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1 – Introduction 

 This article is a better version of [1], which in turn was motived by my 

works on Lagrangian and Eulerian descriptions in Euler[2] and Navier-Stokes[3] 

equations, where I used for velocity’s components the relation   

(1.1)   

   

   
       

        

   

because the construction of the non-linear terms   
   

  
   

   

  
   

   

  
 in 

these equations was based on the 2nd law of Newton,     , making   

(1.2)    
  

  
 

  

  
 

  

  

  

  
 

  

  

  

  
 

  

  

  

  
, 

with  

(1.3)    

 
 
 

 
 
  

  
   

  

  
   

  

  
   

  

I now realize that it is possible, or better said, it is necessary for a more 

appropriate modeling of fluids in motion, the simultaneous use of both velocities, 

in the Lagrangian and Eulerian descriptions, in the same equation (Euler equations 

or Navier-Stokes equations), what we will see in section 4. For while, we think in 

each description or formulation separate of the other, i.e., used exclusively, in an 

equation. 
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 The equations (1.3), writing synthetically as 
   

  
   , with           

    , show us that the velocity’s component    is dependent only of coordinate 

  , regardless of the values of others       , justifying the use of (1.1).  

 Following this idea, the original system for     spatial dimension and 

volumetric mass density    ,  

(1.4)    

 
 
 

 
 
  

  
 

   

  
   

   

  
   

   

  
   

   

  
       

 

 
           

  

  
 

   

  
   

   

  
   

   

  
   

   

  
       

 

 
           

  

  
 

   

  
   

   

  
   

   

  
   

   

  
       

 

 
           

  

can be transformed in  

(1.5)  

 
 
 

 
 

 

  

  

  
 

   

  
           

 

 
                 

 

  

  

  
 

   

  
            

 

 
                 

 

  

  

  
 

   

  
           

 

 
                 

  

thus (1.4) and (1.5) are equivalent systems, according validity of (1.2) and (1.3), 

since that the partial derivatives of the pressure and velocities were correctly 

transformed to the variable time, using                        . The 

nabla and Laplacian operators are considered calculated in Lagrangian 

formulation, i.e., in the variable time. Likewise for the calculation of  
  

  
, following 

(1.2), and external force  , using                     . The integration of 

the system (1.5) shows that anyone of its equations can be used for solve it, and 

the results must be equals each other, except for a constant of integration. Then 

this is a condition to the occurrence of solutions, if the velocity   and external force 

  are given and the pressure   must be calculated.  

 We use the following transformations (omitting the use of   , the 

calculation at time   of the position         of the moving particle): 

(1.6.1)  
   

   
  

      

      
 

 

  

   

  
    

     

  

(1.6.2)       
   

   
  

 

  

   

  

 
   

 
    

(1.6.3)          
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and  

(1.7.1)  
    

   
   

 

  
   

 

  
 
   

  
 
 
 

    

   
 

     

      

(1.7.2)       
    

   
  

 

  
   

 

  
 
   

  
 
 
 

    

   
   

and thus the system (1.5) can be integrated, finding the pressure   on the particle 

in motion.  

 From equations (1.5) to (1.7) it is possible to construct the Euler and 

Navier-Stokes equations in a new Lagrangian description from the respective 

Eulerian description.  Although in the Eulerian description a position         

refers to any position, generally adopted as fixed in time, when we want it to refer 

to a particle motion we arrive at this new Lagrangian description aforementioned. 

 Next, in section 2 we will deduce the equations of Euler, in section 3 we will 

deduce the equations of Navier-Stokes, the section 4 will show a new expression 

for the equations of Euler and Navier-Stokes, with the simultaneous use of the 

Eulerian and Lagrangian formulations (or a correction of the Eulerian 

formulation), and in the section 5 we will give examples of the need to use the new 

equations here deduced, rather than the traditional equations known. 

 The section 6 deals with the issue of breakdown solutions, section 7 on non-

uniqueness of solutions, and section 8, finally, will be our conclusion. 

 Except for sections 2 and 3 we use mass density    , otherwise if it is 

necessary replace the pressure   by     and the viscosity coefficient   by    . I 

believe that the new equations presented here really need to be accepted, and we 

will have exact solutions found faster for the various applications. 

 

2 – Deduction of Euler equations 

 Many deductions of the Euler (and Navier-Stokes) equations start from the 

assumption that the pressure is a scalar magnitude, equal in all directions at the 

same point. Particularly I do not think this needs to be this way, or rather, I believe 

that the pressure can be a vector entity, rather than a scalar, so there is a vector 

pressure such that              , which would make it extraordinarily simple 

to solve the Euler and Navier-Stokes equations. Instead of using the gradient of     

the vector     
  

  
 
  

  
 
  

  
   we should use the vector  

   

  
 
   

  
 
   

  
 , and then 
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(2.1)         
   

  
    

   

   

 
           

  
  
       ,  

for          solves the Euler equations, i.e., calculate the components of pressure 

given the velocity and an external force, conservative or not, and an “arbitrary” 

(well behaved, smooth, physically reasonable) function of time     . This will be a 

pressure with independence of path, depending only of the initial and final points, 

(  
    

    
 ) and (        ) respectively. Without wanting to deepen this subject 

now, we will continue using scalar pressure, at least in general. 

 We will follow the deduction of Landau & Lifshitz[4] and as they we will use 

  to indicate velocity and bold characters for vectors. They emphasize that  

           is the velocity of the fluid at a given point         in space and at a 

given time  , i.e., it refers to fixed points in space and not to specific particles of the 

fluid; in the course of time, the latter move about in space. The same remarks apply 

to   and  . 

 Let us considerer some volume in the fluid. The total force acting on this 

volume is equal to the integral (the minus signal indicates a compressive force) 

      

of the pressure, taken over the surface bounding the volume. Transforming it to a 

volume integral, we have 

(2.2)                   . 

Hence we see that the fluid surrounding any volume element    exerts on that 

element a force  –          . In other words, we can say that a force          

acts on unit volume of the fluid.  

