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3.1 Introduction

The notion of black holes voraciously gobbling up matter, twisting spacetime
into contortions that trap light, stretching the unwary into long spaghetti-like
strands as they fall inward to ultimately collide and merge with an infinitely
dense point-mass singularity, has become a mantra of the astrophysical commu-
nity. There are almost daily reports of scientists claiming that they have again
found black holes again here and there. It is asserted that black holes range in
size from micro to mini, to intermediate and on up through to supermassive be-
hemoths and it is accepted as scientific fact that they have been detected at the
centres of galaxies. Images of black holes interacting with surrounding matter
are routinely included with reports of them. Some physicists even claim that
black holes will be created in particle accelerators, such as the Large Hadron
Collider, potentially able to swallow the Earth, if care is not taken in their pro-
duction. Yet contrary to the assertions of the astronomers and astrophysicists
of the black hole community, nobody has ever found a black hole, anywhere, let
alone imaged one. The pictures adduced to convince are actually either artistic
impressions (i.e. drawings) or photos of otherwise unidentified objects imaged
by telescopes and merely asserted to be due to black holes, ad hoc.

It is similarly claimed that General Relativity predicts expansion of the Universe
with a big bang cosmology and that the Cosmic Microwave Background is not
only cosmic but is also the remnant of the big bang.

Nonetheless it is not difficult to demonstrate that claims of black holes, expan-
sion of the Universe and big bang cosmology have no sound basis in science.

3.2 General principles

The alleged signatures of the black hole are an infinitely dense point-mass singu-
larity and an event horizon. Scientists frequently assert that the escape velocity
of a black hole is that of light in vacuum and that nothing, not even light, can
escape from the black hole. In fact, according to the same scientists, nothing,
including light, can even leave the black hole. But there is already a serious
problem with these bald claims (black holes are also alleged to have “no hair”).
If the escape velocity of a black hole is that of light, then light, on the one
hand, can escape. On the other hand, light is allegedly not able to even leave
the black hole; so the black hole has no escape velocity. If the escape velocity
of a black hole is that of light in vacuum, not only can light both leave and
escape, material objects can also leave the event horizon, but not escape, even
though, according to the Theory of Special Relativity, they can only have a
velocity less than that of light in vacuum. This just means that if the black hole
has an escape velocity then material bodies can in fact leave the black hole and
eventually stop and fall back to the black hole, just like a ball thrown into the
air here on Earth with an initial velocity less than the escape velocity for the
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Earth. So the properties of the alleged black hole event horizon are irretrievably
contradictory.

The infinitely dense point-mass singularity at the heart of the black hole is
supposed to be formed by irresistible gravitational collapse so that matter is
crushed into zero volume, into a ‘point’, a so-called ‘point-mass’. One recalls
from high school that density is defined as the mass of an object divided by the
volume of the object. If the mass is not zero and the volume is zero, as in the case
of a black hole singularity, one gets division by zero. But all school children know
that division by zero is not allowed by the rules of mathematics. Nonetheless,
black hole proponents divide by zero! Furthermore, black holes are allegedly
obtained from Einstein’s General Theory of Relativity. It is called the General
Theory because it is a generalisation of his Special Theory of Relativity. As such,
General Relativity cannot, by definition, violate Special Relativity, but that is
precisely what the black hole does. Special Relativity forbids infinite densities
because, according to that Theory, infinite density implies infinite energy (or
equivalently that a material object can acquire the speed of light in vacuo),
which contradicts the fundamental postulate of Special Relativity. Therefore
General Relativity also forbids infinite densities. But the point-mass singularity
of the black hole is allegedly infinitely dense, in violation of Special Relativity.
Thus the Theory of Relativity actually forbids the existence of a black hole.

According to the proponents of the black hole it takes an infinite amount of time
for an observer to watch an object (via the light from that object, of course) to
fall down to the event horizon. So it therefore takes an infinite amount of time for
the observer to verify the existence of an event horizon and thereby confirm the
presence of a black hole. However, nobody has been and nobody will be around
for an infinite amount of time in order to verify the presence of an event horizon
and hence the presence of a black hole. Nevertheless, scientists claim that black
holes have been found all over the place. The fact is nobody has assuredly
found a black hole anywhere - no infinitely dense point-mass singularity and no
event horizon. Some black hole proponents are more circumspect in how they
claim the discovery of their black holes. They instead say that their evidence
for the presence of a black hole is indirect. But such indirect “evidence” cannot
be used to justify the claim of a black hole, in view of the fatal contradictions
and physically meaningless properties associated with infinitely dense point-
mass singularities and event horizons. It is also of great importance to be
mindful of the fact that no observations gave rise to the notion of a black hole
in the first place, for which a theory had to be developed. The black hole was
wholly spawned in the reverse, i.e. it was created by theory and observations
subsequently misconstrued to legitimize the theory. Reports of black holes are
just wishful thinking in support of a belief; not factual in any way.

