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We discuss the theoretical description of dyons having simultaneously both electric and magnetic charges on the 
basis of space-time algebra of sixteen-component sedeons. We show that the sedeonic equations for electromagnetic 
field of dyons can be reformulated in equivalent form as the equations for renormalized field potentials, field 
strengths and single renormalized source. The relations for energy and momentum as well as the relations for 
Lorentz invariants of renormalized electromagnetic field are derived. Additionally, we discuss the sedeonic second-
order Klein-Gordon and first-order Dirac wave equations describing the quantum behavior of dyons in an external 
electromagnetic field.  

1. Introduction 

A dyon is a hypothetical point particle, which has simultaneously both electric 
e

q  and magnetic 
m

q  

charges was proposed by J. Schwinger in 1969 [1]. In fact, the dyonic concept is a development of the 
idea of magnetic monopoles proposed previously by P.A.M. Dirac [2, 3]. Magnetic monopoles as well as 
dions increase the symmetry of the Maxwell equations. Taking into account the magnetic charges and 
corresponding magnetic currents the Maxwell equations for the electromagnetic field in a vacuum is 
represented in absolutely symmetric form [1]: 
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Here 
e

ρ  is a volume density of electric charge; 
e

j  is a volume density of electric current; 
m

ρ  is a 

volume density of magnetic charge and 
m

j  is a volume density of magnetic current. These equations 

are invariant under the electromagnetic duality transformations for field strengths and sources [4]:  
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In recent years, there have been a few publications devoted to the reformulation of equations for 
electromagnetic field in terms of hypercomplex field potentials. The first approach is based on four-
component quaternions, which consist of scalar and vector parts that adequately describe the four-vector 
concept of special relativity [5-8]. In particular quaternions were applied for the description of dyons [9-
11]. However since the system of Maxwell equations consists of four equations for scalar, pseudoscalar, 
vector and pseudovector values, the application of eight-component algebras is more appropriate. Taking 
into account this spatial symmetry several approaches have been proposed to describe electromagnetic 
field on the basis of eight-component octonions [12-16] and octons [17-19]. Particularly these algebras 
were used for the description of dyonic field [20-22]. However, a consistent relativistic consideration 
implies equally the space and time symmetries that require using the extended sixteen-component space-
time algebras. 

Recently we proposed the space-time algebra of sixteen-component sedeons, which takes into account 
the symmetry of physical values with respect to the space-time inversion and realizes the scalar-vector 
representation of Poincare group [23]. In particular we considered the equations for massive and massless 
fields based on sedeonic potentials and space-time operators [24-26]. In the present paper we consider the 
application of sedeonic algebra to the description of dyonic electromagnetic field and for the 
reformulation of relativistic quantum equations for dyons in an external electromagnetic field.  
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2. Algebra of space-time sedeons 

To begin with we shortly recall the main properties of sedeons [23]. The algebra of sedeons encloses 
four groups of values, which are differed with respect to spatial and time inversion.  

• Absolute scalars ( )V and absolute vectors ( )V
�

 are not transformed under spatial and time inversion.  

• Time scalars ( )V
t

 and time vectors ( )Vt

�
 are changed (in sign) under time inversion and are not 

transformed under spatial inversion.  

• Space scalars ( )V
r

 and space vectors ( )Vr

�
 are changed under spatial inversion and are not 

transformed under time inversion.  

• Space-time scalars ( )V
tr

 and space-time vectors ( )Vtr

�
 are changed under spatial and time inversion. 

Here indexes t  and r  indicate the transformations ( t  for time inversion and r  for spatial inversion), 
which change the corresponding values. All introduced values can be integrated into one space-time 

sedeon Vɶ , which is defined by the following expression:  

V V V V V V V V= + + + + + + +t t r r tr trV
� � � �

ɶ .    (2.1) 

Let us introduce a scalar-vector basis 
0

a , 
1

a
�

, 
2

a
�

, 
3

a
�

, where the element 
0

a  is an absolute scalar unit 

( 1≡
0

a ), and the values 
1

a
�

, 
2

a
�

, 
3

a
�

 are absolute unit vectors generating the right Cartesian basis. Further 

we will indicate the absolute unit vectors by symbols without arrows as 
1

a , 
2

a , 
3

a . We also introduce the 

four space-time units 
0

e , 
1

e , 
2

e , 
3

e , where 
0

e  is an absolute scalar unit ( 1≡
0

e ); 
1

e  is a time scalar unit 

( ≡
1 t

e e ); 
2

e  is a space scalar unit ( ≡
2 r

e e ); 
3

e  is a space-time scalar unit ( ≡
3 tr

e e ). Using space-time 

basis eαααα  and scalar-vector basis aββββ  (Greek indexes , 0,1, 2, 3=α βα βα βα β ), we can introduce unified sedeonic 

components Vαβ  in accordance with following relations: 

