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Introduction 
 

One of the first non-commutative multi-component algebras the algebra 
of four-component quaternions was discovered in 1843 by W.R.Hamilton 
[1,2]. Substantially the quaternions are a generalization of complex numbers 
on a space of dimension 4. Then J.Graves (1843) and independently 
A.Cayley (1845) discovered the eight-component values octonions [3]. An 
algorithm for constructing octonions on the basis of quaternions is called as 
Cayley-Dickson construction procedure. It enables the generalization of the 
complex numbers on the any space of dimension 2n and in particular, to 
build the sixteen-component hypercomplex numbers sedenions [4]. The 
history of discovery of hypercomplex numbers partially considered in [3,5]. 
A systematic exposition of the theory of quaternions and hypercomplex 
algebras of higher dimension can be found in the following books [6-11]. An 
extensive bibliography on the use of quaternions in physics is contained in 
the reviews [12,13]. 

A significant disadvantage of hypercomplex numbers algebras of 
dimension greater than 4 is their nonassociativity. This considerably 
complicates their application to the description of physical systems, since all 
equations have to fix a specific sequence of actions of all operators. 
However, the Cayley-Dickson hypercomplex numbers are not only dedicated 
algebraic system on which one can build a description of physical systems. 
There are other alternative approaches based on the use of associative 
algebras of multi-component vectors and Clifford algebras [14,15]. 

This book provides a systematic presentation of the authors proposed an 
associative algebra of sixteen-component space-time variables "sedeons" and 
their applications to the description of quantum particles and fields [16-19]. 
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Chapter 1. Algebra of sedeons 
 

From a mathematical point of view, one of the main problems addressed 
in this book is the problem of representation of quadratic forms  

2

1

N

k
k

A

          (1.1.) 

as the product of two factors. In general, quadratic form (1.1.) can be 
expressed as follows: 

 
   

2 2 2 2
1 2

1 1 1 1

.... ...

... ... ... ... .
k N

k k N N k k N N

A A A A

A A A A A A     

   

        
  (1.2) 

This representation is possible for two different systems of coefficients k . 
The first case corresponds to a non-commutative k , which have the 
following properties:  

1,
(for ).

k k

k l k l k l
 
   



  
     (1.3) 

The second case corresponds to the orthogonal k : 
1,
0 (for ).

k k

k l k l
 
 



 
      (1.4) 

In this book, both of these approaches are used to describe space-time and 
charge properties of physical systems. The main tool for the description we 
chosen the algebra of space-time sedeons. 

A key feature of the sedeonic algebra and its main difference from 
widespread Gibbs-Heaviside vector algebra is the concept of Clifford 
product of vectors. Let us consider two arbitrary vectors A


 and B


 recorded 

in the basis of unit vectors 1


i , 2


i , 3


i :  

1 2 3

1 2 3

,

.

A A A A

B B B B

  

  
1 2 3

1 2 3

   

  
i i i

i i i
      (1.5) 

Then the Clifford product for A


 and B


 is the direct product written in the 
following form: 
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   1 2 3 1 2 3

1 1 2 2 3 3

1 2 2 3 3 1

1 3 2 1 3 2 .

AB A A A B B B

A B A B A B

A B A B A B

A B A B A B

    

  

  

  

1 2 3 1 2 3

1 1 2 2 3 3

1 2 2 3 3 1

1 3 2 1 3 2

      

     

     

     

i i i i i i

i i i i i i

i i i i i i

i i i i i i

   (1.6) 

Depending on the rules of the basis elements multiplication and commutation 
the Clifford product can have a different result. In particular, if we accept 
the rules of multiplication of the unit vectors corresponding to the Gibbs - 
Heaviside vector algebra  

1  1 1 2 2 3 3

     
i i i i i i ,         

  1 2 2 1 3

    
i i i i i ,          

  2 3 3 2 1

    
i i i i i ,            (1.7) 

  3 1 3 1 2

    
i i i i i ,          

then Clifford product of two vectors A


 and B


 is equal  

1 1 2 2 3 3

2 3 3 1 1 2

3 2 1 3 2 1 ,

AB A B A B A B

A B A B A B

A B A B A B

  

  

  
1 2 3

1 2 3

 

  

  
i i i

i i i

     (1.8) 

i.e. it is the sum of the scalar and vector products. Such approach allows to 
carry out the simultaneous calculations with scalar and vector quantities and 
is particularly fruitful in the application to the relativistic physics. However, 
the multiplication rules taken in vector algebra have one essential deficiency. 
For example, let us consider the Clifford square of the unit vector 3


i . 

Following the rules of vector algebra (1.7), Clifford square of this vector can 
be represented as follows: 

2 1     3 3 3 1 2 1 2 2 1 1 2

          
i i i i i i i i i i i ,     (1.9) 

which is in contradiction with the original rules (1.7). To overcome this 
contradiction it is required the development of an alternative algebra, based 
on other rules of multiplication. 
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1.1. Space-time sedeons 
 

The sedeonic algebra [16] encloses four groups of values, which are differed 
with respect to spatial and time inversion.  
 Absolute scalars ( )V and absolute vectors ( )V


 are not transformed 

under spatial and time inversion.  
 Time scalars ( )Vt  and time vectors ( )Vt


 are changed (in sign) under time 

inversion and are not transformed under spatial inversion.  
 Space scalars ( )Vr  and space vectors ( )Vr


 are changed under spatial 

inversion and are not transformed under time inversion.  
 Space-time scalars ( )Vtr  and space-time vectors ( )Vtr


 are changed under 

spatial and time inversion. 
Here indexes t  and r  indicate the transformations ( t  for time inversion and 
r  for spatial inversion), which change the corresponding values. All 
introduced values can be integrated into one space-time sedeon V , which is 
defined by the following expression:  

V V V V V V V V       t t r r tr trV
   

 .    (1.10) 

Let us introduce scalar-vector basis 0a , 1a
 , 2a

 , 3a
 , where the element 0a  is 

an absolute scalar unit ( 10a ), and the values 1a
 , 2a

 , 3a
  are absolute unit 

vectors generating the right Cartesian basis. Further we will indicate the 
absolute unit vectors by symbols without arrows as 1a , 2a , 3a . We also 
introduce the four space-time units 0e , 1e , 2e , 3e , where 0e  is an absolute 
scalar unit ( 10e ); 1e  is a time scalar unit ( 1 te e ); 2e  is a space scalar 
unit ( 2 re e ); 3e  is a space-time scalar unit ( 3 tre e ). Using space-time 
basis e  and scalar-vector basis a  (Greek indexes , 0, 1, 2, 3   ), we can 
introduce unified sedeonic components V  in accordance with following 
relations: 

  00V V 0 0e a ,            
   01 02 03V V V V  0 1 2 3e a a a


,        
  10V Vt 1 0e a ,            

 11 12 13V V V V  t 1 1 2 3e a a a


,     (1.11) 
  20V Vr 2 0e a ,            
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   21 22 23V V V V  r 2 1 2 3e a a a


,        
  30V Vtr 3 0e a ,            
   31 32 33V V V V  tr 3 1 2 3e a a a


.        

Then sedeon (1.10) can be written in the following expanded form: 

 00 01 02 03V V V V   0 0 1 2 3V e a a a a        
    10 11 12 13V V V V   1 0 1 2 3e a a a a      (1.12) 

      20 21 22 23V V V V   2 0 1 2 3e a a a a        
      30 31 32 33V V V V   3 0 1 2 3e a a a a .       

The sedeonic components V  are numbers (complex in general). Further we 
will use symbol 1 instead units 0a  and 0e  for simplicity. 

The important property of sedeons is that the equality of two sedeons 
means the equality of all sixteen space-time scalar-vector components. It 
enables to write many relations of modern relativistic physics in a compact 
form. 

Let us consider the multiplication rules for basic elements na  and me  
(Latin indexes n, m = 1, 2, 3). We require that square of the length of any 
vector should be positively defined quantity. Then the vectors na  should 
satisfy the following rules:  

2 1 n n na a a ,           (1.13) 
 n m m na a a a (for n m ).        (1.14) 

Besides, for the existence of Clifford product we have to require the 
following rules of multiplication of the basis elements na  (external product): 

i1 2 3a a a ,  i2 3 1a a a ,  i3 1 2a a a .      (1.15) 

We introduce the similar rules for the elements of space-time basis me : 
2 1 m m me e e ,          (1.16) 

 n m m ne e e e (for n m ),       (1.17) 
i1 2 3e e e ,  i2 3 1e e e ,  i3 1 2e e e .       (1.18) 

Here and further the value i  is imaginary unit 2( 1)i   . The multiplication 
and commutation rules for sedeonic absolute unit vectors na  and space-time 
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units me  can be presented for obviousness as the tables 1 and 2.  
 

Table 1. Multiplication rules for absolute unit vectors. 
 
 
 
 
 
 
 

Table 2. Multiplication rules for space-time units. 

 
 
 
 
 
 
 
 

Note that although sedeon units 1e , 2e , 3e , and the unit vectors 

1a , 2a , 3a  generate anticommutative algebras 

 n m m ne e e e ,          
 n m m na a a a ,          

units 1e , 2e , 3e  commute with vectors 1a , 2a , 3a : 

n m m na e e a         (1.19) 
for any n  and m . 

Thus the sedeon V  is the complicated space-time object consisting of 
absolute scalar, time scalar, space scalar, space-time scalar, absolute vector, 
time vector, space vector and space-time vector.  

A sedeon can be represented in compact form. Introducing the scalar-
vector values as  

00 01 02 03V V V V   0 0 1 2 3V a a a a ,        
  10 11 12 13V V V V   1 0 1 2 3V a a a a ,      (1.20) 

 1e  2e  3e  

1e  1 i 3e  i 2e  

2e  i 3e  1 i 1e  

3e  i 2e  i 1e  1 
 

 1a  2a  3a  

1a  1 i 3a  i 2a  

2a  i 3a  1 i 1a  

3a  i 2a  i 1a  1 
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20 21 22 23V V V V   2 0 1 2 3V a a a a ,        

30 31 32 33V V V V   3 0 1 2 3V a a a a ,        

we can write the sedeon (1.12) in the following form: 

 0 1 1 2 2 3 3V V e V + e V + e V .      (1.21) 

On the other hand, introducing the designations of space-time sedeon-scalars 
as  

00 10 2 20 3 30V V V V   0 0 1V a e e e ,        
    01 11 2 21 3 31V V V V   1 0 1V a e e e ,     (1.22) 

 02 12 2 22 3 32V V V V   2 0 1V a e e e ,        
 03 13 2 23 3 33V V V V   3 0 1V a e e e ,        

we can write the sedeon (1.12) in another form 

 0 1 1 2 2 3 3V V V a + V a + V a ,      (1.23) 

or introducing the sedeon-vector  

V V V V    t r tr 1 1 2 2 3 3V V a + V a + V a
    

,   (1.24) 

it can be represented in the following compact form: 

 0V V V


 .       (1.25) 
Further we will indicate the sedeon-scalars and the sedeon-vectors with the 
bold capital letters.  

Let us consider the sedeonic multiplication in detail. The sedeonic 
product of two sedeons A  and B  can be presented in the following form: 

     0 0AB A A B B
 

           0 0 0 0A B A B AB A B A B
    

.    (1.26) 

Here we denote the sedeonic scalar multiplication of two sedeon-vectors 
(internal product) by symbol “  ” and round brackets 

    1 1 2 2 3 3A B A B A B A B
 

,      (1.27) 

and sedeonic vector multiplication (external product) by symbol “ ” and 
square brackets 

 i      2 3 3 2A B A B A B
 

   i i  3 1 1 3 1 2 2 1A B A B A B A B .  (1.28) 

In expressions (1.27) and (1.28) the multiplication of sedeonic 
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components is performed in accordance with (1.22) and Table 2. Note that 
in sedeonic algebra the expression for the vector product differs from 
analogous expression in Gibbs vector algebra. As a consequence, in sedeonic 
algebra the formula for the vector triple product of three absolute vectors A


, 

B


 and C


 has the following form: 

   A B C B A C C A B          
       

.   (1.29) 

Thus, the sedeonic product  
  0F AB F F


   

has the following components: 
   0 0 0 1 1 2 2 3 3F A B A B A B A B ,       

 i i   1 1 0 0 1 2 3 3 2F A B A B A B A B ,           (1.30) 
i i   2 2 0 0 2 3 1 1 3F A B A B A B A B ,      
i i   3 3 0 0 3 1 2 2 1F A B A B A B A B .      

1.2. Spatial rotation and space-time conjugation  

The rotation of the sedeon V  on the angle   around the absolute unit 
vector n  is realized by sedeon  

   cos / 2 sin / 2in  U        (1.31) 

and by complex conjugated sedeon  

   * cos / 2 sin / 2in  U  .     (1.32) 

Note that these sedeons satisfy the following relation  
* * 1 U U UU    .        (1.33) 

The transformed sedeon V  is defined as the sedeonic product 
* V U VU    .         (1.34) 

Thus the transformed sedeon V  can be written in the following expanded 
form:  

         

   
cos / 2 sin / 2 cos / 2 sin / 2

cos 1 cos sin .

in in

n n i n

   

  

          

        

0

0

V V V

V V V V

 

        (1.35) 
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It is clearly seen that rotation does not transform the sedeon-scalar part, but 
sedeonic vector V


 is rotated on the angle   around n . 

The operations of time conjugation ˆ( )Rt , space conjugation ˆ( )Rr  and 
space-time conjugation ˆ( )Rtr  are connected with transformations in 

1e , 2e , 3e  basis and can be presented as  

R̂    t 2 2 0 1 1 2 2 3 3V e Ve V e V + e V e V  ,      

R̂     r 1 1 0 1 1 2 2 3 3V e Ve V e V e V e V  ,      (1.36) 

R̂     tr 3 3 0 1 1 2 2 3 3V e Ve V e V e V e V  .      

1.3. Subalgebras of smaller dimension 

Sedeonic basis e , a  allows one to construct different values of smaller 
dimension, which are differed in their properties with respect to the 
operations of spatial and time conjugation. For example, we can introduce 
the space-time double numbers as 

1 2D d d t te ,       (1.37) 

1 2D d d r re ,       (1.38) 

1 2D d d tr tre ,      (1.39) 

where 1d  and 2d  are scalars. These values, on the one hand, have all 
properties of double numbers, but on the other hand, they are transformed 
differently by the space-time conjugation and sedeonic Lorentz 
transformations (see section 2.1). 

We can also introduce the four-component values, which we call 
"quaterons" (in contrast to quaternions), in accordance with the following 
definitions:  

 0 1 2 3Q q q q q   0 0 1 2 3a e a a a


,    (1.40) 

 0 1 2 3Q q q q q   t 0 t 1 2 3a e a a a


,    (1.41) 

 0 1 2 3Q q q q q   r 0 r 1 2 3a e a a a


,    (1.42) 

 0 1 2 3Q q q q q   tr 0 tr 1 2 3a e a a a


.    (1.43) 
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The absolute quateron (1.40) is the sum of the absolute scalar and absolute 
vector. It is not changed under the operations of space-time conjugations. 
Time quateron Qt


, space quateron Qr


 and space-time quateron Qtr


 are 

transformed under the operations of space-time conjugation in accordance 
with the commutation rules for the basis elements , ,t r tre e e . For example, 
the time conjugation (see (1.36)) for quateron Qt


 is connected with the 

following transformation: 

 0 1 2 3R̂ Q Q q q q q   t t r t r 0 t 1 2 3= e e a e a a a
 

.   (1.41) 

Furthermore, the sedeonic basis e , a  also allows designing different types 
of space-time eight-component values named octons [20]: 

 00 01 02 03 10 11 12 13G = G +G +G +G + G + G +G +Gt 1 2 3 t t 1 2 3a a a e e a a a


,  (1.42) 

 00 01 02 03 20 21 22 23G = G +G +G +G + G + G +G +Gr 1 2 3 r r 1 2 3a a a e e a a a


, (1.43) 

 00 01 02 03 30 31 32 33G = G +G +G +G + G + G +G +Gtr 1 2 3 tr tr 1 2 3a a a e e a a a


. (1.44) 

Each of these subalgebras is closed  with respect to the operation of Clifford 
multiplication (the ring). The application of spatial octons in 
electrodynamics and relativistic quantum mechanics was considered in [20-
22]. 
 

