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The ensemble interpretation attributes the wave appearances of particles to their statistical char-
acteristics. This has increasingly interested scientists. However, the ensemble interpretation is still
not a scientific theory based on mathematics. Here, based on double-slit experiment, a mathemat-
ical framework for the ensemble interpretation is constructed. The Schrödinger equation and the
de-Broglie equation are also deduced. Finally, a proof for the hypothesis of the Feynman path inte-
gral is provided. Analysis shows that the wave appearances of particles is caused by the statistical
properties of these particles; the nature of the wave function is the average or the sum of the least
action for the particles in a position.
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INTRODUCTION.

Double-slit experiments indicate that particles exhibit
wave properties[1, 2, 3, 4]. Many interpretations have
been proposed to explain the wave features appearing in
double-slit experiments[5, 6]. However, scientists have
not completely accepted any of these interpretations.

The Copenhagen Interpretation attributed the parti-
cle’s wave appearances to particle’s duality and regarded
the wave as a probabilistic wave[7, 8, 9]. The remarkable
feature of the Copenhagen Interpretation was that it
denied a particle’s classical trajectory. Most scientists
have accepted the Copenhagen Interpretation’s view-
point of a “probabilistic wave”, but its other viewpoints,
a few scientists still doubt. American physicist Alfred
Landé believed a successful interpretation should be
classical[10]. Karl Popper believed there was no need
to do away with the concept of a particle’s classical
trajectory[11]. Einstein was not satisfied with the
Copenhagen Interpretation. He proposed the ensemble
viewpoint[12] and believed the wave function described
the properties of the ensemble. Leslie E. Ballentine
improved and further developed the ensemble interpreta-
tion[13]. Max Jammer affirmed that, in practical work,
physicists actually use the logic and terminology of the
ensemble interpretation, whether or not they accepted
it[14]. Today, more and more scientists have accepted
the ensemble interpretation. However, the ensemble
interpretation is a philosophical discussion not a theory
based on principles of physics and mathematics.

In the micro world, many physical quantities are
nonnegative, near-zero numbers. Particularly in an
ensemble system formed by microscopic particles. Here,
based on the features of the nonnegative, near-zero
numbers, a mathematical description for particles’ wave
properties is provided. Also, Using the features of
the non-negative near-zero numbers, other important

conclusions conforming to quantum mechanics are
obtained, such as the de-Broglie equation and the
Schrödinger equation being deduced. Finally, a proof for
the hypothesis of the Feynman path integral is provided.

DOUBLE-SLIT EXPERIMENT DESCRIPTION.

In FIG. 1(a), identical particles are sent out from
source S. They pass through slit A or B arriving at
screen x. O is the origin of screen x. S, O′ and O
are on one line with O′ the mid point of slits A and B
on board m. Board m is parallel to x with m and x
perpendicular to SO. To simplify this problem, consider
that the movement direction of particles, the double-slit,
and screen x are on the same plane. Experiments have
shown that when only one slit is opened, a diffraction
phenomena exists on screen x as shown by either the
solid curve or the dotted curve in (b) of FIG. 1. However,
when the two slits are both opened simultaneously, an
interference phenomenon occurs as in (c) of FIG. 1.
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FIG. 1. Double-slit experiment with particles. a)
Particles begin at S and pass through slit A or B
arriving at screen x. b) When only slit A is open,
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the particles’ position (vertical orientation)-density
(horizontal orientation) curve is described by the solid
curve. When only slit B is open, the position-density
curve is described by the dotted curve (the curve
formed by slit A partially overlaps the dotted curve).
c) When the two slits are opened simultaneously, the
position-density curve appears as an interference pattern.

SOME LEMMAS.

Lemma 1. A nonnegative, near-zero number can be
represented by one item of its complex Fourier series
(symbols not included).

Proof. For a number x > 0, its Fourier series on the
interval [−a, a] (a is a constant and a > 0) is:

x = 2(
sin(πx/a)

π/a
− sin(2πx/a)

2π/a
+

sin(3πx/a)

3π/a
− sin(4πx/a)

4π/a
+...)

