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The Second Solution of Maxwell's Equations

Annotation

A new solution of Maxwell equations for vacuum is
presented. First it must be noted that the proof of the solution's
uniqueness is based on the Law of energy conservation which is
not observed (for instantaneous values) in the known solution.
The presented solution does not violate the Law of energy
conservation. Besides, in this solution the electrical and
magnetic components of intensity are shifted in phase.

A detailed proof is given for interested readers.
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1. Introduction

Recently criticism of validity of Maxwell equations is heard from all
sides. The confidence of critics is created first of all by the violation of
the Law of energy conservation. And certainly "#he density of electromagnetic
energy flow (the module of Umov-Pointing vector) pulsates harmonically. Doesn't it
violate the Law of energy conservation?” [1]. certainly, it is violated, if the
electromagnetic wave satisfies the known solution of Maxwell equations.
But there is no other solution: "The proof of solution's uniqueness in general is
as follows. 1f there are two different solutions, then their difference due to the system's
linearity, will also be a solution, but for gero charges and currents and for zero initial
conditions. Hence, using the expression for electromagnetic field energy we must
conclude that the difference between solutions is equal to Zero, which means that the
solutions are identical. Thus the uniqueness of Maxwell equations solution is proved"
[2]. So, the uniqueness of solution is being proved on the base of using
the law which is violated in this solution.




Another result following from the existing solution of Maxwell
equations is phase synchronism of electrical and magnetic components of
energy in an electromagnetic wave. This is contrary to the idea of
constant transformation of electrical and magnetic components of energy
in an electromagnetic wave. In [1[, for example, this fact is called "one of
the vices of the classical electrodynamics".

Such results following from the known solution of Maxwell
equations allow doubting the authenticity of Maxwell equations.
However, we must stress that these results follow only from the found
solution. But this solution, as has been stated above, can be different.

Further we shall deduct another solution of Maxwell equation, in
which the density of electromagnetic energy flow remains constant in
time, and electrical and magnetic components of intensities in the
electromagnetic wave are shifted in in phase.

2. Solution of Maxwell's Equations
First we shall consider the solution of Maxwell equation for vacuum.

These equations in GHC system are as follows [3]:
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For the sake of brevity further we shall use the following notations:
co =—cos(a@p+ yz + at), 11
si=sin(ap+ yz+ at), (12)

where e «, y, @ — are certain constants. Let us present the unknown

functions in the following form:

J;.= Jj.(r)o, 13)
J,.=],(r)si, 14
J,.=J,(r)si, (15)
H,.=h(r)o, (16)
H,.=h,(r)si, 17)
H,.=h,(r)si, (18)
E,.=¢/(r)si, (19)
E,.=e,(r)co, (20)
E,.=e,(r)co, @1
M,.=m(r)co, 1)
M,.=m, (r)si, (22)
M,.=m,(r)si, (23)

where j(r), h(r), e(r), m(r)- certain function of the coordinate r.

By direct substitution we can verify that the functions (13-23)
transform the equations system (1-10) with three arguments I, @, Z
into equations system with one argument r and unknown
functions j(r), h(r), e(r), m(r).

In Appendix 1 it is shown that for such a system there exists a
solution of the following form:




e e —e”r(r) =0, 24

—ewfr) rel(n)+ # a=0, @)
@mg(r)—woz:o, @9)
h()+¢1()+ :0 =0, 27)
h,,(r) =e,(r) )
h,(r)=—¢,(r), )
-2 60)

Thus we have got a monochromatic solution of the equation
system (1-10). A transition to polychromatic solution can be achieved
with the aid of Fourier transform.

If it exists in cylindrical coordinate system, then it exists in any
other coordinate system. It means that we have got a common solution
of Maxwell equations in vacuum.

