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Abstract

This work presents a formalism of the notions of space and of time which contains that
of the special relativity, which is compatible with the quantum theories, and which dis-
tinguishes itself from the general relativity by the fact that it allows us to define the
possible states of motion between two observers arbitrarily chosen in the nature. Before
calculating the advance of the perihelion of Mercury accurately, it is necessary to define
the existence of a perihelion and its possible movement. In other words, it is necessary to
express the use of a physical space which is a set of spatial positions, a set of world lines
constantly at rest according to a unique observer. This document defines all the physical
spaces of the nature (some compared with the others) by noticing that to choose a tem-
poral variable in one of these spaces, it is enough to choose a particular parametrization

along each of its points (each point is a world line).

1 Introduction

The universe U is a topological space whose elements are called events and such that each
event has a neighborhood homeomorphic to an open subset of R*. A world line segment
can be represented by a continuous function which is defined on a part of R and which
takes its values in Y. We can define several parameterizations along a unique world line
segment. If this segment represents a trajectory of material body then compared with
every experimenter it is or in motion or motionless. For example, a space shuttle can
be constantly at rest according to an experimenter on the surface of the earth and be in
motion according to an experimenter on the surface of the moon.

Every experimenter possesses a unique physical space which is all the world lines

(chosen among those which describe the trajectories of material bodies) which appear to



him to be constantly at rest. Thus, when we have arbitrarily defined a local coordinate
system, in other words a homeomorphism between an open subset of &/ and a bounded
part of R* every experimenter has a unique explicit formula (which depends on the
coordinate system) to characterize each point of his physical space. This formula can
be the constancy of a triplet of coordinates which will be considered as spatial by the
experimenter or it can be more complex. It is necessary to use a temporal variable of a
physical space to define a state vector in quantum mechanics, it is necessary to use this
physical space to develop this state vector and write a wave function, it is necessary to
use a physical space to define the motion of a body in classical mechanics. In special
theory of relativity, we say that there is a Doppler effect when the source moves in the
physical space of the receiver.

There are several physical spaces on each open subset of /. That of the experimenter
P who is on the platform is different from that of the experimenter P’ who is on a boat
in movement according to P. If the first one expresses that a bird makes round trips
between two fixed points A and B of his physical space, the second can express that the
same bird is moving in a zigzag without ever going back at a same point of his physical
space. A physical space characterizes the state of motion of an experimenter (whoever
owns this physical space) and as we will show at the end of the section even in classical
physics, there are coherent families of world lines which are not physical spaces. Every
theory has to specify what it considers as being the set of all possible physical spaces
of nature. We know that the state of motion of an experimenter has to be defined with
respect to another experimenter consequently a physical space has to be defined with
respect to another physical space.

Mathematically, a parametrized curve defined on a physical space is not a world line
but each point of this curve (which is a space curve) is a world line. A space curve
defined on a particular physical space is the path of a particular family of world lines on
this physical space. Mathematically, we cannot compare a segment of space curve defined

on a physical space R and a segment of space curve defined on a different physical space



R’ (because mathematically a point of R is not a point of R’ or because these segments
of curves are not represented by the same families of segments of world lines) but we can
make assumptions to compare their lengths. Each physical theory must provide implicit
or explicit assumptions to make this comparison and these assumptions are going to
characterize the states of relative motions between physical spaces. Classical physics
suggests certain explicit assumptions to make this comparison and the kinematics of the
section [3] proposes another hypothesis.

Defining a geometry on a physical space consists in attributing an intrinsic measure
to each of its space curve and the geometry (the proper geometry) of a physical space
is the one which reports the character superposable or not superposable of its space
curves (which can be paths of rays of light) by a simple comparison of their measures.
This physical measure of a segment of space curve can be realized by summing the local
measures made by a family of experimenters who possess the same physical space and who
are arranged along the curve. Although the geometry of each physical space is assumed
to be Euclidean in this document EL one may wonder if in reality it is not Riemannian or
more complex and if it does not vary from a physical space to another.