 See that an equality similar to Gauss's law was used with the previous 

acceptance of scalar pressure. The same equality, with equal reason, could be 

rewritten, using a vector pressure             , as  

(2.3)           
   

  
 
   

  
 
   

  
   , 

i.e., without assuming that            and with the convention that   is a 

resultant vector of pressures applied on a volume element             centered 

at point         and time  .   

 Continuing Landau & Lifshitz, we can now write the equation of motion of a 

volume element in the fluid by equating the force –       to the produt of the 

mass per unit volume     and the acceleration       : 
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(2.4)                 . 

 The derivative       which appears here denotes not the rate of change of 

the fluid velocity at a fixed point in space, but the rate of change of the velocity of a 

given fluid particle as it moves about in space. This derivative has to be expressed 

in terms of quantities referring to points fixed in space. To do so, we notice that the 

change    in the velocity of the given fluid particle during the time    is composed 

of two parts, namely the change during    in the velocity at a point fixed in space, 

and the difference between the velocities (at the same instant) at two points    

apart, where    is the distance moved by the given fluid particle during the time 

  . The first part is          , where the derivative       is taken for constant 

     , i.e., at the given point in space. The second part is 

(2.5)    
  

  
   

  

  
   

  

  
           . 

Thus 

(2.6)                         , 

or, dividing both sides by    , 

(2.7)  
  

  
 

  

  
          . 

Substituting this in (2.4), we find 

(2.8)  
  

  
            

 

 
      ; 

it was first obtained by L. Euler in 1755. 

 If the fluid is in a gravitational field, an additional force   , where   is the 

acceleration due to gravity, acts on any unit volume. This force must be added to   

the right-side of equation (2.4), so the equation (2.8) takes the form 

(2.9)  
  

  
            

      

 
  . 

 Using the vector pressure, the correspondent to equation (2.9), with a 

generic density of external force   (not only gravitational), is 

(2.10)  
  

  
            

 

 
 
   

  
 
   

  
 
   

  
   , 

therefore a new kind of Euler’s equation, and whose integration does not involve 

major difficulties. 

 It is interesting observe that Batchelor[5] wrote (chap. 3.3) “The simple 

notion of a pressure acting equally in all directions is lost in most cases of a fluid in 
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motion”, thus shown that the imposition or acceptation of a pressure equal in the 

three rectangular coordinates is, in fact, something fragile, possibly not true in the 

nature, for fluids in motion. 

  

3 – Deduction of Navier-Stokes equations 

 Among several deductions of the equations of Navier-Stokes, we will choose 

the one described in Richardson[6](1950), for its brevity, simplicity and 

understanding. 

 Richardson firstly makes his deduction of the Euler equations (Acad. Berlin, 

1755), 

(3.1)  

 
 
 

 
 

  

  
  

  

  
  

  

  
  

  

  
   

 

 

  

  

  

  
  

  

  
  

  

  
  

  

  
   

 

 

  

  

  

  
  

  

  
  

  

  
  

  

  
   

 

 

  

  

  

where the velocity of fluid is        , the external force (on unit mass) is 

       , the pressure is   and the volumetric density of mass is  . 

 The equations are constructed from the statement of Newton’s Second Law 

of Motion, i.e., that the total force acting on a particle is the product of its mass and 

acceleration. 

 If        are the rectilinear co-ordinates of a small cube of the material 

(density  ) of volume   ,          the components of its acceleration and       of 

forces on unit mass, let           be the components of the external forces acting 

normally on the three surfaces of area     due to the differences of pressure (Fig. 

1).   

 
Fig. 1 – Forces on fluid element. 
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Setting aside the frictional forces for the moment (which resulting in Navier-Stokes 

equations), we have these conditions of equilibrium: 

(3.2)   

               

               

               

  

 In place of           we shall insert the pressure gradients in the 

corresponding directions, i.e. 

(3.3)  

 
 
 

 
       

  

  
   

      
  

  
   

      
  

  
   

   

For (3.3), in an ideal fluid, the pressure acts equally in all directions in the interior 

and at right angles to any surface presented to it. Then          are each derived 

from  , the mean hydrostatic pressure at the point in the fluid circumscribed by 

the cube. 

 Substituting in (3.2) we get 

(3.4)  

 
 
 

 
        

  

  

       
  

  

       
  

  

  

 These equations are not suited to direct application since the quantities 

      appear in them at once as dependent and independent variables. There are 

two ways of adapting them to suit experimental observation. We can ask ourselves, 

“At a given point  what fluid occupies the element of space subsequently?” or  

“Where does a given particle find itself as times goes on?” The first attitude 

corresponds to that of a fixed observer, the second to that of an observer who 

moves with the general velocity of the medium. 

 Mathematically  the first question can be put thus: “What function of        

and   are the velocity components                     ?” We proceed to 

retain       as independent variables but eliminate their dependent aspects to 

obtain 

(3.5)  
   

   
 

  

  
 

  

  
 

  

  
 
  

  
 

  

  
 
  

  
 

  

  
 
  

  
, etc. 

which with (3.4) resolve into the Eulerian equations (3.1). 
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 Answering to the first question, Richardson says that the second form of our 

question  “Where does a given particle find itself as times goes on?”) can be 

translated thus: “What functions of time and place are those co-ordinates – let 

them be        – which characterize a given particle?” To answer this  we get rid of 

      as independent variables but retain them where dependent and arrive at the 

Lagrangian (Mem. Acad. (Berlin), 1781) form of the equations of motion: 

(3.6)  

 
 
 

 
  

   

   
   

  

  
  

   

   
   

  

  
  

   

   
   

  

  
 

 

 

  

  
  

 
   

   
   

  

  
  

   

   
   

  

  
  

   

   
   

  

  
 

 

 

  

  
  

 
   

   
   

  

  
  

   

   
   

  

  
  

   

   
   

  

  
 

 

 

  

  
  

  

As we known, the form due to Euler is, however, more generally used. 

 Now let us introduce the frictional forces. We define the coefficient of 

viscosity,  , as the force per unit area of two parallel laminae of fluid unit distance 

apart, measured across the direction of flow. Thus, if    and      (Fig. 2) are the 

velocities (in the direction of   ) at two planes     apart, the force per unit area on 

the fluid in either plane is         , i.e., the product of the coefficient of viscosity 

and the velocity gradient perpendicular to the direction of flow. If      and   are 

such laminae, each of area  ,   exerts a force on   equal to            ;   exerts 

a force on   equal to                         , so that the net force on   is 

(3.7)    
   

   
      

 

 
    

   

   
      

   

   
      

where     is the mass of fluid between   and   and    is the respective volume. 

