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Abstract

One of the main objectives of statistics is to estimate the parameters of
a probability distribution based on a sample taken from this distribution.
Of course, since the sample is finite, the estimate θ̂ is, in general, different
from the actual value θ of the corresponding parameter. What we can
require is that the corresponding estimate is unbiased, i.e., that the mean

value of the difference θ̂ − θ is equal to 0: E
[
θ̂
]

= θ. In some problems,

unbiased estimates are not possible. We show that in some such problems,
it is possible to have interval unbiased estimates, i.e., interval-valued es-

timates
[
θ̂, θ̂
]

for which θ ∈ E
[
θ̂, θ̂
]

def
=
[
E
[
θ̂
]
, E
[
θ̂
]]

. In some such

cases, it is possible to have asymptotically sharp estimates, for which the

interval
[
E
[
θ̂
]
, E
[
θ̂
]]

is the narrowest possible.
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1 Traditional Unbiased Estimates: A Brief Re-
minder

Estimating parameters of a probability distribution: a practical prob-
lem. Many real-life phenomena are random. This randomness often come from
diversity: e.g., different plants in a field of wheat are, in general, of somewhat
different heights. In practice, we observe a sample x1, . . . , xn of the correspond-
ing values – e.g., we measure the heights of several plants, or we perform several
temperature measurements. Based on this sample, we want to estimate the
original probability distribution.

Let us formulate this problem in precise terms.

Estimating parameters of a probability distribution: towards a pre-
cise formulation of the problem. We want to estimate a probability dis-
tribution F that describes the actual values corresponding to possible samples
x = (x1, . . . , xn). In other words, we need to estimate a probability distribution
on the set IRn of all n-tuples of real numbers.

In statistics, it is usually assumed that we know the class D of possible
distributions. For example, we may know that the distribution is normal, in
which case D is the class of all normal distributions.

Usually, a distribution is characterized by several numerical characteristics
– usually known as its parameters. For example, a normal distribution N(µ, σ2)
can be uniquely characterized by its mean µ and variance σ2. In general, to
describe a parameter θ means to describe, for each probability distribution F
from the class F , the numerical value θ(F ) of this parameter for the distribution
F . For example, when D is a family of all normal distributions N(µ, σ2), then
the parameter θ describing the mean assigns, to each distribution F = N(µ, σ2)
from the class F , the value θ(F ) = µ. Alternatively, we can have a parameter
θ for which θ(N(µ, σ2)) = σ2, or a parameter for which θ(N(µ, σ2)) = µ+ 2σ.

In general, a parameter can be defined as a mapping from the class F to
real numbers. In these terms, to estimate a distribution means to estimate all
relevant parameters.

In some cases, we are interested in learning the values of all possible parame-
ters. In other situations, we are only interested in the values of some parameters.
For example, when we analyze the possible effect of cold weather on the crops,
we may be only interested in the lowest temperature. On the other hand, when
we are interested in long-term effects, we may be only interested in the average
temperature.

We need to estimate the value of this parameter based on the observations.
Due to the random character of the sample x1, . . . , xn, the resulting estimate
f(x1, . . . , xn) is, in general different from the desired parameter θ(F ). In princi-
ple, it is possible to have estimates that tend to overestimate θ(F ) and estimates
that tend to underestimate θ(F ). It is reasonable to consider unbiased estimates,

i.e., estimates for which the mean value EF

[
θ̂(x1, . . . , xn)

]
coincides with θ(F ).

Thus, we arrive at the following definition.
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Definition 1. Let n > 0 be a positive integer, and let F be a class of probability
distributions on IRn.

• By a parameter, we mean a mapping θ : F → IR.

• For each parameter θ, by its unbiased estimate, we mean a function
θ̂ : IRn → IR for which, for every F ∈ F , we have

EF

[
θ̂(x1, . . . , xn)

]
= θ(F ).

