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Abstract 

 

For the purpose of applying laws or principles extracted from thermal systems to granular 

powders, we may need to define temperature properly in granular powders. The conventional 

environmental temperature in thermal systems is too weak to drive particles in granular powders 

move around and cannot function as a thermal energy indicator. Several common scenarios in 

granular powder systems are discussed in this article and the corresponding analogous 

temperatures are defined in a similar way that the temperature of granular powders can have a 

same functionality as in thermal systems. For differentiating those two temperatures, the 

temperature in granular powders is named granulotemperature and expressed as Tgp rather than 

Tg in order to avoid confusion with the glass transition temperature expression.  The jamming 

transition temperature is defined analogously in a uniformed manner, too. The particle volume 

fractions at jamming points are thus obtained by assuming that the ratio of the 

granulotemperature to the jamming temperature equals to one. The predictions from the 

equations of the jamming volume fractions at several cases like granular powders under a shear 

or a vibration are in line with experimental observations and empirical solutions in powder 

handlings. The goal of this article is to lay a foundation for establishing similar concepts in 

granular powders and then the granular powders can be described with common laws or 

principles we are familiar with in thermal systems. Our intention is to build up a bridge between 

thermal systems and granular powders for accommodating many similarities already found 

between those two systems.   
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1. Introduction 

 

As everybody already knows, thermal energy can drive an atom or a molecule move around 

in gases, liquids and solids. In colloidal suspensions where small particles are dispersed in a 

liquid medium, the thermal energy can drive particles move around too, which is called the 

Brownian motion if the particle size is smaller than 1 micron. For granular powder systems 

where the particles are large and dispersed in air, thermal energy is too weak to move the 

particles and is negligible to make any contributions to particle movements. This is the big 

difference between conventional thermal systems and granular powder systems. However, there 

are many articles both experimentally and theoretically showing that granular materials behave 

like molecular thermal systems [1] [2] [3] [4] [5] [6] [7]. In the article titled “theory of powders”, 

Edwards [2] formulated a theory of granular powders  based on anologoies with the statistical 

mechanics and transport theories of regular thermal systems, and  introduced the “compactivity” 

that is analogous to the temperature in thermodynamics. This approach was futher extended to 

powder mixtures where the statistical mechanics was applied for mapping out phase separations 

[1], phase diagrams [8] [9], jamming transition and mixing separation [8] [9].  In Edwards’ 

analogous statistical mechanical approach, the role of energy traditionally played in thermal 

systems was replaced by the free volume per particle, which was found to be capable of 

predicting phase diagrams of jammed granular matter [9] and agreeing with the experimental 

results very well [10]. The force fluctuations in packed beads was experimentally found to obey 

a simple exponential law [11] and can be elegantly predicted with similar Edwards’ approaches 

[12] [13]. The extended stress ensemble mirroring the equilibrium statistical mechanics was well 

applied to the deformable grains [14] [15] for addressing particle packings and jamming 

transitions, with the experimental confirmation [16]. Not only the stress but also the force-tile 

area were argued to play an important role in addressing the stress distribution [17] [18], though 

an angularly anisotropic orientation correlation was experimentally found to be critical, too [19]. 

Clearly, both the experimental and theoretical evidences suggest that granular powders can be 

analogously treated with the methods or laws collected from thermal systems, though the 

traditional temperature concept should be modified accordingly for granular powders.  

 

The “temperature” in granular powders, termed as “granulotemperature” in this article, 

has been addressed immediately at the beginning of utilizing thermodynamic principles. In 

thermodynamics, the temperature may be expressed as: 

 

  
  

  
                                                 (1) 

 

where E is the internal energy, and S is the entropy. In Edwards’ theory, the energy was replaced 

by the volume actually taken by the powder, V, thus Edwards’ granulotemperature was defined 

as: 

 

    
  

  
                                             (2) 

 

Since     indicates that the volume of power is not going to change with the entropy, the most 

compacted case, while     represents the least, Edwards called this parameter as the 

compactivity of powders. Nonetheless, Edwards’ granulotemperature is not easy to be estimated 
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due to the difficulty of obtaining the entropy dependence information; In addition, the 

temperature defined with Eq. (2) will acquire a different unit than the traditional temperature, not 

very intuitive to analogously utilize the thermodynamic laws. By constructing analogous entropy 

and internal virial functions in granular powders equivalent to entropy and energy in thermal 

systems, a granulotemperature was defined very similarly to that in thermal systems as [14]: 

 

  
 

 
 

  

  
                                           (3) 

 

where S is the entropy,   represents the internal virial equivalent to energy, and   denotes the 

pre-factor in front of   in Boltzmann distribution. This kind of temperature definition is 

frequently used in nonequilibrium thermodynamic processes [20] [21]. Although the temperature 

definitions shown in both Eq. (2) and (3) is in line with the traditional thermodynamic 

temperature definition shown in Eq. (1), it is still difficult to maintain the original meaning of 

temperature, as kinetic energy term is missing in granular powders, in contrast with that in 

thermal systems where the kinetic energy is always clearly associated with temperature. 

