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Deduction of orbital velocities in disk galaxies.
or: “Dark Matter”: a myth?

by using Gravitomagnetism.

T. De Mees - thierrydemees@pandora.be

Summary

In my paper A coherent dual vector field theory for gravitatida explained how simply the Gravitation Theory
of Newton can be extended by transposing the Max&lettromagnetism into Gravitation. There exisitdded a
second field, which can be called: co-gravitati@yrotation- (which | prefer), gravito-magneticlfieand so on.

In this paper, | will call this global theory theaMwell Analogy for Gravitation (MAG) “Gyro-Gravitain”.

One of the many consequences of this Gyro-Graeitafheory that | have written down, is that Darktidadoes
not exist. At least far not in the quantities tlsameones expect, but rather in marginalized guesitiMany
researchers suppose that disk galaxies cannossuiiout missing mass that, apparently, is ifkésiand which
has to be taken into account in the classic Newtepler model to better explain the disk galaxiéspes.

An remarkable point is that Gyro-gravitation The@ynot only very close to GRT, but more importaedsy to
calculate with, and coherent with Electromagnetikns no coincidence that nobody found the sanseltevith
GRT, not because GRT would obtain some other rdsutitbecause it is almost impossible to calcukatk it.

A demonstration is again given in this paper, whededuce the general equations for the orbitabaies of
stars in disk galaxies, based on the assumptiarsofiple mass distribution of the initial spherigalaxy.
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1. Pro Memore : Symbols, basic equations and philophy.

1.1 Maxwell Analogy Equations in shortke two fields.

The formulas (1.1) to (1.5) form a coherent seeqgfations, similar to the Maxwell equations. Thecglcal
chargeqis substituted by the maBg the magnetic field by theGyrotation £, and the respective constants as
well are substituted (the gravitation accelerati®mwritten asg and the universal gravitation constant@s=
(4T[Z)'1. We use sigiid instead of= because the right hand of the equation inducesethéand. This sigri]
will be used when we want to insist on the inductfoperty in the equatiork: is the induced forceV the

velocity of masdn with density,0. The operatok symbolizes the cross product of vectors. Vectoesnaitten in
bold.

FOm(g+vx Q) (1.1)
Ogopl/C (1.2)
c2Ox Qo j/+0glot (1.3)

where] is the flow of mass through a surface. The tégidt is added for the same reasons as Maxwell did: the
compliance of the formula (1.3) with the equation

divjo —dp/ot
It is also expected dvQ=002=0 (1.4)
and OxgO -0R/adt (1.5)

All applications of the electromagnetism can frdrart on be applied on thggrrogravitationwith caution. Also it
is possible to speak of gyrogravitation waves.

1.2 The definition of absolute local velocityhe velocities are not relativistic.

When it comes to a competition between GRT and MAG@ention should be paid to two very important
differences.

The first one is that the actual MAG that | usen@ really relativistic (although one could spedksemi-
relativistic; | prefer to speak of Dopplerian).vbrks like the Newton and the Kepler theories, &iked non-
relativistic Electromagnetism.

Newton and Kepler did not see that the second &gisted, caused by the second terrfsitm m'(1+ v2/c2)k2.

This expression is namely the simplest form for @o-gravitation forces, and it is applicablevibetn two
identical moving masses in one dimension of plaee (‘A coherent dual vector field theory for gravitatiptast
chapter).

This second term, which is very small and whichbig the way- often wrongly seen as an expressitatem to
relativistic phenomena (I would rather say: tramsakeDoppler-effects), was not observed at that Ena relation
to Doppler-effects will not further be discussedhis paper.

The extension of the theory for very fast velositie non-steady systems has been settle@lbg Jefimenkan
several of his books, and is very analogical to twhacalled “relativistic electromagnetism”, whetiee field
retardation -due to the finite velocity of gravitet- has been taken into account.

