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Abstract

We derive the canonical momentum 7; of the gravity field e!. Then we use
it to derive the path integral of the gravity field. The canonical momentum
7y is represented in Lorentz group. We derive it from the holonomy U (v, A)
of the connection A’ of Lorentz group. We derive the path integral of the
gravity field as known in quantum fields theory and discuss the situation of
free gravity field (like the electromagnetic field). We find that situation is
only in the background spacetime, weak gravity, the situation of low matter
density. We search for a theory in which the gravity field is dynamical at any
energy in arbitrary curved spacetime {x*}. For that, we suggest the duality
el & 27K where the field 217 = el Ae” is the Area field. That duality lets to
the possibility to study both fields e/ and £!7 in arbitrary curved spacetime.
We find e/ — 27K in spacelike and /5 — el in timelike. We find that the
tensor product of the gravity and area fields, in selfdual representation, satisfies
reality condition. We apply that to derive the static potential of exchanging
gravitons in scalar and spinor fields, the Newtonian gravitational potential.

19

24

30



1 The canonical conjugate field 7/ and the path
integral

We search for conditions to have a dynamical gravity field. The problem of the
dynamics in general relativity is that the spacetime is itself a dynamical thing. It
interacts with the matter, it is an operator dz*. Therefore we have to treat it as a
quantum field like the other fields. But where they exist, this problem is solved by
considering fields exist over fields not over the spacetime[l]. In background space-
time it is substantially different, as we will see, the gravity field becomes as usual
fields.

As usual in quantum field theory we have to find the canonical conjugate field
ml(represented in Lorentz group) acts canonically on Lorentz vectors over 3d closed
surface M immersed in arbitrary curved spacetime z* of manifold M. That closed
surface M is parameterized by three parameters X!, X2, X3. In a certain gauge, we
consider them as a spatial part of Lorentz coordinate X! = X% X' X2 X3 with the
flat metric (— + +4).

Therefore, the exterior derivative operator lets to the change along the norm of that
surface, so it lets to the change in time X° direction. That lets the 3d surface ex-
tends and have four Lorentz spacetime {X I } parameterize the four dimensions x*
of curved spacetime in the manifold M. That lets to propagation of the gravity field
from surface to another.

For that, we suggest canonical states ’él > and |7r1 > represented in Lorentz group, we
use them in deriving the path integral of the gravity field. We find that there is no
propagation over the dynamical spacetime z#. But in background spacetime we find
that the gravity field propagates freely like the electromagnetic fields.

Although the dynamics of the gravity field is built using Lorentz group elements,
the measurements effect and depend on the dynamical spacetime x*. Because z*
is itself a dynamical, it interacts with all fields. Therefore our need to the Lorentz
representation is to have canonical dynamical laws, processes .... So we have to
distinguish between the dynamics of the general relativity and its measurements.

The holonomy of the connection A in quantum gravity is[4]

U(y,A) = TrpPe$4 (1.1)



The path ordered P is defined in:

B dz*

PeitA g/ldsl ?dsz... / dsniA (7 (s0)) A (7 (1)) 1 4" (5) = ——

n—1
0

v is a closed path in arbitrary curved spacetime z*. In irreducible representation
in selfdual of Lorentz group we write A = A'r?, where 7¢ are Pauli matrices. The
element U(7y, A) is invariant under local Lorentz transformation V! — L% (z)V7 and
under arbitrary changing of the coordinates dz* — A*,(x)dz”. Therefore the quan-
tum gravity is studied using it[1].

The connection A is selfdual of Lorentz spin connection wll]:

AL (x) = (P’) w! ()

17 %n
P are the selfdual projectors. We can write the holonomy using the spin connection
wﬁ‘] dx* of Lorentz group. We have

U(v,w) = TrPe' gy’

We expect that it has the same properties of U (v, A); satisfies the symmetries of GR.
For free gravity field, we impose the relation:

(WM)IJ _ ﬂ_KIJeﬁ(

The conjugate field mx!/ () is represented in Lorentz group and acts on its vectors.
Therefore we consider it as a dynamical operator. The holonomy becomes

U(y,me)=TrP expz'f (WKIJ) effd:z‘“

v
For free gravity field, we expect that the momentum 7//¥ is antisymmetry. So we
can write
AT — g LK

This is our starting point in studying the dynamics of the gravity. The holonomy
becomes

U(y,m,e)=TrP expi]{ (WKIJ) erpdrt =TrP expz'j{ (5LKIJ) Trexpdr!
v

o
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It becomes

51 Sn—1

o 1
Z/dsl/dSQ--- / dsn(igLKIJﬂ'LeKu;}/u) (Sn)(Z-ngKlJJ17TL1eK1,u1;ym) (Sn71>
0

n=0 0 0

(iELn_lKn_lJn_zfﬂ-Ln—leKn—an—l,y,un_l) (Sl)

LKI _ jeLKI

JWLerj/u) (Sn) JTL (Sn) €Kp (Sn) 7“ (Sn> with the tangent /y# (8) =
on the closed path ~ in the manifold M.

where (is
dat
ds

The integrals become over terms like
...W](sj)eﬁ(si)ﬁ“ (s5)ds;...m5(s5)el (sp)Y (s1)ds...

The holonomy U (v, 7, €) satisfies the general relativity symmetries, invariance under
local Lorentz transformation V? — L!;(x)V7 and under arbitrary changing of the
coordinates dz* — A", (z)dz”. Therefore we can use it in quantum gravity.

We expect Keff dx* satisfies the same conditions if it is integrated over closed surface
instead of the path 7. That is because

1 1
edr = Zd%” A dzt = Zeewpgdx” A dx? A dx® N dxt /3!
is invariant element. Therefore we can replace ﬂKeff dxt with

7TK€K“d3IM = WKeK“esu,,pgdx” A dz? A dz° /3!