Experimental and numerical results have verified that this kind of temperature definition for 

granular systems typically involving with slowly moving particles are actually working 

[9,22,23,24].  

 

For granular systems of fast moving particles, the granulotemperatures are usually defined in 

consistent with the ideal gas case using the kinetic energy connection, 
 

 
     

 

 
   , where    

is the Boltzmann constant, m is the mass of the particle, and v is the velocity of particles 

[25,26,27,28]. This kind of granulotemperature definitions can be easily connected back to the 

conventional temperature concept in thermal systems, thus the Boltzmann equation can be 

applied to such fast moving particle systems. Nonetheless, the distribution function is found to be 

reproducible, but often not Gaussian [29]. Undoubtedly, no matter which approaches are taken, 

the definition of temperature is always focused on and properly addressing this issue will 

definitely create a bridge easily connecting the traditional thermodynamic principles to 

nonequilibrium even athermal systems like granular powders. 

 

The purpose of this article is to define the temperature in granular materials using kinetic 

energy approach via borrowing the ideas from traditional thermodynamics in very similar and 

consistent manners. There are two reasons of taking this approach: First, defining 

granulotemperature only in this way may allow us to apply the fundamental Boltzmann 

distribution equation to granular powders; Second, this may be the simplistic route without 

introducing mystery parameters like entropy and internal energy, most time unknown to a system. 

For avoiding possible confusions and distinguishing granular powders from traditional 

thermodynamics systems that are governed by thermal energy and often have the Brownian 

motion when the entities are smaller than 1 micron, we may term the “temperature” in granular 

powders as the “granulotemperature”; The corresponding dynamics built on the “granulo-

temperature” concept and may be called “granulodynamics”, which describes the 

physicochemical properties of granular powders,  in analogy with “thermodynamics” that 

describes the energy exchange of molecular thermal systems with the surrounding environments. 

The granulotemperature will be expressed as Tgp rather than Tg, as the latter is frequently referred 

to the glass transition temperature in polymeric and ceramic materials fields. The side by side 
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comparison with the laws of thermodynamics will be used to generate the laws constituting the 

granulodynamics. The ultimate goal is to define the jamming temperature at which the granular 

systems start to jam in a uniform manner and thus the jamming phenomena can be further 

explored under these granulotemperature definitions.  

  

The article is arranged as follows: We first will examine if the four thermodynamic laws can 

still hold for granular powders; We then consider several common cases of granular matter and 

define granulotemperatures using the kinetic energy approach across all cases; The 

granulodynamics is extended on the basis of granulotemperature, and the temperatures at 

jamming points are defined in a similar manner, too. The jamming volume fraction equations are 

thus obtained by assuming that the ratio of the granulotemeprature to the jamming temperature 

equals to one; The predictions from the jamming volume fraction equations are focused and 

compared with the experimental results in literature; The future attempts based on the newly 

defined granulotemperatures will be discussed and the final summary and conclusions will be 

presentedin the end.     

 

2. Theory 

 

In thermodynamics, there are four laws generally applied to any thermal systems [30] [31]. 

The zeroth law of thermodynamics states that if a thermal system A is in thermal equilibrium 

with a thermal system B and the thermal system B is in thermal equilibrium with a thermal 

system C, then thermal system A will be in thermal equilibrium with the thermal system C. The 

underlying implication is that if we want to know two thermal systems are at the same 

temperature, it is unnecessary to bring those two systems together in contact to wait for 

equilibration and it can be told by a third temperature medium-the thermometer that can measure 

the temperature. Back to granular systems, we should be able to tell if two granular systems are 

in equilibrium state via a granulotemeprature parameter defined in such a way that the 

granulotemperature has a same functionality as the temperature in thermal systems. The first law 

of thermodynamics is about the conservation of energy: the change of internal energy of a close 

system is equal to the change of the heat that the system adsorbed or gave off plus the work that 

is done on the system or by the system. In other words, the energy cannot be created without the 

expense of other forms of energy or destroyed without the creation of other forms of energy. 

This should be true for granular systems, too, though many granular systems have a dissipative 

nature due to the interparticle frictional forces and inelastic collisions [7]. The second law of 

thermodynamics is about entropy that scales the degree of disorder or a randomness of a system. 

