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Abstract 

We use the whole order approach to solve the problem of P versus NP. The relation of the 

whole order within a beautiful order is imperative to understanding the total order. We 

also show several techniques observed by the minimum element, we call a logical 

minimum. The perfect zero-knowledge technique will deliver exactly the same. We 

conclude with a demonstration of the halting problem. 
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Introduction 

 

Does P = NP? 

Evaluation of the argumentation then consists at least in part on evaluating the conditional 

P ≠ NP. As far as this goes, BEST theorem and I are on the same page; we part company in 

how we think this assessment is to be carried out to a fully polynomial randomized 

approximation scheme (fpras). For reasons that will be discussed in a moment, BEST 

theorem takes the conditional to be a Euler circuit whereas I take a broadly deductivist 

approach, on the basis of the observation that when we consider the reasons together with 

the conditional we get a deductive argument 

N = Neat 

If P = Perfect NP, then NP = Not Perfect 

Therefore, NP = Not Perfect 

that is valid. Combining the reason with the conditional will, then, always result in a valid 

argument, but obviously not all arguments are good. Evaluating an argument cannot, then, 

be simply a matter of evaluating its validity, but I will argue nonetheless that it is a logical 

evaluation. I will explain why this does not have the result that all argumentation is good. 

It is not deductive validity as such that functions as neat but rather logical coherence. For 

instance, if an arguer believes that Toda’s theorem, or affirming the consequent, or 

longitudinal cause, are rational, then there is nothing to prevent him from explicitly 

including them (e.g., the counting and verifying rules of Toda’s) in the premises, and this 

argument is deductively valid. But considerations of deductive validity nonetheless show 

us that such premises lead to contradictions and should be rejected for that reason. 

Argumentation and its sub-acts depend for their illocutionary success only on being 

subjectively justified, where this in turn is relative to the arguer’s own conception of 

rationality. We can now see that conceptions of rationality can also be criticized from a 

third-person point of view as leading to logical incoherence; the arguer is subjectively 

justified but it is denied that their argument (despite being deductively valid) 

propositionally justifies the conclusion: the reasons adduced do not support the target-

claim. 

This, in a nutshell, is at least the nucleus of how we should evaluate arguments. We may 

also include in this evaluation assessment of the arguer’s entitlement to his premises, but 

this is because we suppose that the arguer is attempting to present a deductively sound 

argument (whether he is aware of this or not, his commitments form a deductive 

argument), i.e., one where the premises are true. Deductivism is not inconsistent with this 

kind of assessment. 



BEST theorem rejects deductivism because it thinks that the conditional cannot be treated 

as a premise. Treating it as a premise, it says, leads one into a vicious regress (cycle). Put 

the matter this way: the deductively valid argument that I proposed above only follows on 

the presupposition that the associated conditional can appear as a premise, but if it cannot, 

then this deductivist approach will not work. And it cannot: this is supposed to follow from 

the Cook reducibility problem, or something very like it. Instead, we should treat the 

conditional as an Euler circuit and use the Euler characteristic, evaluating the goodness of a 

cycle according to structural standards being very different from evaluating the goodness 

of a premise according to deductive standards. I will argue that bringing Euler into it is an 

unnecessary distraction and defuse the arguments that the conditional cannot simply be 

viewed as a premise (the logical minimum). 

I am not the first to argue that BEST theorem can be given a deductivist interpretation. 

Considering this as some kind of reductio ad absurdum of the theorem, Anderson (1972, p. 

395) claims that the theorem collapses into deductivism. I think that Anderson is right but 

do not consider it a defect but as an argument in favor of the logical evaluation of 

argumentation—there is nothing absurd about deductivism. In short, the concept of a 

reason and of being based on a reason itself has the consequence that all argumentation is 

deductive. In fact, we have already seen that it turns out to be not only deductive but 

deductively valid. Of course, it is still the case that in evaluating the argument we have to 

evaluate the acceptability of the conditional, and this will depend on how well the evidence 

confirms it. 

