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Preface

This book belongs to a series of online books summarizing the recent state Topological Geometro-
dynamics (TGD) and its applications. TGD can be regarded as a unified theory of fundamental
interactions but is not the kind of unified theory as so called GUTs constructed by graduate stu-
dents at seventies and eighties using detailed recipes for how to reduce everything to group theory.
Nowadays this activity has been completely computerized and it probably takes only a few hours to
print out the predictions of this kind of unified theory as an article in the desired format. TGD is
something different and I am not ashamed to confess that I have devoted the last 32 years of my life
to this enterprise and am still unable to write The Rules.

I got the basic idea of Topological Geometrodynamics (TGD) during autumn 1978, perhaps it
was October. What I realized was that the representability of physical space-times as 4-dimensional
surfaces of some higher-dimensional space-time obtained by replacing the points of Minkowski space
with some very small compact internal space could resolve the conceptual difficulties of general rela-
tivity related to the definition of the notion of energy. This belief was too optimistic and only with
the advent of what I call zero energy ontology the understanding of the notion of Poincare invariance
has become satisfactory.

It soon became clear that the approach leads to a generalization of the notion of space-time with
particles being represented by space-time surfaces with finite size so that TGD could be also seen as
a generalization of the string model. Much later it became clear that this generalization is consistent
with conformal invariance only if space-time is 4-dimensional and the Minkowski space factor of
imbedding space is 4-dimensional.

It took some time to discover that also the geometrization of also gauge interactions and elementary
particle quantum numbers could be possible in this framework: it took two years to find the unique
internal space providing this geometrization involving also the realization that family replication
phenomenon for fermions has a natural topological explanation in TGD framework and that the
symmetries of the standard model symmetries are much more profound than pragmatic TOE builders
have believed them to be. If TGD is correct, main stream particle physics chose the wrong track leading
to the recent deep crisis when people decided that quarks and leptons belong to same multiplet of the
gauge group implying instability of proton.

There have been also longstanding problems.

• Gravitational energy is well-defined in cosmological models but is not conserved. Hence the
conservation of the inertial energy does not seem to be consistent with the Equivalence Princi-
ple. Furthermore, the imbeddings of Robertson-Walker cosmologies turned out to be vacuum
extremals with respect to the inertial energy. About 25 years was needed to realize that the sign
of the inertial energy can be also negative and in cosmological scales the density of inertial energy
vanishes: physically acceptable universes are creatable from vacuum. Eventually this led to the
notion of zero energy ontology which deviates dramatically from the standard ontology being
however consistent with the crossing symmetry of quantum field theories. In this framework the
quantum numbers are assigned with zero energy states located at the boundaries of so called
causal diamonds defined as intersections of future and past directed light-cones. The notion of
energy-momentum becomes length scale dependent since one has a scale hierarchy for causal
diamonds. This allows to understand the non-conservation of energy as apparent. Equivalence
Principle generalizes and has a formulation in terms of coset representations of Super-Virasoro
algebras providing also a justification for p-adic thermodynamics.

• From the beginning it was clear that the theory predicts the presence of long ranged classical
electro-weak and color gauge fields and that these fields necessarily accompany classical electro-
magnetic fields. It took about 26 years to gain the maturity to admit the obvious: these fields
are classical correlates for long range color and weak interactions assignable to dark matter.
The only possible conclusion is that TGD physics is a fractal consisting of an entire hierarchy
of fractal copies of standard model physics. Also the understanding of electro-weak massivation
and screening of weak charges has been a long standing problem, and 32 years was needed to
discover that what I call weak form of electric-magnetic duality gives a satisfactory solution of
the problem and provides also surprisingly powerful insights to the mathematical structure of
quantum TGD.
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I started the serious attempts to construct quantum TGD after my thesis around 1982. The
original optimistic hope was that path integral formalism or canonical quantization might be enough
to construct the quantum theory but the first discovery made already during first year of TGD was that
these formalisms might be useless due to the extreme non-linearity and enormous vacuum degeneracy
of the theory. This turned out to be the case.

• It took some years to discover that the only working approach is based on the generalization
of Einstein’s program. Quantum physics involves the geometrization of the infinite-dimensional
”world of classical worlds” (WCW) identified as 3-dimensional surfaces. Still few years had
to pass before I understood that general coordinate invariance leads to a more or less unique
solution of the problem and implies that space-time surfaces are analogous to Bohr orbits. Still
a coupled of years and I discovered that quantum states of the Universe can be identified as
classical spinor fields in WCW. Only quantum jump remains the genuinely quantal aspect of
quantum physics.

• During these years TGD led to a rather profound generalization of the space-time concept.
Quite general properties of the theory led to the notion of many-sheeted space-time with sheets
representing physical subsystems of various sizes. At the beginning of 90s I became dimly
aware of the importance of p-adic number fields and soon ended up with the idea that p-adic
thermodynamics for a conformally invariant system allows to understand elementary particle
massivation with amazingly few input assumptions. The attempts to understand p-adicity from
basic principles led gradually to the vision about physics as a generalized number theory as
an approach complementary to the physics as an infinite-dimensional spinor geometry of WCW
approach. One of its elements was a generalization of the number concept obtained by fusing real
numbers and various p-adic numbers along common rationals. The number theoretical trinity
involves besides p-adic number fields also quaternions and octonions and the notion of infinite
prime.

• TGD inspired theory of consciousness entered the scheme after 1995 as I started to write a book
about consciousness. Gradually it became difficult to say where physics ends and consciousness
theory begins since consciousness theory could be seen as a generalization of quantum measure-
ment theory by identifying quantum jump as a moment of consciousness and by replacing the
observer with the notion of self identified as a system which is conscious as long as it can avoid
entanglement with environment. ”Everything is conscious and consciousness can be only lost”
summarizes the basic philosophy neatly. The idea about p-adic physics as physics of cognition
and intentionality emerged also rather naturally and implies perhaps the most dramatic gener-
alization of the space-time concept in which most points of p-adic space-time sheets are infinite
in real sense and the projection to the real imbedding space consists of discrete set of points.
One of the most fascinating outcomes was the observation that the entropy based on p-adic
norm can be negative. This observation led to the vision that life can be regarded as something
in the intersection of real and p-adic worlds. Negentropic entanglement has interpretation as
a correlate for various positively colored aspects of conscious experience and means also the
possibility of strongly correlated states stable under state function reduction and different from
the conventional bound states and perhaps playing key role in the energy metabolism of living
matter.

