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Abstract 

 

In the article Chappell, Hartnett, Iannella, Iqbal, Abbott, “Exploring the origin of 

Minkowski spacetime” (ref. 2.) authors almost completely revise their article (ref. 3.), but 

there is some mathematical and other discrepancies in their articles.  
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Introduction 

In articles (2. and 3.) authors discussed nice idea of general transformation of 

multivectors in Cl3 (3D real Clifford geometric algebra) that could serve as a new framework 

for relativity. Author of this article commented article (3.) in ref. 12. and that is known to a 

leading author of ref. 3. Nevertheless, my comments are ignored. 
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New theory and old assumptions 

 

On a page 3 of ref. 2. authors discussed the spacetime algebra (STA), Hestenes (1966), 

and the algebra of physical space (APS), Baylis (1996) and stated that “the authors 

axiomatically assume the Minkowski metric”. For STA this is correct, but for the algebra of 

physical space (APS) is not. In fact, in APS amplitude of a paravector is defined in exactly the 

same way as  in ref. 2. and 3. and with the same motivation. Using form of a multivector as in 

ref. 3. M t j jb= + + +
� �

x n  we define complex number z t jb= +  (belongs to the center of the 

algebra) and complex vector j= +
� �

F x n . For paravector t +
�

x  we could use a form ˆt +
�

x n  

and notice that we have hyperbolic numbers-like property 
2
ˆ 1=n , so, natural choice is define 

paravector amplitude (square of) as in case of hypercomplex numbers: ( )( ) 2 2
t t t x+ − = −

� �

x x . 

But this is just part of Clifford conjugation restricted on real part of the algebra. For a whole 

multivector we have the same situation after noticing that ( )
22

j= +
� �

F x n  is complex scalar 

(belongs to center of the algebra) and we could write a multivector as 

2 2ˆ ˆ,    ,   1
F F

M z z z z= + = + = =F F F F . So, there is another hyperbolic number-like 

property and a multivector amplitude based on Clifford conjugation is natural choice: 

( )( ) 2 2
MM z z z= + − = −F F F . In ref. 13. is used this striking similarity with hyperbolic 

numbers formalism and relaying on spectral basis derived closed form for many functions of 

multivector variables. In a conclusion, in the paravector model of space-time the Minkowski 

metric is natural consequence of hyperbolic properties of vectors and is not imposed as 

assumption. Complex and hypercomplex properties are in the hart of Cl3.  
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In ref. 2. authors on the page 5 stated a Fundamental multivector involution theorem, 

but that is incorrect. Counter example is for involution ( ) *
I M z t j jb= − = − − −

� �

F x n , 

where *
,z t jb= −  because 

 

( ) ( )

( )( )

*

* * 2 * * 2

*
.

z z

zz z z z z z z

z z

+ − =

+ − − = − + − =

− +

F F

F F F F F F

F F

  (0.1) 

So, multivector amplitude defined in the ref. 2. and 3. is not unique commutative amplitude, 

but it is unique commutative amplitude that in addition produces a complex scalar. Here are 

theorems from ref. 12: 

Theorem 1. If ( )∈ℂI z , then ( ) ( )I M M MI M=  iff ( )I = ±F F . 

 

Condition ( ) ( )I M M MI M= leads to 

 

[ ] ( ) ( ) ( ) ( ) [ ] 0z I z I I z I z+ + − + + = ⇒      F F F F  

 

( ) ( ) 0F F F F− = ⇒I I ( )I = ±F F . 

 

This condition is met by Clifford conjugation (up to a sign), but also for (see above) F
∗

−z , 

but lacking in a complex scalar amplitude ( )MI M .  

Theorem 2. Clifford conjugation is the unique involution that meetsMM ∈ℂ , where 

ℂ  is center of algebra. 

 

Proof relays on fact that 2
F is a complex scalar, while ( )F FI generally contains vector 

x n∧

� �

j  as component, orthogonal to vectors   and  x n

� �

, except for Clifford conjugation

( ) 2
F F F= − ∈ℂI . Straightforward proof can be easily obtained by multiplying multivectors  
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( )( )0 1 2 3
,      1x n x n+ + + + + + = ±

� � � �

i
t j jb s t s js js b s , 

where then will appear ( )1 2 1 2
nx xn+ ⇒ =
�� � �

j s s s s (to have double inner product in brackets). 

Reasoning in ref. 2. is incorrect (page 5, relation 6), because, for example, condition 
2 3
s s= −   

from last term is superfluous, factors b and n  do commute.  

Discussing properties of general transformation that preserve multivector amplitude 

authors in ref. 2. concluded condition 
2 2

1= =X Y , but there is possibility 
2 2

1= = −X Y , 

discussed in ref. 12., known to authors. In ref. 3. this is corrected. But the phase 

transformation following from condition 
2 2

1= = −X Y  is ignored  “in order to investigate 

the Lorentz group”.  Presented general multivector transformations are more complex than 

“Lorentz transformations” and main results from special relativity in the framework of 

Lorentz transformations are not automatically valid here generally, they should be proven, if 

possible.  