Another fatal contradiction in the idea of the black hole is the allegation that
black holes can be components of binary systems, collide or merge, be present
at the centres of galaxies, and interact with other matter. Let us, for the sake
of argument, assume that black holes are predicted by General Relativity. The
simplest black hole is fundamentally described by a certain mathematical ex-
pression called a line-element (which is just a fancy name for a distance formula,
like that learnt in high school) that involves just one alleged mass in the entire
Universe (just the alleged source of a gravitational field), since the said distance
formula is a solution for a spacetime allegedly described by Einstein’s static
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equations in vacuum (or, more accurately, in emptiness), namely Ric = 0. One
does not need to know anything at all about the mathematical intricacies of
this equation to see that it cannot permit the presence of one black hole, let
alone two or more black holes. The mathematical object denoted by Ric is
what is called a tensor (in this case it’s Ricci’s tensor, and hence its notation).
The reason why Ric = 0 is because in Einstein’s General Theory of Relativity
all matter that contributes to the source of the gravitational field must be de-
scribed by another tensor, called the energy-momentum tensor. In the case of
the so-called static vacuum field equations the energy-momentum tensor is set
to zero, because there is no mass or radiation present by hypothesis. Other-
wise Ric would not be equal to zero. So the associated black hole can interact
with nothing, not even an ‘observer’. Ric = 0 does not describe a two body
problem, only, allegedly, a one body problem (and hence quite meaningless).
One cannot just introduce extra objects into the spacetime of a given solution
to Einstein’s field equations because his theory requires that the curvature of
spacetime (i.e. the gravitational field) is due to the presence of matter and that
the said matter, all of it, must be described by his energy-momentum tensor. If
the energy-momentum tensor is zero there is no matter present. Furthermore,
Einstein’s field equations are non-linear, so the ‘Principle of Superposition’ does
not apply. In other words, one cannot obtain a solution to Einstein’s field
equations for some specified configuration of matter and thereafter just insert
additional lumps of matter into the spacetime for that solution. All configura-
tions of matter each require an associated particular energy-momentum tensor
and a solution to the field equations for each configuration. Before one can
talk of relativistic binary systems and other black hole interactions it must first
be proved that the two-body system is theoretically well-defined by General
Relativity. This can be done in only two ways:

(a) Derivation of an exact solution to Einstein’s field equations for the two-
body configuration of matter; or

(b) Proof of an existence theorem.

There are no known solutions to Einstein’s field equations for the interaction
of two (or more) masses, so option (a) has never been fulfilled. No existence
theorem has ever been proven, by which Einstein’s field equations even admit of
latent solutions for such configurations of matter, and so option (b) has never
been fulfilled either. Since Ric = 0 is a statement that there is no matter in
the Universe, one cannot simply insert a second black hole into the spacetime
of Ric = 0 of a given black hole so that the resulting two black holes (each
obtained separately from Ric = 0) mutually interact in a mutual spacetime
that by definition contains no matter! One cannot just assert by an analogy
with Newton’s theory that two black holes can be components of binary systems,
collide or merge, or that a black hole can interact with other matter in general,
because the ‘Principle of Superposition’ does not apply in Einstein’s theory.
Moreover, General Relativity has to date been unable to account for the simple
experimental fact that two fixed bodies will approach one another upon release.
So from where does the matter allegedly associated with the solution to Ric = 0
come, when this is a statement that there is no matter present? The proponents
of the black hole just put it in at the end of their calculations, a posteriori and
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ad hoc, in violation of their starting hypothesis that Ric = 0, and to top it off,
they do so by introducing a Newtonian relation. Thus, the concepts of black
holes, black hole binaries, collisions and mergers, black holes at the centres of
galaxies, and black hole interactions with other matter, are all invalid.