  00V V=
0 0

e a ,        

  ( )01 02 03V V V V= + +0 1 2 3e a a a
�

,      

  10V V=
t 1 0

e a ,        

( )11 12 13V V V V= + +t 1 1 2 3e a a a
�

,        (2.2) 

  20V V=
r 2 0

e a ,        

  ( )21 22 23V V V V= + +r 2 1 2 3e a a a
�

,      

  30V V=
tr 3 0

e a ,        

  ( )31 32 33V V V V= + +tr 3 1 2 3e a a a
�

.      

Then sedeon (2.1) can be written in the following expanded form: 

         ( )00 01 02 03V V V V= + + +0 0 1 2 3V e a a a aɶ       

         ( )10 11 12 13V V V V+ + + +
1 0 1 2 3

e a a a a      (2.3) 

             ( )20 21 22 23V V V V+ + + +
2 0 1 2 3

e a a a a       

             ( )30 31 32 33V V V V+ + + +
3 0 1 2 3

e a a a a .      

The sedeonic components Vαβ  are numbers (complex in general). Further we will omit units 0a  and 
0

e  

for the simplicity. The important property of sedeons is that the equality of two sedeons means the 
equality of all sixteen components Vαβ .  

Let us consider the multiplication rules for the basis elements 
n

a  and 
k

e  (Latin indexes n, k = 1, 2, 3). 

The unit vectors 
n

a  have the following multiplication and commutation rules: 
2 1= =n n na a a ,              (2.4) 

= −n k k na a a a (for ≠n k ),             (2.5) 

i=
1 2 3

a a a ,  i=
2 3 1

a a a ,  i=
3 1 2

a a a ,                  (2.6) 

while the space-time units 
k

e  satisfy the following rules: 
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2 1= =k k ke e e ,              (2.7) 

= −n k k ne e e e (for ≠n k ),             (2.8) 

i=
1 2 3

e e e ,  i=
2 3 1

e e e ,  i=
3 1 2

e e e .                  (2.9) 

Here and further the value i  is imaginary unit 2( 1)i = − . The multiplication and commutation rules for 

sedeonic absolute unit vectors 
n

a  and space-time units 
k

e  can be presented for obviousness as the tables 

1 and 2.  

Table 1. Multiplication rules for absolute unit vectors 
n

a . 

 
 
 
 
 
 
 
 

Table 2. Multiplication rules for space-time units 
k

e . 

 
 
 
 
 
 
 
 
 
Note that units 

k
e  commute with vectors 

n
a : 

=
n k k n

a e e a        (2.10) 

for any n  and k . 
In sedeonic algebra we assume the Clifford multiplication of vectors. The sedeonic product of two 

vectors A
�

 and B
�

 can be presented in the following form: 

( )AB A B A B = ⋅ + × 

� � �� � �
.         (2.11) 

Here we denote the sedeonic scalar multiplication of two vectors (internal product) by symbol “ ⋅ ” and 
round brackets 

( ) 1 1 2 2 3 3A B A B A B A B⋅ = + +
� �

,        (2.12) 

and sedeonic vector multiplication (external product) by symbol “× ” and square brackets 

( ) ( ) ( )2 3 3 2 3 1 1 3 1 2 2 1A B i A B A B i A B A B i A B A B × = − + − + −  1 2 3a a a
� �

.     (2.13) 

Note that in sedeonic algebra the expression for the vector product differs from analogous expression in 
common used Gibbs-Heaviside vector algebra. For the transition from sedeons to the vector algebra the 
replacement 

i A B × ⇒ − × 

� �
A B      (2.14) 

should be made in all vector expressions. Here ×A B  is the vector product of A  and ΒΒΒΒ  vectors in Gibbs-
Heaviside algebra. 
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3. The equations for electromagnetic field of dyons 

The sedeonic wave equation for electromagnetic field of electric and magnetic charges can be written 
in the following form [25,26]: 

