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2012-11-15

Abstract

This article adds to [4] some nearer explanations. It is shown again
that Maxwell’s equations are integrable, but I am doing it without quater-
nions, which is simpler, albeit more superficial. It suffices however to take
insight into the very nature of classical electrodynamics and path integra-
tion in quantum electrodynamics.

1 Introduction

In its covariant form, Maxwell’s equations are given as

2Aµ(x0,x) = jµ(x0,x), (0 ≤ µ ≤ 3),

along with two other conditions: the first is charge conservation,

∂j0/∂x0 +∇ · j = 0,

and the second equation is the socalled Lorentz gauge,

∂A0/∂x0 +∇ ·A = 0

see: [3, II-18-6].
Both, Lorentz gauge and charge conservation are intimatedly related, and

according to Poincaré’s Lemma, they both state their local integrability on single
connected regions in space time, on which they are continuously differentiable
(see [1, Sec. 2-12 to 2-13]): Let Ω ⊂ R4 be single connected set contained in an
open set U ⊂ R4, and let f0, ..., f3 be continuously differentiable function on U
into either R or C. Then the following statements are equivalent:

1. ∂0f0(x) + · · ·+ ∂3f3(x) = 0 ∀x ∈ Ω

2. For any two paths γ and γ′ in Ω joining a, b ∈ Ω:
∫
f · dγ =

∫
f · dγ′.

∗To the generous bookseller from Herman Kershaw, who once, at the book fair’s last day
in Frankfurt, ceded H. Cartan’s book Differential Forms [1] to me, then a poor student, after
having passed some checks that I really cared for it.
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2 Problem Statement

So, obviously, one would like to condense the 4-vector Maxwell equation into
a single scalar equation 2L(x) = Q(x), where L(x) =

∫ x
a
A · dγ and Q(x) =∫ x

b
j · dγ′. However, there are two concerns as to this:

3 Concern 1

The first problem is that the domain of definition of j or A may not be simply
connected, like for instance a circle in two or more spatial dimensions: In case
of a circle one might end with two and more different solutions, and in general,
according to to the number of holes and turns of loops.

In order to see that this concern can be overvcome, let me note that for
a continuously differentiable function F on U ⊂ R4 and a, x ∈ U the integral∫ x
a
∂F · dγ is invariant w.r.t. diffeomorphisms Ψ : U → U (i.e. bijective map-

pings which are differentiable along with their inverse): This is so, because ∂F
transforms contravariantly under Ψ, whereas dγ transforms covariantly, so that
the Jacobi matrix cancels against its inverse.

With this, let me explore the situation of two space and one time coordinate
first: Given charges, confined to a circle in the xy-plane, and let the time axis
be perpendicular to it, then there are two classes of closed paths: One to the
side of the circle, and one intersecting the circle. Those to the side contract
homeomorphically to a point, so yield a zero result. So, what about the loops
which intersect the circle one or more times?

The point now is that with the time perpendicular to the circle in the xy-
plane, the particles will not go in a circle, but in a spiral around the time axis,
and the originally thought circle is being torn into a spiral. This spiral can
be stretched homeomorphically into a line along the time axis. That leaves us
with loops encircling the time axis one or several times. Now I observe that
I can lift these loops further up the time axis without affecting the values of
path integral along those loops. And, if the particles haven’t stayed for eternity
in that place - which may be assumed not to have happened, then, lifting the
loops further towards t → ∞, no charges will then be present and a potential
vector field will likewise converge to zero. So, by the principle that all physical
observable quantities are to be confined to a bounded region in spacetime, the
path integrals along all loops (in the assumed 3-dimensional spacetime) give a
zero value.

The same argument now applies to 4 dimensional spacetime: all 3-dimensional
holes in space tear up along the time axis and can be stretched out towards
t → ∞ and t → −∞ resp.. And, since there both fields and charges are sup-
posed to vanish, all integrals along closed paths again give zero.
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4 Concern 2

The 2nd concern is that apart from the ranges of definition of j and A, the
path integration must not be taken w.r.t. the Euclidean metrics, but w.r.t.
the Minkowsi metrics, i.e.: the path integration has to be restricted to regions
in which the Lorentz matrix is invertible. Now, with one time and two space
coordinates, spacetime is divided into 3 disjoint such regions, separated by the
forward and backward light cones. In 4 dimensions, however, in the space-like
region {(x0,x) | |x0|2 < ‖x‖2} the Lorentz metrics is twice degenerate, because
the 4-dimensional Euclidean unit ball cuts into an upper and lower hemisphere:
the Lorentz metrics simply does not distinct between corresponding points of
either halves. The upper and lower hemispheres can be associated with the
positive and negative sign of the determinant, or equivalently, a positive or
negative sign of parity.

