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Abstract

In this paper, we have used the partial Euler product to examine the validity of the Rie-
mann Hypothesis. The Dirichlet series over the Mobius function M(s) = >_;2; 1/n® has been
modified and represented in terms of the partial Euler product by progressively eliminating
the numbers that first have a prime factor 2, then 3, then 5, ..up to the prime p,. It is shown
that the series M (s) and the new series have the same region of convergence. Unlike the
partial sum of M (s) that has irregular behavior, the partial sum of the new series exhibits
regular behavior as p, approaches infinity. This has allowed the use of integration methods
to compute the partial sum of the new series to determine its region of convergence and to
provide an answer for the validity of the Riemann Hypothesis.

1 Introduction

The Riemann zeta function ((s) satisfies the following functional equation over the complex
plain [1]
C(1—s) =2(2m)2 cos(0.5sm)T(s)((s), (1)

where, s = o + it is a complex variable and s # 0.

For o > 1 (or R(s) > 1), ((s) can be expressed by the following series

=1

((s) = (2)

—,
n=1 n

or by the following product over the primes p;’s

1 > 1
C(S)_i:Hl<1_pf>' (3)

where, p1 = 2, [[;2,(1 — 1/p;®) is the Euler product and [[;_;(1 — 1/p;®) is the partial Euler
product. The above series and product representations of ((s) are absolutely convergent for
o>1

The region of the convergence can be extended to $(s) > 0 by using the alternating series
n(s) where
(_1)n—1

nS

ns) =3

n=1

; (4)



and
1

C(s) = Wn(s)- 5)

One may notice that the term 1 — 217 is zero at s = 1. This zero cancels the simple pole
that ((s) has at s = 1 enabling the extension (or analog continuation) of the zeta function
series representation over the critical strip 0 < R(s) < 1.

It is well known that all the non-trivial zeros of ((s) are located in the critical strip 0 <
R(s) < 1. Riemann stated that all the non-trivial zeros were very probably located on the crit-
ical line R(s) = 0.5 [2]. There are many equivalent statements for the Riemann Hypothesis
(RH) and one of them involves the Dirichlet series with the Mobius function.

The Mobius function y(n) is define as follows
u(n)=1,if n = 1.

u(n) = (1%, if n = [I%_, ps, pi’s are distinct primes.
u(n) = 0, if p?|n for some p.

The Dirichlet series M (s) with the Mobius function is defined as

> S
Mis) =y 1) ©)
n=1 n
This series is absolutely convergent to 1/((s) for #(s) > 1 and conditionally convergent
to 1/¢(s) for R(s) = 1. The Riemann hypothesis is equivalent to the statement that M (s) is
conditionally convergent to 1/((s) for R(s) > 0.5.

Gonek, Hughes and Keating [3] have done an extensive research into establishing a re-
lationship between ((s) and its partial Euler product for #(s) < 1. Gonek stated ”Analytic
number theorists believe that an eventual proof of the Riemann Hypothesis must use both
the Euler product and functional equation of the zeta-function. For there are functions with
similar functional equations but no Euler product, and functions with an Euler product but
no functional equation.” In sections 4 and 5, we will present a functional equation for ((s)
using its partial Euler product. The method is based on writing the Euler product formula as

follows - . .
1/<<s>—H(1—pi> —H( —pl) 1 (1—pl>
i=1 i i=1 i) r+1 i

The above equation is valid for o > 1. To be able to represent ((s) in term of its partial Euler
product for o < 1, we have to replace the term [[.° (1 — 1/pj) with an equivalent one that
allows the analytic continuation for the representation of ((s) for o < 1. Thus, the new term,
that we need to introduce to replace [];° (1 — 1/p{), must have a zero that cancels the pole
that ((s) has at s = 1. In the section 4, we will use the complex analysis to compute this new
term. In section 5, we then use the new representation to compute the sum }_;_; p;” foro < 1.
This sum is then used to examine the validity of the Riemann Hypothesis.

In this paper, we claim the the Riemann Hypothesis is invalid. We support our claim by

proving that the series M (o) is divergent for o < 1. We achieved this results by introducing a
method to represent the Dirichlet series M (s) (defined by Equation (6)) in terms of the partial
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Euler product. This task is achieved (sections 2) by first eliminating the numbers that have
the prime factor 2 to generate the series M (s, 2). For the series M (s, 2), we then eliminate the
numbers with the prime factor 3 to generate the series M (s, 3), and so on, up to the prime
number p,. In essence, we have applied the sieving technique to modify the series M (s) to
include only the numbers with prime factors greater than p,. In section 3, we have shown
that the series M (s) and the new series M (s, p,) have the same region of convergence.

So far, the efforts to use the series M (s) to examine the validity of the Riemann Hypothesis
have failed due to the irregular behavior of the partial sum of the series M (s). In section 6,
we have shown that the partial sum of the new series M (s, p,) exhibits regular behavior as p,
approaches infinity. This has allowed the use of integration methods to compute the partial
sum of the new series and consequently determine its region of convergence. With this anal-
ysis, we have shown that non-trivial zeros can be found arbitrary close to the line s = 1.

2 Applying the Sieving Method to the Dirichlet Series 1 (s).

The Dirichlet series M (s) with the Mobius function is defined as

M) =3 1)

n=1
where 1(n) is the Mobius function. Thus,

1 1 0 1 1
+—— =+ =

M(s)=1— — — —
(S) 25 33 45 55 65

It should be pointed out that our definition of M (s) is different from M (z) that is commonly
defined in the literature as M (x) = >, . u(n).

Now, we introduce the series M (s, 2) by eliminating all the numbers that have a prime
factor 2. Thus, M (s, 2) can be written as

1 1 1 o 1 1 1
M(s.2)=1— — — — _ I
(5,2) 35 5 78 T +

The analysis in this paper heavily relay on the testing the convergence of a series by com-
paring it with another conditionally convergent series. Therefor, rearrangement and permu-
tation of the terms may have a significant impact on the region of convergence of both series.
Therefore, it essential to have the same index for both series M (s) and M (s, 2) referring to the
same term. Hence, the the above series can be re-written as

or

: (7)

where
p(n,2) = p(n), if n is an odd number,



p(n,2) =0, if n is an even number.

The above series M (s, 2) can be further modified by eliminating all the numbers that have
a prime factor 3 to get the series M (s, 3) where

M(,3)=1— — —— — — — —

or more conveniently

and so on.

Let I(p,) represent, in ascending order, the integers with distinct prime factors that belong
to the set {p; : p; > p,}. Let {1,1(p,)} be the set of 1 and I(p,) (for example, {1,1(2)} is the
set of square free odd numbers), then we define the series M (s, p,) as

M(s,pr) = Y PP, ®
n=1

where

p(n,pr) = p(n),ifn € {1,1(p,)},
otherwise, u(n,p,) = 0.

It can be easily shown that M (s, p,) converges absolutely for $(s) > 1 for every prime
number p,. Furthermore, it can be shown that, for R(s) > 1, M(s, p,) satisfies the following
equation

M(s) = M(s, pr) H (1 - 15> : ©)

M<s>=ﬁ<1—i>,

%

Since

=1
then we conclude that, for ®(s) > 1, M (s, p,) approaches 1 as p, approaches infinity.

3 Convergence of the series M (s, p,) within the strip 0.5 < R(s) < 1.

In this section, we will deal with the question of the conditional convergence of the series
M (s, p,) over the strip 0.5 < R(s) < 1. This task can be achieved by examining the conver-
gence of the series M (s, p,) along the real axis (or along the line 0.5 < o < 1). Theorems 1
and 2 establishes the relationship between the conditional convergence of the two series M (s)
and M (s, p,) for 0.5 < o < 1.

Theorem 1 For s = o + 0, where 0.5 < o < 1 and for every prime number p,, the series M (o)
converges conditionally if and only if the series M (o, p,) converges conditionally. Furthermore, M (o)
and M (o, p,) are related as follows

M(o) = Mo [T (1 - 1) . (10)



The proof of Theorem 1 is outlined in Appendix 1.

Theorem 2 For s = o + it, where 0.5 < o < 1 and for every prime number p,, the series M (s)
converges conditionally if and only if the series M (s, p,) converges conditionally. Furthermore, M (s)
and M (s, py) are related as follows

M(s) = M(s,p,) H <1 - 1) : (11)
=1 v

The proof of the first part of Theorem 2 follows from the fact that M (s, p,) is a Dirichlet se-
ries and consequently this series is conditionally convergent if and only if the series M (o, p,)
is conditionally convergent.

The second part of the theorem can be proved by first defining M (s, p,; N1, N2) as the sum

N3
n, Pr
M(s,pp; N1, No) = Y Lsp) (12)
n
n=N1
Then, we have
1
M(s,pr—1;1,Np,) = M(s,pr;1,Np,) — EM(S’pTQ L,N). (13)

If both series M (s, pr—1) and M (s, p,) are convergent, then as N approaches infinity, we obtain

M(s,pr—1) = M(s,py) (1 — 1s> .

