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Abstract

A more careful consideration of the recently introduced ”Grossone
Theory” of Yaroslav Sergeev, [1], leads to a considerable enlargement
of what can constitute possible legitimate mathematical theories by
the introduction here of what we may call the Syntactic - Semantic
Axiomatic Theories in Mathematics. The usual theories of mathemat-
ics, ever since the ancient times of Euclid, are in fact axiomatic, [1,2],
which means that they are syntactic logical consequences of certain
assumed axioms. In these usual mathematical theories semantics can
only play an indirect role which is restricted to the inspiration and mo-
tivation that may lead to the formulation of axioms, definitions, and
of the proofs of theorems. In a significant contradistinction to that,
and as manifestly inspired and motivated by the mentioned Grossone
Theory, here a direct involvement of semantics in the construction of
axiomatic mathematical theories is presented, an involvement which
gives semantics the possibility to act explicitly, effectively, and alto-
gether directly upon the usual syntactic process of constructing the
logical consequences of axioms. Two immediate objections to what
appears to be an unprecedented and massive expansion of what may
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now become legitimate mathematical theories given by the syntactic
- semantic axiomatic theories introduced here can be the following :
the mentioned direct role of semantics may, willingly or not, intro-
duce in mathematical theories one, or both of the ”eternal taboo-s” of
inconsistency and self-reference. Fortunately however, such concerns
can be alleviated due to recent developments in both inconsistent and
self-referential mathematics, [1,2]. Grateful recognition is acknowl-
edged here for long and most useful ongoing related disccussions with
Yaroslav Sergeev.

“There have been four sorts of ages in the world’s
history. There have been ages when everybody
thought they knew everything, ages when no-
body thought they knew anything, ages when
clever people thought they knew much and stupid
people thought they knew little, and ages when
stupid people thought they knew much and clever
people thought they knew little. The first sort of
age is one of stability, the second of slow decay,
the third of progress, and the fourth of disaster.

Bertrand Russel, ”On modern uncertainty” (20
July 1932) in Mortals and Others, p. 103-104.

“History is written with the feet ...”

Ex-Chairman Mao, of the Long March fame ...

“Of all things, good sense is the most fairly dis-
tributed : everyone thinks he is so well supplied
with it that even those who are the hardest to
satisfy in every other respect never desire more
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of it than they already have.” :-) :-) :-)

R Descartes, Discourse de la Méthode

“Creativity often consists of finding hidden as-
sumptions. And removing those assumptions
can open up a new set of possibilities ...”

Henry R Sturman

“Science is not done scientifically, since it is mostly
done by non-scientists ...”

Anonymous

“Science is nowadays not done scientifically, since
it is mostly done by ... scientists ...”

Anonymous

“Physics is too important to be left only to physi-
cists ...”

Anonymous

A “mathematical problem” ?
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For quite sometime by now, American mathe-
maticians have decided to hide their date of birth
and not to mention it in their own academic CV.
Why are they so blatantly against transparency
in such an academically related matter ?
Can one, therefore, trust American mathemati-
cians, or for that matter, any other professional
who behaves like that ?

Amusingly, Hollywood actors and actresses have
their birth date easily available on Wikipedia.
On the other hand, Hollywood movies have also
for long by now been hiding the date of their
production ...

A bemused non-American mathematician

1. Axiomatic Mathematical Theories as mere Models

Ever since Euclid axiomatized Geometry more than two millennia ago,
there has been a widespread and strong tacit tendency, and not only
among mathematicians, to identify the respective axiomatic theory
with Geometry as such. Therefore the shock about two centuries ear-
lier when non-Euclidean geometries have been discovered. A similar
phenomenon happened more than a century back with the Peano Ax-
ioms of the natural numbers which were supposed to express all the
relevant properties of such numbers. And thus the related shock of
the Gödel Incompleteness Theorem in the early 1930s cannot by now
be seen as a surprise.

The moral, of course, is that, on one hand, we may have a concept like
”geometry” or ”number”, for instance, while on the other hand, we
can have one or another axiomatic mathematical theory which aims
to describe it. And the gap between these two sides may be hard to
bridge, let alone eliminate. The reasons for that may be quite a few,
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indeed. Here we mention some of the better known among them.

First, let us have a brief look at what is in fact an axiomatic mathe-
matical theory, or more generally, an axiomatic system.