The consequence of this first difference is thathie framework of MAG, we should only study the dgnof
steady systems, wherein the retardation of thddjelue to their finite velocity, is not of any cial importance.

The second difference is that absolute velocitylyrezxists. Not “absolute” with regard of the “cesit of our
Universe, but locally absolute” in the observed system wherein the fomteract within a given time-period.
This means that the solar system can be studieal dgsed system for “short” time periods of seveedrs.
However, | found that Mercury's perihelion advaige@duced by the sun's motion in the Milky Waygs&Did
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Einstein cheat ). Also the solar system, together with its motionthe Milky Way, can be seen as a closed
system too.

When the system of our Milky Way is consideredréhis no need to also consider the cluster whayeirMilky
Way is just a tiny part of, etc.

Without much more explanations, you feel alreadatthmean by “local absolute velocity”.

One of the facets is indeed the place- and timeniade of what is to be observed or to be calcdlaites, that
magnitude can be 'the quantity of elapsed timetHat particular system as well. The gyrotatiort paMercury's
perihelion advance is only visible after many yearspared with the very visible gravitational oabitnotions of
the system.

The correct way to settle it, is to understand #mathgravitation field of anyparticle can be seen as tloeal
absolute velocitygero in relation to all the other particles. Nlo¢ observer can be at an absolute local velagity
zero, unless he is a dynamic player in the systéim avsignificant mass. Each motion of one body génerate
the gyrotation field onto any other body of theteys and vice-versa. This means that in a moving body-
system (without any other body in the universe),hage to consider the gravitation centre of theidmds the
zero velocity of the system, just as we used td\fewtonian systems, in high school. And every iotatl motion
of each patrticle plays a role in the gyrotatiorcakdtion of the system.

2. Why do some scientists claim the existence ofdik matter’?

2.1 The orbital velocity of stars in a disk galaxyhe velocities are constant.

One of the mysteries of the cosmos is the discotiat in disk galaxies, the velocity of the stafghe disk is
almost constant. The Milky way characteristics sttewn in Fig. 1 (from Burton 1976 Ann. Rev. 14, 2gBown
from the ADS).
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Figure2 Varnation with distance from the galactic center of the linear velocity of differential
rotation, ©(R), according to Simonson & Mader (1973) at R < 5 kpc and according to
Schmidt (1965) at R > 5 kpe, and of the corresponding total galactic mass surface density,
a(R), according to Innanen (1973). The dots show the rotational velocities found from H |
observations of the subcentral-point region by Shane & Bieger-Smith (1966).

Fig. 2.1.

The linear velocity of the stars is given by thevel® (R) and is fairly constant from the distance of 1 ke
the centre on. The curv@ (R) represents the observed mass surface densityciitvie is smooth and resemble a

hyperbolic function. Much discussion exist on tleerectness of curve (R) because of the very high luminosity
of accretion disks nearby black holes, which givegh apparent mass that is not in correct relatitth their real
mass content.

In Fig. 2. some other velocities are shown of savether disk galaxies (from Rubin, Ford, and Thandn1978

ApJL 225, L107, reproduced courtesy of the AAS)gémeral, we can say that the velocity of the dtafairly
constant, beginning at a distance of 2 or 3 kpc.
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Fig. 2.2.

Rotational velocities of stars in several disk g@s. Most of them have a similar graphic: a
fast, almost linear increase near the nucleus, alkoollaps of the velocity before kpc, and a
stabilization in the disk at (nearly) one singléooiy.

The centre of the bulge has no specific (averagkcity, which result in a zero velocity on theuig. The first

part of the disk outside the bulge, at nearly 2y kas often gotten a some higher velocity. Andr dvkpc, the

velocity is almost linear, sometimes sinusoidalte®f this linearity is almost constant or stays ishort range of
values.