The entropy should increase over time in an isolated thermal system, approaching to a maximum 

value. In granular systems under a vibration or a shear field, the entropy should increase with 

time, too, as more particles would participate the movements due to interparticle interactions and 

continuous application of an external excitation. The third law of thermodynamics states that the 

absolute zero temperature is unattainable, as thermal motions never can stop. Unlike an ideal gas 

system, the particles in a granular powder cannot move freely without any external mechanical 

perturbation, if they are not aerated or cannot flow by themselves due to the gravity. As we know 

in ideal gas systems, the gas molecules can fly around due to the thermal energy, as the weights 

of molecules are negligible. However, in granular systems the driving force expelling particles to 

move is the external mechanical force or the gravitational force from particles themselves. The 

driving force is zero if there is no such an external mechanical force or the particles sit 
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quiescently, due to the cancellation of the gravitational force of particles resulted from the 

supporting particles that hold the particles unmovable. This by no means indicates that there is 

no pressure on the wall of the container and the granulotemperature is zero.  

 

Consider a granular powder sitting inside a cylinder shown in Figure 1. As indicated by 

Janssen’s equation [32] [33], the pressure on vertical direction,   , may be expressed as: 

 

   
   

   
        

    

 
                             (4) 

 

where   is the density of the particle material, g is the gravity constant, D is the diameter of the 

cylinder,   is the frictional coefficient between the particles and the wall of the cylinder, z is the 

depth where the pressure is considered, and K is the ratio of the horizontal pressure to the 

vertical pressure with the relationship: 

 

  
  

  
                                                           (5) 

 

The pressure on the bottom of the cylinder should be: 

 

    
   

   
        

    

 
                                         (6) 

 

where h is the height of the powder bed. Note that the horizontal pressure at the top is equal to 

zero and at the bottom can be simply estimated with Eq. (5) and (6). Since the horizontal 

pressure is dependent on the powder depth, the average pressure may be approximately 

expressed as 

 

    
   

  
        

    

 
                                        (7) 

 

by simply adding the horizontal pressures at the top and at the bottom and then divided by two. 

The average pressure on the cylinder surfaces may be written: 

 

    
       

 
 

        

    
        

    

 
                    (8) 

 

There are extensive publications on utilizing kinetic gas theory to treat granular powders and the 

theoretical treatments are in very good agreement with experimental results [4] [7] [34] [35] [36] 

[37] [38] [39] [40] [41] [42] [43] [44], implying that we may be able to define 

granulotemperature analogously with kinetic gas theory. According to the kinetic theory of gases 

[45], the pressure of a gas may be expressed as: 

 

  
      

 

 
                                                        (9) 

 

where n is the number density of molecules,      , with N is the number of the molecules, V 

is the volume, m is the mass of a molecule, vrms is the root-mean-square velocity. In addition, the 

kinetic energy of a molecule may be expressed as: 
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where kB is the Boltzmann constant. Combing Eq. (9) and (10), one may obtain the relationship 

between the pressure and the temperature as: 

 

                                                            (11) 

 

Eq. (11) is the ideal gas law. If one considers the pressure expressed in Eq.(8) in granular 

systems is caused by the imaginary particle movement, then the granulotemperature may be 

defined similarly as: 

 

     
        

       
        

    

 
                (12) 

 

Since n is a very large number,      is expected to be very small, close to zero, which seems to be 

reasonable, as at such conditions there is almost no particle movement in the system. Under this 

temperature definition, one may claim that the absolute zero granulotemperature is unattainable, 

even when a whole granular system is in stationary state, which is very similar to the third law of 

thermodynamics. In summary, the four laws of thermodynamics may be analogically applied to 

granular systems with apparently different but essentially same definition of temperatures. A 

comparison between thermal systems and granular powders is given in Table 1.  

 

Table 1, Four laws of thermodynamics in thermal systems and granular powders  

 

 Thermal systems Granular powders 

 

The zeroth law 
If            , then 

      

Same 

   
     

  

 

 

The first law 

Conservation of energy, 

         , where Q 

is heat and W is work.  

 

Same 

          

 

The second law 

Entropy tends to increase, 

     

Same 

     

 

The third law 

Absolute zero temperature 

is unattainable,     

 

Same 
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Figure 1 A granular powder sits inside a cylinder without any movement. 

 

Now one may turn attention to define the granulotemperatures of other common cases, 

which are related to powder flows and tapping processes. They are shown in Figure 2: a) a 

powder under a simple shear; b) a powder rolling on a slope; and c) a box of a powder under a 

vibration. First, let’s consider a very simple granular system—a box of the volume V with many 

spheres sitting inside shown in Figure 2 (c).  Since the spheres have nonnegligible weights, they 

will generate a pressure on the bottom of the box and the sides of box, too. As shown earlier in 

Eq. (4), the pressures on the sides should differ from the total weight of all spheres. The whole 

box is fixed on a plate that can move horizontally back and forth with a vibration expressed as 

 tiLL exp0 , where L0 is the amplitude of vibration,  is the angular frequency, and t is the  

 

 

                                 
 

Figure 2  Granular systems under (a) a simple shear; (b) rolling by themselves; (c) under 

horizontal vibration  tiLL exp0 .  

