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A nonstandard cubic equation is shown to have an unusually economical solution, where this

solution incorporates an angle that serves as the equation’s discriminant.

A nonstandard cubic equation is shown to have an un-
usually economical solution, where this solution incorpo-
rates an angle that serves as the equation’s discriminant.

This equation is treated as four special cases:

e In Sec. [[] the equation has just two independent
constants m and Z.

e In Sec. [T the equation has three independent con-
stants m, Z, and k, and represents the general case.

e In Sec. [lI] the equation has just a single inde-
pendent constant m, but is especially interesting
as it possesses the simple approximate solution

~ 1
¢~ 1= g

e In Sec. [[V] the equation again has one independent

constant m, but 3m must be a perfect cube.

The solution to the standard cubic equation is given in
Appendix [A]

I. THE CUBIC EQUATION WITH TWO
CONSTANTS

We begin with a theorem providing the solution to the
nonstandard cubic equation having just two constants.

Theorem 1. Define the cubic equation

(m+x)°

5 tmta)?=2,

(1.1)

having positive constants m and Z, and the variable x.
Zero out x from the above equation to define

3

m
W=_—+4+m* ; 1.2
3, T ™ (1.2)
and let
w
sinf =4/1 — — 1.3
sin 7 (1.3)
and
1+sinf
1 +4simm (1.4)

v_l—sinﬂ
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Then

(1.5)

x_m<\3/5+§’/z>2m

solves Fjq. .

Proof. We will expand Eq. into the standard cubic
equation, identify its coefficients, and then solve it by
using its classical solution. This solution will then be
simplified by a series of substitutions until Egs. and

(1.5)) are recovered.

The standard cubic equation
ar® + b2’ +cx+d=0 (a=1) (1.6)

has this solution

_slq @  pP o oslq @ p
x\/2+\/4+27+\/2 Vot ™" o
(

1.7)
where
b2
p=c— ?
—2b%  be
_ oe 1.8
4= —5—+73 (1.8)
b
r= -
3

(see Appendix@ for proof). When Eq. (1.1]) is expanded
we get

3 + 3ma? + 3m?z + m?®

3m

+224+2mz+m? =2
or

23 + 6ma? + Imlx + 4m?
3am

=7

so that
22 4+ 6ma? + 9m2x +4m3 —3mZ =0

This produces coefficients of

a=1
b=6m
c=9m? (1.9)
d=4m?® —3mZ
=3m(W — 2)

for Eq. (|1.6).
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Substituting these values into Eq. (1.8) gives

6m)>
= 9m2 — (7
p m 3
—2x (6m)®  6m x 9m?2 3
= —4 3mZ
q 57 + 3 m” + 3m
L om
3
(1.10)
which simplifies to
p=—3m?
q=3mZ —2m3 (1.11)
r=2m

Substituting these coefficients into Eq. (1.7 gives

e d 3mZ — 2m3 n \/(3mZ —2m3)? n (—3m2)3
B 2 4 27

L i3mZ = 2m3 \/(3mZ — 2m3)?2 N (—3m2)3
2 4 27

—2m

or

Factoring out m gives
)+ (52 i 1)2
z=m\ —
2m2 2m?

w Sy

—2m

(1.12)

Because the values in the above two outer radicals are
reciprocals of each other, it follows that letting

37 37 2
— (22 _ 1) 22 q) -1 1.1
(2m2 + \/<2m2 > (1.13)
allows Eq. (1.12) to be rewritten
1
=m (e/ﬂ+ (’[) —2m (1.14)
u

But this equation is identical to Eq. (1.5 except that u
has replaced v. It follows that Eq. (1.5 (our goal) holds

provided that
(1.15)

which is to say if

1+siné
=— 1.16
1—sind ( )
But this is easily shown: Observe that Eq. (1.2]) gives
m? = §VV
This allows removing m? from Eq. (1.13)) by substituting
3W to get
3Z 3Z 2
() ()
2x 3w 2x 2w
Z Z ?
=2—-1 2— -1 -1
7oy ()

—2Z 1+ 2Z : 4Z+1 1
W W w

0 Z al(ZY 2
7 W W
Z

72771”7 17—

We now need to eliminate Z and W by substituting sin 6.
A glance at Eq. ([1.3]) shows that this requires rewriting

the above equation using powers of /1 — % So, we
divide the above numerator and denominator by % to

get
/ w
2—— 24/1 — —
ZJr Z

Z

and rearrange terms so that

A E(-5)
%)

Now we can eliminate powers of — % by substituting
powers of sin as defined by Eq. (1.3). This gives

u =

(1.17)

B 1+ 2sin6 + sin® 6

1 —sin?6 ’
which factors into
1—1—51110 1+siné
~ 1—sin 9 1-+sinf
so that
1+siné
~1_sinf

Finally, we substitute into Eq. (1.14) to recover Eq.
(L) 0



Remark 1. If 6 = 0 then Eq. (1.1) has two distinct real
roots.