With integrating it over three dimensions closed surface M, it becomes invariant
under GR transformations because in free gravity there are no sources for the gravity
field. Therefore the flux of the vectors is invariant.

e is the determinant of the gravity field ei:

guu(l’) = 771J€,€€i —Vv—g=ce

In arbitrary transformation, we have the invariant element
Therefore

€ wpodx” N dxf A dx’ /3! = d?’aru



Is a co-vector, as d,. By that, the integral

U(OM,m,e) :expi%

Wlel“eém,pgdx” Adxf A dz? /3! = expi]g W]@I#dsfﬁ#
§M

oM

Satisfies the same conditions of the holonomy U (7, A), invariant under local Lorentz
transformation V! — LL(2)V7 and under arbitrary changing of the coordinates
dx* — A", (z)dz¥. That relates to physical reality, it is, the integral of free vector
fields over a closed surface 0 M in a manifold M is invariant if there are no sources
for those fields. It is the conversation. The spin connection w* and so mre*, as
vectors, satisfy that reality in free gravity.

The equation of motion of the gravity field e’ is
De! =def +wljne’ =0
With our imposing (w,)"” = mx!/eX

de! = —nnT eN Ae’

As we know, the tensor
1
N J_ N_J N_J _ N_J
e’ Ne’ =e, e, dt Ndr” = 5 (eu e, — e, e#) dx" N dx”

Measures the area in the manifold M. Therefore the changes of the gravity field
around a closed path (rotation) relate to the flux of the momentum 7 throw the area
which is determined by the closed path. It is like the magnetic field, generated by
straight electric current. Therefore

eV Ael = Area

de! = —mwntjeN Ne? — flux throw this Area

K

For that reason we suggested 7//% is antisymmetry. We see that the flux depends

on the momentum .

In the integral

exp zj{ w;e[“eew,pgdx” A dxf A dz? /3!
oM



We define canonical gravity field é’:
eldPX = e'dX'dX?dX? = efee,ypoda” A dx” A dz® /3!

We get

UgM((SM,W,é) = expij{ meld®X
sM

Where X! : I = 1,2,3 parameterize the closed surface §M in the manifold M. In
certain gauge, we consider X : I = 1,2,3 as a spatial part of Lorentz spacetime
XT:1=0,1,2,3. Therefore the exterior derivative is along the time X°. The time
XY is the direction of the norm on the surface M (X', X%, X?). We will see that the
result of the path integral is independent on this gauge.

The integral expi ¢, m7¢'d> X satisfies the same conditions of the holonomy Uy, A),
invariant under local Lorentz transformation and under arbitrary changing of the co-

ordinates. Therefore we consider it as a canonical dynamical element.
Comparing it with

(6| 7) = expi / X (X )n(X)/h

the dynamical relation of scalar field ¢. For h = 1, we suggest canonical states ‘él >
and |7TI > with

(e | 7TI>6M = expi/ (X)) m(X)d*X
5M
77 is canonical conjugate field of é/. We can write it over the surface M like
<éI | 7TI>(SM = 71_[]<él (ZL‘n + dIn) | Tr (xn)>5M
With
(&' (zn + dxy) | 7 (a:n)>6M = expié! (z, +du,)mr(2,)dPX — expie! (x,)7(2,)d*X

This relation is over the surface 6 M. In general, for two points in adjacent surfaces
OM; and 9 My, we have

(&' (zy + dzy,) | 77 (w0)) = expié’ (z, + day) 7 (2,)d> X (1.2)
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Here the variation
e (xn + dxy) — &' ()

Is exterior derivative along the time dX" in the direction of the norm on the surface
dMj, it lets to the propagation. That lets to extend the surface: M (X!, X2, X3) —
M(X° X' X2 X3).

We need to make éd*# commutes with é/d3X. For that we write

—eéd*z = éedi* A EpvpedZ” N dzP A dz? /4!
Epvpo OT7 0% 077 gF
41 90X 0X7 0XF 3l

1
= édi* N X = Z—léd:)}”ﬁudi”X

The indexes 7jk are Lorentz indexes for I = 1,2, 3. As we assumed before, X’ : I =1,2,3
parameterize the closed surface d M in the manifold M.
We can rewrite it(in certain gauge) like

4 1 Lo 13 1 Oa" 3 o1 . s 0
—ed v = Zedx n,d’X = Zemnud XdX" = Zeeonud XdX

compare it with the term

e'd*X = eteg,,ppdx” A da’ Ada /3! = ee'tn,d* X
We find it commutes with it

(66", d° X, efin,  XdX"] =0 — [E'a*X, ed's| = 0

Where [é],¢]] = 0 . Therefore the operator éd*Z takes eigenvalues when it acts on

the states |él>.

The action of free gravity field is[1]
1
Sle,w) = @/EUKL (e el AR (W) + X' Ael Aef Aeh)
We consider only the first term

S(e,w) = C/S[JKL«BI Ael A REE(w)

7



C'is constant. The Riemann curvature is
REE(w) = dw™F 4+ Wy AWM
Using the relation we imposed before:

)IJ 1J K

(wu) " =7k e,

the action becomes

Se,m) = ¢ / erunse’ Ae? Ad (mar ™) 4 erpne e A (S ar) €50 A (i, M) 2]

or

S(e,m) = c/ lersrre’ ne?l Ad (ma™ ™) + ek (i, " nr) (mi,™") ef Ae? A e A et
(1.3)

We find the term d (ﬂ'MKLeM) from

6]]KLd (61 A €J VAN WMKLGM)

But we assume its integral is zero at infinity. We have

€[JKLd (61 N €J A\ 7TMKL6M) —E€JJKL (deI) A €J N 7TMKL€M — €[JKL€I A\ (de‘]) N 7TMKL€M

+ €[JKL€I Nel ANd (WMKLGM)

Rewriting
—ergrre’ A (de?) A (maFeM) = —epir (de”) Al A (maFe)
= ey (de’) Aef Ama e
Therefore

€[JKLd (€I N €J A\ WMKLGM) = ZEIJKL (del) A@JAWMKL€M+€[JKLGIA€JACZ (WMKLGM)

By that we write the action as
S(e,m) = c/ [—QEUKL (del) Ael A (WMKLGM) + e17KL (WKIKM) (WKZML) el Nel Nefr A eK2]

8



Using the equation of motion of the gravity field
0=Del =del +wlyne! =de! +mntje Ae’
We get
del = —nnt e ne’
Inserting it in the action, it becomes
S(e,m) = C/2€[JKL(7TNIB)6N AeB AelN (WMKLGM)
+emkr (5 u) (mi,™") el el Aeft A et
Or
S(e,m) = C/2€[JKL (WNIB) (ﬂ'MKL) eNAeB Ael AeM
+emkr (e, ) (mi,™") e el A eftn e
Rewriting it like
S(e,m) = c/25UKL (WNIB) (WMKL) eBre’ AelV A eM
+erikL (7TK1KM) (WKQML) el Nel Aeft A ef?