3. Energy Flows

The density of electromagnetic flow is Pointing vector
S=nExH, M
where
n=cl/ir. )
In cylindrical coordinates I, ¢, z the density flow of
electromagnetic energy has three componentsS,, S o S, , directed along

BAOAB the axis accordingly. They are determined by the formula

'S, | EH,-EH,
S=|S,|=n(ExH)=nEH,-EH, |. @
s, EH,-EH,

From (2.12-2.17, 3.4) follows that the flow passing through a given
section of the wave in a given moment, is:

S s, -si’
S=|s, =77”' s, -Si-co [dr-dg, 5)
S | "s,-si-co




where
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s, =(e,h, —e.h,). ©)
S, = (erhw —eq,hr)

In Appendix 1 it is  shows that h,(r)=0, e,(r)=0.

Consequently, s, =0, s, =0, i.e. the energy flow extends only along the

axis 0Z and is equal to

§=S,=n|[ls, -si-coldr-de. @
re
We'll find s, . From (2.28, 2.29), we obtain:
eh, =e’, ®)
e,h =—-¢. )
From (7, 8, 9), we obtain:
S, = (ef +e§,). (10)
In this way,
§:77ﬂ[(ef+ef,)-si-co]dr-dgo. (11)
re

In Appendix 2 shows that at a constant speed C of propagation of the
wave from (11) we obtain

S= 162:7: (COS(4aﬂ)_l)'r[ (2 +e2)r). (12)
The flow (12) does not depend ont, ¢, z. I'naBroe, The main

thing is that the value does not change with time, and this complies with
the Law of energy conservation.

4. Intensities
The equations system (2.24-2.29) is determined — there are 6
equations for 4 functions €, €, h,, h(p and two scalarsa, @.

Considering this system we can see that it is equivalent to two equations
(2.24, 2.25) for the functions€,, €,. The two other functions h,, h, are

determined by (28, 29) and satisfy the equations (206, 27).
The two differential equations (2.24, 2.25) can be solved for the
given initial conditions and given & . First we shall consider the equations
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The solution of this equation is as:
y=x,
Equations (2.24, 2.25) can be replaced by equations of the form
' \e +¢€
(e, +e¢) +('f¢’)(1—a) =0,

(er —e(p)’ —(er%e‘”)(H a)=0,
In accordance with (2) we find:

(e, +e¢)= Aret,

(er - eco)z Aret,

This implies:
e = g(r”‘1 +ret),
eq) — g(ra—l _ ra+1).

where (4\2) — is the amplitude of intensity. Also
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From (7, 8) it follows that these functions are decreasing modulo
for
a<-1. 11
This condition is physically caused, and we shall take it into account
further. Fig. 1 shows, for example, graphics of functions (7, 8, 10) for
a=-125.
From (10, 3.12), we obtain:

< _ cA . 2(a-1) | ,2(at)
S Toor (cos(4ar) 1)j(r +réed ) (12)

r

Let R be the radius of the circular front of the wave. Then

i (20-1) R(2a+3)
S. .. = 2(a1) | p20et) Wy — R |
int I(r +r br ((2(1 _1) + (Za N 3) (13)

r=0
S, = 1 (cos(4ar)-1). (14)
[04
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For a <-1 the functions (7, 8) are decreasing modulo. Fig. 2
(o) (13) and Fig. 3 shows the function S, (&),

where the condition (11) is taken into account. On Fig. the upper and
lower curves refer accordingly to R =200 and R =100.
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Since the energy flow must be positive, we shall further use the
condition
-15<a<-1. (16)
Since the energy flow and the energy are related by the
expressionS =W -c, then from (15) we can find the energy of a
wavelength unit:
— A
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To demonstrate that the components of the wave (2.13-2.23) are in
antiphase, in Fig. 4 shows the functions
co =—cos(a@+ yz + at), si=sin(ap+ yz+ at)
or equivalent to them at Z=Ct function

( 20 J . ( 20 j
CO=—Cos| ap+-—1z|, si=sinap+—1z]|.
Cc C
20 .
At ¢ =0, — =0.1 these functions take the form €O =—COS(Z),
c

si =sin(z) and shown in Fig. 4.

