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The Author suggests that frequent distributions can be applied to the modelling the in-
fluences of stochastically perturbing factors onto physical processes and situations, in
order to look for most probable numerical values of the parameters of the complicate
systems. In this deal, very visual spectra of the particularly undetermined complex prob-
lems have been obtained. These spectra allows to predict the probabilistic behaviour of
the system.

Normal distribution, also known as the Gauss distribution, is a
distribution of the probabilities ruling physical quantities and
any other parameters in general, if the parameters are affected
by a large number of purely stochastic processes. The normal
distribution plays a highly important rôle in many fields of
knowledge and activity of the Mankind. This is because of
all distributions, which may be met in the Nature, the most
frequent is the normal distribution. In particular, the nor-
mal distribution sets up the law of the Brownian motion —
the fluctuations of Brownian particles being affected by the
probabilistically perturbing factors such as the heat motion of
molecules. In these fluctuations, the consecutive changes of
the particles’ location are independent from the last events in
them, and their any current location can be assumed to be the
initially start-point.

As an example of another sort, a simplest situation of the
theory of games can be provided. In this example, an initially
rateS0 increases proportionally to the progression coefficient
q1 with a probability of p1, or decreases proportionally the
progression coefficientq2 with a probability ofp2. As is obvi-
ous, the pair of these numerical values are connected to each
other here: these are the current and past values connected as
Si+1 =Si qi .

However in the core of this problem, the examples are a
manifestation of the same situation, becauseS0 can be meant
as any parameter under consideration in a process being af-
fected by perturbing factors.

It is clear that, having duration of the process unbounded,
the numerical value of the parameterS0 will vary near an
average value, then filling, step-by-step, the arc of the normal
distribution.

The current valueSi should return back to this average
value each time after a number of the steps passed in the
ways of different lengthes under stochastic alternatingq1 and
q2. Therefore, concerning the parameters of the perturbing
effects in the perturbation series, the set of the current numer-
ical values of the parameters is different in the cases of both
sequent and parallel observations. Thus, it seems that there
should not be “spectra” or “non-uniformities” in the Gauss
arc. On the other hand, the Gauss distribution is a particu-

lar case of more complicate distributions, where the smooth
form of the Gauss distribution is only an idealisation of those.
Because some numerical values can meet each other in the se-
ries of the observations, the frequent distribution∗ of thesum
of all numerical values registered in many seriesmanifests
the preferred numerical values ofSi thus producing by this
its own specific spectrum.

Note that the discrete nature of normal distributions was
experimentally discovered in different physical processes in
already the 1950’s by S. E. Shnoll [1].

Figures 1–3 show examples of the frequent spectra which
came from the normal distributions being affected by two,
three, and four perturbing factors (the progression coeffi-
cientsqi). The ordinate axis shows the number of coinci-
dent numerical values. The axis of abscissas shows the cur-
rent values ofSi in doles of the initially value. These nu-
merical values were given, for more simple and convenient
comparing the histograms, in the same interval of abscissas
from 0.0001 to 10000, while the initially parameters were as-
sumed to be such that the axis of the distribution crosses the
initially sum S0. The diagrams were obtained by summing
500 series of 500 steps in each (so the common number of
the values is 500× 500= 250000). The relative length of the
current intervalg was assumed 10−6 of the current valueSi .
The algorithmic language C++ was used in the calculation.

This is a fragment of a computer program

for ( int t = 1; t < 500; t ++ ) {

double Si = 1;

for ( int u = 1; u < 500; u ++ ) {

if ( a >= b && a >= c ) {qi = q1 ; goto nn ; }

if ( b >= a && b >= c ) {qi = q2 ; goto nn ; }

if ( c >= a && c >= b ) {qi = q3 ; goto nn ; }

nn: Si = Si*qi ;

if ( Si < 10000 && Si > 0.0001 )

i++ , m[ i ] = Si ; }

}

∗Frequent distributions provide a possibility for bonding the probability
of the appearance of numerical values of a function in the area where it ex-
ists. That is, the frequent distributions show the reproducibility of numerical
values of the function due to allowed varying its arguments. There is a ready-
to-use function “frequency” in MS Excel; any other software can be applied
as well.
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Fig. 1: Frequent distribution obtained withq1 = 1.5, q2 = 0.5,
p1 = 0.555, p2 = 0.444; number of steps in the series is 500,
number of the series is 500; number of the numerical values in
the scale 190,000 (of those, nonzero intervals are 8,000).

Fig. 2: Frequent distribution obtained withq1 = 1.5, q2 = 0.5,
q3 = 1.37, p1 = 0.333, p2 = 0.333, p3 = 0.333; number of the
steps in the series is 500, number of the series is 500; number of
the numerical values in the scale is 180,000 (of those, nonzero
intervals are 62,000).

