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Abstract

In this paper, we will investigate the problem of obtaining con-
fidence intervals for a baseball team’s Pythagorean expectation, i.e.
their expected winning percentage and expected games won. We study
this problem from two different perspectives. First, in the framework
of regression models, we obtain confidence intervals for prediction, i.e.
more formally, prediction intervals for a new observation, on the basis
of historical binomial data for Major League Baseball teams from the
1901 through 2009 seasons, and apply this to the 2009 MLB regular
season. We also obtain a Scheffé-type simultaneous prediction band
and use it to tabulate predicted winning percentages and their predic-
tion intervals, corresponding to a range of values for log(RS/RA). Sec-
ond, parametric bootstrap simulation is introduced as a data-driven,
computer-intensive approach to numerically computing confidence in-
tervals for a team’s expected winning percentage. Under the assump-
tion that runs scored per game and runs allowed per game are ran-
dom variables following independent Weibull distributions, we numer-
ically calculate confidence intervals for the Pythagorean expectation
via parametric bootstrap simulation on the basis of each team’s runs
scored per game and runs allowed per game from the 2009 MLB regu-
lar season. The interval estimates, from either framework, allow us to
infer with better certainty as to which teams are performing above or
below expectations. It is seen that the bootstrap confidence intervals
appear to be better at detecting which teams are performing above
or below expectations than the prediction intervals obtained in the
regression framework.
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gression, linear regression, confidence intervals, prediction intervals, Weibull
distribution, likelihood inference, maximum likelihood estimation, parametric
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1 Introduction

A statistical model of a baseball team’s expected winning percentage is given
by the so-called “Pythagorean formula,” which is given by

π =
RSλ

RSλ + RAλ
=

1

1 +
(

RA
RS

)λ
, λ > 0. (1)

Here π is the expected winning percentage with RS and RA respectively de-
noting the observed runs scored and runs allowed totals, and λ is a constant
parameter. The Pythagorean formula first appeared in Bill James’ baseball
abstracts of the early 1980’s (cf. with James (1983)), and is generally used to
determine if a baseball team is performing above or below expectations. An
exponent of λ = 2 was originally used by James and because the denomina-
tor of that formula reminded him of the Pythagorean theorem in Euclidean
geometry, the name, for better or worse, stuck. The best fitting exponent
currently is about λ = 1.86.

There is a large body of literature where authors modify the Pythagorean
formula. For instance, Vollmayr-Lee (2002) models expected winning per-
centage in terms of u = RS

RS+RA
by rewriting (1) as

π(u) =
uλ

uλ + (1− u)λ
=

(
RS

RS+RA

)λ

(
RS

RS+RA

)λ
+

(
1− RS

RS+RA

)λ
, λ > 0 (2)

then considers higher-order Taylor approximations of π(·) about the point
u0 = 1/2. Miller (2006) provides a theoretical framework for the Pythagorean
formula by assuming that runs scored per game and runs allowed per game
are random variables following independent Weibull distributions. Davenport
and Woolner (1999), Keri (2007) and Cochran (2008) each investigate the
Pythagorean formula for specific circumstances and find optimal values for
the exponent λ, which varies between 1.74 and 2.0 depending on the league,
number of seasons, and time period under consideration. Braunstein (2010)
demonstrates that there is a strong correlation between Pythagorean residuals
and run distribution consistency, and from the latter, constructs a simple
regression estimator that improves Pythagorean estimators in terms of root
mean square error and the coefficient of determination.

The Pythagorean formula has become so popular that sports mediums,
including ESPN, FOX Sports, Baseball-Reference.com, and MLB.com all
make reference to the Pythagorean expectation. Note that we use the term
Pythagorean expectation to refer to both the expected winning percentage,
and the expected number of games won. It is rather surprising to see how
little to nothing has been done to address the question of confidence intervals

2



for the Pythagorean expectation. If the purpose of the Pythagorean formula
is to determine whether a baseball team is performing above or below ex-
pectations, then it is useful to have sensible and reliable confidence intervals
for the Pythagorean expectation to complement any corresponding point es-
timate. Such interval estimates allow us to infer with better certainty as to
which teams are performing above or below expectations, and infer with a
measure of confidence that the Pythagorean expectation is within the bounds
of its confidence interval. Moreover, such confidence intervals would certainly
provide even more illumination to those who follow the sport on a regular
basis.

In Section 2, we review the Pythagorean formula in relationship to both
logistic and linear regression. In the regression setting, confidence intervals
for predictions, i.e. prediction intervals more formally, of a team’s winning
percentage are obtained. In Section 3, parametric bootstrap simulation is in-
troduced as a data-driven, computer-intensive approach to numerically com-
puting confidence intervals for a team’s expected winning percentage. For
the reader’s convenience, below are the final standings in both the American
and National League from the 2009 regular season.

Team Won Lost Win% GB RS RA
New York Yankees 103 59 0.636 - 915 753
Boston Red Sox 95 67 0.586 8 872 736
Tampa Bay Rays 84 78 0.519 19 803 754
Toronto Blue Jays 75 87 0.463 28 798 771
Baltimore Orioles 64 98 0.395 39 741 876
Minnesota Twins 87 76 0.534 - 817 765
Detroit Tigers 86 77 0.528 1 743 745

Chicago White Sox 79 83 0.488 7.5 724 732
Cleveland Indians 65 97 0.401 21.5 773 865

Kansas City Royals 65 97 0.401 21.5 686 842
Anaheim Angels 97 65 0.599 - 883 761
Texas Rangers 87 75 0.537 10 784 740

Seattle Mariners 85 77 0.525 12 640 692
Oakland Athletics 75 87 0.463 22 759 761

Table 1. Final Standings for the 2009 American League Regular Season.
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Team Won Lost Win% GB RS RA
Philadelphia Phillies 93 69 0.574 - 820 709

Florida Marlins 87 75 0.537 6 772 766
Atlanta Braves 86 76 0.531 7 735 641
New York Mets 70 92 0.432 23 671 757

Washington Nationals 59 103 0.364 34 710 874
St. Louis Cardinals 91 71 0.562 - 730 640

Chicago Cubs 83 78 0.516 7.5 707 672
Milwaukee Brewers 80 82 0.494 11 785 818

Cincinnati Reds 78 84 0.481 13 673 723
Houston Astros 74 88 0.457 17 643 770

Pittsburgh Pirates 62 99 0.385 28.5 636 768
Los Angeles Dodgers 95 67 0.586 - 780 611

Colorado Rockies 92 70 0.568 3 804 715
San Francisco Giants 88 74 0.543 7 657 611

San Diego Padres 75 87 0.463 20 638 769
Arizona Diamondbacks 70 92 0.432 25 720 782

Table 2. Final Standings for the 2009 National League Regular Season.