(1)

Because lim
x→0

sin(nπx/a)
nπx/a = 1, for n ∈ Z+. So, when x is

near-zero number, we have:

x =
sin(nπx/a)

nπ/a

Due to f(x) = x is an element of L2([−a, a]), its Fouri-
er series in complex form can be written as:

x =

n=+∞∑
n=−∞

αne
inπx
a (2)

Where αn = 1
2a

∫ a
−a xe

−inπx
a dx for n ∈ Z. When

n = 0, αn = 0; when n = 1, 3, 5, 7, 9, ..., αn = − ia
nπ ; and

when n = 2, 4, 6, 8, 10, ..., αn = ia
nπ .

Considering

Re(αne
inπx
a ) = ± sin(nπx/a)

nπ/a

and

Re(αne
inπx
a ) = Re(α−ne

−inπx
a ),

when x→ 0 and no considering signs, we can get:

x = Re(αne
inπx
a ) (3)

The purpose of converting x into its Fourier series
is to found out the changing law of x. When x → 0,
αne

inπx
a is the unique projection of x in orthogonal basis

{ 1√
2a
eikπx/a, k = ...,−1, 0, 1, ...}. So, in order to study

the property of near-zero number x, it’s enough to study

the property of αne
inπx
a .

On the other hand, when x → 0, αn cos(nπxa ) can
be viewed as a constant. If we add a constant into
x (=αn sin(nπxa )), the changing law of x will keep no
changing. So, when x→ 0, if just studying the changing
law of x, we can use αne

inπx
a to replace x.

To sum up, when no account is taken of symbols, a
nonnegative, near-zero number can be regarded as one
item of its complex Fourier series.

Definition:

For a free particle, its action A is defined as:

A =

∫ t2

t1

(T − U)dt =

∫ t2

t1

1

2
mV 2dt (4)

Where:

T and U are the kinetic energy and potential energy
of the particle, respectively. In double slit experiment,
supposing U = 0;

m and V are the mass and speed of the particle,
respectively;

t1 and t2 are the start moment and end moment of
the particle, respectively.

The principle of least action tells us that, a particle
moves along its least action orbit.

In single slit diffraction experiment, by eq. (4),
the average least action of particles in one diffraction
fringe position is L = 1

2PR = 1
2mVR or L = Et. Its

component in screen direction is ε = 1
2pr = 1

2mvr or
` = εt.

Where

P : average momentum of particles in one fringe
position.

p : component of P in screen direction.

V : average speed of particles in one fringe position.

v : component of V in screen direction.

R : average displacement of particles in one fringe
position.

r : component of R in screen direction.
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E : average kinetic energy of particles in one fringe
position.

ε : component of E in screen direction.

t = t2− t1 : average time particles taking from slit to
one fringe position.

Discussion:

In Fig. 1, for single slit experiment, the least action of
every particle at one diffraction fringe position is gotten
by eq. (4). Usually, only their component in screen
direction are near zero, nonnegative numbers and can be
represented only one its Fourier item.

For example, for the electron single slit experiment,
the component of the average least action of electrons in
screen direction is mvr/2.
Where

m = 9.1× 10−31kg;

v is the component of particle speed V in screen
direction. If the angle between V and line O′O is θ,
then v = V sin(θ). For the mid fringe position, usually θ
has order of magnitude 10−3 radian and V has order of
magnitude 103m/s. So, we can conclude that the order
of magnitude for v is about 100.

r is the component of particle displacement in screen
direction. Its value is equal to a quarter of the fringe
width and has an order of magnitude 10−3m.

Thus, the estimated order of magnitude for mvr/2 is
10−34J · s, it is a near-zero, nonnegative number and can
be replaced by its one Fourier item.

Lemma 2. In Fig. 1, for particle single slit experiment,
x∗ is the average least action (or its component ) for
particles in one diffraction fringe position and x is the
average least action (or its component) for particles
in all fringe positions, if x∗ can be replaced by one
Fourier item of x , then the relative probability density
of particles in the position can be described by |x∗|2.

Proof [15]:

At one diffraction fringe position, supposing the least
action of particle is a nonnegative, near-zero number
group X = [x1, x2, ..., xN ] with average value x∗. These
numbers can be viewed as random variables with mathe-
matical expectation value E(X) = x∗. By the definition

of variance, the variance value D(X) of these numbers is:

D(X) =

i=N∑
i=1

x2
i

N
− (x∗)2

In above equation, if x∗ increases ∆x with
xi(i = 1, 2, ..., N) increasing ∆x/N , (x∗)2 will be-
come (x∗ + ∆x)2 with increment 2x∗∆x + (∆x)2, and

1/N
i=N∑
i=1

x2
i will become 1/N

i=N∑
i=1

(xi + ∆x/N)2 with

increment 2x∗∆x/N + (∆x)2/N2. When N is very big
and x∗ as well as ∆x are very small, the increment of

(x∗)2 is far more than the increment of 1/N
i=N∑
i=1

x2
i .

