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Abstract 

This paper presents a complete and exhaustive proof of the Polignac Prime Conjecture.  

The approach to this proof uses same logic that Euclid used to prove there are an 

infinite number of prime numbers.  Then we use a proof found in Reference 1, that if p 

> 1 and d > 0 are integers, that p and p + d are both primes if and only if for integer 

n: 
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We use this proof for d = 2k to prove the infinitude of Polignac prime numbers. 
 
The author would like to give many thanks to the authors of 1001 Problems in Classical 

Number Theory, Jean-Marie De Koninck and Armel Mercier, 2004, Exercise Number 

161 (see Reference 1).  The proof provided in Exercise 6 is the key to making this paper 

on the Polignac Prime Conjecture possible. 

 

Additionally, our proof of the Polignac Prime Conjecture leads to proofs of several other 

significant number theory conjectures such as the Goldbach Conjecture, Twin Prime 

Conjecture, Cousin Prime Conjecture, and Sexy Prime Conjecture.  Our proof of 

Polignac’s Prime Conjecture provides significant accomplishments to Number Theory, 

yielding proofs to several conjectures in number theory that has gone unproven for 

hundreds of years. 
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Introduction 

The Polignac prime conjecture, was made by Alphonse de Polignac in 1849.  Alphonse 

de Polignac (1826 – 1863) was a French mathematician whose father, Jules de 

Polignac (1780-1847) was prime minister of Charles X until the Bourbon dynasty was 

overthrown in1830.  Polignac attended the École Polytechnique (commonly known as 

Polytechnique) a French public institution of higher education and research, located in 

Palaiseau near Paris. In 1849, the year Alphonse de Polignac was admitted to 

Polytechnique, he made what's known as Polignac's conjecture: 

For every positive integer k, there are infinitely many prime gaps of size 2k. 

Alphonse de Polignac made other significant contributions to number theory, including 

the de Polignac's formula, which gives the prime factorization of n!, the factorial of n, 

where n ≥ 1 is a positive integer. 

 

Proof of Polignac's Conjecture 

In number theory, Polignac's conjecture states: 

For any positive integer k, then for any positive even number 2k, there are infinitely 

many prime gaps of size 2k. In other words, there are infinitely many cases of two 

consecutive prime numbers with difference 2k. 

We shall use Euclid's logic that he used to prove there are an infinite number of prime 

numbers to prove there are an infinite number Polignac primes. 

First we shall assume there are only a finite number of n Polignac's primes for all 

positive integers k, specifically; 

1) Say, p1, p1 + 2k, p2, p2 + 2k . . . . , pn-1, pn-1 + 2k, pn, pn + 2k 

 

2) Let N = p1(p1 + 2k)p2(p2 + 2k) . . . . , pn-1(pn-1 + 2k)pn(pn + 2k) +1  
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By the fundamental theorem of arithmetic, N is divisible by some prime q. Since N is the 

product of all existing Polignac primes plus 1, then this prime q cannot be among the pi, 

pi +2k that make up the n Polignac primes since by assumption these are all the 

Polignac primes that exist and N is not divisible by any of the pi, pi +2k Polignac primes. 

N is clearly seen not to be divisible by any of the pi, pi +2k Polignac primes. First we 

know that 2 is a prime number that is not in the set of finite Polignac primes since if k=1,  

and p1 = 2, then p1 + 2k = 2 + 2 = 4 and 4 is not prime, therefore, 2 cannot be included 

in the finite set of Polignac primes. We also know that 2 is the only even prime number, 

therefore, for the finite set of Polignac primes all of the pi, pi +2k are odd numbers.  

Since the product of odd numbers is always odd, then the product of all the pi, pi +2k in 

our finite set of Polignac primes is an odd number. Since N is product of all the            

pi, pi +2k, + 1, then N is an even number, and since all the pi are odd numbers and N is 

even, then N is not divisible by any of the pi Polignac primes. Therefore, q must be 

another prime number that does not exist in the finite set of Polignac prime numbers. 

Therefore, since this proof could be repeated an infinite number of times we have 

proven that an infinite number of prime numbers q exist outside of our finite set of 

Polignac primes.    

Now we must prove that two of these infinite prime numbers, q, are Polignac primes.  

We will pick a prime number p from the infinite set of primes outside our finite set of 

Polignac primes and we will need to prove that there exists a prime p + 2k that is also 

prime.  Both p and p +2k do not exist in the finite set of Polignac primes.  Note we are 

not proving this for all q primes outside the finite set of Polignac primes, we are only 

picking one prime, p, from the infinite set of primes and then we shall prove that p+2k is 

also prime, this will show that at least one Polignac prime exists outside our finite set of 

Polignac primes. 