1 1
i i

c t c t

∂ ∂   
− ∇ − ∇ =   

∂ ∂   
1 2 1 2e e e e W J

� �
ɶ ɶ .    (3.1) 

Here Wɶ  is the sedeon of electromagnetic field potential 

e m m ei i A Aϕ ϕ= − + +1 2 1 2W e e e e
� �

ɶ ,      (3.2) 

where 
e

ϕ  is electric scalar potential, 
m

ϕ  is magnetic scalar potential, 
eA
�

 is electric vector potential, 
mA
�

 is 

magnetic vector potential. We use the following sedeonic definition of Hamilton nabla operator and 

vectors 
e

A
�

 and 
m

A
�

 :  

1 2 3

1 2 3

,

,

.

e e e e

m m m m

x y z

A A A A

A A A A

∂ ∂ ∂
∇ = + +

∂ ∂ ∂

= + +

= + +

1 2 3

1 2 3

1 2 3

a a a

a a a

a a a

�

�

�
.     (3.4) 

The sedeonic source is 

4 4
4 4

e e m m
i j i j

c c

π π
πρ πρ= − − + −1 2 2 1J e e e e

� �
ɶ ,    (3.3) 

where 
e

ρ  is a volume density of electric charge, 
e

j
�

 is a density of electric current, 
m

ρ  is a volume density 

of magnetic charge and 
m

j
�

 is a density of magnetic current.  

The electric and magnetic field strengths are defined as  

1
,

1
.

e

e m

m

m e

A
E i A

c t

A
H i A

c t

ϕ

ϕ

∂
 = − − ∇ + ∇ × ∂

∂
 = − − ∇ − ∇ × ∂

�
�� � �

�
�� � �

    (3.5) 

The potentials satisfy the Lorentz gauge conditions  

( )1
0e

e
A

c t

ϕ∂
+ ∇ ⋅ =

∂

��
,      (3.6) 

( )1
0m

m
A

c t

ϕ∂
+ ∇ ⋅ =

∂

��
.      (3.6) 

Then we have  

( )1
,

e m m e
i i i A A E iH

c t
ϕ ϕ

∂ 
− ∇ − + + = − 

∂ 
1 2 1 2 1 2 3e e e e e e e

� �� � �
   (3.7) 

and the wave equation (3.1) is rewritten as  

( )1 4 4
4 4 .

e e m m
i E iH i j i j

c t c c

π π
πρ πρ

∂ 
− ∇ − = − − + − 

∂ 
1 2 3 1 2 2 1e e e e e e e

� � � � �
  (3.8) 

Producing action of the operator on the left side of this equation and separating the values with different 
space-time properties, we obtain the system of Maxwell's equations for electric and magnetic charges 
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( )

( )

4 ,

1 4
,

4 ,

1 4
.

e

e

m

m

E

E
i H j

c t c

H

H
i E j

c t c
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∇ ⋅ =

∂
 + ∇ × = − ∂
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� �

�
� � �

� �

�
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     (3.9) 

However, the electric and magnetic properties of dyons are not independent, since their electric 
e

q  and 

magnetic 
m

q  charges belong to the same point particle. Therefore, the following relations hold [27]: 

1 1
,

1 1
,

1 1
,

1 1
.

e m

e m

e m

e m

e m

e m

e m

e m

q q

A A
q q

q q

j j
q q

ϕ ϕ

ρ ρ

=

=

=

=

� �

� �

      (3.10) 

To describe the dyons it is convenient to introduce the renormalized sources: 

,

,

e m

e m

e m

e m

q q

j j
j

q q

ρ ρ
ρ = =

= =

� �
�

      (3.11) 

and renormalized field potentials: 
1 1

,

1 1
.

e m

e m

e m

e m

q q

A A A
q q

ϕ ϕ ϕ= =

= =
� � �

      (3.12) 

Taking into account (3.11) and (3.12) the field potential (3.2) and source (3.3) can be rewritten as  

( ) ( ) ( )( )e m m e e mi q i q q q A i A q i qϕ ϕ= − + + = + −1 2 1 2 1 2 3W e e e e e e e
� �

ɶ ,    (3.13) 

( ) ( ) ( )
4 1

4 4
e m e m e m

i q i q q q j i j q i q
c c

π
π ρ π ρ

 
= − − − + = − + − 

 
1 2 2 1 1 2 3J e e e e e e e

� �
ɶ .   (3.14) 