Curiously it is frequently claimed that Newton’s theory of gravitation also pre-
dicts a black hole. What is actually alluded to is the theoretical Michell-Laplace
Dark Body, which has an escape velocity equal to or greater than the velocity
of light in vacuo, but which is nonetheless not a black hole. The basis for the
spurious claim resides in the fact that the critical radius for the Michell-Laplace
Dark Body is given by the same mathematical expression as that for the so-called
“Schwarzschild radius” of a black hole. But this is not surprising, because this
“radius” was effectively inserted into the distance formula for Ric = 0 (called the
“Schwarzschild solution”), along with matter, a posteriori and ad hoc. How-
ever, in the space of Newton’s gravitation, the radius of the Michell-Laplace
Dark Body is the radial distance from the centre of mass of the object, but in
the space of the “Schwarzschild solution” the “Schwarzschild radius” it is not
even a radial distance in the spatial section of the Schwarzschild spacetime, by
reason of the non-Euclidean geometry of Einstein’s gravitational field. Further-
more, the black hole is allegedly produced by irresistible gravitational collapse,
but the Michell-Laplace Dark Body does not involve irresistible gravitational
collapse; the black hole irresistibly collapses into an infinitely dense point-mass
singularity but the Michell-Laplace Dark Body does not (its density is finite);
no light and no material body can even leave the black hole let alone escape,
but light and material bodies can leave the Michell-Laplace Dark body, and at
its critical radius light can escape from it; the black hole has an event horizon
but the Michell-Laplace Dark Body has no event horizon; the black hole has no
escape velocity whereas the Michell-Laplace Dark Body has an escape velocity;
no observer, no matter how close to the event horizon, can see a black hole,
but there is always a class of observers that can see the Michell-Laplace Dark
Body (an observer only needs to be close enough to it); there is no upper limit
to the speed of an object in Newton’s theory, but no material body can acquire
the speed of light in vacuo in Einstein’s theory; in the case of a black hole for
Ric = 0, such as the “Schwarzschild” black hole, an observer can’t be present
in its spacetime because it is by definition empty, but an observer can always
be present in the space of the Michell-Laplace Dark Body because its space is
not empty by definition; the ‘Principal of Superposition’ applies in Newton’s
theory of gravitation and so in the case of the Michell-Laplace Dark Body, but
does not apply in any case of a black hole; and the centre of mass of a body
is not a physical object in neither Newton’s theory nor Einstein’s theory. So
the Michell-Laplace Dark Body does not possess the tell-tale signatures of the
alleged black hole, and so it is not a black hole. Thus, Newton’s theory also
does not predict black holes.

Finally, although the fundamental solution to Ric = 0 is usually called the
“Schwarzschild solution”, despite its name, it is not in fact Schwarzschild’s so-
lution. Schwarzschild’s actual solution forbids black holes. The frequent claim
that Schwarzschild found and advocated a black hole solution is patently false,
as a reading of Schwarzschild’s papers on the subject irrefutably testify. False
too are the claims that he obtained an event horizon and that he determined
the “Schwarzschild radius” (i.e. the alleged “radius” of the black hole event
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horizon). Schwarzschild actually had nothing to do with the black hole, but
attaching his name to it lends the notion an additional facade of scientific legit-
imacy.

3.3 Mathematical preamble: spherical symmetry of three-dimensional
metrics

Following the method suggested by Palatini, and developed by Levi-Civita [1],
denote ordinary Euclidean 3-space by E3. Let M3 be a 3-dimensional metric
manifold. Let there be a one-to-one correspondence between all points of E3

and M3. Let the point O ∈ E3 and the corresponding point in M3 be O′. Then
a point transformation T of E3 into itself gives rise to a corresponding point
transformation of M3 into itself.

A rigid motion in a metric manifold is a motion that leaves the metric d`
′2

unchanged. Thus, a rigid motion changes geodesics into geodesics. The metric
manifold M3 possesses spherical symmetry around any one of its points O′ if
each of the ∞3 rigid rotations in E3 around the corresponding arbitrary point
O determines a rigid motion in M3.

The coefficients of d`
′2 of M3 constitute a metric tensor and are naturally as-

sumed to be regular in the region around every point in M3, except possibly at
an arbitrary point, the centre of spherical symmetry O′ ∈M3. Let a ray i em-
anate from an arbitrary point O ∈ E3. There is then a corresponding geodesic
i′ ∈M3 issuing from the corresponding point O′ ∈M3. Let P be any point on
i other than O. There corresponds a point P ′ on i′ ∈ M3 different to O′. Let
g′ be a geodesic in M3 that is tangential to i′ at P ′.

Taking i as the axis of ∞1 rotations in E3, there corresponds ∞1 rigid motions
in M3 that leaves only all the points on i′ unchanged. If g′ is distinct from i′,
then the∞1 rigid rotations in E3 about i would cause g′ to occupy an infinity of
positions in M3 wherein g′ has for each position the property of being tangential
to i′ at P ′ in the same direction, which is impossible. Hence, g′ coincides with
i′.

Thus, given a spherically symmetric surface Σ in E3 with centre of symmetry
at some arbitrary point O ∈ E3, there corresponds a spherically symmetric
geodesic surface Σ′ in M3 with centre of symmetry at the corresponding point
O′ ∈ M3. Let Q be a point in Σ ∈ E3 and Q′ the corresponding point in Σ′ ∈
M3. Let dσ be a generic line element in Σ issuing from Q. The corresponding
generic line element dσ′ ∈ Σ′ issues from the point Q′. Let Σ be described in
the usual spherical-polar coordinates r, θ, ϕ. Then

dσ2 = r2(dθ2 + sin2 θdϕ2), (3.1)

r = |OQ|.