The metric tensor of the general relativity is a mathematical tool which allows the
attribution of a physical measure to each segment of world line which represents a tra-
jectory of material body and such a segment of world line is the trajectory of a body in
free fall if its measure is optimal or if parallel transport (in relation to a certain covariant
derivative) along the curve preserves the tangent vector to the curve. This metric tensor
is not incompatible with the existence of physical spaces and gives no information on
their geometries. The purpose of this work is to highlight the possibilities of construction
of the theories which allow to express without ambiguity that every experimenter knows

how to characterize mathematically the immobility of a segment of world line.

IWe can define several inner products on a unique vector space consequently we can define several
Euclidean geometries on a unique affine space. We can also define very complex Riemannian geometries
on the same space and for each of geometry, the spatial distance between two points is the measure of
the smallest of the segments of parametrized curves which connects them.



2 The classical kinematics

We cannot express simply that the four-dimensional universe of the classical physics is
an affine space whose difference space is V because every time we shall evoke the use of
a cartesian coordinate system, it will be necessary to specify that this system is on a
same and unique decomposition of V in a direct sum of two subspaces among which one
is one-dimensional. It will then be possible to state that one of the cartesian coordinate
represents the universal temporal variable and the other three cartesian coordinates are
of spatial nature but this can not mean that there is a unique physical space (which
is constituted by a special family of world lines) in a physics where the immobility of
a body is mathematically a notion relative to the experimenter who notices it: all the
physical spaces (each being associated with an experimenter) will be equivalent for the
statement of a problem of kinematics but not for the statement of a problem of dynamics.
The physical space of an experimenter on the surface of the earth is different from the
physical space of an experimenter on the surface of the moon.

An experimenter is always provided with an intrinsically regular clock in the sense
where he knows how to appreciate the equality or the difference of time intervals defined by
two couples of events arbitrarily chosen on his world line. Establishing the laws of physics
means determining the relations which exist between measurable parameters consequently
the dating of the events which are not elements of his world line is an inevitably arbitrary
choice under the only condition to use an operational definition. This arbitrary character
appears as soon as we do not consider the time parameter of classical physics as an
inaccessible variable by the experiment but as a variable which must be measured : The
fact of expressing the use of dates indicated by a family of clocks synchronized with one
of them which is chosen as reference means expressing the use of a dating of the events
made by the reference clock through a process which must be explained. An operational
process of dating of the events in a physical space will always have to be specified in
the formulation of a theory evoking a temporal variable otherwise we can just assume

that each physical space must have a privileged temporal variable which will implicitly



be used and whose measure (the process to initialize the clocks constantly at rest in the
physical space) will be explained subsequently. In this last situation, since choosing a
particular parametrization along each of the world lines which constitute a physical space
R is not equivalent to choosing a particular parametrization along each of the world lines
which constitute another physical space R’, the relation between the privileged temporal
variables of two different physical spaces is not necessarily trivial. Therefore, the following

hypothesis is a strong condition:

Hypothesis 1 There is a universal temporal variable which allows to determine, by a
simple subtraction of the values assigned to the events of their trajectories, the elapsed

times in all possible regqular clocks.

In a Euclidean space we know how to define the lengths of the segments of the
parametrized curves which are straight lines and we can deduct the length of any other
segment of parametrized curve by performing Riemann sums of straight line segments

which exist between the consecutive points of its subdivisions.

Hypothesis 2 The proper geometry of each physical space is FEuclidean and two experi-
menters P and P’ can always choose their standard of lengths so as to notice the same

measures for the straight line segments joining pairs of simultaneous events.

Proposition 2.1 Any transformation between cartesian and rectangular spatial coordi-
nates (T2, x3,24) and (xh, x5, 2)) that P and P’ can use to identify the points of their

physical spaces is of the shape:

x5 | = |ls(t) | + M |2h + K

t being the universal temporal variable and A; being an isometry.