• One of the latest threads in the evolution of ideas is only slightly more than six years old.
Learning about the paper of Laurent Nottale about the possibility to identify planetary orbits
as Bohr orbits with a gigantic value of gravitational Planck constant made once again possible to
see the obvious. Dynamical quantized Planck constant is strongly suggested by quantum classical
correspondence and the fact that space-time sheets identifiable as quantum coherence regions can
have arbitrarily large sizes. During summer 2010 several new insights about the mathematical
structure and interpretation of TGD emerged. One of these insights was the realization that
the postulated hierarchy of Planck constants might follow from the basic structure of quantum
TGD. The point is that due to the extreme non-linearity of the classical action principle the
correspondence between canonical momentum densities and time derivatives of the imbedding
space coordinates is one-to-many and the natural description of the situation is in terms of local
singular covering spaces of the imbedding space. One could speak about effective value of Planck
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constant coming as a multiple of its minimal value. The implications of the hierarchy of Planck
constants are extremely far reaching so that the significance of the reduction of this hierarchy to
the basic mathematical structure distinguishing between TGD and competing theories cannot
be under-estimated.

From the point of view of particle physics the ultimate goal is of course a practical construction
recipe for the S-matrix of the theory. I have myself regarded this dream as quite too ambitious taking
into account how far reaching re-structuring and generalization of the basic mathematical structure
of quantum physics is required. It has indeed turned out that the dream about explicit formula
is unrealistic before one has understood what happens in quantum jump. Symmetries and general
physical principles have turned out to be the proper guide line here. To give some impressions about
what is required some highlights are in order.

• With the emergence of zero energy ontology the notion of S-matrix was replaced with M-matrix
which can be interpreted as a complex square root of density matrix representable as a diagonal
and positive square root of density matrix and unitary S-matrix so that quantum theory in zero
energy ontology can be said to define a square root of thermodynamics at least formally.

• A decisive step was the strengthening of the General Coordinate Invariance to the requirement
that the formulations of the theory in terms of light-like 3-surfaces identified as 3-surfaces at
which the induced metric of space-time surfaces changes its signature and in terms of space-like
3-surfaces are equivalent. This means effective 2-dimensionality in the sense that partonic 2-
surfaces defined as intersections of these two kinds of surfaces plus 4-D tangent space data at
partonic 2-surfaces code for the physics. Quantum classical correspondence requires the coding
of the quantum numbers characterizing quantum states assigned to the partonic 2-surfaces to
the geometry of space-time surface. This is achieved by adding to the modified Dirac action a
measurement interaction term assigned with light-like 3-surfaces.

• The replacement of strings with light-like 3-surfaces equivalent to space-like 3-surfaces means
enormous generalization of the super conformal symmetries of string models. A further general-
ization of these symmetries to non-local Yangian symmetries generalizing the recently discovered
Yangian symmetry of N = 4 supersymmetric Yang-Mills theories is highly suggestive. Here the
replacement of point like particles with partonic 2-surfaces means the replacement of conformal
symmetry of Minkowski space with infinite-dimensional super-conformal algebras. Yangian sym-
metry provides also a further refinement to the notion of conserved quantum numbers allowing
to define them for bound states using non-local energy conserved currents.

• A further attractive idea is that quantum TGD reduces to almost topological quantum field
theory. This is possible if the Kähler action for the preferred extremals defining WCW Kähler
function reduces to a 3-D boundary term. This takes place if the conserved currents are so called
Beltrami fields with the defining property that the coordinates associated with flow lines extend
to single global coordinate variable. This ansatz together with the weak form of electric-magnetic
duality reduces the Kähler action to Chern-Simons term with the condition that the 3-surfaces
are extremals of Chern-Simons action subject to the constraint force defined by the weak form
of electric magnetic duality. It is the latter constraint which prevents the trivialization of the
theory to a topological quantum field theory. Also the identification of the Kähler function of
WCW as Dirac determinant finds support as well as the description of the scattering amplitudes
in terms of braids with interpretation in terms of finite measurement resolution coded to the
basic structure of the solutions of field equations.

• In standard QFT Feynman diagrams provide the description of scattering amplitudes. The
beauty of Feynman diagrams is that they realize unitarity automatically via the so called
Cutkosky rules. In contrast to Feynman’s original beliefs, Feynman diagrams and virtual parti-
cles are taken only as a convenient mathematical tool in quantum field theories. QFT approach
is however plagued by UV and IR divergences and one must keep mind open for the possibility
that a genuine progress might mean opening of the black box of the virtual particle.

In TGD framework this generalization of Feynman diagrams indeed emerges unavoidably. Light-
like 3-surfaces replace the lines of Feynman diagrams and vertices are replaced by 2-D partonic
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2-surfaces. Zero energy ontology and the interpretation of parton orbits as light-like ”wormhole
throats” suggests that virtual particle do not differ from on mass shell particles only in that
the four- and three- momenta of wormhole throats fail to be parallel. The two throats of the
wormhole defining virtual particle would contact carry on mass shell quantum numbers but
for virtual particles the four-momenta need not be parallel and can also have opposite signs of
energy. Modified Dirac equation suggests a number theoretical quantization of the masses of the
virtual particles. The kinematic constraints on the virtual momenta are extremely restrictive
and reduce the dimension of the sub-space of virtual momenta and if massless particles are
not allowed (IR cutoff provided by zero energy ontology naturally), the number of Feynman
diagrams contributing to a particular kind of scattering amplitude is finite and manifestly UV
and IR finite and satisfies unitarity constraint in terms of Cutkosky rules. What is remarkable
that fermionic propagatos are massless propagators but for on mass shell four-momenta. This
gives a connection with the twistor approach and inspires the generalization of the Yangian
symmetry to infinite-dimensional super-conformal algebras.