Clearly, if r, θ, ϕ are known, Q is determined and hence also Q′ in Σ′. Therefore,
θ and ϕ can be considered to be curvilinear coordinates for Q′ in Σ′ and the line
element dσ′ ∈ Σ′ will also be represented by a quadratic form similar to (3.1).
To determine dσ′, consider two elementary arcs of equal length, dσ1 and dσ2 in
Σ, drawn from the point Q in different directions. Then the homologous arcs
in Σ′ will be dσ′1 and dσ′2, drawn in different directions from the corresponding
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point Q′. Now dσ1 and dσ2 can be obtained from one another by a rotation
about the axis OQ in E3, and so dσ′1 and dσ′2 can be obtained from one another
by a rigid motion in M3, and are therefore also of equal length, since the metric
is unchanged by such a motion. It therefore follows that the ratio dσ′/dσ is
the same for the two different directions irrespective of dθ and dϕ, and so the
foregoing ratio is a function of position, i.e. of r, θ, ϕ. But Q is an arbitrary
point in Σ, and so dσ′/dσ must have the same ratio for any corresponding points
Q and Q′. Therefore, dσ′/dσ is a function of r alone, thus

dσ′

dσ
= H(r),

and so
dσ

′2 = H2(r)dσ2 = H2(r)r2(dθ2 + sin2 θdϕ2), (3.2)

where H(r) is a priori unknown. For convenience set Rc = Rc(r) = H(r)r, so
that (3.2) becomes

dσ
′2 = R2

c(dθ2 + sin2 θdϕ2), (3.3)

where Rc is a quantity associated with M3. Comparing (3.3) with (3.1) it is
apparent that Rc is to be rightly interpreted in terms of the Gaussian curvature
K at the point Q′, i.e. in terms of the relation K = 1/R2

c since the Gaussian
curvature of (3.1) is K = 1/r2. This is an intrinsic property of all line elements
of the form (3.3) [1]. Accordingly, Rc, the inverse square root of the Gaussian
curvature, can be regarded as the radius of Gaussian curvature. Therefore, in
(3.1) the radius of Gaussian curvature is Rc = r. Moreover, owing to spherical
symmetry, all points in the corresponding surfaces Σ and Σ′ have constant Gaus-
sian curvature relevant to their respective manifolds and centres of symmetry,
so that all points in the respective surfaces are umbilics.

Let the element of radial distance from O ∈ E3 be dr. Clearly, the radial lines
issuing from O cut the surface Σ orthogonally. Combining this with (3.1) by
the theorem of Pythagoras gives the line element in E3

d`2 = dr2 + r2(dθ2 + sin2 θdϕ2). (3.4)

Let the corresponding radial geodesic from the point O′ ∈M3 be dRp. Clearly
the radial geodesics issuing from O′ cut the geodesic surface Σ′ orthogonally.
Combining this with (3.3) by the theorem of Pythagoras gives the line element
in M3 as,

d`
′2 = dR2

p + R2
c(dθ2 + sin2 θdϕ2), (3.5)

where dRp is, by spherical symmetry, also a function only of Rc. Set dRp =√
B(Rc)dRc, so that (3.5) becomes

d`
′2 = B(Rc)dR2

c + R2
c(dθ2 + sin2 θdϕ2), (3.6)

where B(Rc) is an a priori unknown function. Expression (3.6) is the most gen-
eral for a metric manifold M3 having spherical symmetry about some arbitrary
point O′ ∈M3.

Considering (3.4), the distance Rp = |OQ| from the point at the centre of
spherical symmetry O to a point Q ∈ Σ, is given by

Rp =
∫ r

0

dr = r = Rc.
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Call Rp the proper radius. Consequently, in the case of E3, Rp and Rc are iden-
tical, and so the Gaussian curvature at any point in any spherically symmetric
geodesic surface in E3 can be associated with Rp, the radial distance between
the centre of spherical symmetry at the point O ∈ E3 and the point Q ∈ Σ.
Thus, in this case, K = 1/R2

c = 1/R2
p = 1/r2. However, this is not a general

relation, since according to (3.5) and (3.6), in the case of M3, the geodesic radial
distance from the centre of spherical symmetry at the point O′ ∈M3 is not the
same as the radius of Gaussian curvature of any spherically symmetric geodesic
surface in M3, about O′ ∈M3, but by

Rp =
∫ Rp

0

dRp =
∫ Rc(r)

Rc(0)

√
B(Rc(r)) dRc(r) =

∫ r

0

√
B(Rc(r))

dRc(r)
dr

dr,

where Rc(0) is a priori unknown owing to the fact that Rc(r) is a priori un-
known. One cannot simply assume that because 0 ≤ r < ∞ in (3.4) that it
must follow that in (3.5) and (3.6) 0 ≤ Rc(r) < ∞. In other words, one cannot
simply assume that Rc(0) = 0. Furthermore, it is evident from (3.5) and (3.6)
that Rp determines the radial geodesic distance from the centre of spherical
symmetry at the arbitrary point O′ in M3 (and correspondingly so from O in
E3) to another point in M3. Clearly, Rc does not in general render the radial
geodesic length from the centre of spherical symmetry to some other point in
a metric manifold. Only in the particular case of E3 does Rc render both the
Gaussian curvature of any spherically symmetric geodesic surface in E3 about
O in E3 and the radial distance from the centre of spherical symmetry O ∈ E3,
owing to the fact that Rp and Rc are identical in that special case.