Replacing Bz I, N — K; and M — K5 in the first term, we get

S(e,m) = c/2€BJKL (WKIB[) (WKQKL)GI Ael Neftp el
+ €KL (7TK1KM> (WKZML) el Nel Aeft A el
We replace
el Nel Nefr pefr 5 ITEER 0 A ol A 2 A P
We get

S(e,m) = C/[2€BJKL (7r, P1) (i, ™) €755 ey ypep (mr, " ar) (i, ™F) 777052

xe? Net Ae? Aed



Using the relation /7% = e/l we imposed before. The action:

S(e,m) = C/[QEBJKL (Tr,BI) (”KQKL) gh/fakz —9 (WKKM) (WLML) +2 (WLKM) (WKML)}
xe? Ae' N Ae?
becomes:
S(e,m) = c/ 1267 rmNenm pr (Tr, ™ ") eF2 12 (o) (7R 2 Aet AP AP

JKML _ _SJLMK

Usmg ENK\BI = —E€IK|BN = €IK\NB, €ILKM = —EILMK and € , We

get
S(e,ﬂ') = C/ [2€BJKL7TN€[K1NB (WKZKL) (—€IK1JK2) + 27TI€[LMK7TJ€JLMK] e’ VAN el A\ e? A e3

Using the property
€[K1NB€IK1JK2 = -2 ((5}(;(5?2 — 5%5]{?2) and €[LMK€JLMK = —6(5}]

The action becomes

S(e,m) = c/ [45K2JKL7rJ (WKQKL) — 127r]7r1} A ANel Ae? Aed

S(e,m) = c/ [derirrm” (775 F) —127%] e Ael Ae? A€
Then

S(e,m) = c/ [—dejiirm/me ™Rl — 1272 P Nel A’ AP
The action becomes

So(e,m) = c/ [247° —127°] " el AP N e’ = c/ 127%e" Aet Ae? Ae?

= c/l27r26d4x

In the background spacetime, we have e — 1 + de, therefore

So(de, ) — /12c7r2d4:n + ..

10



To find its meaning we compare it with scalar field Lagrange in background space-
time, for A = 1:

Ld*z = (70y¢ — H(¢, 7)) d*x with H(¢,n)d s = (%71'2 + % (V¢)2 + %m2¢2> d*z

We conclude that the term
/ 12¢d*z = 0

Is the energy of the gravity field in background spacetime. As we will find in result
of the path integral, in background spacetime limit, we have to replace ¢ — —c when
we compare with the electromagnetic field, therefore, in the background spacetime,
we replace

S(e,m) — —/1267?2d4x = —/Hd4x

That is not surprise, because the general relativity equation (Einstein field equation)
is derived to satisfy the energy conservation over curved spacetime:

1
R, — §Rgm, =81GT,,

It satisfies the energy-momentum conservation V,T* = 0. But, as we know, in
quantum field theory in background spacetime limit, we have to write the canonical
law of the conservation like

o, (T, + T =0
1

matter gravity

Therefore we write

-1 1
Ty + - (Ruv - éRg,w) = T,, (matter) + T}, (gravity) = constant
T

By that we conclude

. 1 1
T, (gravity) = e (R,W — §ng,>

Therefore we have to replace ¢ — —c , we see that when we compare it with the
electromagnetic field in background spacetime.

11



Now we derive the path integral as usual. As we saw before, the operator éd*# takes
eigenvalues when it acts on the states ‘éI >, by using (1.2) we have the amplitude

(" (x + da)| & |7y (2)) — (&' (2 + da)| 272 |7y ()
= exp (i12cr* (z) e (z + dz) d*z + i&" (x + dz) 7/ (2)d*X)
— exp (112e7” (z) e (z) d'x + ie" (z + dz) 77 (2)d* X)

We let the momentum m; acts on the left. The amplitude of the propagation between
two points x and z 4 dz in different adjacent surfaces dM; — § My is

<éI (x + dx)| eicl2fr2éd4£ ’é[ (x)>5M1a6M2

= fl;[dﬂ'l (6] (x 4 da)| gicr2red'a |l (x)>§M1_>5M2 (mp(z) | & (x)>5Ml
= [T dn! exp [i12cn? (z) € (x + dz) d*z + ié' (z + dz)m(2)d* X | exp (—ié! (z)m;(z)d*X)
I

-/ 1;[ drl exp [i12em? (z) e (z) d*x + i (6 (z + dx) — €/ (z)) 7/ (z)d>X]

The exterior derivative

(e"(z +dzx) — &' (2)) d’X = wd?’XdXO = dé! (z)d*X
0X0
Is along the time dX° in the direction of the norm of the surface dM (X!, X2 X3),

therefore it lets to propagate from surface to another.

We write the amplitude like

(&) (z + dx)| 127 ed's &' (z)) /H dr’ exp [i12cm® (z) e (z) d*x + imp(z)de’ (2)d* X ]
1

SMy—6May

The path integral is the integral of ordered product of those amplitudes over all
spacetime points(over all ordered 3d surfaces).

Wep = /HDéIDm expz’/(1207?26d4x—|—7r1dé]d3X)
I

= /HDéIDm expz’/ (12c7r2€0 ANel Ae? Aed + W[dé[dSX)
1

12



For selfdual representation, we consider that propagation in the direction of expand-
ing of the surface(positive direction).

There is no problem with Lorentz non-invariance in %d:”X dX° because the equa-

tion of motion, we find in the result of the path integral, is

551(95) I
50 X —T

Therefore

oel (x)

330 7 d3XdX° < — il d3 XdX°

This is Lorentz invariant. This is like the equation of motion of the scalar field
m = 0p¢ which solves the same problem.