Remark 2. If 0 < 0 < /2 then Eq. (1.1) has one real
and two complex roots.

Remark 3. If 0 is purely imaginary then Eq. (L.1) has
three distinct real roots. Note: sinif = isinh 6.

Remark 4. As a side issue, note the use of W — Z in the
simple alternate expression for d in Eq. (L.9).

II. THE CUBIC EQUATION WITH THREE
CONSTANTS

It is possible to modify Eq. (1.1)) slightly by joining
x with a new real constant k, so as to create a general

version of Eq. (1.1). In

(m+k+z)*

3 +(m+k+2)?=2

(2.1)
m and Z are (again) positive constants, but the expres-
sion k-+x now serves in the role earlier served by x alone.

Hence, Eq. (1.5 becomes

1
k—i—aﬁ:m(\%—i—i/»)—%n , (2.2)
v
so that the solution to Eq. (2.1)) is
s/ 1
xzm(%—k\/;)—Zm—k , (2.3)

where W, 0, and v are defined as in Egs. (1.2)—(1.4]).
(Note that this use of k does not affect the usefulness of
6 as the discriminant.)
Equation (2.1) produces coefficients of

a=1

b=6m+ 3k

¢ =9m? + 12mk + 3k>

d=4m® — 3mZ + Im’k + 6mk® + k*

=3m(W — Z) + klc — k(b — ka)]

for Eq. (1.6), where k = 0 recovers Eq. (1.9)).

III. THE CUBIC EQUATION WITH ONE
CONSTANT

Now suppose that Z ceases to be an independent con-
stant, but instead derives from the constants m and M

M3 — M3
Z="—"" 4+ M*-M3 , (3.1)
3m
where
M=m+1 |,

but where now
m>9
Then, a surprisingly simple, but accurate, approximate
solution to Eq. (1.1]) becomes possible: namely,
1
3 x M4

In the theorem that follows the extremely small size
computed for € is not proof of the accuracy of the above
approximate solution—but the proof does help explain
why the approximation is so accurate.

r=1

(3.2)

Theorem 2. Let

3m
MS _ M—S
- ( + M? — M—3> . (3.3)
3m
where
— ; (3 4)
LIS VTR '
and m and M are positive constants such that
M=m+1 |, (3.5)
where
m>9 (3.6)
Then
1 1 1
= — 3.7
T OMTm T OMF  SIMZm (3.7)

Remark 5. Informally speaking, the absolute value for €
equals the difference between the value for Z produced by
Eq. when z = 1— , versus that produced by Eq.
(3.1). Moreover, as Eq. makes clear, for ever larger
M the (necessarily small) value for e shrinks rapidly.
Proof. Substituting y, as defined by Eq. , into Eq.
(13.3) gives

(M:le4>3+(M 1 )2

3m 3MH4

- (W + M? — M—3> (3.8)
This expands and simplifies to
. —27TM'Y +9M> -1  —6M°+1
81M12m 9M8

_ _M_S — M3
3m

_ —27M10 + 9M5 — 1 — 54MOm + 9IM*m
N 81M12m
27M? + 81M°m
81M12m




TABLE I: Values produced by Eq. (1.1) when Z is determined
by Eq. (3.1). Values are computed for the two smallest m for
which 3m is a perfect cube. The values in the first row derive

from Eq. (4.2).

m Z Cubed expression Squared expression
a 10 1 10 1
9 137.036 3~ 3%29999.932... 1~ 20999.932...
73 1 73 1
72 7130.004... G — 5o gETer7mmee0. 1~ SHI94732.990.

“Minimal case.

Combining large and small terms separately gives

(27TMm — 27M* + 27M®) + (9M5 + 9M*m — 1)
81M12m

(3.9)

But the large terms of the above numerator sum to 0;
that is to say, given Eq. , it follows that
27TMm — 27M ' + 27M°
=Mm — M*(M —1)
=M’m — M°m
=0
So, the effects of ﬁ and M3 in Eq. almost com-

pletely cancel. What does not cancel is this relatively
small amount

_9M S+ 9MAm —1
T RIM2m

This fraction, which has only comparatively small powers

of M in its numerator, gives

1 1 1

= OMTm " 9MS  RIMTm

(3.10)

€ (3.11)