 

V P 

 tiLL exp0

h 

A 

(a) Simple shear 

(c) Vibration shaker 

 

(b) Rolling on a slope 
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time. When an external vibration is not applied to the granular system, all particles are stationary 

and at this moment the granulotemperature is very close to zero, as indicated in Eq. (12). The 

entropy of the whole system should be very small too. When an oscillatory vibration is applied 

as  tiLL exp0 , the energy flow rate to the granular system may be calculated as [46]: 

 

)()( tvtFE 


                                                (13) 

 

where F(t) and v(t) are the force and velocity at the interface, respectively. One may assume that 

MgtF )( , i.e., the force is equal to the weight of whole spheres inside the box. The v(t) may be 

expressed as the amplitude divided by the time within a cycle 

 

  



 22//1
)( 00 LL

tv                                  (14) 

 

The energy flow rate from the vibration shaker to the granular system is thus expressed as: 

 





2

0MgL
E 


                                               (15) 

 

If the number of vibration is assumed to be   , then the total time spent in vibration may be 

expressed below: 

 

      
 

    
  

    

 
                           (16) 

 

The total energy flowing into the powder system may be expressed as: 

 

  


E     0L                                           (17) 

 

Eq. (17) may indicate that the total energy transferred into the powder system is independent of 

the frequency of vibration, and only dependent of the amplitude of vibration. According to the 

kinetic theory of gases [45], the kinetic energy of a molecule may be expressed as Eq. (10). If the 

number of molecules is N, then the total kinetic energy is 

 

TNkNmvE Brms
2

3

2

1 2                           (18) 

 

As indicated earlier, there are a large number of theoretical treatments of granular flows using 

the analogy of molecular fluids via standard statistical mechanics and kinetic theory, which are 

generally in a good agreement with the experimental results [4] [7] [34] [35] [36] [37] [38] [39] 

[40] [41] [42] [43] [44] [47] [48] [49] [50] [51]. We thus continue to utilize the kinetic theory to 

analogously define the granulotemperatures. Assume that the energy flowed to the granular 
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system contributes to the movement of particles inside the box. Replacing the temperature in Eq. 

(18) with the granulotemeprature, one may easily reach  

 

gpBv TNknMgLE
2

3
0                                     (19) 

 

If the particles have the true density of  and radius r, then  

 

 3

3

4
rNM                                                     (20) 

 

Substituting Eq. (20) into Eq. (19) and re-arranging may lead to the granulotemperature of 

particles under a vibration: 

 

B

v
gp

k

ngLr
T 0

3
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8 
                                                (21) 

 

The granulotemperature defined in Eq. (21) has a unit of Kelvin, same as the regular temperature 

for thermal systems. For one micrometer sized particles of density 1g/cm
3
 under a vibration, 

       ,            the granulotemperature expressed in Eq. (21) is equal to 1.98 10
10

 K,  

a very high temperature in comparison with the temperature in thermal systems, However, in 

thermal systems the molecules or particles usually travel in sub-micrometer scale, while in 

vibrated granular powders particles may travel in a full distance of vibration amplitude, a 

centimeter scale. The traveling distance difference between those two movements is 

approximately in the order of 10
5
~10

7
, which makes the granulotemperature is relatively on a par 

with the conventional thermal temperature.  

     Note that the temperature defined above is only appropriate for granular systems with an 

external vibration excitation. If a granular system is under a simple shear as shown in Figure 2(a), 

the granulotemperature should be defined differently, as the energy flowing into the granular 

system is different. Supposing that the shear stress is  and the shear rate is 


 , then the force F 

and the velocity v may be expressed as: 

 

,AF                                                           (22) 

 

where A is the area of the sample and h is the thickness of the sample. On the basis of Eq. (13), 

the injected energy flowing rate from a simple shear field may be expressed as: 

 

VAhFvE


                                         (23) 

 

where V is the volume of the granular system, bb NrMV  /
3

4
/ 3 , and   and b are  

the true and bulk density of the granular powder, respectively. Using Eq. (18), the 

granulotemperature of a sheared powder after a time period of t may be expressed as: 
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Again, assuming one micrometer sized particles of true density 1g/cm
3
, bulk density 0.3 g/cm

3
, 

under a shear field,        


      , and shearing for 5 min.,        , the 

granulotemperature expressed in Eq. (24) is equal to 2.02 10
8
 K,  still a very high temperature.  