2.2 What did Kepler claim 2The velocities decrease with the distance.

In a planetary system as the solar system, theefddollow a quite simple rule. The square of thatoselocity of
the planet is inversely proportional to its distafiom the sun. This law has been written down bplK&r.

vZ=GM/r (2.1)

For low velocities, this law is correct and candmplied in this paper as such, even if the coreggtation for
higher velocities is somewhat different, as | expd in “On the orbital velocities nearby rotary stars anddk
holes , in chapter 3, equation (3.10).

By increasing distances from the sun, planetsnapidly decrease its orbit velocity. And this laswiothing more
than a geometrical one.

There is noa priori reason that the same law wouldn't be true for stai® galaxy. But reality is different !
Equation (2.1) is extremely different from whablsserved in galaxies.

The purpose of this paper is to find out why tkisa.

2.3 Is there a way to get the Kepler law workingPhe easy hypothesis: Missing Mass

There is a logical problem, and it should be sollgggically. Thus, in order to get disk galaxies @ymg with
Kepler's Law, what could be different that we caneee? Galaxies and stars in general are obseavet],
classified by its distance to us, their weight,irtimeotion in relation to us and so on. For longdjmve only had
light as sole measuring instrument to define akthproperties. Since a few decades, this haséx@éended by
waves of other frequencies than just light: X-rays.

But still, the method is very uncertain if massesreot bright, but cold.

At the other hand, the Kepler Law and Newton's lawky got two variables: mass and distance. Thearsal
gravitation constant could be variable too, butluntw, no evidence has been found for this.
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Some scientists reasoned as follows: the only bhrikeft is mass. The mass distribution neededafeonstant
velocity of the stars must be totally differentrthahat it looks like. Is the mass distribution diént than what
we can see? There must be Missing Mass.

2.4 The easy solution: Black Matterhe start of the myth.

This is how the myth of Missing Mass started, beeasbme scientists reasoned strictly in the coneevway.
The rest of the story is that if that missing miadavisible and thus not bright, it must be Blddhtter.

However, we will see very soon that this way ofKimg is incorrect.

2.5 The other reasoningThe meaning of the Kepler law.

I will not tell you anything new when saying th&ietKepler Law for circular orbits is nothing motgah an
application of the geometrical relationship betwasatonstant force (or a constant accelera@pand a velocity
that is perpendicular to that force (or acceleradh It results in a circular path with raditis

vZ=ar
Any force that stays perpendicular to the velooibeys to this geometrical relationship. It is cléeat with this

relationship, any change of the acceleration allawbange of the velocity and/or the radius. Thihé basic idea
where | start from and which allows me to find tiogrect velocities of the stars in a disk galaxy.

3. Pro Memore : Main dynamics of orbital systems.

3.1 Why the planets' orbits are plane and progradee swivelling orbits.

The gravitation field of the sun is our zero vetgciThe spinning sun gives a motion versus thivitaton field.
This motion is responsible for the creation of aofgtion field as explained inA* coherent dual vector field
theory for gravitatioh. A magnetic-like gyrotation field around the swill influence every moving object in its
neighbourhood, such like planets.

(, ) Planet with
de orbit

Fig. 3.1
The planetary system under the gyrotational infageaf the spinning Sun. Each orbit
will swivel until the sun's plane, with the resulttttize orbit becomes prograde.

These planets will undergo a force which is analalgio the Lorentz force (1.1). In my papérettures on “A
coherent dual vector field theory for gravitatiohy’l explain in Lecture C how the planets move, eleing from
their original motion. The Analogue Lorentz foradlp all the prograde planetary orbits towardsghe's equator,
as explained in chapter 5 of‘coherent dual vector field theory for gravitatioSince the gyrotation force is of a
much smaller order than the gravitation force,ghtire orbit will swivel very slowly about the axisat is formed
between the intersection of the orbit's plane &edsun's equatorial plane. This is due to the tarecomponent
of the gyrotation force. The orbit will progressverds the sun's equator. The orbit's radius willai@nge much
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because the radial component of the gyrotationefaiscsmall as well. That component will only slighthange
the apparent mass of the planet, compared witheiiscity and its orbit radius. The relationshipvee¢n these
parameters is given in my pape®ni the orbital velocities nearby rotary stars antdk holeg, chapter 3,
equation (3.10), admitting that the orbit radiusians quasi constant.