The factor    , written  , which we shall often require, is called the kinematic 

(coefficient of) viscosity. (It should be noted that it is here assumed that    is 

constant for a given fluid, invariable with      , but a more general proof also is 

made posteriorly in [6], here omitted.) 

 
Fig. 2 – Action of fluid friction.     

 In the general case, the total viscous force on an element of mass    due to 

the component    will be 
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written shortly       . This force must be added to those on the right-hand side 

of the equations we have already derived (Euler equations), resulting in the 

equations ascribed to Navier (Mem. Acad. Sci. (Paris), 1822) and Stokes (Camb. 

Trans., 1845), 

(3.8)  

 
 
 

 
 

  

  
  

  

  
  

  

  
  

  

  
   

 

 

  

  
      

  

  
  

  

  
  

  

  
  

  

  
   

 

 

  

  
      

  

  
  

  

  
  

  

  
  

  

  
   

 

 

  

  
      

  

with       the (kinematic) viscosity coefficient. 

 Confirming the difficulty of the Lagrangian description of the Euler and 

Navier-stokes equations, based on [7], the Navier-Stokes equations without 

external force and with volumetric mass density     are, describing the velocity 

as            and the spatial coordinates as           ,   

(3.9.1)  
    

   
   

   

   

  

   
  

    

          
    

      

   

   
 

   

   

   

   

    

      
  

   
 
   

 
     

(3.9.2)  
   

   
 

 

   
                      , 

where    is the label given to the fluid particle at time  . Its position and velocity 

at time   are, respectively,            and           . The respective deduction of 

these equations we will omit, but the reader can consult [7] for more details. 

 

4 – A new form of Euler and Navier-Stokes equations 

 The Eulerian (equations (3.1) and (3.8)) and Lagrangian (equations (3.6) 

and (3.9)) forms are not the unique possible equations for description of fluids. 

Other equation for modeling of fluids is possible, based on them, with the great 

advantage of linearity. It is what we will show in this section. 

 The system (1.3), for the sake of mathematical rigor, needs to be replaced 

by 
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(4.1)    

 
 
 

 
 
  

  
      

  

  
      

  

  
      

  

emphasizing that the velocity components that appear as the time derivative of the 

coordinate         are legitimate functions of time, i.e., can be considered as 

representative of the Lagrangian description,      , unlike the derivatives of    in 
   

  
, 
   

   
,     and     , that are in the Eulerian description, function of           .  

 Representing the Eulerian velocity and respective components with the 

letter E indicated as upper index, and the corresponding Lagrangian components 

with the letter L, the system (1.4) is rewritten as 

(4.2)   

 
 
 

 
 
  

  
 

   
 

  
   

    
 

  
   

    
 

  
   

    
 

  
      

  
 

 
       

     

  

  
 

   
 

  
   

    
 

  
   

    
 

  
   

    
 

  
      

  
 

 
       

     

  

  
 

   
 

  
   

    
 

  
   

    
 

  
   

    
 

  
      

  
 

 
       

     

  

being the pressure   and external force   implicitly defined in the Eulerian 

description. A more concise notation for (4.2) is simply, for        , 

(4.3) 
  

   
 

   

  
   

   

  
   

   

  
   

   

  
       

 

 
           , 

where        and    are in Eulerian description and          in Lagrangian 

description, i.e.,    
   

  
, with the radius vector                      

function of time and indicating a motion of a specific particle of fluid starting from 

position    
    

    
             . 

 The equations (4.2) and (4.3) shows us that the nonlinear form disappear, 

facilitating the obtaining of its solutions, transforming when       into a linear 

and second-order partial differential equation of elliptic type, already well-

studied[8]. If     (Euler equations) we have equations of first order, obviously, 

which is also widely studied[9]. We realize that for each possible value of     it is 

possible to obtain different values of   , and reciprocally, i.e., there is not an one-

one correspondence between    and   , thus it is convenient choose more easy 

time functions for the      , provided that compatible with the physical problem to 

be studied. 
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 Nevertheless, even though it is very interesting to study other mathematical 

solutions for the original system (1.4) or the new system (4.2), I understand that 

the final conclusion made in [2] and [3] remains valid: it is possible to exist 

velocities in the Eulerian formulation that do not correspond to a real movement of 

particles of a fluid, according to the Lagrangian formulation. When I wrote this the 

first time I did not have the equations (4.2) and (4.3), deduced later in [1], but if it 

is true (as it is) that we should have (1.3) and (4.1) for a motion of fluid particle, 

then    and its respective velocity    are closely related, and the initial use of (1.1) 

in section 1 is valid. This is an excellent question to be examined with examples, 

which we will see in the next section. 

 But even when the relationship (1.1) is not required, a general solution for 

the new Euler equations        

(4.4)  
  

   
 

   

  
   

   

  
   

   

  
   

   

  
     

or 

(4.5)  
  

   
 

   

  
   , 

in the case which the pressure   and external force               are given and 

the velocity              is calculated, is  

(4.6)       
        

  

   
   

 

 
     ,   

using   

(4.7)  
   

  
 

   
 

  
     

  

   
   . 

  
  is the component   of the initial velocity   ,    represents the use of 

transformation from Eulerian description to Lagrangian description and    

represents the inverse transformation used in   , returning to Eulerian description. 

We use implicitly   
     

        as well as            . 

 So here we conclude that the new Euler equations have a natural physical 

solution when the pressure and external force are given (or chosen) and the 

integration in (4.6) is possible, for        , solution which varies with the 

specific movement of particles that is used. Boundary conditions must be in 

accordance with the solution (4.6) and it is also necessary substitute (4.6) in (4.4) 

for verification of possible conditions to be obeyed by each   
  and   .     
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 In special, when     
  

   
    is a function without temporal dependence, a 

constant function, the solution (4.6) is  

(4.8)       
      

  

   
     , 

which is an exact solution and it is relatively fast and easy to simulate 

computationally. Substituting (4.8) in (4.4) we have   

(4.9)    
   

 

  
   

   
 

  
   

   
 

  
  , 

then a condition to be obeyed in this case. 