What I have said above is strongly biased view about the recent situation in quantum TGD and
I have left all about applications to the introductions of the books whose purpose is to provide a
bird’s eye of view about TGD as it is now. This vision is single man’s view and doomed to contain
unrealistic elements as I know from experience. My dream is that young critical readers could take
this vision seriously enough to try to demonstrate that some of its basic premises are wrong or to
develop an alternative based on these or better premises. I must be however honest and tell that 32
years of TGD is a really vast bundle of thoughts and quite a challenge for anyone who is not able to
cheat himself by taking the attitude of a blind believer or a light-hearted debunker trusting on the
power of easy rhetoric tricks.

Matti Pitkänen

Hanko,
September 15, 2010
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Chapter 1

Introduction

1.1 Basic Ideas of TGD

The basic physical picture behind TGD was formed as a fusion of two rather disparate approaches:
namely TGD is as a Poincare invariant theory of gravitation and TGD as a generalization of the
old-fashioned string model.

1.1.1 Background

T(opological) G(eometro)D(ynamics) is one of the many attempts to find a unified description of basic
interactions. The development of the basic ideas of TGD to a relatively stable form took time of about
half decade [K1]. The great challenge is to construct a mathematical theory around these physically
very attractive ideas and I have devoted the last twenty-three years for the realization of this dream
and this has resulted in seven online books about TGD and eight online books about TGD inspired
theory of consciousness and of quantum biology.

Quantum T(opological) G(eometro)D(ynamics) as a classical spinor geometry for infinite-dimensional
configuration space, p-adic numbers and quantum TGD, and TGD inspired theory of consciousness
and of quantum biology have been for last decade of the second millenium the basic three strongly
interacting threads in the tapestry of quantum TGD.

For few years ago the discussions with Tony Smith initiated a fourth thread which deserves the
name ’TGD as a generalized number theory’. The basic observation was that classical number fields
might allow a deeper formulation of quantum TGD. The work with Riemann hypothesis made time
ripe for realization that the notion of infinite primes could provide, not only a reformulation, but a
deep generalization of quantum TGD. This led to a thorough and extremely fruitful revision of the
basic views about what the final form and physical content of quantum TGD might be. Together with
the vision about the fusion of p-adic and real physics to a larger coherent structure these sub-threads
fused to the ”physics as generalized number theory” th

A further thread emerged from the realization that by quantum classical correspondence TGD
predicts an infinite hierarchy of macroscopic quantum systems with increasing sizes, that it is not at
all clear whether standard quantum mechanics can accommodate this hierarchy, and that a dynam-
ical quantized Planck constant might be necessary and certainly possible in TGD framework. The
identification of hierarchy of Planck constants whose values TGD ”predicts” in terms of dark matter
hierarchy would be natural. This also led to a solution of a long standing puzzle: what is the proper
interpretation of the predicted fractal hierarchy of long ranged classical electro-weak and color gauge
fields. Quantum classical correspondences allows only single answer: there is infinite hierarchy of p-
adically scaled up variants of standard model physics and for each of them also dark hierarchy. Thus
TGD Universe would be fractal in very abstract and deep sense.

Every updating of the books makes me frustrated as I see how badly the structure of the repre-
sentation reflects my bird’s eye of view as it is at the moment of updating. At this time I realized
that the chronology based identification of the threads is quite natural but not logical and it is much
more logical to see p-adic physics, the ideas related to classical number fields, and infinite primes
as sub-threads of a thread which might be called ”physics as a generalized number theory”. In the

1



2 Chapter 1. Introduction

following I adopt this view. This reduces the number of threads to four! I am not even sure about
the number of threads! Be patient!

TGD forces the generalization of physics to a quantum theory of consciousness, and represent
TGD as a generalized number theory vision leads naturally to the emergence of p-adic physics as
physics of cognitive representations. The seven online books [K84, K65, K58, K52, K66, K75, K73]
about TGD and eight online books about TGD inspired theory of consciousness and of quantum
biology [K79, K13, K62, K12, K34, K42, K45, K72] are warmly recommended to the interested reader.

1.1.2 TGD as a Poincare invariant theory of gravitation

The first approach was born as an attempt to construct a Poincare invariant theory of gravitation.
Space-time, rather than being an abstract manifold endowed with a pseudo-Riemannian structure, is
regarded as a surface in the 8-dimensional space H = M4

×CP2, where M4 denotes Minkowski space
and CP2 = SU(3)/U(2) is the complex projective space of two complex dimensions [A218, A170,
A198, A161].

The identification of the space-time as a submanifold [A146, A215] of M4 × CP2 leads to an
exact Poincare invariance and solves the conceptual difficulties related to the definition of the energy-
momentum in General Relativity.

It soon however turned out that submanifold geometry, being considerably richer in structure
than the abstract manifold geometry, leads to a geometrization of all basic interactions. First, the
geometrization of the elementary particle quantum numbers is achieved. The geometry of CP2 explains
electro-weak and color quantum numbers. The different H-chiralities of H-spinors correspond to the
conserved baryon and lepton numbers. Secondly, the geometrization of the field concept results. The
projections of the CP2 spinor connection, Killing vector fields of CP2 and of H-metric to four-surface
define classical electro-weak, color gauge fields and metric in X4.

1.1.3 TGD as a generalization of the hadronic string model

The second approach was based on the generalization of the mesonic string model describing mesons
as strings with quarks attached to the ends of the string. In the 3-dimensional generalization 3-
surfaces correspond to free particles and the boundaries of the 3- surface correspond to partons in
the sense that the quantum numbers of the elementary particles reside on the boundaries. Various
boundary topologies (number of handles) correspond to various fermion families so that one obtains
an explanation for the known elementary particle quantum numbers. This approach leads also to a
natural topological description of the particle reactions as topology changes: for instance, two-particle
decay corresponds to a decay of a 3-surface to two disjoint 3-surfaces.

This decay vertex does not however correspond to a direct generalization of trouser vertex of
string models. Indeed, the important difference between TGD and string models is that the analogs
of string world sheet diagrams do not describe particle decays but the propagation of particles via
different routes. Particle reactions are described by generalized Feynman diagrams for which 3-D
light-like surface describing particle propagating join along their ends at vertices. As 4-manifolds the
space-time surfaces are therefore singular like Feynman diagrams as 1-manifolds.