It should also be noted that in writing expressions (3.4) and (3.5) it is implicit
that O ∈ E3 is defined as being located at the origin of the coordinate system
of (3.4), i.e. O is located where r = 0, and by correspondence O′ is defined
as being located at the origin of the coordinate system of (3.5) and of (3.6),
O′ ∈ M3 is located where Rp = 0. Furthermore, since it is well known that a
geometry is completely determined by the form of the line element describing it
[2], expressions (3.4), (3.5) and (3.6) share the very same fundamental geometry
because they are line elements of the same form. Expression (3.6) plays an
important rôle in Einstein’s gravitational field.

The standard solution in the case of the static vacuum field (i.e. no deformation
of the space) allegedly due to a single gravitating body, satisfying Einstein’s field
equations Rµν = 0, is (using G = c = 1),

ds2 =
(

1− 2m

r

)
dt2 −

(
1− 2m

r

)−1

dr2 − r2(dθ2 + sin2 θdϕ2), (3.8)

where m is allegedly the mass causing the field, and upon which it is routinely
claimed that 2m < r < ∞ is an exterior region and 0 < r < 2m is an interior
region. Notwithstanding the inequalities it is routinely allowed that r = 2m and
r = 0 by which it is also routinely claimed that r = 2m marks a “removable” or
“coordinate” singularity and that r = 0 marks a “true” or “physical” singularity.

The standard treatment proceeds from simple inspection of (3.8) and the fol-
lowing unproven assumptions:

(a) that r is the radial geodesic distance (r = 2m is even routinely called the
“Schwarzschild radius” or the “gravitational radius”);
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(b) that r can approach zero, even though the line-element (3.8) is singular at
r = 2m;

(c) that only the first two components of the metric tensor (i.e. g00 and g11)
are influenced by the quantity 2m.

With these unstated assumptions, but assumptions nonetheless, it is usual pro-
cedure to develop and treat of black holes. However, all three assumptions are
demonstrably false at an elementary level.

3.4 Gaussian curvature

In the usual interpretation of Hilbert’s [3, 4, 5] version of Schwarzschild’s so-
lution, the quantity r therein has never been properly identified. The physi-
cists have variously and vaguely called it “the radius” of a sphere [6, 7], the
“radius of a 2-sphere” [8], the “coordinate radius”[9], the “radial coordinate”
[10, 11], the “radial space coordinate” [12], the “areal radius” [9, 13], the “re-
duced circumference” [14], and even “a gauge choice: it defines the coordinate
r” [15], and it is effectively treated by the physicists as the radial geodesic
distance despite the various vague names they apply to it. Indeed, in the par-
ticular case of r =2m =2GM/c2 it is invariably referred to by the physicists
as the “Schwarzschild radius” or the “gravitational radius”. However, the ir-
refutable geometrical fact is that r, in the spatial section of Hilbert’s version of
the Schwarzschild/Droste line-element, is the inverse square root of the Gaussian
curvature (i.e. the radius of Gaussian curvature) of any spherically symmetric
geodesic surface in the spatial section [1, 16, 17], and as such it does not in fact
determine the geodesic radial distance from the centre of spherical symmetry
located at an arbitrary point in the related pseudo-Riemannian metric mani-
fold. It does not in fact directly determine any distance at all in the spherically
symmetric metric manifold. It is the radius of Gaussian curvature merely by
virtue of its formal geometric relationship to the Gaussian curvature. It must
also be emphasized that a geometry is completely determined by the form of
its line-element, a fact that the physicists, with few exceptions [2], have not
realised.

It immediately follows from the invalidity of Ric=0 that Einstein’s concep-
tions of the conservation and localisation of gravitational energy are erroneous
and that the current international search for Einstein’s gravitational waves is
ill-conceived. Also, the concepts of black holes and their interactions are ill-
conceived since the two-body problem has been neither correctly formulated
nor solved by means of the General Theory of Relativity.

