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Abstract: Here  is  presented  a  new  type  of  exact  solutions  for  photogravitational

restricted 3-bodies problem (a case of spiral motion).

A key point is that we obtain the appropriate specific case of spiral motions from the

Jacobian-type integral of  motion  for  photogravitational restricted 3-bodies problem

(when orbit of small 3-rd body is assumed to be like a spiral).

Besides, we should especially note that there is a proper restriction to the type of spiral

orbital motion of small 3-rd body, which could be possible for choosing as the exact

solution of equations for photogravitational restricted 3-bodies problem.

The main result, which should be outlined, is that in a case of quasi-planar  orbital

motion (of the small 3-rd body) the asymptotic expression for component z of motion

is proved to be given by the proper elliptical integral.
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1. Introduction.

In this contribution, we present a new type of exact solutions for  photogravitational

restricted 3-bodies problem [1-3], the case of spiral motions.

According to the Bruns theorem [4], there is no other invariants except well-known 10

integrals for 3-bodies problem (including integral of energy, momentum, etc.). But in

the case of restricted 3-bodies problem, there is no other invariants except only one,

Jacobian-type integral of motion [5-6].

The main idea is to obtain from the Jacobian-type integral of motion the appropriate

specific case of spiral motion for photogravitational restricted 3-bodies problem (when

orbit of small 3-rd body is assumed to be like a spiral); besides, such a case of spiral

motion should be adopted by the structure of the Jacobian-type integral of motion.

In  addition  we  should  emphasize  the  appropriate  astrophysical  application  of  the

constructed (exact) solutions of a spiral motion: for example, we could consider the

Sun-Jupiter  system  as  primaries  and  assume  that  only  the  larger  primary  (Sun)

radiates.  Besides,  we  could  consider  a  small  objects  such  as  meteoroids or  small

asteroids (about 10 cm to 10 km in diameter) as the small 3-rd body for such a case.   

2. Equations of motion.

Let us consider the system of ODE for photogravitational restricted 3-bodies problem,

at given initial conditions [2].

We consider  three bodies  of masses  m₁,  m₂ and  m such that  m₁ >  m₂ and  m is  an

infinitesimal mass. The two primaries m₁ and m₂ are sources of radiation;  q₁ and q₂ are

factors of the radiation effects of the two primaries respectively, {q₁, q₂}  (- , 1]. 

We assume that m₂ is an oblate spheroid. The effect of oblateness [7-8] is denoted by

the factor A₂.
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Let  ri   (i =1, 2) be the distances between the centre of mass of the bodies m₁ and m₂

and the centre of mass of body m. The unit of mass is chosen so that the sum of the

masses of finite bodies is equal to 1.

We suppose that  m  ₁ = 1 - μ  and  m₂ = μ, where μ is the ratio of the mass of the smaller

primary to the total mass of the primaries and  0  ≤  μ ≤  0,5. The unit of distance is

taken as the distance between the primaries. The unit of time is chosen so that the

gravitational constant is equal to 1.

The three dimensional restricted 3-bodies problem, with an oblate primary m₂ and both

primaries radiating, could be presented in barycentric rotating co-ordinate system by

the equations of motion below [7-8]:
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- is the angular velocity of the rotating coordinate system and

A₂ - is the oblateness coefficient. Here
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- where AE is the equatorial radius, AP is the polar

radius and R is the distance between primaries. Besides, we should note that

- are the distances of infinitesimal mass from the primaries.

We neglect the relativistic Poynting-Robertson effect [9-10] which may be treated as a

perturbation for cosmic dust or for small particles (less than 1 cm in diameter), we

neglect the Yarkovsky effect of non-gravitational nature [11-13], as well as we neglect

the effect of variable masses of 3-bodies [14-15].

The possible ways of simplifying of equations (2.1):

- if we assume effect of oblateness is zero,  A₂ = 0  (   n = 1), it means m₂ is

non-oblate spheroid (we will consider only such a case below);

- if we assume q₁ = q₂ = 1, it means a case of restricted 3-bodies problem.