Examples. One can easily check that when each distribution from the class
F corresponds to n independent, identically distributed random variables, then

the arithmetic average µ̂(x1, . . . , xn) =
x1 + . . .+ xn

n
is an unbiased estimate

for the mean µ of the individual distribution. When, in addition, the individual
distributions are normal, the sample variance

V̂ (x1, . . . , xn) =
1

n− 1
·

n∑

i=1

(xi − µ̂)
2

is an unbiased estimate for the variance V of the corresponding distribution.

2 What If We Take Measurement Uncertainty
into Account

Need to take measurement uncertainty into account. In the traditional
approach, we assume that we know the exact sample values x1, . . . , xn. In prac-
tice, measurements are never absolutely accurate: due to measurement impre-
cision, the observed values x̃i are, in general, different from the actual values xi
of the corresponding quantities.

Since we do not know the exact values x1, . . . , xn, we need to estimate the
desired parameter θ(F ) based on the observed values x̃1, . . . , x̃n.

Towards a precise formulation of the problem. In addition to the prob-
ability distribution of possible values xi, we also have, for each xi, a probability
distribution of possible values of the difference x̃i− xi. In other words, we have
a joint distribution J on the set of all possible tuples (x1, . . . , xn, x̃1, . . . , x̃n).

The meaning of this joint distribution is straightforward:

• first, we use the distribution on the set of all tuples x to generate a random
tuple x ∈ IRn;

• second, for this tuple x, we use the corresponding probability distribution
of measurement errors to generate the corresponding values x̃i − xi, and
thus, the values x̃1, . . . , x̃n.
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Similarly to the previous case, we usually have some partial information
about the joint distribution – i.e., we know that the distribution J belongs to a
known class D of distributions.

We are interested in the parameter θ(F ) corresponding to the distribution
F of all possible tuples x = (x1, . . . , xn). In statistical terms, F is a marginal
distribution of J corresponding to x (i.e., obtained from J by averaging over
x̃ = (x̃1, . . . , x̃n)): F = Jx. Thus, we arrive at the following definition.

Definition 2. Let n > 0 be a positive integer, and let D be a class of probability
distributions on the set (IRn)2 of all pairs (x, x̃) of n-dimensional tuples. For
each distribution J ∈ D, we will denote the marginal distribution corresponding
to x by Jx. The class of all such marginal distributions is denoted by Dx.

• By a parameter, we mean a mapping θ : Dx → IR.

• For each parameter θ, by its unbiased estimate, we mean a function
θ̂ : IRn → IR for which, for every J ∈ D, we have

EJ

[
θ̂(x̃1, . . . , x̃n)

]
= θ(Jx).

Example. When the sample values are independent, identically distributed
random variables, and the measurement errors have 0 mean, (i.e., E[x̃i] = xi
for each i), then the arithmetic average µ̂ is still an unbiased estimate for the
mean.

What we show in this paper. In this paper, we show that in some real-life
situations, it is not possible to have number-valued unbiased estimates, but we
can have interval-valued estimates which are unbiased in some reasonable sense.

3 A Realistic Example In Which Unbiased Nu-
merical Estimates Are Impossible

Description of an example. Let us assume that the actual values x1, . . . , xn
are independent identically distributed (i.i.d.) normal variables N(µ, σ2) for
some unknown values µ and σ2 ≥ 0, and that the only information that we have

about the measurement errors ∆xi
def
= x̃i − xi is that each of these differences

is bounded by a known bound ∆i > 0: |∆xi| ≤ ∆i. The situation in which we
only know the upper bound on the measurement errors (and we do not have
any other information about the probabilities) is reasonably frequent in real life;
see, e.g., [3].