1.1.4 Fusion of the two approaches via a generalization of the space-time
concept

The problem is that the two approaches to TGD seem to be mutually exclusive since the orbit of a
particle like 3-surface defines 4-dimensional surface, which differs drastically from the topologically
trivial macroscopic space-time of General Relativity. The unification of these approaches forces a
considerable generalization of the conventional space-time concept. First, the topologically trivial 3-
space of General Relativity is replaced with a ”topological condensate” containing matter as particle
like 3-surfaces ”glued” to the topologically trivial background 3-space by connected sum operation.
Secondly, the assumption about connectedness of the 3-space is given up. Besides the ”topological
condensate” there could be ”vapor phase” that is a ”gas” of particle like 3-surfaces (counterpart of
the ”baby universies” of GRT) and the nonconservation of energy in GRT corresponds to the transfer
of energy between the topological condensate and vapor phase.
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What one obtains is what I have christened as many-sheeted space-time. One particular aspect
is topological field quantization meaning that various classical fields assignable to a physical system
correspond to space-time sheets representing the classical fields to that particular system. One can
speak of the field body of a particular physical system. Field body consists of topological light rays,
and electric and magnetic flux quanta. In Maxwell’s theory system does not possess this kind of
field identity. The notion of magnetic body is one of the key players in TGD inspired theory of
consciousness and quantum biology.

This picture became more detailed with the advent of zero energy ontology (ZEO). The basic notion
of ZEO is causal diamond (CD) identified as the Cartesian product of CP2 and of the intersection
of future and past directed light-cones and having scale coming as an integer multiple of CP2 size is
fundamental. CDs form a fractal hierarchy and zero energy states decompose to products of positive
and negative energy parts assignable to the opposite boundaries of CD defining the ends of the space-
time surface. The counterpart of zero energy state in positive energy ontology is in terms of initial
and final states of a physical event, say particle reaction.

General Coordinate Invariance allows to identify the basic dynamical objects as space-like 3-
surfaces at the ends of space-time surface at boundaries of CD: this means that space-time sur-
face is analogous to Bohr orbit. An alternative identification is as light-like 3-surfaces at which the
signature of the induced metric changes from Minkowskian to Euclidian and interpreted as lines of
generalized Feynman diagrams. Also the Euclidian 4-D regions would have similar interpretation. The
requirement that the two interpretations are equivalent, leads to a strong form of General Coordinate
Invariance. The outcome is effective 2-dimensionality stating that the partonic 2-surfaces identified
as intersections of the space-like ends of space-time surface and light-like wormhole throats are the
fundamental objects. That only effective 2-dimensionality is in question is due to the effects caused by
the failure of strict determinism of Kähler action. In finite length scale resolution these effects can be
neglected below UV cutoff and above IR cutoff. One can also speak about strong form of holography.

There is a further generalization of the space-time concept inspired by p-adic physics forcing a
generalization of the number concept through the fusion of real numbers and various p-adic number
fields. Also the hierarchy of Planck constants forces a generalization of the notion of space-time.

A very concise manner to express how TGD differs from Special and General Relativities could
be following. Relativity Principle (Poincare Invariance), General Coordinate Invariance, and Equiva-
lence Principle remain true. What is new is the notion of sub-manifold geometry: this allows to realize
Poincare Invariance and geometrize gravitation simultaneously. This notion also allows a geometriza-
tion of known fundamental interactions and is an essential element of all applications of TGD ranging
from Planck length to cosmological scales. Sub-manifold geometry is also crucial in the applications
of TGD to biology and consciousness theory.

The worst objection against TGD is the observation that all classical gauge fields are expressible in
terms of four imbedding space coordinates only- essentially CP2 coordinates. The linear superposition
of classical gauge fields taking place independently for all gauge fields is lost. This would be a
catastrophe without many-sheeted space-time. Instead of gauge fields, only the effects such as gauge
forces are superposed. Particle topologically condenses to several space-time sheets simultaneously
and experiences the sum of gauge forces. This transforms the weakness to extreme economy: in a
typical unified theory the number of primary field variables is countered in hundreds if not thousands,
now it is just four.

1.2 The threads in the development of quantum TGD

The development of TGD has involved several strongly interacting threads: physics as infinite-
dimensional geometry; TGD as a generalized number theory, the hierarchy of Planck constants inter-
preted in terms of dark matter hierarchy, and TGD inspired theory of consciousness. In the following
these threads are briefly described.

1.2.1 Quantum TGD as spinor geometry of World of Classical Worlds

A turning point in the attempts to formulate a mathematical theory was reached after seven years
from the birth of TGD. The great insight was ”Do not quantize”. The basic ingredients to the new



4 Chapter 1. Introduction

approach have served as the basic philosophy for the attempt to construct Quantum TGD since then
and have been the following ones:

1. Quantum theory for extended particles is free(!), classical(!) field theory for a generalized
Schrödinger amplitude in the configuration space CH consisting of all possible 3-surfaces in
H. ”All possible” means that surfaces with arbitrary many disjoint components and with
arbitrary internal topology and also singular surfaces topologically intermediate between two
different manifold topologies are included. Particle reactions are identified as topology changes
[A195, A221, A223]. For instance, the decay of a 3-surface to two 3-surfaces corresponds to the
decay A → B + C. Classically this corresponds to a path of configuration space leading from
1-particle sector to 2-particle sector. At quantum level this corresponds to the dispersion of the
generalized Schrödinger amplitude localized to 1-particle sector to two-particle sector. All cou-
pling constants should result as predictions of the theory since no nonlinearities are introduced.

2. During years this naive and very rough vision has of course developed a lot and is not anymore
quite equivalent with the original insight. In particular, the space-time correlates of Feynman
graphs have emerged from theory as Euclidian space-time regions and the strong form of General
Coordinate Invariance has led to a rather detailed and in many respects un-expected visions.
This picture forces to give up the idea about smooth space-time surfaces and replace space-
time surface with a generalization of Feynman diagram in which vertices represent the failure of
manifold property. I have also startd introduced the word ”world of classical worlds” (WCW)
instead of rather formal ”configuration space”. I hope that ”WCW” does not induce despair in
the reader having tendency to think about the technicalities involved!