Recall that Hilbert’s corruption of Schwarzschild’s solution, erroneously called
“Schwarzschild’s solution”, is (using c=G =1),

ds2 =
(

1− 2m

r

)
dt2 −

(
1− 2m

r

)−1

dr2 − r2
(
dθ2 + sin2 θdϕ2

)
, (4.1)

wherein r can, by assumption (i.e. without any proof), in some way or another,
go down to zero, and m is allegedly the mass causing the gravitational field.
Schwarzschild’s [18] actual solution, for comparision, is

ds2 =
(
1− α

R

)
dt2 −

(
1− α

R

)−1

dR2 −R2
(
dθ2 + sin2 θdϕ2

)
, (4.2)
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R = R(r) =
(
r3 + α3

) 1
3 , 0 < r < ∞,

α = const.

Note that (4.2) is singular only when r =0 (in which case the metric does not
actually apply), and that the constant α is indeterminable (Schwarzschild did
not assign any value to the constant α for this reason).

For a 2-D spherically symmetric geometric surface [19] determined by

ds2 = R2
c(dθ2 + sin2 θdϕ2), (4.3)

Rc = Rc(r),

the Riemannian curvature (which depends upon both position and direction)
reduces to the Gaussian curvature K (which depends only upon position), given
by [1, 20, 21, 22, 23],

K =
R1212

g
,

where Rijkm = ginRn
.jkm is the Riemann tensor of the first kind and g = g11g22 =

gθθgϕϕ (because the metric tensor is diagonal). Recall that

R1
.212 =

∂Γ1
22

∂x1
− ∂Γ1

21

∂x2
+ Γk

22Γ
1
k1 − Γk

21Γ
1
k2,

Γα
αβ = Γα

βα =
∂

∂xβ

(
1
2

ln |gαα |
)

,

Γα
ββ = − 1

2gαα

∂gββ

∂xα
, (α 6= β),

and all other Γα
βγ vanish. In the above, k, α, β =1, 2, x1 = θ and x2 =φ, of

course. Straightforward calculation gives for expression (4.3),

K =
1

R2
c

,

so that Rc is, in accordance with Section 3.3 above, the inverse square root
of the Gaussian curvature, i. e. the radius of Gaussian curvature, and so r in
Hilbert’s “Schwarzschild’s solution” is the radius of Gaussian curvature of any
spherically symmetric geodesic surface in the spatial section, about the arbitrary
point where Rp = 0. The geodesic (i.e. proper) radius, Rp, of the spatial section
of Schwarzschild’s solution (4.2), up to a constant of integration, is given by

Rp =
∫

dR(r)√
1− α

R(r)

, (4.4)

and for Hilbert’s “Schwarzschild’s solution” (4.1), by

Rp =
∫

dr√
1− 2m

r

.

Thus the proper radius and the radius of Gaussian curvature are not the
same . The radius of Gaussian curvature does not determine the geodesic radial
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distance from the arbitrary point at the centre of spherical symmetry of the
metric manifold. It is a “radius” only in the sense of it being the inverse square
root of the Gaussian curvature of a spherically symmetric geodesic surface in
the spatial section.

Note that in (4.2), if α =0 Minkowski space is recovered:

ds2 = dt2 − dr2 − r2
(
dθ2 + sin2 θdϕ2

)
,

0 ≤ r < ∞.

In this case the radius of Gaussian curvature is r and the proper radius is

Rp =
∫ r

0

dr = r,

so that the radius of Gaussian curvature and the proper radius are identical.
It is for this reason that in the spacetime of Minkowski the radius of Gaussian
curvature of the spherically symmetric geodesic surface in the spatial section
can be substituted for the proper radius (i.e. the geodesic radius) of the spa-
tial section. However, in the case of a pseudo-Riemannian manifold, such as
(4.1) and (4.2) above, only the great circumference and the surface area can
be directly determined via the radius of Gaussian curvature. Distances from
the arbitrary point at the centre of spherical symmetry to a geodesic spherical
surface in a Riemannian metric manifold can only be determined via the proper
radius, except for particular points (if any) in the manifold where the radius of
Gaussian curvature and the geodesic radius happen to be numerically identical,
and volumes by a triple integral involving a function of the radius of Gaus-
sian curvature. In the case of Schwarzschild’s solution (4.2) (and hence also for
(4.1)), the radius of Gaussian curvature, Rc =R(r), and the proper radius, Rp,
are numerically identical only at Rc ≈ 1.467α. When the radius of Gaussian
curvature, Rc, is greater than ≈ 1.467α, Rp > Rc , and when the radius of
Gaussian curvature is less than ≈ 1.467α, Rp < Rc.

