all subedges e n B,, for all possible
bags of whatever bag-maximal FHD of width <k of H. <

W. Fischl, G. Gottlob and R. Pichler

5 Deciding the CHECK Problem for Hypergraphs of Bounded Degree

With the subedge function hg j at hand, we have a powerful tool that will allow us to devise
a polynomial-time decision procedure for the CHECK(HD, k) problem. Towards this goal,
we first observe that adding the edges in hq (H) to a hypergraph H allows us to restrict
ourselves to FHDs of a very peculiar form. This form is captured by the following definition,
which is applicable to FHDs and (G)HDs alike.

Recall that if S is a set of sets then U .S denotes the union of all sets in S, i.e., US = Uees €.
Below, we shall apply this notation, in particular, to settings where S denotes the support
(i-e., a set of edges) of some edge-weight function.

» Definition 25. An FHD F = (T,(B.), (7)) of a hypergraph H is strict if for every
decomposition node w in T', the equality B, = B(v,) = U supp(7y,) holds.

Likewise, let H = (T, (By,), (M\s)) be an HD or a GHD of a hypergraph H. We call H
strict if for every decomposition node u in T, the equality B, = B(\y) = U supp(\,) holds.

Note that every strict HD or GHD is actually a query decomposition as introduced in [2],
where the width of this query decomposition is equal to the cardinality of the largest support.
Moreover, every strict FHD F (and likewise, every strict GHD) trivially fulfills the special
condition. Hence, every strict FHD F = (T, (B,), (74)) can be naturally transformed into
an HD H = (T, (By), (M) by leaving the tree structure and the bags B, unchanged and
by defining A, as the characteristic function of supp(7,), i.e., Ay(e) =1 if e € supp(7,,) and
Ay (€) = 0 otherwise.

Below we show that, in case of bounded degree, we can transform every FHD of width
< k into a strict FHD of width < k.

» Lemma 26. Assume a hypergraph H = (V(H),E(H)) of degree < d has an FHD F =
(T,(B.), (7)) of width < k. Suppose that H* is obtained from H by adding the edges in
hax(H), i.e., H* = (V(H#),E(H#)) with V(H#*) =V (H) and E(H*) = E(H)Uhg(H).

Then H# admits a strict FHD F# = (T7 (By), (7#)) of width < k that has (k x d)-bounded
support.

Proof. Let F = (T,(B,), (7)) be an arbitrary FHD of H of width < k. W.l.o.g., assume
that F is bag-maximal. Of course, F is also an FHD of H# of width < k. Let u be a node
in F and let e € supp(~y,,). Suppose that en B(7y,) ¢ B,. Then we modify v, as follows: by
Lemma 24, E(H) U hg ,(H) is guaranteed to contain the subedge ¢’ = en B, of e. Then we
“replace” e in v, by €', i.e., we set v, (e') := yu(e) + 7 (e) and ~,(e) := 0.

The FHD F# = (T, (B.),(7¥)) is obtained by exhaustive application of this transforma-
tion step. Clearly, such a transformation step never increases the support. Moreover, the
resulting FHD F# is strict, since in every node u the transformation eliminates all edges
e € supp(yy) with e n B(v,) ¢ By. N

Our strategy to devise a polynomial-time decision procedure for the CHECK(FHD, k)
problem is to reduce it to the CHECK(HD, k) problem and then adapt the algorithm from [6].
Note however, that the algorithm from [6] requires the HDs to be in a certain normal form.
We thus have to make sure that also in the FHD-setting, we can always achieve an analogous
normal form. We thus recall below the fractional normal form (FNF) introduced in [4]:

» Definition 27. [4] An FHD F = (T,(B,), (7.)) of a hypergraph H is in fractional normal

form (FNF) if for each node r € T, and for each child s of r, the following conditions hold:

1. there is ezactly one [B,]-component C, such that the equality V(T) = C, u (B, n B;)
holds;

XX:13

XX:14

Further Tractability Results for Fractional Hypertree Width

2. BsnC, # @, where C, is the [B,]-component satisfying Condition 1;
3. B(y,)n B, c B..

In condition 1 above, a [B,]-component denotes a set of vertices which is maximal connected
in the subhypergraph of H induced by V(H) \ B,. Moreover, we write V(7Ts) to denote the
set of all vertices occurring in some bag in the subtree of T' rooted at s. o

An HD H = (T, (B,),(\.)) can be considered as a special case of an FHD where the
edge-weight functions A\, only assign weights 0 or 1 to each edge and where the so-called
special condition holds. When applied to HDs, the fractional normal form recalled above
coincides with the normal form defined in [6]. Indeed, the transformation of an arbitrary
FHD into FNF given in [4] follows closely the transformation into normal form given in [6].

We now strengthen Lemma 26 in that also FNF can be guaranteed.