3. WCW is endowed with metric and spinor structure so that one can define various metric related
differential operators, say Dirac operator, appearing in the field equations of the theory. The
most ambitious dream is that zero energy states correspond to a complete solution basis for the
Dirac operator of WCW so that this classical free field theory would dictate M-matrices which
form orthonormal rows of what I call U-matrix. Given M-matrix in turn would decompose to a
product of a hermitian density matrix and unitary S-matrix.

M-matrix would define time-like entanglement coefficients between positive and negative energy
parts of zero energy states (all net quantum numbers vanish for them) and can be regarded as a
hermitian quare root of density matrix multiplied by a unitary S-matrix. Quantum theory would
be in well-defined sense a square root of thermodynamics. The orthogonality and hermiticity
of the complex square roots of density matrices commuting with S-matrix means that they
span infinite-dimensional Lie algebra acting as symmetries of the S-matrix. Therefore quantum
TGD would reduce to group theory in well-defined sense: its own symmetries would define the
symmetries of the theory. In fact the Lie algebra of Hermitian M-matrices extends to Kac-
Moody type algebra obtained by multiplying hermitian square roots of density matrices with
powers of the S-matrix. Also the analog of Yangian algebra involving only non-negative powers
of S-matrix is possible.

4. By quantum classical correspondence the construction of WCW spinor structure reduces to the
second quantization of the induced spinor fields at space-time surface. The basic action is so
called modified Dirac action in which gamma matrices are replaced with the modified gamma
matrices defined as contractions of the canonical momentum currents with the imbedding space
gamma matrices. In this manner one achieves super-conformal symmetry and conservation of
fermionic currents among other things and consistent Dirac equation. This modified gamma
matrices define as anticommutators effective metric, which might provide geometrization for
some basic observables of condensed matter physics. The conjecture is that Dirac determinant
for the modified Dirac action gives the exponent of Kähler action for a preferred extremal
as vacuum functional so that one might talk about bosonic emergence in accordance with the
prediction that the gauge bosons and graviton are expressible in terms of bound states of fermion
and antifermion.

The evolution of these basic ideas has been rather slow but has gradually led to a rather beautiful
vision. One of the key problems has been the definition of Kähler function. Kähler function is Kähler
action for a preferred extremal assignable to a given 3-surface but what this preferred extremal is?
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The obvious first guess was as absolute minimum of Kähler action but could not be proven to be right
or wrong. One big step in the progress was boosted by the idea that TGD should reduce to almost
topological QFT in which braids wold replace 3-surfaces in finite measurement resolution, which could
be inherent property of the theory itself and imply discretization at partonic 2-surfaces with discrete
points carrying fermion number.

1. TGD as almost topological QFT vision suggests that Kähler action for preferred extremals
reduces to Chern-Simons term assigned with space-like 3-surfaces at the ends of space-time
(recall the notion of causal diamond (CD)) and with the light-like 3-surfaces at which the
signature of the induced metric changes from Minkowskian to Euclidian. Minkowskian and
Euclidian regions would give at wormhole throats the same contribution apart from coefficients
and in Minkowskian regions the

√
g4 factor would be imaginary so that one would obtain sum of

real term identifiable as Kähler function and imaginary term identifiable as the ordinary action
giving rise to interference effects and stationary phase approximation central in both classical
and quantum field theory. Imaginary contribution - the presence of which I realized only after
33 years of TGD - could also havetopological interpretation as a Morse function. On physical
side the emergence of Euclidian space-time regions is something completely new and leads to a
dramatic modification of the ideas about black hole interior.

2. The manner to achieve the reduction to Chern-Simons terms is simple. The vanishing of Coulom-
bic contribution to Kähler action is required and is true for all known extremals if one makes a
general ansatz about the form of classical conserved currents. The so called weak form of electric-
magnetic duality defines a boundary condition reducing the resulting 3-D terms to Chern-Simons
terms. In this manner almost topological QFT results. But only ”almost” since the Lagrange
multiplier term forcing electric-magnetic duality implies that Chern-Simons action for preferred
extremals depends on metric.

3. A further quite recent hypothesis inspired by effective 2-dimensionality is that Chern-Simons
terms reduce to a sum of two 2-dimensional terms. An imaginary term proportional to the total
area of Minkowskian string world sheets and a real tem proportional to the total area of partonic
2-surfaces or equivalently strings world sheets in Euclidian space-time regions. Also the equality
of the total areas of strings world sheets and partonic 2-surfaces is highly suggestive and would
realize a duality between these two kinds of objects. String world sheets indeed emerge naturally
for the proposed ansatz defining preferred extremals. Therefore Kähler action would have very
stringy character apart from effects due to the failure of the strict determinism meaning that
radiative corrections break the effective 2-dimensionality.

1.2.2 TGD as a generalized number theory

Quantum T(opological)D(ynamics) as a classical spinor geometry for infinite-dimensional configu-
ration space, p-adic numbers and quantum TGD, and TGD inspired theory of consciousness, have
been for last ten years the basic three strongly interacting threads in the tapestry of quantum TGD.
The fourth thread deserves the name ’TGD as a generalized number theory’. It involves three sep-
arate threads: the fusion of real and various p-adic physics to a single coherent whole by requiring
number theoretic universality discussed already, the formulation of quantum TGD in terms of hyper-
counterparts of classical number fields identified as sub-spaces of complexified classical number fields
with Minkowskian signature of the metric defined by the complexified inner product, and the notion
of infinite prime.

p-Adic TGD and fusion of real and p-adic physics to single coherent whole

The p-adic thread emerged for roughly ten years ago as a dim hunch that p-adic numbers might be
important for TGD. Experimentation with p-adic numbers led to the notion of canonical identification
mapping reals to p-adics and vice versa. The breakthrough came with the successful p-adic mass
calculations using p-adic thermodynamics for Super-Virasoro representations with the super-Kac-
Moody algebra associated with a Lie-group containing standard model gauge group. Although the
details of the calculations have varied from year to year, it was clear that p-adic physics reduces not
only the ratio of proton and Planck mass, the great mystery number of physics, but all elementary
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particle mass scales, to number theory if one assumes that primes near prime powers of two are in a
physically favored position. Why this is the case, became one of the key puzzless and led to a number
of arguments with a common gist: evolution is present already at the elementary particle level and
the primes allowed by the p-adic length scale hypothesis are the fittest ones.