Fig. 5 shows the vectors of intensities originating from the
point A(I’,(o). Let us remind that h (r)=e, (r) and hr(r)=—eq)(r) - see
(2.28, 2.29). The directions of vectors e,(r) and e,(r) are chosen

according to Fig. 1:e, (r)> O,ew(r) < 0. Note that the vectors E, H _are
alwavs orthogonal. The sum of the modules of these vectors is
determined from (2.17, 2.18, 2.20, 2.21, 2.28, 2.29) and is equal to

W = E2 +H?=

(e, (r)si) + (e, (r)si} +(h, (r)co) +(h, (r)eoff =
( -4Ar%F4 )+ (b, (¢ fb
(e, (1) + (e, (1)) k»mo%<&» +(e,(n)F

W= (e, (r)F +(e, ()F e

- om. Tawke (10) m pumc. 1. Takum 0Opazom, IAOTHOCTH SHEPIHHU
DACKTPOMATHUTHON BOAHBI IIOCTOSIHHA HA BCEX TOYKAX OKPYKHOCTU
A2HHOI'O PAAHVCA.
- see also (10) and Fig. 1. Thus, the_density of electromagnetic wave
energy is constant in all points of a circle of this radius.

The solution exists also for changed signs of the functions (2.11,
2.21). This case is shown on Fig 6. Fig. 5 and Fig. 6 illustrate the fact that

there are two possible type of electromagnetic wave circular polarization.

or
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5. Discussion
The resulting solution describes a wave. The main distinctions
from the known solution are as follows:

1. Instantaneous (and not average by certain period) energy flow
does not change with time, which complies with the Law of
energy consetrvation.

2. 'The energy flow has a positive value

The energy flow extends along the wave.

4. Magnetic and electrical intensities on one of the coordinate
axes I, ¢, Z phase-shifted by a quarter of period.

Bl

5. The solution for magnetic and electrical intensities is a real
value.

6.  The solution exists at constant speed of wave propagation.

7. The existence region of the wave DOES NOT expand, as
evidenced by the existence of laser.

8. The vectors of electrical and magnetic intensities are

orthogonal.
9. There are two possible types of electromagnetic wave circular
polarization.

10. The wave and its energy are determined if the parameters

A, o, R, aare specified. For given R, S the parameter «

can be found.

Appendix 1

Let us consider the solution of equations (2.1-2.10) in the form of
(2.13-2.23). Further the derivatives of ' will be designated by strokes. We
write the equations (2.1-2. 10) in view of (2.11, 2.12) in the form

&0 )= aye,m=0, 0
~Lee,(ae, 0z =m (), @
—e,(Ny-e(r)=m,(r), ®

() (r)+ () a=m,(r), “

11
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h'fr)+h’(r)—@a—x~hz(r)=0, ©)

~Loh O, (07 = (1) ©
—h,(r)y—h;(r) = j,(r), )
()+h () + r(r) a-j,(r) =0, ®
. w
ji=—e ©)
C
m=-%h (10)
Cc

We multiply (8) on (— )() and take into account (9). Then we get:
-h (r .
_75—¢>()_Z. h;(r)_w.a+ﬁ.ez(r) —0,
r C

1D
r
ot
h,(r
_C_Zﬁ_c_lh’() Clm.a+z.ez(r):0, (12)
w T w w r
Comparing (1) and (12), we see that they are the same, if
Cx
Zh, (0 =e,(r), 3
~n(r)=e,(0). 14

It is irnportant to note that this comparison is valid only for. e,(r)#0.
In the equations (13, 14) we shall perform substitution according to (9):

0, (1) = ji (r), 15)
=t (r)=j, (). a6
Equations (15, 16) coincide with (6, 7) for h,(r) =0. This implies
Lemma 1. The equation system (1, 5-9) for €,(r) #0 is compatible
onlyif h,(r)=0.
Let us now consider the case whene€,(r)=0. Then according to