When the planet was originally orbiting in retroggadirection, the gyrotation force will push theuptt away

from the sun's equator. Since the orbit's radidsamly change very slightly during this orbital swlling, the
swivelling will continue until the entire orbit bemes prograde, and further converge to the sunateq

3.2 Equations for the accelerations nearby spinrstays.

In former papers, we found the equations for theelecations upon an orbiting object about a spipsiar, due to
the gravitation and gyrotation fields. The orbiténés not forming a plane that is going through ske's origin,
but an orbit that is parallel to the star's equalbe reason for that choice will follow further.on

_ 3Gmww R*sin’a G mcosa

a = 3.1
X, tot Srzcz r2 ( )
_ 3G mww R'sina cos’ a G msina -
Ay ot — 5r%c? 2 (3.2)

These can be written in the more adequate fornauati relation to the radial and the tangential ponents of
the gyrotational part :

2 2
2 = _GmR a)za);cos a (3.3)
Srec

_Gmwdw R
a, = T in2a (3.4)

R is the star's radiugn the star's mass ar@the spinning velocity of the staq is the angle between the star's
equator and the considered pdint ¢J the orbit angular velocity of the poipt(the parallel-orbiting object) artd
the distance from poif to the star's centre& is the light's speed arfd the universal gravitation constant.

4. From a spheric galaxy to a disk galaxy with conant stars' velocity.
4.1 The global stars' velocity in disk galaxies.
Relationship between the spherical and the diskgal

We have to consider some other facts before weogarf analysis of the stars' velocities in the djalaxy: we
need a reconstruction of the original sphericadugal And we analyse the disk part of the disk galkas well.

P
- Re \L, R Re
fig. 4.1
The schematic view of a disk galaxy with radﬂes. The bulge is nearly a sphere or an

ellipsoid. The bulge area, the disk and the fiereys are studied separatelf is the
considered placd;, is the variable place (for integration).
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In fig. 4.1, we show the schematics of a disk galavth the fuzzy ends of the diskﬂe and 7?e , and with the

fuzzy bulge. The considered plgaés at a distancg® from the galaxy's centre. The variablis used for
integration purposes.

When we call the spherical galaxy “1” and the diskaxy “2” the following infinitesimal volumes are

dV,=2nrhdr and dV,=4mr*dr

Since for every concentric locatiérwith the respective volumes of cases “1” and “®& gan say that
dM,=dM, (because only the densities and the volumestgotged) , it follows the £, 4V, = 0, 4V,

. _pP h
or: == (4.2)
P 2r
. o 3M,(r) -
The spherical density distribution is given ,01(1‘) = Anr by definition,
r

or: dM,(r)=47mr’ p(r)dr .

While the expression for the disk galaxy's massd M, =2 77r p,(r) h(r)d r

In order to fix the ideas, we go further and wepifp as follows.

Idealizing and simplifying the gravitational part.

The value O'Ml(l') can be found by assuming that the density digiohuwof the original spherical galaxy
responds to a simple formula. We could sensiblypBfynour analysis by assuming that for every conde part
of the spherical galaxy is valid that :
dM (r
¢ = constant = % 4.2)
dr R,

WhereinM0 andR0 are the total mass and the radius of the bulges. dfoice is only made in order to get

simpler results. Besides, such a relationship igatally unexpected: when we look at a sphericddgy as a
succession of spherical layers that have the shitiness, from the bulge to the “end” of the galaxg can
expect that the masses could possibly be equakidh layer. The volume of each layer increasesatieatly
while the mass for each layer stays the same.eéAtehd” of the galaxy, the density decreases driaaibt as
well.

