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§1. Introduction

A drawing of a graph G on a surface S is such a drawing with no edge crosses itself, no adjacent

edges cross each other, no two edges intersect more than once, and no three edges have a

common point. A Smarandache λS-drawing of G on S is a drawing of G on S with minimal

intersections λS . Particularly, a Smarandache 0-drawing of G on S, if existing, is called an

embedding of G on S.

The classical version of Jordan curve theorem in topology states that a single closed curve C

separates the sphere into two connected components of which C is their common boundary. In

this section, we investigate the polyhedral statements and proofs of the Jordan curve theorem.

Let Σ = Σ(G; F ) be a polyhedron whose underlying graph G = (V, E) with F as the set

of faces. If any circuit C of G not a face boundary of Σ has the property that there exist two

proper subgraphs In and Ou of G such that

In
⋃

Ou = G; In
⋂

Ou = C, (A)

then Σ is said to have the first Jordan curve property, or simply write as 1-JCP. For a graph G,

if there is a polyhedron Σ = Σ(G; F ) which has the 1-JCP, then G is said to have the 1-JCP

as well.

Of course, in order to make sense for the problems discussed in this section, we always

suppose that all the members of F in the polyhedron Σ = Σ(G; F ) are circuits of G.

Theorem A(First Jordan curve theorem) G has the 1-JCP If, and only if, G is planar.

Proof Because of H1(Σ) = 0, Σ = Σ(G; F ), from Theorem 4.2.5 in [1], we know that
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Im ∂2 = Ker ∂1 = C, the cycle space of G and hence Im ∂2 ⊇ F which contains a basis of C.

Thus, for any circuit C /∈ F , there exists a subset D of F such that

C =
∑

f∈D

∂2f ; C =
∑

f∈F\D

∂2f. (B)

Moreover, if we write

Ou = G[
⋃

f∈D

f ]; In = G[
⋃

f∈F\D

f ],

then Ou and In satisfy the relations in ( A) since any edge of G appears exactly twice in the

members of F . This is the sufficiency.

Conversely, if G is not planar, then G only have embedding on surfaces of genus not 0.

Because of the existence of non contractible circuit, such a circuit does not satisfy the 1-JCP

and hence G is without 1-JCP. This is the necessity. �

Let Σ∗ = Σ(G∗; F ∗) be a dual polyhedron of Σ = Σ(G; F ). For a circuit C in G, let

C∗ = {e∗| ∀e ∈ C}, or say the corresponding vector in G∗
1 , of C ∈ G1.

Lemma 1 Let C be a circuit in Σ. Then, G∗\C∗ has at most two connected components.

Proof Suppose H∗ be a connected component of G∗\C∗ but not the only one. Let D be

the subset of F corresponding to V (H∗). Then,

C′ =
∑

f∈D

∂2f ⊆ C.

However, if ∅ 6= C′ ⊂ C, then C itself is not a circuit. This is a contradiction to the condition of

the lemma. From that any edge appears twice in the members of F , there is only one possibility

that

C =
∑

f∈F\D

∂2f.

Hence, F\D determines the other connected component of G∗\C∗ when C′ = C. �

Any circuit C in G which is the underlying graph of a polyhedron Σ = Σ(G; F ) is said

to have the second Jordan curve property, or simply write 2-JCP for Σ with its dual Σ∗ =

Σ(G∗; F ∗) if G∗\C∗ has exactly two connected components. A graph G is said to have the 2-

JCP if all the circuits in G have the property.

Theorem B(Second Jordan curve theorem) A graph G has the 2-JCP if, and only if, G is

planar.

Proof To prove the necessity. Because for any circuit C in G, G∗\C∗ has exactly two

connected components, any C∗ which corresponds to a circuit C in G is a cocircuit. Since any

edge in G∗ appears exactly twice in the elements of V ∗, which are all cocircuits, from Lemma

1, V ∗ contains a basis of Ker δ∗1 . Moreover, V ∗ is a subset of Im δ∗0 . Hence, Ker δ1 ⊆ Im δ0.