O

Remark 6. In the numerator of Eq. all large (ninth
and tenth) powers of M, which might otherwise con-
tribute greatly to approximation error, completely can-
cel; this leaves only the much smaller (fourth and fifth)
powers of M as the major sources of error. It follows

from Eqgs. (3.5)), (3.6)), and (3.11) that
. 1709999
~ 729000 000 000 000

IV. THE CUBIC EQUATION WITH ONE
CONSTANT AND 3m A PERFECT CUBE

If m =9, then Eq. (3.5) gives M = 10, so that Eq.
B1) gives

103 — 1073
Z=""" +1+10>2-103
3x9 +

= 999.999 +99.999

= 137.036

TABLE II: Values produced by Eq. (l.1)) when Z is deter-
mined by Eq. (3.1). Values are computed for the two smallest
m for which 3m is a perfect cube.

m 3m M W Z ~1/(1 —x) ~sin? 0
9 3 10 108 137.036 29999.932 % 0.2119 °
72 6 73 6912 7130.004... 85194722.991¢  0.0306

“Minimal case.

b Approximately 3 x 10% = 30000. See Egs. ll and lj

°So, cos? § = 1508 where 6 &~ 27.407 157°.

4 Approximately 3 x 73% = 85194 723.

Because 3m = 3 x 9 is a perfect cube this may be rewrit-

ten
10\ 1 \?
Z==) - | —— 102 — 1073
(3) (10><3> +

= 137.036 (4.1)

With 3m a perfect cube, Eq. (L.1)) can likewise be rewrit-
ten. So, substituting the above values for m and Z into

Eq. (L) gives

(0o 3
T3 3x29999.932...

1 2
100 - —— =
* ( 0 29999.932...)
= 137.036

(4.2)

It is these values which appear in the first rows of Tables
[ and [ Because m =9 is the smallest positive number
for which 3m is a perfect cube it follows that m = 9 and
Z = 137.036 represent a minimal case.

All of this shows that at the outset we might have
chosen as a different starting point this logical alternative

to Eq. (L)

where n3 = 3m.
And, finally, note that for the above m and Z, Eq.

(1.1) produces

1
~1-—
29999.932142743338 '

(4.4)

a value very close to the approximate value for = given

by Eq. (3.2)), namely

1
Ml
v 3 % M1
1
Ml — . 4
30000 (4.5)



APPENDIX A: THE SOLUTION TO THE
STANDARD CUBIC EQUATION

Theorem 3. The standard cubic equation
ax® +bx? +cx+d=0 (a=1) (A1)

has the solution
Y L G S L Y L G S
;10_\/27L 4+27+\/2 § o7
(A2)

provided that

b2
pZC—§
26  be
= —~ _d A3)
1= 797 73 (
b
3

Proof. We introduce y as follows
rT=y—r (A4)
and substitute r as defined by Eq. (A3)) to get

(-3

Substituting into Eq. (Al]) gives

b\* b\ > b
<y—3> +b(y—3) +c<y—3>+d—0

This expands and simplifies to
v —q+py=0 (A5)

with p and ¢ from Eq. neatly replacing all instances
of b, ¢, and d. (Note the absence of a y? term: the point
of this substitution.)

We introduce z as follows

y=(:-2) (A6)

and make Vieta’s substitution into Eq. (Ab) to get

(- 4) o) o

This expands and neatly simplifies to

3 P’ s
22—q—=—=2z°>=0 . A7
4= 5 (A7)
We turn this into a quadratic equation in z* by multi-

plying through by 23 to get

)~z -2 =0 (A8)

(the point of Vieta’s substitution). The standard

quadratic formula then gives

q @  p?
E YN A9
2 T (A9)

We are now close to recovering Eq. , which we
have to reassemble from the trail of parts we left behind.
Essentially, we need to roll back the y — r and z — 3%
substitutions made earlier. We proceed in reverse order
by eliminating z — & first.

From Eq. we know that

3
27

3

5/ q 7

=4/= = A10
z 2 + 1 + ( )
(The inner radical we arbitrarily give a plus sign, but
a minus sign would lead to identical results.) We now

introduce this identity

p_gle, J¢€ PP ele e PP
3_\/2“L 4+27X\/2 T

into which we substitute z from Eq. (A10) to get

p_ ola
2

¢  p
3 4

to7

By moving z to the left, we then also know that

3
+2 (A11)

Substituting the above values for z and —2> into Eq.

(A8) gives

_slq @ P oslq @ p
y—\/2+\/4+27+\/2 5 . (A12)

undoing Vieta’s substitution.

Finally, we undo the first substitution by plugging this
y into Eq. to recover Eq. . O
Remark 7. The discriminant of Eq. can be shown
to be

A = 18abed — 4b%d 4 b2c? — 4ac® — 27a*d* (a=1)

Compare this against the economy of the discriminant 6,
discussed in Remarks [T} 2| and [3] By playing a central
role in the solutions to Eqs. (1.1)) and , the simple
discriminant 6 shows these equations to be—at least in
this limited respect —more fundamental than Eq. .
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