» Lemma 28. Assume a hypergraph H = (V(H),E(H)) of degree < d has an FHD F =
(T, (Bu), (")) of width < k. Suppose that H* is obtained from H by adding the edges in
hax(H), i.e., H* = (V(H#), E(H%)) with V(H#)=V(H) and E(H*) = E(H)Uhg(H).

Then H# admits a strict FHD F# = (T, (B,), (v¥)) in fractional normal form of width
<k that has (k x d)-bounded support.

Proof. By Lemma 14 there exists an FHD F; of H whose supports are all bounded by k x d.
Without changing the supports, we can transform this FHD into a bag-maximal one, and we
thus assume w.l.o.g. that Fi is bag-maximal.

Now transform JF; into an FHD F; of width k x d in FNF, by proceeding according to
the proof of Theorem C.1 in [4], which, in turn follows closely the transformation in the
proof of Theorem 5.4 in [6]. Note that this transformation preserves the support bound of
k x d. In fact, the component split made for ensuring condition 1 of FNF can never lead to
larger supports, given that the sets B,cy(v,c,) become smaller. Ensuring condition 2 results
in eliminating nodes from the tree, so nothing bad can happen. Observe that condition 3,
which is B(vs) n B, € B; for a child node s of decomposition node r, is initially satisfied,
because the initial FHD Fj is bag-maximal. Observe further that the splitting of a node
(subtree) into several nodes (subtrees) performed to achieve condition 1 of FNF does not
destroy the validity of condition 3.

Finally transform the FHD F, via Lemma 26 into a strict FHD F# = (T, (B.), (7)) of
H# of width < k and with (k x d)-bounded support. Observe that this strict FHD F# is
still in FNF. To see this, first note that the tree structure T' of the decomposition and all
bags (B,) remain exactly the same. Moreover, for whatever set S ¢ V(H), H and H* have
exactly the same [S]-components. This can be seen by recalling from [6] that two vertices
v1,v2 in hypergraph H are [S]-adjacent if they are adjacent in the subhypergraph of H
induced by V(H) \ S. Hence, [S]-adjacency remains unaltered when adding subedges.

Given that conditions 1 and 2 of FNF are only formulated in terms of B;-bags and
B;-components — and all such bags and components are the same for F and F# — they
remain valid. Condition 3, which requires that B(y#) n B, € B, for child node s of 7, is now
trivially satisfied, because F# is strict and, therefore, even B(y#) = B, holds. <

The following theorem finally establishes the close connection between the CHECK(FHD, k)
and CHECK(HD, k) problems for hypergraphs H of degree bounded by some constant d > 1.
Recall that the edge-weight functions A\, in an HD only assign values 0 or 1 to edges. As in
[6], it is convenient to identify A, with a set S, of edges, namely the edges in E(H) that are
assigned value 1. In other words, S, = supp(A,). Moreover, as mentioned in Section 2, we

W. Fischl, G. Gottlob and R. Pichler XX:15

can identify a set of edges S, with the hypergraph whose set of vertices is U5, and whose
set of edges is S,,. For given edge-weight function A\, with Sy, = supp(A,), we shall write H),
to denote this hypergraph.

» Theorem 29. Let H be a hypergraph whose degree is bounded by d > 1 and define H?

as above, i.e., H* = (V(H%), E(H")) with E(H#)=FE(H)Uhgi(H). Then the following

statements are equivalent:

1. fhw(H)<k.

2. H# admits a strict hypertree decomposition (thus a query decomposition) H = (T, (Bu), (M)
of width < kxd in normal form such that for each decomposition node u of H, p*(Hx,) <k
holds (i.e., Hy, has a fractional edge cover of weight < k).

Proof. 1 = 2 follows immediately from Lemma 28 by defining A, for each decomposition node
u as the the characteristic function of supp(vy), i.e., Ay(e) = 1if e € supp(y,) and A, (e) =0
otherwise. Clearly, replacing the edge-weight function ~,, by the integral edge-weight function
Ay preserves the normal form.

To see 2 = 1, assume 2 holds with query decomposition H = (T, (By), (A\.)) and assume
further that, for each decomposition node u of H, there exists an edge cover v/, for H),
of width < k. In particular, we thus have B()\,) = B(¥),) = By. Similarly to the proof of
Lemma 14, we can transform each edge cover 7/, of the induced subhypergraph Hy, of H#*
into an edge-weight function ~, of H by moving the weights 7. (e¢’) of each edge ¢’ in H), to
one of its “originator edges” e in H (i.e., an edge e in H with e’ € e). By replacing \, with
~u, we obtain an FHD F = (T, (B,), (74)) of width < k of H. “

We are now ready to prove the main result of this article.