One starts such a theory with a setup of a formal deductive system.
Namely, let A be an alphabet which can be given by any nonvoid finite
or infinite set. Then a procedure is given according to which one can
in a finite number of steps effectively construct - by using the symbols
in A - a set F of well formed formulas, or in short, wff -s. Next, one
chooses a nonvoid set R of logical deduction rules which operate as
follows

(1.1) F ⊇ P
R7−→ Q ⊆ F

that is, from any set P of wff-s which are the premises, it leads to a
corresponding set Q of wff-s which are all the consequences of P . It
will be convenient to assume that, for every set of well formed formu-
las P ⊆ F , we have

(1.2) P ⊆ R(P ) = R(R(P ))

in other words, the premises P are supposed to be among the conse-
quences R(P ), and in addition, these consequences R(P ) contain all
the possible consequences of P , in other words, the iteration of R does
not produce further consequences of P .
Clearly, condition (1.2) does not lead to a loss of generality regarding
R in (1.1). Indeed, if the relation

∀ P ⊆ F : P ⊆ R(P )

is not satisfied, then this relation will obviously be satisfied by the
modification of R given by R′(P ) = P

⋃
R(P ). Also, if the relation

∀ P ⊆ F : R(R(P )) = R(P )

is not satisfied, then this relation will obviously be satisfied by the
modification of R given by

5



R′′(P ) = R(P )
⋃
R(R(P ))

⋃
R(R(R(P )))

⋃
. . .

And now come the axioms which can be any nonvoid subset A ⊆ F
of wff -s.

Once the above is established, the respective axiomatic theory follows
easily as being the smallest subset T ⊆ F with the properties

(1.3) A ⊆ T

(1.4) T ⊇ P
R7−→ Q ⊆ T

in which case the wff -s in T are called the theorems of the axiomatic
system A. In view of (1.3), clearly, all axioms in A are also theorems.

Now an essential fact is that the set T of theorems depends not only
on the axioms in A, but also on the logical deduction rules R, and
prior to that, on the set F of well formed formulas. Consequently, it
is appropriate to write

(1.5) TF ,R(A) or more simply TR(A)

for the set T of theorems.

Here are some of the relevant questions which can arise regarding such
axiomatic systems :

• are the axioms in A independent ?

• are the axioms in A consistent ?

• are the axioms in A complete ?

Independence means that for no axiom α ∈ A, do we have TR(A) =
TR(B), where B = A\ {α}. In other words, the axioms in A are min-
imal in order to obtain the theorems in TR(A). This condition can be
formulated equivalently, but more simply and sharply, by saying that
for no axiom α ∈ A, do we have α ∈ TR(B), where B = A \ {α}.
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As for consistency, it means that there is no theorem τ ∈ TR(A), such
that for its negation non τ , we have non τ ∈ TR(A).

Completeness, in one possible formulation, means that, given any ad-
ditional axiom β ∈ F \ A which is independent from A, the axiom
system B = A ∪ {β} is inconsistent.

It is obvious, therefore, that in setting up axiomatic systems, there is
a lot of freedom in choosing the alphabet A, the well formed formulas
F , the deduction rules R and the axioms A, all of which influence the
resulting theorems T . However, such a freedom is not necessarily a
complete blessing when it comes to express all the possible relevant
properties of concepts such as ”gemoetry”, ”numbers”, and so on. In-
deed, each particular such choice may not only miss on certain relevant
properties, but may actually introduce some strange and unintended
ones as well.

In this regard, in modern times, it was the philosophy of neo-positivism,
or the so called third positivism, which in the early 20th century
brought to attention the fact that the very structure of language can
significantly influence thinking and the results of thought, and in par-
ticular, can lead to pseudo-problems.
Not much later, in linguistics, a similar idea arose with the Sapir-
Whorf Hypoetsis about the relativity of language.

A corresponding recognition in Mathematics, as mentioned, started to
emerge in the early 1800s, even if tentatively, with the non-Euclidean
geometries, and was later confirmed by further modern developments
of various axiomatic mathematical theories, a most important mo-
ment in this regard being Gödel’s Incompleteness Theorem, in the
early 1930s.

In conclusion, it is appropriate to realize - even if in the day to day
activity of the so called ”working mathematicians” it may still be dis-
regarded - that an axiomatic mathematical theory most likely fails to
express all of the properties of the domain of mathematics which it
is supposed to model, and in fact, may even introduce inappropriate
properties. And that can already happen with such basic mathemat-
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ical concepts like ”geometry” and ”numbers”.

It will be convenient in the sequel to consider the following. Given a
theorem τ ∈ TF ,R(A), we denote by

(1.6) TF ,R,A(τ)

which is the set of all elements σ ∈ TF ,R(A) with the property :

(1.7)

∃ B ⊆ TF ,R(A) :

∗) σ ∈ R(B
⋃
{τ})

∗ ∗) σ /∈ R(B)

and we call the set TF ,R,A(τ) the implications in the axiomatic system
A of τ .