2 Pythagorean Expectation and Regression

Models

2.1 Logistic Regression

From a statistical perspective, the Pythagorean formula is a logistic regression
model. The Pythagorean exponent λ is an unknown parameter which can be
estimated by fitting a logistic regression model to a large historical data set
consisting of the seasonal won-lost records and corresponding runs scored and
runs allowed totals, i.e. (W,L, RS,RA). A data set consisting of the 1871
through 2006 seasons can be found in Sean Lahman’s baseball database at
http://baseball1.com/statistics. We used a large part of this and data from
recent seasons to form a historical data set consisting of the seasons 1901
through 2009.

Let N denote the number of teams contained in the historical data set.
Let Wj denote the number of games won by team j in their season of nj

games. In the framework of logistic regression, the {Wj : j = 1, 2, . . . N}
are independent Binomial(nj, πj) random variables and pj = Wj/nj is the
observed winning percentage of team j and their expected winning percentage
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is the unknown Binomial success probability

πj = E(pj |RSj, RAj) = E
(

Wj

nj

∣∣∣∣RSj, RAj

)
. (3)

Logistic regression is used to model binomial data, which can come either in
the form of observed successes and failures, or observed proportions. Such
models belong to a class of linear statistical models known as generalized
linear models (GLM) (cf. with Dobson (2002)). In the GLM framework, the
goal is to model the unknown Binomial success probability πj as a function of
the covariates, i.e. we assume there is a function g(·) called a “link function,”
which simply describes how πj depends on the linear predictor, e.g. g(πj) =
β0 + β1(RSj ×RAj).

The Pythagorean expectation assumes a team’s expected winning per-
centage or mean response has the form

πj =
RSλ

j

RSλ
j + RAλ

j

=
exp[λ (log RSj − log RAj)]

1 + exp[λ (log RSj − log RAj)]
. (4)

Then the expected odds is simply the ratio between a team’s expected winning
and losing percentage, i.e.

πj

1− πj

=

(
RSj

RAj

)λ

. (5)

Taking logarithms gives the log-expected odds or logit mean response

log

(
πj

1− πj

)
= λ log

(
RSj

RAj

)
(6)

which corresponds to the logit link function g(πj) = log
(

πj

1−πj

)
. The predictor

variable of interest here is log(RS/RA). To be a bit more precise, we can
include an intercept term β0 in the linear predictor of the logit mean response,
i.e.

log

(
πj

1− πj

)
= β0 + λ log

(
RSj

RAj

)
. (7)

When we fit a logistic regression model to the historical binomial data, we
obtain the fitted logit mean response model. In other words, given point
estimates β̂0 and λ̂, respectively for the intercept β0 and the Pythagorean
exponent λ, we have

log

(
π̂

1− π̂

)
= β̂0 + λ̂ log

(
RS

RA

)
(8)
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which is an estimate of the logit mean response. Note that the Pythagorean
exponent λ can be interpreted as the change in the log-expected odds of the
unknown expected winning percentage π corresponding to a unit increase in
log(RS/RA). Moreover, using the inverse logit transformation gives us the
fitted mean response

π̂ =
exp

[
β̂0 + λ̂ (log RS − log RA)

]

1 + exp
[
β̂0 + λ̂ (log RS − log RA)

] =
exp(β̂0) RSλ̂

exp(β̂0) RSλ̂ + RAλ̂
(9)

which is our estimate for a team’s expected winning percentage.

As an illustration, we fit the logistic regression model to the historical
binomial data, which consists of N = 2242 teams. The statistical analy-
sis is done in the R statistical environment (cf. R Development Core Team

(2008)) From the logistic regression output, the intercept estimate is β̂0 =
−0.0009753, which is practically zero. The p-value for the intercept is 0.776,
which indicates that the intercept term is not at all statistically significant.
Thus, we are free to dispense with the intercept term. The point estimate
for the Pythagorean exponent is roughly λ̂ = 1.86. Overall, the fitted mean
response model has the form

π̂ =
exp

[
λ̂ (log RS − log RA)

]

1 + exp
[
λ̂ (log RS − log RA)

] =
RS1.86

RS1.86 + RA1.86
. (10)

The mean absolute difference between the observed and predicted games won
is 3.231583 games, and the standard deviation of the absolute difference is
2.418614 games. The root mean square difference between the observed and
predicted games won is 4.036113 games.

Coefficient Estimate Std.Error z-value p-value
Intercept -0.0009753 0.0034263 -0.285 0.776

log(RS/RA) 1.8603399 0.0203030 91.629 2e-16

Table 3. Logistic regression summary.

2.2 Linear Regression

In logistic regression, we assumed that the log-expected odds, i.e. the logit
mean response, has the form

log

(
πj

1− πj

)
= β0 + λ log

(
RSj

RAj

)
. (11)
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Figure 1: Logistic regression model fit for the 1901-2009 MLB data.
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Now, let the random variable Yj = log
(

pj

1−pj

)
denote the observed log-odds

for team j in the historical binomial data. In linear regression, the conditional
Normal model assumes that

Yj = log

(
pj

1− pj

)
= δ0 + κ log

(
RSj

RAj

)
+ εj (12)

where δ0 and κ are respectively the intercept and slope of the linear regres-
sion model, and εj are independent N1(0, σ

2) random variables. The linear
regression mean response has the form

E(Yj |RSj, RAj) = E
[
log

(
pj

1− pj

) ∣∣∣∣ RSj, RAj

]
= δ0+κ log

(
RSj

RAj

)
. (13)

When we fit a linear regression model to the data, we obtain

Ŷ = δ̂0 + κ̂ log

(
RS

RA

)
(14)

which is an estimate of the linear regression mean response, given point esti-
mates δ̂0 and κ̂, respectively for δ0 and κ.

For the historical binomial data, it turns out that we can use linear regres-
sion as an approximation to the logistic regression model. We will see that
a linear regression model fitted to the historical binomial data set should re-
sult as an approximation to the fitted logistic regression model, much in the
same way that a Normal distribution can be used to approximate a Bino-
mial distribution. We now attempt to rigorously justify the linear regression
approximation to logistic regression.