By repeating this process r — 1 times, we then obtain

M(s) = M(s.p) [ <1 - ;) .

i=1 i

Note that if we multiply both sides of the above equation by [];_; (1 + p;~*)

M(s,py) = ! —25) ﬁ <1 + 1) .

COT (L-p7) i\ P

As p, approaches infinity, we then have

) (1
M@W‘«@Ec*ﬁ>

It should be pointed out that the sieving method applied to the Dirichlet series with Mo-
bious function can be also applied to the Dirichlet series with Lioville function. The Dirichlet
series L(s) with Lioville Function A(n) is defined as

L(s) = 30 2 (14)
n=1

n
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where
A(n)=1,ifn=1,
A(n) = 1, if n has an even number of prime factors including multiplicities,
A(n) = —1, if n has an odd number of prime factors including multiplicities.

Following the same process, we define the series L(s, p,) as

n r
(s.pr) = 3 2r) (15)
n=1
where
An,pr) = An),iftne {1,I(p,)},
otherwise, A(n, p,) = 0.

It can be easily shown that L(s,p,) converges absolutely for R(s) > 1 for every prime
number p,.. Furthermore, it can be also shown that, for #(s) > 1, L(s, p,) satisfies the follow-
ing equation

Lis,pr) = Ls >ﬁ(1+ 1)

=1 pl

It is well known in the literature that, on RH, we have

>~ An) = O(a'/?),

n<x

where € is an arbitrary small number.

Using the above equation and following similar steps to those used for Theorems (1) and
(2), we may obtain the following theorem.

Theorem 3 For s = o + it, where 0.5 < o < 1 and for every prime number p,, the series L(s)
converges conditionally if and only if the series L(s, p,) converges conditionally. Furthermore, L(s)
and L(s, p,) are related as follows

L(s,pr) = H( ) (16)

4 Functional representation of ((s) using its partial Euler product.

Theorem 1 of the previous section provides a relationship between ((s) = 1/M(s) and the
partial Euler product [];_; (1 — 1/p7). In this section and the following one, we will derive a
functional representation for ((s) using its partial Euler product. In this section, we will use
the prime counting function to compute this functional representation and in the following
section we will use the von Mangoldt function to achieve the same task. This functional rep-
resentation is then used to compute the sum »;_; p;° for o < 1. In section, 6 we will use this
sum to show that the series M (o, p,) is diverges for o < 1.



We will start this task by first writing ((s) for o > 1 as follows

1/¢(s) H<1—> H<1—1>ﬁ<1—1> (17)
=1 D i=1 D; r+1 %
For o > 0.5, we have
r2 1
log H (1 ) Z log ( )
i=rl p; i=rl

1 2 1 1 1

i=rl l i=rl

or

Let § be defined as the sum

r2
1 1 1
i=3 (—2 e 4) (18)

=1 Di 3pi

Thus,

r2
logH<1—>——Zl+5 (19)

i=rl lpZ

Since [d[< >202, (QH% + 371% + o ) thus § = O(p}7%7 /(20 — 1)). Furthermore, if 20 — 1

is a fixed positive number, then § = O(p!;??). It should be pointed out that for ¢ = 0.5 and
t # 0, 6 is convergent to a finite number by the virtue of the Prime Number Theorem.

Using the Prime Number Theorem (PNT) with a suitable constant a > 0, the number of
primes less than z is given by [4, page 43]

m(x) = Li(z) + O (we“\/@) , (20)
or
m(x) = Li(z) + O (x/(log x)k) , (21)

where Li(z) is the Logarithmic Integral of z and k is a number greater than zero.

Using Stieltjes integral [5], we may write the sum /2, -1 for o > 1 as follows

i=rl p;o

S L [ dﬂ(z)‘ (22)

o2
i=rl pl T=pPri z

Using Equation (21) for the representation of 7 (), we may then write the integral in Equation
(22) as [5, Theorem 2, page 57]

r2
]. Pr2 ]_ 1 1
27:/ — da;—i—O(k), (23)
i=rl pz Pri1 "LAO- log € (logp’l”l)
where £ is a number greater than zero. Therefore,
>~ 1 1 1
/ / 2 L mso <k> . (24)
i= 7‘1 pz Pri1 ‘/BO’ ]'ng Pr2 :’CU log‘r (logprl)
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Recalling that the Exponential Integral E(r) is given by

) e*’M

Ey(r) :/T —du,

u

and using the substitutions u = (¢ —1) logp,, du = (0 —1)dz/x and 27 /z = e*, then for o > 1,
we may write Equation (24) as

r2 1 1
ig;l p—f =Fy((c —1)logpr1) — E1 ((0 — 1) log pro) + O <(logpr1)k> . (25)

Combining Equations (19) and ((25)) and noting that, for ¢ > 1, E; ((c — 1) logpr2) ap-
proaches zero as p,o approaches infinity, we may write Equation (17) for o > 1 as

" 1 =1
—log((o) = _log (1 - ,a> -2 ot
i=1 pi i=rt1 Pi

or

log ((0) 4+ Y log (1 - 10) — E1((0 —1)logpyri1) =€,
— pi

where ¢ = O(1/(logp,1)¥) is an arbitrarily small number attained by setting p, sufficiently
large. Therefore,

¢(o) H (1 - ;,) exp (=Ei((0 = 1)logpry1)) =1+ (26)
i=1 i

As p, approaches infinity, e approaches zero. Hence, the right side of the above equation ap-
proaches 1 as p, approaches infinity.

Similarly, for R(s) > 1, we can use the following expression for E (s)

El(S) :A ‘ dl‘)

T

to show that

lim {<<s> I (1 - ;) exp (~Ei((s — 1) 1ogpr+1>>} ~ 1. 27)

r—00 - 5
=1 ?

Let the function G(s, p,) be defined as

G(s,pr) =C(s) [] (1 - 1s> exp (—E1((s — 1) logpri1)) (28)
i=1 i

where, G(s,p,) is a regular function for R(s) > 1. Referring to Equation (27), the function
G(s, pr) approaches 1 as p, approaches infinity. It should be noted that, for each p,, the func-
tion exp (—E1((s — 1) log pr+1)) is an entire function, the function ((s) is analytic everywhere
except at s = 1 and the function [];_, (1 — 1/p?) is analytic for £(s) > 0. Thus, for any o > 1,
the function G(s, p,) can be considered as a sequence of analytic functions. Furthermore, as
pr (or r) approaches infinity, this sequence is uniformly convergent over the half plane with
o > 1+ e (where, € is an arbitrary small number). Therefore, by the virtue of the Weiestrass
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theorem, the limit is also analytic function [6] (Weiestrass theorem states that if the function
sequence fy, is analytic over the region €2 and f,, is uniformly convergent to a function f, then
f is also analytic on 2 and fn, converges uniformly to f "on ). If we define this limit as G (s),

where
G(s) = lim G(s.p,) (29)

then, G/(s) is analytic over the half plane (s) > 1 and it is equal to 1 by the virtue of Equation
7).

The Prime Number Theorem (PNT) allows us to extend the above results to the line
s = 1 + it. Moreover, we will show that if RH is valid, then for the strip s = ¢ + it where,
0.5 < o < 1, the above results will also be valid with the limit of G(s, p,) is 1 as p, approaches
infinity.

We will start this task by showing that although both ((s) and E;((s — 1) log py+1) have a
singularity at s = 1, the product G(s, p,) has a removable singularity at s = 1 for every p,.
This can be shown by first expanding ((s) as a Laurent series about its singularity at s = 1

1 (s —1)? (s —1)3

= — -1 _
()= =g +r—mls -1 +n—; Mg

¥ (30)

where v is the Euler-Mascheroni constant and ;s are the Stieltjes constants. For s = 1 + ¢,
where € = € + i€y, €1 and e; are arbitrary small numbers, the above equation can be written

as
€ i

1
C(S)—;+7*716+725*73§+~- (31)

Furthermore, for o > 1, using the definition of the Exponential Integral, we may write

Eq(s) as
32 83 84
El(S):—’y—lOgS—FS—ﬁﬁ-g—Mﬁ-m. (32)

Thus, for s = 1 + ¢, we have

log p;.)? log pr.)?
exp (—E1((s —1)logp,)) = €7e logp, exp (—elogpr + (e (;g;') G (;g;') ) + ) . (33)
By taking the product ((s) exp (—E1((s — 1) logp,)) and allowing e to approach zero, we then
obtain at s = 1 (in the same sense as computing sin z/z at z = 0)

((s) exp (—E1((s — 1) logpy)) = €™ log p;. (34)
However, it is well known that the partial Euler product at s = 1 can be written as [8]
. 1 e 1
1- ) = +0 <> : 35
g < bi log pr (logp)? &