In this case, D is the class of all probability distributions for which the
marginal Jx corresponds to i.i.d. normal distributions, and |x̃i−xi| ≤ ∆i for all
i with probability 1. In other words, the variables x1, . . . , xn are i.i.d. normal,
and x̃i = xi+∆xi, where ∆xi can have any distribution for which ∆xi is located
on the interval [−∆i,∆i] with probability 1 (the distribution of ∆xi may depend
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on x1, . . . , xn, as long as each difference ∆xi is located within the corresponding
interval).

Let us denote the class of all such distributions by I. By definition, the
corresponding marginal distributions Jx correspond to i.i.d. normals. As a pa-
rameter, let us select the parameter µ of the corresponding normal distribution.

Proposition 1. For the class I, no unbiased estimate of µ is possible.

Proof. Let us prove this result by contradiction. Let us assume that there is
an unbiased estimate µ̂(x1, . . . , xn)). By definition of the unbiased distribution,
we must have EJ [µ̂(x̃1, . . . , x̃n)] = µ for all possible distributions J ∈ I.

Let us take two distributions from this class. In both distributions, we take
σ2 = 0, meaning that all the values xi coincide with µ with probability 1.

In the first distribution, we assume that each value ∆xi is equal to 0 with
probability 1. In this case, all the values x̃i = xi+∆xi coincide with µ with prob-
ability 1. Thus, the estimate µ̂(x̃1, . . . , x̃n) coincides with µ̂(µ, . . . , µ) with prob-
ability 1. So, its expected value EJ [µ̂(x̃1, . . . , x̃n)] is also equal to µ̂(µ, . . . , µ)
with probability 1, and thus, the equality that described that this estimate is
unbiased takes the form

µ̂(µ, . . . , µ) = µ.

In other words, for every real number x, we have

µ̂(x, . . . , x) = x.

In the second distribution, we select a number δ = min
i

∆i > 0, and as-

sume that each value ∆xi is equal to δ with probability 1. In this case, all the
values x̃i = xi + ∆xi coincide with µ + δ with probability 1. Thus, the esti-
mate µ̂(x̃1, . . . , x̃n) coincides with µ̂(µ+ δ, . . . , µ+ δ) with probability 1. So, its
expected value EJ [µ̂(x̃1, . . . , x̃n)] is also equal to µ̂(µ+ δ, . . . , µ+ δ) with prob-
ability 1, and thus, the equality that described that this estimate is unbiased
takes the form

µ̂(µ+ δ, . . . , µ+ δ) = µ.

However, from µ̂(x, . . . , x) = x, we conclude that

µ̂(µ+ δ, . . . , µ+ δ) = µ+ δ 6= µ.

This contradiction proves that an unbiased estimate for µ is not possible.

4 Unbiased Interval Estimates: From Idea to
Definition

Analysis of the problem. In the above example, the reason why we did not
have an unbiased estimate is that the estimate θ̂ depends only on the distribution
of the values x̃1, . . . , x̃n, i.e., only on the marginal distribution Jx̃. On the
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other hand, what we try to reconstruct is the characteristic of the marginal
distribution Jx. In the above example, even if we know Jx̃, we cannot uniquely
determine Jx, because there exists another distribution J ′ for which J ′

x̃ = Jx̃
but for which J ′

x 6= Jx and, moreover, θ(J ′
x) 6= θ(Jx). In this case, we cannot

uniquely reconstruct θ(Jx) from the sample x̃1, . . . , x̃n distributed according to
the distribution Jx̃.

From numerical to interval-valued estimates. While we cannot uniquely
reconstruct the value θ(Jx) – because we may have distributions J ′ with the
same marginal J ′

x̃ = Jx̃ for which the value θ(J ′
x) is different – we can try to

reconstruct the set of all possible values θ(J ′
x) corresponding to such distribu-

tions J ′.
Often, for every distribution J , the class C of all distributions J ′ for which

J ′
x̃ = Jx̃ is connected, and the function that maps a distribution J ′ into a

parameter θ(J ′
x) is continuous. In this case, the resulting set {θ(J ′

x) : J ′ ∈ C} is
also connected, and is, thus, an interval (finite or infinite). In such cases, it is

reasonable to consider interval-valued estimates, i.e., estimates θ̂ that map each

sample x̃ into an interval θ̂(x̃) =
[
θ̂(x̃), θ̂(x̃)

]
.