From the DeMoivre-Laplace Central Limit Theorem, i.e. the Normal Ap-
proximation to the Binomial, we have in the limit as nj →∞,

√
nj(pj − πj)

D−→ N1(0, πj(1− πj)). (15)

Here, the symbol
D−→ indicates convergence in distribution (cf. with Resnick

(2001) for a definition). Moreover, by the Delta Method, we have in the limit
as nj →∞,

√
nj

[
Yj − log

(
πj

1− πj

)]
=
√

nj

[
log

(
pj

1− pj

)
− log

(
πj

1− πj

)]

D−→ N1

(
0,

1

πj(1− πj)

)
(16)

i.e. the difference between the observed log-odds and the log-expected odds,
when suitably normalized, converges in distribution to a limit random variable
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having a Normal distribution with mean zero and variance 1
πj(1−πj)

. Therefore,

when nj is sufficiently large enough, we have

E(Yj |RSj, RAj)− log

(
πj

1− πj

)
= δ0 − β0 + (κ− λ) log

(
RSj

RAj

)
≈ 0. (17)

In other words, (17) says the difference between the linear regression mean
response and the logit mean response is approximately zero, when nj, the
number of games played by team j, is large enough. This justifies using
linear regression as an approximation to logistic regression. In terms of the
fitted linear and logistic regression models, their difference should also be
approximately zero, i.e.

Ŷ − log

(
π̂

1− π̂

)
= δ̂0 − β̂0 + (κ̂− λ̂) log

(
RS

RA

)
≈ 0. (18)

We fit the linear regression model to the historical binomial data. From
the linear regression output, the intercept estimate is δ̂0 = −0.001144, which
is practically zero. The p-value for the intercept is 0.614, thus indicating
that the intercept term is not statistically significant. Thus, we are free to
dispense with the intercept term. The point estimate for the Pythagorean
exponent is about κ̂ = 1.86. Overall, the fitted mean response model has the
form

π̂ =
exp [κ̂ (log RS − log RA)]

1 + exp [κ̂ (log RS − log RA)]
=

RS1.86

RS1.86 + RA1.86
. (19)

The mean absolute difference between the observed and predicted games won
is 3.231443 games and the standard deviation of the absolute difference is
2.418995 games. The root mean square difference between the observed and
predicted games won is 4.036229 games. The sample correlation between the
logarithm of the observed odds and the logarithm of runs scored totals over
runs allowed totals is 0.95, which indicates that the Pythagorean expectation
formula correlates very well with a baseball team’s actual performance.

Coefficient Estimate Std.Error t-value p-value
Intercept -0.001144 0.002267 -0.504 0.614

log(RS/RA) 1.863569 0.013051 142.791 2e-16

Table 4. Linear regression summary.

2.3 Confidence Intervals for Prediction

Prediction is a type of statistical inference that is of interest in the regression
framework. In particular, the goal is to make a prediction on the unobserved
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response variable. A prediction interval is an interval on a random variable,
not a parameter. Since random variables have more variation than parame-
ters, which are fixed constants, one generally expects prediction intervals to
be wider than confidence intervals of the same confidence level. In the logistic
regression framework, there is no distinction possible between confidence in-
tervals for a future observation and those for the mean response (cf. Faraway
(2006), pg. 42). Therefore, in order to obtain useful confidence intervals for
prediction, we must do so through the linear regression framework.

We assume that Y0 is a new observation on the response variable Y =

log
(

p
1−p

)
to be taken at x0 = log

(
RS0

RA0

)
. From linear regression theory, it

is well-known that a (1− α) prediction interval for a new observation Y0 (cf.
with Casella and Berger (2002) and Kutner and Neter (2004)) is given by

(δ̂0 + κ̂x0)± tN−2,α/2 · S
√

1 +
1

N
+

(x0 − x̄)2

Sxx

(20)

where

S2 =
1

N − 2

N∑
j=1

(yj − δ̂0 − κ̂xj)
2 (21)

Sxx =
N∑

j=1

(xj − x̄)2. (22)

To obtain the corresponding prediction interval for a new observation’s win-
ning percentage, the above prediction interval must be converted from the
logit scale by the inverse logit transformation.

We can also obtain a prediction band to make inferences for all values of
x = log(RS/RA). A (1 − α) Scheffé-type simultaneous prediction band for

Ŷ = δ̂0 + κ̂x has the form

(δ̂0 + κ̂x)± C(α) · S
√

1 +
1

N
+

(x− x̄)2

Sxx

(23)

which holds simultaneously for all x = log(RS/RA), where C(α) =
√

Fv,N−2,α

and v = (N+2)2

(N+1)2+1
. For completeness, we provide a derivation.

It is enough to find C(α) > 0, for which

P


sup

x∈R

[(δ̂0 + κ̂x)− (δ0 + κx)]2

S2
[
1 + 1

N
+ (x−x̄)2

Sxx

] ≤ C2(α)


 = 1− α. (24)
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To make the above maximization easier, we can use a well-known reparame-
terization which results in independent estimators for δ0 and κ. Put

δ̂0 + κ̂x = Ȳ + κ̂(x− x̄) (25)

δ0 + κx = δ0 + κx̄ + κ(x− x̄). (26)

and for notational convenience use t = x− x̄. Then we obtain

[(δ̂0 + κ̂x)− (δ0 + κx)]2

S2
[
1 + 1

N
+ (x−x̄)2

Sxx

] =
[(Ȳ − δ0 − κx̄) + (κ̂− κ)t]2

S2
[
1 + 1

N
+ t2

Sxx

] . (27)

The distribution of the maximum is not easy to write, but can be approxi-
mated. It can be shown using straightforward calculus that the maximum

sup
t∈R

[(Ȳ − δ0 − κx̄) + (κ̂− κ)t]2

S2
[
1 + 1

N
+ t2

Sxx

] =

1
N+1

· (Ȳ−δ0−κx̄)2

σ2/N
+ (κ̂−κ)2

σ2/Sxx

S2/σ2
. (28)

The numerator is a weighted sum of independent Chi-square random vari-
ables, i.e. ( 1

N+1
)χ2

1 and χ2
1, and can be approximated by a χ2

v/v distribu-
tion, while the denominator has a χ2

N−2/(N − 2) distribution. The degrees
of freedom v can be approximated by the well-known Welch-Satterthwaite
approximation (e.g. cf. with Casella and Berger (2002)), which gives

v =

(
1

N+1
χ2

1 + χ2
1

)2

(
1

N+1

)2
(χ2

1)
2 + (χ2

1)
2

=
(N + 2)2

(N + 1)2 + 1
→ 1, as N →∞. (29)

Therefore, we have

sup
t∈R

[(Ȳ − δ0 − κx̄) + (κ̂− κ)t]2

S2
[
1 + 1

N
+ t2

Sxx

] ³ χ2
1

χ2
N−2/(N − 2)

' F1,N−2. (30)

We have used the notation ³ to denote an approximate distribution and
' to denote distributional equivalence. Recall that the Fisher-Snedecor F -
distribution, with degrees of freedom 1 and q, is the square of Student’s
t-distribution with q degrees of freedom, i.e. F1,q,α = t2q,α/2, and thus C(α) =√

F1,N−2,α = tN−2,α/2. Therefore, a (1−α) Scheffé-type simultaneous predic-

tion band for Ŷ = δ̂0 + κ̂x has the form

(δ̂0 + κ̂x)±
√

F1,N−2,α · S
√

1 +
1

N
+

(x− x̄)2

Sxx

(31)
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and may be rewritten as

(δ̂0 + κ̂x)± tN−2,α/2 · S
√

1 +
1

N
+

(x− x̄)2

Sxx

. (32)

Again, to obtain the corresponding prediction band for predicted winning
percentages, the above prediction band must be converted from the logit
scale by the inverse logit transformation.