Multiplying Equations (34) and (35), we may conclude that at s = 1, G(s, p,) approaches 1 as
pr approaches infinity. Furthermore, for s = 1 + it and ¢ # 1, the value of exp(—E (it log p,))
approaches 1 as p, approaches infinity and since

lim {C(S)iﬁl (1 - pl)} 1,
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therefore, for s = 1 + it, we have the following

lim G(s,py) = lim {C(S) f[ (1 - 1s> exp (—E1((s — 1) logpm))} =1

i=1 i

So far, we have shown that the function G(s, p,) is uniformly convergent to 1 when R(s) >
1 and using PNT, G(s, p,) is convergent to 1 for R(s) = 1. In the following, we will show
that, assuming the validity of the Riemann Hypothesis, the function G(s,p;) is uniformly
convergent to 1 for every value of s with R(s) > 0.5 + ¢, where ¢ is an arbitrary small number.
Toward this goal, we will first show that the function G(s, p,) is convergent for any value
of s on the real axis with o > 0.5. This can be achieved by first writing the expressions for
G(o,pr1) and G(o, pr2) (Where 72 is an arbitrary large number greater than r1)

rl

G(o,pr1) = C(0) exp (~Er((0 — 1) logpriar)) [ (1 _ p10> , (36)
=1 1
r2

G(o,pr2) = ((0)exp (—E1((0 — 1) log prat+1)) H (1 — pla> . (37)
=1 1

Since the function G(s, p,) is analytic that is not equal to 0 for o > 0.5, hence we can divide
Equation (37) by Equation (36) and then take the logarithm to obtain

G(UJPTl) i=rl+1 pig
(38)

r2
log (G(U’p”)) =Fi ((c —1)logprit1) — E1 ((0 — 1) log prot1) + log ( H (1 _ 1))

To compute the logarithm of the partial Euler product in Equation (38), we recall Equation
(19)

r2 1 r2 1
logH<1—S>:— Z — +9,
SES] P i=ri+1 Pi
where § = O(p; % /(20 — 1)). Furthermore, on RH, we have
m(z) = Li(z) + O (Vx logz) , (39)

where Li(z) is the Logarithmic Integral of z. Using Equation (39) for the representation of the
prime counting function, we may then obtain (Appendix 2)

2
1
> — = Ei((o0 —1)logpriy1) — Er((0 — 1) log pra) + ¢,
i=ri41 Pi

wheree = O (W 17577 log prl). Hence, Equation (38) can be written as

G(U’ pr2)

o (
*\Glo.pn)

Since, for o > 0.5+¢,e¢+d and E;((0 —1) logpr2) — E1((0 — 1) log pro+1) can be made arbitrary

small by choosing p, arbitrary large, thus the limit of G(o, p,) exists as p, approaches infinity
and it is given by

) =40+ Bl — 1)logpe2) — Ea((o — 1) logpraca).

G(o) = lim G(o,p,) (40)

T—00
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This proves that, on RH, G(o, p,) is convergent as p, approaches infinity and thus G(o)
exists for o > 0.5. In Appendix 3, we have shown that, on RH and for R(s) > 0.5, we have

Z — (s —1)logpr1) — E1((s — 1)logpr2) + ¢,
i= rlpl

where ¢ = O (% 19277 log pr1>. Thus, we can follow the same steps and show that
G(s, pr) is convergent as p, approaches infinity and thus G(s) exists for R(s) > 0.5.

It should be noted that, while the function sequence G(s, p;) is not uniformly convergent
when the region of convergence is extended all the way to the line ¢ = 0.5, it is however
uniformly convergence for any strip with o > 0.5 + ¢, where € is an arbitrary small number.
This follows from the fact that ¢ (or, the O term) is bounded for any o > 0.5+ €. Since G(s, p;)
is analytic for ®(s) > 0 and it is uniformly convergent for (s) > 0.5 + ¢, thus G(s) is analytic
for the half right complex plain with R(s) > 0.5 4 € (Weiestrass theorem [6]). Since we have
shown that G(s) = 1 for R(s) > 1, thus on RH, G(s) = 1 for R(s) > 0.5 + . Hence, we have
the following theorem

Theorem 4 For s =0 + it and o > 0.5, the following holds if RH is valid

Jim {C( ) ﬁ (1 - p1> exp (—E1((s — 1) logPrH))} = 1. (41)
=1 g
dim {M (s, pr) exp (Ex((s — 1) logpri1))} = 1. (42)

It should be pointed out that Theorem 4 can be generalized to the case where there are no
non-trivial zeros for values of s with R(s) > a (where, a > 0.5). For this case, Equation (41) is

valid for every s with R(s) > a and ¢ in Appendix 3 is given by O (( ayz Pr1?”7 log pn)

Equation (41) of Theorem 4 can be written as follows

r2
log ((s) + log H (1 — pls> — FE1((s —1)logprat1) = 0,

i=1 i

where the equality of both sides is attained as r2 (or p,2) approaches infinity. It should be
pointed out that both functions log ((s) and E1((s — 1) log pr2+1) have a branch cut along the
real axis where 0.5 < o < 1, while the difference (i.e. log {(s) — E1((s — 1) log py2+1)) does not
have a branch cut. For r < r2, the above equation can be then written as

log ((s) = E1 ((s — 1) log pro+1) Zlog (1 - ) Z log (1 - )

p; i=r+1

Since, on RH and for R(s) > 0.5, (refer to Appendix 3)

1 |
— Z log <1—> = Z p——l—(S_El((s—l)loger)—El((s—l)logpr2)+e+5
i=r+1 p; i=r4+1 47
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where ¢ = O ((UtJ615)2 P00 logpr) and § = O(p.=27/(1 — 20)), therefore

t+1 .
spr”? logpr>. (43)

log ((s) = —Z]og <1 — pls> + E1 ((s—1)logprs1) + O ((0_05)

i=1 i

Equation (43) represents well the singularity of log((s) at s = 1 and it allows analytic con-
tinuation for values of s with R(s) < 1. This analytic continuation should extend all the way
to the non-trivial zeros with the highest value of o. Unfortunately, Equation (43) poorly rep-
resents ((s) in the vicinity of the non-trivial zeros as the O term grows much faster than the
growth of log ((s) in the vicinity of the simple non-trivial zeros. In the next section, we will
use the von Mangoldt function to provide a better representation for log {(s) in the vicinity of
the no-trivial zeros.

5 Partial Euler product functional representation of ((s) using von
Mangoldt function.

The derivation of Equation (43) was based on computing the sum S22 1 1/p5 (Appendix 3) as

follows
Pr2 d Pr2 ]_ DPr2 ]_
/ m(@ / dx+/ —dO (Vxlogz) dx
i— 'rl pz Pr1 prn @¥logx pr1 TP

The above sum can be also computed using the von Mangoldt function A(n) (Where A(n) =
log p, if n = p* for some prime p and integer k£ > 1, otherwise, A(n) = 0) to obtain

r2
1
Z — = ———An)+A, (44)
1pZ = logn

where A is added to eliminate the contribution by the terms of the form m~*, where m = p*
and 2 < k < [logy pr2| + 1. In other words, A is given by

Lv/prz] 1 [ ¥/prz] 1 | &/pr2] 1
A= Z 9 2s + Z 3 + -t Z L Ls’ (45)
pi=lvpril U p= yp) P pi= i/prr) P

where L = |log, pr2] +1 and |z ] is the integer value of z. The order of A is determined by the
order of the first term @ | 0.5/p;?*. Thus, the order of A can be computed (in the same
way the order of § was computed) to obtain A = O((/pr1)' 27/ (20—1)) = O’ /(20 -1)).
Furthermore, if 20 — 1 is a fixed positive number, then A = O(p’;>~7). It should be pointed
out that for o = 0.5 and ¢ # 0, A is convergent to a finite number by the virtue of PNT.