So, when N is big enough and x∗ is a near zero,
nonnegative number, we can say, the greater (x∗)2 is,
the smaller D(X) will be. The value of D(X) reflects
the degree of concentration for random variables :
the less D(X) is, the larger the degree of the number
concentration will be. By the least action principle, the
particle position is determined by the least action of
the particle. Thus, we can say, in the diffraction fringe
position, the larger (x∗)2 is, the bigger the particle
density will be. Meaning (x∗)2 can describe the particle
density in the fringe position. If x∗ is represented as a
complex number, we can say, |x∗|2 describes the particle
density in one fringe position.

Let’s considering another side of the question. Let

fN (x) =

k=N∑
k=−N

αke
ikπx
a

as well as

gN (x) =

k=N∑
k=−N

βke
ikπx
a

be the partial sum of the Fourier series of f and g,
respectively. When N → ∞, fN → f and gN → g in
L2[−a, a], we have:

< fN , gN >=

k=N∑
k=−N

n=N∑
n=−N

αkβn < eikπx/a, einπx/a >

Since { 1√
2a
eikπx/a, k = ...,−1, 0, 1, ...} is orthogonal,

therefore:

< fN , gN >= 2a

n=N∑
n=−N

αnβn

When N →∞, < fN , gN >→< f, g >, so we have:

< f, g >= 2a

n=∞∑
n=−∞

αnβn
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In the set of L2[−a, a], we can define the inner product
as:

< f, g >=

∫ a

−a
fgdx

Let f(x) = g(x) = x, then we get:

∫ a

−a
x2dx = 2a

n=∞∑
n=−∞

|αn|2

Thus,

n=∞∑
n=−∞

|
√

3

a
αn|2 = 1

Let ψn =
√

3
a αne

inπx/a, then:

n=∞∑
n=−∞

|ψn|2 = 1 (5)

Due to x∗i (i ∈ Z) is one item of the Fourier series for
x, we have:

n=∞∑
n=−∞

|
√

3

a
αn|2 =

i=∞∑
i=−∞

|
√

3

a
x∗i |2 = 1

Letting ψi =
√

3
a x
∗
i , we get:

i=∞∑
i=−∞

|ψi|2 = 1

Above equation tells us, |x∗i |2 describes relative
probability for particles falling in the fringe position.
Therefor, when considering |x∗i |2 describes particle
density, we can say, |x∗i |2 describes relative probability
density for particles falling in the fringe position.

Discussion:

Due to |
√

3
a x
∗
i |2 presents particle probability density in

one fringe position, we can use it to estimate the order
of magnitude for a.

Taking the electron single-slit experiment as an ex-
ample. When x∗i represents the least action component
in screen direction, x∗i has the order of magnitude 10−34

and can be replaced by one Fourier item. In such

situation, |
√

3
a x
∗
i |2 describes particle probability density.

In single slit experiment, 90 percent particles fall in

the mid fringe position. Meaning, |
√

3
a 10−34|2 = 0.9.

Thus, the estimated order of magnitude for a should

be 1.8×10−34. It’s dimension should be kg ·m2/s = J ·s.

If x∗i can not be replaced by one Fourier item, we

can not say that |
√

3
a x
∗
i |2 describes particle probability

density.

DOUBLE-SLIT EXPERIMENT ANALYSIS.

A. Mathematical description for particle probability
density:

In single slit experiment, after passing slit, the average
least action of particles from slit to one diffraction
fringe position is L = PR/2. Usually, its component
` ( = 1/2pr or εt ) in screen direction, is a near-zero,
nonnegative number. By lemma 1, when ` → 0, ` can
be replaced by its fourier item αne

inπ`/a. By lemma 2,
the relative probability density of particles in the fringe
position can be described by |αneinπ`/a|2.