On pages 8 and 9 there is some confusion with formulas 17, 18 and 19. Starting with 

formula 17:  /2 /2 /2 /2j j
M e e Me e

−

′ =
w v v w  authors claim that “using the multivectors formalism we 

can now write this as a single operation” ( ) ( )/2 /2j j
M e Me

− +

′ =
v w v w

, but there is no such 

“formalism”, formulas are just inconsistent, unless v and w are commuting. We could tray, for 

example, to solve the equation  /2 /2j C
e e e
−

=
w v  and to find ( ) ( )/ 2 / 2C j j′ ′= − ≠ −v w v w . We 

could reformulate result in terms of v and w, but that’s not mentioned. Similar problem arises 

from formulas 18 and 19, v and w are not the same one in these formulas. If one ignores these 

problems, claims in the text are the true ones.  

On page 9 starts the discussion on proper time. It is nice noticed that real proper time 

is necessary to define action and derive conserved quantities. Problem here is that conditions 

for a real proper time are not discussed in general, but assuming just restricted Lorentz group, 
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meaning that “inertial” reference frame is one with speed of particle zero and that speed of 

particle is necessary less than speed of light, leading to transformation rule ( )2
h hγ′ = − ⋅v w  

(formula 23). But on the same page authors are discussing “the full set of possible 

transformations” and conclude that from 0h′ =  follows h = ⋅v w , but this is generally true if 

formula 23 is correct, which means in the frame of restricted Lorentz transformations and 

certainly not in the frame of “the full set of possible transformations”. Authors also conclude 

that relativistic factor γ is real, but their conclusion is valid if speed of particle v is less  then 

the speed of light – fact that’s not proven in “the full set of possible transformations”. 

Nevertheless, later in the text authors are discussed possibility of superluminal effects, but this 

is not a consequence of their analysis, rather it is a noticed possibility in final obtained 

formulas.  

Let us rethink 3D Clifford algebra based on real vectors. There is several subspaces in 

it, for example those based on grades: real scalars, vectors, bivectors and pseudoscalars. One 

dimensional motion of particle is just one possibility widely explored in restricted Lorentz 

group (regarded frequently as only “physical” in special relativity). But there are other 

subspaces of the algebra and why not regard their symmetries as equally possible sources of 

dynamics? For example, electron is rather strange object, not classical one for sure, it 

possesses a spin and is not like fast Einstein train or spaceship. Regarding restricted Lorentz 

transformations in electron theory seems to me as a strong restriction. What that it means 

“inertial reference frame” when we talk about an electron. If we accept mechanical pint of 

view regarding “inertial reference frame” then we are taking just one possible symmetry of 

3D space as important, namely 1D translational symmetry. From this follows conclusion 

about maximal speed of particles. But here we are talking about general transformations, 

wider then restricted Lorentz group, and shouldn’t we take all possibilities that such theory is 



6 

 

offering us?  In ref. 12. authors nicely conclude about conserved quantities, but why 

momentum is preferred one (as is in the special relativity)?  

In ref. 12. author of this article was discussed other logical possibilities from demand 

that proper time was real. Just briefly, from general expression for multivector amplitude,  

comparing real and imaginary part we have 

 
2 2 2 2 2 2 2 2
t x n b t x n b′ ′ ′ ′− + − = − + −   (0.2) 

 .tb t b′ ′ ′ ′− ⋅ = − ⋅x n x n

� � � �

  (0.3) 

Defining differential of multivector dX dt d jd jdb= + + +
� �

x n , we have multivector 

amplitude of differential 

( )2 2 2 2
2dX dt dx dn db j dbdt d d= − + − + − ⋅

� �

x n , 

so we can ask the question which conditions must to be met to be defined real proper time τ .  

 

There is a possibility already discussed here to define proper time as 

0
,

v

d dXτ
′=

′= ∈ℝ  but then generally remains dependence of ratio /dt dt′  on quantities from 

different referent frames. One can easily obtain a proper time assuming that all quantities in 

′dX , except ′dt , are equal to zero. Assuming that this is not the case (for example, electron 

has a spin in every reference frame) and still regarding reality of a proper time, imaginary part 

of multivector amplitude must be zero for every referent frame: 

( ) ( )2 2
0 ,x n x n x n x n− ⋅ = − ⋅ = − ⋅ = ⇒ = ⋅

� � � � � � � �ɺ ɺ ɺ ɺ ɺ ɺɺdbdt d d dt db d d dt h d d h d d
 

where we defined =
ɺdb h   and h d d′ ′ ′= ⋅

� �ɺ ɺ
x n . Defining =

� �ɺ
n w  we have h = ⋅w v

� �

. Bivector part 

of multivector is not transforming like area (ref. 3.), so is reasonable to assume vector w
�

 to 

be proportional to some angular momentum-like quantity (AMLQ). Now ⋅

� �

w v  may be 
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associated with flow of AMLQ. It turns out that this quantity could be associated with a new 

law of conservation.  