In our gauge we have

eSdat A dx A dx? A dx®

Tl dXdX? — 72dX° A dX A dX? AN dXP = 72elele?ed
e2etr? dty = led's

0,1
n-v
_ 20,1
=7"e,e,

(&

2
p
2
€

It is invariant element; we find it in the path integral.
The path integral:

Wer = /H Dé' Dr; expz’/ (12eme® Ae' ANe* Ae® + Wfdéld?’X)
I

Vanishes unless

)
. (12071'260 ANel At Aed + mdéld?’X) =2Uert® Nel N2 N e+ defdPX =0
I

Therefore we have the path(equation of motion)

AT T (A0 A sl A 22 A 53\ L S2T 53
WZE(Q Ne'NEENEP)  de'd’X (1.4)
Or
1 _
i = W (" el ne? A€ 2’ P X de’ B X (1.5)
c

13



Therefore

122" Net Ae? A ed 4+ mdel dPX = 4L80 (60 Ael Ae2 A 63)_1 (déld?’X) (déld3X)
- 2%40 (O Aet A Ae) T (ded®X) (de!dX)

The path integral becomes

W = / H DéfExp;—Si / (P Aet A2 ne?) T (ded®X) (dé'dPX)
The canonical field & is defined in
K3 X = eK“e&?u,,pod:c” A dxf A dz? /3!
Therefore
(4) &X = (D) eeupodi? A di” A di? A di 31
Where D is the co-variant derivative defined in
DV =dv!i+w'; AV
We have

(dé;d*X) (de'd®X)
eO Nel Ne? Aed

(N A2 Ae) T (derd®X) (de!dPX) =

It becomes

/

il ~ ~ ~ ~ ~ ~ al ~ ! ~ ~ ~ 1, ~ A ~
(Dmeﬂf) €€ uupedTM A\ dTV A dzP A di? (Dmel“ ) €€y o dTH? N dZV N dTP N AT

313160 &1 &2 &3 dits A i’ A dies A\ dios

Define the inverse:

v o\ 1 4 nlu nt 9 9 0 0
(egeieieidas“ Adz” Ndxf Ndx®) " = EYf EY Ef E By A D N A

We write it in the form

1
2ell,eieida:“ Adz” NdxP N dx? = Zed%u A dx*

14



Actually, we have to write the tensors e##? and €,,,, like e 1e#"?? and ec,,,, but
here we neglect that, because it gives the same results.

Therefore we write
EY EYEY ES 85 AN Oy Ny Ay = ED, N>

With inner product like
Ed, A% (Led®z, ndat) = LEed, N dPaundat = S Ee (87) 0,dat = Ee — 1
( y )Zexu ") = Eed, x, x—ze(“)ym—e—

also we can write it like

(E(?V A 83”) (ed%w A dm“) = Fed, N &z, N dz' = Eed;,0,dr" = 5;}
We can write
(DY) egpmpoda? Ndz” Adx Ndz® /3! — (D, eff) eda** Nd*x,, = — (D, €f) ed*z, Nda™
Also

(Dmel“,> ee vt pordzt® N dz”’ A dz? A dz® J31 — — (Dmel"/) ed’z, A da
We conclude

d3xu Ndx! = —dx, N Bt — d3xu Ndx" = —dx, A 3z
Therefore

— (D, eh) ed*z, A dx"t — (D, €f) edx, A dzt
By that the term

~ A A A A A A ~ A i A A ~q, ~ Al ~ !
(Dme’;> €€ ppodTtt N dT¥ N\ dTP N d2® (Dme[“ ) eE o dTH? N dT N dz? N dz®

13160 61 &2 &3 (Jqps3 V3 TP3 703
313leY el e2 es. dirs A\ divs A\ dirs A di

becomes

— (B8, NO) (Dy, ) edx,, A datt) ((Duzel"/> ed’x, A dx‘”)
= (D"er,) (Dme[“/) e (0, NO%) (dPxy, Nda?) (Payp A dat?)

15



We used
—dz, N &P = &P A dz, = dPx,, A do”
therefore we can write

(dérd3X) (de! d3X)

eONel ANe2 A ed

— (D"'ey,) (Dwe[“) e (0, NO¥) (dPxpy N da) (dPay A dat?)
We can choose the contraction:
(&, A 83”) (d?’xu1 A d:z:“) (dgzz:u/ A dm’”) = (81, A 83”d3xm A dx“) (d?’:vu/ A dm’”)
=0, (0, Ndat) (P A dah?) = 67 (=dat A 9,) (—dxt A dPx,y)
= 5Z1dx“ A 0, dzH? N d?’a:#/ = 51’:1(552@:“ A dgxu/
Therefore we can write

(dejd3X) (dé*’d?’X)
eONel Ne2 A e3

— (D"ey,) <Dmel”/) e Okrdat A dPay
= (Dyery) (D”el“/> edz" A d*z,, = — (D,er,) (D”el“/> ed®x,, A dz"

= —(Dyer,) (D”el“/) eéﬁ,d% = — (Dyer,) (D"e™) ed'x
We can also choose another contraction:

(D'ver,) (Duzew) e (0, NO%) (dPxyy A dat) (dPay A dat?) —
(D"er,) (Dmel",) e (0, AN O¥dPxy, N dat) (dPxy A dz?)
= (D"ey,) (Dmel“/> e (67,0, Nda") (dPxp A dat?)

p v

=47 0b (DMey,) (Dwel“/) e (dzy A dzh?)
It becomes
(de;d*X) (de' d*X)
eONel Ne2 A e3

— (D"er,) (Dufel“/> ed*x
By the two possible contractions, we can write the final result as
_ -1
(" nel Ae* Ae?) ! (dé;d*X) (défd3X) =5 (Due}’D“el{ - Due}’DyeI“) ed*z

16



This Lagrange is like the Lagrange of the electromagnetic field. Also it is indepen-
dent on the gauge we chose for the surface 6 M. it is invariant under local Lorentz

transformation V! — L! J(x)VJ and any coordinate transformation V#* — g;”,‘: v,

The path integral of the gravity field becomes, after replacing ¢ — —c.