Since the Chebyshev function () is given by the following sum
= Z A(n)
n=1

therefore, using the Stieltjes integral, one may write the sum of Equation (44) as the following
integral

2 P2 1
> = [ i) + A, 46)
i=rl pz Pr1 x ]'ng

12



where 1(z) is also given by [1]

¥ am (0)
r)=r—) —+ (47)

D D D TR ()
It should be pointed out that the first term x in Equation (47) is attributed to the pole of ((s) at
s = 1, the sum over p (or non-travail zeros) is attributed to the non-trivial zeros in the critical

strip and the sum over n is attributed to the trivial zeros. Hence, Equation (46) can be written
as

r2
1 Pr2 1 Pr2 1 p
27:/ dw‘/ a[>=)+a (48)
i=rl Db pr1 x® 10g x Pri xs log x ) p

where the contribution by the last two terms of Equation (47) is negligible compared with the
term A. In Appendix (3), we have shown that

Pr2 1
dr =F — 11 ) — F — 1)1 o). 4
/pT1 25 log x T 1((5 ) og p 1) 1((5 ) ogp 2) (49)

For the integral with the sum over p, we first compute the integral over the p’s with
|S(p)|< T. Thus, we have

Pro 1 P Dr2 1 P
d — | = dl— ). 50
/prl xS log x (l(\ Z ) Z </pr1 xS log € ( p ) ) ( )

s(i<r P ) 1s(o<r

For the above integral, for each p, |27 /p| is a continuous function and bounded over the range
pr1 < = < pro, therefore the interchange between the differentiation and summation is justi-
tied (alternatively, one may integrate by parts to get the same results, where the sum becomes
the integrand and the differentiation is applied to the term 1/(z°logz) instead of the sum).
Furthermore, for each p, (s) is higher than %(p), therefore [* |zP~1 /(2 log ) |dz is conver-
gent as p,2 approaches infinity. Hence, the interchange between the integral and the sum is
justified. Therefore, Equation (50) can be written as

/pr{Z ! d( > ;w): > (Ei((s = p)logpr1) — E1((s — p)logpre)) . (51)
p |

nowtlogr \\ OXr P ) s(pler

In Appendix 4, we have shown that the sum on the right side of (51) is convergent as T
approaches infinity. Thus,

/pm 1 d <Z 33/3) = Z (E1((s — p)logpr1) — E1((s — p) log pr2)) - (52)

o wtloga p 5
Consequently,
r2 1
> pri E1((s—1)logpr1)—E1((s—1)logpr2)—Y | (E p)logpri) — Ex((s — p)log pr2))+A,
i=rl1 ¥ p
(53)
where A = O(pgf‘ 7). If the function J(s, py1, pr2) is defined as follows
T2 1
J(Saprlapr2) = Z ]7 - El((s - 1) Ingrl) + El((s - 1) 1ngr2)7 (54)

=71
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then

J(s,pr1,pr2) = Y (E p)logp1) — E1((s — p)log py2)) + A. (55)
p

We notice that the function J(s, p,1, pr2) is analytic for every p,1, pr2 and s. This follows
from the fact that although the functions E;((s — 1)logp,1) and Eq((s — 1) logpr2) have a
branch cut on the negative real axis, the difference does not have a branch cut. Moreover,
although the functions F;((s — 1) log p;1) and E;((s — 1) log py2) have a singularity at s = 1,
the difference has a removable singularity at s = 1. This follows from the fact that as s
approaches 1, the difference can be written as

E1((s —1)logpy1) — E1((s — 1)log pra) = —log ((1 — s)logpr1) — v +1og ((1 — s) log pra) +
or,
E1((s —1)logpy1) — E1((s — 1) log pr2) = — loglog py1 + log log pro (56)

Therefore, the function J (s, p,1, pr2) is analytic for every p,1, pr2 and s.

Referring to Appendix (4), we notice that for every s with R(s) > max¥(p), the term
> (E1((s — p)log pr1) — E1((s — p) log pr2)) approaches zero as p;1 approaches infinity. Thus,
for R(s) > max R(p), we have

7‘21

> o7 = Bul(s = Dlogpr) — Ei((s — 1) logpra) + O(py,7 ey, (57)
i=rl £t

To compute log ((s) using Equation (47), we recall Equation (41) of Theorem 1. Thus, for
every s with R(s) > max R(p), we have

log ((s) = E1 ((s — 1) log pra41) Zlog (1 - >

where the equality of both sides is attained as p,2 approaches infinity. Alternatively,

log ((s) = E1 ((s — 1) log prot1) Zlog (1 - ) Z log (1 - )

i=r+1

Hence,

log ((s) = E1 ((s — 1) log pra+1) Zlog (1—> + Z *4‘5

D; z7+1pl

Consequently, using Equations (46), (48), (49) and (52) (and noting that when R(s — p) > 0 for
every p, the sum } o En ((s — p) log pr2) approaches zero as p,2 approaches infinity), we have
the following theorem

Theorem 5 If R(s — p) > 0 for every non-trivial zero p, then

1
log ((s) Zlog(l—p)—i—El((s—l ) log pri1) ZEl (s—p 10gpr+1)+0( 0570)_

i=1 ?
(58)
where o = N(s) and the O term is given by § + A.
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The differentiation of log (s) or ¢'(s)/¢(s) has been extensively used in the analysis of the
Riemann zeta function. Using Equation (58), we may obtain a functional representation of
¢'(s)/¢(s) in terms of the partial Euler product of {(s).

Theorem 6 If R(s — p) > 0 for every non-trivial zero p, then

¢'(s) _d o 1 pT*(S*U prf(sfﬂ) ey
- (il 2) S e

i=1 i 5=P

where o = R(s) and the O term is given by d(d + A)/ds.

Although Theorems (4), (5) and (6) provide a functional representation for ((s) in terms
of it partial Euler product, our attempts to prove or disprove the Riemann hypothesis using
these representations in conjunction with other properties (such as the growth of ((1 + iT)
with T') have failed. However, thesum -, ., 1/p; for o <1 (that was computed using
these theorems) has been successfully used to examine the convergence of the series M (o) for
o < 1 as described in the next section.

6 The convergence of the series M (o, p,) and M (o) for o < 1.

In this section, we will first provide an estimate for the partial sum M (1, p,;1,p,*) as a ap-
proaches infinity. This estimate will be computed by using Equation (57) and noting that
M (1, p,) equals zero for every p,. Therefore for every p,, M (1, p,; 1, p,*) approaches zero as a
approaches infinity. We also notice that, for every p, and N, we have (see Appendix (5)),

ﬁfj p(n, pr)

|M(1,py;1,N)|= -

<2

n=1

The estimation of the partial sum M (1, p,; 1, p,®) as a function of a will then be used to estab-
lish a relationship between M (1, p,; 1, p,*) and M (o, py; 1, p,*). This relationship is then used
to show that M (o, p,) and M (o) diverge for o < 1. We will describe the details of our method
in the following three steps.

e In the first step, we will show that, for every a and as p, approaches infinity, the partial
sum M (1, p,; 1, p,?) is a function of only a (independent of p;.).

Toward this end, we define the function f(a, p,) as

pr®
_ . _ M(n7p7“)
f(aapr) _M(lapTalapTa) _nz::l n .

We will then show that, for every a and as p, approaches infinity, the function f(a,p,) ap-
proaches a deterministic function F'(a). In other words; if we plot M (1,p,;1,N) (where
N = p,*) as a function of a = log N/logp,, then for each value of a and as p, approaches
infinity, f(a,p,) approaches a unique value F'(a). This result can be achieved by first divid-
ing the prime numbers that are in the range p, < z < p,” into N sections. The first section
comprises of all the prime numbers that are in the range p, < z < pTH‘; (where, § << 1 and

15



itis given by § = 1/(log p,)*, a > 1 and (logp,)® << p,). The second section comprises of all
the prime numbers that are in the range in the range p 0 < x < p,1729 and so on (where the
j-th section comprises of all the prime numbers that are in the range p,! 7019 < z < p,179),
Hence,

N6 = 1. (60)

The process of dividing the prime numbers into sections continues for primes greater than
pr2. Thus, the total number of sections L over the range p, < = < p,® is given by (a — 1)N.

If we define K; as the sum of the reciprocals of the prime numbers in section j (where
i = j + N), then by Mertens’ Theorem, K; is given by

i+1) O(1/log pr)
1

K; =loglog p,"™)° — loglog p,"® +

)

where 1 < i§ < a. Hence, for sufficiently large p,, we then have

K; = % + %O(l/logpr) +0(1/i%), (61)

where O(1/log p,) can be made arbitrary small by selecting p, arbitrary large. Therefore, we
may consider that each K; is comprised of two terms. The first one is a deterministic or

regular term defined as G; and it is given by 1/i. The second one is an irregular term defined
as R; and it is the remaining part of K; (i.e. the irregular term R; is given by K; — D;). Hence,

K; =G+ R;, (62)
where )
and .
R; = Ki = Gy = ~0(1/logp;) + O (1/). (64)

Notice that although O (1/i?) behaves regularly, we have lumped it with the irregular term
R; due to its negligible effect on the partial sum M(1,p,;1,p,®) as p, (and consequently N)
approaches infinity.