3. Exact solution (a case of spiral motion).

Regarding the orbit of small 3-rd body, let us assume such an orbit to be presented like

a spiral (Pic.1).
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Pic.1. Type of spiral motion.

Besides,  let  us  remind that  we could  obtain  from the  equations  of  system (2.1)  a

Jacobian-type integral of motion [5-6]:

)1.3(),,(2)()()( 222 Czyxzyx  

 

- where C is so-called Jacobian constant.

,)(),(sin)(),(cos)( tzztwtytwtx   As per assumption above, it

means that  components  of solution {xi } = {x(t),  y(t),  z(t)} (i  =1,  2,  3)  should be

presented as below:

- where the angular velocity is chosen w = 1.  For example:

1)  If (t) = a t + c , z(t) = b t  - we should obtain the spiral of screw line type,

2)  If (t) = a exp(b t)  , z(t) = c t  - we should obtain the 3-D logarithmic 

spiral,

- here{a,b,c} are supposed to be the arbitrary positive real constants.
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Thus if

we substitute the representation above for the components of solution {xi } = {x(t), y(t),

z(t)} into the Equation (3.1), we should obtain the proper equation below
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-  where  the

expression for  (t) in (2.2) should be simplified in the case of non-oblateness A₂ = 0

(n = 1):
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So,  taking  into

consideration the expression (3.3) for  (t), we obtain from (3.2)
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Besides, we should note from (3.4) that the proper

restriction below should be valid:

- here {q₁, q₂}  (- , 1].  There are two possibilities to solve the equation (3.4): 

6



- 1)  first, we assume z (t) to be given as a proper function of parameter t, then

we should obtain a solution of ODE of the 1-st kind for  (t);

- 2) or the 2-nd, we assume  (t) to be given as a proper function of parameter t,

then we should obtain a solution of ODE of the 1-st kind for z (t).
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For  example,  if

we choose the 2-nd way of above, we should obtain from (3.4): 

4. Conclusion.

We have obtained a new type of exact solutions for  photogravitational  restricted 3-

bodies problem [1-3] (the case of spiral motion).

According to the Bruns theorem [4], there is no other invariants except well-known 10

integrals for 3-bodies problem (including integral of energy, momentum, etc.). But in the

case  of  restricted 3-bodies  problem,  there  is  no  other  invariants  except  only one,

Jacobian-type integral of motion [5-6].

A key point is that we obtain the appropriate specific case of spiral motion from the

Jacobian-type integral for  photogravitational restricted 3-bodies problem (when orbit

of small 3-rd body is assumed to be like a spiral). Besides, we should especially note

that there is a proper restriction to the type of spiral orbital motion of small 3-rd body,

which  could  be  possible  for  choosing  as  the  exact  solution  of  equations  for

photogravitational restricted 3-bodies problem.
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Let us demonstrate the proper asymptotic simplifications of the considered solutions;

Eq. (3.5) could be simplified if we consider a quasi-planar case of orbital motion: 

-  where the left side of Equation (3.6) could be transformed to the proper  elliptical

integral [16] in regard to z.
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Besides

, the appropriate restrictions of meanings of variables should be valid for all meanings

of parameter t ≥ 0 as below:

5. Discussions.

We  obtain  the  appropriate  specific  case  of  a  spiral motion  for  photogravitational

restricted 3-bodies problem from the Jacobian-type integral of motion (when orbit of

small 3-rd body is assumed to be like a spiral).

The main result, which should be outlined, is that in a case of quasi-planar  orbital

motion (of the small 3-rd body) the asymptotic expression for component z of motion
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is proved to be given by the proper  elliptical integral. But the elliptical integral is

known to be a generalization of the class of inverse periodic functions.

Thus,  by  the  proper  obtaining  of  re-inverse  dependence  of  a  solution  from time-

parameter we could present the expression of z(t) as a set of periodic cycles. So, the

meaning of component z(t) is proved to be limited in the proper range of values. 
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