 

     If granular spheres flow over a slope as shown in Figure 2 (b), the granulotemperature should 

be defined differently, too. The force that drives spheres to move downward should be sinmg , 

where m is the mass of a sphere,  is the angle of slope. If the friction coefficient between the 

particles and the slope surface is µ, the frictional force should be        . The net force on a 

particle may be expressed as: 

 

                                        (25) 

 

According to Newton’s second law, maF  , where a  is acceleration, one may find 

 

  cossin  ga                                                      (26) 

 

The initial velocity of a sphere at the top of the slope is zero and at the time t the velocity is 

assumed to be v, thus 

 

a
t

v
                                                                        (27) 

 

which is the definition of acceleration.  Us the energy defined in Eq. (17), i.e., the energy is the 

energy rate multiplied by the time: 

 

                                                (28)                                         

                                               

Eq. (28) gives the energy of one single particle. For a granular powder containing N particles, the 

total energy may be expressed as: 

 

                                               (29) 

 

Using Eq. (18) again, one may obtain granulotemperature for spheres on a slope  

 

    
 

   
                                               (30) 

 

For particles of radius r,    
 

 
    , so Eq. (30) may be further written as: 
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                                            (31) 

 

Assuming one micrometer sized particles of true density 1 g/cm
3
,      ,                , 

then the granulotemperature defined in Eq. (31) is equal to 4.76 10
11

 K, even much higher 

temperature than the one defined in vibration conditions. Note that this definition is suitable for 

very idealized conditions where there is no interparticle collisions and the particle can move 

freely under the gravitational force, which leads to a very high granulotemperature. The actual 

net force and acceleration should be much smaller than that indicated in Eq. (25) and (26). If 

there is 10% reduction in both force and acceleration due to the resistance from other particles, 

the obtained granulotemperature would be 100 times smaller, which sets the granulotemperature 

is on par with that defined in vibration and shear cases. 

 

3. Particle jamming and associated temperatures 

 

Jamming is a very common phenomenon in granular powders, where particles suddenly stop 

moving due to the strong connectivity or interaction between particles in a constrained space [9] 

[52] [53] [54] [55]. It is very similar to the frozen phase transition in thermal systems, where a 

liquid state is transited to a solid state due to the temperature drops, and the whole system 

changes from a free flow state to a solidified stationary state [55,28,56]. It would be interesting 

to evaluate the granulotemperatures at jamming points based on the definitions proposed earlier. 

Since the granulotemperature attains a very similar functionality as the conventional temperature, 

we thus may analogously assume that the “thermal” energy from the granulotemperature is the 

source of particle motions and thus associated with the particle jamming, too. The jamming will 

be defined as a phenomenon when particles are unable to travel the allowed free distance on the 

basis of the free volume in a granular system. The interparticle spacing (IPS) of a granular 

powder  may be expressed as [57,58]: 

 

           
 

-                                                      (32) 

 

where    is the maximum packing fraction,   is the particle volume fraction,   is the particle 

radius. At a free flowing unjammed state, particles are supposed to have the energy capable of 

travelling the full distance shown in Eq. (32). However, at jammed states, particles don’t have 

such a sufficient energy and are assumed to be capable of “vibrating” within the half of the 

distance expressed above. Note that the IPS equation above is derived on the basis of 

Kuwabara’s cell model [59] and the half the IPS distance means that there is a great extent of 

virtual cell overlap between two particles and basically these two particles touch each other.  

Under such a definition of jamming state, the energy required for N particles to move a half the 

IPS distance may be expressed as: 

 

             -                                                (33) 

                                         

where    is the particle volume fraction when particles are jammed. According to Eq. (18), the 

energy shown in Eq. (33) should be equal to the kinetic energy for particles, which has been used 

in this article many times for defining the granulotemperatures. Therefore, the 

granulotemperature at jamming points may be expressed as: 
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-   

   
                                                  (34) 

 

where    is the granulotemperature at a jamming point. Since   
 

 
     by the definition, Eq. 

(34) may be further written as: 

 

   
            

 
-    

   
                                              (35) 

                                        

Since    is only related to the packing structure for monodispersed particle systems [52,60], one 

may infer that the jamming transition temperature is dependent on the density of the particulate 

materials, the radius of the particles, and the particle volume fractions at jamming points. For 

obtaining an intuitive idea how the jamming transition temperatures change with the particle 

volume fractions at jamming points, we schematically plot Eq. (35) at several different particle 

radii in Figure 3, under assumption that  =1 g/cm
3
,
        . The jamming temperature 

generally decreases with the increase of particle volume fractions at jamming points and are 

strongly dependent on the particle sizes. There are several orders of magnitudes difference 

among the jamming temperatures when the particle sizes only increase 10 times. This is probably 

due to the fact that the jamming temperatures are directly proportional to the 4
th

 powers of the 

particle radius as indicated in Eq. (35).  When the particle volume fractions at jamming points 

approach to the maximum volume fraction, the jamming temperatures quickly drop to a very low 

temperature, no matter that the particle sizes are large or small. In addition, Fig.3 shows small 

particles tend to jam at very low granulotemperatures, which is consistent with practical 

observations: large granules usually flow much better than small particles. When particles 

become smaller and smaller, interparticle forces become more important and particles tend to 

aggregate or bridge very easily, resulting in a very poor flowability.  As one may tell, for 

particles of radius about 0.1 micron, the jamming transition temperature is little bit below one  
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Figure 3, Jamming transition temperature vs. the jamming volume fractions under several 

particle radii based on Eq. (35), under assumption that  =1 g/cm
3
, 

        . 