<,>, being an inner product on the vector space V, associated with the physical

space &,, we can represent this Euclidean physical space by the triplet (€,,V,, <,>,) or



by the triplet (Ep,TpO ,<,>p) where O is arbitrarily chosen in &, and where the affine

structure T, is a function defined on R? x £2 by the relation :
©p(0, T2 (a,b, M, N)) = ap,(0, M) + byp, (O, N) (1)

¢p is the application with values in V, which determines vectors in the physical space of
P and Tpo is an affine structure which allows P to appreciate the character aligned or not
aligned of points of his space, and which enables him to recognize that a quadrilateral of
&p is or is not a parallelogram. The coordinates he uses to parametrize his physical space
are cartesians if there is a basis B of V, and an element O of &, such as those which are
associated with an element M of £, are the components in B of the vector ¢,(O, M). To
establish a transformation between cartesian spatial coordinates built by P and P’ who
are at rest on the points O, and O, of their spaces, classical physics is going to emit the

following assumption :

Hypothesis 3 Whatever the elements M' and N’ of €, which describe in £, the trajec-

tories M'(.) and N'(.), whatever the date t,

O,/ (t)

T (0,0, M, N')(t) = T (a,b, M (1), N (1))

(B}); and (B;); are triplets of elements of £, and &, that define orthonormal bases of

7

euclidean physical spaces by the equalities:

B = {(‘Pp/(Op’aBz/‘))i} B = {(¢p(Op, Bi))i}

We consider a phenomenon which occurs on the date ¢, at the points M’ and M’(t) of
&y and &,. We note (x}) and (x;) its cartesian spatial coordinates which are associated

with B’ and B equipped with the origins O’ and O, and we note (k}) the coordinates of



@p (Opr, O') in B'. We can write:

M =T (aly + ki, 1, By, T (h + Ky, ath + K, By, BY)

p

The hypothesis [3| allows to write:

O,/ (t)

M(H) =T, 7

(o) + Ky, 1, BY(8), T, " (w5 + kg, w5 + ki, By(t), B(t)))
We can note:
4

(O, M'(t)) = (0, Opr (1)) + Z(@"; + k) ep(Op (1), Bi(t))
2

The hypothesis 2] allows to assert that the triangle (O, (t), Bj(t), B’(t)) is isosceles right
according to P because (O, B}, BY) is isosceles right according to P'. There is thus a

scalar A which describes the ratio of the standards of the lengths and an isometry A; of

V, such as:
¢p(Op (1), Bi(t)) = Mipp(Op, B;)
We obtain:
4
ep(0, M'(t)) = p(0,0p (1)) + A A Z(x; + k) ¢p(Op, Bi)
2

It results from this proposal that there is a vector function w(t) such that, if M’ and
N’ are two points of the space of P’ whose paths in the space of P are described by the

functions M’(t) and N'(t), then:

%sop(M'(t),N’(t)) = w(t) x @p(M'(t), N'(t)) (2)

The operator x depends on the inner product <,>,. This relation does not depend on



coordinate systems that P’ can choose to study a phenomenon and will be equivalent
to the equation within the frame of the new theory which distinguishes itself by a
more realistic modelling since the choice of a process of dating of the events in a physical
space by an experimenter should not allow to guess the intrinsic regularities of all the
possible clocks. In accordance with , declare in classical physics that P’ has a uniform
rotational motion (respectively a uniform translational motion) with respect to P mean
only that any body which is constantly at rest with respect to P’ moves with a uniform
speed along a circular path (respectively it moves with a uniform speed along a straight
path) in the physical space of P when he choose to use the the universal temporal variable
and the proper geometry on this physical space.

If &€ = {M(t),N(t),...} is a set of world lines which are described in &, by (2), and
if the operator x of this equation comes from an inner product on V, which represents
the proper geometry of &,, then we can express the existence of an experimenter P’ who
notices that all elements of £ are constantly motionless. If the operator x of this equation
comes from an inner product on V, which does not represent the proper geometry E| of &,
then we cannot express the existence of an experimenter P’ who notices that all elements
of £ are constantly motionless. In this last situation, £ is not a physical space but we can
build several four-dimensional coordinate systems (1, z2, 3, 24) in which the equation
of each element of £ is the constancy of the triplet (x2,x3,x4): if ¢ is a real number and
if R is a coordinate system on &, in other words R is a function defined on &, and with
values in R?, then an event which belongs to the element M(t) of £ can be described
by the coordinates x1 = ¢, (xa,23,24) = R(M(tg)). The concept of a physical space is
quite different from that of a coordinate system. The description of the motions of a
set of bodies with respect to a four-dimensional coordinate system does not necessarily
mean that these motions are described with respect to a certain observer, even in classical
physics. It is up to each theory to be equipped with tools which allow to specify when

a family of world lines of material bodies constitutes a physical space and when this