Combining (4.1) and (4.2) , we get for the diskagal:

py(r)= o

" 277r R, h(r) *3)

Now, we also know that for the disk galad M, =2 nrpz(r) 11(1') d r , so that when combining with
(4.3):

dM,(r M
2( ) — M, or MZ(I‘) =—2r (4.4)
dr R, R,
2
4
Filling in this equation in the Kepler equationgbs. —£- :G]WZZ(I‘)
r r

This means that in this special, simplified case get for the overall stars' velocity the simpleapn:
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(4.5)

showing that the overall velocity of the stars le tdisk of a disk galaxy is constant and equaht Kepler
velocity at the boundary of the bulge.

Remark however that we just manipulated formulashematically without respecting the full physioataning
during the deduction. Firstly, in (4.4) we consitbionly the mass from the galaxy's centre to theg#l and not
the mass further away from the galaxy's centreoisyg, we considered the mass to be concentratedaipoint
mass at the galaxy's centre.

Although the observed velocities stay in a resdatange, close to the velocity defined in (4.Bg, teality shows
slightly different local velocities. The origin tiese differences interested me, and will be uaddilereafter.

5. Origin of the variations in the stars' velocities.
5.1 The galaxy's bulge area.

5.1.1 Gyrotation acceleration of stars inside thige.

Let us start thinking of a spherical galaxy, whérén centre is rotating, say, one or more masBlaek holes.
These black holes are fast spinning, and many s&asthe center of the spherical galaxy are spinas well.

When we look at a disk galaxy, we observe thatct@ral bulge is not a sphere like the sun, fulinaftter, but
that the bulge is a system by itself.

The summation of the gyrotation field of all thestfapinning stars of the bulge creates a globakilfu spread
gyrotation field, which is difficult to analyze &g as the distribution of the spinning starsriknown.

Since it is even more difficult to know the localrgtation acceleratioinside the bulge without knowing the
locations of the individual black holes, it seerhattthe spread of gyrotation would be ratteepriori- random-
based.

But even if there are several spinning black ho@#ating in different directions through the bulgke global
gyrotation field of the bulge apparently allowe@ flormation of the disk galaxy. The disk of theagal finds its
origin in a global gyrotation field vector, whic perpendicular to the disk.

5.1.2 The fuzzy gyrotation field of the bulge.

Let us think of the fuzzy gyrotation field of thelbe again.

Theoretically, we get, based on (3.4) and with edgapproximation, the tangential gyrotation acalen :

G & m,w, R
, = — S——sin2q; (5.1)
5¢" 5 D;

1

where & ; symbolizes that tha fast spinning stars can be situated anywhereeimtiige. In fig 5.1 , the meaning
of the symbols is visually shown. The vall[élsand @, are variables in time.

The locations and the parameters of the fast spinstiars and black holes are not known. Some titatsould be
used here, but this is not the aim of the presepéep
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fig. 5.1
The bulge of the disk galaxy. A massat a vertical heightH and a horizontal distancg®

from the centre is influenced by the gyrotatiorblaick holei. The surroundings of the bulge

are fuzzy, caused by a random distributionnoblack holes which result in unwell defined
vectors of the gyrotation fields.

The local thickness of the bulge and its surrougsliis symmetric for th&-axis and is determined by (5.1). The
summation-part in equation (5.1) indeed represargpread of gyrotation sources that has a stardkar@tion

and results in a Gaussian probability curve arated-y-plane, but also an axi-symmetric one aboutZais.
Even if the individual black holes are distributethdomly and asymmetrically, we may assume thaktgle and
the z-distribution are Gaussian. This means that alsihérz-direction, a number of stars inside and outside th
bulge could have been trapped by some black hdlesevrotation axis lays parallel to t€y-plane.

The radial component of the gyrotation acceleratamngiven in (3.3), is valid here as well, butiit§uence with
regard to the stars' velocities is not significamipared to the gravitation part.

