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Prof. Reg Cahill has reported [1] that Random Event Generator (REG) devices can

detect passage of dynamical 3-space waves. Herein we describe an attempt to find addi-

tional evidence for this discovery, using data from a REG located in Perth, Australia and

from another in Manchester, U.K., for fifteen days centered on each full moon during a

period of one year.

For each day we applied correlation analysis to determine travel times for putative

waves. Then wave speed and direction, over each 24 hour period, were determined

by fitting to the observed travel times, theoretical curves of how travel times would vary

with Earth rotation. We thereby derived an average incoming RA, declination, speed

and associated standard deviations for the waves of each day.

Following this we examined the directions and speeds to determine if they were consis-

tent with a real physical phenomena, rather than being artifacts of random correlations.

To this end we made use of probability density plots and other statistical techniques. On

the way we recognized that wave orientation is not the same as 3-space flow direction

and that it is the latter rather than the former which is of principle interest. Geometry

implies that variation of flow speed will cause the detected speeds of wave fronts mov-

ing parallel to 3-space flow to have larger standard deviations than those moving across

the flow. On this basis we preferentially selected the 50% of days with the largest speed

standard deviations as being the most likely proxies for space flow direction.

A probability density plot of directions for these days exhibited a peak near RA = 4.5 h,

consistent with previous determinations of incoming 3-space flow direction by Cahill

[3] and Dayton Miller [8]. Moreover, removing Earth orbital and gravitational in-

flow velocities from the observed velocities allowed a peak of higher density to be

obtained, which is consistent with what one would expect of a real physical phenom-

ena. The peak indicated a most probable galactic flow direction of RA = 4.14+0.83
−0.81

h,

dec = −77.8+2.7
−2.1

deg, and wave speed of 500+20
−10

km/s.

1 Introduction

In Prof. Reg Cahill’s theory of dynamical space [1], gravity is caused by acceleration of space into

matter. The equations governing this process are nonlinear and nonlocal, and lead to prediction of fractal

dynamical 3-space waves. These are a type of gravitational wave but which differ from those predicted

by General Relativity.

Random Event Generator (REG) devices generate random numbers by detecting the quantum to classical

transition of electrons tunnelling through a barrier in a tunnel diode. According to the standard inter-

pretation of quantum theory the transitions should be completely random, however Cahill’s theory and

experiments [1] suggest that this is not the case and that the transitions are driven by passage of dynam-

ical 3-space waves. If so, then the random numbers output by different REG devices may not be 100%

independent and correlation analysis of data from two spatially separated REG devices, approximately

aligned with wave direction, should be able to reveal the travel time of waves that influence both devices.

To test this possibility we obtained data from a Global Consciousness Project [5] REG located in Perth,

Australia and from another in Manchester, U.K. as shown in Table 1 for fifteen days centered on each full

moon for all days for which data was available, from 26 June 2012 to 30 June 2013.

Of 195 potential days, complete data was available for 138.
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Table 1: Details of GCP REG Devices Used

Perth Manchester

ID Number 2232 2006

Latitude -31.921 53.682

Longitude 115.892 -2.165

Device Type Orion Orion
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Fig. 1: Travel times from REG-REG Perth to Manchester data for October 30, 2012. High correlation values for

each Manchester-Perth RA hour have been binned and the mean, SD (blue) and SEM (grey) shown. The red curve

shows a least square error best fit of a sinusoid to all points. (Horizontal spacing of points is non-uniform because

the RA of each point is the mean RA of values in the associated bin).

2 Travel times

For each of the 138 days, Perth to Manchester travel time τ values were determined by computing the

correlation function,

C(τ, t) =

t′=t+T∑

t′=t−T

S 1[t
′ − ⌊τ/2⌋ ] S 2[t

′ + ⌈τ/2⌉ ] e−a(t′−t)2 (1)

for data sequences S 1[t] and S 2[t] containing values output once per second by the REG devices. Here

⌊ ⌋ and ⌈ ⌉ represent floor and ceiling functions that round τ/2 down or up to integer values to ensure

correct indexing when τ is an odd number. 2T = 300s is the time interval used about UTC time t, and the

Gaussian term applies a Gaussian window to suppress end effects. The width of this window is controlled

by parameter a chosen as described in the following section.