Example : the Peano Axioms versus the Digital Computers

Let us consider the Peano Axioms, denoted by P , related to the natu-
ral integer numbers N, where we take the usual view, and not that in
the ”Grossone Theory”. Let us further consider the additional axiom
which, obviously, is not in P , namely

(1.8) ∃ M >> 1 : M + 1 ≤M

Clearly, every electronic digital computer - although hardly ever no-
ticed consciously - functions according to the obviously inconsistent
set of axioms, denoted by A, and given by the Peano Axiom, plus
axiom (1.8), thus briefly, A = P

⋃
{(1.8)}.

Now, among the consequences of (1.8) are the following theorems in
TF ,R(A), namely

(1.9) M + 1 ≤M, M + 2 ≤M, . . .

If we take τ, σ ∈ TF ,R(A) as the respective above theorems M+1 ≤M
and M + 2 ≤M , then, see (1.6), (1.7)
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(1.10) σ ∈ TF ,R,A(τ)

Indeed, let B = A = P
⋃
{(1.8)} ⊆ TF ,R(A), then obviously σ ∈

R(B). On the other hand, it is equally obvious that σ /∈ R(B \ {τ}),
since B \ {τ} = P .

2. A Brief Review of the Theory of : Grossone = ¬

Recently, a remarkable avenue - called the ”Grossone Theory” - has
been proposed and developed in [1,2] for an effective computation with
infnitesimal and infnitely large numbers, a computation which - as a
first in the literature - is implementable on usual digital computers.

The presentation in [1,2] is based on three general postulates which
are supposed to set up the framework for a usual mathematical type
axiom that has three components.

Here it is important to point out the unprecedented novelty in mod-
ern Mathematics of this approach, in which semantical type postulates
determine the scope of action of usual syntactic type axioms. And it
is precisely due to this feature of the ”Grossone Theory” introduced
in [1,2] that its more rigorous fundational status has not yet been ob-
tained, [3].

This is precisely why the present paper suggests a novel approach given
by the syntactic-semantic axiomatic method which is introduced in the
sequel. Such an approach may contribute to the rigorous foundation of
the ”Grossone Theory”. And considerably beyond that, it may open
the way for a far larger class of valid mathematical theories than the
usual axiomatic ones employed ever since Euclid.

And now, we briefly recall the presentation of the ”Grossone Theory”
in [1,2], which starts with the following three postulates :

P1. ”We postulate the existence of infinite and infinitesimal objects
but accept that human beings and machines are able to execute only
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a fnite number of operations.”

P2. ”We shall not tell what are the mathematical objects we deal
with. Instead, we shall construct more powerful tools that will allow
us to improve our capacities to observe and to describe properties of
mathematical objects.”

As a consequence of P2, an essential distinction is made in [1,2] be-
tween ”numbers” which are supposed to be the mathematical objects
about which one only talks indirectly, namely, through corresponding
”numerals”. And it is pointed out that, usually, this distinction fails
to be made in Mathematics where, instead, ”numerals” are identified
with ”numbers”, although the various related axiomatic mathematical
theories can only talk about ”numerals”, and not ”numbers” as well.
Indeed, as it is clear ever since the Gödel Incompleteness Theorem, the
Peano Axioms, for instance, do not give the natural integer numbers,
but only a representation of them by ”numerals”, whose infinite set is
denoted by N.

P3. ”We adopt the principle : ’The part is less than the whole’, and
apply it to all numbers, be they finite, infnite, or infinitesimal, as well
as to all sets and processes, be they fnite or infinite.”

The development of the consequences of these three postulates in [1,2]
starts with section 3, where the “numeral” ¬ - called “grossone” - is
introduced as ”the infinite unit of measure” which is declared to be,
or rather, to represent ”the number of elements of the set of natural
numbers, or rather ”numerals”, N”.

The following step is the introduction of the so called ”Infinite Unit
Axiom”, or in short, IUA, which consists of three parts, namely :

Infinity : Any finite natural number n is less than the grossone ¬,
that is, n < ¬.

Identity : The following relations hold :

0.¬ = ¬.0 = 0, ¬−¬ = 0, ¬/¬ = 1
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¬0 = 1, 1¬ = 1, 0¬ = 0

Divisibility : For any finite natural number n, the infinite sets
Nk,n = {k, k+n, k+ 2n, k+ 3n, . . .}, 1 ≤ k ≤ n have the same number
of elements given by the numeral ¬/n .