(9) , we obtain J,(r) =0 and the initial system (1, 5-8) will take the form:

_ergr) +e(r)- _e(or(r) a=0, (17)
—hrfr) +h; (r)——h¢:r) a—yx-h(r)=0, (18)

12



—%-hz(r)m h, (N = (), (19)

—h,(r)y—h;(r) = j,(r), 20)
h()+h()+ (r) a =0, 1)

We substitute (9) into (17). Thgn we get:
2O - 20 2o, e

We substitute (1 9, 20) into (22). Then we get:
a0 (xR a7 - (h ()~ )L =0

or

1 -h (r)a+1 h,(r)z+h, (r);(+h()Zra 0 23)

h
_wr( )+h;,(r)+—ffr)-a =0, @

For the calculation of three intensities we shall get three equations (19,
21, 23). Let us exclude hy (r) from (21, 23):

—iz-hz(r)a+1-h¢(r);(—(1-hq,(r)+h,(r)gJ;(+hr(r)ﬂzo
r r r r r

t __zl'hz(r)a=0a or h(r)=0. Thus, for J,(r)=0 the condition

h,(r) =0 must also be complied. Hence there follows

Lemma 2. The equations system (1, 5-9) for e,(r)=0 is
compatible only if h,(r)=0.

From Lemmas 1 and 2 follows

Lemma 3. The equations system (1, 5-9) is compatible only for
h,(r) =0 and, according to (10), m,(r)=0.

Similarly we can prove

Lemma 4. The equations system (1-5, 10) is compatible only for
e,(r) =0 and, according to (9), j,(r)=0.

From Lemmas 3 and 4 follows

Lemma 5. System (1-10) is compatible only for h,(r)=0,
e,(r)=0, m,(r)=0, j,(r)=0.

Therefore, the initial equations system (1-10) takes the form:

13



ef—fr)+e;(r)—%f(r)a=o, o

e, (N7 =—h(r) @
~e )y =-"h, 1), 0
()+e(r)Jr fr)a=0, 27)
0 y(r)- 20 o, e

h, (7 =e.(r) )
~h(r)z="e,0), Y
h()+hf()+ r(r) -0. 61

We multiply (26) on (29). Then we get:

e 02 ={ 2 e om0

or

7=7 (2)
We substitute (32) into (20, 29). Then we get:

h,(r)=e(r), (33)

Thus, under the condition (32) the equations (26, 29) are equivalent to

one equation (36). A similar relationship follows from (25, 30):
h(r)=—e,(r), (34)

Thus, the system (24-31) is equivalent to the system (24, 27, 28, 31-34).

Appendix 2
In (3.11) it is shown that the energy flow passing through the wave
cross-section, is

§:njj[(ef+ef,)-si-co]dr-d<p. 0
re

Let the speed of wave propagation is constant and equal to C. Then,
z=ct. @
Then from (2, 2.11, 2.12, 2.30), we obtain:

14



co = —cos(ap+ yz + at) = —cos(ap+ (2w/c)z)
and similarly,

si =sin(ag+(20/c)z).
Due to (3, 4), we can rewrite (1) as:

= -1

S= —77J] (62 + e’ Jsin(2(crp+ (200/c)2))Hrdg .

2

When z=0 on the axis 0z have:
S= _?177;[_!; [(ef +e )sin(Za(p)}jrd(p.

Further, from (6) we find:

S= —g j [(ef —e;{ £ Sin(2a(p)dg0]dr}.

We have:
27
[sin2apde = [sin(2ap)e =2i(1_ cos(4a)).
@ 0 a
From (7, 8) , we obtain:

S= —%(1— cos(4ar))[ (e +e2)ar).

r
Substituting here (3.2), we finally obtain:

S 1627: (cos(4ar)-1)] (e +e2)ar).

r

€)

)

®)

©)

0]

®)

O

(10)

Obviously, for any choice of the point z = 0 on the axis OZ last

relation is maintained.
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