Next, we will device an algorithm to construct a series that is equivalent to the series
M(1,pr; 1, p,*) from these (a — 1) N sections (that are comprised of the prime numbers with
their associated values of K;’s) and the products of K;’s (with the appropriate signs). This
series starts with the number 1. Then, instead of subtracting the terms 1/p,,1/py41,..., we
subtract the values of K;’s for the first N sections. These sections are ordered based on the
value of the largest member within each section. It can be easily shown that the value of
M(1,pr; 1, p2) constructed by this method is given 1 — log 2 plus a factor that is determined
by the sum of N terms of the form (1/i)O(1/logp,) + O(1/i?) and this factor (as mentioned
earlier) can be made arbitrary small by selecting p, arbitrary large. In other words;

2N

M(1,pl,p?)=1->" K,
=N

16



and

) 2N 1 N 1
li M(1,p.:1 =1-— 1 S =1-— i —
pr,]{;goo ( »Pri 5 Pr ) Ngnooz ) Ngnoo, N+
=N 7=0
Thus .
lim M(1,p:1 2:1—/ dr =1 —log?2
o m (1,pr;1,pr7) T og

The previous results can be also attained using Stieltjes integral, For 1 < a < 2, we have

1
M(lvp’l’;lvp'l‘a) =1- Z o
Pr<pi<pr® pi
If we define M1 (1,p,;1,p,%) as
a 1
Mi(1, prspropr®) = Z -
pr<pi<pre Vi
then,
a u P dr(x @ dn(p,Y
M(1,pr; 1,pr") = 1= Mi(1, pr; pr, pr )=1—/ @) =1—/ %
Pr X 1 p?"
On RH, we have
dr(py¥) = dLi(p.¥) + dO(v/p,¥ log(p,”)),
o 1 1 d
Og Pr Y
drn(p¥) = ———— dy + dO(v/p.Y1og(p.Y)) = + dO(V/pr¥ log(pr?)).
&) log(pr¥) pp¥ ( ") yprY ( (®:%)

Hence, for 1 < a < 2, we have

ad @ dO(v/p-Y log(p,Y
M(l,pr; 1ap7‘a) =1 _/1 Zy +/1 ( pp yg(p )) =1- log(a) + O(gl(prva))a

where

(1 (pr. ) = /a dO(v/p,7 log(p,*))

1 prY

As p, approaches infinity, O(g;(p;, a) approaches zero. Consequently,

lim M(,p,;1,p.% =1—1loga

pr,N—00

The terms of the series M (1, p,; 1,p,%) in the range p, < = < p,> are either a reciprocal of a
prime or a reciprocal of the product of two primes. To reconstruct these terms, we start with
1 and subtract the sum of K;’s for the sections of primes in the range p, < = < p,® and then
add to it the sum of the terms that are the product of K;;’s and K;5’s for any two sections of
the prime numbers (where the product of any member of the one section with any member
of the second section is less than p,-?). Hence

17



3N 12N i
M(lapT;lapT3):1_ZKi+§Z Ksn—i Y K;
i=N i=N =N

where the factor of 1/2 was added to the last term since each term of the form 1/(p;ipj2) is
repeated twice. As p, (and consequently N) approach infinity, we have

3N 1 1 2N 1 % 1
im M(1,p;1,p,°%) =1— li —+- 1l -.
o b M(Lpri 1, pr7) Nféo;vz * QNEQOZ_;V 3N—ij§j

The above equation can be easily computed using integration methods. Hence, as p, (and
consequently V) approaches infinity, the partial sum M (1, p,; 1,p,*) for a < 3 is independent
of p,.

The previous results can be also attained using Stieltjes integral. For 1 < a < 3, we have

1 1
M(lap’r’;lap'r’a)zl_ Z 7+ Z T
pr<pi<pre Pl pr<pip; <pr® piPj
If we define Ms(1,p,;1,p,*) as
. 11 1 .
Mg(l,ph 17p7“ ) = Z - = 5 Z fMl(lva;phpr/pi)’
Pr<pip; <pr® Pipj pr<pi<pya-1 "’
then ) ! dn(p)
a— e p
My(1,pr;1,p:%) = 5 / — (log(a —y) + O(g1(prya —y))) -
21 prY
Hence

(a—1y)

1 fe—1llo
M(l)pT’; 1’p7”a) =1- log(a) + O(g1(pr, a)) + 5_/1 g Y dy + 0(92(pr7 a — 1))7

where

O(g2(pr,a— 1)) = /1a_1 O(gl(prg;a g+ /;H log(a — y)dO(v/p:¥ log(p:*))+

[ 0w~ a0 los(r).

as p, approaches infinity, O(g2(py, a — 1)) approaches zero. Thus, for 1 < a < 3, we have

a—ll .
lim M(1,pr; 1,p") :1—10ga+/ log(a—y) ;.
pr,N—)OO 1 y

Therefore, as p, approaches infinity, M (1, p,; 1, p,*) is only dependent on a.

This process is repeated a — 1 times to show that, as p, (and consequently V) approaches
infinity, the partial sum M (1, p,; 1, p,*) is dependent on only a. Hence for every a, we have

F(a) = lim M(1,pr;1,p:%) (65)
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It should be pointed out that the series constructed by this algorithm includes both square-
free terms (that form M (1,p,;1,p,*)) as well as non square-free terms. In the following, we
will show that, for every a and as p, approaches infinity, the contribution by the non square-
free terms to the partial sum M (1, p,; 1, p,.*) approaches zero as well. Toward this end, let .Sy
be the sum of the terms with the factor 1/p2. Let S; be the sum of the remaining terms with
the factor 1/(p,+1)?, S2 be the sum of the remaining terms with the factor 1/(p,+2)?, and so
on. Let H be sum of all the terms associated with non square-free terms. Thus, H is given by

1 1 1

H = QS()—I— 251+...+
Dr

25L7

DPr+1 Dr+1

where p,; is the largest prime that its square is less than p,*. However,

1 1
Sol, ISty .o |SII< 14+ =4+ =+ ... .
1Sol, 1511, -+, [S1] totgt +pra

Thus,
‘50’7 ‘81’7 a3 ‘Sl|: O(alngr)

Therefore

1 1 1
Hz(—l——i—...—i— )Oalop.
pr2 pr+12 pr+12 ( 8 T>

Hence, the contribution by the non square free terms H is given by,

H = O(alogp; /pr).

Consequently, for every a and as p, approaches infinity, H (or the contribution by the non-
square free terms to the partial sum M (1, p,; 1, p,*)) approaches zero.

e In the second step, we write the partial sum M(1, p,; 1, p,*) as the sum of two compo-
nents. The first is the deterministic or regular component and it is given by F'(a). The
second one is the irregular component O(M(1, p,;1,p,*)) given by M(1,p,;1,p.*) —
F(a). We will show that F(a) (as well as M (1, p,; 1, p,*)) decays slower that 1/a (this
is the key step to disproving the Riemann Hypotheses as RH requires an exponential
decay of F(a)).

Toward this end, we write the partial sum M(1, p,; 1, p,*) as following sum
1 1
M1,pil,p%)=1— > —MQ,piy;Lp o) — Y, —. (66)
pr<pi<pro=1 " pro1<pi<pr® **

Using Stieltjes integral, we can write the above equation as follows

a—1 d Yy
M(l,pr, lapra) — 1 _/ 7T(p7~ )

@ dm(pY
: . M(1,pY;1,p%/pY) —/ (p:?)
T

: 67
a—1 P% ( )

where, on RH, dr(p,¥) = dLi(p,¥)+dO(\/p,¥ log(p,¥)). As p, approaches infinity, M (1, p,¥; 1, p¢™Y)
approaches F'(a — y). Therefore, as p, approaches infinity, we have
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a—1 _ a
Fla) = —/1 F(ay y)dy—/a_l‘;y. 68)

It is shown in Appendix 5 that |M(1,p,;1,p,%)|< 2 for every p, and a. Hence |F(a)|< 2.
Consequently, F'(a) approaches zero as a approaches infinity (this follows from the fact that
if F'(a) does not converge to zero, then the first integral of the above equation diverges as a
approaches infinity which then leads to the divergence of F'(a). This contradicts our earlier
statement that |F'(a)|< 2). Thus, as a approaches infinity, we have

/a_1 o=y, (69)
1 Yy

Hence, we conclude that F'(a) approaches zero at a rate that is no faster than the rate
at which 1/a approaches zero (this follows from that fact that if F'(a) = O(1/a), then the
above integral is given by O(log(a)/a) which is much smaller than 1 for sufficiently large a).
Therefore, for some constant C, we have

F(a) > C/a
or

F(a) =Q(1/a)

Thus, if we write the partial sum of M (1, p,) as M (1, p,,1,n) (where n = pf), then the regular
component of M(1,p,, 1,n) decays slower than C'/logn.

Similarly, we can show that M(1,p,;1, p,*) decays no faster than 1/a. This task can be
achieved by noting that irregular component of M (1, p,; 1, p,*) is given by

o=l M(1,pY;1,p87Y) =l O(M(1,pY;1,p2Y))

OOI(Lpitp%) = [ L ao(a o)~ | ey
/a dO(+/p¥ log(p+¥)) (70)
a—1 p? .