2If <, >1 and <, >3 are two inner products defined on a finite dimensional vector space V, then there
exists an automorphism P of V such that, for all (#,7) € V2, < @, 7 >2 = < P, PT >1. If A is a linear
isometry of (V, <, >2), then PAP~! is a linear isometry of (V, <, >1).



family does not constitutes a physical space. A physical space is inevitably defines with
respect to another chosen as reference and these tools can be the use of a special family
of coordinates systems (between which transformations have a certain structure), each

element of the family being clearly attached to a unique observer.

3 A relativistic kinematics

In classical physics, because of the strong hypotheses which are postulated to guess the
correspondences between the measures of space and time that can perform different ex-
perimenters, the relation Doppler-Fizeau depends not only on the motion of the source
in the physical space of the receiver, but also depends on motion of the source and the
receiver compared with the particular physical space where the theory of the electromag-
netism of Maxwell is formulated. This oddity is abnormal according to certain physicists
and Woldemar Voigt, in his article on the Doppler effect [1], will establish a linear trans-
formation of coordinates which leaves invariant the wave equation. These transforma-
tions constitute the Poincaré group which contains particular subgroups constituted by
the Lorentz transformations, formulas which differ from those of Voigt by a change of the
standard of lengths during the change of physical space and for the authors it is a question
of highlighting practical variables in physical spaces which are in uniform translational
motion compared with the ether. Albert Einstein notices in [2] that it is possible to find
this special formulas when observers of each physical space chooses to measure the spatial
distances and to date the events in a specific way and the new kinematics highlights the
symmetry of the Doppler-Fizeau relation.

The intrinsically regular clock of an experimenter can be chosen with a digital display
which is cartesian and normally oriented : the duration of proper time elapsed between
successive dates t1 and t5 is proportional to the positive real number t5 — t1, the positive
constant of proportionality characterizing a choice of the standard. For a digital display
which is cartesian and abnormally oriented, this duration is proportional to the positive

real number ¢; — ¢2. As in classical physics, the geometry of each physical space &, will
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be described by a pair (Tpo ,<,>p) and an experimenter will say that a coordinate system
is cartesian if it consists of cartesian spatial coordinates (allowing to identify the points
of his physical space) associated with a particular dating of each event. This dating of
events, which is a cartesian E| dating of events, is obtained by emitting at a date ¢_ of his
clock an electromagnetic signal which propagates in the vacuum, by receiving at a date

t4 the signal reflected at the event and by using the formula:
1
t= gty + 1)

It is assumed that the nature is such as every experimenter can make a cartesian dating of
events (the dates of transmission and reception have to be uniquely determined) and the

following hypothesis is a rigorous formulation of the second postulate of special relativity:

Postulate 1 FEvery experimenter P who uses a cartesian dating of events made by himself
can define a Fuclidean geometry (TpO7 <,>p) on his physical space so as to notice that an
electromagnetic signal which originates in a given event always propagates in the vacuum
in the form of a sphere whose radius increases with a constant speed, the value of this

speed characterizing a choice of the standard of lengths.

It results from this postulate that if P and P’ build the cartesian coordinate systems
(ct, o, x3,24) and ('t 24, %, 2} ) which are relative to orthonormal bases of their physical
spaces (such a coordinate system will be called an observer), ¢ and ¢’ being the values
chosen to mathematically represent the speeds of propagation of an electromagnetic signal

in each physical space, then whatever the events ¢ and j, we can write:

4 4
(ct(5) — et(D)* = D (ax(j) —an(i)® = (¥ (G) = (D) = Y (24()) —23(i)* (3)

k=2 k=2

3A cartesian dating of events made by an experimenter P can be mathematically used as temporal
variable in all possible physical spaces and represents the universal temporal in classical physics vari-
able if and only if P is constantly motionless in the particular physical space where the theory of the
electromagnetism of Maxwell is formulated.
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By definition, the function (ct, x2, x3,x4) — (ct’, xh, x5, x}) is element of the group of the
real eligible transformations. The affine solutions form the Poincaré group and we can
think that this group contains the Jacobian matrices of the not affine solutions because
is valid in a neighborhood of each event. We shall say that a continuously differentiable
mapping which is defined on R* is an admissible transformation if there is a pair of real
numbers (¢, ¢') such as it transforms any trajectory realized with an instantaneous velocity
vector of constant modulus equal to ¢ to a trajectory realized with an instantaneous

velocity vector of constant modulus equal to ¢’.
Theorem 1 Any real eligible transformation is an admissible transformation.

S and S’ being two observers built by the experimenters P and P’, the trajectory in S of
a body whose modulus of the velocity vector is constantly equal to ¢ between the events

a and b is described by the set:

dl‘i
i) =}

{(ct, za(ct), x3(ct), xa(ct)) , t Elta,ts], Z(

1=2

We can define the sets:

4
§1 = {(ug,us,uq) , u; € CI(R R) , u; =u;(§) , ‘Z(duz)2 =1}

T(S1) = {{(Ul(ﬁ)vu(ul(ﬂ))) ,neO}, u eC'R,R), ue Sy, O ouvert de R}

We can note:
zy, = fi(z1, 20, 23,24) [ = (f1, f2, f3, fa)

A" = {(uy (), up(ul (), s (wy (), wh (Wi (n) , n € OF = {f(M), M € A} = f(A) A€ T(S)

The theorem [I] allows to write:

A e T(51) = f(A) € T(S) (4)
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By noting F' = (f;;)i; the Jacobian matrix of f, we get:

dua duy 1 1
d(uho ul) (g0 ) | dus
al ) | =P e | G | | = F G |
d(uf o) d(u4d o) 5{’2 ﬁ

dn dn d¢’ d§

The relation can be written under the shape:
(du1)2 . (d(uiou1)>2 (du’1>2 ! <d(u;oug))2
) -3 (M) —o = (G5) -3 (M) o
dn i=2 dn dn i=2 dn
It results that F' is such that:

4 4
VheR?, {h%th_o} — {h’th’f_o} W = Fh (5)
=2

1=2

This last relation allows to demonstrate by simple calculations of linear algebra that f

has the following properties:

i Its Jacobian matrix is element of the Poincaré group at each event, all its coefficients
are expressed using the partial derivatives of f1, and the square root of the absolute

value of determinant is:

4
pp=fh =Y fii>0 (6)

=2

ii P being equipped with one of his observer S, P’ can always choose one of his observer

S’ such that:

o - f121 R fliflj o ) ..
fu*\/,LTf+ fll_’_\/W fljifll“v‘\//va fil*flz QSZaJ§4 (7)

iii The components v; of the velocity vector in S of a point of the physical space of P’



13

are such that:
Vi) = ——jf” (r, 2a(r), 23(7), 24(7) (®)
(& 11

iv There are three matrices Azf such that:

f12 fi2
0 ¥ .
8733 fis | =A5 | fis 2<i,5<4 (9)
fia fia

We can note h(7) the function which is defined along the trajectory of P’ and which
realizes the correspondence between the temporal coordinate 7 in S and the temporal
coordinate in S’. If (2;(O, )); represents the coordinates of P’ in S" and if 7_(«) and
74+ () are the temporal coordinates in S of emission and reception by P’ of signals which

allow him to date the event «, then the postulate |1| gives the relations :

[h(r() = (7 ()]
2

S (i) — @ (0p))2 =

=2

h(r () + W)

f1(~): 9

Let us specify f; which is the generating function of f because it allows to build
its Jacobian matrix. M'(.) = (0,y2(0),y3(0),ys(0)) and N'(.) = (7, 22(7), 23(7), 24(T))
being two trajectories of body in motion in S, we note o (7) the function which to the date
7 of emission of an electromagnetic signal by N’ associates the date o of interception of
the signal by M’. If the cartesian digital clock used by P to build S is normally oriented,

then :