Discussion:

(1)Generally, the average least action in the mid fringe
position is larger than in the side fringe position. The
reason is, when particles passing through slit, slit will
decrease the kinetic energy of particles. The lose of
kinetic energy for side particles is much larger than mid
particles.

(2)In one fringe position, particle’s least action is
approximately equal.

B. Diffraction analysis: Our mathematical description
should fit to the experiment. When |ψn|2 = |αneinπ`/a|2
describe the relative probability density of particles in
one diffraction fringe position, ψn = αne

inπ`/a has the
following properties:

(1) |ψn|2 is the function of integers. This means the
diffraction fringe positions of particles are discrete.

(2) |ψn|2 > |ψn+1|2(n = 0, 1, ...) corresponding to:
particle probability density becoming smaller when
leaving the mid fringe position.

(3) ψn is single valued.

(4)
n=∞∑
n=−∞

|ψn|2 = constant, this property fits to: the

sum of the particles’ probability density on the screen is
a constant.

It is worth noting that, in the diffraction experiment,
the probability density distribution of particles is not
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continuous. So, ψn = αne
inπ`/a makes sense only for

integer n. In order to simplify analysis, we often view
ψn as a continuous function by proper extension. But
we should remember that, in the position between
diffraction fringes, the probability density of particles is
near zero.

C. Interference analysis: Particles which pass through
slits can be classified as three types: Type (I), particles
which only pass through slit A and arrive in the screen
position x meaning the probability of passing through
slit A is 1; Type (II), particles which only pass through
slit B and arrive in the screen position x meaning the
probability of passing through slit B is 1; Type (III), the
probability of passing through slit A is c1(0 < c1 < 1),
and the probability of passing through slit B is c2
(0 < c2 < 1).

When only slit A is open, the particles in the neighbor-
hood of x(x is interference position) consist of Type (I)
particles. In this case, the particle’s relative probability
density in position x is |ψA|2. When only slit B is
open, the particles in the neighborhood of x consist of
Type (II) particles. In this case, the particle’s relative
probability density in position x is |ψB |2.

When A and B open simultaneously, Type (III) parti-
cles should be taken into account: if they pass through
slit A, their particle relative probability density dedica-
tion to position x is c21|ψA|2; if they pass through slit
B, their particle relative probability density dedication
to position x is c22|ψB |2. The average dedication in the
neighborhood of x should be the geometric average of
c21|ψA|2 and c22|ψB |2 , that is:√

c21|ψA|2 c22|ψB |2 = c1c2|ψA||ψB |.

So, when A and B open simultaneously, the relative
probability density of particles in the neighborhood of x
is:

|ψA|2 + |ψB |2 + c1c2|ψA||ψB |

The above analysis means that, when A and B open
simultaneously, the particles density will increase, i.e., a
interference phenomenon will appear.

If experimental conditions make c1c2|ψA||ψB | = 2Re <
ψA, ψB > hold, the following equation will hold:

|ψA|2 + |ψB |2 + c1c2|ψA||ψB | = |ψA + ψB |2

This means that, under certain conditions, when slits
A and B are opened simultaneously, |ψ1 + ψ2|2 can be
used to describe the particle relative probability density
in the neighborhood of position x.

DERIVATION OF SCHRÖDINGER EQUATION

In single slit experiment, `, the average particle least
action component in the screen direction for one fringe
position, is a nonnegative near-zero number and can be
replaced by one Fourier item. By lemma 1, ` can be
written as αne

inπ`/a.

For the average least action `, its energy form is
(αne

iπnεt/a) and its momentum form is (αne
iπ 1

2npr/a).

To simplify equation form, nε can be merged into ε,
then ε should correspond to 1ε, 2ε, 3ε, ....; and 1

2nr can
be merged into r, this means that, when calculating, r
should be discrete and should be replaced by n

2 r. Obvi-
ously, when we say the least action of the particles in one
diffraction fringe position, the average value of the energy
form and momentum form should be taken into account
simultaneously. Here, we use the geometric average value
of the two forms of least action:

√
αneiπpr/aαneiπεt/a = αne

iπ(pr−εt)/(2a)

or √
αneiπεt/aαneiπpr/a = αne

iπ(εt−pr)/(2a)

Supposing ψ(r, t) is the average least action of particles
in fringe position r, then, we have:

ψ(r, t) = Ceiπ(pr−εt)/(2a) (6)

or

ψ(r, t) = Ceiπ(εt−pr)/(2a) (6′)

Where C = αn (n ∈ Z).