In a linear regression analysis, a prediction interval for a new observa-
tion can be obtained from most standard statistical packages, such as R. It is
also fairly straightforward to numerically obtain the Scheffé-type simultane-
ous prediction band using the R function predict (cf. with Faraway (2005)).
Figure 2 displays a 95% Scheffé-type simultaneous prediction band. From
this simultaneous prediction band, we tabulate some predicted winning per-
centages, based on the Pythagorean formula, and their prediction intervals
corresponding to a range of values for log(RS/RA). This “Pythagorean table”
is very convenient and makes the 95% Scheffé-type simultaneous prediction
band accessible for practical use.
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Figure 2: 95% Scheffé-type simultaneous prediction band.
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Prd.Win% PI for Win% log
(

RS
RA

)
Prd.Win% PI for Win% log

(
RS
RA

)
0.670 (0.621, 0.715) 0.380 0.500 (0.447, 0.552) 0.000
0.665 (0.616, 0.710) 0.368 0.495 (0.442, 0.547) -0.011
0.660 (0.611, 0.705) 0.355 0.490 (0.437, 0.542) -0.022
0.655 (0.606, 0.701) 0.344 0.485 (0.433, 0.537) -0.032
0.650 (0.600, 0.696) 0.332 0.480 (0.428, 0.532) -0.043
0.645 (0.595, 0.691) 0.320 0.475 (0.423, 0.527) -0.054
0.640 (0.590, 0.687) 0.308 0.470 (0.418, 0.522) -0.065
0.635 (0.584, 0.682) 0.297 0.465 (0.413, 0.517) -0.075
0.630 (0.579, 0.677) 0.285 0.460 (0.408, 0.512) -0.086
0.625 (0.574, 0.672) 0.274 0.455 (0.403, 0.507) -0.097
0.620 (0.569, 0.668) 0.263 0.450 (0.398, 0.502) -0.108
0.615 (0.564, 0.663) 0.251 0.445 (0.393, 0.497) -0.119
0.610 (0.558, 0.658) 0.240 0.440 (0.389, 0.492) -0.130
0.605 (0.553, 0.654) 0.229 0.435 (0.384, 0.487) -0.140
0.600 (0.548, 0.649) 0.217 0.430 (0.379, 0.482) -0.151
0.595 (0.543, 0.644) 0.206 0.425 (0.374, 0.477) -0.163
0.590 (0.538, 0.639) 0.195 0.420 (0.369, 0.472) -0.174
0.585 (0.533, 0.635) 0.184 0.415 (0.365, 0.466) -0.184
0.580 (0.528, 0.630) 0.173 0.410 (0.360, 0.461) -0.195
0.575 (0.523, 0.625) 0.162 0.405 (0.355, 0.456) -0.207
0.570 (0.517, 0.620) 0.151 0.400 (0.350, 0.451) -0.218
0.565 (0.512, 0.615) 0.140 0.395 (0.345, 0.446) -0.229
0.560 (0.507, 0.611) 0.129 0.390 (0.341, 0.441) -0.240
0.555 (0.502, 0.606) 0.118 0.385 (0.336, 0.436) -0.252
0.550 (0.497, 0.601) 0.107 0.380 (0.331, 0.430) -0.263
0.545 (0.492, 0.596) 0.097 0.375 (0.327, 0.425) -0.274
0.540 (0.487, 0.591) 0.086 0.370 (0.322, 0.420) -0.286
0.535 (0.482, 0.586) 0.075 0.365 (0.317, 0.415) -0.297
0.530 (0.477, 0.581) 0.064 0.360 (0.313, 0.410) -0.309
0.525 (0.472, 0.577) 0.053 0.355 (0.308, 0.404) -0.321
0.520 (0.467, 0.572) 0.043 0.350 (0.303, 0.399) -0.333
0.515 (0.462, 0.567) 0.032 0.345 (0.299, 0.394) -0.344
0.510 (0.457, 0.562) 0.021 0.340 (0.294, 0.388) -0.356
0.505 (0.452, 0.557) 0.011 0.335 (0.289, 0.383) -0.368
0.500 (0.447, 0.552) 0.000 0.330 (0.285, 0.378) -0.380

Table 5. A Pythagorean Table based on the 95% Scheffé-type simultaneous
prediction band.
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2.4 Numerical Results from the Regression Framework

Using the fitted linear regression model, over the 30 teams from the 2009
MLB regular season, the mean absolute difference between observed and pre-
dicted games won is 3.94 games with a standard deviation of 2.73 games.
The root mean square difference between observed and predicted games won
is 4.77 games. These results are consistent with the observation that the
Pythagorean Formula is usually accurate to about four games.

The difference between the predicted and observed games won is a mea-
sure of a team’s performance relative to their predicted expectation. Large
negative (positive) values of this difference seem to indicate a team is per-
forming above (below) predicted expectations. We can arbitrarily or heuristi-
cally classify teams as “overachieving” or “underachieving” if they perform 5
games above or below predicted expectation, which sounds reasonable. In the
American League, these so-called “overachieving” teams are the New York
Yankees (-7.48), and the Seattle Mariners (-9.87), while the “underachiev-
ing” teams were the Toronto Blue Jays (8.59), Cleveland Indians (7.56), and
Oakland Athletics (5.80). In the National League, these so-called “over-
achieving” teams were the Florida Marlins (-5.41), Houston Astros (-6.45),
and San Diego Padres (-7.93), while the “underachieving” teams were the
Atlanta Braves (5.25) and Washington Nationals (6.54).