(2

4
o(r) =7 = (i(o(7)) — 2i(1))?
=2
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The calculation gives :

(U(T) —7 =Y (Wilo(r) - in(ﬂ)fi%) ilié =o(r) =7 =) (wi(o(r) - xi(T))Cfla:

=2 =2

The duration in S’ which separates the emission of the signal by N’ and its reception

by M’ is the absolute value of the number :

fi(o(7), y2(0(7)), y3(a(7)), yalo (7)) = fr(7, 22(7), 23(7), 4(7)) (10)

If the admissible transformation f is a real eligible transformation then when M’ and N’

dy; dx;
are constantly at rest according to P/, dyl and p * being determined by , the function
o T

does not depend on the variable 7. We obtain:

9915 (o(r), M/ (0(r))) = L (7, N"(7)

dr fi ’ B i
By noting :
li(r) = yl(aa(zi)) :?(T)
We get :

4 4
1 1
—(fi+ Y fuld)(o(r), M'(0(7))) = —(fur + Y fual) (7, N'(7))
Thus, Y(7, v, 73, 74) € R, V(la,13,14) € R3, 12 +12 + 12 = 1, the function :

4
1

;T(fll + E f1li)(T + 0,20 + 0lo, x3 + Ol3, x4 + 0ly)
f i—2

does not depend on the variable 6. It results :

(e ) S e

T Ny
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We have to associate with this equation the fact that gives the velocity vector
known along the trajectory of P’ and as in classical physics (according to he can move
with a rotational motion relative to P), his world line is not sufficient to specify his state
of motion. All the solutions of and (6] are physically acceptable. Any affine function
f1 which is solution of @ is acceptable and the associated transformation f is an element
of the Poincaré group.

In a coordinate system, a clock that revolves around itself (possibly without trans-
lational motion) is physically distinguishable from a clock that does not revolve around
itself therefore it would not be a conceptual absurdity if the relationship between ”the
proper time of a clock H in motion in an inertial coordinate system S” and ”the temporal
variable of S” depended on the movement of H around itself (with respect to S). This
is the case in the new model. Rigorously, a unique world line segment which describes a
trajectory of material body can have a certain cartesian proper time (which is simply a
parametrization recognized as affine) when it is considered as a point of a physical space
R and it may have a different cartesian proper time when it is considered as a point of a
different physical space R’. This is forbidden in general relativity which supposes, by def-
inition, that a cartesian proper time comes from the metric tensor: it is not a consequence

of special relativity and it is not a consequence of the equivalence principle.

4 On the Ehrenfest paradox

The subject is exposed in [3] and [4]. Generally, this problem is introduced to show that
we can deduce from special relativity the existence of an observer who finds that his three-
dimensional space is not Euclidean and must renounce to an immediate interpretation of
some coordinate systems.

Thus, using the assumption that a body D is described by an inertial reference frame
R as a disc in uniform rotation about an axis perpendicular to the disc plane and passing
through its center, it should be concluded :

(i) There exists an observer of D who can state that ”D has actually and constantly the
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shape of a disc”.

(ii) The observer of D notices that the relationship which connects the circumference and
diameter of D is not that of Euclidean spaces in other words the ratio between these two
quantities is not the number pi.

We will show that (i) is questionable. Indeed, consider two material points which are
fixed on D and such that one is on its center and the other on its circumference. Then:
(a) By assumption, since D has actually and constantly the shape of a disc with respect
to R, this inertial frame can assert that the spatial distance between these two points
does not vary over time.

(b) The Lorentz transformation allows to state that there is at least one inertial frame R’
who can say that the spatial distance between these two points varies over time in other
words D is constantly in deformation and has the shape of an ellipse with respect to R’.

Because R assert that D does not undergo distortion and has the shape of a disc, and
because R’ asserts the opposite, knowing that all inertial reference frames are physically
equivalent, it is subjective to assert that there is an observer of D who notices that D
does not undergo distortion and has the shape of a disc. Thus, (i) is questionable.