5 Conclusion

So, in 3 dimensions of space-time we end up with 3 connected regions in which
Maxwell’s equations can be integrated to one scalar equation, each. And in 4
dimensions of space-time, there are four regions in which Maxwell’s equations
can be integrated. The excluded regions in 4 dimensions, defined up to rotation
in the 3-dimensional space, is the union of forward and backward light cone with
{(x0, · · · , x3) | x3 = 0}. The set {(x0, · · · , x3) | x3 = 0} could be included to
either be part of the upper or lower hemisphere. But a smarter solution would
be the replacement of R3 by the triple (σx, σy, σz) of Pauli matrices in which case
the 2-fold coverage SU(2) of SO(3) would smoothly resolve the parity flip. In
[4] just that is done. Anyhow, time inversion homeomorphically maps forward
and backward light cones onto oneanother, and so does space inversion with the
spacelike positive and negative parity cones. The four regions therefore come
from the four combinations of the two discrete symmetries that the groups O(4)
and U(4) possess: time and space inversion.

So, where did we reach? We showed that one can rewrite Maxwell’s equations
into a quadrupel of wave equations of action integrals, and solving these, will
give us the solution of Maxwell’s equations in form of a quadruplet of actions.
The general solution then will be any complex linear combination of the four
component solutions up to the additions of constant complex vectors χ in C4.
And then, we get a U(4)-symmetry on top. (I could have chosen real linear
combinations with O(4) on top, but since the fields Aµ are complex-valued,
it’s better to extend to the complex from scratch.) What is that symmetry
group on top of the solutions good for? The interchange of any two of the
four components maps one-to-one with the interchange of two of the four time
and space coordinates x0, · · · , x3. In non-relativistic classical mechanics time
and location coordinates are equivalent and part of one (Euclidean) symmetry
group. We now achieved right that equivalence of space and time coordinates
in Maxwell’s relativistic theory, either.
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6 Outlook

The integrability of Maxwell’s equations offers an interesting perspective: It
suffices to path integrate the sources, L(x) =

∫
j · dγ (with a fixed starting

point) to get the action integral of the vector field A, and the differential of this
action field will give A in turn.

That alludes to what R.P. Feynman said in [2]:

”..I was now convinced that since we had solved the problem
of classical electrodynamics (and completely in accordance with my
program from M.I.T., only direct interaction between particles, in
a way that made fields unnecessary) that everything was definitely
going to be all right. I was convinced that all I had to do was make a
quantum theory analogous to the classical one and everything would
be solved..”

Moreover, we touch quantum field theory by the following: Path integrating
the vector field A in any of the four component regions, e.g. in the forward
light cone gives a function F which has the dimension of energy by test charge.
Next, an implicit additional charge factor enters from the charged sources that
had been path integrated, plus we used dx0 = cds, where c is the speed of light
(that I tacitly set equal to 1). With e0 being the elementary electronic charge, I
can the write e0F = e0

∫
A ·dγ in units of e20/c as a dimensionless function. But

e20/c = α~, where α is known to be the dimensionless fine-structure constant.
Add to this, sofar the test charge is a constant e0 resting at some place (x0,x),
but if we let e0 = e0(x) move in spacetime, then this makes F operate on e0(x).

That all is one side of the relations. The other one is that we never left clas-
sical realms: It still holds that from F (x) alone, one can exactly determine the
motion of the sources j(x). It therefore repeats the canon from classical gravi-
tation: The field is the equivalent dual of the particle view: The field holds the
complete observability of the particles: just by surrounding the particles and by
looking at them from all sides, lets us know exactly what the particles did be-
fore, at their retarded local times. In particular, this excludes energy-momentum
transfer from the particles to field bosons per se: In it, energy-momentum ex-
change occurs only, when the electromagnetic field reaches a charged particle
target. Or, as Feynman put it equivalently: photons are edges that connect two
nodes: a charged particle source with a charged particle target.

However, by surrounding the particles and looking at them, we ourselves
interact with the particles at our local time, which will be seen by the particles
in turn at their advanced local time, in future. That would be just Feynman’s
perturbative approach.
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