 

Kelvin, an extremely low temperature. While in comparison with 10 micron sized particles the 

jamming happens at a very high temperature, about 10
7
 K. This is mainly resulted from the fact 

that the jamming temperature is defined if the external energy that drives particles to move can 

overcome the weight of particles over a certain distance in granular systems. This prediction 

seems to qualitatively agree with the experimental observation on the superheating phenomena 

of monodispersed metal beads of diameter 3.15 mm reported in literature [6]: Under a vigorous 

vertical shaking, a hexagonal closed packed crystal structure was observed and eventually melted 

away (or called evaporate in the literature) after a period of time. As stated earlier, a granular 

powder under a vibration may have a very high granulotemperature. Based on Eq. (21), the 

granulotemperature of such a metal beads system is in the order of 10
20

 K, and also, it is time 

dependent. Longer time vibrations will create higher granulotemperatures, which could be the 

reason that the crystal structure was finally evaporated after a relatively long vibration. For 

particles of size about 0.1 micron, jamming should happen at much lower granulotemperatures 

about one Kelvin based on Fig. 3. Such a low granulotemperature may correspond to a quiescent 

state where no apparent motions are obviously detected.  In reality, submicron or nanometer 

sized powders of low densities typically tend to have a very poor flowability and easily form 

arching structures [61,62].  The newly defined granulotemperatures seem to agree well with the 

empirical observations.  

 

It would be very valuable to explore at what conditions that the jamming could happen by 

simply using the granulotemperatures defined earlier at several common cases divided by the 

jamming grranulotemperature defined in Eq. (35). The ratio equal to one gives the jamming 

conditions for particular granular systems. For a simple shear case: 

 
   

  
 

    

        
 

-      

                                              (36) 

 

Thus one may easily get: 

 

   
         

            
 

  

                
                             (37) 

 

Eq. (37) defines the conditions that the jamming happens at a simple shear case. It clearly tell 

that the particle volume fractions at the jamming points are dependent on the shear stress, shear 

rate, and surprisingly the radius of the particles. For illustrative purpose,    is plotted against    

over a wide range and shown in Figure 4, under the assumption that        ,            , 

t=60 s,     Pa, r=10
-3

, 10
-4

, and 10
-5

 m. Note that there are two regions where    is 

insensitive to shear rates, very high shear rates above 10
-2

/s and very low shear rates below 10
-5

/s. 

In the shear rate ranges between 10
-5

-10
-2

/s,    dramatically increases with the decrease of shear 

rates. In other word, the jamming may happen at lower particle volume fractions when the shear 

rate increases, which is consistent with experimental observations [53,63]. In addition, 

apparently there seems to be two regions existing in the system: when the shear rate is smaller 
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than 10
-5

 1/s, the system is fully jammed; when the shear rate is larger than 10
-5

 1/s, the volume 

fractions at jammed points become lower and lower under higher and higher shear rates. The 

system starts to jam when the shear rate is about 10
-2

 1/s. The big jump between 10
-5

-10
-2 

1/s may 

indicate that a shear induced structure change happens in this area. These two regions are very 

similar to the “fragile states” and “shear-jammed states” observed experimentally [53,63], where 

the “fragile states” correspond to a strong network structure percolated in one direction and the 

“shear-jammed states” correspond to a strong network percolated in all directions. Back to 

Figure 4, the “fragile states” is somewhat similar to the big jump region between 10
-5

-10
-2 

1/s, 

while “shear-jammed states” is the region where the shear rate is below10
-5

 1/s.  The qualitative 

agreement with the experimental observation may imply that the granulotemperature defined in a 

consistent manner with the conventional temperature in thermal systems is actually working.  

 

The particle radius has a clear impact on the jammed volume fraction, too, based on Eq. 

(37) and shown in Figure 4. Smaller particles can only jam at lower shear rates and melt at 

higher shear rates; Larger particles wouldn’t jam at lower shear rates, unless the particle volume 

fractions are close to the maximum packing fraction. For clearly demonstrating the influence of 

particle size on the jamming volume fraction,  the particle volume fraction at the jamming points, 

   , plotted in Figure 5 against the particle radius, r, under several different shear rates,   , from 

10
-2

 to 10
-5 

1/s, under the assumption that        ,             , t=60 s, and      Pa.  
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Figure 4, The particle volume fraction at the jamming points,    , is plotted against the shear 

rate,   , from Eq. (37) under the assumption that        ,             , t=60 s,     Pa, 

r= 10
-3

, 10
-4

, and 10
-5

 m.  
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Figure 5, The particle volume fraction at the jamming points,    , is plotted against the particle 

radius, r, under several different shear rates,   , from 10
-2

 to 10
-5 

1/s, obtained from Eq. (37) 

under the assumption that        ,             , t=60 s, and      Pa.  