1.4. Conclusion 

The algebra of sedeons can be considered as a scalar-vector version of 
the Clifford algebra with specific rules of multiplication and commutation. 
The sedeonic basis elements 1a , 2a , 3a  are responsible for the spatial 
rotation, while the elements te , re , tre  are responsible for the space-time 
inversions. From the point of view of commutation and multiplication rules 
both these bases are equivalent.  

In contrast to the Heaviside-Gibbs vector algebra the multiplication rules 
for vector basis in sedeonic algebra contain the imaginary unit (see Table 1). 
It enables the realization of scalar-vector algebra with Clifford product. 
Apparently, such possibility of vector basis multiplication was pointed first 
by A.Macfarlane [23]. Later the similar multiplication rules for matrix basis 
were applied by W.Pauli [24] and P.A.M.Dirac [25] in their spinor 
equations of quantum mechanics. 



 

 16 

Chapter 2. Relativistic mechanics 
 
2.1. Lorentz transformations 
 

The relativistic event four-vector can be represented in the follow 
sedeonic form: 

i ct r t rS e e  ,         (2.1) 

where c  is the speed of light, t  is the absolute scalar of time and 
r x y z  1 2 3a a a  is the absolute radius-vector. The sedeonic square of this 
value  

2 2 2 2 2c t x y z    SS         (2.2) 

is the interval of event, which is the invariant of Lorentz transformation. In 
the frames of sedeonic algebra the transformation of values from one inertial 
coordinate system to another are carried out with the following sedeons: 

*

cosh sinh ,

cosh sinh ,

m

m

 

 

 

 
tr

tr

L e

L e




      (2.3) 

where  tanh 2 /v c  ; v  is the velocity of uniform motion of the system 
along the absolute vector m . Note, that 

* * 1 L L LL    .         (2.4) 

The transformed event four-vector S  is written as 

     * cosh sinh cosh sinhm i ct r m        tr t r trS L SL e e e e      
     cosh 2 sinh 2 cosh 2i ct i m r r     t t re e e       (2.5) 

     sinh 2 cosh 2 1ct m m r m    r re e    . 

Separating the values with 1e  and 2e  we get the well-known expressions for 
the time and coordinates transformations [26]: 

2

2 2

/

1 /

t xv ct
v c

 


, 
2 21 /

x vtx
v c
 


, y y  , z z  ,   (2.6) 

where x  is the coordinate along the m  unit vector. 
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Let us also consider the Lorentz transformation of the full sedeon V . The 
transformed sedeon V  can be written as sedeonic product 

* V L VL    .        (2.7) 
In expanded form: 

    cosh sinh cosh sinhm m       tr 0 trV e V V e
   

2 2cosh sinh  0 tr 0 trV e V e       (2.8) 
  2cosh sinh coshm     tr 0 0 tre V V e V

  

 2sinh cosh sinhm m m m    tr tr tr tre V e e V V e
      . 

Rewriting the expression (2.8) with scalar (1.27) and vector (1.28) products, 
we get 

2 2cosh sinh   0 tr 0 trV V e V e          
  2cosh sinh coshm     tr 0 0 tre V V e V

       

 2 2sinh 2 sinhm m   tr tr tr tre Ve e V e
           (2.9) 

    cosh sinhm m     tr tre V V e
          

 cosh sinhm m           tr tre V V e
   .       

Thus, the transformed sedeon have the following components: 

V V  ,              
V V tr tr ,              

     cosh 2 sinh 2V V m V    r r tr te
 ,       

     cosh 2 sinh 2V V m V    t t tr re
 ,       

     cosh 2 cosh 2 1V V m V m     
          

 sinh 2m V    tr tre
 ,         

     cosh 2 cosh 2 1V V m V m     tr tr tr

          (2.10) 

 sinh 2m V    tre
 ,         

     cosh 2 1 sinh 2V V m V m V m      r r r tr te
     ,    

     cosh 2 1 sinh 2V V m V m V m      t t t tr re
     .    
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2.2. Relativistic momentum and angular momentum  

In relativistic physics an important value is the four-vector of energy-
momentum of the relativistic particle. In sedeonic algebra it can be 
represented as 

i E cp t rE e e  ,         (2.11) 

where E  is the energy and p  is the momentum of particle. The square of 
this value  

   2 2 2i E cp i E cp E c p    t r t re e e e       (2.12) 

is the invariant of Lorentz transformations and connected with particle 
inertial mass 0m  by Einstein relation 

2 2 2 2 4
0 0E c p m c  

 .       (2.13) 

In sedeonic algebra this expression can be presented as the product of two 
the same factors  

  2 2
0 0 0i E cp m c i E cp m c    t r tr t r tre e e e e e  ,   (2.14) 

that will be used further for constructing of quantum mechanics and field 
theory equations. 

The generalized angular momentum for relativistic particle can be written 
as follows: 

   1 1 i E cp i ct r
c c

   t r t rM ES e e e e   .     (2.15) 

Performing sedeonic multiplication we get  

    1Et p r p r cpt Er
c

       tr trM e e      .   (2.16) 
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Chapter 3. Quantum mechanics and field theory 

 

3.1. Generalized sedeonic wave equation  

The wave function of the free particle should satisfy an equation, which 
is obtained from the Einstein relation between particle energy and 
momentum  

2 2 2 2 4
0 0E c p m c          (3.1) 

by means of changing classical energy E  and momentum p  on 
corresponding quantum mechanical operators [27]: 

Ê i
t





   and  p̂ i  


 ,       (3.2) 

where   is Planck constant and 


 is the gradient operator, which has the 
following form: 

x y z
  

   
  1 2 3a a a


.      (3.3) 

In sedeonic algebra the Einstein relation (3.1) for operators (3.2) can be 
written as  

  2 2
0 0

ˆ ˆˆ ˆ 0i E cp m c i E cp m c    t r tr t r tre e e e e e  .   (3.4) 

Let us consider the wave function in the form of space-time sedeon  

     , , ,r t r t r t 0ψ ψ ψ  
 ,      (3.5) 

then the generalized sedeonic wave equation, corresponding to the operator 
equation (3.4), is written in the following symmetric form:  

0 01 1 0
m c m ci i i i

c t c t
            

t r tr t r tre e e e e e ψ
 


 

.   (3.6) 

In this equation the parameter 0m  is the rest mass of particle.  
Besides, there is a special class of particles, which is described by the 

first-order wave equation [27]: 
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01 0
m ci i

c t
     

t r tre e e ψ





.      (3.7) 

Obviously, that for such particles the equation (3.6) is satisfied 
automatically.  

The sedeonic quantum equation (3.6) admits the field interpretation. To 
simplify the further presentation we introduce the following operators: 

1
c t


 
t te ,           

  r re
 

,             (3.8) 
0m c

m tr tre


,          

then the equation (3.6) takes the form  

    0i im i im      t r tr t r tr ψ
 

 .     (3.9) 

Let us consider sequential action of the operators on the left side of (3.9). 
After the action of the first operator we obtain 

 
  .

i im i i

im im

       

         

t r tr t 0 t r 0

r r tr 0 tr

ψ ψ ψ ψ

ψ ψ ψ ψ

 


        (3.10) 

Introducing scalar and vector field strengths according  

 i im     0 t 0 r tr 0E ψ ψ ψ
  ,       (3.11) 

i im        t r 0 r trE ψ ψ ψ ψ
     ,    (3.12) 

expression (3.10) can be rewritten as 

 i im    t r tr 0ψ E E
 

 .       (3.13) 

Then the wave equation (3.9) takes the form  

   0i im    t r tr 0E E
 

.     (3.14) 

Producing the action of the operator in (3.14) and separating sedeon-scalar 
and sedeon-vector parts we obtain a system of first-order equations similar 
to the Maxwell's equations: 
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  0,

0.

i im

i im

     

        

t 0 r tr 0

t r tr r 0

E E E

E E E E

 

         (3.15) 

In fact, the first- and second-order wave equation of describe quantum 
fields that carry information on the kinematic properties of quantum 
particles. The dispersion characteristic of these wave fields coincide with the 
Einstein relation for the energy and momentum of a particle. Note, that the 
first-order equation (3.7) describes the special case of quantum fields with 
field strengths equal to zero. More detailed the quantum mechanics of 
relativistic particles will be discussed in the Chapter 7. 

The generalized sedeonic wave equation (3.6) has another interpretation 
as the wave equation for the force massive fields [16]. In this case, the field 
sources are appropriate charges and currents, so that in addition to the 
homogeneous equation, which describes the free field, we have non-
homogeneous equation  

0 01 1m c m ci i i i
c t c t
            

t r tr t r tre e e e e e W J
 

 
 

,   (3.16) 

where by J  we have identified the scalar-vector source of field. In this case, 
the wave function has the meaning of the field potential and the parameter 

0m  is the mass of the quantum of field. Of course, in the case of zero 0m  the 
equation (3.16) should describe electromagnetic and weak gravitational 
fields. The sedeonic theory of massive and massless force fields will be 
discussed in detail in the subsequent sections. 
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Chapter 4. Electromagnetic field 
 
 
4.1. Sedeonic form of electromagnetic field equations 
 

The sedeonic wave equation for the electromagnetic field in a vacuum is 
written as follows  

1 1i i
c t c t
            

t r t re e e e W J
 

 = .    (4.1) 

The potential of the electromagnetic field has the form: 
е еi A t rW e e


 ,        (4.2) 

where е  is scalar potential (time component), еA


 is vector potential (space 
component). A source of the field is written as follows: 

44 e ei j
c


   t rJ e e


        (4.3) 

where e  is a volume density of electric charge, ej


 is a volume density of 
electric current.  

The equation (4.1) is a compact universal relation, which can be 
represented either as a system of wave equations for the potentials of the 
field or in the form of Maxwell's equations for the field strengths. Indeed, 
producing the multiplication of operators in equation (4.1) and separating 
the scalar and vector parts, we obtain a system of wave equations: 

2

2 2

1 4е ec t
 

 
    

,      (4.4) 

2

2 2

1 4
е eA j

cc t
 

    

 
.      (4.5) 

Here we assume that the potentials are described by twice differentiable 
functions, so that 0   W

 
 . On the other hand, performing the step-by-

step action of operators in equation (4.1), we have first 
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1

1 1

е е

e e
e e e

i i A
с t

A
A A .

c t c t






     

             

t r t r

tr tr

e e e e

e e




   

  (4.6) 

Let us introduce the scalar and vector strengths of electromagnetic field:  

 1

1

e
e e

e
e e

e e

f A ,
c t

A
E ,

c t
H i A .






  




  


    




 

 

      (4.7) 

Then the expression (4.6) can be represented as 

 1
е е e e ei i A f E iH

с t


         
t r t r tre e e e e

  
,    (4.8) 

and equation (4.1) can be rewritten in the following form:  

 1 44e e e e ei f E iH i j .
с t c


 

          
t r tr t re e e e e

   
   (4.9) 

Applying the operator  
1i
с t
    

t re e


 

to both parts of equation (4.9) and separating values with different space-
time properties we obtain the wave equations for the strengths of 
electromagnetic field: 

 
2

2 2

1 4 e
e ef j

c tc t
               

 
,    (4.10) 

2

2 2 2

1 44 e
e e

jE
tc t c

 
  

        


 

,    (4.11) 

2

2 2

1 4
e eH i j

cc t
           

  
 .    (4.12) 

Assuming the electrical charge conservation  
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  0e
ejt


   



 
,       (4.13) 

we note that equation (4.10) has no sources and the scalar field ef  can be 
chosen equal to zero. This is equivalent to the Lorentz gauge condition: 

1 + ( ) = 0e
e ef A

c t


 



.     (4.14) 

In the Lorentz gauge the equation (4.9) takes the form  

 1 44e e e ei E iH i j .
с t c


 

        
t r tr t re e e e e

   
   (4.15) 

Producing action of the operator on the left side of (4.15), we have the 
following sedeonic equation: 

 

 

1

1

44

e
e e

e
e e

e e

E
i E i E

c t
H

i H i H
c t

i .j .
c


 

       
       

  

r t t

t r r

t r

e e e

e e e

e e


   


   



    (4.16) 

Separating in (4.16) the values with different properties, we obtain a system 
of first-order equations  

 
 

1 ,

4 1 ,

4 ,

0,

e
e

e
e e

e e

e

H
i E

c t
Ei H j

c c t
E

H





      
      

 

 


 


  

 

 

      (4.17) 

which coincides with the Maxwell equations. 
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4.2. Energy and momentum of electromagnetic field 

The sedeonic algebra allows one to provide the combined calculus with 
the values of different type. In this section we consider the relations for the 
energy and momentum of electromagnetic field. 

Multiplying both parts of equation (4.15) on the sedeon ( e eE iHtre
 

), 
from the left we obtain 

      

   

   

2 21
2

1 1

1 1

e e e e

e e
e e e e e e

e e
e e

e e e e e

i E H i E H
c t

H E
i E i H E E H H

c t c t

E H
i E i H

c t c t

E H H E E H

          
                                 
                  

        

t

r

t

e

e

e

    

 
       

 
 

         
        

   

2 21 1
2

4 4 14

14 .

e e e

e e e e e e e e

e e e e e e e e

e e e e

H E

i E H E H E E H H
c t

i E j i H j H i E j
c c c

E i H j
c

 
 

 

              
              

           
       

r

t r t

r

e

e e e

e

  

          

     

  

  (4.18) 

Note that in this expression and further the operator applies to all right 
expression. For example, for any two vectors A


 and B


 we have: 

     A B B A A B     
       

.       (4.19) 

Equating in (4.18) the components with different space-time properties we 
get  

     2 21 0
8 4e e e e e e

cE H i E H E j
t 
         

      
,   (4.20) 

 

    

2 21 1
8 4

1 0,
4

e e e e

e e e e e e e e

E H i E H
c t

E E H H E i H j

 




      

           

    

        
  (4.21) 
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1
4

0,
4

e e
e e

e e e e e e

H EE H
t t

ci E E H H H j





                     

              

 
 

       
  (4.22) 

    

 

1
4 4

0.
4

e e
e e e e e e

e e e e e e e e

E H ci E H E H H E
t t

c E H H E cH i E j

 




                        

                         

 
       

        
 (4.23) 

The expression (4.20) is the very well known relation named as Pointing 
theorem. The value  

2 2

8
e eE H

w




 

        (4.24) 

is the volume density of field energy, while vector 

4 e e
cP i E H

    

  
       (4.25) 

is the energy flux density vector (Pointing’s vector ). 
 
4.3. Relations for Lorentz invariants of electromagnetic field 
 

Using sedeonic algebra it is easy to derive the relations for the values 

 
2 2

1

2

,

,
e e

e e

I E H

I E H

 

 

 

          (4.26) 

which are Lorentz invariants of electromagnetic field. Multiplying both parts 
of equation (4.15) on sedeon ( e eE iHtre

 
) from the left we have: 
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 (4.27) 

Separating the values of different types, we obtain the following relations for 
the Lorentz invariants of the electromagnetic field: 
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e e e e e e
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   (4.28) 
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4
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e e
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c E H

c E E E E H H H H

H E
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  (4.29) 

  
      

1
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e e e e e e

E H
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   (4.30) 
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4

4
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4

e e

e e e e e eg e e

e e
e e e e e e

c E H

c E H H E E H H E

E H
i E H cH i E j
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  (4.31) 

 
4.4. Supersymmetric equations of electromagnetic field 
 

The question of symmetry between electric and magnetic charges was 
considered first by P.A.M.Dirac [28, 29]. Taking into account the 
hypothetical magnetic charges (magnetic monopoles) and corresponding 
current the system of Maxwell equations looks absolutely symmetric [30]. In 
terms of sedeonic algebra the symmetric wave equation for the 
electromagnetic field can be written as 

1 1i i
c t c t
            

1 2 1 2e e e e W J
 

  .   (4.32) 

Here W  is sedeon potential 

e m m ei i A A    1 2 1 2W e e e e
 

 ,      (4.33) 

where e  is electric scalar potential, m  is magnetic scalar potential, eA


 is 
electric vector potential, mA


 is magnetic vector potential. The sedeonic 

source is 

4 44 4e e m mi j i j
c c
 

     1 2 2 1J e e e e
 

 ,    (4.34) 

where m  is volume density of magnetic charge, mj


 is density of magnetic 
current.  