τ values were determined by calculating C(τ, t) for τ in the range 9 to 23 seconds and then finding which

value of τ in the range 10 to 22 corresponded to the maximum peak value of C(τ, t).

τ values with high correlations∗ were then binned and averaged per RA hour of the Manchester-Perth

spatial separation vector that rotates with the Earth. We thereby obtained a mean travel time, Standard

Deviation (SD) and Standard Error in the Mean (SEM) for 24 RA directions such as shown in Fig. 1.

3 Gaussian window parameter a

To determine an optimum value for Gaussian window parameter a, we histogrammed the binned values

to obtain histograms such as shown in Fig. 2 and applied the following notion of signal visibility.

Let bar heights y1, y2 . . . yN be the frequencies of τ values in columns 1, 2 . . .N. Then we can define

signal visibility as mean deviation of bar height over mean bar height, ie.,

∗For each day the high correlations were all those higher than a cutoff value which would allow each bin to contain at least one

sample. To the bin(s) which then contained only one sample, a second sample with the nearest slightly lower correlation was added

to allow calculation of standard deviation.
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Frequencies of tau values during RA-21 on 2013-1-26
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Fig. 2: Histograms of τ values detected during different RA hours illustrating a range of signal visibilities from

low to high. The multiple peaks are consistent with passage of non-distinguishable wave forms, wn, wn+1, wn+2... etc.

three to five seconds apart. Then the correlation of wn at one detector with say wn+1 or wn+2 at the other, may be as

large as the correlation with wn. The single peak in the last histogram is consistent with passage of distinguishable

waveforms.

V(y) =

1
N

∑N
i=1 |yi − ȳ|

ȳ
(2)

Applying this formula to a histogram containing equal numbers of bars with heights equal to max and

min gives,

V =
max − min

max + min

which is the formula for signal visibility used in interferometry. However, whereas the latter has a

maximum value of V = 1.0 when min = 0, Eqn. (2) gives higher values when the number of maxima is

reduced. Eg if a histogram contains one bar of height equal to max and (N − 1) with height of zero, then

for our histograms with 13 bars (2) gives,

V(y) = 2
N − 1

N
≈ 1.85

Using (2) we determined minimum visibility for each day and then the mean minimum for all days for a

range of a values. The blue curve in Fig. 3. shows results obtained from data from seven days per full

moon during a year. This has a distinct peak at a = 0.0003795 so we used this value of a for subsequent

calculations.

The red curve shows the mean for all days of the median standard error per day in the hourly τ values.

This increases with a because increasing a reduces the width of the Gaussian window and reduces the

number of correlation products that are averaging together, however the rate of increase shows a slight

leveling off at peak visibility.
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Fig. 3: Plots of mean minimum signal visibility and mean median travel time standard error for 7 days per full moon

versus Gaussian window parameter a. The peak visibility occurs at a = 0.0003795.

4 Wave effects in histograms

The histograms of τ values shown in Fig. 2 illustrate a range of signal visibilities obtained during dif-

ferent RA hours. Histograms often had multiple peaks consistent with passage of similar wave forms,

wn, wn+1, wn+2... etc. three to five seconds apart and which may have changed shape during passage from

Perth to Manchester. Then the correlation of wn at one detector with say wn+1 or wn+2 at the other, could

be as large or larger than correlation with wn. The presence of multiple peaks resulted in mean τ val-

ues with large standard deviations and also caused variation of the mean values to be attenuated towards

the center of the 10 to 22 second detection range. To compensate for this we applied a disattenuation

procedure to derived results as described later.

5 Fitting of sinusoids

Given travel time data for 24 RA directions, the incoming speed and the direction of plane waves can be

determined by fitting,

τ =
R � v

v2
(3)

where R is the Manchester-Perth spatial separation vector and v is the velocity of the Earth relative to the

waves. As the daily rotation of R causes the right hand side of Eqn. (3) to be sinusoidal, the fit can be

done by fitting a sinusoid to the travel times such as shown in Fig. 1.

The RA of the peak will then indicate the incoming RA of the waves and the amplitude and mean will

allow determination of incoming declination and speed. However, the means and amplitudes need to be

adjusted to compensate for the above mentioned attenuation effect.