In (a) of FIG. 1, for particle single slit experiment,
when the screen moves forward or backward a small dis-
tance along line O′O, the time particles take to arrive in
the neighborhood of a diffraction fringe position x will
increase or decrease. After particles passing the slit, for
one fringe position, using eq. (6), the average least action
ψ(r, t) is

ψ(r, t) = Cei(pr−εt)π/(2a).

When the screen moves forward or backward a small
distance, the change of the least action is:

δψ =
∂ψ

∂r
dr +

∂ψ

∂t
dt

By the principle of least action, we get:

δψ = 0.
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Thus,

∂ψ

∂t
= −∂ψ

∂r

dr

dt
.

Using equation (6), we get ∂ψ
∂t = επ

2aiψ and ∂
∂r (∂ψ∂r ) =

−(pπ2a )2ψ. So, the relationship between ∂ψ
∂t and ∂ψ

∂r is:

∂ψ

∂t
=

ia

πm

∂

∂r
(
∂ψ

∂r
).

Letting h̄ = 2a
π , the above equation can be written as:

ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂r2
. (7)

Comparing equation (7) with the Schrödinger equa-
tion for free particles, the same form and properties are
found. Both of them describe the relationship between
the particle position, momentum and kinetic energy. So,
equation (7) corresponds to the Schrödinger equation
for free particles.

Discussion:

(1) In single slit experiment, taking the mid fringe po-
sition as an example, if the angle between particle av-
erage momentum P and O′O is θ, then, P = p/ sin(θ)
and R = r/ sin(θ) hold. Particle average kinetic energy
E = ε/ sin2(θ) holds. So, particle average least action
Ψ(R, t) = ψ(r, t)/ sin2(θ) also holds. Thus, we can get
the same equation as eq. (7):

ih̄
∂Ψ

∂t
= − h̄2

2m

∂2Ψ

∂R2
. (7′)

Above equation means that, when particles exhibit
wave feature, both average least action and its average
component satisfy eq. (7). Obviously, |Ψ|2 also describes
particle relative probability density.

(2) When we use particle average least action
Ψ(R, t) = C ′ei(PR−Et)π/(2a) to derive eq. (7’), we just
need h̄ = 2a

π holds.

(3) If particles in potential field U(r) appear diffrac-
tion fringe, particles in the same fringe position will get
an equal additional displacement. In this case, if we view
Ψ(R, t) = C ′ei(PR−(E−U)t)π/(2a) as particle average least
action and letting h̄ = 2a

π , we can get the following equa-
tion:

ih̄
∂Ψ

∂t
= − h̄2

2m

∂2Ψ

∂R2
− UΨ

If we select a proper zero potential energy point for
U(r), above equation can be written as:

ih̄
∂Ψ

∂t
= − h̄2

2m

∂2Ψ

∂R2
+ UΨ

NEW UNDERSTANDING ON DE-BROGLIE
EQUATION

In eq. (6), |ψ(r, t)|2 describes the relative probability
density of particles in one diffraction fringe position.
That is, the greater |ψ|2 is, the bigger the particle
relative probability density will be. Also, we can say:
the greater |ψ|2 is, the smaller the relative displacement
between a particle’s position and the particles’s mean
position will be. Noticing that, when |ψ|2 becomes
bigger, −|ψ| will be smaller, the relative probability
density of particles will become larger. Thus, the smaller
−|ψ| is, the lesser the relative displacement of particles
will be. So, −|ψ| can describe relative displacement of
particles. Usually, we think ψ can reflect the relative
displacement between a particle’s actual screen position
and the particles’s mean position.

Let’s compare ψ with the classical harmonic wave
function.

Supposing a classical simple harmonic wave with wave-
length λ and frequency ν is propagating in the positive
direction of coordinate x, then after time t, the relative
displacement of an infinitesimal quantity of the medium
to the balance position x is:

Y (x, t) = Aeiπ( 2
λx−2νt) (8)

When comparing equation (6) with the classical
simple harmonic wave function above, many similar
characteristics are found. These include: 1) reflecting
the relative displacement between particles screen
position and the mean position versus describing the
relative displacement between an infinitesimal quantity
of the medium and the balance position, 2) having the
same equation form, and 3) causing the same physical
phenomena (diffraction and interference). Therefore,
equation (6) has the properties of equation (8), and can
be considered a classical simple harmonic wave function.