Equation (4.32) is equivalent to the eight scalar equations for the 
components of the potentials. Separating in (4.32) space-time and the scalar-
vector parts we obtain the following wave equations for the potentials: 
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2

2

1 4е ec t
 

 
    

,      (4.35) 

2

2

1 4
е eA j

c ct
 

    

 
,      (4.36) 

2

2

1 4m mc t
 

 
    

,      (4.37) 

2

2

1 4
m mA j

c ct
 

    

 
.      (4.38) 

Introducing the scalar and vector field strength, according to the following 
definitions:  
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    (4.39) 

we obtain  

 1

,

e m m ei i i A A
c t

e i h iH E

 
       

    

1 2 1 2 1 2

3 3

e e e e e e

e e

 

 
   (4.40) 

and the wave equation (4.32) is reduced to  

 1

4 44 4 .e e m m

i e i h iH E
c t

i j i j
c c
  

        

    

1 2 3 3

1 2 2 1

e e e e

e e e e

  

 
   (4.41) 
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Producing action of the operator on the left side of this equation and 
separating the values with different space-time properties, we obtain the 
system of equations for the fields, similar to the system of Maxwell's 
equations in electrodynamics: 

 

 

1 4 ,

1 4 ,

1 4 ,

1 4 .

e

m

e

m

e E
c t

h H
c t

E e i H j
c t c

H h i E j
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    (4.42) 

Equations (4.42) form a closed system of eight scalar equations for the eight 
components of the electromagnetic field. 

Scalar and vector field strengths (4.39) and equations (4.42) have the 
gauge invariance with respect to the gradient transformations of the 
following form: 

e
e e t


 


 


,         

e e eA A  
  

,         (4.43) 
m

m m t


 


 


,         

m m mA A  
  

,         

where e  and m  are arbitrary scalar functions of coordinates and time, 
satisfying the homogeneous wave equation. Indeed it is easy to verify that 
the transformations (4.43) do not change the field strengths (4.39) and, 
consequently, the equations (4.42).  

Applying the operator  
1i
с t
    

t re e


         

to both sides of (4.41) and separating the values with different s space-time 
properties, we obtain the wave equations for the field strengths: 
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2
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1 4 e
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c tc t
               

 
,      (4.44) 

 
2

2 2

1 4 m
mh j

c tc t
               

 
,      (4.45) 
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,   (4.46) 

2
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1 4 44 m
m e

jH i j
t cc t c

  
               


   

.  (4.47) 

If in the physical system there is conservation of electric and magnetic 
charges 

  0e
ejt


   



 
,      (4.48) 

  0m
mjt


  



 
,      (4.49) 

then the equations (4.44) and (4.45) do not have sources, and one can choose 
the scalar fields e  and h  equal to zero. This is equivalent to the Lorentz 
gauge conditions for the electric and magnetic potentials: 

1 + ( ) = 0,e
ee A

c t


 



      (4.50) 

1 + ( ) = 0.m
mh A

c t


  



     (4.51) 

In the Lorentz gauge the Maxwell equations (4.42) can be written as 
follows: 

  4 ,eE   
 

        (4.52) 

1 4 ,e
E i H j

c t c
      


  

     (4.53) 

  4 ,mH   
 

        (4.54) 

1 4
m

H i E j
c t c

      


  

.     (4.55) 
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As established experimentally in our part of the universe magnetic charges 
and currents are not observed, and then for the description of the phenomena 
in the Earth's environment must be put 

0,

0.
m

mj
 


         (4.56) 

This leads us to the fact that the equations (4.37) and (4.38) do not have 
sources and we can choose magnetic potentials m  and mA


 equal to zero. In 

addition, the magnetic sources disappear on the right sides of equations 
(4.54) and (4.55). Thus, in the particular case of the absence of magnetic 
charges and the electric charge conservation, we come to the standard 
system of Maxwell's equations: 
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     (4.57) 
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Chapter 5. Weak gravitational field 
 
 

The analogy between electromagnetic and gravitational fields was 
discussed by many researchers starting from J.C.Maxwell and O.Heaviside 
[31,32]. This analogy motivated many attempts to reformulate the equations 
of Newtonian gravitation in the form similar to the Maxwell equations in 
electrodynamics. Such approach is based on two general assumptions. First 
is the existence of gravitomagnetic field connected with moving masses. 
Second is the hypothesis that the speed of gravitational field propagation is 
equal to the speed of light. These assumptions enable the formulation of 
phenomenological Maxwell-like equations for gravitational field [33, 34]. 
On the other hand, recently it was shown that linearized weak field equations 
of general relativity can be represented as the set of Maxwell-like equations 
for the vectorial gravitational field.  

The application of hypercomplex numbers in the theory of weak 
gravitational field is considered in [35,36]. 

 
5.1. Linear equations of gravitational field in flat space-time 
 

As is well known, Einstein's equation for gravitational field is written as 
[26]: 

4

1 8
2

GR g R T
c  


  ,      (5.1) 

where R  is Ricci curvature tensor, g  is the metric tensor, G  is the 
gravitational constant, T  is the tensor of energy-momentum of matter 
(Greek indexes are 0,1,2,3, Latin indexes are 1,2,3). In linear approximation 
this equation has the following form [37-39]:  

2

2 2 4

1 16 Gh T
c t c 

 
     

,      (5.2) 

where h  is the deviation from Minkovski metric tensor  , defined by 
following relations:  
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,
1 ,
2

.

g h

h h h

h h

  

  










 

 



        (5.3) 

The deviation h  ( 1h  ) satisfies the gauge condition / 0h x    . 
Introducing matter density G  and density of matter current Gj


, according 

the relations 
2

00 GT c ,         (5.4) 

0n GnT j c ,         (5.5) 

as well as scalar G  and vector GA


 potentials according  

00 2

4
Gh

c
 ,         (5.6) 

0 2

4
n Gnh A

c
 ,         (5.7) 

the equation (5.2) can be represented as the set of wave equations for 
gravitational potentials: 

2

2 2

1 4G GG
c t

  
 

     
,      (5.8) 

2

2 2

1 4
G GA G j

cc t
 

     

 
,     (5.9) 

with gauge condition 

 1 0G
GA

c t


  



.      (5.10) 

The analogy with electrodynamics is evident. It allows one to introduce the 
gravitoelectric GE


 and gravitomagnetic GH


 fields: 

1 G
G G

A
E

c t



  




 

,       (5.11) 

G GH A   
 

.        (5.12) 

These variables satisfy the equations similar to Maxwell's equations. In the 
Heaviside-Gibbs algebra these equations are written as  
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      (5.13) 

The same equations can be written in sedeonic algebra. In this case the field 
strengths are defined as  

1 G
G G

A
E

c t



  




 

,        (5.14) 

G GH i A    
 

.         (5.15) 

Then the equations for the gravitational field are written in the following 
sedeon form:  
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H
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     (5.16) 

The gravitational field equations (5.16) differ from the equations for the 
electromagnetic field (4.17) by sign in front of the terms describing the 
sources of the field. 
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Chapter 6. Gravitoelectromagnetism 
 

In this section we develop the sedeonic approach to the formulation of 
equations for generalized massless gravito-electromagnetic (GE) field 
describing simultaneously electromagnetism and weak gravity [18]. 
 
6.1. Generalized Newton-Coulomb law  
 

It is known that Coulomb's law for the force of electrical interaction 
between two charged point bodies is written as follows:  

1 2
12 123

12

e e
e

q q
F r

r


  ,        (6.1) 

where 1eq  and 2eq  are electrical charges; 12r  is a vector directed from body 1 
to body 2; 12r  is the separation between point bodies, which is equal to 
modulus of 12r . For a symmetric description of electromagnetic and 
gravitational phenomena, we introduce the gravitational charge gq , 
considered previously in [33, 40]: 

gq Gm ,         (6.2) 

where G is gravitational constant, m  is a mass of gravitating body. Then 
Newton's law for gravitational force between two point bodies can be written 
in the form of Coulomb's law: 

1 2
12 123

12

g g
g

q q
F r

r
 

  .       (6.3) 

Simultaneous consideration of gravitational and electric fields leads us to 
another symmetry connected with charge conjugation. From the algebraic 
point of view this symmetry can be taken into account by introducing 
additional scalar units associated with electrical and gravitational charges. 
Let us denote the electric unit by symbol εe . This value is changed (in sign) 
under electrical charge conjugation. Analogously the gravitational unit ε g  is 
changed (in sign) under gravitational charge conjugation. Finally 
gravitoelectric unit εeg  is changed both under gravitational and electrical 
charge conjugation. The rules of multiplication for units εe , ε g  and εeg  are 
presented in Table 3. 
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Table 3. The rules of multiplication for εe , ε g  and εeg  units. 

 
 
 
 
 
 
 
 
We suppose that the squares of these units is positive 

     2 2
1,  2ε ε εe g eg      (6.4) 

and all these units is anticommutative: 
,
,

,

 

 

 

ε ε ε ε
ε ε ε ε
ε ε ε ε

e g g e

e eg eg e

g eg eg g

.      (6.5) 

Following this approach, the generalized gravito-electromagnetic charge 
Q  can be presented as  

e gQ q i q ε εe g .          (6.6) 

Then generalized Newton - Coulomb law can be written in the following 
symmetric form:  

1 2
12 123

12

Q Q
F r

r


  .        (6.7) 

Indeed, using (6.6) and (6.7) and separating the parts with different 
gravitoelectric properties we obtain the correct expression for the force 
acting between two massive electrically charged point bodies  

1 21 2
12 12 123 3

12 12

g ge e
q qq q

F r r
r r

 
   .     (6.8) 

Using algebra of gravitoelectrical units we can introduce the operations 
of electrical charge conjugations ( êI ), gravitational charge conjugation ( ĝI ), 
and electrogravitational charge conjugation ( êgI ) as 

 εe  ε g  εeg  

εe  1 εeg  ε g  

ε g  εeg  1 εe  

εeg  ε g  εe  1 
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ê e gI Q Q q i q  = ε ε ε εg g e g ,         (6.9) 

ĝ e gI Q Q q i q = ε ε ε εe e e g ,       (6.10) 

êg e gI Q Q q i q  = ε ε ε εeg eg e g .       (6.11) 
 

6.2. Generalized sedeonic equations for GE field  
 

The sedeonic formalism enables the representation of gravitational and 
electromagnetic fields as one unified gravito-electromagnetic field. Let us 
consider the potential of GE field in the following sedeonic form: 

  ,е е g gi A i i A    t r t rW e ε e ε e ε e ε
 


e e g g     (6.12) 

where , ,е е gA 


 and gA


 are scalar and vector potentials of electromagnetic 
(index e) and gravitational (index g) fields. Hereafter we mean that electrical 
values contain εe  and gravitational values contain ε g  units, but we will omit 
them to simplify farther expressions.  

The generalized sedeonic second-order equation for massless field can be 
written in the following form: 

1 1i i
c t c t
            

t r t re e e e W J
 

 = .    (6.13) 

Let us also consider the sedeonic source of GE field  

1 14 4 ,e e g gi j i i j
c c

             
   

t r t rJ e e e e
 

    (6.14) 

where e  is a volume density of electrical charge; ej


 is a density of 
electrical current; g  is a volume density of gravitational charge; gj


 is a 

density of gravitational current. In expanded form equation (6.13) is written 
as 

  1 1

1 14 4 .

е е g g

e e g g

i i i A i i A
c t c t

i j i i j
c c

 

   

               
          
   

t r t r t r t r
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e e e e e e e e

e e e e

  

 
  (6.15) 

This equation describes simultaneously electromagnetic and gravitational 
fields. Performing sedeonic multiplication of operators in the left part of 
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(6.15) we get the system of wave equations for the components of GE 
potentials  

2
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1 4е ec t
 

 
    

,      (6.16) 
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,      (6.18) 
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.     (6.19) 

On the other hand, sedeonic equation (6.15) can be represented as the 
system of first-order Maxwell equations for electromagnetic and 
gravitational fields. Let us consider the sequential action of operators in the 
left part of equation (6.15). After first operator we get 
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  (6.20) 

This expression allows us to introduce scalar and vector field strengths 
according to the following definitions: 



 

 40 

 

 

1

1

1

1

e
e e

e
e e

e e

g
g g

g
g g

g g

f A ,
c t

A
E ,

c t
H i A ,

f A ,
c t

A
E ,

c t
H i A .










  




  


    


  



  


    




 

 




 

 

      (6.21) 

Using the definitions (6.21), the expression (6.20) can be rewritten in the 
following form: 

  
 

1
е е g g

e e e g g g

i i A i i A
с t

f E iH i f E iH .

        

       

t r t r t r

tr tr

e e e e e e

e e

 

   
  (6.22) 

Then the second-order wave equation (6.15) can be represented as  

  1

1 14 4

e e e g g g

e e g g

i f E iH i f E iH
с t

i j i i j .
c c

   

           
          
   

t r tr tr

t r t r

e e e e

e e e e

    

 
  (6.23) 

Applying the operator 1i
с t
    

t re e


 to both parts of expression (6.23) one 

can obtain the second-order wave equations for the field strengths in the 
following form: 

 
2

2 2

1 4 e
e ef j

c tc t
               

 
,    (6.24) 

2

2 2 2

1 44 e
e e

jE
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,    (6.25) 
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1 4
e eH i j
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,   (6.27) 
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,    (6.28) 
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.     (6.29) 

Assuming the conservation of electrical and gravitational charges we have  

  0e
ejt


   



 
,       (6.30) 

  0g
gjt


  



 
,       (6.31) 

and we can take the scalar fields ef  and gf  equal to zero. This is equivalent 
to the Lorentz gauge conditions (see expressions (6.21)): 

1 + ( ) = 0 ,e
e ef A

c t


  



      (6.32) 

1 + ( ) = 0 .g
g gf A

c t


 



      (6.33) 

Taking into account these gauge conditions the equation (6.22) is rewritten 
as  
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   (6.34) 

and generalized equation (6.15) takes the following form: 
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   (6.35) 

Performing sedeonic multiplication in the left part of equation (6.35) and 
separating terms with different space-time properties, we obtain the system 
of Maxwell equations for GE field 
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Separating terms with different charge ( εe  and ε g ) properties, we obtain 
two systems of Maxwell equations for electromagnetic and gravitational 
fields. For electromagnetic field we have  
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     (6.37) 

On the other hand for gravitational field we obtain  
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     (6.38) 

Thus, we have shown that the generalized sedeonic equation (6.15) correctly 
describes the unified GE field. Further, we will assume the performing of 
gauge conditions (6.32) and (6.33). 
 
6.3. Relations for energy and momentum of GE field 
 

The sedeonic wave equation allows one to derive the generalized Pointing 
theorem for unified GE field. Multiplying the expression (6.35) on the 
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sedeon  e e g gE iH i E iH  tr tre e
   

 from the left, we have the following 

equation:  
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 (6.39) 

Performing the sedeonic multiplication in (6.39), we obtain  
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Note that in this expression and further the operator 


 acts on all right 
expression. For example, for any vectors A


 and B


 we have 
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     A B B A A B     
       

.       (6.41) 

Equating in (6.40) the components with different space-time properties 
we get the following equations for the GE field strengths: 
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    (6.45) 

Finally, separating the values with different space-time and gravitoelectric 
properties, we get 
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The expression (6.46) is the generalized Pointing theorem for the GE field. 
The value w  

 2 2 2 21
8 e e g gw E H E H


   
   

      (6.50) 

plays the role of volume density of GE field energy, while vector P


 

 4 e e g g
cP i E H E H


          
    

     (6.51) 

plays the role of Pointing vector of GE field. Besides, the vector  

L e e e e g g g gf E i H j E i H j            
     

 

is the volume density of generalized Lorentz force. 
 
6.4. Lorentz invariants of GE field 
 

The sedeonic algebra allows one to obtain relations for the Lorentz 
invariants of GE field. Let us multiply expression (6.35) from the left on 
sedeon 

  e e g gE iH i E iH  tr tre e
   

. 

As a result, we obtain the following relation: 
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Then performing sedeonic multiplication, we obtain the following 
expression: 
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Equating in (6.53) the components with different space-time properties, we 
get the following equations for GE field strengths: 
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Finally, separating values with different gravitoelectric properties, we get  
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The expressions (6.58) - (6.61) are the equations for the generalized Lorentz 
invariants 1I  and 2I  of GE field: 

2 2 2 2
1 e e g gI E H E H   

   
,      (6.62) 

   2 e e g gI E H E H   
   

.     (6.63) 
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Chapter 7. Relativistic quantum mechanics 
 
 
7.1. Sedeonic wave equation for particles in an external fields  

 
Let us consider a relativistic quantum particle, which is described by the 

sedeonic wave equation (see (3.6)):  

0 01 1 0
m c m ci i i i

c t c t
            

t r tr t r tre e e e e e ψ
 


 

,   (7.1) 

where wave function is space-time sedeon  
     , , ,r t r t r t 0ψ ψ ψ  

 .      (7.2) 

In the equation (7.1) the elements of sedeonic basis ne  and ma  play the role 
of space-time operators, which transform the space-time structure of the 
wave function ψ  according the multiplication rules. For example, let us 
consider the action of 3a  operator. The wave function can be presented in 

ma  basis as 

 0 1 1 2 2 3 3ψ ψ ψ a + ψ a + ψ a ,      (7.3) 

then the action of 3a  operator can be written as 

i i   3 3 2 1 1 2 0 3a ψ ψ ψ a ψ a ψ a .      (7.4) 

Let us consider the eigenfunctions of 3a  operator. The equation for the 
eigenvalues and eigenfunctions in this case has the following form: 

3a ψ ψ  .           