To demonstrate (b) it is sufficient to choose R’ as an inertial reference frame whose
velocity vector U (with respect to R) is in the plane of D and is therefore orthogonal to
the axis of rotation of D. Under these conditions, the transformation of Lorentz teaches
that the contraction of the lengths enters R and R’ is maximal when the radius vector
between both material points is colinear to ¢ and this contraction of the lengths enters
R and R’ is worthless when the radius vector between both material points is orthogonal
to ¥. Finally, we know that the radius vector between the two material points occupy
alternately each of these two configurations because D is rotating.

By noticing that even in classical kinematics we can build a coherent family of world
lines that are not a set of fixed points with respect to a unique observer (shown at the
end of the section , we can propose that in a relativist framework:

(a) The family of trajectories (described with respect to an inertial coordinate system by
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equations that highlight the classical notion of rotational motion) does not constitute a
set of fixed points with respect to a unique observer.

(b) Tt is therefore not surprising that we have difficulty in conceiving that regular digital
clocks having these trajectories are synchronisables in the sense of the special relativity.
(c) Tt is necessary to reinvent the complexity of the equations which have to describe, with
respect to an inertial coordinate system, a set of points continuously fixed with respect
to an accelerated experimenter: do not plagiarize the equations of classical kinematics.
(d) The geometry of the three-dimensional space of an accelerated observer can remain
Euclidean if the fixed points which constitute this three-dimensional space are described

(with respect to an inertial coordinate system) by the new complex equations.

5 Conclusion

We can distinguish two practices in physics. The first is the proposal of formulae (New-
ton’s first law of motion, Maxwell’s equations, Lorentz force, Newton’s law of gravitation,
Doppler effect, Schrodinger’s equation...) to describe the evolution of the elements of a
system according to their intrinsic natures and their states of motion. The second is the
precision of the observers who can notice the accuracy of these formulae (an observer is
needed to notice the states of motions of the elements of a system). This second aspect
is practicable only if we define beforehand all the possible observers by indicating how
determining the states of motion of some with regard to the others.

When we express that we must associate to every experimenter a particular family
of world lines which follow him in his motion and represents his physical space, it is a
definition which offers mathematical possibilities. The classical kinematics operates a
possibility to define all the physical spaces of the nature (some compared with the others)
and this document operates another possibility. If a spatial position is defined as being
a world line and not simply an element of U, it is because an experimenter can notice in
corpuscular model that a body makes round trips between two fixed points or is moving

a zigzag without return by a same point, and in a quantum model he can be interested in
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the variation over time of the probability of finding a particle system in a bounded region
of his physical space which is the set of fixed points.

We can define several temporal variables in each physical space (because it is sufficient
to choose a particular parametrization along each point of this space) and some of them,
by example the cartesian datings of events made by different experimenters who are in
motion the ones compared with the others, are directly measurable. We showed at the
end of the section [2] that we can propose mathematically consistent but physically false
answers to the following question: if R and R’ are two physical spaces, what is the
structure of the states of motion that an experimenter of R notices for each world line
which constitute R’ ? One is free to choose any geometry and any temporal variable on
R to write equations.

In classical physics we express that every experimenter can define a Euclidean ge-
ometry on his physical space so that all notice the same spatial distances between pairs
of simultaneous events, this simultaneity resulting from a privileged temporal variable
the existence of which is supposed. We establish then the states of relative motion be-
tween two arbitrarily chosen physical spaces in the nature and we obtain the equation
which highlights the existence of rotational motions, possibly coupled with translational
motions.

A cartesian dating of events made by an experimenter on the surface of the earth
is a temporal variable ¢, and a cartesian dating of events made by an experimenter on
the surface of the moon is another temporal variable ¢. In a relativistic theory, by
definition, none of the measurable temporal variables (and more generally none of the
relations of simultaneity on i) is recognized as privileged by all the possible experimenters
consequently we cannot resume the assumption of the classical physics on the conservation
of lengths of certain segments of parametrized curves defined on the physical spaces. We

propose then the postulate [T] which results from special relativity and experiments of

Michelson and Morley, and we obtain the equations and .
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