1
o (—DHG;D”GZ{ + Due§DyeI“) ed*z

_ I
Wsr = /IITDQ P U8c2

With the free gravity field Lagrange

11

Ld'z = —<
. 48¢ 2

(=D,eyD"el + D,eD,e'") ed*x (1.6)

We determine the constant ¢ in the Newtonian gravitational potential ¢ > 0.
In background spacetime, weak gravity, D,, — 0,, and e — 1 + de, we have

11 , 5
L — @5 (—Gue[(?“e,{ + 8H6181,61“)
Or
Ly = —1 l7] el (g‘“’82 — 8“8”) e’
07 48c2 Mt v

Without background spacetime approximation, in strong gravity field, we have prob-
lem with the determinant e, it is

) 1
Wsr = /HDelexp@ — (—DﬂeyD“elI, + DueﬁDyeI“) e el e2e3erviro giy
I

9 mrtpta

with 79123 = —1 we rewrite

] 1
War = /H D€I€$P4LSC = (=D,€iD"e}, + D, e D, e™) (—np k1) el e e eket1"1P7 qt g /4]
I

2 H1TVLITp O

Always there is a field ef which is different from e/, and e} therefore the integral
over it gives delta Dirac:

9 mrntp Yo

' 1
/H Delel’p%& = (=D,€e/D"e}, + D,eD,e™) (—npx1) €5 €] el eket 1177 dy /4]
T
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— & (=D, D"e, + D,/ D,e'")
— —D,e"D"e! + D,esD,e™" =0

it gives
=0 — S(ﬂ,e):c/127r2€d4x:0 — H(me)=0

This path integral is trivial, there is no propagation because there is no gravity en-
ergy H (m,e) = 0. Like Wheeler-DeWitt equation H 1 = 0. The reason is that
because the gravity field elﬂ has the entity of the spacetime, it is impossible for the
spacetime to be a dynamical over itself, to propagate over itself.

But if we write e,(z) — 6/ + h/(x) the path integral exists, the propagation is
possible. Therefore the dynamics of the gravity is being only over background space-
time. This is the situation of weak gravity (low energy densities). In this situation

the gravity field becomes like the other fields.

Latter we will search for conditions to make the gravity field propagate over z*,
for that we impose the duality; Gravity-Area.

The path integral of weak gravity field in background spacetime is

. 11 v v
w = /HDeI exp@/4—8c§e£ (n159" 0% — 01 0"9”) e)d'x (1.7)
I

The gravity field propagator, g = n and k,e*! = 0, is

. d4k nljguueik(rg—xl)
Apy(xy — 1) = 486/ (2m)4 k2 —ic

Or

, Ak g Ug,ulleik(mgf:rl)
AbV(zg — 21) = 480/ o) “ R (1.8)

We will use this propagation in the gravity interaction with the scalar and spinor

fields.
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2 The need to the duality Gravity-Area

We search for conditions to have a dynamical gravity field in arbitrary curved space-
time without spacetime background approximation. We found that the spacetime
path integral Wgr is trivial. There is no propagation without spacetime background.
We can solve that problem by assuming that the fields exist over themselves not in
the spacetime[1]. Therefore the spacetime is measured thing by its interactions with
the matter.

According to general relativity, the length, the area and the volume are another
form of the gravity. We can explain that by the duality gravity <+ areas and vol-
umes. We try to find this duality using the trivial path integral Wgr by finding
conditions allow the gravity field to propagate. That propagation is e/ «+ L7/K it
means they propagate when they change to each other. Also we find that the tensor
product of them |e/) ® |£75), in selfdual representation, satisfies the reality condi-
tion.

As we saw in the path integral of gravity field over curved spacetime we have problem
in e A el Ae? Aed. All of them must be different, the integral over one of them is
delta Dirac. This is trivial path integral Wgp. Therefore there must be a new field,
it is the area field 57 = X A e’ by that the path integral of the gravity field exists.
It means that the gravity field is dynamical over the area field not over the spacetime.

Starting from the full Lagrange (1.6):
11
48¢c 2

The covariant derivative is

Ld*z = (—DueﬁD“e{, + Due?DVeI“) ed*z

Del =def +wljne’!
Using our assuming
Wl = 117K
The covariant derivative becomes
Del = de! + (WKIJ) e A e’

The Area field is anti-symmetry field:

1
_Ytorg  rJ
Si = 5 (ehel = ele)
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Inserting it in the covariant derivative, it becomes
De' =de' + (mg'y) S8 =de’ + 7% Sk,
Using our assumption
plIK = o JLITK
The derivative becomes

Del = deI + WKIJEKJ = de[ + 7TL€LKIJEKJ = deI + EILKJWLEKJ

By that we have two fields e/ and %7 in the Lagrange. They interact, that lets to
the duality e <> L5/,

The full Lagrange of the gravity field is

Ld*t = ——* (—D,eyDrel + D€t D,e'*) ed?

a:—4—86§(— u€7D" el + D,eD,e') ed*x

We have

—D,e{D"e}, + D,e/D,e"" = —D, e} (D"e}, — D,e'*)
It becomes

— (Ouel + 5]JKL7TJE£(LV) (8“e£ + 51J1K1L17TJIE’I‘(1L1V —9elt — 5”1K1L17UIEK1L1V”’)

Or

— (8M6? + €]JKL7TJE£<LV) (8’“6£ — 8,,61“ + 2€IJ1K1L17TJ1 Elll(lLlu)
It becomes

— (Quey) (0"e, — Dye'™) — 26" (D) B 1

KLv_J auez{ — Oye't I K1Ly KL
—2&?[‘][(12‘u s — | — 2¢ €]JKL2

v_J 1%
2 12 ™ 7TJ12K1L111

To complete it, we need to replace the momentum 7! by its value, we had before
(1.4) and (1.5):

S
(48¢)

(DueI”D“ei — DueI"D,,eJ“)

N | —
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We consider
-1 1
I_J Ivaup J
= (480)25 (aﬂe 8“61/)

We expect the contraction

-1
2€IJ1K1L1 (aﬂellj) 7T‘]lgj/;(l[/lV - (480)261J1K1L1 (aﬂe?> (aﬂeph) zj?('1[/111
Therefore we rewrite
2
— (0,€}) (0" — D,e™) + Méj“ﬁh (9u€l) (0"epr) Xl 10

1 IJ\K{L KLv J o
+(480)2€ o 16[JKLEH (8‘7€p) (a 631) 2!IL('1L1V

The Lagrange

11

Ld*z = 1853 (—=D,€D"e}, + D,e}/D,e™) ed*x
Becomes

1 -1

Ld*r ——

1
4867 (aﬂe?) (auei) €d4x + —€IJ1K1L1 (8#6?) (auepjl) E?{1L1V6d4x

(48¢)”

1 1J1K1L J o P KL pv 4
-+ WS 151 1€[JKL (&,ep) (8 €J1) ij EKlLled T

We used the gauge 9,e’* = 0.