Team Won Prd.Won Prd.Win% Win% Diff.
New York Yankees 103 95.52 0.590 0.636 -7.48
Boston Red Sox 95 93.67 0.578 0.586 -1.33
Tampa Bay Rays 84 85.74 0.529 0.519 1.74
Toronto Blue Jays 75 83.59 0.516 0.463 8.59
Baltimore Orioles 64 68.49 0.423 0.395 4.49
Minnesota Twins 87 86.48 0.531 0.534 -0.52
Detroit Tigers 86 81.30 0.499 0.528 -4.70

Chicago White Sox 79 80.17 0.495 0.488 1.17
Cleveland Indians 65 72.56 0.448 0.401 7.56

Kansas City Royals 65 65.75 0.406 0.401 0.75
Anaheim Angels 97 92.13 0.569 0.599 -4.87
Texas Rangers 87 85.35 0.527 0.537 -1.65

Seattle Mariners 85 75.13 0.464 0.525 -9.87
Oakland Athletics 75 80.80 0.499 0.463 5.80

Table 6. Pythagorean Results for the 2009 American League.
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Team Won Prd.Won Prd.Win% Win% Diff.
Philadelphia Phillies 93 91.89 0.567 0.574 -1.11

Florida Marlins 87 81.59 0.504 0.537 -5.41
Atlanta Braves 86 91.25 0.563 0.531 5.25
New York Mets 70 71.95 0.444 0.432 1.95

Washington Nationals 59 65.54 0.405 0.364 6.54
St. Louis Cardinals 91 90.86 0.561 0.562 -0.14

Chicago Cubs 83 84.30 0.524 0.516 1.30
Milwaukee Brewers 80 77.90 0.481 0.494 -2.10

Cincinnati Reds 78 75.61 0.467 0.481 -2.39
Houston Astros 74 67.55 0.417 0.457 -6.45

Pittsburgh Pirates 62 66.52 0.413 0.385 4.52
Los Angeles Dodgers 95 99.09 0.612 0.586 4.09

Colorado Rockies 92 89.80 0.554 0.568 -2.20
San Francisco Giants 88 86.46 0.534 0.543 -1.54

San Diego Padres 75 67.07 0.414 0.463 -7.93
Arizona Diamondbacks 70 74.79 0.462 0.432 4.79

Table 7. Pythagorean Results for the 2009 National League.

To obtain better statistical inferences on teams performing above or below
their expectations, we can use the prediction intervals from linear regression.
Such inferences come with a measure of statistical reliability. For example,
with some fixed level of confidence, e.g. say 95% confidence, we infer that
a team’s Pythagorean expectation falls somewhere within the bounds of its
interval. Thus, if a team’s observed winning percentage or observed games
won exceeds (falls below) the upper bound (lower bound) of their respective
intervals, then we are 95% confident that they are performing above (below)
their Pythagorean expectation. Based on these prediction intervals, among
the 2009 American League teams, it is seen that only the Seattle Mariners (85
wins; 0.525 win percentage) outperformed their expectations by exceeding the
upper bound of their respective prediction intervals. The Toronto Blue Jays
(75 wins; 0.463 win percentage) under-performed their expectations by falling
below the lower bound of their respective prediction intervals, but only by a
little. Among the 2009 National League teams, no team exceeded the bounds
of their respective prediction intervals. In the 2009 American League, the
largest upper estimates belong to the New York Yankees, while the smallest
lower estimates belong to the Kansas City Royals. In the 2009 National
League, the largest upper estimates belong to the Los Angeles Dodgers, while
the smallest lower estimates belong to the Washington Nationals.
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Team Win% PI for Win% Won PI for Won
New York Yankees 0.636 (0.538, 0.639) 103 (87.12, 103.58)
Boston Red Sox 0.586 (0.526, 0.628) 95 (85.22 101.80)
Tampa Bay Rays 0.519 (0.476, 0.581) 84 (77.18, 94.12)
Toronto Blue Jays 0.463 (0.463, 0.568) 75 (75.03, 92.01)
Baltimore Orioles 0.395 (0.372, 0.474) 64 (60.26, 76.86)
Minnesota Twins 0.534 (0.478, 0.582) 87 (77.39, 94.32)
Detroit Tigers 0.528 (0.446, 0.551) 86 (72.26, 89.25)

Chicago White Sox 0.488 (0.442, 0.547) 79 (71.64, 88.63)
Cleveland Indians 0.401 (0.396, 0.500) 65 (64.19, 81.00)

Kansas City Royals 0.401 (0.356, 0.457) 65 (57.64, 74.04)
Anaheim Angels 0.599 (0.516, 0.619) 97 (83.65, 100.33)
Texas Rangers 0.537 (0.474, 0.579) 87 (76.79, 93.74)

Seattle Mariners 0.525 (0.412, 0.516) 85 (66.68, 83.59)
Oakland Athletics 0.463 (0.446, 0.551) 75 (72.26, 89.25)

Table 8. 95% Prediction Intervals for the 2009 American League.

Team Win% PI for Win% Won PI for Won
Philadelphia Phillies 0.574 (0.515, 0.618) 93 (83.40, 100.10)

Florida Marlins 0.537 (0.451, 0.556) 87 (73.04, 90.03)
Atlanta Braves 0.531 (0.511, 0.614) 86 (82.75, 99.48)
New York Mets 0.432 (0.393, 0.496) 70 (63.60, 80.38)

Washington Nationals 0.364 (0.355, 0.456) 59 (57.44, 73.82)
St. Louis Cardinals 0.562 (0.508, 0.612) 91 (82.35, 99.10)

Chicago Cubs 0.516 (0.471, 0.575) 83 (76.26, 93.22)
Milwaukee Brewers 0.494 (0.428, 0.533) 80 (69.40, 86.37)

Cincinnati Reds 0.481 (0.415, 0.519) 78 (67.15, 84.07)
Houston Astros 0.457 (0.366, 0.468) 74 (59.36, 75.89)

Pittsburgh Pirates 0.385 (0.363, 0.465) 62 (58.77, 75.26)
Los Angeles Dodgers 0.586 (0.561, 0.660) 95 (90.80, 106.97)

Colorado Rockies 0.568 (0.502, 0.605) 92 (81.28, 98.08)
San Francisco Giants 0.543 (0.481, 0.585) 88 (77.90, 94.82)

San Diego Padres 0.463 (0.364, 0.465) 75 (58.90, 75.40)
Arizona Diamondbacks 0.432 (0.410, 0.514) 70 (66.35, 83.25)

Table 9. 95% Prediction Intervals for the 2009 National League.
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3 Pythagorean Expectation and the

Parametric Bootstrap

3.1 The Weibull Model and Maximum Likelihood
Estimation

In a recent paper by Miller (2006), a baseball team’s expected winning per-
centage is derived, under the assumptions that runs scored per game and
runs allowed per game follow independent shifted Weibull distributions with
different scale parameters, but sharing a common shape parameter and lo-
cation parameter. Recall that the shifted Weibull distribution, with shape
parameter γ, scale parameter α and location parameter θ, has a distribution
function of the form