 

When the particles have a size in micron scale, the jamming can only happen at low shear rates. 

At high shear rates only particles that have a large particle size may jam. In other words, high 

shear rates would break jams easily and smaller particles don’t have a chance to jam. When 

particle volume fractions are close to the maximum packing fraction, particles may always jam 

no matter that they have a large or small particle size. Under a shear field, the jamming is a 

phenomenon dependent on both the particle sizes and the shear rates, which are two major 

parameters determining the granulotemperature as shown in Eq. (24). 

 

Similarly, one may find the jamming volume fraction conditions for granular powders 

under a vibration. Using Eq. (21) divided by Eq. (35) and assuming that it equals to 1 leads: 

 

 
   

  
 

     

           
 

 -  
                               (38) 

 

Thus the particle volume fraction at jamming points may be expressed as: 

 

   
   

                
                                     (39)                          

 

Eq. (39) indicates that the particle jamming volume fractions are dependent on the amplitude and 

frequency of the vibration, the time, and the particle radius. For clearly illustrating the 

relationship between    and the particle radius, these two parameters are plotted in Figure 6 and  
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Figure 6, The particle volume fraction at the jamming points,    , is plotted against the particle 

radius, r, under several different vibration amplitudes from 10
-3

 to 10
-6 

m, obtained from Eq. (39) 

under the assumption that        ,            , t=60 s.  

 

computed with Eq. (39). With the increase of particle sizes, particles tend to only jam at higher 

vibration amplitudes. In other words, particles of smaller particle sizes tend to only jam at 

relative small vibration amplitudes. Both the vibration amplitude and the particle radius play 

significant roles in determining the critical jamming points. Again, only at very high particle 

volume fractions close to the maximum particle volume fraction, the jamming happens 

independent of the particle radii, which is similar to what is demonstrated for granular powders 

under a shear.  Figure 7 shows the particle volume fraction at the jamming points,    , plotted 

against the vibration amplitude under several different particle radii from 10
-4

 to 10
-1 

m, obtained 

from Eq. (39) under the assumption that        ,            , t=60 s. No matter what the 

particle sizes are, particles tend to jam at very high particle volume fractions close to the 

maximum volume fraction. However, when the vibration amplitude increases, jammed particles 

tend to melt and then jam at lower particle volume fractions. This “melt-jam” meta-stable region 

is very narrow, implying that the granular powders may quickly melt with the increase of the 

vibration amplitudes. Since the vibration frequency locates at the identical position as the 

vibration amplitude in Eq. (39), a very similar dependency of the jamming particle volume 

fractions on the vibration frequency is expected, i.e., high vibration frequencies may melt the 

jammed particles, too. In industries, vibration conveyors with controllable amplitudes and 

frequencies are frequently employed to transport granular powder materials. The results 

expressed in Eq. (39) and demonstrated in Figures 6 and 7 seem to be consistent with the 

empirical practical solutions that have been used for a long time. 
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It would be interesting to see how the vibration time would impact on the jamming 

particle volume fractions, as longer time means more energy flowing into the systems indicated 

in Eq. (21). Figure 8 shows the particle volume fractions at the jamming points,    , plotted 

against the vibration time under several different  
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Figure 7, The particle volume fraction at the jamming points,    , is plotted against the vibration 

amplitude under several different particle radii from 10
-4

 to 10
-1 

m, obtained from Eq. (39) under 

the assumption that        ,            , t=60 s.  

 

vibration amplitudes from 10
-3

 to 10
-6 

m, obtained from Eq. (39) under the assumption that 

       ,            , r=0.001 m. Again, the particles may jam at the very beginning of the 

vibration when particle volume fractions are high enough, and quickly enter into “melt-jam” 

regions. At lower vibration amplitudes, the “melt-jam” cycles a relative long time, while at high 

vibration amplitudes, jammed particles may rapidly melt in much faster paths. Again, particle 

sizes should play a role in determining where the jamming points are. Figure 9 shows particle 

volume fractions at the jamming points,    , plotted against the vibration time under several 

different particle radii from 10
-3

 to 10
-1 

m, obtained from Eq. (39) under the assumption that 

       ,            , L0=0.0001 m. At such a small vibration of amplitude 10
-4

 m, particle 

sizes are critical: small particles can easily melt and larger particles may go into the “melt-jam” 

cycles for a long time, before they completely melt. Particles of size below 10
-3

 m may start to 

jam at low particle volume fractions, but can melt easily if a small vibration amplitude is 

continuously provided. Again, those speculations are in consistent with experimental 

observations reported in literature [6], where the crystalline structure was observed at the very 

beginning of vibration and quickly melt later with a continuous vibration.  
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Figure 8, The particle volume fraction at the jamming points,    , is plotted against the vibration 

time under several different vibration amplitudes from 10
-3

 to 10
-6 

m, obtained from Eq. (39) 

under the assumption that        ,            , r=0.001 m.  
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Figure 9, The particle volume fraction at the jamming points,    , is plotted against the vibration 

time under several different particle radii from 10
-3

 to 10
-1 

m, obtained from Eq. (39) under the 

assumption that        ,            , L0=0.0001 m.  