The upper and lower bounds on the Gaussian curvature (and hence on the ra-
dius of Gaussian curvature) are not arbitrary, but are determined by the proper
radius in accordance with the intrinsic geometric structure of the line-element
(which completely determines the geometry), manifest in the integral (4.4).
Thus, one cannot merely assume, as the black hole physicists have done, that
the radius of Gaussian curvature for (4.1) and (4.2) can vary from zero to infin-
ity. Indeed, in the case of (4.2) (and hence also of (4.1)), as Rp varies from zero
to infinity, the Gaussian curvature of the related spherically symmetric geodesic
surface in the spatial section varies from 1/α2 to zero and so the radius of Gaus-
sian curvature correspondingly varies from α to infinity, as easily determined by
evaluation of the constant of integration associated with the indefinite integral
(4.4). Moreover, in the same way, it is easily shown that expressions (4.1) and
(4.2) can be generalised [17] to all real values, but one, of the variable r, so
that both (4.1) and (4.2) are particular cases of the general radius of Gaussian
curvature, given by

Rc = Rc(r) =
(∣∣r − r0

∣∣n + αn
) 1

n

, (4.5)

r ∈ <, n ∈ <+, r 6= r0,
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wherein r0 and n are entirely arbitrary constants. Choosing n =3, r0 =0
and r > r0 yields Schwarzschild’s solution (4.2). Choosing n =1, r0 =α and
r > r0 yields line-element (4.1) as determined by Johannes Droste [24] in May
1916, independently of Schwarzschild. Choosing n =1, r0 =α and r < r0 gives
Rc =2α− r, with line-element

ds2 =
(

1− α

2α− r

)
dt2 −

(
1− α

2α− r

)−1

dr2 − (2α− r)2
(
dθ2 + sin2 θdϕ2

)
.

Using relations (4.5) directly, all real values of r 6= r0 are permitted. In any case,
however, the related line-element is singular only at the arbitrary parametric
point r = r0 on the real line (or half real line, as the case may be), which is the
only parametric point on the real line (or half real line, as the case may be) at
which the line-element fails (at Rp(r0) = 0 ∀ r0 ∀ n). Indeed, substituting Rc

for R(r) in (4.4), and evaluating the constant of integration gives

Rp =
√

Rc (Rc − α) + α ln

(√
Rc +

√
Rc − α

√
α

)
,

where Rc =Rc(r) is given by (4.5). Note that in the Standard Model interpreta-
tion of (4.1), only g00 and g11 are modified by the presence of the constant 2m.
However, according to (4.2) and (4.5) all the components of the metric tensor
are modified by the constant α, and since (4.1) is a particular case of (4.5), all
the components of the metric tensor of (4.1) are modified by the constant α as
well. There is no possibility for the alleged “event horizon” that is claimed to
characterise a black hole.

The Kruskal-Szekeres coordinates do not take into account the Gaussian curva-
ture of the spherically symmetric geodesic surface in the spatial section of the
Schwarzschild manifold. These coordinates thereby violate the geometric form
of the line-element, producing a completely separate pseudo-Riemannian mani-
fold that does not form part of the solution space of the Schwarzschild manifold
[25], and are consequently invalid. The concept of the Black Hole is therefore
invalid.

3.5 The prohibition of infinitely dense point-mass singularities

The black hole is alleged to contain an infinitely dense singularity. The cos-
mological singularity of the alleged Big Bang cosmology is, according to many
proponents of the Big Bang, also infinitely dense. Yet according to Special
Relativity, infinite densities are forbidden because their existence implies that
a material object can acquire the speed of light c in vacuo (or equivalently,
the existence of infinite energies), thereby violating the very basis of Special
Relativity. Since General Relativity cannot violate Special Relativity, General
Relativity must thereby also forbid infinite densities. Point-mass singularities
are alleged to be infinitely dense objects. Therefore, point-mass singularities
are forbidden by the Theory of Relativity.

Let a cuboid rest-mass m0 have sides of length L0. Let m0 have a relative
speed v < c in the direction of one of three mutually orthogonal Cartesian axes
attached to an observer of rest-mass M0 . According to the observer M0 , the
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moving mass m is

m =
m0√
1− v2

c2

, (5.1)

and the volume V thereof is

V = L3
0

√
1− v2

c2
. (5.2)

Thus, the density D is

D =
m

V
=

m0

L3
0

(
1− v2

c2

) , (5.3)

and so v → c ⇒ D → ∞. Since by (5.1) no material object can acquire the
speed c (this would require an infinite energy), infinite densities are forbidden by
Special Relativity, and so point-mass singularities are forbidden. Since General
Relativity cannot violate Special Relativity, it too must thereby forbid infinite
densities and hence forbid point-mass singularities [3, 17, 18]. Point-charges too
are therefore forbidden by the Theory of Relativity since there can be no charge
without mass.

It is nowadays routinely claimed that many black holes have been found. The
signatures of the black hole are (a) an infinitely dense ‘point-mass’ singularity
and (b) an event horizon. Nobody has ever found an infinitely dense ‘point-
mass’ singularity and nobody has ever found an event horizon, so nobody has
ever assuredly found a black hole. It takes an infinite amount of observer time
to verify a black hole event horizon. Nobody has been around and nobody will
be around for an infinite amount of time and so no observer can ever verify
the presence of an event horizon, and hence a black hole, in principle, and so
the notion is irrelevant to physics. All reports of black holes being found are
patently false.