From Lemma 4.3.2 in [1], Im δ∗0 ⊆ Ker δ∗1 . Then, we have Ker δ∗1 =Im δ∗0 , i.e., H̃1(Σ
∗) = 0.

From the dual case of Theorem 4.3.2 in [1], G∗ is planar and hence so is G. Conversely, to
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prove the sufficiency. From the planar duality, for any circuit C in G, C∗ is a cocircuit in G∗.

Then, G∗\C∗ has two connected components and hence C has the 2- JCP. �

For a graph G, of course connected without loop, associated with a polyhedron Σ =

Σ(G; F ), let C be a circuit and EC , the set of edges incident to, but not on C. We may define

an equivalence on EC , denoted by ∼C as the transitive closure of that ∀a, b ∈ EC ,

a ∼C b ⇔ ∃f ∈ F, (aαC(a, b)bβ ⊂ f)

∨(b−βC(b, a)a−α ⊂ f),
(C)

where C(a, b), or C(b, a) is the common path from a to b, or from b to a in C ∩ f respectively.

It can be seen that |EC/ ∼C | 6 2 and the equality holds for any C not in F only if Σ is

orientable.

In this case, the two equivalent classes are denoted by EL = EL(C) and ER = ER(C).

Further, let VL and VR be the subsets of vertices by which a path between the two ends of two

edges in EL and ER without common vertex with C passes respectively.

From the connectedness of G, it is clear that VL∪VR = V \V (C). If VL∩VR = ∅, then C is

said to have the third Jordan curve property, or simply write 3-JCP. In particular, if C has the

3-JCP, then every path from VL to VR (or vice versa) crosses C and hence C has the 1-JCP. If

every circuit which is not the boundary of a face f of Σ(G), one of the underlain polyhedra of

G has the 3-JCP, then G is said to have the 3-JCP as well.

Lemma 2 Let C be a circuit of G which is associated with an orientable polyhedron Σ =

Σ(G; F ). If C has the 2-JCP, then C has the 3-JCP. Conversely, if VL(C) 6= ∅, VR(C) 6= ∅ and

C has the 3-JCP, then C has the 2-JCP.

Proof For a vertex v∗ ∈ V ∗ = V (G∗), let f(v∗) ∈ F be the corresponding face of Σ.

Suppose In∗ and Ou∗ are the two connected components of G∗\C∗ by the 2-JCP of C. Then,

In =
⋃

v∗∈In∗

f(v∗) and Ou =
⋃

v∗∈Ou∗

f(v∗)

are subgraphs of G such that In∪Ou = G and In∩Ou = C. Also, EL ⊂ In and ER ⊂ Ou (or

vice versa). The only thing remained is to show VL ∩VR = ∅. By contradiction, if VL ∩VR 6= ∅,

then In and Ou have a vertex which is not on C in common and hence have an edge incident

with the vertex, which is not on C, in common. This is a contradiction to In ∩ Ou = C.

Conversely, from Lemma 1, we may assume that G∗\C∗ is connected by contradiction.

Then there exists a path P ∗ from v∗1 to v∗2 in G∗\C∗ such that V (f(v∗1))∩VL 6= ∅ and V (f(v∗2))∩

VR 6= ∅. Consider

H =
⋃

v∗∈P∗

f(v∗) ⊆ G.

Suppose P = v1v2 · · · vl is the shortest path in H from VL to VR.

To show that P does not cross C. By contradiction, assume that vi+1 is the first vertex of

P crosses C. From the shortestness, vi is not in VR. Suppose that subpath vi+1 · · · vj−1, i+2 6

j < l, lies on C and that vj does not lie on C. By the definition of EL, (vj−1, vj) ∈ EL and
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hence vj ∈ VL. This is a contradiction to the shortestness. However, from that P does not

cross C, VL ∩ VR 6= ∅. This is a contradiction to the 3-JCP. �

Theorem C(Third Jordan curve theorem) Let G = (V, E) be with an orientable polyhedron

Σ = Σ(G; F ). Then, G has the 3-JCP if, and only if, G is planar.