Performing sedeonic multiplication we get this equation in expanded form: 

( )i i     3 2 1 1 2 0 3 0 1 1 2 2 3 3ψ ψ a ψ a ψ a ψ ψ a + ψ a + ψ a .  (7.5) 

This equation is equivalent to the following system: 
,
,
,
,

i
i








 




3 0

2 1

1 2

0 3

ψ ψ
ψ ψ
ψ ψ
ψ ψ

           (7.6) 
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from which follows 
2 1,

,
.i









0 3

2 1

ψ ψ
ψ ψ

        (7.7) 

Thus, the eigenvalues of 3a  operator are equal 1    and eigenfunctions of 

3a  operator can be written as 
   1 i    3 0 1 2 1ψ a ψ a a ψ ,      (7.8) 

where 0ψ  and 1ψ  are the arbitrary sedeon-scalars. So, we can choose the set 
of functions  

 
 
1 ,

,i








3

1 2

a

a a
       (7.9) 

as the new basis. The expressions (7.9) are the eigenfunctions of 3a  
operator. 

To describe a particle in an external gravito-electromagnetic field the 
following change in quantum mechanical operators in equations should be 
made: 

 

 

,

.

e e g g

e e g g

i q q
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i q A q A
c

 
 
  

 

  


  



      (7.10) 

It leads us to the following wave equation: 
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1 0.

e e g g e e g g

e e g g e e g g

m ci ii q q q A q A i
c t c
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e e e ψ

 

  

 


  

  (7.11) 

In the next section we will consider the task about charged relativistic 
particle in homogeneous magnetic field.  
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7.2. Relativistic particle in homogeneous magnetic field 
 

Let us consider the relativistic particle with electrical charge eq  in an 
external homogeneous magnetic field directed along Z axis:  

e eH H 3a


.         (7.12) 

Here eH  is module of vector eH


. Let us choose the vector potential eA


 

satisfying the gauge condition   0eA  


 in Landau presentation: 

2e e eA A H x 2 2a a


.       (7.13) 

Then the sedeonic equation for relativistic particle (7.11) is written as: 

2 2 2 22
20

2 2 2 2 2

1 2 0e e e e
e e

m c q H q Hi q H x x
c y cc t c

          
  




  

 .   (7.14) 

In (7.14) last term e eq H


/ћс is the vector operator, which transforms the 
sedeonic basis of wave function. For stationary states with energy E  we get: 

2 2 2 2 2
20

2 2 2 2 2

2 e e e e
e e

m c q H q Hi Eq H x x
c y cc c

 
       

3a  
   

  .   (7.15) 

This equation can be considered as the equation on the eigenvalues and 
eigenfunctions of complicated operator written in square brackets in the left 
part. Since this operator commutes with operators ˆ yp  and ˆ zp , all these 
operators have the same system of eigenfunctions. Therefore we will find the 
solution of (7.15) in the form 

 ( ) exp y z
ix p y p z   

 
 


  ,       (7.16) 

where yp  and zp  are the mouton integrals and ( )x  is arbitrary function. 
Substituting (7.16) into (7.15) we get 

2 2 2 2 22 2 2
20

2 2 2 2 2 2 2 2 2

2y y e e e ez
e e

p pm c q H q Hp Eq H x x
cx c c c

 
       

  
3a  

     
  . (7.17) 
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Note that the operator in the left part of (7.17) commute with operator 3a , 
so we can find the solution as the linear combination of the eigenfunctions of 
the operator 3a  (see (7.9)):  

   ( ) ( )
1 21 ( ) ( )x i x    3 1 2a F a a F + ,    (7.18) 

where ( ) ( )x
F ( 1, 2  ) are arbitrary sedeon-scalar functions. Then operator 

in the left part of (7.17) is scalar and this equation has the following form:  
2 2 2 2 22 2 2

2 ( ) ( )0
2 2 2 2 2 2 2 2 2

2y y e e e ez
e e

p pm c q H q Hp Eq H x x
cx c c c

 
 

         
  

F F
     

. (7.19) 

After algebraic transformations (7.19) can be rewrite as follows  
222 ( ) 2 222

( )0
2 2 2 2 2 0ye e e ez

e e

cpm c q H q HpE x
c c q Hx c


 


                        

F
F

   
. (7.20) 

This is the equation of linear oscillator [41]. The energy spectrum is defined 
by the following expression: 

 2 2 4 2 2
, 0 | | 2 1n z e e e eE m c p c q H c n q H c       .    (7.21) 

This set of energies is absolutely identical to the energy spectrum of particle 
with spin 1/2 obtained from the relativistic second-order equation following 
from the spinor Dirac equation [41].  
 
7.3. Relativistic first-order wave equation 
 

Let us consider the special case of particles, which are described by 
sedeonic first-order wave equation 

01 0
m ci i

c t
     

t r tre e e ψ





.      (7.22) 

This equation has the solution in the form of plane wave with frequency   
and wave vector k


. In this case the dependence of the frequency on the 

wave vector has two branches: 
2 4

2 2 0
2

m cc k   



.       (7.23) 
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The plane wave solution can be written in the following generalized sedeonic 
form: 

  0 exp
m c

i k i i t + i k r
c





 
    

 
1 2 3ψ e e e

  
 


=  ,   (7.24) 

where   is arbitrary sedeon with constant components, which do not depend 
from coordinates and time. Substituting (7.24) into (7.23) one can see that in 
this case wave equation contain algebraic zero divisor: 

0 0 0
m c m c

i k i i k i
c c
            

   
1 2 3 1 2 3e e e e e e

 

 
.   (7.25) 

The details of a plane wave solution are discussed in Section 8.6. 
 
7.4. Conclusion 
 

We can make some general statements about the form of the wave 
function of a particle in a stationary state corresponding to the certain 
eigenvalues of the operator 3a . In the stationary state with energy E  the 
wave function can be represented in the following form: 

( , ) ( ) i tr t r e 
 

   ,        (7.26) 

where frequency /E   . For the states corresponding to certain 
eigenvalues of the operator 3a  the spatial part of the wave function can be 
written in the form (7.18) as  

    ( ) ( )
1 2( , ) 1 ( ) ( ) i tr t r i r e  

     3 1 2a F a a F  
 + .  (7.27) 

This function has quite clear geometrical structure. The real and imaginary 
parts of the component  1 i te   3a  are the combinations of an absolute 
vector directed parallel to the Z axis and an absolute scalar oscillating with 
the frequency  . Here the phase difference between oscillations of scalar 
and vector parts equals 0 in case 1   or   in case 1   . On the other 
hand, the real and imaginary parts of the component   i ti e  1 2a a  have 
the form of absolute vector rotating in plane perpendicular to the Z  axis 
with the frequency  . The direction of rotation depends on the sign of  . 
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The space-time structure of the wave function is defined by particular form 
of the scalar functions ( )

1 ( )rF   and ( )
2 ( )rF  . 

Thus it is shown that the sedeonic wave function of a particle in the state 
with defined spin projection has the specific space-time structure in the form 
of a sedeonic oscillator with two spatial polarizations: longitudinal linear and 
transverse circular. 
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Chapter 8. Massive fields 
 
 

The attempts to generalize the second-order wave equation for massive 
fields on the basis of different systems of hypercomplex numbers such as 
quaternions and octonions have been made in Refs. [15, 42-45]. The authors 
discussed the possibility of constructing the field equations similar to the 
equations of electrodynamics but with a massive ”photon”. In particular they 
tried to represent the wave equation as the system of first-order Maxwell-like 
equations. The resulting Proca-Maxwell equations enclose field’s strengths 
and potentials [15,44]. On the other hand, there are a few studies concerning 
the generalization of the Dirac wave equation on the basis of hypercomplex 
numbers [22,46-50]. In this approach, the wave function has a scalar-vector 
structure similar in nature with the potential of field and the hypercomplex 
Dirac-like equation can be reformulated as the wave equation for the 
potential of special field. 

The consideration of multicomponent wave functions is an inevitable 
necessity in describing the spin and space-time properties of fields and 
quantum systems. The requirements of relativistic invariance leads to the 
necessity of introducing sixteen-component algebras taking into account the 
full symmetry with respect to the spatial and time inversion. There are a few 
approaches in the development of field theory on the basis of sixteen-
component structures. One of them is the application of hypernumbers 
sedenions, which are obtained from octonions by Cayley-Dickson extension 
procedure [4,51]. However the essential imperfection of sedenions is their 
nonassociativity. Another approach is based on the application of 
hypercomplex multivectors generating associative space-time Clifford 
algebras [14]. The basic idea of such multivectors is an introduction of 
additional noncommutative time unit vector, which is orthogonal to the space 
unit vectors. However, the application of such multivectors in quantum 
mechanics and field theory is considered in general as one of abstract 
algebraic scheme enabling the reformulation of Klein-Gordon and Dirac 
equations for the multicomponent wave functions but does not touch the 
physical entity of these equations. 

In this section we consider the massive fields described by first- and 
second-order wave equations on the basis of sedeonic potentials and space-
time operators [19]. 
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8.1. Generalized sedeonic equation for baryon field 
 

Let us consider the sedeonic wave equation for free massive field:  

0 01 1 0
m c m c

i i i i
c t c t
                 

1 2 3 1 2 3e e e e e e W
 


 

,  (8.1) 

where 0m  is the mass of quantum of massive field and W  is sedeonic 
potential. For convenience we will write: 

0

1 ,

.

c t
m cm


 






         (8.2) 

Then we can rewrite equation (8.1) in compact form: 

   0.i i m i i m        1 2 3 1 2 3e e e e e e W
 

     (8.3) 

Let us choose the potential in the following form: 

a i b i c i d iA B C D       1 2 3 1 2 3W e e e e e e
  

 ,    (8.4) 

where the components , , , , , , ,a b c d A B C D
  

 are the functions of spatial 
coordinates and time. Introducing the scalar and vector fields strengths 
according to the following definitions: 
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,

,

,

,

,

,

,

,

e b C md

f a D mc

g d A mb

h c B ma

E B c i C mD

F A d i D mC

G D a i A mB

H C b i B mA

     

     

     

     

       
       
       
       



 



 

    

    

    

    

     (8.5) 

we get  

  
,

i i m a i b i c i d iA B C D

e i f i g i h iE F G H

          

        

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3

e e e e e e e e e

e e e e e e

   

    (8.6) 

and the wave equation (8.3) takes the form 

   0i i m e i f i g i h iE F G H            1 2 3 1 2 3 1 2 3e e e e e e e e e
   

.  (8.7) 

Performing the action of operator in the left part of the equation (8.7), and 
separating the terms with different space-time properties, we obtain the 
system of equations for the field’s strengths, similar to the system of 
Maxwell’s equations in electrodynamics: 
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,

0 ,

0 ,

0 ,

0,

0 ,

0

0 ,

0 .

f G mh

e H mg

h E mf

g F me

F g i G mH

E h i H mG

H e i E mF

G f i F mE

    

     

    

    

       
       
       
       



 

 

 

   

   

    

    

      (8.8) 

The proposed equations for massive field possess a specific gauge 
invariance. It is easy to see that fields strengths (8.5) and equations (8.8) are 
not changed under the following substitutions for potentials: 

,
,
,
,

,

,

,

,

a c

b d

c a

d b

d

c

b

a

a a m
b b m
c c m
d d m

A A

B B

C C

D D

 
 
 
 









  

  

  

  

 

 

 

 

  

  

  

  

       (8.9) 

where a , b , c , d  are arbitrary scalar functions, which satisfy 
homogeneous Klein-Gordon equation. These gauge conditions are different 
from those taken in electrodynamics. 

Multiplying each of the equations (8.8) to the corresponding field 
strength and adding these equations to each other, we obtain: 
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2 2 2 2 2 2 2 21
2

0 .

f e h g F E H G

f G e H h E g F

F g E h H e G f

i F G i E H i H E i G F

       

         

       

                         

  

      

      

          

(8.10) 

Let us introduce the following notations: 

 

 

2 2 2 2 2 2 2 21 ,
8

.
4

w e f g h E F G H

cP eH fG gF hE i E H i G F





        

             

  

       
  (8.11) 

Then the equation (8.9) can be written as: 

  0w P
t


   



 
.       (8.12) 

This expression is an analogy to Poynting’s theorem for massive fields. The 
w  term plays the role of field energy density and P


 is an energy flux 

density vector. The minus signs in expressions (8.11) are because we assume 
that stationary scalar point sources of equal baryon charge attract one 
another (see section 8.3). 
 
8.2. Nonhomogeneous equation of baryon field  
 

Let us consider nonhomogeneous sedeonic equation for massive field with 
phenomenological source. In this case the field potential satisfy the following 
equation:  

   .i i m i i m        1 2 3 1 2 3e e e e e e W J
 

      (8.13) 

In analogy to gravitodynamics we consider a four-component source sedeon  
44 B B= i j
c


 1 2J e e


 ,      (8.14) 

where B  is a volume density of baryon charge and Bj


 is volume density of 
baryon current. In this case the sedeonic potential can be choosen as 
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i b C1 2W e e


 = ,        (8.15) 

where  ,b r t  is a scalar part (time component) and  ,C r t
   is vector part 

(spatial component) of four-dimensional baryon potential. Then we have 
only the following nonzero field’s strengths:  

  ,
,

,

,

.

e b C

g mb

E i C

F mC

H C b

    

 

    
 

  



 



 

       (8.16) 

The wave equation (8.13) takes the form 

  
44 .B B

i i m e i g iE F H

i j
c




        

  

1 2 3 2 1 3

1 2

e e e e e e

e e

   

     (8.17) 

The system of equations for the baryon field is written as 

 
 

 

,

4 ,

0 ,

0 ,

0 ,

0

4 ,

0 .

B

B

e H mg

E

g F me

F g mH

E i H

H e i E mF j
c

i F mE





     

  

     

   

     

        

     

 

 

 

  

  

     

  

    (8.18) 

On the other hand, applying the operator  i i m   1 2 3e e e


 to the equation 

(8.17), we obtain the following wave equations for the field strengths: 
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2 2

2 2

2 2

2 2

2 2

14 ,

4 ,

4 ,

4 ,

14 .

B B

B

B

B

B B

m e j
c

m g m

m F m j
c

m E i j
c

m H j
c

 

 





 

         
 

     

     

        

         
 

 

 

  

 

   (8.19) 

Assuming baryon charge conservation 

 1 0B Bjc
    

 
,       (8.20) 

we can choose the field strength e  equal to zero. This is equivalent to the 
following gauge condition: 

  0b C   


,       (8.21) 

similar to the Lorentz gauge in electrodynamics.  
 
 

8.3. Stationary field of point scalar source 

In stationary case 0Bj 


 and potential can be chosen as  

 i b r1W e  = .        (8.22) 
Then we have only two nonzero field components 

,g mb

H b

 

 
          (8.23) 

and the following field equations: 
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.

4 ,

0 ,

0

BH mg

g mH

H

   

  

   

 

 

 
      (8.24) 

Let us calculate the field produced by a scalar stationary point source 

4 ( )B= i q r  1J e  ,       (8.25) 

where Bq  is point baryon charge. Then stationary wave equation can be 
written in spherical coordinates as 

   
2 2

2 0
2 2

1 4 B
m cr b r q r

r rr
 

           

 


.    (8.26) 

The partial solution of the equation (8.26), which decays at r  , is  

0expB m cq
b r

r
   
 

.       (8.27) 

Thus, the stationary field of baryon point source has scalar and vector 
components 

0 0expB
B

m c m cq
g r

r
    
  

,      (8.28) 

0 0
0

1 expB
B

m c m cq
H r r

r r
        
   

 

 
,     (8.29) 

where 0r
  is a unit radial vector. 