Comparing eq. (6) and eq. (8), by dimension corre-
sponding principle, pπ

2a corresponds to 2π
λ and επ

2a corre-
sponds to 2πν. If the two corresponding relationships are
regarded as equal. We have:

pπ

2a
=

2π

λ
,
επ

2a
= 2πν,

or

λ =
4a

p
, ν =

ε

4a
. (9)

In equation (6), the dimension for the constant a is
J ·s which has the same dimension as Planck’s constant
h(J ·s). When comparing the order of magnitude for 4a
and Planck constant h, we can found that they have
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same value. Also, comparing equations (9) and (6),
the value of ε in equation (9) should be: 0, 4aν(1ε),
8aν(2ε),... which agrees with Planck’s hypothesis of
“quanta”. Therefor, we can view eq. (9) as de-Broglie
equation.

Discussion:

(1) When particle appears wave appearance, the
momentum of a particle can be viewed as p = 4a

λ . In this
situation, p refers to the average momentum of particles
who was involved in wave show. For particles which was
not involved in wave exhibation, their momentum is mv.

(2) Different from classical wave, when colliding with
materials, the frequency of probability wave formed by
particles will change.

(3)If eq. (6) holds, then, not changing the relative
particle probability density, we can use

ψ

sin2(θ)
=

c

sin2(θ)
ei(PR−Et)π/(2a)

to replace eq. (6) and get

Ψ(R, t) = Cei(PR−Et)π/(2a)

Where θ is the angle between the average velocity of
particles and line O′O. Above equation can be viewed
as a classical wave with wave lenth λ = 4a

P and wave

frequency ν = E
4a .

(4) Eq. (7) and eq. (9) are derived independently. In
eq. (7), if letting h = 4a, we can get the Schrödinger
equation. In eq. (9), if letting h = 4a, we can get the
de-Broglie equation. Thus, eq. (7) can be associated
with eq. (9) by h.

DERIVATION OF HYPOTHESIS OF PATH
INTEGRALS

By the hypothesis of the Feynman path integral [16],
if free particles emit from particle source A to arrive at a
screen, then the probability of finding particles at screen
position x should be:

|C|2 |
∑

all paths

eis(r)/h̄|2.

where C is a constant. By the hypothesis, there are
many possible trajectories for a particle to arrive at
x. If the particle passes along a possible trajectory r
arriving at x, then s(r) in the above formula represents
the particle’s action and “all paths” means the particle’s
all possible trajectories should be taken into account

when calculating s(r). The following proof is based on
classical mechanics.

Proof :

In single slit experiment, if free particles start from
particle source A, passing through the slit to arrive at
a diffraction fringe position x on the screen, then, by
equation (6′), in the neighborhood of x, the average least
action of particles can be written as

ψ(r, t) = Ce−iprπ/(2a)eiεtπ/(2a)

Supposing the number of particles in the neighborhood
of x is N . Particle j(j = 1, 2, ..., N) with kinetic energy
Ej takes time tj to move along its least action trajectory
rj arriving in the neighborhood of x, then, by eq. (4), its
least action will be ψj = Ejtj . In the neighborhood of
x, all particles have approximate equivalent least action
and close to the average value ψ(r, t) . Therefor, in the
neighbourhood of x, the sum of the least action for all
particles is:

ψs = ψ1 + ψ2 + ...+ ψN =

N∑
j=1

Ce−iprπ/(2a)eiEtπ/(2a)

For all particles in the neighbourhood of x, e−iprπ/(2a)

can be looked as a constant. For particle j, Ejtj = Et,
so above equation can be written as:

ψs = Ce−iprπ/(2a)
N∑
j=1

eiEjtjπ/(2a)

In (7) and (9), we have knew that h̄ = 2a
π holds, letting

sj(rj) = Ejtj , then, we get:

ψs = Ce−ipr/h̄
N∑
j=1

eisj(rj)/h̄ (10)

In equation (7), ψ describes the average least action
of particles with |ψ|2 presenting the relative probability
density of particles. In equation (10), ψs is the sum of
every particle’s least action in the neighbourhood of x.
Does |ψs|2 also describe the relative probability density
of particles in the neighbourhood of x?