Proof From Theorem B and Lemma 2, the sufficiency is obvious. Conversely, assume that

G is not planar. By Lemma 4.2.6 in [1], Im∂2 ⊆ Ker∂1 = C, the cycle space of G. By Theorem

4.2.5 in [1], Im∂2 ⊂ Ker∂1. Then, from Theorem B, there exists a circuit C ∈ C\ Im∂2 without

the 2-JCP. Moreover, we also have that VL 6= ∅ and VR 6= ∅. If otherwise VL = ∅, let

D = {f |∃e ∈ EL, e ∈ f} ⊂ F.

Because VL = ∅, any f ∈ D contains only edges and chords of C, we have

C =
∑

f∈D

∂2f

that contradicts to C /∈ Im∂2. Therefore, from Lemma 2, C does not have the 3-JCP. The

necessity holds. �

§2 Reducibilities

For Sg as a surface(orientable, or nonorientable) of genus g, If a graph H is not embedded on a

surface Sg but what obtained by deleting an edge from H is embeddable on Sg, then H is said

to be reducible for Sg. In a graph G, the subgraphs of G homeomorphic to H are called a type

of reducible configuration of G, or shortly a reduction. Robertson and Seymour in [2] has been

shown that graphs have their types of reductions for a surface of genus given finite. However,

even for projective plane the simplest nonorientable surface, the types of reductions are more

than 100 [3,7].

For a surface Sg, g > 1, let Hg−1 be the set of all reductions of surface Sg−1. For H ∈ Hg−1,

assume the embeddings of H on Sg have φ faces. If a graph G has a decomposition of φ

subgraphs Hi, 1 6 i 6 φ, such that

φ⋃

i=1

Hi = G;

φ⋃

i6=j

(Hi

⋂
Hj) = H ; (1)

all Hi, 1 6 i 6 φ, are planar and the common vertices of each Hi with H in the boundary of a

face, then G is said to be with the reducibility 1 for the surface Sg.

Let Σ∗ = (G∗; F ∗) be a polyhedron which is the dual of the embedding Σ = (G; F ) of G

on surface Sg. For surface Sg−1, a reduction H ⊆ G is given. Denote H∗ = [e∗|∀e ∈ E(H)].

Naturally, G∗ −E(H∗) has at least φ = |F | connected components. If exact φ components and

each component planar with all boundary vertices are successively on the boundary of a face,

then Σ is said to be with the reducibility 2.

A graph G which has an embedding with reducibility 2 then G is said to be with reducibility

2 as well.
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Given Σ = (G; F ) as a polyhedron with under graph G = (V, E) and face set F . Let H be

a reduction of surface Sp−1 and, H ⊆ G. Denote by C the set of edges on the boundary of H

in G and EC , the set of all edges of G incident to but not in H . Let us extend the relation ∼C :

∀a, b ∈ EC ,

a ∼C b ⇔ ∃f ∈ FH , a, b ∈ ∂2f (2)

by transitive law as a equivalence. Naturally, |EC/ ∼C | 6 φH . Denote by {Ei|1 6 i 6 φC} the

set of equivalent classes on EC . Notice that Ei = ∅ can be missed without loss of generality.

Let Vi, 1 6 i 6 φC , be the set of vertices on a path between two edges of Ei in G avoiding

boundary vertices. When Ei = ∅, Vi = ∅ is missed as well. By the connectedness of G , it is

seen that
φC⋃

i=1

Vi = V − VH . (3)

If for any 1 6 i < j 6 φC , Vi ∩ Vj = ∅, and all [Vi] planar with all vertices incident to Ei on

the boundary of a face, then H , G as well, is said to be with reducibility 3.

§3. Reducibility Theorems

Theorem 1 A graph G can be embedded on a surface Sg(g > 1) if, and only if, G is with the

reducibility 1.