One could regard conditions for real proper time to be: 

i) ∈ℝdτ  

ii) ( ) ( )/ , / .dt dt M M M dt dγ γ τ′ ′ ′≡ = =  

Condition ii) is natural, relativistic factor now depends on quantities from single reference 

frame only. From i) and ii) follows 

2 2 2 2 2
′= = = − + −dX dX d dt dx dn dbτ ,

 

( )
2 2 2 2

2 2 2 2

2 2 2 2
1 1 1

 
= − + − = − + − 

 

dt dx dn db
v w h

d dt dt dt
γ

τ
, 

 ( )
22 2 2 2 2 2 2

1/ 1 1/ 1 cos .v w v w w vγ α= − + − ⋅ = − + −

� �

w v   (0.4) 

 

Recalling that factor γ is real (ratio of two reals) we have the condition 

 

 

2

2 2 2 2 2

max 2 2

1
1 cos 0 .

1 cos

w

v w w v v

w

α

α

+
− + − > ⇒ <

+
  (0.5) 

 

For cos 1= ±α is vmax = 1, but vmax> 1 otherwise. So, for vectorw
�

given a physical meaning, it 

follows that the maximum speed varies. Natural assumption is that we do not require 0′ =w

generally because it could be an internal characteristic of a system (like spin) and could not be 

reduced to zero by the selection of a suitable reference frame, i.e., there is no reference frame 

for an electron ceased to be a fermion. 

We have real ( )2 2 2 2 2 2
1 cos′ ′ ′ ′ ′ ′ ′= − + −dX dt v w w v α , so it would be easiest to 

conclude that the 0,    0′ ′= =w v , as discussed. Regarding 0′ =v relativistic factor γ  becomes 

dependent on ′w , so, remains possibility 2 2 2 2 2
cos 0′ ′ ′ ′ ′− + − =v w w v α , which means 
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( )2 2

,
1 cos

w

v

w

τ

α

′
′ =

′ ′+
  (0.6) 

and one has a proper time in a referent frame of moving particle. What could be a physical 

meaning of that? In relativistic physics one usually relays on real scalars and real vectors and 

defines a proper time regarding 0=p
�

. But under bilinear transformations that preserve a 

multivector amplitude one could regard 2 2 2 2 2
cos 0v w w v α′ ′ ′ ′ ′− + − = , which is equivalent to 

1.γ =  This could be possible to justify physically, because after extending Lorentz 

transformations and including all other motions and their symmetries there is no preferable 

momentum-zero condition, but rather „center of energy-momentum-AMLQ-flow-zero“ 

condition, whatever that means. Conclusion on limiting speed 1 is based on preferring 

momentum as the main form of motion in space-time. Also, important motivation for the use 

of geometry contained in Cl3 is just equal treatment of all kind of movements (for author 

surely). It is interesting that speed ′v
τ
 generally could be greater than 1, having upper limit

1/ cos ′α  (but there is a question of limiting AMLQ somehow). Instead of  “inertial reference 

frame” of special relativity we just demand for a proper time to be real is the condition 1γ = . 

Having a (really) real proper time we could define derivative of multivector by proper 

time 

 ( )1 ,
dX dt d dt d dt db dt

V j j j jh
d d dt d dt d dt d

γ
τ τ τ τ τ

= = + + + = + + +

� �

� �x n

v w   (0.7) 

 

 

2

1 0,
d V dV dV

V V V
d d dτ τ τ

= ⇒ = + =   (0.8) 

 

which we could understand as kind of orthogonality of multivectors (velocity and 

acceleration). Defining /=A dV dτ we have 0+ = + =AV VA AV AV  which means that 
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multivector AV (or VA ) is a complex vector. In ref. 2. the condition 1.8 is stated as  

2
/ 0dV dτ = , suggesting that 2

V const= , but it is not generally. 

It is interesting that giving energy to a particle we have 

( )
22 2

/ 1 / 1 w v= = − + − ⋅ ⇒
� �

E m v wγ  

( )

( )

2 2 22 2 2

2 2

22 2 2

1 / /1 /
1 /

1 cos 1 / cos

+ −+ −
= = ≥ −

+ +

l E m Ew m E
v m E

w l Eα α

, 

So, one could expect that after acceleration electron should be faster than particle without spin 

(but possessing equal mass). Effect for an electron is rather small and could be a challenge for 

experimental physicists. 

 

Conclusion 

Starting from the articles [2, 3] is shown a few consequences of introduction of 

bilinear transformations of multivectors that preserve multivector amplitude and commented 

some statements from ref. 2.  There is some interesting possibilities not discussed in ref. 2, but 

discussed here and in ref. 12.  Particles with spin, like an electron, should possess properties 

not contained in Einstein special relativity. For them, speed of light is not a limiting speed. 
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