» Theorem 30. For every hypergraph class C that has bounded degree, and for every constant
k > 1, the CHECK (FHD, k) problem is tractable, i.e., given a hypergraph H € C, it is feasible in
polynomial time to check fhw(H) < k and, if this holds, to compute an FHD of width k of H.

Proof. By Theorem 29, it is sufficient to look for a strict hypertree decomposition (thus
a query decomposition) H = (T, (B,),(\.)) of H# of width < d x k such that for each
decomposition node u of H, p*(Hy,) < k holds. This is achieved by modifying the alternating
algorithm k-decomp from [6] by inserting the following two checks at runtime at each
decomposition node u:

if 4 has a parent r, then U S, € B(\,) U treecomp(u) with S, = supp()\,). This makes

sure that B, = U Sy, i.e., the decomposition is strict.

p*(Hy,) <k
The so modified algorithm clearly runs in ALOGSPACE = PTIME <

6 Conclusion

In this article, we have shown that recognizing low fractional hypertree width becomes
tractable if the hypergraphs under consideration have bounded degree. This strengthens a
previous result in [4], which required both bounded degree and bounded intersection width
to ensure tractability. Along the way to our tractability result, we have derived several
interesting properties of FHDs of hypergraphs of bounded degree. Above all, by defining an
appropriate subedge function, we have established a surprising relationship between fractional
hypertree decompositions and query decompositions.
Many interesting directions for future research remain. Below we list a few.

XX:16

Further Tractability Results for Fractional Hypertree Width

—— References

1

What about d-sparse hypergraphs, i.e., hypergraphs with average degree d? From Fiiredi’s
precise formulation of his result it seems that for such hypergraphs, CHECK(FHD, k)
could still be tractable. Of course, to avoid padding techniques, we should actually define
sparseness via the reduced hypergraph H~ introduced in Section 3 rather than via H
itself.

What is the parameterized complexity of the CHECK(FHD, k) problem parameterized by d.
We conjecture that it is hard for some suitable class in the W-hierarchy of fixed-parameter
intractable problems.

Most importantly, we want to answer the open question if bounded intersection width
alone (without bounded degree) suffices to make the CHECK(FHD, k) problem tractable.
Our tractability result for the CHECK(FHD, k) problem is heavily based on the upper
bound on the support of fractional edge covers in case of bounded degree. This upper
bound is a consequence of the corresponding upper bound on fractional vertex covers
in case of bounded rank [5]. It would be nice to have an intuitive direct proof (i.,e., not
relying on other deep theorems as is the case in the proof by Fiiredi) of the upper bound
on the support of fractional edge covers in case of bounded degree.

Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive queries
in relational data bases. In Proceedings of STOC 1977, pages 77-90. ACM, 1977.
Chandra Chekuri and Anand Rajaraman. Conjunctive query containment revisited. Theor.
Comput. Sci., 239(2):211-229, 2000.

Fan R. K. Chung, Zoltan Fueredi, MR Garey, and Ronald L. Graham. On the fractional
covering number of hypergraphs. SIAM journal on discrete mathematics, 1(1):45-49, 1988.
Wolfgang Fischl, Georg Gottlob, and Reinhard Pichler. General and fractional hypertree
decompositions: Hard and easy cases. CoRR, abs/1611.01090, 2016. URL: http://arxiv.
org/abs/1611.01090.

Zoltan Fiiredi. Matchings and covers in hypergraphs. Graphs and Combinatorics, 4(1):115—
206, 1988.

Georg Gottlob, Nicola Leone, and Francesco Scarcello. Hypertree decompositions and
tractable queries. J. Comput. Syst. Sci., 64(3):579-627, 2002. URL: http://dx.doi.org/
10.1006/jcss.2001.1809, [doi:10.1006/jcss.2001.1809]-path.

Georg Gottlob, Zoltdn Miklés, and Thomas Schwentick. Generalized hypertree decompos-
itions: NP-hardness and tractable variants. J. ACM, 56(6):30:1-30:32, September 2009.
URL: http://doi.acm.org/10.1145/1568318.1568320, [do0i:10.1145/1568318.1568320]-
path.

Martin Grohe and Déniel Marx. Constraint solving via fractional edge covers. ACM Trans.
Algorithms, 11(1):4:1-4:20, 2014.

http://arxiv.org/abs/1611.01090
http://arxiv.org/abs/1611.01090
http://dx.doi.org/10.1006/jcss.2001.1809
http://dx.doi.org/10.1006/jcss.2001.1809
http://dx.doi.org/10.1006/jcss.2001.1809
http://doi.acm.org/10.1145/1568318.1568320
http://dx.doi.org/10.1145/1568318.1568320
http://dx.doi.org/10.1145/1568318.1568320

	Introduction
	Preliminaries
	Bounded Support
	Subedge Functions
	Deciding the Check Problem for Hypergraphs of Bounded Degree
	Conclusion