8.4. Baryon – baryon interaction 
 

Let us consider the interaction of two point baryon charges due to the 
overlap of their fields. Taking into account that the field in this case is the 
sum of the two fields 1 2B Bg g g   and 1 2B BH H H 

  
 the energy of 

interaction (see expression (8.11)) is equal 

  1 2 1 2
1

4BB B B B BW g g H H dV


   
 

,    (8.30) 
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where the integral is over all space. This expression can be derived 
analytically. Substituting (8.28) and (8.29) we obtain 

01 2 expB B
BB

m cq q
W R

R
    
 

,     (8.31) 

where R  is the distance between point baryons. By definition we assume 
interaction between equal charges to be attractive. 
 
8.5. Sedeonic equation for lepton field 
 

In [22] we supposed that lepton fields can be described by sedeonic first-
order equation, similar to the Dirac equation. In sedeonic algebra the 
homogeneous first-order equation is written as  

  0.i i m    1 2 3e e e W


        (8.32) 

In equation (8.32) the basis elements 1e , 2e , 3e  and 1a , 2a , 3a  play the role 
of space-time operators, which transform the wave function by means of 
component permutation. Choosing potential W  in the form (8.4) we find 
that sedeonic equation (8.32) is equivalent to the following system 
 

 
 
 
 

0,

0,

0,

0,

0,

0,

0,

0.

a D mc

b C md

c B ma

d A mb

A d i D mC

B c i C mD

C b i B mA

D a i A mB

     

     

     

     

        
        
        
        

 



 



   

   

   

   

     (8.33) 

In fact these equations describe the special fields with zero field strengths 
[22] (see expression (8.5)). 
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Multiplying each equation of system (8.33) on corresponding components 
of potential W  and adding we get 

 
       

       
   
   

2 2 2 2 2 2 2 21
2

0.

a b c d A B C D
t

a D b C c B d A

A d B c C b D a

i A D i B C

i C B i D A


      



        

       

          

           

  

      

      

    

    

    (8.34) 

Let us introduce the following notations: 

 2 2 2 2 2 2 2 21W
8

a b c d A B C D


       
  

,    (8.35) 

 4
cS aD bC cB dA i A D i C B


             
       

.   (8.36) 

Then the equation (8.34) can be represented as 

 W 0S
t


   




.       (8.37) 

This expression is an analogue of the Poynting theorem for massive fields 
(described by first-order equation) but written for field potentials.  
 
8.6. Plane wave solution of first-order equation 
 

The homogeneous first-order wave equation  

01 0
m c

i i
c t
      

1 2 3e e e W





    (8.38) 

has the solution in the form of plane wave. In this case the potential can be 
written as 

  exp i t +i k r W U
  = ,     (8.39) 
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where   is frequency and k


 is an absolute wave vector. The wave 
amplitude U  does not depend on the coordinates and time. In this case, the 
dependence of frequency on the wave vector has two branches: 

2 4
2 2 0

2

m cc k   


.       (8.40) 

Substituting (8.39) in equation (8.38) and taking into account (8.40), we 
obtain 

0 0
m c

i k i
c
    

 
1 2 3e e e U





.     (8.41) 

For convenience we introduce the following notations: 

c


   , 

0m c
m 


. 

Then the equation (8.41) is written as 

  0i k i m    1 2 3e e e U


 .      (8.42) 

Let us consider the amplitude of the wave function in the form of (8.4): 

a i b i c i d iA B C D       1 2 3 1 2 3U e e e e e e
  

 ,       

where , , ,a b c d  are arbitrary constants and , , ,A B C D
  

 are arbitrary vectors. 
Then the equation (8.42) takes the form 

 
  0.

i k i m

a i b i c i d iA B C D

   

        

1 2 3

1 2 3 1 2 3

e e e

e e e e e e



     (8.43) 

Let us represent the vector constants as parallel and perpendicular to fixed 
wave vector k
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||

||

||

||

,

,

,

.

A A A

B B B

C C C

D D D









 

 

 

 

  

  

  

  

.        (8.44) 

Then performing the multiplication in (8.43), we obtain the following system 
of algebraic equations: 

||

||

||

||

0,
0,

0,
0,

b kC imd
a kD imc
d kA imb
c kB ima









   

   

   

   

        (8.45) 

|| ||

|| ||

|| ||

|| ||

0,
0,

0,
0,

B kс imD
A kd imC
D ka imB
C kb imA









   

   

   

   

       (8.46) 

0,

0,

0,

0,

B i k C imD

i A k D mC

i D k A mB

i C k B mA









  

  

  

  

      
      
      
      

  

 

  

 

     (8.47) 

where ||A , ||B , ||C  and ||D  are projections of corresponding vectors on k


 
direction. From equations (8.45) we get following relations: 

||

||

||

||

,

,

,

.

mA d i b
k k

mB c i a
k k

mC b i d
k k

mD a i c
k k










 


 


 


 

       (8.48) 

On the other hand, from equation (8.47) we obtain 
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,

.

im iC A k B

im iD B k A

 

 

  

  

     

     

  

  
     (8.49) 

Then the amplitude U  can be written as 

 

 

2

2

1 1 .

a i b i c i d

ki d mb c i ma
k

kb i md a i mc
k

m miA B i A i B

i k A i k B

 

 

 

 

   

 

   

    

    

   
 

          

1 2 3

1 1

2 2 3 3

1 2 3

3 2

U e e e

e e

e e e e

e e e

e e






  

  

    (8.50) 

The expression (8.50) can be represented in more compact form 

   2

1 1 .ki k i m i a i b i c i d i A B
k


  

             
1 2 3 2 1 2 3 1U e e e e e e e e


  

  (8.51) 

Substituting (8.51) in equation (8.42) and taking into account (8.40) one can 
see that this equation is satisfied for any parameters , , ,a b c d , ,A B 

 
, since 

we have 

   0i k i m i k i m      1 2 3 1 2 3e e e e e e
 

.   (8.52) 

So, the solution (8.51) contains the algebraic zero divisor.  
In general case the solution of equation (8.32) can be written in the form 

of generalized plane wave: 

  0 exp
m c

i k i i t + i k r
c





 
    

 
1 2 3W e e e M

   


= ,   (8.53) 

where M  is arbitrary sedeon with constant components, which do not 
depend on time and coordinates.  
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8.7. Nonhomogeneous equation of lepton field 

Let us consider the nonhomogeneous equation corresponding to the 
equation (8.32):  

  .i i m    1 2 3e e e W I


         (8.54) 

Here I  is sedeonic field source describing lepton charges and currents. 
Choosing the potential W  in the form (8.4), we obtain following equation 
for the lepton field strengths: 
 

0e i f i g i h iE F G H         1 2 3 1 2 3e e e e e e I I
   

.   (8.55) 

This equation means that the strengths of this field are nonzero only in the 
region of field source. 

Let us consider the sedeonic source in the following form: 
1

L Li j
c

  2 1I e e


 ,        (8.56) 

where L  is a volume density of lepton charge and Lj


 is volume – density of 
lepton current. In this case the equation (8.55) is rewritten as 

44 L Li g F i j
c


    2 1 2 1e e e e
 

.    (8.57) 

Applying the operator  i i m   1 2 3e e e


 to the equation (8.57) and 

separating the values with different space-time properties we obtain the 
following equations for the lepton field strengths: 

   

4 ,
4 ,

14 ,

4 ,

14 .

L

L

L L

L

L L

g

F j
c

g F j
c

F j
c

F g j
c




 



 





         
 

        

      
 

 

   

   

  

    (8.58) 

Assuming lepton charge conservation 
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 1 0L Ljc
    

 
,       (8.59) 

we have the following gauge condition:  

  0g F   
 

,       (8.60) 

which is similar to conventional Lorentz gauge, but for field strength here. 

Let us consider the a stationary lepton field generated by a scalar point 
source 

4 ( )Li q r   2I e  ,       (8.61) 

where Lq  is the point lepton charge. Then the strength of the scalar field is 

   4L Lg r q r 
  .       (8.62) 

This field is non-zero only in the region of source. It indicates that two point 
lepton charges interact only if they are at the same point of space. The 
interaction energy for two point charges 1Lq  and 2Lq  is equal 

 1 2 1 2
1 4

4LL L L L L
V

W g g dV q q R 


   


,    (8.63) 

where R


 is the distance between point leptons. 
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8.8. Baryon – lepton interaction 
 

One could suppose an interaction between baryon and lepton charges due 
to overlap of the scalar fields Bg  and Lg . The respective fields are 
determined by equations (8.28) and (8.68), so that the interaction energy is 
equal to: 

1
4BL B L

V

W g g dV


   .        (8.64) 

As a result, we get 
0 0expB L

BL
m c m cq qW R

R
    
  

,      (8.65) 

where R  is the distance between point baryon and lepton.  
 
8.9. Conclusion 
 

Thus, we considered the sedeonic generalization of equations describing 
the massive field. It is shown that this approach allows to build a massive 
field theory analogous to the theory of massless electromagnetic field in 
classical electrodynamics. 

We have considered the sedeonic second order wave equation for sedeon 
wave function. It was shown that this equation can be interpreted as the 
equation for the baryon field potentials. We have demonstrated that the 
second-order wave equation for the potentials can be represented as a system 
of first order equations for the field strengths similar to the system of 
Maxwell's equations. We generalized the concepts of energy density and 
energy flux for massive fields, and derive relations for the field energy and 
momentum similar to Poynting’s theorem in electrodynamics. It was shown 
that in the particular case of a stationary point source the solution of the 
sedeonic wave equation is a potential of Yukawa-type. The energy of 
interaction of two point baryons is derived. 

Assuming that lepton field is described by first-order wave equation, it 
was shown that the strengths of the lepton fields are nonzero only in the area 
of sources, so the point leptons interact only when they are in the same point 
of space. The plane wave solution of sedeonic first-order wave equation is 
derived. 

We demonstrated the possibility of describing the baryon-lepton 
interaction in terms of scalar fields overlapping. 
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Chapter 9. Neutrino field 
 
 
 
9.1. Sedeonic equations of neutrino field 
 

Among the solutions of the homogeneous sedeonic wave equation of 
gravitoelectromagnetic field there is a special class that satisfies the sedeonic 
first-order equation of the following form [18]: 

1 0i
c t 
     

t re e W


 .      (9.1) 

The field satisfying this equation will be called the neutrino field. Based on 
analogy with gravitoelectromagnetism (see (6.12)), we consider the potential 

W  in the following form: 
,i A   t rW e e


         (9.2) 

where   and A


 are complex scalar and vector potentials of neutrino field:  
,e gi            (9.3) 

.e gA A iA  
  

        (9.4) 

Thus, the equation for free neutrino field can be written as  

 1 0i i A
c t  
      

t r t re e e e


.     (9.5) 

Appling the operator  
1i
c t

 

t re e


  

to the equation (9.5), we have 

 
2

t r2 2

1 0i A
c t  

 
     

e e


.     (9.6) 

Separating the values with different space-time and charge properties we 
obtain the wave equations for the potentials  
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2

2 2

1 0,ec t


 
    

         (9.7) 

2

2 2

1 0,gc t


 
    

         (9.8) 

2

2 2

1 0,eA
c t

 
    


         (9.9) 

2

2 2

1 0.gA
c t

 
    


       (9.10) 

It indicates that the potentials of neutrino field e , g , eA


, gA


 satisfy the 
same second-order equations as well as potentials of gravitoelectromagnetic 
field, however the equation (9.5) allocates only those solutions that have zero 
strengths of electric (and gravitoelectric) and magnetic (and 
gravitomagnetic) fields. Indeed, performing the sedeonic multiplication in 
(9.5) we have  

 1 1 0.
A

A A
c t c t

 
  




              tr tre e


   
  (9.11) 

Separating in (9.11) the values with different space-time and charge 
properties we obtain the system of equations for the potentials: 

 

 

1 0,

1 0,

0,

1 0,

1 0,

0.

e
e

e
e

e

g
g

g
g

g

A
c t

A
c t

A

A
c t

A
c t

A










  




 


   


   



 


   















      (9.12) 

Thus, one can assume that the generalized equation (9.5) describes the 
special field of a gravitoelectromagnetic nature. The potentials e  and eA
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describe the electromagnetic component, while the potentials g  and gA


 
describe the gravitational component of the neutrino field. 
 
9.2. Second-order relations for neutrino field  

 
Multiplying the expression (9.5) on potential W  from the left, we obtain 

the following sedeonic equation: 

   1 0.i A i i A
c t    
       

t r t r t re e e e e e
 

   (9.13) 

Performing the sedeonic multiplication and separating different terms we get 
second order expressions for the neutrino field potentials: 

   2 21 0,
2

A A
c t     


   


 
       (9.14) 

  0A A     
 

,          (9.15) 

1 0AA A A
c t


     

                


   

,    (9.16) 

     2 21 1 0.
2

A A A A
c t       


      


    
    (9.17) 

Separating the real and imaginary parts and excluding the cross-terms 
(taking into account that 0ε εe g ) we get following four equations: 

     2 2 2 21 0,
2 e e g g e e g gA A A A

c t
   


        



    
   (9.18) 

   
   

2 2 2 21 1
2

0,

e e g g e e g g

e e g g

A A A A
c t

A A A A

   
     



     

   

          (9.19) 

    0,e e g gA A A A           
    

       (9.20) 
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1

0.

ge
e g

e e g g e e g g

AAA A
c t t

A A A A   

               
                      


 

      
  (9.21) 

On the other hand, multiplying the expression (9.5) on  i A  t re e


 

from the left, we obtain the following sedeonic equation: 

   1 0.i A i i A
c t    
        

t r t r t re e e e e e
 

    (9.22) 

Performing the sedeonic multiplication and separating different terms we get 
following expressions 

     2 21 0,
2

A A A
c t        


     


   
    (9.23) 

  0,A A     
 

          (9.24) 

1 0,AA A
c t


  

          


 

       (9.25) 

   2 21 1 0.
2

AA A A A
c t t

 
     


 

              


    

  (9.26) 

Separating the real and imaginary parts and excluding the cross-terms 
(taking into account that 0ε εe g ) we get another four equations: 

 
       

2 2 2 21
2

0,

e e g g

e e g g e e g g

A A
c t

A A A A

 

   


  



          

 

          (9.27) 

 

   

2 2 2 21
2

1

0,

e e g g

g ge e
e e g g

e e g g

A A

AA
A A

c t t t t

A A A A

 


 

   

        
     

    

 


 

    

      (9.28) 

    0,e e g gA A A A           
    

       (9.29) 



 

 77 

1 0.ge
e g e e g g

AAA A A A
c t t

 
                            


    

 (9.30) 

The expressions (9.18), (9.19), (9.27) and (9.28) are the analogs of 
Poynting theorem and Lorentz invariants relations for the neutrino field. 
 
9.3. Plane wave solution for the first-order equation 
 

The first-order wave equation for the neutrino field 

1 0i
c t 
     

t re e W


        (9.31) 

has the solution in the form of plane wave:  

  expv v i t +i k r W U
  = .     (9.32) 

where   is a frequency, k


 is an absolute wave vector and the wave 
amplitude U  does not depend on coordinates and time. In this case the 
dependence of the frequency on the wave vector has two branches:  

ck   ,         (9.33) 

where k  is the modulus of wave vector ( k k


). The solution of equation 

(9.31) in the form of a plane wave can be obtained directly from the solution 
of the first-order equation for a massive field (8.44), equating the mass of 
the quantum of field to zero. In general, the solution of equation (9.31) can 
be written as a plane wave of the following form:  

  expv vi k i t + i k r
c





    
 

1 2W e e M
   = ,   (9.34) 

where vM  is arbitrary sedeon with constant components, which do not 
depend on coordinates and time.  

Let us analyze the structure of the plane wave solution (9.34) in detail. 
Note that the internal structure of this wave is changed under space and time 
conjugation. Further we suppose that wave vector k


 is directed along z 

axis. Then the first-order equation (9.31) can be rewritten in the following 
equivalent form:  
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1 0
c t z 
       

tr 3e a W ,      (9.35) 

where vi  tW e W  . The solution of (9.35) can be presented in form of two 
waves:  

    1 expv vk i t + i k r     tr 3W e a M
  = ,   (9.36) 

    1 expv vk i t + i k r    tr 3W e a M
  = .    (9.37) 

Note that the wave function vW  corresponds to the positive branch of 
dispersion law (9.33) and describes the particle with positive energy, while 

vW  corresponds to the negative branch of dispersion law (9.33) and 
describes the particle with negative energy. Besides, the wave functions 
(9.36) and (9.37) are the eigenfunctions of spin operator 

1ˆ
2zS  tr 3e a .        (9.38) 

Indeed, it is simple to check that vW  satisfies the following equation:  

ˆ
z v z vS S W W  ,        (9.39) 

where eigenvalue 1/ 2zS   . Thus, the wave vW  describes the particle with 
spirality 1/ 2zS   , while vW  describes the particle with spirality 

1/ 2zS   . 
 