 See section 8, Conclusion, for a better form of these equations, where we 

use 

(4.10)  
  

  
  

   

  
   

   

  
   

   

  
   

   

  
    .  

 

5 – Verification of physically reasonable solutions 

§ 1 

 Of a point of view purely mathematical, it is not necessary to have the 

adoption of (1.1). It is possible forgotten that the Euler and Navier-Stokes 

equations have something relation with motion of fluids, liquids or gases, and 

accept that they are just equations of high level and difficulty of Pure Mathematics, 

but in this section we want to keep the bond or link between theses equations and 

the motion of fluids, and thus the use of (1.1) is born and can be used, as we will 

see. 

 If a particle (or some volume) of fluid has the movement governed 

according to the position vector          , with a temporal dependence 

                    ,  then the respective velocity of this particle (or 

volume) of fluid is   
  

  
  

  

  
 
  

  
 
  

  
 , also, a priori, dependent of time 

(except if all three derivatives are equal to constant). 

 The first equation of (1.1),  

(5.1.1)  
   

   
      , 

is valid when we intend to follow the movement of a particle (or group of particles 

in a small volume) because in a mechanical movement we have by definition 
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(5.1.2)     
   

  
   

i.e., the component   of velocity is dependent only of component   of position, 

which is obvious, then we have 
   

   
   if    , according we saw in section 1.    

 From equation (5.1.2) we conclude that         , or 

(5.1.3)          ,  

the second equation of (1.1). 

 Thus we emphasize that if it is not necessary to have some particle or group 

of particles in the elementary volume             in position         at time   

then the use of (1.1), or (5.1.1) and (5.1.3), can be ignored, and we will have a 

problem purely mathematical. 

 Even if there is some bond or link between the coordinates, as       

      and               in a circular motion of constant radius  , the 

relation (5.1.2) is still true, by definition, and we do not need despise (5.1.1), a 

calculation facilitator, except if the external force is intrinsically dependent of the 

more than one spatial coordinate in at least one of the three orthogonal directions 

and we have     . 

 Then, what is to be done when it is indispensable to use a determined 

relation between     and  , for example, when the particles need to be moving on 

a specific surface or manifold as         ? We try to first solve the equations 

using each variable in isolation, following (5.1.1), and at the end we use the 

dependence         , i.e., the final solution will be  

(5.1.4)   

          
          

                                

  

and so we have indeed, in final consequence,  
   

  
  . 

 We will check now the use of the relations (4.1), 

(5.1.5)  

 
 
 

 
 
  

  
      

  

  
      

  

  
      

  

origin of the fundamental difference between the traditional equations and the 

new equations presented here. In fact, when we use and distinguish in a same 
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equation the Eulerian    and Lagrangian    velocities the use of (1.1) is of 

secondary importance.  

§ 2 

 Be the example 1 

(5.2.1)  

 
 
 

 
        

  

  
     

  
   

 

  
  

        
  

  
     

  
   

 

  
  

        
  

  
     

  
   

 

  
  

  

in fact a movement of total acceleration equal to zero,  
   

 

  
 

   
 

  
 

   
 

  
  , 

each particle starting from a generic initial position           . 

 Suppose that the introduction of external force, internal frictional forces 

and internal pressure generated a solution for velocity, in the Eulerian formulation, 

such that, for example,  

(5.2.2)  

 
 
 

 
   

    
   

 

  
 

  

  
 

       

  
  

  
    

   
 

  
 

  

  
 

        

  
  

  
    

   
 

  
 

  

  
 

        

  
  

    

 The acceleration as used in the Euler and Navier-Stokes equations is 

(5.2.3)  

 
 
 

 
 

   
 

  
 

   
 

  
   

    
 

  
   

    
 

  
   

    
 

  
           

   
 

  
 

   
 

  
   

    
 

  
   

    
 

  
   

    
 

  
            

   
 

  
 

   
 

  
   

    
 

  
   

    
 

  
   

    
 

  
            

   

i.e., the use of the expression according to the traditional Euler and Navier-Stokes 

equations generates a wrong value for the value of the acceleration 
   

  
.  

 By other side, using the correct form of the new Euler and Navier-Stokes 

equations, according (4.2), we have 
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(5.2.4)  

 
 
 

 
 
   

 

  
 

   
 

  
   

    
 

  
   

    
 

  
   

    
 

  
  

   
 

  
 

   
 

  
   

    
 

  
   

    
 

  
   

    
 

  
  

   
 

  
 

   
 

  
   

    
 

  
   

    
 

  
   

    
 

  
  

  

therefore the correct and expected result conform (5.2.2) for the acceleration 
   

  
, 

but with the disagreement  
   

  
 

   

  
. 

 For that to be 
   

  
 

   

  
 for all time and position it is necessary too, by a 

logical necessity of consistency between both velocities, that 

(5.2.5)                            , 

so, from (5.2.1) 

(5.2.6)  

 
 
 

 
    

    
   

 

  
 

   
 

   
  

  
    

   
 

  
 

   
 

   
  

  
    

   
 

  
 

   
 

   
  

  

and now 
   

  
 

   

  
  .  

§ 3 

 Be now the example 2  

(5.3.1)  

 
 
 

 
           

  

 
 
  

  
         

  
   

 

  
  

          
  

 
 
  

  
         

  
   

 

  
  

          
  

 
 
  

  
         

  
   

 

  
  

  

for constants                        , a movement of constant acceleration 

       . 

 Suppose again that the introduction of external force, internal frictional 

forces and internal pressure generated a solution for velocity, in the Eulerian 

formulation, such that, for example,  
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(5.3.2)  

 
 
 

 
   

        
   

 

  
  

  
        

   
 

  
  

  
        

   
 

  
  

   

without dependence of spatial position and with      . 