F (x | γ, α, θ) = 1− exp

[
−

(
x− θ

α

)γ]
· I(θ ≤ x < ∞) (33)

with density function of the form

f(x | γ, α, θ) =
γ

αγ
(x− θ)γ−1 exp

[
−(x− θ)γ

αγ

]
· I(θ ≤ x < ∞) (34)

where γ, α, > 0 and θ ∈ R. Here and throughout, we denote this by writ-
ing Weibull(γ, α, θ). Miller shows that if X and Y are independent random
variables respectively following Weibull(γ, αRS, θ) and Weibull(γ, αRA, θ) dis-
tributions, then a team’s expected winning percentage is

P(X > Y ) =
(RS − θ)γ

(RS − θ)γ + (RA− θ)γ
=

αγ
RS

αγ
RS + αγ

RA

(35)

where RS = E(X) = αRS Γ(1+γ−1)+θ and RA = E(Y ) = αRA Γ(1+γ−1)+θ
are the expected runs scored per game and expected runs allowed per game,
respectively. Miller takes θ = −1/2. We shall make the same assumption
here.

From the distributional assumptions on runs scored per game and runs
allowed per game, we establish a statistical model appropriate for para-
metric bootstrap simulation. Let the random variables X1, X2, . . . , Xn and
Y1, Y2, . . . , Yn denote independent random samples which are respectively
drawn from Weibull(γ, αRS, θ = −1/2) and Weibull(γ, αRA, θ = −1/2) distri-
butions, where γ, αRS and αRA are unknown parameters to be estimated on
the basis of the runs scored per game and runs allowed per game. We use
the method of maximum likelihood estimation (cf. with Casella and Berger
(2002)).
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For the Weibull model, the likelihood function has the form

L(γ, αRS, αRA |x,y) =
n∏

j=1

fX(xj | γ, αRS, θ) · fY (yj | γ, αRA, θ)

γ2n
(∏n

j=1(xj − θ)(yj − θ)
)γ−1

(αRS · αRA)nγ
· exp

[
−

∑n
j=1(xj − θ)γ

αγ
RS

−
∑n

j=1(yj − θ)γ

αγ
RA

]
.

(36)

Finding the maximum likelihood estimator (MLE) of the shape parameter
γ, that is γ̂, requires extensive iterative numerical calculations, and can be
obtained by solving the equation

γ−1 =

∑n
j=1(xj − θ)γ log(xj − θ)

2
∑n

j=1(xj − θ)γ
+

∑n
j=1(yj − θ)γ log(yj − θ)

2
∑n

j=1(yj − θ)γ

− 1

2n

n∑
j=1

[log(xj − θ) + log(yj − θ)]. (37)

The MLE’s of the scale parameters αRS and αRA are respectively given by
the power means

α̂RS =

(
1

n

n∑
j=1

(xj − θ)γ̂

)1/γ̂

(38)

α̂RA =

(
1

n

n∑
j=1

(yj − θ)γ̂

)1/γ̂

. (39)

The expected winning percentage ψ(γ, αRS, αRA) = P(X > Y ) is a functional
parameter, and can be estimated by the plug-in principle, i.e.

ψ̂ = ψ(γ̂, α̂RS, α̂RA) =

∑n
j=1(xj − θ)γ̂

∑n
j=1(xj − θ)γ̂ +

∑n
j=1(yj − θ)γ̂

. (40)

Using maximum likelihood estimation on the Weibull model, over the 30
teams from the 2009 MLB regular season, the mean of γ̂ over the 30 teams is
1.69 with a standard deviation of 0.08. Over the 30 teams, the mean absolute
difference between observed and estimated games won is 5.28 games with a
standard deviation of 3.38 games. The root mean square difference between
observed and estimated games won is 6.24 games.
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Team Won Est.Won Est.Win% Win% Diff. γ̂
New York Yankees 103 89.53 0.553 0.636 -13.47 1.70
Boston Red Sox 95 89.61 0.553 0.586 -5.39 1.63
Tampa Bay Rays 84 86.49 0.534 0.519 2.49 1.78
Toronto Blue Jays 75 84.59 0.522 0.463 9.59 1.77
Baltimore Orioles 64 71.75 0.443 0.395 7.75 1.75
Minnesota Twins 87 85.21 0.523 0.534 -1.79 1.71
Detroit Tigers 86 82.54 0.506 0.528 -3.46 1.71

Chicago White Sox 79 80.19 0.495 0.488 1.19 1.58
Cleveland Indians 65 76.31 0.471 0.401 11.31 1.67

Kansas City Royals 65 68.16 0.421 0.401 3.16 1.68
Anaheim Angels 97 88.04 0.543 0.599 -8.96 1.67
Texas Rangers 87 84.22 0.520 0.537 -2.78 1.61

Seattle Mariners 85 75.06 0.463 0.525 -9.94 1.74
Oakland Athletics 75 80.83 0.499 0.463 5.83 1.69

Table 10. Maximum Likelihood Results for the 2009 American League.

Team Won Est.Won Est.Win% Win% Diff. γ̂
Philadelphia Phillies 93 91.28 0.563 0.574 -1.72 1.74

Florida Marlins 87 81.46 0.503 0.537 -5.54 1.91
Atlanta Braves 86 89.66 0.553 0.531 3.66 1.65
New York Mets 70 72.72 0.449 0.432 2.72 1.70

Washington Nationals 59 69.59 0.430 0.364 10.59 1.85
St. Louis Cardinals 91 87.75 0.542 0.562 -3.25 1.61

Chicago Cubs 83 84.27 0.523 0.516 1.27 1.64
Milwaukee Brewers 80 77.77 0.480 0.494 -2.23 1.78

Cincinnati Reds 78 74.53 0.460 0.481 -3.47 1.67
Houston Astros 74 70.26 0.434 0.457 -3.74 1.62

Pittsburgh Pirates 62 71.91 0.447 0.385 9.91 1.61
Los Angeles Dodgers 95 97.51 0.602 0.586 2.51 1.73

Colorado Rockies 92 87.02 0.537 0.568 -4.98 1.69
San Francisco Giants 88 84.05 0.519 0.543 -3.95 1.53

San Diego Padres 75 69.37 0.428 0.463 -5.63 1.74
Arizona Diamondbacks 70 76.17 0.470 0.432 6.17 1.66

Table 11. Maximum Likelihood Results for the 2009 National League.
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3.2 Parametric Bootstrap Simulation and Bootstrap
Confidence Intervals

One approach to computing useful confidence intervals for the expected win-
ning percentage and games won is to use bootstrap simulation methods. The
bootstrap is a modern, computer-intensive, general purpose approach to sta-
tistical inference. The advantage of bootstrapping over any analytical method
is its simplicity. As long as one has the data, it is relatively straightforward
to apply the bootstrap to derive estimates of standard errors and confidence
intervals for complex estimators of complex parameters of a distribution, such
as percentile points, proportions, odds ratio, and correlation coefficients. A
standard reference on bootstrap methods is Davison and Hinkley (1998).