9.4. Scalar neutrino source 
 

Let us consider the nonhomogeneous equation of neutrino field  

1
vi

c t 
     

t re e W I


  ,      (9.40) 

where vI  is phenomenological source. We choose the scalar source in the 
form 

4v v I ,        (9.41) 
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where v  is the density of neutrino charge and has two components: 

ve vgi    .       (9.42) 
Choosing the potential W  in the form (9.2): 

,i A   t rW e e


        (9.43) 

we obtain following equation for the neutrino field: 

 1 4 vi i A
c t   
       

t r t re e e e


.    (9.44) 

It follows that only scalar field strength vf  is nonzero: 
4v vf  .        (9.45) 

The density of neutrino charge for point source is equal  

( )v vq r 
 ,       (9.46) 

where vq  is point neutrino charge:  

e gq q iq    .       (9.47) 

Then the interaction energy of two point neutrino charges can be represented 
as follows: 

1 2 1 2

1
4v v v vW f f dV


  .      (9.48) 

Substituting (9.45) and (9.46), we obtain 

 1 2 1 2 1 24 ( )v v ve ve vg vgW q q q q R  


,     (9.49) 

where R


 is the vector of distance between first and second charges. 
 
9.5. Conclusion 
 

Thus, in this chapter we have developed a description of massless 
neutrino field based on space-time algebra of sixteen-component sedeons. 
We have derived the second-order relations for the neutrino potentials, which 
are analogues to the Pointing theorem and Lorentz invariants relations for 
gravito-electromagnetic field. The plane wave solution of first-order wave 
equation for massless field is considered. We also derived the expression for 
the interaction energy of point neutrino charges. 
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Chapter 10. Supersymmetric field equations 
 
 

 
In classical electrodynamics the electromagnetic field is described by 

scalar   and vector A


 potentials [26]. The strengths of electric and 
magnetic fields are defined as: 

,

.

E A

H A

  

   

 

        (10.1) 

Here 


 is the Hamilton operator (nabla-operator) and we use the following 
notation for the time differential operator: 

1
c t


 


,      (10.2) 

where c is the speed of light. The electromagnetic field potentials satisfy the 
Lorentz gauge condition 

  0A   


.      (10.3) 

The equations for electromagnetic field are gauge-invariant. The 
substitutions  

,

,A A

  



 

 
         (10.4) 

do not change the electric and magnetic fields. Here ( , )r t   is arbitrary 
scalar function satisfying homogeneous wave equation (because of the 
Lorentz gauge (10.3)). The gauge invariance is a cornerstone of modern field 
theory. However, if the mass of a field quantum is nonzero (massive field), 
there is a problem with the violation of gauge invariance. 

In present part, we use the sedeonic approach for the construction of 
symmetric equations for massive and massless fields [19]. The gauge 
invariance of supersymmetric sedeonic field equations is demonstrated [52]. 
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10.1. Supersymmetric second-order equation for massive field 
 

Let us consider the sedeonic second-order wave equation for massive 
field [19]:  

   .i i m i i m        t r tr t r tr m me e e e e e W J
 

      (10.5) 

where mW  is a sedeonic potential, mJ is a phenomenological sedeonic source 
of massive field (index m). We use the following operators: 

0

1 ,

,

.

c t

x y z
m c

m


 


  

   
  



1 2 3a a a




     (10.6) 

Let us choose the potential as  

1 2 3 4 1 2 3 4ia ia a ia A A A iA       m t r tr r t trW e e e e e e
   

 ,    (10.7) 

where components Sa  and SA


 are real functions of coordinates and time. 
Here and further the index S = 1, 2, 3, 4. Also we take the source in the 
following form:  

1 2 3 4 1 2 3 4= i i i j j j j i          m t r tr r t trJ e e e e e e
   

 ,  (10.8) 

where S S4    ( k   is the volume density of charge) and S S

4j j
c
 

 
 ( Sj


 is 

volume density of current). Multiplying the operators in the left part of 
equation (10.5) we obtain the following wave equations for the components 
of potentials: 

 
 

2 2
S S

2 2
S S

,

.

m a

m A j

    

    
           (10.9) 

Let us introduce the scalar Sg  and vector SG


 field strengths according the 
following definitions: 
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1 1 1 4

2 2 2 3

3 3 3 2

4 4 4 1

1 1 1 2 4

2 2 2 1 3

3 3 3 4 2

4 4 4 3 1

,

,

,

,

,

,

,

.

g a A ma

g a A ma

g a A ma

g a A ma

G A a i A mA

G A a i A mA

G A a i A mA

G A a i A mA

     

     

     

     

       
       
       
       









    

    

    

    

     (10.10) 

The definitions of field strengths (10.10) have the specific gauge invariance. 
It is easy to verify that Sg  and SG


 are not changed under the following 

substitutions for the potentials:  

1 1 1 4

2 2 2 3

3 3 3 2

4 4 4 1

1 1 1

2 2 2

3 3 3

4 4 4

,
,
,
,

,

,

,

.

a a m
a a m
a a m
a a m

A A

A A

A A

A A

 
 
 
 









  

  

  

  

 

 

 

 

  

  

  

  

          (10.11) 

Here 1 , 2 , 3 , 4  are arbitrary scalar functions satisfying the 
homogeneous Klein-Gordon wave equation. Taking into account (10.10) we 
get that  

   1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 ,

i i m ia ia a ia A A A iA

g ig ig ig G iG G G

          

        

t r tr t r tr r t tr

tr t r tr r t

e e e e e e e e e

e e e e e e

   

      (10.12) 

and the initial wave equation (10.5) is reduced to the following equation: 
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  1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 .

i i m g ig ig ig G iG G G

i i i j j j j i   

          

        

t r tr tr t r tr r t

t r tr r t tr

e e e e e e e e e

e e e e e e

   

     (10.13) 

Producing the action of the operator on the left side of equation (10.13) and 
separating the values with different space-time properties, we obtain a 
system of equations for the field strengths, similar to the system of Maxwell 
equations in electrodynamics: 

 
 
 
 

1 1 4 1

2 2 3 2

3 3 2 3

4 4 1 4

1 1 2 4 1

2 2 1 3 2

3 3 4 2 3

4 4 3 1 4

,

,

,

,

,

,

,

.

g G mg

g G mg

g G mg

g G mg

G g i G mG j

G g i G mG j

G g i G mG j

G g i G mG j









    

    

    

    

        
        
        
        









    

    

    

    

    (10.14) 

The system (10.14) is also invariant with respect to the following 
substitutions: 

1 1 1 4

2 2 2 3

3 3 3 2

4 4 4 1

1 1 1

2 2 2

3 3 3

4 4 4

,
,
,
,

,

,

,

,

g g m
g g m
g g m
g g m

G G

G G

G G

G G

 
 
 
 









  
  

  

  

 

 

 

 

  

  

  

  

         (10.15) 

Multiplying each of the equations (10.14) to the corresponding field strength 
and adding these equations to each other, we obtain: 
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2 2 2 2 2 2 2 2
1 2 3 4 1 2 3 4

1 1 2 2 3 3 4 4

1 1 2 2 3 3 4 4

1 2 2 1 3 4 4 3

1 1 2 2 3 3 4 4 1

1
2

g g g g G G G G

g G g G g G g G

G g G g G g G g

i G G i G G i G G i G G

g g g g G   

       

         

       

                         

     

   

      

      

          

        1 2 2 3 3 4 4 .j G j G j G j     
    

(10.16) 

This expression is the analog of Poynting’s theorem for massive field. The 
term 

 2 2 2 2 2 2 2 2
1 2 3 4 1 2 3 4

1
8

w g g g g G G G G


       
   

   (10.17) 

plays the role of field energy density, while the term  

 1 1 2 2 3 3 4 4 1 2 3 44
cp g G g G g G g G i G G i G G


             
          (10.18) 

plays the role of energy flux density.  
On the other hand, applying the operator  i i m  t r tre e e


 to the 

equation (10.13) we obtain the following wave equation for the field 
strengths:  

  
 
 
 

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 .

i i m i i m

g ig ig ig G iG G G

i i m

i i i j j j j i   

      

        

    

        

t r tr t r tr

tr t r tr r t

t r tr

t r tr r t tr

e e e e e e

e e e e e e

e e e

e e e e e e

 

   



   

  (10.19) 

Separating the terms with different space-time properties we get the 
following wave equation for the field strength components Sg  and SG


: 
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2 2
1 1 1 4

2 2
2 2 2 3

2 2
3 3 3 2

2 2
4 4 4 1

2 2
1 1 1 2 4

2 2
2 2 2 1 3

2 2
3 3 3

,

,

,

,

,

,

m g j m

m g j m

m g j m

m g j m

m G j i j mj

m G j i j mj

m G j

 

 

 

 







         

         

         

         

            
            

       

 

 

 

 

    

    

  

 
4 2

2 2
4 4 4 3 1

,

.

i j mj

m G j i j mj

    
            

  

    

    (10.20) 

It can be seen that equations (10.20) are invariant with respect to the 
following substitutions: 

     

1 1 1 4

2 2 2 3

3 3 3 2

4 4 4 1

1 1 1

2 2 2

3 3 3

4 4 4

,
,
,
,

,

,

,

.

m
m
m
m

j j

j j

j j

j j

   
   
   
   









  

  

  

  

 

 

 

 

 

 

 

 

       (10.21) 

As an example, let us consider the fields produced by a one type of 
sources 1  and 1j


. In this case the massive field is described by 1a  and 1A


 

potentials: 

1 1ia Am t rW e e


 = .          (10.22) 

Then we have only the following nonzero field’s strengths:  



 

 86 

 1 1 1

4 1

1 1 1

2 1

4 1

,

,

,

,

,

g a A

g ma

G A a

G i A

G mA

    

 

  

    
 



  

 

 

         (10.23) 

and the wave equation (10.13) takes the following form: 

  1 4 1 2 4

1 1 .

i i m g ig G iG G

i j

        

  

t r tr r tr t

t r

e e e e e e

e e

  

      (10.24) 

Then the system (10.14) can be rewritten as 

 
 

 

1 1 4 1

2

4 4 1

1 1 2 4 1

2 1

4 2

4 4 1

,

,

0,

0,

,

0

0,

0.

g G mg

G

g G mg

G g i G mG j

G i G

i G mG

G g mG

    

  

     

        
     

     

   







    

 

 

 

       (10.25) 

The system (10.25) is the analog of Proca-Maxwell equations. In addition, 
we have the following wave equations for the field strengths: 

   
 
 
 
 

2 2
1 1 1

2 2
4 1

2 2
1 1 1

2 2
2 1

2 2
4 1

,

,

,

,

.

m g j

m g m

m G j

m G i j

m G mj







       

     

      

        

     

 

  

  

 

           (10.26) 

Assuming the charge conservation  
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 1 1 0j    
 

,             (10.27) 

we can choose the scalar field strength 1g  equal to zero. This is equivalent to 
the following gauge condition: 

 1 1 0a A    


,             (10.28) 

similar to the Lorentz gauge in electrodynamics. 
 

10.2. Second-order equation for massless field 

In the case of massless field the equation (10.5) takers the following 
form: 

  i i      t r t r 0 0e e e e W J
 

  ,     (10.29) 

where we choose the potential 0W  and source 0J  of massless field (index 0) 
in the form of (10.7) and (10.8) as before  

1 2 3 4 1 2 3 4ib ib b ib B B B iB       0 t r tr r t trW e e e e e e
   

 ,   (10.30) 

1 2 3 4 1 2 3 4= i i i l l l l i          0 t r tr r t trJ e e e e e e
   

 ,  (10.31) 

where S S4    ( S   is the volume density of charge) and S S

4l l
c
 

 
 ( Sl 


 is 

volume density of current). We introduce the scalar and vector field 
strengths according following definitions:  
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1 1 1

2 2 2

3 3 3

4 4 4 1

1 1 1 2

2 2 2 1

3 3 3 4

4 4 4 3

,

,

,

,

,

,

,

.

h b B

h b B

h b B

h b B

H B b i B

H B b i B

H B b i B

H B b i B

    

    

    

    

      
      
      
      

 

 

 

 

    

    

    

    

         (10.32) 

Note that the definitions (10.32) are invariant with respect to the following 
substitutions: 

1 1 1

2 2 2

3 3 3

4 4 4

1 1 1

2 2 2

3 3 3

4 4 4

,
,
,
,

,

,

,

.

b b
b b
b b
b b

B B

B B

B B

B B














 

 

 

 

 

 

 

 

  

  

  

  

         (10.33) 

Taking into account (10.32) we get 

  1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 ,

i ib ib b ib B B B iB

h ih ih ih H iH H H

         

        

t r t r tr r t tr

tr t r tr r t

e e e e e e e e

e e e e e e

    

        (10.34) 

and wave equation (10.27) can be rewritten as 

  1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 .

i h ih ih ih H iH H H

i i i l l l l i   

          

        

t r tr t r tr r t

t r tr r t tr

e e e e e e e e

e e e e e e

    

         (10.35) 
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Producing the action of the operator on the left side of equation (10.35) and 
separating the terms with different space-time properties, we obtain two 
independent systems of the equations for the field strengths, similar to the 
system of Maxwell equations in electrodynamics. The first system is 

 
 

1 1 1

2 2 2

1 1 2 1

2 2 1 2

,

,

,

.

h H

h H

H h i H l

H h i H l





    

   

       
       

 

 

   

   

      (10.36) 

This system is invariant with respect to the following substitutions: 

1 1 1

2 2 2

1 1 1

2 2 2

,
,

,

.

h h
h h

H H

H H








 
 

 

 

  

  

        (10.37) 

Multiplying each of the equations (10.36) to the corresponding field strength 
and adding these equations to each other, we obtain: 

 
   

   
   

   

2 2 2 2
1 2 1 2

1 1 2 2

1 1 2 2

1 2 2 1

1 1 2 2 1 1 2 2

1
2

.

h h H H

h H h H

H h H h

i H H i H H

h h H l H l 

   

    

   

           

     

 

   

   

     

  

       (10.38) 

This expression is the analog of Poynting’s theorem for first type of 
massless field. The term 

 2 2 2 2
1 2 1 2

1
8

w h h H H


   
 

            (10.39) 

plays the role of field energy density, while the term  
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 1 1 2 2 1 24
cp h H h H i H H


     
             (10.40) 

plays the role of energy flux density.  
The second system is 

 
 

3 3 3

4 4 4

3 3 4 3

4 4 3 4

,

,

,

.

h H

h H

H h i H l

H h i H l





   

    

       
       

 

 

   

   

     (10.41) 

This system is invariant with respect to the following substitutions: 

3 3 3

4 4 4

3 3 3

4 4 4

,
,

,

.

h h
h h

H H

H H








 

 

 

 

  

  

        (10.42) 

Multiplying each of the equations (10.41) to the corresponding field strength 
and adding these equations to each other, we obtain: 

 
   

   
   

   

2 2 2 2
3 4 3 4

3 3 4 4

3 3 4 4

3 4 4 3

3 3 4 4 3 3 4 4

1
2

.

h h H H

h H h H

H h H h

i H H i H H

h h H l H l 

   

    

   

           

     

 

   

   

     

  

       (10.43) 

This expression is the analog of Poynting’s theorem for second type of 
massless field. The term 

 2 2 2 2
3 4 3 4

1
8

w h h H H


   
 

           (10.44) 

plays the role of field energy density, while the term  
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 3 3 4 4 3 44
cp h H h H i H H


     
              (10.45) 

plays the role of energy flux density.  
Accordingly, the wave equations for the massless field strengths are also 

divided into two independent systems. The first system combines the 
potentials and sources, which are transformed in accordance with Lorentz 
transformations of type I (see (2.10)) 

   
   
 
 

2
1 1 1

2
2 2 2

2
1 1 1 2

2
2 2 2 1

,

,

,

.

h l

h l

H l i l

H l i l









       

      

          
          





   

   

   (10.46) 

The second system combines the fields and sources, which are transformed 
in accordance with Lorentz transformations of type II (see (2.10)) 

   
   
 
 

2
3 3 3

2
4 4 4

2
3 3 3 4

2
4 4 4 3

,

,

,

.

h l

h l

H l i l

H l i l









      

       

          
          





   

   

     (10.47) 

The equations (10.46) and (10.47) are invariant with respect to the 
substitutions 



 

 92 

        

1 1 1

2 2 2

3 3 3

4 4 4

1 1 1

2 2 2

3 3 3

4 4 4

,
,
,
,

,

,

,

.

l l

l l

l l

l l

  
  
  
  









 
  

 

  

 

 

 

 

  

  

  

  

           (10.48) 

The system of equations (10.36) corresponds to the usual system of Maxwell 
equations. Let us show it. If we assume the charge conservation  

 
 

1 1

2 2

0,

0,

l

l





    

   



      (10.49) 

then as it follows from (10.46) we can choose the scalar fields 1h  and 2h  
equal to zero and obtain the following system: 

 
 

1 1

2 2

1 2 1

2 1 2

,

,

,

.