First we shall show that if p + 2k is prime it cannot be in the set of finite pi, pi +2k twin  

primes above.  Since p is a prime number that does not exist in the set of finite pi, pi +2k 

Polignac primes, then if there exists a prime number equal to p +2k that is prime, it 

would be a Polignac prime to p; therefore a prime p+2k cannot be in the set of finite n 

Polignac primes otherwise p would be in the set of n finite Polignac primes and we have 
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proven that p is not in the set of fine Polignac primes, therefore if p +2k is prime it 

cannot be in the finite set of Polignac primes since it would be twin to p.     

By the fundamental theorem of arithmetic, N is divisible by some prime p. Since N is the 

product of all existing Polignac primes plus 1, then this prime p cannot be among the pi 

that make up the n Polignac primes since by assumption these are all the Polignac 

primes that exist and N is not divisible by any of the pi Polignac primes. N is clearly seen 

not to be divisible by any of the pi Polignac primes. First we know that 2k is only a prime 

number if k = 1, but 2 is not in the set of finite set of Polignac's primes since 2 + 2k = 2(1 

+ 2k) is an even number and is not prime. We also know that 2 is the only even prime 

number, therefore, for the finite set of Polignac primes all of the pi are odd numbers.  

Since the product of odd numbers is always odd, then the product of all the pi in our 

finite set of Polignac primes is an odd number. Since N is product of all the Polignac's 

primes (pi) + 1, then N is an even number, and since all the pi are odd numbers and N is 

even, then N is not divisible by any of the pi Polignac primes. Therefore, p must be 

another prime number that does not exist in the finite set of Polignac prime numbers.    

The only thing left to prove that there are an infinite number of Polignac primes is to 

prove that p + 2k is also prime and is not in the set of finite Polignac primes.  

First we shall show that if p + 2k is prime it cannot be in the set of finite pi Polignac 

primes above.  Since p is a prime number that does not exist in the set of finite pi 

Polignac primes,  then if there exists a prime number equal to p + 2k that is also prime, 

it would be a Polignac prime to p; therefore a prime p+2k cannot be in the set of finite n 

Polignac primes otherwise p would be in the set of n finite Polignac primes and we have 

proven that p is not in the set of fine Polignac primes, therefore if p +2k is prime it 

cannot be in the finite set of Polignac primes since it would be Polignac to p.     

Now we shall proceed to prove at least one p + 2k is prime as follows: 

We use the proof, provided in Reference 1, that if p > 1 and d > 0 are integers, that p 

and p + d are both primes if and only if for positive integer n: 
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For our case p is known to be prime and d = 2k for Polignac primes, where k is any 
positive integer, therefore: 
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Multiplying by p,  
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1
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Multiplying by (p + 2k),  

(𝑝 + 2𝑘)𝑛𝑝 = (𝑝 + 2𝑘)(𝑝)! �
1
𝑝

+
2k!

p +  2k
� + 𝑝 + 2𝑘 + p 

Reducing again,  

(𝑝 + 2𝑘)𝑛𝑝 = (𝑝)! �
(𝑝 + 2𝑘)

𝑝
+ 2𝑘!� + 2𝑝 + 2𝑘 

Reducing again,  

(𝑝 + 2𝑘)𝑛𝑝 = 𝑝(𝑝 − 1)! �
(𝑝 + 2𝑘)

𝑝
+ 2𝑘!� + 2𝑝 + 2𝑘 

And reducing one final time,  

 

(𝑝 + 2𝑘)𝑛𝑝 = (𝑝 − 1)! (𝑝 + 2𝑘 + 2𝑝𝑘!) + 2𝑝 + 2𝑘 

 

We already know p is prime, therefore, p = integer.  Since p is an integer and by 

definition k is an integer, the right hand side of the above equation is an integer 

(likewise the left hand side of the equation must also be an integer). Since the right 

hand side of the above equation is an integer and p and k are integers on the left hand 

side of the equation, then (𝑝 + 2𝑘) is also an integer.  Therefore there are only 4 
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possibilities (see 1, 2a, 2b, and 2c below) that can hold for n so the left hand side of the 

above equation is an integer, they are as follows. 