Substituting (3.13) and (3.14) in the wave equation (3.1 ) and multiplying on ( )e m
q i q+

3
e  from the right 

we obtain following renormalized wave equation: 

( )1 1 4
4i i i A i j

c t c t c

π
ϕ π ρ

∂ ∂   
− ∇ − ∇ + = − −   

∂ ∂   
1 2 1 2 1 2 1 2e e e e e e e e

�� � �
.  (3.15) 

Let us introduce new renormalized electric and magnetic field strengths of dyons  

1 A

c t
ϕ

∂
= − − ∇

∂

�
��

E ,     (3.16) 

i A = − ∇× 

���
H .      (3.17) 

Since renormalized potentials satisfy the Lorentz gauge condition 

( )1
0A

c t

ϕ∂
+ ∇ ⋅ =

∂

��
, 
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we have  

( )1
,

e
i i A i

c t
ϕ

∂ 
− ∇ + = − 

∂ 
1 2 1 2 3e e e e e

�� ��
E H     (3.18) 

and the wave equation (3.15) is rewritten as 

( )1 4
4 .i i i j

c t c

π
π ρ

∂ 
− ∇ − = − − 

∂ 
1 2 3 1 2e e e e e

� � ��
E H     (3.19) 

Producing action of the operator on the left side of this equation and separating the values with different 
space-time properties, we obtain the system of Maxwell's equations for dyons in the following form: 

( )

( )

4 ,

1 4
,

0,

1
0.

i j
c t c

i
c t

πρ

π

∇ ⋅ =

∂
 + ∇ × = − ∂

∇ ⋅ =

∂
 − ∇× = ∂

� �

�
� � �

� �

�
� �

E

E
H

H

H
E

     (3.20) 

There are the simple relations between electric E
�

and magnetic H
�

 fields and renormalized 
�

E  and 
�

H . 
Taking into account (3.12) the definitions (3.5) can be rewritten as  

1
,

1
.

e e m

m m e

A
E q q iq A

c t

A
H q q iq A

c t

ϕ

ϕ

∂
 = − − ∇ + ∇ × ∂

∂
 = − − ∇ − ∇ × ∂

�
�� � �

�
�� � �

    (3.21) 

Multiplying these relations respectively on 
e

q  and 
m

q  we have 

( ) ( )2 2 2 21
e m e m e m

A
q E q H q q q q

c t
ϕ

 ∂
+ = − + + ∇ = +  ∂ 

�
� � � �

E     (3.22) 

and 

( ) ( )2 2 2 2
m e e m e mq E q H q q i A q q − + = − + ∇× = + 

�� � � �
H .    (3.23) 

From these expressions we obtain the following relations between the field strengths: 

( )
( )2 2

1
e m

e m

q E q H
q q

= +
+

� ��
E ,     (3.24) 

( )
( )2 2

1
m e

e m

q E q H
q q

− +
+

� ��
H = .     (3.25) 

4. The relations for energy and momentum of dyon electromagnetic field 

Multiplying (3.19) on ( )i−
3

e
��

E H  from the left we have  

( ) ( ) ( )1 4
4 .i i i i i j

c t c

π
π ρ

∂   
− − ∇ − = − − +   

∂   
3 1 2 3 3 1 2e e e e e e e

�� � � �� � �
E H E H E H   (4.1) 

Equating in (4.1) the components with different space-time properties we get  

( ) ( ) ( )2 21
0

8 4

c
i j

tπ π

∂
 + − ∇ ⋅ × + ⋅ = ∂

�� � �� � �
E H E H E ,    (4.2) 

( )

( ) ( ){ }

2 21 1

8 4
1

0,
4

i
c t

i j

π π

ρ
π

∂
 ∇ + − × ∂

 − ∇ ⋅ + ∇ ⋅ + + × = 

� � �� �

� � � � � �� � �

E H E H

E E H H E H

    (4.3) 
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( ) ( ){ } ( )1
0,

4 4

c
i j

t tπ π

  ∂  ∂      ⋅ − ⋅ − ⋅ ∇ × + ⋅ ∇ × − ⋅ =        ∂ ∂    

� �
� �� � � � �� � �H E

E H E E H H H   (4.4) 