19 

 

 

Following the same procedures described previously, one may easily obtain the particle 

volume fraction at jamming points for particles rolling on a slope: 

 

   
   

   
   

 
             

                                           (40) 

 

and the particle volume fraction at jamming points for particles sitting inside a cylinder without 

any movement: 

 

   
   

   
       

       
        

    

 
   

                                 (41) 

 

where    
     

  
, is the real particle volume fraction excluding all interstitial empty spaces in 

the cylinder,       . Readers are encouraged to explore the relationships among the particle 

volume fractions at jamming points and other related parameters under those two cases.  

 

4. Discussion  

 

Although granular powders are athermal systems, utilization of thermodynamics and 

statistical mechanical theories extracted from conventional thermal systems to treat granular 

powders are found to be in good agreement with experimental results [12,28,58,64]. We thus 

examine the applicability of the four laws of thermodynamics on granular powder systems, and 

define granulotemperatures for several granular powder systems in an analogous manner. The 

key point is to define the temperatures in granular powders through the kinetic energy connection 

with temperature, as shown in ideal gases. The main goal is to establish an approach that can 

facilitate the easy applications of thermodynamic principles to granular powder systems. Such 

attempts have been made before for addressing both wet particle systems like colloidal 

suspensions and dry particle systems like granular powders. For examples, Hao [57] has 

successfully used the Eyring’s rate theory [65] and the free volume concept for obtaining the 

viscosity equations of colloidal suspensions and polymeric systems with substantial 

modifications; A very similar theoretical approach is successfully employed to derive the two 

popular empirical tap density equations, the logarithmic and stretched exponential equations 

[58,64]. All these successes evidenced in literature imply that both thermal and athermal systems 

can be well described with common thermodynamic principles. What we need is a bridge that 

can build up a uniform connection between those two systems. This article represents the first 

attempt in this direction and further refinements are expected. Future attempts will be to utilize 

the Eyring’s rate process theory and free volume concept to treat the granular systems for the 

purpose of deriving viscosity equations of granular systems under various conditions. Similar 

methods and approaches shown in our previous publications will be employed again to treat 

granular powder systems in a much natural manner once the granulotemperatures are properly 

defined.  

 

5. Summary and conclusions 
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In summary, the thermodynamics originated from thermal systems is utilized to define the 

granulotemperatures in granular systems in an analogous manner. The key point is to connect the 

kinetic energy to the temperature, and thus the temperature can be defined in a uniformed 

manner across the conventional thermal systems like colloidal suspensions to athermal systems 

like granular powders. This is a necessary step, as in granular systems thermal energy is too 

small to drive the granular particles move around; New temperature definitions are needed for 

properly applying the thermodynamic principles established in thermal systems to granular 

systems. Several common granular systems are analyzed and the defined granulotemperatures 

are summarized in Table 2. The obtained granulotempratures seem to be very high in comparison 

with the temperatures in thermal systems. However, please keep in mind that in conventional 

thermal systems, the molecule movements are very mild in much smaller distance scales; Lower 

temperatures seem to be adequate for thermal systems. On the other hand, the particle 

movements in granular powders are typically very intensive and wild, and higher 

granulotemperatures seem to be adequate.  

 

Once the granulotemperatures are defined, the jamming temperature is analogously defined, 

too.  The jamming particle volume fractions are thus obtained by assuming that the ratio of the 

granulotemperatures to the jamming temperature equals to one. Therefore, the jamming points 

can be predicted and the obtained results agree qualitatively very well with experimental 

observations and empirical solutions in powder handlings.  The particle volume fractions at 

jamming points obtained at several common cases are listed at Table 2.  

 

Table 2 Proposed granulotemperatures and the particle volume fractions at jamming points 

predicted in several granular systems. 

 

Granular 
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Granulotemperatures Typical 

values (K) 

Conditions Particle volume fractions at 
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The work in this article may lay a foundation for building up the “granulodynamics” on 

the basis of the granulotempeatures defined analogously with that in thermodynamics. The four 

laws of thermodynamics are applicable to the granular powders with such definitions. Since the 

most important jamming phenomena in granular powders under a shear and a vibration are 

intensively examined, the results presented in this article may provide further insights on how to 

efficiently control the jamming process that has vast and important applications in industries like 

soft robotics and architecture [52] .  
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