How to define expected value of an interval estimate. On the set of all
intervals, addition is naturally defined as

a + b
def
= {a+ b : a ∈ a, b ∈ b},

which leads to component-wise addition [a, a] + [b, b] = [a + b, a + b]. Simi-
larly, we can define an arithmetic mean of several intervals [a1, a1], . . . , [an, an],

and it will be equal to the interval [aav, aav], where aav
def
=

a1 + . . .+ an
n

and

aav
def
=

a1 + . . .+ an
n

. Thus, it is natural to define the expected value E[a] of an

interval-valued random variable a = [a, a] component-wise, i.e., as an interval

formed by the corresponding expected values E[a]
def
= [E[a], E[a]].

When is an interval-valued estimate unbiased? Main idea. It is natural
to say that an interval-valued estimate θ̂(x̃) is unbiased if the actual value of

the parameter θ(Jx) is contained in the interval E
[
θ̂(x̃)

]
.

Let us take into account that the expected value is not always defined.
The above idea seems a reasonable definition, but it may be a good idea to make
this definition even more general, by also considering situations when, e.g., the
expected value E[a] is not defined – i.e., when the function a is not integrable.
In this case, instead of the exactly defined integral E[a], we have a lower integral
E[a] and an upper integral E[a]. Let us remind what these notions mean.

Lower and upper integrals: a brief reminder. These notions are known
in calculus, where we often first define an integral of simple functions s(x) (e.g.,
piece-wise constant ones).

To define the integral of a general function, we can then use the fact that
if s(x) ≤ f(x) for all x, then

∫
s(x) dx ≤

∫
f(x) dx. Thus, the desired integral
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∫
f(x) dx is larger than or equal to the integrals of all simple functions s(x) for

which s(x) ≤ f(x). Hence, the desired integral is larger than or equal to the
supremum of all such integrals

∫
s(x) dx.

Similarly, if f(x) ≤ s(x) for all x, then
∫
f(x) dx ≤

∫
s(x) dx. So, the integral∫

f(x) dx is smaller than or equal to the integrals of all simple functions s(x)
for which s(x) ≤ f(x). Thus, the desired integral is smaller than or equal to
the infimum of all such integrals

∫
s(x) dx.

For well-behaving functions, both the supremum of the values
∫
s(x) dx for

all s(x) ≤ f(x) and the infimum of the values
∫
s(x) dx for all s(x) ≥ f(x)

coincide – and are equal to the integral. For some functions, however, these
supremum and infimum are different. The supremum – which is known to be
smaller than or equal to the desired integral

∫
f(x) dx – is called the lower

integral, and the infimum – which is known to be larger than or equal to the
desired integral

∫
f(x) dx – is called the upper integral.

For the expected value E[a]
def
=
∫
x · ρ(x) dx, the corresponding lower and

upper integrals are called lower and upper expected values, and denoted by E[a]
and E[a].

Towards the final definition. In the case of an integrable estimate, we would

like to require that E
[
θ̂
]
≤ θ(Jx) and that θ(Jx) ≤ E

[
θ̂
]
. When the estimate

θ̂ is not integrable, this means, crudely speaking, that we do not know the

expected value E
[
θ̂
]
, we only know the lower and upper bounds E

[
θ̂
]

and E
[
θ̂
]

for this mean value. When we know that E
[
θ̂
]
≤ θ(Jx), we cannot conclude

anything about the upper bound, but we can conclude that E
[
θ̂
]
≤ θ(Jx).

Similarly, crudely speaking, we do not know the expected value E
[
θ̂
]
, we

only know the lower and upper bounds E
[
θ̂
]

and E
[
θ̂
]

for this mean value.