( ) ( ){ }

{ }

1

4 4

0.
4

c
i

t t

c
c i j

π π

ρ
π

   ∂  ∂ 
− × + × + ∇ ⋅ − ∇ ⋅   ∂ ∂     

        + × ∇ × − × ∇ × + − × =       

��
� �� � �� � �

� �� � � �� � �

E H
E H E H H E

E H H E H E

   (4.5) 

The expression (4.2) is the analog of Pointing theorem for dyons. The value  

2 2

8
W

π

+
=

��
E H

       (4.6) 

is the renormalized volume density of field energy, while vector 

4

c
P i

π
 = − × 

� ��
E H        (4.7) 

is the vector of renormalized energy flux density (Pointing’s vector). Using (3.24) and (3.25) one can see 
that 

( )2 2

2 2

1

8 ( )
e m

W E H
q qπ

= +
+

� �
,     (4.8) 

while 

2 24 ( )
e m

c
P i E H

q qπ
 = − × +

� � �
.       (4.9) 

5. Relations for Lorentz invariants of dyon electromagnetic field 

Using sedeonic algebra it is easy to derive the relations for the values 

( )

2 2
1

2

,

,

I

I

= −

= ⋅

��

��

E H

E H
      (5.1) 

which are the Lorentz invariants of dyon electromagnetic field. Indeed substituting (3.24) and (3.25) we 
have 

( )
2 2

1 2 2 2

4

( )
e m

e m

q q
I E H

q q
= ⋅

+

� �
,      (5.2) 

and 

( )2 2
2 2 2 2( )

e m

e m

q q
I H E

q q
= −

+

� �
.     (5.3) 

Thus one can see that 1I  and 2I  are renormalized Lorentz invariants of real electromagnetic field. 

Multiplying both parts of equation (3.19) on sedeon ( i+tre
��

E H ) from the left we have: 

( ) ( ) ( )1 4
4 .i i i i i j

c t c

π
π ρ

∂   
− ∇ − = − +   

∂   
3 1 2 3 3 1 2e e e e e e e

�� � � �� � �
E + H E H E + H   (5.4) 

Equating in (5.2) the components with different space-time properties we obtain the following relations 
for the Lorentz invariants of dyon electromagnetic field: 

{ } ( ) ( ) ( ){ }2 21
,

8 4

c
j i

tπ π

∂
   − = − ⋅ − ⋅ ∇× + ⋅ ∇ ×   ∂

� �� � ��� � � �
E H E E H H E    (5.5) 

{ } ( ) ( ){ ( ) ( ) }2 2

8 4

1
,

4

c c

i c i j
t t

π π

ρ
π

∇ − = ∇ ⋅ + ⋅∇ − ∇ ⋅ − ⋅∇

  ∂  ∂  
 + × + × − + ×      ∂ ∂    

� � � � �� � � � �� � � � �

� �
� � �� �

E H E E E E H H H H

H E
E H E H

   (5.6) 
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( ){ } ( ) ( ){ } ( )1
,

4 4

c
i j

tπ π

∂
   ⋅ = ⋅ ∇× − ⋅ ∇ × − ⋅   ∂

� �� � � � �� � �
E H E E H H H    (5.7) 

( ){ } ( ) ( ){ ( ) ( ) }
4 4

1
.

4

c c

i c i j
t t

π π

ρ
π

∇ ⋅ = ∇ ⋅ + ∇ ⋅ − ⋅∇ + ⋅∇

   ∂  ∂ 
 − × − × − + ×     ∂ ∂     

� � � � �� � � � �� � � � �

��
� � �� �

E H E H H E E H H E

E H
E H H E

   (5.8) 

6. The sedeonic Klein-Gordon equation for dyons  

The sedeonic wave equation for the quantum particle with electric charge 
e

q  and magnetic charge 
m

q  

in an external electromagnetic field described by electric 
e

ϕ , 
e

A
�

 and magnetic 
m

ϕ , 
m

A
�

 potentials is 

obtained from the equation for free particle [28,29] by the following replacements: 

,

,

e e m m

e e m m

i i
q q

t t

i i
q A q A

c c

ϕ ϕ
∂ ∂

→ + +
∂ ∂

∇ → ∇ − −

ℏ ℏ

� �� �

ℏ ℏ

     (6.1) 

and can be written as 

e m

1
0.