3.6 Ric = 0 is inadmissible

According to Einstein [26], his ‘Principle of Equivalence’ (equivalence of gravita-
tional and inertial mass) requires that Special Relativity manifest in any freely
falling inertial frame located in a sufficiently small region of the gravitational
field. Now Special Relativity permits the presence of arbitrarily large (but not
infinite) masses in spacetime, which are subject to the mass dilation relation
(expression (5.1) above; and hence also to expressions (5.2) and (5.3) as well),
and the definition of a relativistic inertial frame requires the a priori presence
of two masses; the mass of the observer and the mass of the observed (to de-
fine relative motion of material bodies). In addition, at any instant the masses
defining the freely falling inertial frame (and hence any other masses present
therein) can have a speed up to but not including the speed of light in vacuo,
by the action of the gravitational field. However, Ric =Rµν =0 precludes, by
definition, the presence of any masses and energies in the gravitational field be-
cause the energy-momentum tensor Tµν =0 by hypothesis. Therefore, Special
Relativity cannot manifest in any “freely falling” inertial frame in the spacetime
of Rµν =0. Indeed, a “freely falling” inertial frame cannot even be present since
its very definition requires the presence of two masses which are, at any instant,
subject to mass dilation under the action of the gravitational field. Similarly the
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equivalence of gravitational and inertial mass cannot manifest in the absence of
matter in the gravitational field. Thus, Rµν =0 violates Einstein’s ‘Principle of
Equivalence’ and is therefore inadmissible – it does not describe Einstein’s grav-
itational field. Matter can only be introduced into Einstein’s gravitational field
via the energy-momentum tensor since it alone is what specifies that which phys-
ically causes the curvature of spacetime (i.e. the gravitational field). Clearly, the
standard a posteriori and ad hoc introduction of matter as the physical cause
of spacetime curvature, into the so-called “Schwarzschild solution” for Rµν =0,
violates the requirements of Einstein’s theory because the energy-momentum
tensor is set to zero in that case.

3.7 Gravitational energy cannot be localised

Since Rµν =0 does not describe Einstein’s gravitational field, the energy-
momentum tensor can never be zero (i.e. if Tµν =0 there is no gravitational
field), so Einstein’s field equations

Gµν = Rµν −
1
2
gµνR = −κTµν

can be written as [20, 27, 28]

1
κ

Gµν + Tµν = 0, (7.1)

wherein the Gµν/κ are the components of a gravitational energy tensor. Thus,
Gµν/κ and Tµν vanish identically ; the total energy is always zero; there is
no localisation of gravitational energy (i.e. there are no Einstein gravitational
waves). The current international search for Einstein’s gravitational waves is
destined to detect nothing. Furthermore, Einstein’s General Theory of Rela-
tivity violates the experimentally established usual conservation of energy and
momentum. Thus, if the usual conservation of energy and momentum is valid
(there is no experimental data to suggest otherwise), then Einstein’s General
Theory of Relativity is invalid, and hence the FRW line-element and Big Bang
Cosmology are false.

It is of interest to note that Einstein’s pseudo-tensor is frequently utilised as a
basis for the localisation of gravitational energy [2, 11, 20, 26, 29, 30]. From
the foregoing it is evident that this cannot be correct. This is reaffirmed by the
fact that Einstein’s pseudo-tensor is mathematically (and hence also physically)
meaningless, because it implies the existence of an invariant that has no math-
ematical existence [28]. Indeed, Einstein’s pseudo-tensor,

√
−g tµν , is defined as

[2, 11, 20, 26, 28, 29, 30],

√
−g tµν =

1
2

(
δµ
ν L− ∂L

∂gσρ
,µ

gσρ
,ν

)
wherein L is given by

L = −gαβ
(
Γγ

ακΓκ
βγ − Γγ

αβΓκ
γκ

)
.

Contracting the pseudo-tensor and applying Euler’s theorem yields,
√
−g tµµ = L,
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which is a 1st-order intrinsic differential invariant that depends only upon the
components of the metric tensor and their 1st derivatives. However, the math-
ematicians G. Ricci-Curbastro and T. Levi-Civita [31] proved in 1900 that
such invariants do not exist ! Consequently, everything built upon Einstein’s
pseudo-tensor is invalid. Eddington’s [30] other objections to the pseudo-tensor
are therefore quite well-founded.

Similarly, Einstein’s field equations cannot be linearised because linearisation
implies the existence of a tensor that, except for the trivial case of being precisely
zero, does not otherwise exist , as proven by Hermann Weyl [32] in 1944.

Since it has already been proven elsewhere [33] that the so-called “cosmological
constant” must be precisely zero, expression (7.1) can contain no other terms.
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