It became very soon clear that p-adic topology is not something emerging in Planck length scale
as often believed, but that there is an infinite hierarchy of p-adic physics characterized by p-adic
length scales varying to even cosmological length scales. The idea about the connection of p-adics
with cognition motivated already the first attempts to understand the role of the p-adics and inspired
’Universe as Computer’ vision but time was not ripe to develop this idea to anything concrete (p-adic
numbers are however in a central role in TGD inspired theory of consciousness). It became however
obvious that the p-adic length scale hierarchy somehow corresponds to a hierarchy of intelligences and
that p-adic prime serves as a kind of intelligence quotient. Ironically, the almost obvious idea about
p-adic regions as cognitive regions of space-time providing cognitive representations for real regions
had to wait for almost a decade for the access into my consciousness.

There were many interpretational and technical questions crying for a definite answer.

1. What is the relationship of p-adic non-determinism to the classical non-determinism of the
basic field equations of TGD? Are the p-adic space-time region genuinely p-adic or does p-adic
topology only serve as an effective topology? If p-adic physics is direct image of real physics,
how the mapping relating them is constructed so that it respects various symmetries? Is the
basic physics p-adic or real (also real TGD seems to be free of divergences) or both? If it is both,
how should one glue the physics in different number field together to get The Physics? Should
one perform p-adicization also at the level of the configuration space of 3-surfaces? Certainly
the p-adicization at the level of super-conformal representation is necessary for the p-adic mass
calculations.

2. Perhaps the most basic and most irritating technical problem was how to precisely define p-adic
definite integral which is a crucial element of any variational principle based formulation of the
field equations. Here the frustration was not due to the lack of solution but due to the too large
number of solutions to the problem, a clear symptom for the sad fact that clever inventions
rather than real discoveries might be in question. Quite recently I however learned that the
problem of making sense about p-adic integration has been for decades central problem in the
frontier of mathematics and a lot of profound work has been done along same intuitive lines
as I have proceeded in TGD framework. The basic idea is certainly the notion of algebraic
continuation from the world of rationals belonging to the intersection of real world and various
p-adic worlds.

Despite these frustrating uncertainties, the number of the applications of the poorly defined p-adic
physics growed steadily and the applications turned out to be relatively stable so that it was clear
that the solution to these problems must exist. It became only gradually clear that the solution of
the problems might require going down to a deeper level than that represented by reals and p-adics.

The key challenge is to fuse various p-adic physics and real physics to single larger structures.
This has inspired a proposal for a generalization of the notion of number field by fusing real numbers
and various p-adic number fields and their extensions along rationals and possible common algebraic
numbers. This leads to a generalization of the notions of imbedding space and space-time concept and
one can speak about real and p-adic space-time sheets. The quantum dynamics should be such that
it allows quantum transitions transforming space-time sheets belonging to different number fields to
each other. The space-time sheets in the intersection of real and p-adic worlds are of special interest
and the hypothesis is that living matter resides in this intersection. This leads to surprisingly detailed
predictions and far reaching conjectures. For instance, the number theoretic generalization of entropy
concept allows negentropic entanglement central for the applications to living matter.

The basic principle is number theoretic universality stating roughly that the physics in various
number fields can be obtained as completion of rational number based physics to various number
fields. Rational number based physics would in turn describe physics in finite measurement resolution
and cognitive resolution. The notion of finite measurement resolution has become one of the basic
principles of quantum TGD and leads to the notions of braids as representatives of 3-surfaces and
inclusions of hyper-finite factors as a representation for finite measurement resolution.
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The role of classical number fields

The vision about the physical role of the classical number fields relies on the notion of number theoretic
compactifiction stating that space-time surfaces can be regarded as surfaces of either M8 or M4×CP2.
As surfaces of M8 identifiable as space of hyper-octonions they are hyper-quaternionic or co-hyper-
quaternionic- and thus maximally associative or co-associative. This means that their tangent space
is either hyper-quaternionic plane of M8 or an orthogonal complement of such a plane. These surface
can be mapped in natural manner to surfaces in M4×CP2 [K78] provided one can assign to each point
of tangent space a hyper-complex plane M2(x) ⊂M4. One can also speak about M8 −H duality.

This vision has very strong predictive power. It predicts that the extremals of Kähler action
correspond to either hyper-quaternionic or co-hyper-quaternionic surfaces such that one can assign
to tangent space at each point of space-time surface a hyper-complex plane M2(x) ⊂ M4. As a
consequence, the M4 projection of space-time surface at each point contains M2(x) and its orthogonal
complement. These distributions are integrable implying that space-time surface allows dual slicings
defined by string world sheets Y 2 and partonic 2-surfaces X2. The existence of this kind of slicing
was earlier deduced from the study of extremals of Kähler action and christened as Hamilton-Jacobi
structure. The physical interpretation of M2(x) is as the space of non-physical polarizations and the
plane of local 4-momentum.

One can fairly say, that number theoretical compactification is responsible for most of the under-
standing of quantum TGD that has emerged during last years. This includes the realization of Equiv-
alence Principle at space-time level, dual formulations of TGD as Minkowskian and Euclidian string
model type theories, the precise identification of preferred extremals of Kähler action as extremals
for which second variation vanishes (at least for deformations representing dynamical symmetries)
and thus providing space-time correlate for quantum criticality, the notion of number theoretic braid
implied by the basic dynamics of Kähler action and crucial for precise construction of quantum TGD
as almost-topological QFT, the construction of configuration space metric and spinor structure in
terms of second quantized induced spinor fields with modified Dirac action defined by Kähler action
realizing automatically the notion of finite measurement resolution and a connection with inclusions
of hyper-finite factors of type II1 about which Clifford algebra of configuration space represents an
example.

The two most important number theoretic conjectures relate to the preferred extremals of Kähler
action. The general idea is that classical dynamics for the preferred extremals of Kähler action should
reduce to number theory: space-time surfaces should be either associative or co-associative in some
sense.

1. The first meaning for associativity (co-associativity) would be that tangent (normal) spaces of
space-time surfaces are quaternionic in some sense and thus associative. This can be formu-
lated in terms of octonionic representation of the imbedding space gamma matrices possible in
dimension D = 8 and states that induced gamma matrices generate quaternionic sub-algebra at
each space-time point. It seems that induced rather than modified gamma matrices must be in
question.