H

H

H i H l

H i H l





  

  

      
      

 

 

  

  

     (10.50) 

Here 1H


 is the electric field strength; 2H


 is the magnetic field strength; 1  is 
the volume density of electrical charge; 2  is the volume density of magnetic 
charge; 1l


 is the volume density of electrical current; 2l


 is the volume 

density of magnetic current. Taking into account the experimental fact that 
in our part of the universe there are no magnetic charges and currents, we 
obtain the system of equations  

 
 

1 1

2

1 2 1

2 1

,

0,

,

0,

H

H

H i H l

H i H

  

  

      
     

 

 

  

  

    (10.51) 
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which coincides with the conventional system of Maxwell's equations. 
 

10.3. First-order equation for massive field 

Let us consider a massive field, which is described by the sedeonic first-
order equation 

 i i m  t r tr m me e e W = I


  . .         (10.52) 

Here mI  is the phenomenological field source, which can be chosen in the 
following sedeonic form: 

1 2 3 4 1 2 3 4d id id id f if f f        m tr t r tr r tI e e e e e e
   

    (10.53) 

where 4k kd d   ( kd   are the volume density of charges) and 4
k kf f

c
 

 
 ( kf 


 

are the corresponding volume density of currents). Choosing the potential 
mW  in the form of (10.7) we can rewrite the equation (10.52) in the 

following expanded form 

   1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 .

i i m ia ia a ia A A A iA

d id id id f if f f

          

        

t r tr t r tr r t tr

tr t r tr r t

e e e e e e e e e

e e e e e e

   

     (10.54) 

This sedeonic equation is equivalent to the following system: 
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1 1 4 1

2 2 3 2

3 3 2 3

4 4 1 4

1 1 2 4 1

2 2 1 3 2

3 3 4 2 3

4 4 3 1 4

,

,

,

,

,

,

,

.

a A ma d

a A ma d

a A ma d

a A ma d

A a i A mA f

A a i A mA f

A a i A mA f

A a i A mA f

     

     

     

     

       
       
       
       









   

   

   

   

   (10.55) 

On the other hand, introducing the massive field strengths according the 
definitions (10.10) we get 

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 .

g ig ig ig G iG G G

d id id id f if f f

       

        
tr t r tr r t

tr t r tr r t

e e e e e e

e e e e e e

   

      (10.56) 

It means that in fact the field strengths are non-zero only in the regions of the 
field sources.  

Applying the operator  i i m  t r tre e e


 to the equation (10.54) we 

obtain the following second-order wave equation: 

  
 
 
 

1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 ,

i i m i i m

ia ia a ia A A A iA

i i m

d id id id f if f f

       

       

    

        

t r tr t r tr

t r tr r t tr

t r tr

tr t r tr r t

e e e e e e

e e e e e e

e e e

e e e e e e

 

   



   

       (10.57) 

which is equivalent to the following system: 
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2 2
1 1 1 4

2 2
2 2 2 3

2 2
3 3 3 2

2 2
4 4 4 1

2 2
1 1 1 2 4

2 2
2 2 2 1 3

2 2
3 3 3

,

,

,

,

,

,

m a d f md

m a d f md

m a d f md

m a d f md

m A f d i f mf

m A f d i f mf

m A f d

         

         

         

         

           
           

       









    

    

 

 
4 2

2 2
4 4 4 3 1

,

.

i f mf

m A f d i f mf

   
           

 

    

   (10.58) 

It can be seen that equations (10.58) are invariant with respect to the 
following substitutions for the sources: 

1 1 1 4

2 2 2 3

3 3 3 2

4 4 4 1

1 1 1

2 2 2

3 3 3

4 4 4

,
,
,
,

,

,

,

.

d d m
d d m
d d m
d d m

f f

f j

f f

f f

 
 
 
 









  
  

   

  

 

 

 

 

  

 

  

  

     (10.59) 

As an example, let us consider the fields produced by a one type of 
sources 4d  and 4f


: 

4 4id f  m r tI e e


 ,            (10.60) 

In this case the equation (10.56) is rewritten as 
4 4 4 4ig G id f    r t r te e e e


.        (10.61) 

Applying the operator  i i m   1 2 3e e e


 to the equation (10.6) and 

separating the values with different space-time properties we obtain the 
following equations for the field strengths: 
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4 4

4 4

4 4 4 4

4 4

4 4 4 4

,

,
1 ,

,

.

g d

G f

g G d f
c

G f

G g f d





       

       

    



 

 

  

          (10.62) 

Assuming the charge conservation 

 4 4 0d f   


,             (10.63 

we have the following gauge condition:  

 4 4 0g G   


,            (10.64 

which is similar to conventional Lorentz gauge, but for field strengths here. 

 

10.4. First-order equation for massless field 

In massless case the first-order wave equation can be presented as 

 i    t r 0 0e e W I


  ,            (10.67) 

where the potential 0W  and phenomenological source 0I  have the following 
form: 

1 2 3 4 1 2 3 4ib ib b ib B B B iB       0 t r tr r t trW e e e e e e
   

 ,     (10.68) 

1 2 3 4 1 2 3 4i i i i               0 tr t r tr r tI e e e e e e    .  (10.69) 

Here S S4    ( S   is the volume density of charge) and S S

4
c
  

   ( S 
  is 

volume density of current). The equation (10.67) is equivalent to the 
following system: 
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1 1 1

2 2 2

3 3 3

4 4 4

1 1 2 1

2 2 1 2

3 3 4 3

4 4 3 4

,

,

,

,

,

,

,

.

b B

b B

b B

b B

B b i B

B b i B

B b i B

B b i B

















    

    

    

    

      
      
      
      

 

 

 

 

    

    

    

    

      (10.70) 

The equations (10.70) are invariant with respect to the substitutions (10.33). 

10.5. Generalization of gradient invariance 

The gradient gauge invariance of the sedeonic equations describing the 
massive fields is a property of the operator  i i m  t r tre e e


 and can be 

generalized to a wider class of scalar-vector substitutions [52]. Indeed, let us 
denote  

  ˆi i m    t r tre e e
 

,            (10.71) 

then the wave equation (10.71) takes the following form: 

ˆ ˆ m mW J
 

  .       (10.72) 

This equation is not changed under the following replacement of potential: 
 

ˆ  m mW W F E


    ,      (10.73) 

where F  and E  are arbitrary sedeons satisfy the following conditions:  

ˆ 0 F

 ,              (10.74) 

ˆ ˆ 0 E
 

 .                (10.75) 
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The condition (10.74) indicates that the potential mW  is defined up to an 
additive function F  satisfying the homogeneous first-order wave equation, 
while expression (10.75) means that E  satisfy the homogeneous second-
order wave equation. Let us consider the generalized gradient gauge 
condition. For the potential determined by the expression (10.7) the function 
E  can be chosen as follows: 

1 2 3 4 1 2 3 4 ,i i i E iE E E          tr t r tr r tE e e e e e e
   

         (10.76) 

where components S  and SE


 are arbitrary real functions of coordinates and 
time. Then the replacement (10.73) leads us to the following system of 
substitutions: 

 
 
 
 

1 1 1 1 4

2 2 2 2 3

3 3 3 3 2

4 4 4 4 1

1 1 1 1 2 4

2 2 2 2 1 3

3 3 3 3 4 2

4 4

,

,

,

,

,

,

,

a a E m

a a E m

a a E m

a a E m

A A E i E mE

A A E i E mE

A A E i E mE

A A E

 

 

 

 







     

     

    

     

        
        
        

 

 

 

 

 

      

      

      

  
4 4 3 1.i E mE      

   

   (10.77) 

If we chose the vector part equal to zero ( S 0E 


), then the substitutions 
(10.77) are reduced to (10.11) and to (10.33) for the zero mass quantum. 
Analogous substitutions for the field strengths have the following form: 
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1 1 1 1 4

2 2 2 2 3

3 3 3 3 2

3 3 4 4 1

1 1 1 1 2 4

2 2 2 2 1 3

3 3 3 3 4 2

4 4

,

,

,

,

,

,

,

g g E m

g g E m

g g E m

g g E m

G G E i E mE

G G E i E mE

G G E i E mE

G G E

 

 

 

 







    

     

     

      

       
        
        

  

 

 

 

 

      

      

      

  
4 4 3 1.i E mE      

   

   (10.78) 

If we chose the vector part equal to zero, then the substitutions (10.78) are 
reduced to (10.15) and to (10.37) and (10.42) for the zero mass quantum. 

10.6. Conclusion 

Thus we have presented the sypersymmetric scalar-vector equations for 
massive and massless fields. The gauge invariance for the potentials 
described by second-order and first-order wave equations and for the field 
strengths described by the systems of Maxwell-like equations has been 
demonstrated.  
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Application 1.  Matrix representation of sedeons 
 
 

Let us consider a matrix representation of the sedeon. In general, the 
sedeon is equivalent to the 16 × 16 matrix. Working with such a matrix is 
extremely difficult because of its high dimensionality. However, this matrix 
cab be represented in the compact form of 4 × 4 block matrices. Let us 
consider the sedeon V  in the basis 0e , 1e , 2e , 3e :  

0 1 2 3 0 1 2 3V e V e V e V e V = + .     (A 1.1) 

The sedeonic product of 1e  and V  can be written as  

1 0 3 2i i1 0 1 2 3e V e V + e V e V e V = + ,    (A 1.1) 

therefore the sedeonic unit 1e  enables the following matrix representation: 
0 1 0 0
1 0 0 0
0 0 0
0 0 0

i
i

 
 
 
 
 
 

1e .       (A 1.3) 

Analogously: 

1 0 0 0
0 1 0 0

1
0 0 1 0
0 0 0 1

 
 
  
 
 
 

0e , 

0 0 1 0
0 0 0
1 0 0 0
0 0 0

i

i

 
 
 
 
 

 

2e , 

0 0 0 1
0 0 0
0 0 0
1 0 0 0

i
i

 
  
 
 
 

3e .  (A 1.4) 

Thus, using (A 1.3) and (A 1.4), we can write a sedeon V  (in 0e , 1e , 2e , 3e  
basis) in the following matrix form: 

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

i i
i i

i i

 
 

   
   

V V V V
V V V V

V
V V V V
V V V V



V

.     (A 1.5) 

On the other hand we can write sedeon V  using 0a , 1a , 2a , 3a  basis in the 
following scalar-vector form: 
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0 1 2 3   0 1 2 3V V a V a V a V a .     (A 1.6) 

Then the basis elements 0a , 1a , 2a , 3a  have the following matrix 
representation: 

1 0 0 0
0 1 0 0

1
0 0 1 0
0 0 0 1

 
 
  
 
 
 

0a , 

0 1 0 0
1 0 0 0
0 0 0
0 0 0

i
i

 
 
 
 
 
 

1a ,       

0 0 1 0
0 0 0
1 0 0 0
0 0 0

i

i

 
 
 
 
 

 

2a , 

0 0 0 1
0 0 0
0 0 0
1 0 0 0

i
i

 
  
 
 
 

3a .          (A 1.7) 

Using (A 1.7) a sedeon V  can be written in 0a , 1a , 2a , 3a  basis as 4  4 
block matrix: 

0 1 2 3

1 0 3 2

2 3 1

3 2 1 0

i i
i i
i i

 
  
 
 

 

V V V V
V V V V

V
V V V V
V V V V

0

 .    (A 1.8) 

Thus the sixteen-component sedeon can be written as a 16  16 matrix, 
which can be represented in two different compact 4  4 form. First 
representation in 0e , 1e , 2e , 3e  basis is (A 1.5) with V  components in 

0a , 1a , 2a , 3a  basis 

0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

V V V V
V V iV iV
V iV V iV
V iV iV V

   

   


   

   

 
  
 
 

 

V .    (A 1.9) 

Second representation in 0a , 1a , 2a , 3a  basis is (A 1.8) with V  components 
in 0e , 1e , 2e , 3e  basis  
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0 1 2 3

1 0 3 2

2 3 0 1

3 2 1 0

V V V V
V V iV iV
V iV V iV
V iV iV V

   

   


   

   

 
    
   

V .    (A 1.10) 

Let us consider the relations between unit vectors 1a , 2a , 3a  and Dirac 
matrices. Introducing new values  

   

   

1 0 3 2 1 2

3 1 2 4 0 3

1 1, ,
2 2
1 1, ,
2 2

i

i

   

   

W V V W V V

W V V W V V
   (A 1.11) 

we can write the sedeon (A 1.6) in the basis of eigenfunctions of operator 3a  
in the following form: 

1 2 3 4(1 ) ( ) ( ) (1 )i i       3 1 2 1 2 3V W a W a a W a a W a ,  (A 1.12) 

where set of values  

(1 ) 3a , ( )i1 2a a , ( )i1 2a a , (1 ) 3a     (A 1.13) 

is the new sedeonic basis. Then the action of vector operators ma  can be 
represented as  

2 1 4 3(1 ) ( ) ( ) (1 )i i       1 3 1 2 1 2 3a V W a W a a W a a W a ,     

2 1 4 3(1 ) ( ) ( ) (1 )i i i i i i        2 3 1 2 1 2 3a V W a W a a W a a W a ,    (A 1.14) 

1 2 3 4(1 ) ( ) ( ) (1 )i i       3 3 1 2 1 2 3a V W a W a a W a a W a .     

Therefore the unit vectors 1a , 2a , 3a  can be written in the new basis as the 
following 4  4 matrices:  

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 
 
 
 
 
 

1a , 

0 0 0
0 0 0

0 0 0
0 0 0

i
i

i
i

 
 
 
 
 
 

2a , 

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 
  
 
 

 

3a ,     (A 1.15) 

which coincide with spin operators ˆm  in Dirac theory [27]: 
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0 1 0 0
1 0 0 0

ˆ
0 0 0 1
0 0 1 0



 
 
 
 
 
 

1 , 

0 0 0
0 0 0

ˆ
0 0 0
0 0 0

i
i

i
i



 
 
 
 
 
 

2 , 

1 0 0 0
0 1 0 0

ˆ
0 0 1 0
0 0 0 1



 
  
 
 

 

3 .    (A 1.16) 

Thus, the matrix operators e  and a , can be presented as 16 × 16 
matrices. The 4 × 4 matrix presentation is valid only for specified bases and 
only in case when operators e  and a  act separately and independently. 
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Application 2.  Space-time sedenions 
 

The well known sixteen-component hypercomplex numbers, sedenions, 
are obtained from octonions by the Cayley-Dickson extension procedure 
[51]. In this case the sedenion is defined as  

1 2S O O  e ,       (A 2.1) 

where iO  is an octonion and the parameter of duplication e  is similar to 
imaginary unit ( 2 1 e ). The algebra of sedenions has the specific rules of 
multiplication. The product of two sedenions  

1 11 12S O O  e , 

2 21 22S O O  e  
is defined as  

       1 2 11 12 21 22 11 21 22 12 22 11 12 21S S O O O O O O O O O O O O      e e e ,   (A 2.2) 

where iO  is conjugated octonion. The sedenionic multiplication (A 2.2) 
allows one to introduce a well defined norm of sedenion. However such 
procedure of constructing the higher hypercomplex numbers leads to the fact 
that the sedenions as well as octonions generate normed but nonassociative 
algebra [4]. This greatly complicates the use of the Cayley-Dickson 
sedenions in the physical applications. 
 

In this section we present an alternative version of the associative sixteen-
component hypercomplex numbers named “space-time sedenions” [53] and 
demonstrate some of its application to the generalization of the field theory 
equations. 