When we know that θ(Jx) ≤ E
[
θ̂
]
, we cannot conclude anything about the

lower bound, but we can conclude that θ(Jx) ≤ E
[
θ̂
]
.

Thus, we conclude that E
[
θ̂
]
≤ θ(Jx) ≤ E

[
θ̂
]
, i.e., that

θ(Jx) ∈
[
E
[
θ̂
]
, E
[
θ̂
]]
.

So, we arrive at the following definition:

Definition 3. Let n > 0 be a positive integer, and let D be a class of probability
distributions on the set (IRn)2 of all pairs (x, x̃) of n-dimensional tuples. For
each distribution J ∈ D, we will denote:

• the marginal distribution corresponding to x by Jx, and

• the marginal distribution corresponding to x̃ by Jx̃.
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The classes of all such marginal distributions are denoted by Dx and Dx̃.

• By a parameter, we mean a mapping θ : Dx → IR.

• For each parameter θ, by its unbiased interval estimate, we mean a func-
tion θ̂ : IRn → II that maps IRn into the set II of all intervals for which,
for every J ∈ D, we have

θ(Jx) ∈
[
EJ

[
θ̂(x̃1, . . . , x̃n)

]
, EJ

[
θ̂(x̃1, . . . , x̃n)

]]
.

Comment. When the interval-values estimate θ̂(x̃) =
[
θ̂(x̃), θ̂(x̃)

]
is integrable,

and its expected value is well-defined, the above requirement takes a simpler
form

θ(Jx) ∈ EJ

[
θ̂(x̃1, . . . , x̃n)

]
.

5 Unbiased Interval Estimates are Often Possi-
ble when Unbiased Numerical Estimates are
Not Possible

Let us show that for examples similar to the one presented above – for which
unbiased numerical estimates are not possible – it is possible to have unbiased
interval estimates.

Proposition 2. Let D0 be a class of probability distributions on IRn, let θ be
a parameter, let θ̂(x1, . . . , xn) be a continuous function which is an unbiased
numerical estimate for θ, and let ∆1, . . . ,∆n be positive real numbers. Let D
denote the class of all distributions J on (x, x̃) for which the marginal Jx belongs
to D0 and for which, for all i, we have |xi − x̃i| ≤ ∆i with probability 1. Then,
the following interval-values function is an unbiased interval estimate for θ:

θ̂r(x̃1, . . . , x̃n)
def
=

{
θ̂(x1, . . . , xn) : x1 ∈ [x̃1 −∆1, x̃1 + ∆1], . . . , xn ∈ [x̃n −∆n, x̃n + ∆n]

}
.

Comment. Since the function θ̂(x1, . . . , xn) is continuous, its range θ̂r(x̃1, . . . , x̃n)
on the box [x̃1−∆1, x̃1 + ∆1]× . . .× [x̃n−∆n, x̃n + ∆n] is an interval. Method
of estimating this intervals are known as methods of interval computations; see,
e.g., [1, 2].

Proof. For every tuple x = (x1, . . . , xn), since |xi − x̃i| ≤ ∆i, we have xi ∈
[x̃i −∆i, x̃i + ∆i]. Thus,

θ(x1, . . . , xn) ∈
{
θ̂(x1, . . . , xn) : x1 ∈ [x̃1 −∆1, x̃1 + ∆1], . . . , xn ∈ [x̃n −∆n, x̃n + ∆n]

}
=
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θ̂r(x̃) =
[
θ̂r(x̃), θ̂r(x̃)

]

and thus,

θ̂r(x̃) ≤ θ(x) ≤ θ̂r(x̃).

It is known that if f(x) ≤ g(x), then E(f) ≤ E[g] and E[f ] ≤ E[g]. Thus, we
get

E
[
θ̂r(x̃)

]
≤ E[θ(x)] and E[θ(x)] ≤ E

[
θ̂r(x̃)

]
.