Concerning the influence of gyrotation and graigtatfor the stars' velocities in the bulge, | exXptat the
effective gyrotation acceleration in the bulgeaw/| because in (5.1), the number of fast spinniagkbholes will
probably be several thousands of times less thautotlal number of stars in the bulge. Moreover,dtientation
of the fields of each black hole's gyrotation filil be randomized, so that the sum of all suetd§ will be very
limited. It follows that the gravitational acceléoa is dominant inside and nearby the bulge.

5.1.3 Gravitational acceleration in the bulge.

Let us do now the easiest part of the work: theigraon acceleration of the bulge. When the moténthe stars
is not taken into account, we speak of pure gréwita The Newton's law for the gravitation accefiemra inside

homogene full spheres gives, at a radlis

R (5.2)

GCM
a4, R, (R) - Pe ’
0

With the little information we have got about thalde, this is the best possible equation. The msigis shows
an attraction.

5.1.4 Stars' velocities in the bulge.

If only the gravitational part of the acceleratiossignificant for the orbital velocities, the ssaorbital velocity at
aradiusR is defined by :

R (for0 <R <R) (5.3)
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As observed, the velocity is linear with the radinside the bulge (Zone 0).

4 Velocity

¥ou/u

fig. 5.2
The orbital velocity in the bulge is linear and cb&s its maximum at the bulge's boundary.

In fig. 5.2 we see the graphic of the velocitiesgoch a bulge, arbitrary supposed here to be 1f0¢teadiameter
of the total disk.

5.2 The zone near the bulge.
5.2.1 More localized gyrotation activity.

The shape of the disk galaxy's section nearby thgebis resembling a Gauss probability distributiém the

horizontal directionX-component), the 'random' distribution of spinnbigck holes in the bulge and the overall
orbital motion of the stars in the bulge contributea more accentuated overall gyrotation vectat tis

perpendicular to the galaxy's disk. This means th@Z-component of the gyrotation is far more domindnatnt
the X-y-component.

The gyrotation forces constrain the orbits to sid@wvn, the more away they are from the bulge. Fhigpe will
influence the gravitational mass to be taken iroantin that area, resulting in different orbitalacities.

5.2.2 The gravitational formulation.

The shape of the disk galaxy near the bulge itefiaig the more we go away from its bulge.

For stars laying in the disk's plane at a rac(iﬁ%2 +H 2)1’2 from the galaxy's centre (see fig.5.3) , the orbit

velocity will be defined by the mass contained witthat radius. For that part of the equation we aggue that
the relatively wide spread of the stars in thisaaalbows us to use the Kepler equation near thgebul

For any star in the galaxy, the bulge's area caseba as a point mass with sz§ . The corresponding orbit
acceleration is given by:

GM,R __ M H
(Hz +R2)3/2 (5.4) A puigeyy — (Hz + Rz)slz (5.5)

a(bulge) X =

But also the mass outside of that radius will ieflae that orbit velocity. That part of the equatah better be
described by a mass-distribution of a disk.

N
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fig. 5.3
The bulge area seen as a ellipsoid. A star, orgiiha distancR 2+H , will get a
gravitational influence which is equivalent to a poimass of the size of the bulge's mass.

For simplicity, we consider the bulge as a spheré \a{itadiusRO .

2) 1/2

I will now find the gravity formulation for the disoutside the bulge. Then only, | will be able &ddct a global
formulation for the star's velocities nearby thégbuand at any place in the disk as well.

5.3 The star's velocities, farther in the disk.
5.3.1 The basic gravitational equations.

Although (5.4) is an approximation for stars theg alose to the bulge, it is quite close to realithis will be
clear when we analyse the disk's velocities. Hézedf deduct the detailed acceleration equationsifiy place in
and close-by the disk.

m

dr

fig. 5.4
A star with mass m orbits about the bulge's nucl@iee infinitesimal ring of a certain
density and height will be integrated in order itwdfthe orbital velocity of the star.