Now we use the selfdual projection. For any real anti-symmetry tensor 777 we
can write it in two unmixed representation, selfdual and anti-selfdual. In general
relativity the selfdual is chosen, its projector is[1]

. 1 . ) -
(P, =58 s (P)yy =50 i=1for I=1,2,3

We see that these projectors satisfy
2i (P')" (P)*" —2i (P (B)"" — &KL

It is a projection from I # J and K # L in the left to I # J # K # L in the right.
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The second term is for the anti-selfdual. Therefore we consider only the first term,
we replace

KL o (Pi)IJ (B)KL

We use it in the determinant e:

o

_ 3 _puvpo I _J_K _L_uvpo . _
e = e#e e ege“ 77— —erikre,e, e, e e’ /4! ep1a3 = —1

With selfdual projection, we have
e = —EIJKLeieieff Lghvpo 4] — 24 (P’) (P) g1 eieiefeﬁe“”p"/éﬂ
We can rewrite

1 1 1
IJ K Lopwpo — = (o] _ oI odY oK oLompo — = (o1 o0 _ 1,0\ 2 (oK oL _ oK LY chvpo
€,6,€, €€ —2((2“6,} eye) o€ _2(€u€v ee)z(epeg eaep)a

By that we can rewrite it using the area field %!/

€£€Z€K€L€“VPU — ZIJzKLguupa

Therefore the determinant e becomes
vpo 2Z 7 vpo
e = —€1JKLE), eie eletre [4) — ] (P )U (P)rr EiiEKLg“ p (2.1)

Now we can write the area field as a vector ¢ = 1,2, 3 in the selfdual representation

%, = (P),, 54

1J “pv
Therefore the determinant e becomes

21
41

We wrote it in this form to get rid of the gravity field in the path integral. As we
saw it lets to delta Dirac, it cancels the propagation.

e = =~ (T7),, (Bi),, €77 or — ¥, B’ (2.2)

By that, the full Lagrange of the gravity field:

Ld*x L -l (8 el) (0"el) ed'z +

1 v
48 2 —3€1J1K1L1 (aﬂel) (auep-h) E?{1L1V€d4x

(48¢)

1
1L KL I\ (q0.p \ s KLs v 4
et ek (agep) (a eJl) E/W z]K1L1€d x

+ -
2 % (48¢)
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becomes

1 -1 2, .
L' = 353 (Oue) (07) (‘zz g >d4
1 .
MPTE (2ip]") (Ouer) (0" epn) B (‘W ze) diz
2 L o . 2, o
s W) )1y (965) (7€) B 2 ( 2 B ) o'
Or
Ld4 21 1 P oM 1 27, » an d4
v 4862 ( 61) ( eV) ( 1% ipc€ / ) €T
4 ' '
+ (480)3 (pi)lﬂ (8,;:?) (a”epjl) zlyp (ijzipgé_/wpa/él!) d4$
49 i o B
! (48C>3 (pi)ljl (pj)U (ageg) (a 651) Ef“’z ! (Zm/Ez‘po@“ p /4!) d4x

It is quadratic in e’ therefore its integral is not trivial. Here we can consider the area
field X¢ as a background field that the gravity field propagate over it. Or suggest the
duality e/ « Y% by that the amplitude of propagation of e/ between z and x + dz
is (e!(z + dx) | Yi(z)).

If we considered the first term. To discover its behavior, we test one wave cos (k,x").
We have

(8.e) (9"e)) — —€40,0"el, — —08,0" cos (k") = k, k" cos (k,z")

Therefore

;2
eide“x — exp/ 2 (l{? k;“ele ) (El Eipgguupa/4!) d4$ + ...

48¢ 2
— exp / 42 é( Bk?) (€5el) (S Spoc?” J41) d' + ..
Or
21
= exp/ 1803 (k k2> (eel) (Z’ Sipe™ P [A) d*x + .. (2.3)

We consider the area field is in the positive direction Re (Efwdx“ A dm”) > 0, the
direction of the expanding, then Re (zzyzmewﬂ) > 0.
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We find, in time-like k2 — k% > 0 the gravity field is created. And in the space-

like k2 — k2 < 0 the gravity field is annihilated e, = ¥, oppositely to the area field,

as we will see. This is the duality e/, <+ ¥/ . It is like to say, in time-like we find the
gravity field and in the space-like we find the area field.

The time-like phase is the phase of exchanging the energies (interactions). While the
space-like is the phase of the static fields, the situation of located matter. Therefore
the spacetime in which the matter is located is consisted of quanta of area and vol-
ume. The duality ef; — Efjp, as we will see, satisfies the reality, it is like the right
and left spinor fields.

3 The Lagrange of the Area field

We derive the Lagrange of the area field, we find that in the background spacetime it
is like the electromagnetic field but with opposite sign in the Lagrange. We can get
rid of that opposite sign by replacing d,, — 0, it is equivalent to replace k, — ik,
in the free solutions: e** — e or ¢k We find the behavior of the area field is
opposite to the gravity behavior. For that reason we suggest the duality gravity-area,
which satisfies the realty.

The area field is defined in

»=el Ne! with Zii =
Starting with the Lagrange (1.3)
S(e, 7T) = C/ [€[JKL€I A 6J Ad (WMKLQM) + E]JKLQI VAN 6J AN (7TK1KM) €K1 A (WKQML) 6K2:|
As before we assume the integral of

E]JKLd (6[ A €J VAN (WMKLGM)> = €[JKLd (ZIJ VAN (WMKLGM)>

is zero at infinity, it becomes
dZ”/\(ﬂMKL) eMyel e/ Nd (WMKLeM) = — (WMKL) eMAdS +el ne’ Nd (WMKLeM)
The Action becomes

S(e,w) = C/ [€[JKL (WMKL> €M A dZ[J + EIJKLZIJ N (7TK1KM> (7TK2ML> €K1 VAN GKQ}
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Or
S(e, 7T) = C/ [ETIJKL (WMKL) €M A dZIJ + €I1JKL (7TK1KM> (7TK2ML> ZIJ N 2K1K2]