Proof Necessity. Let µ(G) be an embedding of G on surface Sg(g > 1). If H ∈ Hg−1,

then µ(H) is an embedding on Sg(g > 1) as well. Assume {fi|1 6 i 6 φ} is the face set of µ(H),

then Gi = [∂fi + E([fi]in)], 1 6 i 6 φ, provide a decomposition satisfied by (1). Easy to show

that all Gi, 1 6 i 6 φ, are planar. And, all the common edges of Gi and H are successively in

a face boundary. Thus, G is with reducibility 1.

Sufficiency. Because of G with reducibility 1, let H ∈ Hg−1, assume the embedding µ(H)

of H on surface Sg has φ faces. Let G have φ subgraphs Hi, 1 6 i 6 φ, satisfied by (1), and all

Hi planar with all common edges of Hi and H in a face boundary. Denote by µi(Hi) a planar

embedding of Hi with one face whose boundary is in a face boundary of µ(H), 1 6 i 6 φ. Put

each µi(Hi) in the corresponding face of µ(H), an embedding of G on surface Sg(g > 1) is then

obtained. �

Theorem 2 A graph G can be embedded on a surface Sg(g > 1) if, and only if, G is with the

reducibility 2.

Proof Necessity. Let µ(G) = Σ = (G; F ) be an embedding of G on surface Sg(g > 1) and

µ∗(G) = µ(G∗) = (G∗, F ∗)(= Σ∗), its dual. Given H ⊆ G as a reduction. From the duality

between the two polyhedra µ(H) and µ∗(H), the interior domain of a face in µ(H) has at least

a vertex of G∗, G∗ − E(H∗) has exactly φ = |Fµ(H)| connected components. Because of each

component on a planar disc with all boundary vertices successively on the boundary of the disc,

H is with the reducibility 2. Hence, G has the reducibility 2.

Sufficiency. By employing the embedding µ(H) of reduction H of G on surface Sg(g > 1)

with reducibility 2, put the planar embedding of the dual of each component of G∗ −E(H∗) in
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the corresponding face of µ(H) in agreement with common boundary, an embedding of µ(G)

on surface Sg(g > 1) is soon done. �

Theorem 3 A 3-connected graph G can be embedded on a surface Sg(g > 1) if, and only if,

G is with reducibility 3.

Proof Necessity. Assume µ(G) = (G, F ) is an embedding of G on surface Sg(g > 1).

Given H ⊆ G as a reduction of surface Sp−1. Because of H ⊆ G, the restriction µ(H) of µ(G)

on H is also an embedding of H on surface Sg(g > 1). From the 3-connectedness of G, edges

incident to a face of µ(H) are as an equivalent class in EC . Moreover, the subgraph determined

by a class is planar with boundary in coincidence, i.e., H has the reducibility 3. Hence, G has

the reducibility 3.

Sufficiency. By employing the embedding µ(H) of the reduction H in G on surface Sg(g >

1) with the reducibility 3, put each planar embedding of [Vi] in the interior domain of the

corresponding face of µ(H) in agreement with the boundary condition, an embedding µ(G) of

G on Sg(g > 1) is extended from µ(H). �

§4. Research Notes

A. On the basis of Theorems 1–3, the surface embeddability of a graph on a surface(orientabl

or nonorientable) of genus smaller can be easily found with better efficiency.

For an example, the sphere S0 has its reductions in two class described as K3,3 and K5.

Based on these, the characterizations for the embeddability of a graph on the torus and the

projective plane has been established in [4]. Because of the number of distinct embeddings of

K5 and K3,3 on torus and projective plane much smaller as shown in the Appendix of [5], the

characterizations can be realized by computers with an algorithm much efficiency compared

with the existences, e.g., in [7].

B. The three polyhedral forms of Jordan closed planar curve axiom as shown in section 2

initiated from Chapter 4 of [6] are firstly used for surface embeddings of a graph in [4]. However,

characterizations in that paper are with a mistake of missing the boundary conditions as shown

in this paper.

C. The condition of 3-connectedness in Theorem 3 is not essential. It is only for the simplicity

in description.

D. In all of Theorem 1–3, the conditions on planarity can be replaced by the corresponding

Jordan curve property as shown in section 2 as in [4] with the attention of the boundary

conditions.
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