6 Amplitude disattenuation

When τ values obtained during a given RA hour are averaged together, the presence of multiple peaks in

histograms such as seen in Fig. 2 implies that wrong values caused by miscorrelation will be averaged

together with correct values and the resultant mean value will then most likely be attenuated towards

the center of the detection range. If we assume such wrong values have a random distribution, this

phenomenon will cause the amplitudes of the sinusoids to be attenuated by an amount equal to 1/(1 + n)

where n is the average number of miscorrelation values per correct τ value.
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Fig. 4: Disattenuated amplitudes obtained by sorting the original values and then multiplying by a suitable value m

to allow the best fit exponential curve to match the range of the detection process. Here use of a logarithmic vertical

axis results in a straight line plot.

To compensate for this effect we multiplied the sinusoid amplitudes so that a best fit of an exponential

curve to a sorted list of the multiplied values terminated at the amplitude of the largest sinusoid that could

be fit to a waveform clipped to the τ range of 10 to 22. This “largest distinguishable amplitude” is 7.66.

The exponential fit is shown in Fig. 4, where a logarithmic vertical axis makes it appear as a straight line

plot. This resulted in a multiplier of m = 3.896 ± 0.022.

It can be noted that this value corresponds to n = (m − 1) ≈ 2.9 miscorrelation values per correct value.

7 Incoming declination and speed

If we let τmean and τamp be the mean and amplitude of each sinusoid fit, τmid be the center of the detection

range and m be the disattenuation multiplier determined above, then the disattenuated mean value will

be,

Tmean = τmid + m(τmean − τmid)

and the disattenuated amplitude will be A = mτamp and we can define,

Tmax = Tmean + A

Tmin = Tmean − A

Then if δR and δv are respectively the declinations of R and v, then δv can be found by numerically

solving,
Tmin

Tmax

= −
cos(δv + δR)

cos(δv − δR)
(4)

And wave speed relative to Earth is then,

s =
|R| cos(δv − δR)

Tmax

(5)

8 Aberration of incoming wave velocity

Let vG be the velocity of the Sun relative to distant galactic space, vinS be velocity due to acceleration of

space towards the Sun, vorbit be the orbital velocity of the Earth and vinE be velocity due to acceleration
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of space towards the Earth. Then the velocity of Earth relative to incoming 3-space can be approximated

by,

v ≈ vG − vinS + vorbit − vinE (6)

Approximate vector addition of these components is possible because at the Earth’s orbital positions, vG ,

vinS and vorbit are approximately orthogonal and vinE represents a relatively small Earth directed effect

that can be modeled as causing a speed increase. (Justification for vector addition of these components

can be found in [4].)

From (6) it follows that if 3-space waves have a constant velocity relative to space and vWG is the velocity

of the Sun relative to distant waves, then the velocity of Earth relative to incoming waves is,

vW ≈ vWG − vinS + vorbit − vinE (7)

which expresses how wave velocities are aberrated by the orbital and inflow velocities. To remove the

aberrating velocities and obtain vWG from vW we can rearrange (7) as,

vWG ≈ vW + vinS − vorbit + vinE (8)

9 Probability density plots of wave direction

Using the methods described above we calculated an incoming RA, declination, speed and associated

standard deviations, for each of the 138 days.

The calculated directions are wave directions rather than 3-space flow direction, but waves travelling

more or less parallel to 3-space flow will experience a forward acceleration in response to variations of

flow speed, whereas those moving across the flow will be accelerated sideways. Then since flow speed

along wave paths to the detectors must vary with Earth rotation, as this causes path depth and gravitational

acceleration to vary, the speeds of the former should exhibit greater variation than those of the latter.

Fig. 5: Probability density of incoming wave direc-

tions for all days. (p/sr means probability per stera-

dian and h is the bandwidth of the Gaussian kernel.)

Fig. 6: Probability density of incoming wave directions

for the 50% of days with largest speed standard devia-

tions.

So selecting waves that exhibit greater speed variation during each day should select waves that on av-

erage are closer to 3-space flow direction, To this end, we selected the 50% of wave velocities whose

speeds exhibited the largest standard deviations. Figs. 5 and 6 show the difference this makes.
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Fig. 5 shows a probability density plot of incoming directions for all days with a single peak near

RA = −5.0 h which can be assumed to represent the average orientation of all waves, unrelated to space

flow direction.