Therefore, if we assume that M (1,p,;1,p,*) decays at a rate faster than 1/a (say O(h(a))),
then O(M (1, p,;1,p,%)) can be written as

O(M(1,pr; 1,pr")) = O(h(a)) — F(a)
Later in this section, we will show that the Riemann Hypothesis requires the exponential
decay for O(h(a)). If we assume that O(h(a)) decays exponentially with respect to a, then it

can be easily shown that, for sufficiently large p, and q, the first and third integrals of equation
(70) are negligible compared with F'(a). Hence

[O(M (L, pr; 1, %)= |O(h(a)) — F(a)|=

/“1 O(M(1,p,Y; 17p?’y))dy
1 ypy

or

0th(@) - Fa)|= | [ A= e ) L

ypr
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Similar inconsistency is obtained if it is assumed that M (1, p,; 1, p,*) decays at any rate that
is faster than 1/a. Hence, both F'(a) and M (1,p,; 1, p,*) decays at a rate slower than 1/a.

e For the third step, we will compute the partial sum M (o, p,;1,p,*) for o < 1 and show
that it diverges as a approaches infinity.

Toward this end, we write the partial sum M (o, p,; p,°, p@10) as the following sum

1 1
Mo, pripp,prt0) = — > — M (0, pit1;pr®/pis 00 Ipi) — > —. (71)
pr<pi<prts—1 Pl pro<pi<prts Ll

Using Stieltjes integral, we can write the above equation as follows

a+d6—1 dﬂ-(pry) a+6 dﬂ'(pry)

M (o, pr; pr®, pr ) :/1 M (o, p,Y; p®/pY, poT /p¥) —/

pr’ a pr’
or
at+0—1 g (p,Y o atd dn(p,Y
Mt = [T B (i) - [T EED o)
T a r

However, for §logp, << 1, we may write

M (o, p,¥; piY, pi=¥+0) = p, (=@ Ap (1, p,¥; pa=y pa=y+o), (73)

r

Hence

a+d6—1 d Y at+s d y
M (o, pri e, ") ZP?(I_”)/ ) 0 (1, 50, 0 H) —pi‘f““’)/ (.
1 r a br
(74)
Consequently
M (o, pri pfs 0y 0) = p =M (1, prs i, ). (75)

Since the partial sum M (1, p,; 1, p¢) decays to zero slower than the decay of ¢/a, therefore
the sum M (1, p,; p2, p2*9) decays at a rate that is much slower than pﬁl_g)a. Hence the par-
tial sum M (o, p,; p2, p®*?) grows to infinity as a approaches infinity. Consequently, the series
M(o,p,) and M (o) diverge for o < 1. This implies that the Riemann Hypothesis is invalid

and the zeros can be found arbitrary close to line (s) = 1.
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Appendix 1

To prove the first part of Theorem 1 (i.e. for s = 0 4+ i0 and 0.5 < ¢ < 1, the series M (o, p;)
converges conditionally if M (o) converges conditionally), we first start with proving that
M (o, 2) is convergent if M (o) is convergent. Since M (¢) is convergent, then for any arbitrary
small number 6, there exists an integer Ny such that for every integer N > Ny

o0
p(n) -
nO’

|M(o; N, 00)| =

n=N

Let the sums M (0;1, N), M(0; N+1,2N), M(0;2N+1,22N), M (0;2°N+1,23N), ..., M (0; 271 N+
1,25 N) be defined as

M(o;1 N):%H(n):A
o5, 1,

M(o;N +1,2N) =

M(o;2N +1,2°N) = Y~ M:@,

M(o;2°N +1,23N) =
n=22N+1

2L N
M(o;2" "N +1,28N) = % mn s
n=2L-1N+1

If we define §(1) as the maximum of |0, |01, [0142]s -5 [0 —1], |014+0141], |01 +01414+0142], .oy |01+
041 + ... + -1/, then by the virtue of the convergence of M (o),

1011, 1021, 193], .., [0r—1], |01 + 2|, |01 + 02 + 03], ..., [01 + 02 + 03 + ... + 011 |< 6(1) < 26.
We also have

101]5 18141, [0142]s -y [0n—115 [0 + 151, |01 + dpp1 + g2, oy |61 + G101 + oo + 001 < (1),
where by the virtue of the convergence of M (), §(1) approaches zero as | approaches infinity.

Furthermore, let the sums M (c,2; 1, N), M (0,2; N+1,2N), M(c,2;2N+1,22N), M (0, 2; 22N+
1,23N), ..., M(0,2; 257N +1,2E N) be defined as

> p(n,2)
M(0,2;1,N) =Y ———* =By,

n=1 n
2N
2
M(0,2; N +1,2N) = w2 _,
n=N+1 n
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22N

2
M(0,2;2N +1,22N) = “("; ) — )
n=2N+1
28N
2
M(0,2;2°N +1,23N) = ’“‘(”; ) — e,
n=22N-+1
2L N 1(n, 2
M(o,2;2" "N +1,2°N) = > 12 = e,
n=2L-1N41 n
Since
2N 2N N
M(n) — Z M(n>2) _ Z ,u(na 2)
= n° — n7 — (2n)°
thus

1
M(o;1,2N) = M(0,2;1,2N) — Z—JM(U,Q;LN).

Similarly, since

2N 2N 2!N
Z p(n) _ p(n,2) . Z p(n,2)
o o - (zn)a )
n=2lN+1 n=2N+1 n=21"1N+1

thus

1
M(o;2'N 4+ 1,2%IN) = M(0,2;2'N +1,217IN) — Q—UM(U, 2;27IN +1,2!N).

Rearranging the previous equations, we then have

1
A1+51=Bl+61*2731,

(76)
1
0y = €9 — 50 €1
1
03 = €3 — 50 €2
1
0r—1 =€r—1 — 50 €12
where |01, [02], ]93], .., [0£—1], [01 + O2], |01 + b2 + I3, |01 4+ 62 + I3 + ... + 0r—1]|< §(1) < 2§ and
d is arbitrary small. Hence
1
€2 = 2761 + 02,

1 1 1
€3 = 27€2+53 = 2@€1+2752+537
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1 5 1 1 5 1 5
€L—1 = 55 €L-2 +t0L-1= 5(L—2)0 1 + 5(L—3)0 02 + o(L—4)s 3 +...+0r-1.

Therefore,

1 1 1
e1tet+e+ .. t+e1= 1+27+2E+"'+2(LT)0— €1+ (02 + 03+ ... +0r—1)+

1 1 1
27(52 + 03+ ... + (5L—2) + 270(52 + 03+ ...+ 6L—3) + i+ ——=—09.

2(L—3)o

Since ‘52’§ (5(1), | |52 -+ 53|§ 5(1), ey ‘(51 + 0y + 03+ ...+ 6L—1|§ 5(1), hence

1 1
|62+03+... 407 1!+ —|0a+03+... 02|+ Yy |52’_‘ (1 )+275(1)+~--+m5(1) )
or

20'
|02 + 03 + ... + 67— 1\+—!52+63+ A Op2lt + e 102 7 16(L)].
Therefore

1

1 1
€1 +e€r+€3+ ... +€1 = (1‘1'204—220—1---.4-2@_2)0) €1+ 71,
where 7 is of the same order as that of §(1).

As L approaches infinity, we then obtain

Zfz— 50 61+’Y1

Therefore, the sum M(o,2; N + 1, 00) (which is equal to €; + €2 + €3 + ... ) is bounded by the
sum M (o,2; N + 1,2N) (which is equal to €;).

The previous process can be repeated with 2N is substituted for N and Equation (76)
becomes

1
A2+52=B2+62—27,327

where Ay = M(0;1,2N) and By = M(0,2;1,2N). Thus,

1

1
A2 :B2—2732+2761

Following the same process, we can show that that the sum M (o, 2; 2N + 1, 00) is given by

Zfz— 50 61-1—72

where 73 is of the same order as that of 4(2).
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If we repeat the process [ times, we obtain

1 1
Al = Bl - 273[ + 2(1_71)0_61,

where A; = M(0;1,2'N) and B; = M(0,2;1,2!N) and the sum M(0,2;2'N + 1,00) is given
by

1
Ze,z (1— 2)020_1614_%

where ~; is of the same order as that of §(!). Since by the virtue of the convergence of M (o),
(1) tends to zero as [ approaches infinity, therefore +; and the above sum approach zero as !
approaches infinity.

Thus, we conclude that M (o,2;2'N + 1,00) (given by 3-°, ¢;) approaches zero as [ ap-
proaches infinity. Furthermore, as [ approaches infinity, B = lim;_,, B; approaches its limit
given by

1
<1 — ) B=M(o;1,00).

Hence,

Similarly, following the same steps, we can show that

1
(1 — 30> M(0,3;1,00) = M(0,2;1,00).

or
1 1
(1_ 20) (1_ 30) M(0,3:1,00) = M(0;1, 00).