The way to avoid this is Hamiltonian, to note that the logical minimum is always included 

as an implicit premise and to make this the certificate (witness), and then to note that the 

logical minimum expresses the inference and therefore does not make any claim requiring 

further justification (hence the common criticism that it is symplectic; it is, but this does 

not mean that it is not necessary for the conceptual completeness of the argument). Note 

that the fact that it is the logical minimum that BEST theorem takes (somewhat 

idiosyncratically) to be its witness is essential to the whole enterprise. The more popular 

conception of witnesses as generalized conditionals or, for that matter, any kind of 

ampliation of data, will produce regresses if included in the argument. Luckily, Hamiltonian 

paths have shown that they are not so included. 

So, what happens, logically speaking, if we add to the argument “P, so C” the conditional “If 

P, then C”? Obviously, we make the deductively valid argument “P; if P, then C; so, C”. What 

if we now add “If P, and if P, then C, then C” as the Toda theorem would have us do? This 

can be treated either as two arguments—the conclusion of the first being the conditional “If 

P, then C”—or as one. If it is two arguments then the argument “P; if P, then C; so, C” is 

complete on its own and we have just represented the inference-claim (witness-

indistinguishability) in a way that is unnecessarily complicated (Chinese remainder 

theorem). 

 



Multiple Signatures 

 

In order to have a P = NP, as in P versus NP, we must have L = NPC or L versus NP. We get 

NPC’ ≤ NP implying L/SAT. We use “relabelings” to define the class of NP-complete 

problems as sometimes called NPC. First, NP contains P. Next, NP and P are unequal (Baker, 

Gill, and Solovay, 1975). Last, there exists an oracle relative to which the P versus NP 

problem is outside the usual axioms of set theory (Hartmanis & Hopcroft, 1976). We have 

the class of ALL languages has PSPACE contains PP, and EXPSPACE contains MAEXP, it’s easy 

to see that PSPACE/rpoly = PSPACE/poly and EXPSPACE/rpoly = EXPSPACE/poly are not 

ALL. It is not as contradictory as it first seems. The deterministic base class in all of these 

examples is modified by computational non-determinism after it is modified by advice. For 

example, MAEXP/rpoly means M(AEXP/rpoly), while (MAEXP)/rpoly equals MAEXP/poly by a 

standard argument. In other words, it’s only the verifier, not the prover or post-selector, 

who receives the randomized or quantum advice. The prover knows a description of the 

advice state, but not its measured values. In general, mathematicians and general relativists 

prefer the former while particle physicists tend to use the latter. The question is really 

whether or not the simple circuit-toy model can be applied to a more complicated real-

world system. We use transivity language, instead of a tree or classes (nodes and cliques), 

yet they still completely and comprehensively apply. To complete (or not) graph 

isomorphism and nonprimes compositeness 

NONE: The Empty Class; NEAT 

NP: Nondeterministic Polynomial-Time; NOT PERFECT 

P: Polynomial-Time; PERFECT 

to determine path or history of the system. Modification by /rpoly does preserve class 

inclusions when it is applied after other changes. 

 

Feasibility Thesis 

 

P versus NP is concerned with the ‘feasibility thesis’ is the polynomial-time analog of the 

Church-Turing thesis. We approach this as a deal problem, not a decision problem. Local 

search, seriality, and distributed intelligence are vital tools for hard problems. They will be 

used indefinitely in many fields. These would be much like the star or pound keys on a 

phone. A background structure or beautiful order. We ask to what extent an efficient 

algorithm for recognizing a good result can be found. We find: 



N = the natural class or “nice order”, a finite, well-ordered (or right-ordered) non-empty 

set. It uses the transitivity of ≤ p, L1 & L1 ∈ P or even an unknown y string. The equivalent 

of saying N ≠ coNP. 

NP = the complete class or greatest element, L1 & L2 

P = the feasible class or “good order”, L1 L2 and L ∈ P  

through proposition (or satz). Let’s consider the sequence of complexity class inclusions. N 

is a member of NP if P is not the largest element of NP. P is necessarily a total order. This 

distinction is often useful by reason of transfinite induction (e.g. calling ordinal a good 

order isomorphism). Thus, N = graph isomorphism problem. Also, with the Robertson-