П 2.1. Sedenionic space-time algebra 

It is known, the quaternion is a four-component object, which can be 
presented in the following form: 

0 1 2 3q q q q q   0 1 2 3a a a a ,      (A 2.3) 
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where components q ( 0,1, 2, 3  ) are numbers (complex in general), 
10a  is scalar units and values ma  ( m 1, 2, 3 ) are quaternionic units, 

which are interpreted as unit vectors. The rules of multiplication and 
commutation for ma  are presented in Table 4. We introduce also the space-
time basis , , ,0 t r tre e e e , which is responsible for the space-time inversions. 
The indexes t and r indicate the transformations (t for time inversion and r 
for spatial inversion), which change the corresponding values. The value 

10e  is a absolute scalar unit. For convenience we introduce numerical 
designations 1 te e  is time scalar unit; 2 re e  is space scalar unit ; 

3 tre e  is space-time scalar unit. The rules of multiplication and 
commutation for this basis me  we choose similar to the rules for 
quaternionic units (see Table 5).  

 

Table 4.          Table 5. 
 
 
 
 
 
 
 
 

Note that the unit vectors , ,1 2 3a a a  and the space-time units , ,1 2 3e e e  
generate the anticommutative algebras: 

,
, 

 

 
n m m n

n m m n

a a a a
e e e e

       (A 2.4) 

for n m , but basis elements , ,1 2 3e e e  commute with elements , ,1 2 3a a a : 

n m m ne a a e ,       (A 2.5) 

for any n  и m . Then we can introduce the sixteen-component space-time 
sedenion V  in the following form: 

   1a    2a    3a  

1a  1    3a   2a  

2a   3a  1    1a  

3a    2a   1a  1  

 

   1e    2e    3e  

1e  1    3e  2e  

2e  3e  1    1e  

3e    2e  1e  1  
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00 01 02 03

10 11 12 13

20 21 22 23

30 31 32 33 .

V V V V

V V V V

V V V V

V V V V

   

   

   

   

0 0 1 2 3

1 0 1 2 3

2 0 1 2 3

3 0 1 2 3

e a a a a

e a a a a

e a a a a

e a a a a

V

    (A 2.6) 

The sedenionic components V  are numbers (complex in general). 
Introducing designation of scalar and vector values in accordance with the 
following relations: 

00V V 0 0e a ,            
 01 02 03V V V V  0 1 2 3e a a a


,       

10V V V t 1 1 0e a ,          
 11 12 13V V V V V   t 1 1 1 2 3e a a a

 
,         (A 2.7) 

20V V V r 2 2 0e a ,          
 21 22 23V V V V V   r 2 2 1 2 3e a a a

 
,      

30V V V tr 3 3 0e a ,          
 31 32 33V V V V V   tr 3 3 1 2 3e a a a

 
.      

Then we can represent the sedenion in the following scalar-vector form: 

V V V V V V V V       t t r r tr tr

   
V .    (A 2.8) 

Thus, the sedenionic algebra encloses four groups of values, which are 
differed with respect to spatial and time inversion.  

 Absolute scalars ( )V  and absolute vectors ( )V


 are not transformed 
under spatial and time inversion. 

 Time scalars ( )Vt  and time vectors ( )Vt


 are changed (in sign) under time 

inversion and are not transformed under spatial inversion. 
 Space scalars ( )Vr  and space vectors ( )Vr


 are changed under spatial 

inversion and are not transformed under time inversion. 
 Space-time scalars ( )Vtr  and space-time vectors ( )Vtr


 are changed under 

spatial and time inversion.  

Further we will use the symbol 1 instead units 0a  and 0e  for simplicity. 
Introducing the designations of scalar-vector values  
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0 00 01 03V V V V   1 2 3a a a02V ,       

1 10 11 12 13V V V V   1 2 3a a aV ,     (A 2.9) 

2 20 21 22 23V V V V   1 2 3a a aV ,       

3 30 31 32 33V V V V   1 2 3a a aV .       

Then we can write the sedenion using space-time basis in the following 
compact form: 

0 1 2 3 1 2 3e e eV = V + V V V .     (A 2.10) 

On the other hand, introducing the designations of space-time sedenion-
scalars  

0 00 10 20 30( )V V V V   1 2 3e e eV ,       

1 01 11 21 31( )V V V V   1 2 3e e eV ,       

2 02 12 22 32( )V V V V   1 2 3e e eV ,        (A 2.11) 
3 03 13 23 33( )V V V V   1 2 3e e eV        

we can write the sedenion in vector basis as  

0 1 2 3   1 2 3a a aV V V V V ,    (A 2.12) 

or introducing the sedenion-vector  

1 2 3V V V V    t r tr 1 2 3a a a
    

V = = V V V ,    (A 2.13) 

we can rewrite the sedenion in following compact form: 

0 


V V V .       (A 2.14) 

Further we will indicate sedenion-scalars and sedenion-vectors with the bold 
capital letters. 

Let us consider the sedenionic multiplication in detail. The sedenionic 
product of two sedenions A  and B  can be represented in the following 
form:  

     0 0 0 0 0 0            
      

 AB A A B B A B A B AB A B A B . (A 2.15) 

Here we denoted the sedenionic scalar multiplication of two sedenion-vectors 
(internal product) by symbol “  ” and round brackets: 
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  1 1 2 2 3 3    
 
A B A B A B A B ,      (A 2.16) 

and sedenionic vector multiplication (external product) by symbol “” and 
square brackets: 

     2 3 3 2 3 1 1 3 1 2 2 1       1 2 3a a a
 
A B A B A B + A B A B + A B A B . (A 2.17) 

Thus the sedenionic product  

0


 F = AB F + F         (A 2.18) 
has the following components: 

0 0 0 1 1 2 2 3 3  F = A B A B A B A B ,        
 1 1 0 0 2 3 3 21F = A B + A B + A B A B ,        (A 2.19) 
 2 2 0 0 2 3 1 1 3 F = A B + A B A B A B ,       
 3 3 0 0 3 1 2 2 1 F = A B + A B A B A B .       

Note that in the sedenionic algebra the square of vector is defined as  

  2 2 2
1 2 3

2A A A A A A     
  

.     (A 2.20) 

On the other hand, the square of modulus of vector is  

 2 2 2 2
1 2 3A A A A + A + A   

  
.     (A 2.21) 

It is positively defined value. 

A 2.2. Sedenionic spatial rotation and space-time conjugation  

The rotation of sedenion V on the angle   around the absolute unit 
vector n  is realized by uncompleted sedenion  

   cos / 2 sin / 2n  
U      (A 2.22) 

and by conjugated sedenion: 
   * cos / 2 sin / 2n  

U .   (A 2.23) 
They satisfy the following relation: 
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* * 1   UU = U U .       (A 2.24) 
The transformed sedenion V  is defined as sedenionic product:  

*    V U  V  U .        (A 2.25) 

Thus the transformed sedenion V can be written as  

         cos / 2 sin / 2 cos / 2 sin / 20n n             
 V V V  

  cos 1 cos sin0 n n n          
    V V V V .   (A 2.26) 

It is clearly seen that rotation does not transform the sedenion-scalar part, 
but the sedenionic vector 


V  is rotated on the angle   around n . 

The operations of time inversion ( tR̂ ), space inversion ( rR̂ ) and space-
time inversion ( trR̂ ) are connected with transformations in 1e , 2e , 3e  basis 
and can be presented as 

R̂      t 2 2 1 2 3e e e e e 
0 1 2 3V V V V V V ,       

R̂      r 1 1 1 2 3e e e e e 
0 1 2 3V V V V V V ,         (A 2.27) 

R̂      tr 3 3 1 2 3e e e e e 
0 1 2 3V V V V V V .       

A 2.3. Sedenionic Lorentz transformations 

In sedenionic algebra the relativistic event four-vector can be represented 
in the follow sedenionic form: 

+ct r t re e S .        (A 2.28) 

The square of this value is the Lorentz invariant 
2 2 2 2 2c t + x + y + z  S S .     (A 2.29) 

The Lorentz transformation of event four-vector is realized by uncompleted 
sedenions  

cosh sinhm   tre L ,      (A 2.30) 
cosh sinhm   tre *L ,     (A 2.31) 
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where tanh 2 v / c  , v  is a speed of motion along the absolute unit vector 
m . Note that  

 1     L L L L .       (A 2.32) 
For example, the transformed event four-vector S  is written as  

     cosh sinh + cosh sinhm ct r m       tr t r tre e e e    *S L  S L     
 cosh2 sinh2ct m r   t te e          (A 2.33) 

   sinh2 1 cosh2r ctm m r m    r r r+e e e     .     

Separating in (A 2.33) the values with te  and re  we get the well known 
formulas for time and coordinates transformation [26]: 

2

2 2

/

1 /

t x v ct
v c

 


, 
2 21 v /

x t vx
c

 


, y y  , z z  ,  (A 2.34) 

where x  is the coordinate along the m  vector. 
Let us also consider the Lorentz transformation of the full sedenion V . 

The Lorentz transformation for any sedenion V  can be written as 
sedenionic product 

    *V L  V L .        (A 2.35) 
The transformed sedenion has the following components:  

V V  ,                 
V V tr tr ,                

 cosh 2 sinh 2V V m V    r r tr te
 ,          

 cosh 2 sinh 2V V m V    t t tr re
 ,       (A 2.36) 

   cosh 2 1 cosh 2 sinh2V V m V m m V          tr rte
      ,    

   cosh 2 1 cosh 2 sinh2V V m V m m V          tr tr tr tre
      ,    

   1 cosh 2 sinh 2V V m V m V m      r r r tr te
     ,       

   1 cosh 2 sinh 2V V m V m V m      t t t tr re
     .       
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A 2.4. Subalgebras of space-time quaternions and octonions 

The sedenionic basis introduced above enables constructing different 
types of low-dimensional hypercomplex numbers. For example one can 
introduce space-time complex numbers 

1 2Z z z t te ,       (A 2.37) 

1 2Z z z r re ,       (A 2.38) 

1 2Z z z tr tre ,       (A 2.39) 

which are transformed under space and time conjugation. Moreover we can 
consider the space-time quaternions, which differ in their properties with 
respect to the operations of the spatial and time inversion  

 0 1 2 3q q q q q   0 0 1 2 3a e a a a ,    (A 2.40) 

 0 1 2 3q q q q q   t 0 t 1 2 3a e a a a ,    (A 2.41) 

 0 1 2 3q q q q q   r 0 r 1 2 3a e a a a ,    (A 2.42) 

 0 1 2 3q q q q q   tr 0 tr 1 2 3a e a a a .    (A 2.43) 

The absolute quaternion (A 2.40) is the sum of the absolute scalar and 
absolute vector. It remains constant under the transformations of space and 
time inversion (A 2.27). Time quaternion qt

 , space quaternion qr
  and 

space-time quaternion qtr
  are transformed under inversions in accordance 

with the commutation rules for the basis elements , ,t r tre e e . For example, 
performing the operation of time inversion with the quaternion qt

  we obtain 
the conjugated quaternion  

 0 1 2 3R̂ q q q q q q    t t r t r 0 t 1 2 3= e e a e a a a  .   (A 2.44) 

Moreover, the sedenionic basis allows one to construct various types of 
space-time eight-component octonions: 
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 00 01 02 03 10 11 12 13G = G +G +G +G + G + G +G +Gt 1 2 3 t t 1 2 3a a a e e a a a


,     (A 2.45) 

 00 01 02 03 20 21 22 23G = G +G +G +G + G + G +G +Gr 1 2 3 r r 1 2 3a a a e e a a a


,   (A 2.46) 

 00 01 02 03 30 31 32 33G = G +G +G +G + G + G +G +Gtr 1 2 3 tr tr 1 2 3a a a e e a a a


.  (A 2.47) 

A 2.5. Sedenionic equations of relativistic quantum mechanics 

In sedenionic algebra the Einstein relation for energy and momentum 

0
2 2 2 2 4 0E c p m c          (A 2.48) 

can be presented in the following form:  

  2 2
0 0 0E cp i m c E cp i m c    t r tr t r tre e e e e e  .    (A 2.49) 

Changing classical energy E  and momentum p  on corresponding quantum-
mechanical operators: 

Ê i
t





   и  p̂ i  


 ,      (A 2.50) 

we get the sedenionic wave equation for relativistic particle:  

0 01 1 0
m c m c

c t c t
                 

t r tr t r tre e e e e e ψ
 


 

, (A 2.51) 

where the wave function is sedenion  

     0t,r t,r t,r ψ ψ ψ  
 .          (A 2.52) 

Note that for electrically charged particle in an external electromagnetic field 
we have the following sedenionic wave equation: 

0

0

1

1 0.

m cie ie A
c t c c

m cie ie A
c t c c





      
        

t t r r tr

t t r r tr

e e e e e

e e e e e ψ



  




  

  (A 2.53) 
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This equation describes the particle with spin 1/2 in an external 
electromagnetic field [21].  

There is a special class of particles described by the first-order wave 
equation. For these particles the sedenionic Dirac-like wave equation has the 
following form: 

01 0
m c

c t
      

t r tre e e ψ





.     (A 2.54) 

Analogously the electrically charged particle interacting with external 
electromagnetic field is described by the following sedenionic first-order 
wave equation: 

01 0
m cie ie A

c t c c


        
t t r r tre e e e e ψ




  
.   (A 2.55) 

This equation also describes the particles with spin 1/2 in an external 
electromagnetic field [22]. 

A 2.6. Generalized sedenionic equations for massive force field  

The generalized sedenionic wave equation enables another interpretation. 
It can be considered as the equation for the force massive field. Let us 
consider the nonhomogeneous wave equation for the field potential with the 
phenomenological source of field  

0 01 1m c m c
c t c t
                 

t r tr t r tre e e e e e
 

 
 

W J .  (A 2.56) 

Here W  is the field potential, J  is source of field, parameter 0m  is the mass 
of quantum of field. 

In the special case when the mass of quantum is equal to zero the 
equation (A 2.56) coincides with the equation for electromagnetic field in a 
vacuum. Indeed, choosing the potential as 

A t re e


W =         (A 2.57) 

and the source of electromagnetic field as  
44= j
c


 t re e


J ,       (A 2.58) 
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we obtain the following wave equation: 

 1 1 44A j
c t c t c


 

               
t r t r t r t re e e e e e e e

  
.   (A 2.59) 

After the action of the first operator in the left-hand side of equation 
(A 2.59) we obtain 

 

 

1

1 1 .

A
c t

A A A
c t c t



 

     

            

t r t r

tr tr

e e e e

+ e + e




   

  (A 2.60) 

Using the sedenionic definitions of the electric and magnetic fields  

1 ,AE
c t

H A


  


   


 

 
       (A 2.61) 

and taking into account the Lorentz gauge condition 

 1 0A
c t


  




,        (A 2.62) 

we can rewrite the expression (A 2.60) in the following form:  

 1 A E H
c t


        

t r t r tre e e e e
  

.     (A 2.63) 

Then the wave equation (A 2.59) can be represented as  

 1 44E H j
c t c




         
t r tr t re e e e e

   
.   (A 2.64) 

Performing sedenionic multiplication in the left-hand side of equation 
(A 2.64) we get 
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1

1 44 .

E E E
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c t c




     
           

r t t
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  (A 2.65) 

Separating space-time values we obtain the system of Maxwell equations in 
the following form: 

 

 

4 ,

1 4 ,

1 ,

0 .

E

EH j
c t c
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c t
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t t
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r
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e e e

e e

e

 


  


 

 

    (A 2.66) 

The system (A 2.66) coincides with the Maxwell equations.  

A 2.7. Conclusion 

Algebra of sedenions is equivalent to the algebra of sedeons. In contrast 
to the sedeonic algebra, which uses the multiplication rules of basic elements 
proposed by A.Macfarlane [23], the multiplication rules for sedenionic basis 
elements coincide with the rules for quaternion units introduced by 
W.R.Hamilton [1]. There is a simple relation between these two algebras. 
Let as denote sedeon basis as M

na  and M
ne  (Macfarlane rules) but sedenionic 

basis as H
na  and H

ne  (Hamilton rules). Then there are the following relations: 

M Hin na a , 
M Hin ne e . 

There is one disadvantage of sedenions connected with the fact that the 
square of the vector is a negative value. However, on the other side the 
sedenionic rules of cross-multiplying do not contain the imaginary unit and 
this leads to the considerable simplifications in the calculations. But of 
course, the physical results do not depend on the choice of algebra, so these 
two algebras are equivalent.  
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