 

1) n is an integer, or 

2) n is a rational fraction that is divisible by p. This implies that n = 
x
p
 where, p is 

prime and x is an integer.  This results in the following three possibilities: 

a. Since n = 
x
p

 , then p = 
x
n
 , since p is prime, then p is only divisible by p 

and 1, therefore, the first possibility is for n to be equal to p or 1 in this 

case, which are both integers, thus n is an integer for this first case. 

b. Since n = 
x
p

 , and x is an integer, then x is not evenly divisible by p 

unless x = p, or x is a multiple of p, where x = yp, for any integer y.  

Therefore n is an integer for x = p and x = yp. 

c. For all other cases of, integer x, n = 
x
p

 , n is not an integer.  

 

To prove there is a Polignac Prime, outside our set of finite Polignac Primes, we only 

need to prove that there is at least one value of n that is an integer, outside our finite 

set.  There can be an infinite number of values of n that are not integers, but that will not 

negate the existence of one Polignac Prime, outside our finite set of Polignac Primes. 

 

First the only way that n cannot be an integer is if every n satisfies paragraph 2.c above, 

namely, n = 
x
p

 , where x is an integer, x ≠ p, x ≠ yp, n ≠ p, and n ≠ 1 for any integer y.  

To prove there exists at least one Polignac Prime outside our finite set, we will assume 

that no integer n exists and therefore no Polignac Primes exist outside our finite set.  

Then we shall prove our assumption to be false. 

 

Proof:  Assumption no values of n are integers, specifically, every value of n is  
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n = 
x
p

 , where x is an integer, x ≠ p, x ≠ yp, n ≠ p, and n ≠ 1, for any integer y.  

Paragraphs 1, 2.a, and 2.b prove cases where n can be an integer, therefore our 

assumption is false and there exist values of n that are integers.   

 

Since we have already shown that p and p + 2k, where d = 2k, are both primes if 

and only if for integer n: 
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It suffices to show that there is at least one integer n to prove there exists a Polignac 

Prime outside our set of finite set of Polignac Primes.  

 

Since there exists an n = integer, we have proven that there is at least one p and p + 2k 

that are both prime. Since we proved earlier that if p + 2k is prime then it also is not in 

the finite set of pi, pi + 2k Polignac primes, therefore, since we have proven that there is 

at least one p+2k that is prime, then we have proven that there is a  Polignac prime 

outside the our assumed finite set of Polignac primes.  This is a contradiction from our 

assumption that the set of Polignac primes is finite, therefore, by contradiction the set of 

Polignac primes is infinite.  Also this same proof can be repeated infinitely for each finite 

set of Polignac primes, in other words a new Polignac prime can added to each set of 

finite Polignac primes.  This thoroughly proves that an infinite number of Polignac 

primes exist. 

 

Our proof of infinite Polignac primes also proves several other Conjectures since 

Polignac primes are generalized form of other conjectures. For k = 1, the Polignac 

primes  become the Twin Prime Conjecture and proves there are an infinite number of 

twin primes. For k = 2, the proof of the Polignac Conjecture proves there are infinitely 

many Cousin Primes (p, p + 4). For k = 3, proof of the Polignac Conjecture proves there 

are infinitely many Sexy Primes (p, p + 6). 
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Our proof of infinite Polignac primes also provides a major breakthrough to prove the 

Goldbach's Conjecture.  The Goldbach Conjecture is one of the oldest unsolved 

problems in number theory. It states: 

 

Every even integer greater than 2 can be expressed as the sum of two primes. 

 

Our proof of infinite Polignac primes can also be used to prove the Goldbach 

Conjecture.  First we shall assume that not every even number > 2 is a sum of two 

primes a and b.  However, Polignac's Conjecture states: 

 

For any positive integer k, then for any positive even number 2k, there are infinitely 

many prime gaps of size 2k. In other words, there are infinitely many cases of two 

consecutive prime numbers with difference 2k. 

 

Another way of stating the Polignac Conjecture is; for every prime number a and b there 

are an infinitely many cases where a – b = 2k, for any positive integer k. So we can 

state the following:  

 

a – b = 2k 

Reducing, a = 2k + b 

Adding b to both sides, a + b = 2k + 2b 

Finally, reducing, a + b = 2(k + b) 

 

The right hand side of the equation above, 2(k + b), is even and includes all positive 

even  numbers since k is any positive integer and b is from an infinite number of prime 

numbers.  Since k is any positive integer and b is selected from an infinite cases of 

prime numbers, then  

  

For any integer n, a + b = 2(k + b) = 2n  
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Thus, a + b = 2n, for every even number 2n  

 

Therefore, we have proven the Goldbach Conjecture, specifically, every even integer 

greater than 2 can be expressed as the sum of two primes, i.e, n > 1. 
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