 The acceleration as used in the Euler and Navier-Stokes equations is 

(5.3.3)  

 
 
 

 
 
   

 

  
 

   
 

  
   

    
 

  
   

    
 

  
   

    
 

  
 

   
 

  
   

   
 

  
 

   
 

  
   

    
 

  
   

    
 

  
   

    
 

  
 

   
 

  
  

   
 

  
 

   
 

  
   

    
 

  
   

    
 

  
   

    
 

  
 

   
 

  
   

   

i.e., this time the use of the expression according to the traditional Euler and 

Navier-Stokes equations generates a correct value for the acceleration 
   

  
 because 

there is no dependence of position. 

 Besides this, using the correct form of the new Euler and Navier-Stokes 

equations, according (4.2), we have 

(5.3.4)  

 
 
 

 
 
   

 

  
 

   
 

  
   

    
 

  
   

    
 

  
   

    
 

  
 

   
 

  
   

   
 

  
 

   
 

  
   

    
 

  
   

    
 

  
   

    
 

  
 

   
 

  
  

   
 

  
 

   
 

  
   

    
 

  
   

    
 

  
   

    
 

  
 

   
 

  
  

  

therefore the correct and expected result conform (5.3.2) for the acceleration 
   

  
, 

this time with the agreement  
   

  
 

   

  
. 

§ 4 

 We will next use the solution (4.6) of (4.5), 

(5.4.1)       
        

  

   
   

 

 
     , 

solution of the new Euler equations, for the special and easier case that    
  

   
,  

i.e., the external force is conservative, a gradient field, being the pressure its 

respective potential, and   
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(5.4.2)       
    

  
   

 

  
 

   
 

  
  , 

and with 

(5.4.3)  

 
 
 

 
      

   
  

  
     

     
  

   
 

  
    

  

     
   

  

  
     

     
  

   
 

  
    

  

     
   

  

  
     

     
  

   
 

  
    

  

  

for constants         , a movement of contraction from            to        , with 

   

  
            

                   .  

 The acceleration as used in the traditional Euler and Navier-Stokes 

equations is 

(5.4.4) 

 

 
 
 

 
 
   

 

  
  

   
 

  
   

    
 

  
   

    
 

  
   

    
 

  
       

    
 

  
   

    
 

  
   

    
 

  
    

   
 

  
  

   
 

  
   

    
 

  
   

    
 

  
   

    
 

  
       

    
 

  
   

    
 

  
   

    
 

  
   

   
 

  
  

   
 

  
   

    
 

  
   

    
 

  
   

    
 

  
       

    
 

  
   

    
 

  
   

    
 

  
    

  

which shows us the possibility of being valid 
   

 

  
   with 

   
 

  
  .  

 Being necessary in this case that  
   

 

  
 

   
 

  
  , for          we have 

(5.4.5)  

 
 
 

 
   

    
 

  
   

    
 

  
   

    
 

  
  

  
    

 

  
   

    
 

  
   

    
 

  
  

  
    

 

  
   

    
 

  
   

    
 

  
   

  

which is valid, for example, for initial velocities such that 

(5.4.6)    
                ,  

with 

(5.4.7)                     ,  
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         real numbers,   :     differentiable functions, for          If the 

condition of incompressibility            is required in the resolution of a 

given problem then it is also necessary that 

(5.4.8)      
        

       
    , 

always satisfied when (5.4.7) is true. 

 With the correct form of the new Euler and Navier-Stokes equations we 

have, using (5.4.2), 

(5.4.9) 

 

 
 
 

 
 
   

 

  
  

   
 

  
   

    
 

  
   

    
 

  
   

    
 

  
       

    
 

  
   

    
 

  
   

    
 

  
      

   
 

  
  

   
 

  
   

    
 

  
   

    
 

  
   

    
 

  
       

    
 

  
   

    
 

  
   

    
 

  
     

   
 

  
  

   
 

  
   

    
 

  
   

    
 

  
   

    
 

  
       

    
 

  
   

    
 

  
   

    
 

  
     

  

which also has by solution, for example, 

(5.4.10)   
                ,  

supposing   :     differentiable functions and          real numbers, for 

       , but this time with 

(5.4.11)     
         

         
      , 

or equivalently  

(5.4.12.1)   
      

 

 
     

         
         , 

(5.4.12.2)   
      

 

 
     

         
         , 

(5.4.12.3)   
      

 

 
     

         
         , 

for all    , or all     are constants. For that            it is necessary also 

be valid (5.4.8) or all    need be constant. 

 According to the solution (5.4.10) and for the chosen movement given by 

(5.4.3), the condition (5.4.11) imposes that 

(5.4.13.1)     
 

 
           , 

(5.4.13.2)     
 

 
           , 

(5.4.13.3)     
 

 
           , 
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respectively if            , therefore each initial position of a specific 

particle or group of particles need to obey the previous condition, in this case: 

initial positions on a plane for each family of coefficients        . 

 Note that in this way the Lagrangian solution is which governs the 

movement of fluids, or rather, explains what happens in the fluid, with respect to 

velocity. We can choose many different   functions for Eulerian solution of   , but 

the individual motion of the particles or group of particles is the same with each 

prefixed choice of   . Thus, it is unnecessary to choose complicated initial 

velocities in the Eulerian formulation when the movement in the Lagrangian 

formulation is simpler, at least when the external force is a conservative field. 

 As made in § 2, by a logical necessity of consistency between both velocities 

and for that  
   

  
 

   

  
 for all time and position it is necessary too that 

(5.4.14)                           , 

so, from (5.4.3) we have 

(5.4.15) 

 
 
 

 
    

     
   

 

  
 

   
 

  
 

   
 

  
   

   
 

  
   

  
     

   
 

  
 

   
 

  
 

   
 

  
   

   
 

  
   

  
     

   
 

  
 

   
 

  
 

   
 

  
   

   
 

  
   

  

and now 
   

  
   

   

  
                 , but it is a compressible motion, with 

       .  