Using our imposing

ol TK — o cLTIK
We get

€IJKL (WMKL) M = €IJKL7TMKL€M = 5IJKL7TN5NMKL€M = —2(mre; — myer)
We write

EIJ N EK1K2 N €IJK1K2201 A 223
So we have

EIJKL (ﬂ_KlKM) (7TK2ML) EIJ A EKlKQ = €KL (7TK1KM) (WKQML) 8IJK1K2201 A 223
-9 (WLKM) (ﬂ.KML) 201 A 223 -9 (WLKM) (ﬂ_KML) 201 A 223
—9 (WKML) (’NKML) 201 A 223 — 27rI€IKML7TJ€JKML201 A 223

= —120°5% A X%
The Action becomes
S(e,m, X) = c/ [—2(mrey — mer) AdE" — 127 £ A £
Because the area field £/ is anti-symmetry, we write
S(e,m, X) = c/ [—dmre; A dS" — 1277 0 A £
Using €p123 = —1 we can rewrite it like

S(e,ﬂ', E) = C/ [—47’(']6] N dEIJ + 127T[7TI€]JKL21J N EKL/ZL'}

1
S(e,ﬂ', E) = C/ |:—47T[6J A dEIJ + §7T2€[JKLZIJ A EKL
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I

The path integral over momentum 7' vanishes unless (the equation of motion)

J

omy

1
/ l—4W[€J VAN dEIJ + §7T2€]JKLEIJ A EKL:| =0

But it is not easy to separate ¥ from e. It is like the gravity field, it is separable
only in weak gravity(background spacetime). Therefore we solve it in background
spacetime.

1
/ <—47T[€J VAN dEIJ + §7T2€]JKLEIJ A\ EKL>

1
IJ 2 IJyWKL 4
— / (—47T[€MJ6VEPU€MVPU + 57? €IJKLE;WEpa Euupa d*x

The background spacetime is
eh(z) = 6, +hl (), e—1+de
The area field becomes
1 1 1
SIL = o (ehel — elel) = 5 (0107 — 8101) + 5 Wkl — hldl) + 5 (5hh — 61h)

inserting it in the action:

1
S(e,X) = c/ (—47T16#J&,2f,i6“””" + §7T2€IJKLZIJ2KL€;WpU> dir

nv~ po
it becomes

S(e,%) = S(h,6%) =c / <—47r181,2f)gaj”p” - %7# (—24) + .. .>d4x

Therefore the condition( equation of motion):

0 1
e —47T]6J/\dEIJ+—WQSIJKLEIJ/\EKL =0
(57T[ 2

approximates to

o o L
5_7]'1 (—47T18VZIJPU€J P + 571'2 (-24)) d4.’L' =0
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Its solution is

1 1
ﬂ_l _ _aayzgpagJVpa — _éayzljpgng/po’

By that, the action in background spacetime is approximated to
2 viyJipio1 Jvpo 4
S(E) — C §8 > €J1V1plgla,,21]pg€ + ... |dzx
define inner product /oy, = 225515515?, we get
S(X) — ¢ / (—40,5700"5) + ) d*x with 9,577 =0

This is the action of the area field in weak gravity field (background spacetime). It
is like the electromagnetic field.

Lo(%) — —4¢(9,579) (0"5]7) with 9,577 =0
We rewrite it like
Lo(S)d's = —4c (0,27)) (0"S])) ed*x + ..

As we did in deriving the gravity Lagrange we had to replace; ¢ — —c. This constant
is determined in gravity potential ¢ >= 0. Therefore

Lo(X)d*z — 4¢(9,577) (9"S])) ed'x + ... (3.1)

To get rid of opposite sign, comparing with free electromagnetic Lagrange in back-
ground spacetime e — 1 + de, we can replace 0, — 40, it is equivalent to replace
k, — ik, in the free solutions: e*** — e~ or € in the background spacetime. By
that the area field becomes classical field, we can consider it as background field.

By using the selfdual projection (2.1) and (2.2):

2,
_ I_J_K_L_pvpo = % ) IJKL _pvpo
€ = —E1JKLE,C, €, €, /4!l — m (P )U (P)wr Y2, e

the Lagrange (3.1) becomes

Lo(X)ed's = —8ci (0,5770"S]7) (2, Sipeet? /A1) d'a + ...
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To discover the area field behavior, we test one wave cos (k,z"). We have
Lo(S)ed's — —8ci (k"k,X77500) (30, Sipee’™? /AY) d'x

The action of that is
eled's _y oxp 8c (k kP S78T) (350, Sipee™?7 A1) d'a

Then

% — exp8c <—k§ + §2> (Z780) (30, Sipec™™?? /A1) d'a (3.2)

It is opposite to the gravity field (2.3). In the time-like —k2 + k2 < 0 the area field is
annihilated ;% — ¢ And in the space-like —k + k2 > 0 the area field is created
ei — Eif this is the duality ei “ Eif . It preserves the reality. It is like duality of
the left and right spinor field under Lorentz transformation and party.

The opposite behavior is with the anti-selfdual representation, the hermitian of the
selfdual

2i (P')" (B)*" —2i (") (P)"" — /KT

which is projection from I # J and K # L in the left to I # J # K # L in the
right.

The first term is for the selfdual, while the second is for the anti-selfdual. The tensor
product of them satisfies the reality:

pIAL(selfdual)dz iAL(anti—selfdual)d'c _ .1
Instead of that we can satisfy the reality by gravity-area duality:
AL IALON T — poql + invariant for sel fdual
For one wave, it becomes
o155 $(K3—k?)(evel) (zguzipaawpdml)esc’(—kzg%’?)(2?525;)(ijzwawwml)
We wrote ¢ to distinguish it from c. For

—— (e?ei) = 8¢ (E?ﬁE%)
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The product equals one, this satisfies the reality. By that we can determine ¢ like
to choose (48¢)”" = 16¢. With

1, 1
(chel) = 5 (S500) = 5

the hermitian conjugate X;”Y! ) is represented in anti-selfdual: ¥' = Pj; %!/,

(2;’”2;, + igpiip)

As done for left and right spinor fields; in left spinor field representation the right
spinor field is zero. And in in right spinor field representation the left spinor field is
zero[3]. Therefore in selfdual representation, we assume that the anti-selfdual is zero.
Like that in anti-selfdual representation. By that we have in selfdual representation:

_ . 1 .. ) 1 .. )
= ngkxjk —ix% =0 §gw’fzjk = 3%
therefore the area field in selfdual representation becomes
. 1 .. ) .
NP = ng’ﬂzjk +iX% = 9%,

which is real as required for satisfying the reality. It is equivalent to replace 20 —
—iz0. Same result we get in anti-selfdual representation X/ = 0 — %' = £9k% ;. Tt is
equivalent to replace % — i2°. That lets to the splitting SO(3,1) — SU(2)®@SU(2).