Fig. 3: Frequent distribution obtained withq1 = 1.5, q2 = 0.5,
q3 = 19.3, q4 = 0.047, p1 = 0.294, p2 = 0.235, p3 = 0.235,
p4 = 0.235; number of the steps in the series is 500, number of
the series is 500; number of the numerical values in the scale is
67,000 (of those, nonzero intervals are 28,000).

Fig. 4: Frequent distribution obtained withg = 0.1 from the cur-
rent numerical valueSi ; hereq1 = 1.5, q2 = 0.5, p1 = 0.555,
p2 = 0.444; number of the steps in the series is 100, number of
the series is 500; number of the numerical values in the scale is
48,000 (of those, nonzero intervals are 173).

modelling the change of the parameterSi and the set of a
massive data ofSi , in look for the frequent distributions ob-
tained due to three perturbing factorsq1, q2, q3. Herea, b,
c are prime numbers which stochastically change (the com-
puter program contains a function which generates random
numbers), in each single cycle of the observation, along the
intervals whose length is proportional to their probabilities
p1, p2, p3.

The graphs manifest that fact that, in the common back-
ground of the numerical values of the current parameters,
there is only minor number of those whose probability ex-
ceeds the average value in many times. Besides that, the
exceeding numerical values depend on the numerical values
of the progression coefficients, but are independent from the
length of the series (the number of the steps). Increasing
the number of the perturbing factors does not make the non-
uniform distribution more smooth, as it should be expected.
Contrary, the non-uniformity of the distribution increases: in
this process the allowed current valuesSi occupy more square

of the graph, while their number in the given section of the
axisx decreases. Therefore a small probability of that the cur-
rent valuesSi will valuable shift from their average positions
appear due to the appearance of the long chains of the co-
multipliers which have the progression coefficients larger (or
lesser) than unit. If the progression coefficients differ valu-
able from each other, the histogram manifest distributions of
high orders (see Figure 3).

Consider an ultimate case where all perturbing factors, i.e.
the progression coefficientsqi , differ from each other by the
numerical values, and there is not their coinciding numerical
values in the series. This situation can easy be modelled, if
setting up in the computer program that the progression co-
efficients have a connexion with the counters of the cyclest
andu, or that they are varied by any other method. In this
case, in a limit, the amplitude of the numerical values in the
histogram will never exceed unit, nowhere, while thefrequent
non-uniformitywill still remain in the distribution. Therefore,
even if extending the length of the unit interval, the same dis-
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Fig. 5: Non-symmetric frequent distribution obtained according
to the data of Fig. 2; number of the numerical values in the scale
is 22,000 (of those, nonzero intervals are 2,400).

Fig. 6: Frequent distribution of the solutions of the quadratic
equationx2 − 2Bx+ C = 0 with q1 = 1.33,q2 = 0.71,q3 = 1.33,
q4 = 0.71; herep1 = p2 = p3 = p4 = 0.25; number of the steps in
the series is 300, number of the series is 300; number of nonzero
intervals is 16,000. All geometric coefficients of the progression
are independent from each other.

Fig. 7: Frequent distribution of the solutions of the quadratic
equationx2− 2Bx+C = 0 with q1 = 0.71,q2 = −0.71,q3 = 0.71,
q4 = −0.71; herep1 = p2 = p3 = p4 = 0.25; number of the
steps in the series is 250, number of the series is 250, number of
nonzero intervals is 1,800. All arithmetic coefficients of the pro-
gression are independent from each other.

Fig. 8: Frequent distribution of the solutions of the quadratic
equationx2−2Bx+C = 0 with q1 = 0.127,q2 = 1.13; p1 = 0.465,
p2 = 0.535; number of the steps in the series is 500, number of
the series is 10,000; number of the numerical values in the scale
is 27,000, number of nonzero intervals is 1,350. All arithmetic
coefficients of the progression are dependent on each other.

tribution takes the amplitudal discrete shape again. Finally,
under truncating the number of the intervals (this, generally
speaking, means analysis of the given process with a lower
precision), the graph takes a shape of almost the smooth nor-
mal distribution (see Figure 4).

It is possible to suppose that the discreteness of normal
distributions (and, as is obvious, any other distributions as
well) is their core property originated from that the rational
numbers are distributed with different density along the axis
of numbers [2,3].

Shapes of the histograms depend on specific parameters;
they may be very spectacular. So, in the bit of the computer
program that was given above, each perturbing factor realizes
itself independent from the others. If however, for instance in
the first condition, one replaces the logical “and” with the
logical “or”, the distribution changes its shape very much
(see Figure 5).