2. Second meaning for associative (co-associativity) would be following. In the case of complex
numbers the vanishing of the real part of real-analytic function defines a 1-D curve. In oct-
nionic case one can decompose octonion to sum of quaternion and quaternion multiplied by an
octonionic imaginary unit. Quaternionicity could mean that space-time surfaces correspond to
the vanishing of the imaginary part of the octonion real-analytic function. Co-quaternionicity
would be defined in an obvious manner. Octonionic real analytic functions form a function field
closed also with respect to the composition of functions. Space-time surfaces would form the
analog of function field with the composition of functions with all operations realized as algebraic
operations for space-time surfaces. Co-associaty could be perhaps seen as an additional feature
making the algebra in question also co-algebra.

3. The third conjecture is that these conjectures are equivalent.

Infinite primes

The discovery of the hierarchy of infinite primes and their correspondence with a hierarchy defined by a
repeatedly second quantized arithmetic quantum field theory gave a further boost for the speculations
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about TGD as a generalized number theory. The work with Riemann hypothesis led to further ideas.

After the realization that infinite primes can be mapped to polynomials representable as surfaces
geometrically, it was clear how TGD might be formulated as a generalized number theory with infinite
primes forming the bridge between classical and quantum such that real numbers, p-adic numbers, and
various generalizations of p-adics emerge dynamically from algebraic physics as various completions of
the algebraic extensions of rational (hyper-)quaternions and (hyper-)octonions. Complete algebraic,
topological and dimensional democracy would characterize the theory.

What is especially satisfying is that p-adic and real regions of the space-time surface could emerge
automatically as solutions of the field equations. In the space-time regions where the solutions of
field equations give rise to in-admissible complex values of the imbedding space coordinates, p-adic
solution can exist for some values of the p-adic prime. The characteristic non-determinism of the p-
adic differential equations suggests strongly that p-adic regions correspond to ’mind stuff’, the regions
of space-time where cognitive representations reside. This interpretation implies that p-adic physics
is physics of cognition. Since Nature is probably an extremely brilliant simulator of Nature, the
natural idea is to study the p-adic physics of the cognitive representations to derive information about
the real physics. This view encouraged by TGD inspired theory of consciousness clarifies difficult
interpretational issues and provides a clear interpretation for the predictions of p-adic physics.

1.2.3 Hierarchy of Planck constants and dark matter hierarchy

By quantum classical correspondence space-time sheets can be identified as quantum coherence regions.
Hence the fact that they have all possible size scales more or less unavoidably implies that Planck
constant must be quantized and have arbitrarily large values. If one accepts this then also the idea
about dark matter as a macroscopic quantum phase characterized by an arbitrarily large value of
Planck constant emerges naturally as does also the interpretation for the long ranged classical electro-
weak and color fields predicted by TGD. Rather seldom the evolution of ideas follows simple linear
logic, and this was the case also now. In any case, this vision represents the fifth, relatively new thread
in the evolution of TGD and the ideas involved are still evolving.

Dark matter as large ~ phase

D. Da Rocha and Laurent Nottale [E7] have proposed that Schrödinger equation with Planck constant
~ replaced with what might be called gravitational Planck constant ~gr = GmM

v0
(~ = c = 1). v0 is

a velocity parameter having the value v0 = 144.7± .7 km/s giving v0/c = 4.6× 10−4. This is rather
near to the peak orbital velocity of stars in galactic halos. Also subharmonics and harmonics of v0

seem to appear. The support for the hypothesis coming from empirical data is impressive.

Nottale and Da Rocha believe that their Schrödinger equation results from a fractal hydrodynamics.
Many-sheeted space-time however suggests astrophysical systems are not only quantum systems at
larger space-time sheets but correspond to a gigantic value of gravitational Planck constant. The
gravitational (ordinary) Schrödinger equation would provide a solution of the black hole collapse (IR
catastrophe) problem encountered at the classical level. The resolution of the problem inspired by
TGD inspired theory of living matter is that it is the dark matter at larger space-time sheets which
is quantum coherent in the required time scale [K70] .

TGD predicts correctly the value of the parameter v0 assuming that cosmic strings and their decay
remnants are responsible for the dark matter. The harmonics of v0 can be understood as corresponding
to perturbations replacing cosmic strings with their n-branched coverings so that tension becomes
n2-fold: much like the replacement of a closed orbit with an orbit closing only after n turns. 1/n-
sub-harmonic would result when a magnetic flux tube split into n disjoint magnetic flux tubes. Also
a model for the formation of planetary system as a condensation of ordinary matter around quantum
coherent dark matter emerges [K70] .

The values of Planck constants postulated by Nottale are gigantic and it is natural to assign them
to the space-time sheets mediating gravitational interaction and identifiable as magnetic flux tubes
(quanta). The magnetic energy of these flux quanta would correspond to dark energy and magnetic
tension would give rise to negative ”pressure” forcing accelerate cosmological expansion. This leads
to a rather detailed vision about the evolution of stars and galaxies identified as bubbles of ordinary
and dark matter inside magnetic flux tubes identifiable as dark energy.
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Hierarchy of Planck constants from the anomalies of neuroscience biology

The quantal effects of ELF em fields on vertebrate brain have been known since seventies. ELF em
fields at frequencies identifiable as cyclotron frequencies in magnetic field whose intensity is about 2/5
times that of Earth for biologically important ions have physiological effects and affect also behavior.
What is intriguing that the effects are found only in vertebrates (to my best knowledge). The energies
for the photons of ELF em fields are extremely low - about 10−10 times lower than thermal energy
at physiological temperatures- so that quantal effects are impossible in the framework of standard
quantum theory. The values of Planck constant would be in these situations large but not gigantic.

This inspired the hypothesis that these photons correspond to so large value of Planck constant
that the energy of photons is above the thermal energy. The proposed interpretation was as dark
photons and the general hypothesis was that dark matter corresponds to ordinary matter with non-
standard value of Planck constant. If only particles with the same value of Planck constant can appear
in the same vertex of Feynman diagram, the phases with different value of Planck constant are dark
relative to each other. The phase transitions changing Planck constant can however make possible
interactions between phases with different Planck constant but these interactions do not manifest
themselves in particle physics. Also the interactions mediated by classical fields should be possible.
Dark matter would not be so dark as we have used to believe.