: " vl — L (Yo IJ) — 1 (ywpyi | Swesvi
In the two representations, the condition (efel) = 1 (EUEVP) =1(%; X, + 2 Eyp)
v\ — 1. Sk _ijkywp _ ywpsjk
becomes (ejey) = €, e = NNl

The difference between the selfdual and anti-selfdual appeared in the opposite sign
in the Lagrange:

L= 8¢ (=K + K2 (S1755,) (S, Sipo="7" [41) for selfdual 5 =0
and
L — —8¢ <—k§ + EQ> (2775) (0, Sipec™?7 /A1) for anti-sel fdual %' = 0

The opposite sign comes from the projection (2.2):

21

6—)—4!

7 vpo 2 N vpo
S Signet?” /4l 4 55, Sipr e /4

We chose the selfdual because the tensor product with the gravity field satisfies the
reality. It is like the duality of the left and right spinor fields under Lorentz trans-
formation and party: ¥ <> ¥g.
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4 The static potential of weak gravity

We derive the static potential of the interactions of scalar and spinor fields with
weak gravity field in static limit. We see it is the same in the both, the Newtonian
gravitational potential. We see that potential relates to energy-energy interaction.
By that we determine the constant ¢ > 0.

The action of the scalar field in curved spacetime is[1]

S(e.0) = [ dtae (1" efes D07 D, - V(9)
In weak gravity, the background spacetime:

eif(z) = oF + hi(z) , e =1+ de
the action is approximated to

S(e, ¢) = /d4$ (040" 0" ¢ + W™ (2)0ud™ 0, + W™ (1)t Do — V(9) + ...
The gravity field is symmetry, so

S(e, p) = /d4x (8“¢+3“¢ + 2R (2)0,0" 0,0 — V(9) + )
The energy-momentum tensor of the scalar field is[3]

T,uu = ,u¢+8v¢ + gm/L
Therefore

0,070,0 =T, — gL
Using it in the Lagrange, it becomes

L=0,0"0"¢+ 20" () (T — g L) — V() + ...
By that we have

L=0,0T0 ¢+ 20" T, — V() — 20" g L + ...
Therefore, in the interaction term, we have the replacement

2,070, — T, and L— L—2h"g,,L
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Because the gravity field is weak (background spacetime), so 2h*"g,, L is neglected
comparing with L .

We find the potential V' (r) of exchanged virtual gravitons by two particles k; and ks
using M (ky + ko — k) + k}) matrix element (like Born approximation to the scat-
tering amplitude in non-relativistic quantum mechanics [7]).

For one diagram of Feynman diagrams, we have

A;U/pa
IM (b + ks = K, + k) = i (—iky),, (iks), f@z (—ik}), (ik),

with
q:k’i—k’lzkg—k’é

The propagator A*P7 (xy — x1) is the gravitons propagator (1.8), we find it in the
Lagrange of the free gravity field (background spacetime) we had before

11

11
L = —
07 48c2 M

(0" = 0"0") e = -gmh, ("0 — 9"0") b

with the gauge 8“65 = 0, we have

d4 B ) B ” 1J
Afu{ (y —2) = / e 654A£1{ (q2) cia(y—z) . A;Iu{ (q2) — 48695 n '
m

q® — ic
The M matrix element becomes
g g
iM (ki + ko — k] + k) = i48¢ (—iké),J (tky) =—— (—ik:i)a (ik1),

where g=nand ¢ =k, —ky = ky — ki
Comparing with[7]

M (1{31 + k?g — k’i —+ ]{fé) = —Zv (q) 54 (kout — kzn)
We have

o (2 oy gy 997
V (q ) = —480(—2]62)# (zkg)p T (—iky), (ik1),
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Comparing this relation with the replacement:
0,070,6 = Ty, and L — L —2h"g,, L
and making the Fourier transformation, we get

1 b
_ s D () T (2)
A7 |y — x| A7 |y — x|

Vv (y - :E) = _48CTMP (y) 9" 9" T,s (:E)

With the transferred energy-momentum T , in the static limit, for one particle
T% — m the mass of the interacted particles.

Therefore we get the Newtonian gravitational potential

2 2

e A8 = AnG

Viy—x)=—-48c——— =
v=2) At |y — | ly — x|

The weak gravity Lagrange becomes

11

_ v a2 v\ ,J
LO = Rinjjeu (g“ 0 — 0"0 )€V

We do the same thing for the gravity interaction with spinor fields. The action is[1]
S(e, ) = /d4a:e (i by Dy — mapap)
The covariant derivative D, is
D, = 0+ (wy)y L +A2T®
In the background spacetime, we have
S(ev) = [ dta (163 Dy + iy Dy — it + )
We consider only the terms
[ s 0999, + bl 0,0~ miw) g =
The energy-momentum tensor is[3]
TH = —igpy 0% + g"' L
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Therefore, as for the scalar field, in the interaction term, we have the replacement
M’y“@”qﬁ — =T, and L — L+ h"g,, L

The term h*”g,, L is ignored comparing with the Lagrange L. We find the M element
of exchanged virtual gravitons p; + p2 — p| + ph, for one diagram of Feynman
diagrams|[7]

. e . 99"’ o/
iM (p1+ p2 = Py + py) = i48cti (p)) v (—ip1), u (p1) ”q2  (ph) 77 (=ip2), u (p2)

with
g=p,—pr=p2—pyand g=r1
We have

xf<q2)::-—48ca<pa>wﬂ<—4p1x/u<pl>g“;f”pa<p;>vo<—4p2x,u<p2>

Comparing this relation with the replacement
Wy 0¥y — =T, and L — L+ h*g,,L
And make the Fourier transformation, we get

uv
L T )T @)

Vi = o) = ~48¢(=T (1)) 99" (T () L=y = dm |y — x|

With the transferred energy-momentum T | in the static limit, for one particle
T% — m is mass of the interacted particles(spinor).

Therefore we get the Newtonian gravitational potential.

m? m?

—G——— = 48¢c = 4G

Viy—z)=—-48c——— =
y—2) =2 ‘-4

It is the same potential as for the scalar particles.
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