This task can be achieved by first defining

N
N = A17
n=1
M(0,2; N +1,3N) nn2) _ g
n=N+1
32N M
M(0,2;3N 4+ 1,3°N) = = 09,
n=3N+1
L—1 L N M(naQ)
M(o,2;3" "N+ 1,3"N) = > = =1,
n=3L-1N+1

and
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Y, p(n,3)
M(o,3;1,N) =Y =12 =By,

n=1 ne
3N
3
M(o,3;N +1,3N) = “(”; ) — e,
n=N+1 n
32N
M(0,3;3N +1,32N) = “(";3) .
n=3N+1
L—1 L EN p(n, 3)
M(o,3;3" "N+ 1,3"N) = = — e,
nO'
n=3L-1N+1
Since
3N 3N
— n° = n — (3n)e’
thus
1
M(0,2;1,3N) = M(0,3;1,3N) — 3—0M(0,3;1,N)
Similarly,

1
M(0,2;3'N 4+1,3"IN) = M(0,3;3'N +1,3"71N) — 5 M(o,3; 37N +1,3'N)

Following the same process, we can show that

oo 30-
ZQ‘ = 30_161—#’717
i=1

where 7 is of the same order as that of 6(1) (6(1) is defined as the maximum of ||, [6;41], [0i+2], -, [0L—1], |01+
Oi1l, 100 + 0141 + Gigal, ooy |01 + Opg1 + .o + OL-1])-

Similarly, if we define Ay = M (c0,2;1,3N) and By = M(0,3;1,3N), then

1 1
Therefore

> 1
=g ot
=2

where 73 is of the same order as that of 4(2).
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Repeating the steps 1 times, we then obtain

1
Zel_ (= 2)0_30._ €1+’7l

where ~; is of the same order as that of (/). Hence the above sum approaches zero as [ ap-
proaches infinity

Thus, we conclude that M (o, 3;3'N + 1,00) (given by 3%, ¢;) approaches zero as [ ap-
proaches infinity. Furthermore, as [ approaches infinity, B = lim;_,., B; approaches its limit
given by

1
(130)B:M(0,2;1,oo).

Hence,

(1 _ 310_> M(0,3) = M(c,2).

Repeating the process r times, we then conclude

M(o) = M(o.p) <1 - 1) .

-1 pi°
The second part of the theorem can be proved by recalling

1
M(s,pr—1;1,Np;) = M(s,pr;1,Np,) — EM(s,pr; L,N).

T

If both series M (s, p,—1) and M (s, p,) are convergent, then as N approaches infinity, we obtain

M(s,pr_1) = M(s,py) (1 _ 1)

p;

Repeating the process r times, we then conclude

Mo = o IT (1)

i=1 pi?

Appendix 2
Assuming RH is valid and for ¢ > 0.5, to show that
r2 1
Z ZF = FEi((c —1)logpr1) — E1((c — 1) logpra) + €
i=rl £

where, e = O (W P17 log pﬂ), we first recall that

Pr2 d DPr2 ]_ DPr2 1
/ m(@ = dx + / —dO (vzlog ).
= ,,,1 pz Pr1 Pr1 x?

. x%logx
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We will first compute the integral with the O notation. This can be done by integration by
parts to obtain

Pr O \/ Pr 1 r (@] \/ Pr 1 r Pr
/ 2%6[0(\/510%.%): ( pg:gp 2) O plfgp ) —/ 2O(\/:Elogyc)al(wlg>
p p

r1 L Dr2 DPr1 rl

Since z > 0, thus

Dr2 /Do L - /D1 L - Dr2
/ %dO(\/Elogx):O( pz:gpg)_O( p1:gp 1)—0( ﬁlogwd(é))
p

1 L Pr2 Pri1 Pr1

With the substitution of variables y = log x, we then obtain

Pr2 1 Pr2 1
Vrxlogzd <x”) = —/ oye27Ydy.
P

Pri 1

1
/xe“mdaz = (:n — 2) e,
a a
therefore

Pr2 1 log Dr2 1 ) 0.5— ( logprl 1 ) 0.5—
logzd(— ) =— — B0 _ 50
- Valoga (x") 7 (0.5 o (05—0))P? T7\05—6 (05-0p2)"

Since

Hence, for o > 0.5, we have

prz 1 prn %7 logpr
—d 1 = —_— 77

For o > 1, the integral f£ ’"12 = 110 gxdx can be computed directly from the definition of the

Exponential Integral E(r) = [*° ¢ “du (where r > 0) to obtain

s u

DPr2 1
/ 1‘010gxd$:E1((U_ 1)logpr1) — E1((0 — 1) log pr2)
Pbr1

To compute the integral ]f’:f — llogxdx for o < 0, we first use the substantiation y = log x
to obtain
pr2 1 logprz o(1=0)y logpra o(1—0)y logpr1 o(1=0)y
/ dx = dy = / dy — / dy
pr L7 lOg T log pr1 Yy € Y . y

where, € is an arbitrary small positive number. With the variable substantiations z; = y/log p,1
and z = y/log pr2 , we then obtain

/prQ 1 1 e(1=0)(log pr2)z2 1 e(1=0)(log pr1)z1
ot
prn @7 logx ¢/log pra 22 €

dzl .
/log pr1 21
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With the variable substantiations w; = (1 — o)(log py1)2z1 and wa = (1 — o)(log py2)2z1 and by
adding and subtracting the terms — |, ((1_0) logpr2 doz 4 ((1_0) logpr w1 we then have

1—o)e 1-0)e
Pr2 1 (1=0)logpra gw2 _ 1 (1-0)logpr1 gw1 _ 1
/ dx :/ € dws —/ ¢ dwq+
p 27 logx (1=0)e wa (1-0)e wy

1—0)e w2

1—o)e w1

/(1—0) log pro dws /(1—0) log pr1 dwy
( (

Using the following identity [9, page 230]

ael —1
/ ; dt = —E1(—a) — log(a) — v
0

where a > 0, we then obtain for o < 1,

Dr2 1
| edn = Bu(e = 1logpn) = Ba((0 = 1) logpya)
pe 2% logx

Hence, for o > 0.5, we have

r2 1

— = Ei((c = 1)logpr1) — E1((0 — 1) logpyo) + €
i=r1 Pi

It should be pointed out that in general, if there are no non-trivial zeros for values of s
with R(s) > a, then by following the same steps, we may also show that for o > a, we have

r2 1

Y- = =Ful(o = Dlogpn) — Bi((0 — 1) logpyz) +=
i=rl £

where, ¢ = O (ﬁpﬂa*a 10gpr1)-

Appendix 3
Assuming RH is valid and for ¢ > 0.5, to show that
r2 1
> o Eqi((s — 1) logpr1) — Ei((s — 1)logpra) + ¢
i=rl £

where, ¢ = O (% P12 log pﬂ), we first recall that

r2

Pr Pr 1 Pr2
3 1:/ 2 dn () :/ ’ dz:+/ " 40 (Valog ).
p P pr1 L

.S S S
i=rl pl 1 x rl x logl‘
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We will first compute the integral with the O notation. This can be done by integration by
parts to obtain

/pr 140 (Vitogs) = 2Pz logpea) Oy lospn) —/MO(\/Elog:U)d(;)

., xs Dr2® Dr1® 1

The integral on the right side of the above equation can be then written as

Pr2 ]_ DPr2
/ O (Vzlogz)d (:1;5) = —s/ O (Vzlogz) z~*da.
p p

1 1

Hence,

/ppr2 (Vzlogx)d ( 1 )’ < |s - O (Vzlogz) |z —s=1|4g.

r1

For sufficiently large ¢, we can write |s|= t and consequently

Pr2 1 pr1*°77 log pry
] —\| = Pri 05l
/m Olve ng)d(xs)‘ O<t (o —0.5)2

Hence,
pr2 1 prn "% logpri
—dO 1 =0((t+1) ———| .
/prl (\f o8 1?) <( + ) (0’ - 0.5)2
For R(s) > 1, the integral ;5 i a:s ngdx can be computed directly from the definition of

the Exponential Integral F(z) = (z) > 0) to obtain

Pr2 1
/ o loga;dx = FEi1((s —1)logpr1) — E1((s — 1) log pr2)
Pri

To compute the integral [ dx for R(z) < 1, we first write the integral as follows

s log:v

/pﬂ _ /prg e~ 0logz COS(t log x) d — i /prz e—0logz sin(t log x) .
X% log x log x Pri log =

—ologx COS(

log x

pT2 €

The first integral on the right side 11062) 44 can be computed by using the sub-

stitution y = log x to obtain

/pr2 e ° log = COS(t log l') d /pr2 e(lfU)y Cos(ty)
€Tr = —_—_—m
p p

dy,
log = - Yy

1

or

/p’r'2 e_O'Ingcos(t log m) d‘r B /p7»2 e(l_a)y Cos(ty) dy " /p7'2 e(l_o)y dy B /p7-2 e(l_g)y dy
p P Y p Y p '