We have assumed that θ is an unbiased estimate; this means that the man
E[θ(x)] is well defined and equal to θ(Jx). Since the mean is well-defined,
this means that E[θ(x)] = E[θ(x)] = E[θ(x)] = θ(Jx). Thus, the above two
inequalities take the form

E
[
θ̂r(x̃)

]
≤ θ(Jx) ≤ E

[
θ̂r(x̃)

]
.

This is exactly the inclusion that we want to prove. The proposition is thus
proven.

6 Case When We Can Have Sharp Unbiased In-
terval Estimates

Need for sharp unbiased interval estimates. All we required in our defini-
tion of an unbiased interval estimate (Definition 3) is that the the actual value
θ of the desired parameter is contained in the interval obtained as an expected
value of the interval-valued estimates θ̂r(x).

So, if, instead of the original interval-valued estimate θ̂r(x) =
[
θ̂r(x), θ̂r(x)

]
,

we take a wider enclosing interval, e.g., an interval
[
θ̂r(x)− 1, θ̂r(x) + 1

]
, this

wider interval estimate will also satisfy our definition.
It is therefore desirable to come up with the narrowest possible (“sharpest”)

unbiased interval estimates.

A realistic example where sharp unbiased interval estimates are possi-
ble. Let us give a realistic example in which a sharp unbiased interval estimate
is possible. This example will be a (slight) generalization of the example on
which we showed that an unbiased numerical estimate is not always possible.

Specifically, let us assume that the actual values x1, . . . , xn have a joint nor-
mal distribution N(µ,Σ) for some unknown means µ1, . . . , µn and an unknown
covariance matrix Σ, and that the only information that we have about the mea-

surement errors ∆xi
def
= x̃i− xi is that each of these differences is bounded by a

known bound ∆i > 0: |∆xi| ≤ ∆i. As we have mentioned earlier, the situation
in which we only know the upper bound on the measurement errors (and we do
not have any other information about the probabilities) is reasonably frequent
in real life.
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In this case, D is the class of all probability distributions for which the
marginal distribution Jx is normal, and |x̃i−xi| ≤ ∆i for all i with probability 1.
In other words, the tuple (x1, . . . , xn) is normally distributed, and x̃i = xi+∆xi,
where ∆xi can have any distribution for which ∆xi is located on the interval
[−∆i,∆i] with probability 1 (the distribution of ∆xi may depend on x1, . . . , xn,
as long as each ∆xi is located within the corresponding interval).

Let us denote the class of all such distributions by I ′. By definition, the
corresponding marginal distributions Jx correspond to n-dimensional normal
distribution. As a parameter, let us select the average

β
def
=

µ1 + . . .+ µn

n
.

For the class of all marginal distributions Jx, there is an unbiased numerical

estimate: namely, we can take β̂(x1, . . . , xn) =
x1 + . . .+ xn

n
. Indeed, one can

easily check that since the expected value of each variable xi is equal to µi, the
expected value of the estimate β̂(x) is indeed equal to β. Due to Proposition 2,
we can conclude that the range

β̂r(x̃1, . . . , x̃n)
def
=

{
β̂(x1, . . . , xn) : x1 ∈ [x̃1 −∆1, x̃1 + ∆1], . . . , xn ∈ [x̃n −∆n, x̃n + ∆n]

}
=

{
x1 + . . .+ xn

n
: x1 ∈ [x̃1 −∆1, x̃1 + ∆1], . . . , xn ∈ [x̃n −∆n, x̃n + ∆n]

}

is an unbiased interval estimate for the parameter β.
This range can be easily computed if we take into account that the function

β̂(x1, . . . , xn) =
x1 + . . .+ xn

n
is an increasing function of all its variables. Thus:

• the smallest value of this function is attained when each of the variables
xi attains its smallest possible value xi = x̃i −∆i, and

• the largest value of this function is attained when each of the variables xi
attains its largest possible value xi = x̃i + ∆i.