Obviously, the numeral ¬ / n above is considered to be infinite, and
therefore, its inverse n / ¬ is considered to be infinitesimal. Further-
more, ¬ / n is, in fact, considered to be an infinite integer.

3. How the Syntactic - Semantic Axiomatic Theories in
Mathematics are Set Up

As mentioned, an essential feature - and peculiarity - of the ”Grossone
Theory” is the thorough interplay in its axiomatic development be-
tween the three Postulates 1,2 and 3, and on the other hand, the
three components of the ”Infinite Unit Axiom”. And manifestly, the
respective Postulates have a clearly distinct nature from the mentioned
axiom, least of of all due to the rather general, informal formulations of
the former. Indeed, the postulates are formulated in what me justifi-
ably seen as a kind of ”philosophical language”, while on the contrary,
the three components of the ”Infinite Unit Axiom” are expressed in
simple mathematical terms.

To put it briefly, the postulates are expressed, and will be acting in
the setting up of the ”Grossone Theory” as semantic data. And in
fact, they simply cannot act in any other manner, given their formu-
lations which do not belong to Mathematics. In this way, it is only
the three components of the ”Infinite Unit Axiom” which can, and
will act as syntactic data, that is, as is customary in usual axiomatic
mathematical theories.

It is, therefore, precisely that distinction between the postulates and
the axiom which bring up the issue of a rigorous foundational status
of the ”Grossone Theory”. And this is, then, the issue which inspired
and motivated the introduction in this paper of the syntactic - seman-
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tic axiomatic theories in Mathematics.

For illustration, and as the source of the idea of the general syntactic -
semantic axiomatic approach to mathematical theoreis introduced in
this paper, let us recall a few examples of the way the semantically
formulated postulates act in the ”Grossone Theory”, [1,2].

Needless to say, among the three above postulates, the more difficult
to have its action described in any somewhat more satisfactory manner
is P1. Let us cite from [2, p. 101] the following section :

”Let us consider, for example, the operation of construct-
ing the successor element widely used in number and set
theories. In traditional Mathematics, the question of whether
this operation can be executed is not taken into consider-
ation; it is supposed that it is always possible to execute
the operation k = n+ 1 starting from any integer n. Thus
there is not any distinction between the existence of the
number k and the possibility to execute the operation n+1
and to express its result, i.e., to have a numeral that can
express k.

Postulates 1 and 2 emphasize this distinction and tell us
that :

i) in order to execute the operation it is necessary to have
a numeral system allowing one to express both numbers n
and k;

ii) for any numerical system there always exists a number
k that cannot be expressed in it.”

As for the action of P3, let us cite from [2, p.101 ] this section :

”Due to this declared applied statement, (our note : of
Postulate 3), it becomes clear that the subject of this pa-
per is outside Cantor’s approach and, as a consequence,
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outside of nonstandard Analysis of Robinson. Such con-
cepts as bijection, numerable and continuum sets, cardinal
and ordinal numbers cannot be used in this paper because
they belong to a theory working with different assump-
tions. However, the approach used here does not con-
tradict Cantor and Robinson. It can be viewed just as
a stronger lens of a mathematical microscope that allows
one to distinguish more objects and work with them.”

An immediate, clear and simple consequence of P3, [1,2], is the fact
that ¬ being a ”numeral”, also ¬−1 is a ”numeral”, and furthermore,
¬ − 1 < ¬. This is, of course, unlike with the usual infinity ∞, for
which it is assumed that∞− 1 =∞. It is also different from the case
of the Cantor’s cardinal numbers, where for every infinite cardinal c,
we have c− 1 = c.

Before going further, let us note that modern Mathematics, and specif-
ically the branch of Mathematical Logic called Model Theory, [7], is
fully aware of the content of the above Postulate 2. In fact, this pos-
tulate is simply one of the conclusions of the modern developments in
the study of the axiomatic method in Mathematics. Consequently, in
itself, it does not act upon the various axiomatic mathematical theo-
ries. Certainly, the awareness, and even more so the relevance of this
content was already dramatically underlined back in the early 1930s,
and before the emergence of Model Theory, by Gödel’s Incompleteness
Theorem regarding, among others, the Peano Axioms.

Finally, let us turn to the introduction of the general syntactic - se-
mantic axiomatic method in mathematical theories which is the main
object of this paper. For that purpose, we shall use the notations in
section 1.

We start, therefore, with any nonvoid set A which serves as the al-
phabet of a given syntactic - semantic axiomatic mathematical theory
under consideration. Further, according to a specified procedure, we
construct a nonvoid set F of well formed formulas, each of which is
obtained effectively by a finite number of steps from the alphabet A.
Then, we choose a nonvoid set R of logical deduction rules which op-
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erate accordint to (1.1). Last, we choose a novoid setA ⊆ F of axioms.