So forth, Figures 6–9 show illustrative examples of the
versions of the frequent distributions of one of the solutions
of a quadratic equationx2− 2B x+C= 0, where we see iter-
rationally correcting two parametersB andC whose initially
numerical values are units.

In the example shown in Figure 6, the progression coef-
ficients are geometric, and are independent from each other.
The parameterB is under a correction by the coefficientsq1

andq2, while the parameterC is under a symmetrical correc-
tion by the coefficientsq3 andq4. Specific to the graph is that,
somewhere left from the main distribution, in the background
of many dense numerical values whose probabilities are very
small, a small number of the numerical values having a very
high probability appear (they experience a shift to the side of
small numerical values of the function).

In the other examples shown in Figures 7 and 8, the pro-
gression coefficients are arithmetic. In the distribution shown
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Fig. 9: A fragment of the frequent distrinution according to the
data of Fig. 8; number of the numerical values in the scale is 5,300
(of those, nonzero intervals are 220).

in Figure 7, four progression coefficients are present; they are
symmetric. The histogram is built by a set of the Gauss arcs of
the first, second, and higher orders which fill the side of neg-
ative numerical values. The distance between the arcs, and
their shape depend on the numerical value of the progression
coefficients. In Figure 8, we give a part of the quadratic func-
tion distribution in the region of negative numerical values of
its solutions taken under two coefficientsq1 andq2, where the
parametersB andC are additionally connected to each other,
and their correction is produced commonly for them. The
respective bit of the algorithm has the form:

for ( int t = 1; t < 10000; t ++ ) {

double B = C = 1;

for ( int u = 1; u < 500; u ++ ) {

if ( a >= b ) B = B + q1 , C = C - sqrt(q2) ;

if ( b >= a ) C = C + q2 , B = B - q1 ;

if ( B*B - C > 0 )

Si = B - sqrt ( B*B - C ) ;

i++ , m[ i ] = Si ; }

}

Here, as well as in the example shown in Figure 7 (but
with more obvious visibility), that fact is manifested that the
overwhelming number of the numerical values, i.e. the prob-
able solutions of the function obtained under the variation of
the parametersB andC, have an infinitesimally small prob-
ability in the scale, while the probability of the solutions is
concentrated in a very small number of the solutions where
it thus is very high. In the fragment of the histogram taken
in a semi-logarithmic scale (Figure 9), is is clearly seen that
the peaks of the maxima “grow up” from the frequent con-
centrations of the numerical values of the functions in the
axis x. Should this mean that, in the case of similar distri-
butions of a macroscopic system having an arbitrary number
of solutions (degrees of freedom), the macroscopic system
under a specific set of the parameters acting in it can be in
selected special discrete (quantum) states, i.e. the system can
have discrete solutions?

It is absolutely obvious that, first, such maximally proba-

ble solutions are mostly interested in processes and phenom-
ena we study. Finding these solutions by some other methods
that the method given above would be very complicate. Of
course, in formulating algorithms for similar problems (ob-
taining the massive of the required values and their distribu-
tion by the algorithm) it is expedient to introduce reasonable
limitations on the intervals of the parameters, their relations,
etc., in order to excluse some extra calculations non-useful in
the problems.

The simple examples we considered here show that the
logical mathematical models similar to those we considered
can contain actually unbounded number (with a limit pro-
vided by the computer techniques only) of both stochastic
influences (the parametersqi) and the conditions of their ap-
pearance (the logical and other relations between the coeffi-
cientsqi and also the parameters of the system). In the same
way, very complicate complex influences of very different
stochastic factors affecting any processes we study (not only
physical processes) can be modelled if their formalization is
possible. Moreover, it is probably we can set up the proba-
bilistic system or process to be into a small number of stable
states, which are necessary to our needs in the problem, by
respective choice of the parameters affecting it.

Concerning the Brownian motion as a particular case of
normal distributions, it can be also analysed if we know the
spectrum of the factors perturbing it (the dole of each factor
in their common sum, and the goal of each factor into the
commonly perturbing influence). Concentration of the Brow-
nian molecules and their momentum can be such factors in
the problem.

Generalizing all that has been presented in this paper, I
would like to say that frequent distributions provide a pos-
sibility for bonding the reaction of different parameters of a
complicate system being affected by stochastic factors of the
surrounding world, and also finding most probable states of
the system thus predicting its behaviour. Having any problem,
both those of physics, industry, economics, game, and others
where numerous parameters are unknown, non-sufficiently
determined, or are affected by stochastic changes, the method
that presented in the paper leads to a spectrum of the most
probable solutions of the problem.
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