In fig. 5.4 ,r is the variable radiusRR the horizontal distance arfd the height of the star with masga.
Following geometrical equations are valid2 =H2 +[2 and D2 = R2 + H2 (5.6.a) (5.6.b)

Remark that, for simplicity, we consider a diskhwthickness zero. In reality, the disk's thickn&ssot zero,
especially nearby the bulge. Therefore, the dedndiereafter is only valid at a certain distanctéhefbulge.

am o’
' L

Now dM=gr)h(r)rdrda and dag, ,, =G (5.7.a) (5.7.b)

whered @z, ,, p+ is the infinitesimal centripetal acceleration e direction o D" .

_R-rcosa

cos B

Thus, with (5.7.a) , (5.7.a) , (5.8.a) and (5.8 .&juation (5.7.b) becomes :

Also: 1 and D =(R-rcosa) + H* . (5.8.a) (5.8.b)

G',o(r)ll(r)r(H2 +(R —rcos a’)z)dr da

dﬂ r,a)D* =
R(r,a) D o +R  reosd 312 (5.9)
cos (3
r sing -
Now: tamf=_-—""—and cosf=(1+tan’f) " (5.10.a) (5.10.b)
R —r cosa
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. | _GM, (H2 +(R—rc0sa')2)drda
Using (4.3) ,we find :  dag, ,p- = 3 (5.11)

27TR, (H2 +R*+r*-2R rcos a')

In order to find the horizontal and the verticaimpnnent of the acceleration, a projection with alygk needed.
Due to symmetry, | disregard tiecomponent in the plane of the disk.

which result in a multiplication od &, ., p- With cosy for d a,,, ., and withsiny for da;, ., :

Therefore, notice that tan )y = L (5.12)

R —-rcosa

Using (5.10.b) for the anghg, and (5.12) , the following components are found:

GM, (R-rcosa)drda

dag, o = (5.13)
FEar 2R, (H2 +R*+r’ —27€t‘cosa')3/2
and
_GM, Hdrda
daR(r,a)z - Ip) (5.14)

271R, (H2 +RY*+r?-2R rcos 0')3

Equation (5.14) is different from zero iH # O . From (5.13) and (5.14) follow that the oriergaty of the
infinitesimal vectord a is given by (5.12).

The integration of both (5.13) and (5.14) has tddken between the following limits (the same Igrdre valid
for theX- and thez-component).

Re 21 Re 271
Reaox = J. J.daR(r,a)x dadr and i, = J J‘d%'{(r,a)z dadr (5.15) (5.16)
Ry 0 R 0

Remember that for the bulge part, we have got anatljuation. Of course, the integrals (5.15) andi6(5are
meant to be non-trivial. The integral frddrto 27T corresponds to twice the integral frého TT.

5.3.2 Finding the gravitational equations in thaldi

In the first place, we will integrate thécomponent. Remember that the parameférandH must be taken
constant during the integratioll is not supposed to describe the profile of thexgal

Integrating first forr , we find :

da

a _eMm,’ RR, sin* a+ H?cos 3 R R,sin” a + H? cos a
HOY 2R, (stin’a+H2)\/H2+722+7292—272729¢05a (R’sin2a+Hz)\/Hz+R2+R0’—2RRocosa'

0

(5.17)
This integral has been taken betWRbrandRe .

Also theZ-component can easily be integratedifoiwhich gives the following result:
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GM,’ H(R, - Rcos a) H(R,-Rcosq) da
RO 2R, (stinza+H2)\/Hz+Rz+Re’—ZRRecosa (stinza+H2)\/Hz+Rz+R§ -2R R, cosa
(5.18)

This integral has been taken betW(R‘OrIadee as well

Since the integration of (5.17) and (5.18)0is complicated, | could integrate it numericaltprh O to 27T .
However, | consider that stars at a certain distdshevill orbit in a plane under a certain angle witie disk, but |
don't expect a significant difference of velocipngpared with stars which lay in the disk's plan.