A parametric bootstrap simulation would draw independent random sam-
ples

X∗
1 , X∗

2 , . . . , X
∗
n ∼ Weibull(γ̂, α̂RS, θ = −1/2)

Y ∗
1 , Y ∗

2 , . . . , Y ∗
n ∼ Weibull(γ̂, α̂RA, θ = −1/2)

where α̂RS and α̂RA and γ̂ are the MLEs. These are random samples simulated
from independent Weibull(γ̂, α̂RS, θ = −1/2) and Weibull(γ̂, α̂RA, θ = −1/2)
distributions. These are the so-called “plug-in distributions” or “fitted para-
metric models” (cf. with Davison and Hinkley (1998) and Casella and Berger
(2002)). We want a large number, say B, of such independent samples simu-
lated from the fitted parametric models:

(X∗
1 , X

∗
2 , . . . , X

∗
n)(1) and (Y ∗

1 , Y ∗
2 , . . . , Y ∗

n )(1)

(X∗
1 , X

∗
2 , . . . , X

∗
n)(2) and (Y ∗

1 , Y ∗
2 , . . . , Y ∗

n )(2)

...
(X∗

1 , X
∗
2 , . . . , X

∗
n)(B) and (Y ∗

1 , Y ∗
2 , . . . , Y ∗

n )(B).

We will use the formula

ψ̂ =

∑n
j=1(xj − θ)γ̂

∑n
j=1(xj − θ)γ̂ +

∑n
j=1(xj − θ)γ̂

= t(x,y) (41)

to compute an estimate of a team’s expected winning percentage based on
the original data set, and each of the B independent samples, i.e.

(X1, X2, . . . , Xn) and (Y1, Y2, . . . , Yn) 7→ t
(X∗

1 , X
∗
2 , . . . , X

∗
n)(1) and (Y ∗

1 , Y ∗
2 , . . . , Y ∗

n )(1) 7→ t∗1
(X∗

1 , X
∗
2 , . . . , X

∗
n)(2) and (Y ∗

1 , Y ∗
2 , . . . , Y ∗

n )(2) 7→ t∗2
...

(X∗
1 , X

∗
2 , . . . , X

∗
n)(B) and (Y ∗

1 , Y ∗
2 , . . . , Y ∗

n )(B) 7→ t∗B
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so that we have t and t∗1, t
∗
2, . . . , t

∗
B.

By the strong law of large numbers, with probability 1, in the limit as
B →∞,

T̄ ∗ =
1

B

B∑
i=1

T ∗
i → t. (42)

In other words, if B is sufficiently large, we have

t̄∗ =

(
1

B

B∑
i=1

t∗i

)
≈ t. (43)

Respectively, estimates for the bias and variance of T are

Bias(T ) ≈ t̄∗ − t =

(
1

B

B∑
i=1

t∗i

)
− t, (44)

Var(T ) ≈ Var∗B(t) =
1

B − 1

B∑
i=1

(t∗i − t̄∗)2. (45)

For a large enough B, an approximate 95% confidence interval for winning
percentage is

t− Bias(t)± 1.96
√

Var(t) ≈ (2t− t̄∗)± 1.96
√

Var∗B(t). (46)

and an approximate 95% confidence interval for games won is

nt− Bias(nt)± 1.96
√

Var(nt) ≈ (2nt− nt̄∗)± 1.96
√

Var∗B(nt), (47)

When the number of games played is not large enough, the distribution of
T may not follow an approximate Normal distribution, so the approximate
confidence intervals may not be reliable. In this case, we can use an equal-
tailed 95% confidence interval for winning percentage which is

(
2t− t∗((B+1)(0.975)), 2t− t∗((B+1)(0.025))

)
(48)

and an equal-tailed 95% confidence interval for games won is

(
2nt− nt∗((B+1)(0.975)), 2nt− nt∗((B+1)(0.025))

)
. (49)

The accuracy of the estimates for bias, variance, and quantiles depends on
the value of B. To be safe, B will need to be at least 1000, but really good
results usually require B ≥ 5000.
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3.3 Numerical Results from the Parametric Bootstrap
Framework

Using parametric bootstrap simulation, we computed both approximate and
equal-tailed 95% confidence intervals for the Pythagorean expectation for all
30 MLB teams on the basis of their runs scored per game and runs allowed
per game data from the 2009 regular season. The numerical results are based
on B = 5000 bootstrap samples.

Like we did with the prediction intervals based on linear regression, we
can also use these bootstrap confidence intervals to obtain better statistical
inferences on teams performing above or below their expectations. Again,
such inferences come with a measure of statistical reliability. For example,
with 95% confidence, we may infer that a team’s Pythagorean expectation
falls somewhere within the bounds of its confidence interval. Thus, if a team’s
observed winning percentage or observed games won exceeds (falls below) the
upper bound (lower bound) of their respective confidence intervals, then we
are 95% confident that they are performing above (below) their Pythagorean
expectation.

Team Win% CI for Win% Won CI for Won
New York Yankees 0.636 (0.499, 0.607) 103 (80.85, 98.27)
Boston Red Sox 0.586 (0.499, 0.608) 95 (80.85, 98.45)
Tampa Bay Rays 0.519 (0.478, 0.588) 84 (77.05, 95.25)
Toronto Blue Jays 0.463 (0.470, 0.577) 75 (76.09, 93.51)
Baltimore Orioles 0.395 (0.390, 0.496) 64 (63.17, 80.38)
Minnesota Twins 0.534 (0.469, 0.576) 87 (76.40, 93.86)
Detroit Tigers 0.528 (0.453, 0.560) 86 (73.78, 91.25)

Chicago White Sox 0.488 (0.440, 0.550) 79 (71.29, 89.10)
Cleveland Indians 0.401 (0.416, 0.525) 65 (67.41, 85.04)

Kansas City Royals 0.401 (0.367, 0.474) 65 (59.53, 76.75)
Anaheim Angels 0.599 (0.491, 0.597) 97 (79.48, 96.70)
Texas Rangers 0.537 (0.466, 0.573) 87 (75.47, 92.84)

Seattle Mariners 0.525 (0.409, 0.518) 85 (66.26, 83.84)
Oakland Athletics 0.463 (0.444, 0.554) 75 (71.90, 89.69)