§ 5 

 In this present case we will analyze the same Lagrangian solution in (5.4.3), 

but now with time dependent Eulerian solution, i.e., with some or all 
   

 

  
  . Again  

with      and  
   

  
  , the Lagrangian solution is 

(5.5.1)  

 
 
 

 
      

   
  

  
     

     
  

   
 

  
    

  

     
   

  

  
     

     
  

   
 

  
    

  

     
   

  

  
     

     
  

   
 

  
    

  

  

for constants         , a movement of contraction from            to        , with 

   

  
            

                   .  
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 We have in this case for Eulerian representation in the traditional meaning 

(5.5.2)  

 
 
 

 
 
   

 

  
  

   
 

  
   

    
 

  
   

    
 

  
   

    
 

  
     

   
 

  
  

   
 

  
   

    
 

  
   

    
 

  
   

    
 

  
     

   
 

  
  

   
 

  
   

    
 

  
   

    
 

  
   

    
 

  
     

  

 Choosing for respective solution 

(5.5.3)    
                   ,  

with   :     differentiable functions and          real numbers, for        , 

we have 

(5.5.4)                       ,  

otherwise all    are constants. If the condition of incompressibility          

  is required in the resolution of a given problem then it is also necessary that 

(5.5.5)      
        

       
    , 

always satisfied when (5.5.4) is true. 

 With the correct form of the new Euler and Navier-Stokes equations we 

have 

(5.5.6)  

 
 
 

 
 
   

 

  
  

   
 

  
   

    
 

  
   

    
 

  
   

    
 

  
      

   
 

  
  

   
 

  
   

    
 

  
   

    
 

  
   

    
 

  
     

   
 

  
  

   
 

  
   

    
 

  
   

    
 

  
   

    
 

  
     

  

which also has by solution, for example, 

(5.5.7)    
                   ,  

for   :     differentiable functions,          real numbers,        , but this 

time with 

(5.5.8)      
         

         
        , 

or equivalently  

(5.5.9.1)   
      

 

 
     

         
           , 

(5.5.9.2)   
      

 

 
     

         
           , 
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(5.5.9.3)   
      

 

 
     

         
           , 

for all    , or all     are constants. For that            it is necessary also 

be valid (5.5.5) or all    need be constant. 

 According to the solution (5.5.7) and for the chosen movement given by 

(5.5.1), the condition (5.5.8) imposes that 

(5.5.10.1)     
 

 
             ,  

(5.5.10.2)     
 

 
             , 

(5.5.10.3)     
 

 
             , 

respectively if            , therefore each initial position of a specific 

particle or group of particles needs to obey the previous condition, in this case: 

initial positions on a plane for each family of coefficients          . 

 Note that a solution in the Lagrangian description may correspond to two 

(or even more) solutions in the Eulerian description, for example, a steady state 

solution as well as a non-steady state solution, as can be seen by comparing the 

solutions in § 4 and § 5, so it is convenient to look for, or pre-define, simpler 

formats for Eulerian solutions. 

 On the other hand, for to have logical consistency between both velocities, it 

is necessary that    

(5.5.11)                            

and 
   

  
   

   

  
 for all time    , and we came back to the solution obtained in 

(5.4.15), a steady state solution, i.e.,  

(5.5.12) 

 
 
 

 
    

     
   

 

  
 

   
 

  
 

   
 

  
   

   
 

  
   

  
     

   
 

  
 

   
 

  
 

   
 

  
   

   
 

  
   

  
     

   
 

  
 

   
 

  
 

   
 

  
   

   
 

  
   

  

a compressible motion with         and  
   

  
   

   

  
                 .   

§ 6 

 Lastly, we will see the new Navier-Stokes equations. As the Lagrangian 

description governs the movement of particles or group of particles, while the 

Eulerian description is a kind of complicating of the real (or approximate, say) 
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behavior of fluids, at least when the external force is conservative and the pressure 

is its potential (     , we will try an Eulerian solution for velocity using (1.1), 

i.e., given       
    

    
   we will use the form 

(5.6.1)    
    

                            

in the equation 

(5.6.2)  
   

 

  
       

  
 

 
 

 

   
      , 

with 

(5.6.3)  
   

 

  
 

   
 

  
   

    
 

  
   

    
 

  
   

    
 

  
 

and      without specific value, thus 

(5.6.4)          
       

      
           

 

 
               ,           

an ordinary differential equation, for          supposing    and    differentiable 

and continuous functions how much is needed. 

 By the superposition principle we can also add solutions, 

(5.6.5)    
    

            
       

 
                  

 
   , 

and then 

(5.6.6)            
       

       
            

 

 
                 ,           

but the better use of (1.1) is when we give completely the Lagrangian and Eulerian 

solutions for velocity (i.e., a choose obeying the required initial and boundary 

conditions as well as the compressibility condition) and the external force is 

conservative, such that,  

(5.6.7)   
     

   

  
        

 

 
               

 

  
    

       

  

for           i.e., the pressure is the unique function which we do not have a 

priori and need be calculated, while the choose components of velocities have the 

necessity to be logically consistent with the problem in question. In section 6 we 

will see again this solution.   

 We now will make the Eulerian solution even easier than (5.6.1) by 

removing the dependence of time, 
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(5.6.8)    
    

            , 

with 

(5.6.9)  
   

 

  
   

    
 

  
   

    
 

  
   

    
 

  
       

  
 

 
 

 

   
      , 

     with free value, and so 

(5.6.10)   
      

      
 

 
           

or 

(5.6.11)   
     

 

 
 
  
      

  
     

   , 

a spatial solution which obviously cannot varies in time and for this reason it is 

necessary that the function   
     is a real constant   . The solution is exponential 

in relation to coordinate   : 

(5.6.12)   
            

          , 

which in fact solves (5.6.9) for            real constants. 

 Note that although (5.6.12) is a spatially unlimited function for       if 

     and     , the respective Lagrangian solution   
       , which indicates a 

motion of constant velocity, is well behaved, smooth and limited, for all position 

and all    . Then this is another case (as in § 2) in that we have a regular motion 

in the time in Lagrangian description but with possibility of an unlimited solution 

in Eulerian description. By other side, if      and      the respective 

component   
  decreases with position for      and it is unlimited for      , 

which also is not compatible with the respective motion of those particles or group 

of particles, but nevertheless it is a possible solution in Eulerian description.     