In fact, in the neighbourhood of x, every particle’s least
action is approximately equivalent to ψ. So, ψs = Nψ.
Due to |ψ|2 describes the relative probability density of
particles in the neighbourhood of x, so, |ψs|2 also de-
scribes particle’s relative probability density and can be
written as:

|ψs|2 = |C|2|
N∑
j=1

eisj(rj)/h̄|2 (11)
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When just calculating the relative probability density
of particles in the neighbourhood of x, the following t-
wo statements are equivalent: (1) for particle 1, 2, ...,
N , every particle falls in the neighbourhood of x travel-
ling along its least action orbit, the probability of finding
particles in the neighbourhood of x is determined by eq.
(11); (2) one particle has N possible orbits falling in the
neighbourhood of x, the probability of finding a particle
in position x is determined by the following equation:

|ψs|2 = |C|2 |
∑

all paths

eis(r)/h̄|2 (12)

Where ”all paths” means a particle’s possible trajec-
tory is N . At a diffraction fringe position, the number
of particles is finite, i. e., N is finite. So the right side
of eq. (12) is convergent.

This proof is slightly different from Feynman’s hypoth-
esis, as 1)the screen position x should be a diffraction
fringe position, 2) this proof holds only for statistical oc-
casion, 3) s(r) is a particle’s least action, not its action,
and 4) every particle has only one least action trajectory.

Discussion:

In single-slit experiment, eq. (12) is applicable for the
component of particle average least action. If we look
Ψ(R, t) = C ′e−iPRπ/(2a)eiEtπ/(2a) as the average least
action for particles in one fringe position, then, Ψs,the
sum of the least action for every particle is:

Ψs = C ′e−iPR/h̄
N∑
j=1

eiSj(Rj)/h̄

Thus, we get

|Ψs|2 = |C ′|2|
N∑
j=1

eiSj(Rj)/h̄|2 (13)

Comparing eq. (13) with (11), we can get:

|ψs
Ψs
|2 = | C

C ′
|2|

∑N
j=1 e

isj(rj)/h̄∑N
j=1 e

iSj(Rj)/h̄
|2

In the neighbourhood of x, the least action of every parti-
cle is very close, so we can believe that

∑N
j=1 e

isj(rj)/h̄ =

Neisj(rj)/h̄ and
∑N
j=1 e

iSj(Rj)/h̄ = NeiSj(Rj)/h̄ hold.
Therefor, we have:

|ψs
Ψs
|2 = | C

C ′
|2 |Ne

isj(rj)/h̄|2

|NeiSj(Rj)/h̄|2
= | C

C ′
|2

Obviously, |Ψs|2 also portray particle relative proba-
bility density. Above equation means that, in single slit
experiment, when wave feature appears, particle relative
probability density can be described by |ψs|2 or |Ψs|2.

CONCLUSION

Based on the ensemble interpretation viewpoints
( particles move in classical trajectory and the wave
phenomena are rooted in the statistical behavior of
particles), we have inferred eq. (7), (9) and (12)
uncovering the relationships among particle position,
momentum, kinetic energy and least action. These
equations have the same form and physical meaning as
the Schrödinger equation, the de-Brogile equation, and
the hypothesis of the Feynman path integral. In the real
world, it is impossible for particles obeying two kinds of
law of motion simultaneously. So, eq. (7), (9) and (12)
should be equivalent to the Schrödinger equation, the
de-Brogile equation and the hypothesis of the Feynman
path integral, respectively.

Analysis revealed that, the nature of wave function is
the average or the sum of least action for particles in one
position, and quantization is the feature of an ensemble
system formed by micro-particles.

When particles appear as wave properties, both the
least action of particles and their component in screen
direction satisfy equation (7) and (12). In this case,
particles in one fringe position can be viewed as a
classical wave: wave length and wave frequency can be
described by eq. (9), wave function can be described
by eq. (6); the square modulus of the wave function
can represent the relative probability density of particles.

For the hypothesis of the Feynman path integral,
analysis exposed the another side of the wave function: it
describes the sum of the least action for particles in one
diffraction position with the square of its module also
portraying the relative probability density of particles in
that position.

Since “action” is considered a physical attribute of
every kinetic particle, this conclusion is applicable to all
statistical ensemble systems formed by micro-particles.
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