And here, and unlike with the usual axiomatic method as presented
in section 1, an additional stage is introduced. The essence of this
additional stage is that due to the novelty of the presence of seman-
tical type postulates or other considerations - which we shall jointly
denote by S - the resulting axiomatic theory is no longer given by all
the theorems in TF ,R(A), see (1.5). Instead, depending on S, we have
specified a nonvoid subset of so called S-valid theorems, namely

(4.1) TF ,R(S,A) ⊆ TF ,R(A)

which has the property that, for every τ ∈ TF ,R(A) \ TF ,R(S,A), we
have, see (1.6)

(4.2) TF ,R,A(τ)
⋂
TF ,R(S,A) = φ

We conclude with

Definition 4.1.

By an axiomatic mathematical theory one means a structure

(4.3) (A,F ,R,A, TF ,R(A))

as specified in (1.1) - (1.5).

By a semantic - syntactic axiomatic mathematical theory one means
a structure

(4.4) (A,F ,R,S,A, TF ,R(S,A))

as specified in (4.1) , (4.2).

Remark 4.1.

Clearly, if in (4.1) we have
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(4.5) TF ,R(S,A) = φ

or alternatively, we have

(4.6) TF ,R(S,A) = TF ,R(A)

then, in both these cases, condition (4.2) is satisfied by default.

Obviously the case (4.6) can be seen as the usual case of axiomatic
mathematical theories corresponding to (4.3).

The case (4.5) corresponds to the trivial situation when the syntactic
restrictions imposed by S are so extremely severe, as not to allow any
theorem from TF ,R(A).

6. The case of the Grossone Theory

Strictly formally, one of the axioms of the Grossone Theory may recall
(1.8), namely, the so called Infinity Axiom, see section 2

(6.1.) n < ¬

except that in (1.8) the number M is supposed to be a usual natural
integer, although quite large, for instance, typically larger than 10100,
while in (6.1), the grossone ¬ is definitely not supposed to be a finite
”numeral”.

But let us now see how the Grossone Theory is supposed to be put
together as a semantic - syntactic axiomatic mathematical theory.

One possible way in this regard may be as follows.

We start with the usual Peano Axioms to which we add the three
Infinite Unit Axioms, see section 2. Let us denote by A the set of all
these axioms.

Now, as a fundamental novelty of the Grossone Theory, we denote by
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S the three Postulates, see section 2, P1, P2 and P3, which are sup-
posed to impose semantically, and not syntactically, the restrictions
on the logical deductions which follow from the axioms A, as would
be the case in usual axiomatic mathematical theories.

Clearly, the mentioned three postulates which make up S are them-
selves formulated semantically, and not syntactically, therefore, they
simply cannot operate in any of the usual syntactic ways.

And how does then S operate semantically ?

Well, in principle, this is very simple indeed. Namely, according to
(4.1), see also (4.4), all one has to do is to specify the set

(6.2) TF ,R(S,A)

in the given setup of the Grossone Theory, and do so as a strict subset
of TF ,R(A).

Here however, the doors open up to the considerable complexities of
possible semantical approaches, when compared with the syntactical
ones. And to mention one single indication of such complexities, one
that is particularly relevant in this case, it suffices to recall the prob-
lems faced by automatic translation from one language to another
when it comes to deal with the semantics of languages, and not only
with their syntax.

In short, so far, in the Grossone Theory it has been considered as inad-
missible - in view of the semantical action of S - to specify TF ,R(S,A)
in (6.2) as a usual Catorian set. Furthermore, the considerably more
strong restriction is practiced, according to which, it is simply con-
sidered to be meaningless merely to conceive of TF ,R(S,A) as being a
usual Cantorian set ...

In conclusioon, the example of the Grossone Theory points already
to a sharp dichotomy in the realms of syntactic-semantic axiomatic
mathematical theories, namely :

• Syntactic - Semantic Axiomatic Mathematical Theories in which
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the respective TF ,R(S,A), see (4.1), (4.4), (6.2), are considered
to be usual Cantorian sets.

• Syntactic - Semantic Axiomatic Mathematical Theories in which
- due to the semantic restrictions - it is meaningless to consider
the respective TF ,R(S,A), see (4.1), (4.4), (6.2), to be usual
Cantorian sets.

As mentioned, the Grossone Theory seems so far to belong to the sec-
ond type of syntactic-semantic axiomatic mathematical theories.
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