 Also note that in each of the examples in this section, we had initially in 

general                  , except if     and                is the 

initial position, or some specific set of positions         and            at time   (in 

special,                               according defined in the respective 

Lagrangian description) or if     is not dependent of  position (as in § 3),  so by the 

chain rule the correct form of the total acceleration 
   

  
 in a particle of fluid (or 

elementary volume    or group of particles) is 

(5.6.13) 
   

  
 

   

  
   

   
 

  
   

   
 

  
   

   
 

  
, 

because we have in general  
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(5.6.14)   
   

 

  
   

   
 

  
   

   
 

  
   

    

  
   

    

  
   

    

  
.  

We are using implicitly the initial position            in the Lagrangian 

description       as constant, although it has the same meaning as in 

              .  

 In the last example of this § 6 for that 

(5.6.15)                            
 

  
                 

and  
   

  
   

   

  
 for all     it is necessary to have, for    ,  

(5.6.16)   
                  

        

and then, from (5.6.11) and (5.6.12), 

(5.6.17)       
       

      

and 

(5.6.18)   
     

         
        

where               
    

    
   is the respective initial velocity, a motion of 

constant velocity              for each particle or group of particles in 

Lagrangian description, without compressibility along time, but an exponential 

function in Eulerian description and with       . 

 Also thinking about other time values,    , we cannot accept this solution, 

and then the unique possible solution here is 

(5.6.19)   
           

       , 

thus 

(5.6.20)      
  

and so, no movement, 

(5.6.21)     .  

 The conclusion in this case is that it is necessary to have time dependence in 

the velocity   . 
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6 – The question of the breakdown solutions 

 Without passing through the Lagrangian formulation, given a velocity 

           at least two times differentiable with respect to spatial coordinates and 

one respect to time and an integrable external force           , perhaps the better 

expression for the solution of the equation (1.4) is 

(6.1)                  
 

             
  
  
 

 
        , 

                

       
   

  
    

   

   

 
             

 

 
             , 

supposing possible the integrations and that the vector     
  

  
         

     
 

 
          is a gradient function, where it is necessary that 

(6.2)  
   

   
 

   

   
. 

This is the development of the solution of (1.4) for the specific path   going 

parallely (or perpendicularly) to axes     and   from    
    

    
              to 

                  , since that the solution (6.1) is valid for any piecewise 

smooth path  . We can choose   
               

               
           for 

the origin points and                                      for the 

destination points.      is a generic time function, physically and mathematically 

reasonable, for example with        or adjustable for some given condition. 

Again we have seen that the system of Navier-Stokes equations has no unique 

solution, only given initial conditions, supposing that there is some solution. We 

can choose different velocities that have the same initial velocity and also result, in 

general, in different pressures. 

 The remark given for the system (1.5), when used in (1.4), leads us to the 

following conclusion: the integration of the system (1.4), confronting with (1.5), 

shows that, except for a constant or free term of integration, respectively 

                  and         , anyone of its equations can be used for solve it, 

and the results must be equals each other, if the velocity   and external force   are 

given and the pressure   must be calculated. Then again this is a condition to the 

occurrence of solutions, otherwise there is not any solution, which shows to us the 

possibility of existence of “breakdown” solutions  as defined in [10]. 

 By other side, using the first condition (1.1), 
   

   
   if    , due to 

Lagrangian formulation, where    
   

  
  the original system (1.4) is simplified as 
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(6.3)  

 
 
 

 
 
  

  
 

   

  
   

   

  
 

 

 
 
    

   
   

  

  
 

   

  
   

   

  
 

 

 
 
    

   
   

  

  
 

   

  
   

   

  
 

 

 
 
    

   
   

  

where    is a function only of the respective    and  , but not    if    . When it is 

required the incompressibility condition,      
   
  
 

   
  
 

   
  
   , then the 

constant 
 

 
 in (6.3) should be replaced by 1. 

 If the external force has potential,     , then the system (6.3) has 

solution 

(6.4)         
   

  
   

   

   
  

 

 
 
    

   
        

  
  
 

 
         

              
   

  
   

   

   
  

 

 
 
    

   
     

  
  
 

 
        , 

       
 

, which although similar to (6.1) has the solubility guaranteed by 

the special functional dependence of the components of the vector  , i.e., 

             with 
   

   
   if    , supposing  , its derivatives and   integrable 

vectors. In this case the vector   described in (6.1) is always a gradient function, 

i.e., the relation (6.2) is satisfied. Note that if   is not an irrotational or gradient 

vector, i.e., if it does not have a potential, then the system (6.3), with            , 

it has no solution  the case of “breakdown” solution in [10]. 

 When the incompressibility condition is imposed         we have, using 

(1.1), a small variety of possible solutions for velocity, of the form  

(6.5)                        ,   

               , with 

(6.6)                     , 

if the coordinates          are independent of each other. In this case it is valid 

     , i.e., the system of equations has a solution for velocity independent of 

viscosity coefficient, equal to Euler equations, and except when     (for some or 

all    ) we have always      
  

        , the occurrence of unbounded 

or unlimited energy, which is not difficult to see.  
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 Another class of solutions   for velocity gives more possibility for the 

construction of the components of velocity   , but maintains a bond between 

         and   such that 

(6.7)                          
                     

        , 

where   
       , and there is a scalar function    with                or 

similarly                or               . The dependence between 

         and   is necessary for that       in these points            at each 

time  , forming a surface or manifold which is the domain of the solutions and 

which varies in time.  

 Being correct that (1.1) and (4.1) can be used, which we saw in section 5, 

the solution (6.4) for pressure can therefore be replaced by 

(6.8)         
   

  
   

   

   
  

 

 
 
    

   
        

  
  
 

 
         

              
   

  
   

   

   
  

 

 
 
    

   
     

  
  
 

 
         

                         
      

        , 

where          is the component   of the velocity in Lagrangian description of a 

particle of fluid in motion,             is the component   of the velocity in 

Eulerian description,              
   

  
   

   

   
  

 

 
 
    

   
     

  
  
  and the 

other meanings already given previously in this article. As we have already seen, 

when it is required the incompressibility condition then the constant 
 

 
 in (6.8) 

should be replaced by 1 and the general solution (6.5) for velocity with the 

condition (6.6) remains valid, if the coordinates          are independent of each 

other, as well as (6.7) with possible dependence between          and  . 