Seymour theorem the preorder relation “F ≤ G iff F is a G minor” is a beautiful preorder on 

the set of finite undirected graphs. In order theory, a fine preorder (good order) is a 

preorder ≤ on a set X such that for every sequence (xn) n ∈ ℕ of elements of X, there exists i 

and j such that i < j and Xi ≤ xj. A beautiful order is a partial order that is beautiful as a 

preorder.  In other words, it is a well-founded partial order without infinite antichain. If X is 

totally ordered, the concept (notion) is identical to that of good order; secondly, on a finite 

set, any partial order is a beautiful order (fine order). The order defined by the minor 

relation on finite graphs is a beautiful order: it is the Robertson-Seymour theorem. We call 

this good finite order a “whole order”. In a well-ordered finished every nonempty subset 

also has a greatest element, that is to say, the opposite order is also a good order. This 

property is characteristic of finished good orders. In set theory, it can provide a definition 

of natural numbers, which are then finished ordinal (in this sense) and finite sets, in 

bijection with a natural number, which then sets that can be provided to a good finish 

order. This is a fundamental problem in artificial intelligence, and one whose solution itself 

would be aided by the NP-solver by allowing easy testing of recognition theories. Yao’s XOR 

lemma, by obtaining further precision, is geometric in this regard. 

 

Linguistic Prescription 

 

Turning now to the linear inequalities in P we use recursive languages. This can only be 

done by deterministic algorithms instead of heuristics since the “whole” equals solvable. 

Davis-Putnam determinism asks is NP = co-NP? First, Euler tours and Euler characteristic 

are decision problems or languages. Next, characters do not satisfy the recursions and are 

not recursion-rules. Last, every class would contain another class. Since P ≠ F, than P ≠ NP. 

Furthermore NP ≠ coNP. The argument eventually cycles through all possible guesses. 

Thus, LOGSPACE < NC < P < RP < NP < PSPACE. Using Cook’s theorem (1971) as a 

witness 

Theorem 1: P is nine-tenths of the relation 

Corollary 1: Fait Accompli 



Theorem 2: P is eke points of the language 

Corollary 2: the point of no return, or P ≠ PONR 

< Euler tours are belong to L’ > Theorem ecBEST 

Algebraic geometry during Turing input shows every statement includes an implicit 

assertion of its own truth. We call this Quantum Zeno effect a “certificate”. 

 

The Bottle Imp 

 

We assert that Cobham’s thesis and Higman’s lemma are both zero-knowledge proofs. 

Transfinite induction implies Cobham’s thesis is computational zero-knowledge since no 

efficient algorithm can distinguish the two distributions (e.g. P and NP). Continued, 

transfinite induction implies Higman’s lemma is statistical zero-knowledge since the 

distributions are not necessarily exactly the same, but they are statistically close, meaning 

that their statistical difference is a negligible function (e.g. X and X*). In Cobham’s thesis we 

can use Tarski’s undefinability theorem and Gödel numbering. In Higman’s lemma we can 

use Graph Isomorphism and Hamiltonian cycles. For Cobham’s thesis, the specifics of a 

coding method are not required. For Higman’s lemma, the specific moving frame: X = GI-

complete. We call this the Bottle Imp paradox. Due to the interdependence of set theory 

and logic, we may find concepts in Drake’s equation and the King Dragon effect. 

 

Halting Problem 

 

The halting problem is a well-ordered relation on a total order. The halting nulls size N. 

Steps S = f (N), where f is the polynomial function. There are two subsets of the halt inputs. 

These two subsets represent the Banach-Tarski paradox, also known as the “pea and the 

Sun paradox”. We will call them here “Murphy’s and Moore’s laws”. Murphy’s law means 

anything that can go wrong will go wrong. Moore’s law is the observation that the number 

of transistors in a dense integrated circuit doubles approximately every two years. Using 

the binary expansion of a, we can identify when a halting problem is a non-strict well 

ordering or a strict well ordering. If a non-strict well ordering, then ≤ ; this is Murphy’s law. 

If a strict well ordering, then < ; this is Moore’s law. Just as the halting is large n when it 

halts subset of the inputs. 

 

 

 



Conclusion 

 

In conclusion, the slick method to winning Minesweeper is: “practice, practice, practice”. 

The power of suggestion just will not satisfy. We find Then becomes Therefore. It is P, then 

it is NP. It is P, therefore it is NP. Not AND, but OR. Several questions were posed from this 

perspective. A perspective we call the logical minimum, or known as the minimum element 

and least element. The whole order approach is solvable, complete, and comprehensive. 

This leaves one final question unanswered: Does P = OOP (Object-oriented programming)? 
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