e m e e m m

i i i i mc
i q q q A q A i

c t c c
ϕ ϕ

 ∂    
+ + − ∇− − − =    

∂    

2

1 2 3
e e e ψ

� ��
ɶ

ℏ ℏ ℏ ℏ ℏ
   (6.2) 

Here m is the mass of particle. Taking into account the relations for dyonic potential (3.12) this equation 
can be represented in the following form: 

1 1
0

i i mc i i mc
i q qA i i q qA i

c t c c t c
ϕ ϕ

 ∂  ∂        
+ − ∇− − + − ∇− − =         

∂ ∂         
1 2 3 1 2 3

e e e e e e ψ
� �� �

ɶ
ℏ ℏ ℏ ℏ ℏ ℏ

  (6.3) 

where 
2 2
e m

q q q= + . 

Producing the action of operators on the left side of equation we obtain 

( ) ( )
2 22

2 2

2 2 2 2 2

1 2
0.

m c iq q iq q
A A

c c t c cc t c

ϕ
ϕ

 ∂ ∂ 
− ∆ + + + ⋅∇ + − + − =  

∂∂   
3ψ e ψ ψ

� � ��
ɶ ɶ ɶ

ℏ ℏ ℏℏ ℏ
E H  (6.4) 

In this equation the term  
iq

c
3e ψ
�
ɶ

ℏ
E       (6.5) 

describes the interaction of dyon with renormalized electric field, while the term  

q

c
ψ
�
ɶ

ℏ
H        (6.6) 

describes the interaction of dyon with renormalized magnetic field.  
On the other hand, the sedeonic wave equation (6.3) can be rewritten as the system of Maxwell-like 

equations for some quantum field [23]. Let us introduce following new operator and values: 

0

0

0

1
,

,

,

.

c t

q

c

q
A A

c

c
m m

ϕ ϕ

∂
∂ =

∂

=

=

=

ℏ

� �

ℏ

ℏ

      (6.7) 

Then wave equation (6.3) is rewritten in the following compact form:  
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( ) ( )( ) ( ) ( )( )0 0 0 0 0 0 0i i iA i m i i iA i mϕ ϕ∂ + − ∇− − ∂ + − ∇− − =1 2 3 1 2 3e e e e e e ψ
� �� �

ɶ ,   (6.8) 

or introducing operator  

( ) ( )0 0i i iA i mϕ∇ = ∂ + − ∇ − −1 2 3e e e
��⌢

,     (6.9) 

in the very compact form 

0∇∇ =ψ
⌢ ⌢
ɶ .      (6.10) 

On the other hand, let us defined a field Gɶ  according to 

∇G = ψ
⌢

ɶ ɶ .      (6.11) 

Then wave equation (6.10) takes the following equivalent form: 

= 0∇G
⌢
ɶ .      (6.12) 

Let us choose [25] the wave function as  

1 2 3 4 1 2 3 4i i i iψ ψ ψ ψ ψ ψ ψ ψ= − + − + + − +
1 2 3 2 1 3

ψ e e e e e e
� � � �

ɶ ,    (6.13) 

and field Gɶ  as 

1 2 3 4 1 2 3 4 ,g ig ig ig G iG G G= − + + − + − + +3 1 2 3 2 1G e e e e e e
� � � �

ɶ    (6.14) 

then taking into account (6.11) we have the following definitions of Gɶ  components through the 
components of wave function: 

( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )

( ) ( ) ( )

( ) ( ) ( )

1 0 1 0 1 0 4

2 0 2 0 2 0 3

3 0 3 0 3 0 2

4 0 4 0 4 0 1

1 0 1 0 1 0 2 0 4

2 0 2 0 2 0 1

,

,

,

,

,

g i iA m

g i iA m

g i iA m

g i iA m

G i iA i iA m

G i iA i iA

ϕ ψ ψ ψ

ϕ ψ ψ ψ

ϕ ψ ψ ψ

ϕ ψ ψ ψ

ϕ ψ ψ ψ ψ

ϕ ψ ψ ψ

= ∂ + + ∇ − ⋅ +

= ∂ + + ∇ − ⋅ −

= ∂ + + ∇ − ⋅ +

= ∂ + + ∇ − ⋅ −

 = − ∂ + − ∇ − + ∇ − × +
 

 = − ∂ + − ∇ − − ∇ − × −
 

�� �

�� �

�� �

�� �

� � �� �� � �

� � �� �� �

( ) ( ) ( )