So, the range has the form

β̂r(x̃1, . . . , x̃n) =

[
(x̃1 −∆1) + . . .+ (x̃n −∆n)

n
,

(x̃1 + ∆1) + . . .+ (x̃n + ∆n)

n

]
.

Let us show that this unbiased interval estimate is indeed sharp.

Proposition 3. For the class I ′, if β̂′
r(x̃) is an unbiased interval estimate for

β, then for every tuple x̃, we have β̂r(x̃) ⊆ β̂′
r(x̃).

Comment. So, the above interval estimate β̂r(x̃) is indeed the narrowest possi-
ble.
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Proof. Let us pick an arbitrary tuple ỹ = (ỹ1, . . . , ỹn), and let us show that for

this tuple, the interval β̂r (ỹ ) is contained in the interval β̂′
r (ỹ ). To prove this,

it is sufficient to prove that both endpoints of the interval β̂r (ỹ ) are contained

in the interval β̂′
r (ỹ ). Without losing generality, let us consider the left end-

point
(ỹ1 −∆1) + . . .+ (ỹn −∆n)

n
of the interval β̂r (ỹ ); for the right endpoint

(ỹ1 + ∆1) + . . .+ (ỹn + ∆n)

n
of this interval, the proof is similar.

To prove that
(ỹ1 −∆1) + . . .+ (ỹn −∆n)

n
∈ β̂′

r (ỹ ), we will use the fact

that the function β̂′
r(x̃) is an unbiased interval estimate. Let us consider a

distribution J ∈ I ′ for which each value xi is equal to µi = ỹi − ∆i with
probability 1, and each value x̃i is equal to ỹi with probability 1. One can easily
see that here, |x̃i − xi| ≤ ∆i and therefore, this distribution indeed belongs to
the desired class I ′.

For this distribution, since µi = ỹi −∆i, the actual value

β(Jx) =
µ1 + . . .+ µn

n

is equal to

β(Jx) =
(ỹ1 −∆1) + . . .+ (ỹn −∆n)

n
.

On the other hand, since x̃i = ỹi with probability 1, we have β̂′
r(x̃) = β̂′

r (ỹ )

with probability 1, and thus, the expected value of β̂′
r(x̃) also coincides with

the interval β̂′
r (ỹ ): EJ

[
β̂′

r(x̃)
]

= β̂′
r (ỹ ).

So, from the condition that β(Jx) ∈ EJ

[
β̂′

r(x̃)
]
, we conclude that

(ỹ1 −∆1) + . . .+ (ỹn −∆n)

n
∈ β̂′

r (ỹ ) ,

i.e., that the left endpoint of the interval β̃r (ỹ ) indeed belongs to the interval

β̂′
r (ỹ ). We can similarly prove that the right endpoint of the interval β̃r (ỹ )

belongs to the interval β̂′
r (ỹ ). Thus, the whole interval β̃r (ỹ ) is contained in

the interval β̂′
r (ỹ ). The proposition is proven.

Acknowledgments

This work was supported in part by the National Science Foundation grants
HRD-0734825 and HRD-1242122 (Cyber-ShARE Center of Excellence) and
DUE-0926721, by Grant 1 T36 GM078000-01 from the National Institutes of
Health, and by a grant on F-transforms from the Office of Naval Research.

The authors are greatly thankful to John N. Mordeson for his encourage-
ment.

11



References

[1] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analy-
sis, with Examples in Parameter and State Estimation, Robust Control and
Robotics, Springer-Verlag, London, 2001.

[2] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to Interval
Analysis, SIAM Press, Philadelphia, Pennsylvania, 2009.

[3] S. Rabinovich, Measurement Errors and Uncertainties: Theory and Practice,
Springer-Verlag, New York, 2005.

12