In contrast, Fig. 6, which shows incoming directions for the 50% of days with the largest speed standard

deviations, shows two peaks, one corresponding to the above, and another near RA = 4.5 h which is

consistent with previous determinations of incoming 3-space flow direction by Reg Cahill [1] and Dayton

Miller [8].

Moreover, if the velocities contributing to the peak near RA = 4.5 h are of physically real waves per

dynamical 3-space theory, then they should have been aberrated by Earth orbital and by Earth and Sun

inflow velocities and so removing these velocities from the observed wave velocities should allow a

higher peak to be obtained.

This turns out to be the case!

Fig. 7: Probability density after removing Earth or-

bital velocity only.

Fig. 8: Probability density after removing Earth inflow,

Earth orbital and Sun inflow velocities.

Fig. 7 shows that removing Earth orbital velocity alone is not sufficient to demonstrate the expected

effect. But Fig. 8 shows that removing the Earth and Sun inflow velocities as well as the Earth orbital

velocity increases the height of the peak near RA = 4.5 h from below 3.6 in Figs. 6 and 7 to above 3.6 in

Fig. 8. (NB contours are colored from top down as the wxMaxima plotting software used did not allow

bottom up coloring.)

By applying a search procedure to find the peak of Fig. 8, the highest probability density was found to

be 3.81 at RA = 4.14 h, dec = −77.80. Applying a 3D kernel and a search procedure to find highest

probability density versus speed for this direction gave the highest density at 500 km/s.

We take this direction and speed as our best estimate of vWG that we defined as sun velocity relative to

Table 2: Peak density and associated values

Days selected Peak density (p/sr) RA (hrs) dec (deg) speed (km/s)

45% 3.76 4.34 -77.5 509

49% 3.71 4.27 -76.9 505

50% 3.81 4.14 -77.8 500

51% 3.75 4.14 -77.8 500

55% 3.53 4.07 -78.2 500

60% 3.49 3.82 -79.0 505
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distant galactic waves. As results depend on the proportion of days selected, we repeated calculations for

the proportions shown in Table 2 and obtained reasonably stable results for proportions of 45% to 60%,

but as 50% gave the highest density we took this as the optimum choice.

10 Confidence interval estimation

To estimate confidence intervals for the RA and declination of the peak density shown in Fig. 8, we

applied bootstrap resampling to the 69 wave directions. To do this we repeatedly made a random selection

of 69 directions from the original 69 and then found the peak density for this random set.

Fig. 9: Example of 1000 applications of bootstrap resampling. Each point shows a peak of probability density

calculated from a different set of 69 wave directions randomly selected from the 69 observed directions.

Repeatedly applying this procedure gave multiple estimates of RA and declination from which we cal-

culated 68.3% confidence intervals. Fig. 9 shows an example of results obtained from one thousand

iterations.

Ten thousand iterations gave RA = 4.14+0.83
−0.81

h, and dec = −77.8+2.7
−2.1

deg.

Applying a similar procedure to wave speed for this direction gave 500+20
−10

km/s.

11 RA probability calculation

Having obtained an estimate of vWG, we can use Eqn. (7) to predict the most probable values of incoming

wave direction and speed vW that would be observed by Earth based detectors at different times of the

year. The red curve in Fig. 10 shows predicted RA while the points show the RAs of the 69 incoming

wave velocities selected as more likely to be proxies for 3-space direction.

Inspection of Fig. 10 reveals that 20 of the 69 points lie within ±2.0 RA hours of predicted RA. However

if the RAs were random, axial symmetry would imply a uniform distribution and we would expect only

69 × 4.0
24
= 11.5 points to lie this close to the curve.
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Fig. 10: Points show the RAs of 69 incoming wave directions selected as more likely to be proxies for 3-space flow

direction. The red curve shows RA values obtained from Eqn. (7) using our estimate of vWG with RA = 4.14 h,

dec = −77.80 and speed = 500 km/s. Of 69 points, 20 lie within ±2.0 RA hours of this curve. The probability of

this degree of closeness arising from chance is P = 0.0075.