Thus,H = O is a valid option in order to get a first ideatloé orbital velocities of the stars. This maked T
considerably simpler.

— GMO ? Re R()
AR (@yxim=0 ~ J 2 2 B 2 2 da
277R, | R JR*+R?-2RR,cosa@ R-/R’+R>-2R R,cos a
(5.19)

By putting aside the facto GM,/27R,) ,We look at the remaining part between the brisclad integrate it.

Therefore, remark that the integral fréhio 27T corresponds to twice the integral frdho TT.

. _26M,| R 4R,R 7|l R, ARR 7
R ,disk|H =0 ]TR0 R(Re —R) (Re _R)Z ’2 R(Ro —R) (R0 _R)Z ’2
(5.20)

whereinF(X, TU2) is the Complete Elliptic Integral of the First Ifin

The equation (5.20) combined with (5.4) wherein se¢ H = O form the overall equation for the orbital
acceleration of the stars of the disk galaxy, sifiel for stars in the disk's plane, and accordihg mass
distribution of equation (4.2).

_GM, 2GM,| R,
a +

_ 4AR,R 1 R, F 4R,R 7
Rt = R 7R, |R(R,-R)| |(R,-R)’2)| R(R,-R)| |(R,-R)* 2

(5.21)

In the next section, | will deduce the orbital \aties for stars in the disk galaxy and find theresponding
graph.

5.4 The global orbital velocities' equation of dgdaxies.

The equation for the orbital velocities of the star the disk galaxy follows outof 2 =a R .

. _ |GM,  2GM, R, 4RR m\_ R, |g ARR 7
e R R, |(R.-R)| ((R.-R)’2]| (R-R)| |(R,-R)" 2
(5.22)

This equation (5.22) gives the orbital velocity afijon in the disk's plane f(RO <R< Re . Remark that these
velocities are only initial velocities, just aftdre orbit swivelling.
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5.4.1 Interpreting the gravitational equations.

The velocities' table is easier to deduce numdyidabm (5.19) than using equation (5.22) , by awog the
Elliptic Integral. By choosing the valu¢#, =1 and R, =10 | and by varyingR between 1 and 10 , the

general profile of the disk galaxy's orbital vetas will appear clearly enough. | leave to thedeao experiment
with other mass distributions and with more dethdata by using (5.17) and (5.18).

(U'fz(lf)zM(,:> R 1 12 2 3 4 5 6 7 8 9 10
dr R v 1 083 154 1,75 1,84 1,92 2 207 217 2,34 2,78
0
tab.5.1

Comparing the figures in tab.5.1 suggests thag#iaxies NGC 4594 , NGC 2590 and NGC 1620 (se2.8y
respond quite well to the mass distribution of eiqua(4.2). Other mass distributions will resultather velocity
distributions.

We are then able to link mass distributions to eiiles and check the theory's validity.

6. Conclusion : are large amounts of “dark matter’necessary to describe disk galaxies ?

With the calculations in this paper, we demonsttdtet the gyrotational swivelling of the orbits efiptical or
spherical galaxies permitted to find a consequetdoity deduction for the stars. The found velesitfor a mass
distribution of dM,(r)/dr =M,/R, gave encouraging results. They describe the stafstities of a certain

number of disk galaxies without the need of darktenaThe order iff of the last equation's right hand is zero.
This kind of disk galaxies | will call galaxies ofder zero.

The physical basics of the MAG theory, with swiirel orbits about spinning black holes in the bukgems to
lead to at least one kind of disk galaxies: gakaxiEorder zero.

The used mathematical model seems to be totallgistemt with galaxies of order zero as well. Butentorders
of disk galaxies have still to been analysed.

\‘
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