( ) ( ) ( )

0 3

3 0 3 0 3 0 4 0 2

4 0 4 0 4 0 3 0 1

,

,

.

m

G i iA i iA m

G i iA i iA m

ψ

ϕ ψ ψ ψ ψ

ϕ ψ ψ ψ ψ

 = − ∂ + − ∇ − − ∇ − × +
 

 = − ∂ + − ∇ − + ∇ − × −
 

�

� � �� �� � �

� � �� �� � �

  (6.15) 

Separating in wave equation (6.12) the values with different space-time properties we obtain the system 

of Maxwell-like equations for quantum field Gɶ : 

( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( )( )
( ) ( ) ( )

( ) ( ) ( )

0 1 0 1 0 4

0 2 0 2 0 3

0 3 0 3 0 2

0 4 0 4 0 1

0 1 0 1 0 2 0 4

0 2 0 2 0 1 0 3 ,

0 ,

0,

0,

0,

0,

0

i g iA G m g

i g iA G m g

i g iA G m g

i g iA G m g

i G iA g i iA G m G

i G iA g i iA G m G

i

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

ϕ

∂ + + ∇ − ⋅ − =

∂ + + ∇ − ⋅ + =

∂ + + ∇ − ⋅ − =

∂ + + ∇ − ⋅ + =

 ∂ + + ∇ − + ∇ − × + =
 

 ∂ + + ∇ − − ∇ − × − =
 

∂ +

� ��

� ��

� ��

� ��

� � � � �� �

� � � � �� �

( ) ( ) ( )

( ) ( ) ( )

0 3 0 3 0 4 0 2

0 4 0 4 0 3 0 1

0,

0.

G iA g i iA G m G

i G iA g i iA G m Gϕ

 + ∇ − − ∇ − × + =
 

 ∂ + + ∇ − + ∇ − × − =
 

� � � � �� �

� � � � �� �

   (6.16) 
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Multiplying each of the equations (6.16) to the corresponding field strength and adding these equations to 
each other, we obtain that  

( ) ( )( )0 0 0i W iA Pϕ∂ + + ∇ − ⋅ =
�� �

.      (6.17) 

Here 
2 2 2 2 2 2 2 2
1 2 3 4 1 2 3 4W g g g g G G G G= + + + + + + +

� � � �
     (6.18) 

and  

1 1 2 2 3 3 4 4 1 2 3 4P g G g G g G g G i G G i G G   = + + + − × + ×   

� � � � � � � ��
   (6.19) 

are analogues of volume density of energy and flux energy respectively [24]. The expression (6.17) is an 

analog of Pointing theorem for quantum field Gɶ  describing the kinematics of quantum dyon in an 
external electromagnetic fieled.  

7. Note on sedeonic Dirac equation for dyons  

The equation (6.8) admits a special class of solutions that are described by the sedeonic first-order 
wave equation [24]: 

( ) ( )( )0 0 0 0i i iA i mϕ∂ + − ∇− − =1 2 3e e e ψ
��

ɶ .    (7.1) 

In fact, the dyons described by this equation do not create a quantum field Gɶ , since equation (7.1) means 
that 

= = 0∇G ψ
⌢

ɶ ɶ .      (7.2) 

It is clear that increasing the order of the equation (7.1), namely acting on it by the operator 

( ) ( )( )0 0 0i i iA i mϕ∂ + − ∇ − −1 2 3e e e
��

 from the left we arrive at the second-order wave equation (6.8). 

8. Conclusion 

Thus, we have shown that in the frames of sedeonic algebra the sedeonic wave equation for 
electromagnetic field of dyons can be reformulated in equivalent form as the system of Maxwell 

equations for renormalized field strengths 
�

E , 
�

H  and single type of renormalized source ρ , j
�

. The 

relations for energy and momentum of renormalized electromagnetic field (Pointing theorem) as well as 
the relations for Lorentz invariants of renormalized electromagnetic field have been derived. Also we 
have shown that the sedeonic second-order Klein-Gordon equation describing the quantum kinematics of 
dyons in an external electromagnetic field can be reformulated in the form of Maxwell-like equations for 

the quantum field Gɶ  and the analogue of Pointing theorem for this field have been derived. Additionally 

we shown that the sedeonic first-order Dirac wave equation describes the dyons, which do not create the 

quantum field Gɶ . 
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