We therefore checked the probability of the observed distribution being due to chance using the formula,

P =

n∑

k=r

(nk)p
k(1 − p)n−k (9)

where r = 20 is the number of points within ±2.0 RA hours of the curve, n = 69 is the total number

of points and p = 4.0/24 is the probability of a point lying within ±2.0 RA hours of the curve if the

distribution of RAs was random and uniform.

Inserting these figures gives PRA = 0.0075.

12 Declination probability calculation

Fig. 11: Points show the twenty incoming wave directions whose RAs in Fig. 10 are within ±2.0 h of predicted

RA. The blue orbital aberration ellipse shows variation of predicted RA and declination during a year due to the

combined effect of Earth orbital and Earth and Sun inflow velocities. Of the twenty points, the seven shown as solid

have declinations that lie within ±1.460of predicted values. The probability of this closeness being a result of chance

is Pdec = 0.0079.
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Since the derivations of the declinations and RAs are mutually independent, we can validly make an

independent check of the probability of the derived declinations. The points in Fig. 11 show the twenty

incoming wave directions whose RAs in Fig. 10 were within ±2.0 h of predicted RA. The blue orbital

aberration ellipse shows predicted RA and declination over the course of a year calculated using Eqn. (7)

with our estimate of vWG .

Of the twenty points, the seven shown as solid have declinations that lie within ±1.460of the predicted

values.

This prompts the question, ”If the declinations of the points were from a random distribution, what is the

probability that seven out of twenty would lie this close to their predicted declination?”

To answer this we first used the declinations of our entire set of 138 wave velocities to derive the decli-

nation cumulative distribution function shown in Fig. 12.

Fig. 12: Cumulative distribution function derived from 138 declinations

Then for each of the seven points, we used this function to calculate the probability that a declination

drawn at random from the distribution would be as close as observed to the predicted value. We then took

the maximum probability as a conservative probability for all seven points. This maximum probability

turned out to be 0.1237 and was for the maximum deviation of ±1.460

We could then reapply Eqn. 9 where this time r = 7 is the number of points with declinations within

±1.460 of their predicted value, n = 20 is the total number of points and p = 0.1237 is the maximum

probability of a declination having a declination within ±1.460 of its predicted value if the declinations

were random.

Inserting these figures gives Pdec = 0.0079 .

13 Joint probability

Since the RAs and declinations were independently derived, the joint probability that the closeness of

their observed values to their predicted values could have arisen by chance is P = PRA × Pdec = 0.0075×

0.0079,

that is,

P < 1.5 × 10−5

14 Comparison with related results

Table 3 shows a comparison between two values of vWG reported in this paper and in [2] and a value of

vG reported by Cahill in [3]. To determine vWG from wave velocities, we attempted to select velocities

that would be approximate proxies for 3-space flow direction. In view of this, the directions of the two
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values of vWG should approximately match the direction of vG. Looking at the table it is clear that all

three RAs match to within the 68.3% CIs while the CI for the declinations of “This paper” is nearly large

enough to encompass the other declinations.

We don’t expect the speeds of vWG to match that of vG because we expect the waves to be travelling

through 3-space with some non-zero speed, but the small difference between the speeds suggests that

propagation speed is low.

Table 3: Comparison of related results

Ref. RA (hrs) dec (deg) speed (km/s)

This paper vWG 4.14+0.83
−0.81

, −77.8+2.7
−2.1

500+20
−10

Morris [2] vWG 4.00 ± 0.51 −79.8 ± 1.0 500 ± 113

Cahill [3] vG 4.29 −75 486

15 Conclusions

In this paper we have presented results that illustrate correlations between widely separated Random

Event Generator devices that appear to be caused by a cosmic scale wave phenomenon. Our analysis

and probability calculations suggest that it is very unlikely that our results could be a result of chance

and much more likely that they are evidence for a genuine physical effect. To interpret and analyse our

data we applied Cahill’s theory of dynamical 3-space and found that this allowed us to obtain intelligible

results consistent with the theory. This does not prove the theory is correct, but it would seem to be good

evidence for the theory.

Other possibilities are that the REG devices might be detecting passage of the Earth though holographic

[9] or fractal [10] spacetime structures.
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