1 log‘r 1

Hence,

/1’”2 e~7198% cos(t log x)dx B /1’”1 ell=9)y(1 — cos(ty))d B /p?‘2 e1=9)y (1 — cos(ty))d B
Pr1 log x e Yy T Yy /
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pr1 (1—0)y pr2 o(1=0)y
/ € dy + / ¢ dy
€ Y € Yy

where, € is an arbitrary small positive number. With the variable substantiations z; = y/log p,1

and zo = y/log pr2 , we then obtain
el=o)(logpr1)zi (1 — cos(t(log pr1)21))
dz1—

/p'rZ e718% cos(t log ) J /1
"17 =

Pri log T €/log pr1 “1

/1 e(1=o)(logpr2)22 (1 _ cos(t(log pra)22)) d

29—
e/log pra Z2
1 e(1=0)(logpr1)=1 1 e(1=0)(log pr2)2z2
[ e e
€/log pr1 21 €/log pra <2

By the virtue of the following identity ([9], page 230)

/1 e (1 _tcos(bt))dt _ %log(l + b2/a2) + Li(a) + R[E1(—a + ib)],
0

where a > 0, we then obtain the following

pro ,—0 logx 5(t 1
¢ TR COs(TIOBT) 4 B (s — 1) log pra)] + Li((L — o) log pr1)—

‘/prl 1Og z
R[E1((s — 1) log pr2)] — Li((1 — o) log pr2)—
1 e(l—a)(logprl)zl 1 6(l—a)(log;prg)zz
/ —_———dx+ dzo
6/103pr1 <1 E/IOgPTQ z2

With the variable substantiations w; = (1 — o)(logp,1)2z1 and w; = (1 — o)(log py1)21 and by
adding and subtracting the terms — | ((11__:))61°g Predus o f ((ll:cf))elog 14w we then have

Prz ¢~ 0108 cog(t log .
(tlog )dx = R[E1((s — 1) logpr1)] + Li((1 — o) log pr1)—

‘/prl ]'ng
R[E1((s — 1) logpro)] — Li((1 — o) log pra)+
(1—0)logpr1 w1 _
dws —/ € 1dw1—i—
(

(1—0)logprz w2 _ |

/(l—a)e w2
/(10) log pro dws /(10) log pr1 dw
( ( wy

w1

1—0)e

1-o)e w2 1-o)e

Using the following identity [9, page 230]
a pt _
/ =Lt~ Fi(a) - log(a) — ~
0

where a > 0, we then obtain for o < 1,

bra g77 108" cos(tlog z) dx = R[E1((s — 1) logpr1)] — R[E1((s — 1) log pr2)]

/p'rl 1Og x

31



Similarly, using the identity [9, page 230]

1 et qin(bt
/ ebltn()dt = — arctan(b/a) + S[E1(—a + ib)],
Po

where a > 0, we can show that for 0 < 1, we have

/1"7“2 e~ 198 % gin(t log x)d
- x
p

1 log = S[E1((s = Dlogp1)] = S[E((s — 1) log pr2)]-

Therefore, for R(s) > 0.5, we have

Z pf 1((s = 1) logpr1) — E1((s — 1) logpre) + &
1 (3

where, e = O ((U 05)2]%11/2 7 log pr 1)

Appendix 4

In Appendix 4, we will show that the sum }°, F1 ((s — p) log p;) is convergent if [s — p|> 0 for
every p. Furthermore, we will show that the sum approaches zeros as p, approaches infinity.
this task will be achieved by noting that, for sufficiently large p,, E1 ((s — p) logp,) can be
written as

. 1 e—(s=p)logpr o 1 7
(o= owp) = (i (140 (1 oanr) 7

Therefore, if the sum 3~ ) F1 ((s — p) log p;) is convergent, then it will be given by

e—(S—,D) log pr

ZEl S—p logpr)_Z(s
o

where € is the contribution by the sum of the O terms in Equation (78). It can be easily shown
that if s — p|> ¢ > 0 for every p, then e in Equation (79) tends to zero as p, approaches infinity.
This result can be deduced by noting that O(e) = (p=™ " /(log p,)?) >, 1/|s — p[?. Since
the sum >°, 1/[s — p|? is bounded, therefore Equation (79) can be further sunphﬁed to

+e (79)
- P) logpr

Z P O R0 [ (log pr)?). (80)

ZEl S_ long) - Ing —p

To show the sum 3, 1 ((s — p) log p,) is convergent, let s = o +iT and p; = f3; + iv;. We
split p;’s into two groups. The first group comprises of the non-trivial zeros with 7;’s less than
or equal to mT, where m > 1. The rest of the non-trivial zeros belong to the second group.
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Since the first group has a finite number of p;’s, thus the sum ., <,,7 E1 ((s — p) log pr) is
bounded. Since |p, ~*p,”|< 1 for every p, therefore

1

Z Ey ((s—p)logp,)| = (1/logp,) Z

|vi|<mT |vi| <mT |5 = pl

Hence

Y. Ei((s—p)logpr) = O(1/logp,).
[v:|<mT

The sum over the second group can be expanded as follows

Z Ey((s—p)logp,) = —

[vi|>mT

log Dr

e P 2 e’

il >mT P i >mT P e[ >mT
The first sum }°|~.,,7 pr”*/ pi is convergent by the virtue of Equation (47). The upper bound

for the second term (p.~*/logpy) s 32|\ mr Pr7*/ pi2can be determined as follows

pr°s r
2
logpr | (= Pi

B L

logp'f‘ | |> T ’pl ’

Since for sufficiently large 7', |s| is given by 7" and the density of the non-trivial zeros is given
by O(logt) (note that if there are roots off the critical line then their density is given by Bohr
Landau theorem [1] and it is less than O(logt)), thus

—5 pi —o+max f3; 00
Pr =S Z Pr . < Dr T / 0(102g t) dt.
logpr | Sp Pi log p, mr t
Hence
pr %S prl priaeraX Bi O(log T))

logpr = . pi® log p, m

Similarly, we can show that

7552 pri

Dy pr ot O(log T)

.3 2 ’
logpr | 1 Pi log pr m
and,
pros 3 pePi | pytmaxbi O(log T)
a+1 i :
logpr | = 1 Pi' log pr m'
Therefore,

, T_(’*maxﬁiOl &1
( r’ 2 Z + )|_P (logT) _

logp’f’ h/ ‘>mT p’L "Y ‘>mT pl logp’l“ i=1 ml
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Since Y23°; 1/m’ is convergent, hence (p, 7+t O(log T) /log p,) 52, 1/m? is convergent
and it is given by

—S Pi P
DPr (3 Z ]%4—32 Z pr?’—k)‘ :O(pT—O’-l-max,Bi lOg(T)/Ingf,«).

lo
&Pr Ivs|>mT [v:|>mT pi

Hence

-8 Pi
Z Ei((s—p)logp,) = — Pr ( Z br )+O(pT_Ueraxﬁ"log(T)/logpr).

s |>mT logpr \ | S Pi
Thus
pr_s prpi
> Eul(s—p)logps) = — > | +O0(p, TP log(T) /log pr ).
[vi|>mT &P \|yismr P

Consequently, >, 1 ((s — p) log p,) is convergent and it is given by

zEl s —p)logpy) = Z Pt B + O(1/log pr).

log Dr

In the remaining of this Appendix, we will derive a formula to show the dependence of
the sum 3 F ((s — p)logp,) on T' (where, s = o +iT). On RH, we have

> Euw—pn%@az—pfs( Z)pfj+49@ﬂ&ﬂmgﬂﬂ%nj.

lo
[vi|>mT &Pr |vi|>mT Pi

Thus

> Ei((s—p)logp,)| =0 (p9‘5_" Ingr) +0 (pr°‘5_” log(T)/Ingr) -

[vi[>mT

Since the density of the roots on the critical line is given by log T', thus the sum over the
roots with |y;|< mT' can be given by the following integral

Z Ey ((s — p)logpr)| =
[yl <mT

pyoe /’”T 0(10gt) &t
logpr Jomr /& —T)2+ (0 —0.5)2

Thus, for fixed o > 0.5 + ¢, we have

Y Ei((s—p)logp)| = p)>7O((mlog T)?)/log p;.

[vi|<mT

Therefore, on RH, we have

=0 (p,""" logp, (log T)?). (81)

ZEI s — p)logpr)
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Appendix 5

To show that

we first note that
Zd/n ,U,(d,pr) - 1/ lfn = 1/

>d/n p(d, pr) = 1, if all the prime factor of n are less than p,,

> d/n #(d; pr) = 0, if any of the prime factor of n is greater than p,.

Adding all the terms >_, In p(d,py) for 1 < n < N, we then obtain

0< 3 utn) =

n=1 n

where [z] refers to the integer value of . Define r, as

where 0 < r,, < 1. Hence, we have

n

N N N N
> . prdrn < 3 un.pe) | 3] + 3 o)
n=1 n=1

Since

n=1
thus, for every p, we have
N N
n=1
or
n=1 n T
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