Table 12. Approximate 95% Confidence Intervals for the 2009 American League.
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Team Win% CI for Win% Won CI for Won
Philadelphia Phillies 0.574 (0.509, 0.618) 93 (82.47, 100.04)

Florida Marlins 0.537 (0.448, 0.557) 87 (72.53, 90.29)
Atlanta Braves 0.531 (0.499, 0.608) 86 (80.90, 98.39)
New York Mets 0.432 (0.396, 0.502) 70 (64.08, 81.32)

Washington Nationals 0.364 (0.376, 0.483) 59 (60.91, 78.31)
St. Louis Cardinals 0.562 (0.489, 0.596) 91 (79.23, 96.50)

Chicago Cubs 0.516 (0.469, 0.578) 83 (75.45, 93.04)
Milwaukee Brewers 0.494 (0.425, 0.534) 80 (68.90, 86.54)

Cincinnati Reds 0.481 (0.406, 0.514) 78 (65.81, 83.31)
Houston Astros 0.457 (0.381, 0.487) 74 (61.73, 78.90)

Pittsburgh Pirates 0.385 (0.392, 0.500) 62 (63.12, 80.58)
Los Angeles Dodgers 0.586 (0.550, 0.654) 95 (89.04, 106.01)

Colorado Rockies 0.568 (0.483, 0.592) 92 (78.20, 95.88)
San Francisco Giants 0.543 (0.466, 0.572) 88 (75.42, 92.67)

San Diego Padres 0.463 (0.375, 0.482) 75 (60.69, 78.07)
Arizona Diamondbacks 0.432 (0.416, 0.525) 70 (67.33, 85.06)

Table 13. Approximate 95% Confidence Intervals for 2009 National League.

Team Win% CI for Win% Won CI for Won
New York Yankees 0.636 (0.499, 0.607) 103 (80.83, 98.30)
Boston Red Sox 0.586 (0.501, 0.609) 95 (81.13, 98.60)
Tampa Bay Rays 0.519 (0.480, 0.588) 84 (77.76, 95.22)
Toronto Blue Jays 0.463 (0.471, 0.578) 75 (76.24, 93.57)
Baltimore Orioles 0.395 (0.390, 0.497) 64 (63.13, 80.56)
Minnesota Twins 0.534 (0.470, 0.575) 87 (76.59, 93.75)
Detroit Tigers 0.528 (0.453, 0.560) 86 (73.90, 91.24)

Chicago White Sox 0.488 (0.441, 0.550) 79 (71.45, 89.07)
Cleveland Indians 0.401 (0.416, 0.526) 65 (67.38, 85.16)

Kansas City Royals 0.401 (0.367, 0.474) 65 (59.48, 76.84)
Anaheim Angels 0.599 (0.490, 0.598) 97 (79.41, 96.90)
Texas Rangers 0.537 (0.467, 0.576) 87 (75.57, 93.24)

Seattle Mariners 0.525 (0.409, 0.516) 85 (66.27, 83.57)
Oakland Athletics 0.463 (0.444, 0.553) 75 (71.92, 89.51)

Table 14. Equal-tailed 95% Confidence Intervals for the 2009 American League.
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Team Win% CI for Win% Won CI for Won
Philadelphia Phillies 0.574 (0.509, 0.618) 93 (82.48, 100.06)

Florida Marlins 0.537 (0.448, 0.557) 87 (72.51, 90.26)
Atlanta Braves 0.531 (0.500, 0.608) 86 (81.03, 98.47)
New York Mets 0.432 (0.395, 0.501) 70 (63.99, 81.22)

Washington Nationals 0.364 (0.374, 0.481) 59 (60.65, 77.97)
St. Louis Cardinals 0.562 (0.488, 0.595) 91 (79.12, 96.45)

Chicago Cubs 0.516 (0.469, 0.578) 83 (75.58, 93.13)
Milwaukee Brewers 0.494 (0.426, 0.535) 80 (68.96, 86.60)

Cincinnati Reds 0.481 (0.407, 0.513) 78 (65.89, 83.04)
Houston Astros 0.457 (0.380, 0.487) 74 (61.54, 78.90)

Pittsburgh Pirates 0.385 (0.390, 0.500) 62 (62.72, 80.44)
Los Angeles Dodgers 0.586 (0.550, 0.656) 95 (89.13, 106.26)

Colorado Rockies 0.568 (0.484, 0.593) 92 (78.38, 96.02)
San Francisco Giants 0.543 (0.465, 0.572) 88 (75.40, 92.61)

San Diego Padres 0.463 (0.374, 0.482) 75 (60.52, 78.02)
Arizona Diamondbacks 0.432 (0.414, 0.523) 70 (67.11, 84.80)

Table 15. Equal-tailed 95% Confidence Intervals for 2009 National League.

Based on these bootstrap confidence intervals, among the 2009 American
League teams, it is seen that the New York Yankees (103 wins; 0.636 win
percentage), the Anaheim Angels (97 wins; 0.599 win percentage), and the
Seattle Mariners (85 wins; 0.525 win percentage) outperformed their expec-
tations by exceeding the upper bound of their respective confidence intervals.
It is also seen that the Toronto Blue Jays (75 wins; 0.463 win percentage)
and Cleveland Indians (65 wins; 0.401 win percentage) under-performed their
expectations by falling below the lower bound of their respective confidence
intervals. Among the 2009 National League teams, no team outperformed
their expectations by exceeding the upper bound of their respective con-
fidence interval. It is also seen that the Washington Nationals (59 wins;
0.364 win percentage), Pittsburgh Pirates (62 wins; 0.385 win percentage)
under-performed their expectations by falling below the lower bound of their
respective confidence intervals. In the 2009 American League, the largest
upper estimates belong to the Boston Red Sox, while the smallest lower es-
timates belong to the Kansas City Royals. In the 2009 National League, the
largest upper estimates belong to the Los Angeles Dodgers, while the smallest
lower estimates belong to the San Diego Padres.

4 Conclusions

We have seen that interval estimates for the Pythagorean expectation are
useful in determining, with some measure of statistical reliability, whether a
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team is playing above or below expectations. Based on the results obtained
for the 2009 MLB regular season, the bootstrap confidence intervals, from the
Weibull model, appear to be better at inferring or detecting which teams are
performing above or below expectations than the prediction intervals obtained
in the regression framework. This may be due to the fact that the Weibull
model produces conservative point estimates compared to the Pythagorean
formula. On the scale of winning percentage, the length of the prediction
intervals are only slightly shorter than the length of the bootstrap intervals.
As for future research, it would be of interest to study confidence interval
estimation in the framework of other Pythagorean-type methods.
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