 See section 8, Conclusion, for another case of breakdown solution, when the 

Euler and Navier-Stokes equations have no solution. 

 

7 – The non-uniqueness of solutions 

 The new equations presented here have clearly non-unique solutions (when 

there is at least one solution) in the following sense: 

1) For the same initial Eulerian velocity, indicated as   , we can propose different 

velocities in the Lagrangian description,   , to compose the new equations, also 

with possibility of collisions between the particles belonging to the different 

movements described by each   . This can result in a rather chaotic Eulerian 
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solution for velocity, in fact many velocities for a same point, and consequently 

also for the pressure, if it has not previously been chosen. 

2) When we analyze the uniqueness of solutions        bearing in mind that the 

Lagrangian velocity    is predetermined, if only the initial velocity    is given we 

have the non uniqueness of the pair        because we can construct many 

possible and different velocities   , as                               

 :          :           all smooth functions, and the pressure will be given 

by (6.8), where we are supposing the use of (1.1), i.e.,   
    

         with 
   

 

   
   

if    . Note that in this case we have        and the equation has solution, 

again with many possible pressures.           

3) If is given a boundary condition of type          (Dirichlet condition), with 

                and                 , then we can use the solution for 

velocity as       and also we have the non uniqueness of the pair       , 

because for the pressure to be unique it needs to be known the values of 

                            i.e., the pressure is dependent of the values of 

          and moreover     , according (6.8). Naturally, the velocities    and    

must, themselves, obey to the new equations of Euler and Navier-Stokes,    for 

    and    for    . Note that in our convention the functions          

                  denote the pressure value in a generic time    , respectively 

at the positions                           , where            is the initial 

position. In this condition we have          .          

 

8 – Conclusion   

 In fact we saw two problems in Euler and Navier-Stokes equations, not only 

one: 

1) the pressure is (or may be) a vector, which was viewed briefly in sections 2 and 

3 during the deductions of these equations; 

2) the nonlinear characteristic of these equations is not correct for modeling of 

motion of fluids, because the use of chain rule in 
  

  
 

  

  
 

  

  

  

  
 

  

  

  

  
 

  

  

  

  
 implies that    

  

  
,    

  

  
 and    

  

  
 are time functions only, without 

spatial dependence, which we viewed in section 4. 

 We propose a new form for the Euler       and Navier-Stokes equations, 

where there is the simultaneous use of Euler and Lagrangian descriptions in a 

same equation, i.e., for        , 
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(8.1) 
  

   
 

   

  
   

   

  
   

   

  
   

   

  
       

 

 
 

 

   
        , 

where        and    are in Eulerian description and          in Lagrangian 

description, i.e.,    
   

  
, according equation (4.3). Of this manner the nonlinear 

form of these equations disappear, replacing it by linear equations, a second-order 

equation of elliptic type if     or first order equation if    .  

 Obviously, using the vector nature of pressure the equation (8.1) needs to 

be modified to 

(8.2) 
   

   
 

   

  
   

   

  
   

   

  
   

   

  
       

 

 
 

 

   
        . 

In (8.1) it is still necessary to have a resultant conservative field, a gradient vector,   

specifically for the integrable vector             , with  

(8.3)           
 

 
 

 

   
       

 
   

   
  
   

   
  
   

   
  
   

   
  
   

whereas in equation (8.2) this is no longer necessary. 

 In section 4 we conclude that the new Euler equations have a natural 

physical solution when the pressure and external force are given (or chosen) and 

the integration in (4.6), which is the mentioned solution,   

(8.4)       
        

  

   
   

 

 
     , 

is possible, for        , in general a non unique solution varying with the 

transformations indicated as    and   . Beside this, boundary conditions must be 

in accordance with this solution, as well as it is necessary the verification of 

possible conditions to be obeyed by each   
  and      , substituting the solution in 

the equation, for that the mentioned solution effectively satisfies the equation of a 

mathematical point of view.   

 The functions   describe the velocity of the particles of the fluid over time, 

so the importance of them can be considered greater than that of velocity  , that is, 

it is convenient to choose initial velocities    as simple as possible that are 

compatible with the selected movement described by the   functions, in special: 

                            . Without the compromise of the equality in time 

of the Eulerian and Lagrangian descriptions, it is even possible that different 

velocities  , for example       , correspond to the same motion described by  , 

and we have          and          . So, seems that the incompressibility 

condition is not of priority importance for the description of motion of fluids. Note 

that similarly to what we have already said in section 5, we use implicitly the initial 
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position            in the function      as constant, although it has the same 

meaning as in              .  

 It is also possible an easier form for the Euler       and Navier-Stokes 

equations, that is 

(8.5)  
   

   
 

   

  
       

 

 
 

 

   
        , 

where we can substitute    by   if             is scalar pressure. Here 
   

  
 is, 

in fact, a function only of time (and possibly constant parameters), without explicit 

dependence of      . The new forms for these equations are most didactic, 

because they can remind us of the need to be valid 

(8.6)                                  
 

  
                 

and   

(8.7)  
   

  
   

   

  
 

  

  
  

   

  
   

   

  
   

   

  
   

   

  
    

when we analyze a fluid motion, a physical system, not only the solution of a 

problem purely mathematical, without application.   

 Now, to solve the equations of Navier-Stokes, and especially the Euler 

equations, is no more difficult than solve the traditional equations of mathematical 

physics, as heat equation, wave equation, Laplace and Poisson equations, etc., all of 

them linear differential equations. Despite this, in case of scalar pressure, if     

and the external force is non conservative there is no solution for Euler equations, 

as well as if the initial velocity is gradient                 and the external 

force is non conservative, which leads us to the case of breakdown solution 

described in [10], when the pressure is a scalar pressure, because is not possible 

the calculation of pressure, according rule (6.2) viewed in section 6. 

 Note that the application of a non conservative force in fluid is naturally 

possible and there will always be some movement, even starting from rest. So that 

this is not a paradoxical situation it seems certain that the pressure in this case 

cannot be scalar, but rather vector, and thus the equations returns to solution in all 

cases (assuming all derivatives are possible, etc.). It is as indicated in (8.2) and 

(8.5). 
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