Also the anomalies of biology support the view that dark matter might be a key player in living
matter.

Does the hierarchy of Planck constants reduce to the vacuum degeneracy of Kähler
action?

This starting point led gradually to the recent picture in which the hierarchy of Planck constants
is postulated to come as integer multiples of the standard value of Planck constant. Given integer
multiple ~ = n~0 of the ordinary Planck constant ~0 is assigned with a multiple singular covering
of the imbedding space [K26]. One ends up to an identification of dark matter as phases with non-
standard value of Planck constant having geometric interpretation in terms of these coverings providing
generalized imbedding space with a book like structure with pages labelled by Planck constants or
integers characterizing Planck constant. The phase transitions changing the value of Planck constant
would correspond to leakage between different sectors of the extended imbedding space. The question
is whether these coverings must be postulated separately or whether they are only a convenient
auxiliary tool.

The simplest option is that the hierarchy of coverings of imbedding space is only effective. Many-
sheeted coverings of the imbedding space indeed emerge naturally in TGD framework. The huge
vacuum degeneracy of Kähler action implies that the relationship between gradients of the imbedding
space coordinates and canonical momentum currents is many-to-one: this was the very fact forcing to
give up all the standard quantization recipes and leading to the idea about physics as geometry of the
”world of classical worlds”. If one allows space-time surfaces for which all sheets corresponding to the
same values of the canonical momentum currents are present, one obtains effectively many-sheeted
covering of the imbedding space and the contributions from sheets to the Kähler action are identical.
If all sheets are treated effectively as one and the same sheet, the value of Planck constant is an integer
multiple of the ordinary one. A natural boundary condition would be that at the ends of space-time
at future and past boundaries of causal diamond containing the space-time surface, various branches
co-incide. This would raise the ends of space-time surface in special physical role.

Dark matter as a source of long ranged weak and color fields

Long ranged classical electro-weak and color gauge fields are unavoidable in TGD framework. The
smallness of the parity breaking effects in hadronic, nuclear, and atomic length scales does not however
seem to allow long ranged electro-weak gauge fields. The problem disappears if long range classical
electro-weak gauge fields are identified as space-time correlates for massless gauge fields created by
dark matter. Also scaled up variants of ordinary electro-weak particle spectra are possible. The
identification explains chiral selection in living matter and unbroken U(2)ew invariance and free color
in bio length scales become characteristics of living matter and of bio-chemistry and bio-nuclear
physics. A possible solution of the matter antimatter asymmetry is based on the identification of also
antimatter as dark matter.
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1.2.4 TGD as a generalization of physics to a theory consciousness

General coordinate invariance forces the identification of quantum jump as quantum jump between
entire deterministic quantum histories rather than time=constant snapshots of single history. The
new view about quantum jump forces a generalization of quantum measurement theory such that
observer becomes part of the physical system. Thus a general theory of consciousness is unavoidable
outcome. This theory is developed in detail in the books [K79, K13, K62, K12, K34, K42, K45, K72]
.

Quantum jump as a moment of consciousness

The identification of quantum jump between deterministic quantum histories (configuration space
spinor fields) as a moment of consciousness defines microscopic theory of consciousness. Quantum
jump involves the steps

Ψi → UΨi → Ψf ,

where U is informational ”time development” operator, which is unitary like the S-matrix charac-
terizing the unitary time evolution of quantum mechanics. U is however only formally analogous to
Schrödinger time evolution of infinite duration although there is no real time evolution involved. It is
not however clear whether one should regard U-matrix and S-matrix as two different things or not: U -
matrix is a completely universal object characterizing the dynamics of evolution by self-organization
whereas S-matrix is a highly context dependent concept in wave mechanics and in quantum field
theories where it at least formally represents unitary time translation operator at the limit of an in-
finitely long interaction time. The S-matrix understood in the spirit of superstring models is however
something very different and could correspond to U-matrix.

The requirement that quantum jump corresponds to a measurement in the sense of quantum field
theories implies that each quantum jump involves localization in zero modes which parameterize also
the possible choices of the quantization axes. Thus the selection of the quantization axes performed
by the Cartesian outsider becomes now a part of quantum theory. Together these requirements imply
that the final states of quantum jump correspond to quantum superpositions of space-time surfaces
which are macroscopically equivalent. Hence the world of conscious experience looks classical. At
least formally quantum jump can be interpreted also as a quantum computation in which matrix U
represents unitary quantum computation which is however not identifiable as unitary translation in
time direction and cannot be ’engineered’.

Can one say anything about the unitary process? Zero energy states correspond in positive energy
ontology to physical events and break time reversal invariance. This because either the positive
or negative energy part of the state is prepared whereas the second end of CD corresponds to a
superposition of (negative/positive energy) states with varying particle numbers and single particle
quantum numbers just as in ordinary particle physics experiment. State function reduction must
change the roles of the ends of CDs. Therefore U -matrix should correspond to the unitary matrix
relating zero energy state basis prepared at different ends of CD and state function reduction would
be equivalent with state preparation.

The basic objection is that the arrow of geometric time alternates at imbedding space level but
we know that arrow of time is universal. What one can say about the arrow of time at space-time
level? Quantum classical correspondence requires that quantum mechanical irreversibility corresponds
to irreversibility at space-time level. If the observer is analogous to an inhabitant of Flatland gaining
information only about space-time surface, he or she is not able to discover that the arrow of time
alternates at the level of imbedding space. The inhabitant of a folded bath towel is not able to
observer the folding of the towel! Only by observing systems for which the imbedding space arrow of
time is opposite, observer can discover the alternation. Living systems indeed behave as if they would
contain space-time sheets with opposite arrow of geometric time (self-organization). Phase conjugate
light beam is second example of this.

The notion of self

The concept of self is absolutely essential for the understanding of the macroscopic and macro-temporal
aspects of consciousness. Self corresponds to a subsystem able to remain un-entangled under the
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sequential informational ’time evolutions’ U . Exactly vanishing entanglement is practically impossible
in ordinary quantum mechanics and it might be that ’vanishing entanglement’ in the condition for
self-property should be replaced with ’subcritical entanglement’. On the other hand, if space-time
decomposes into p-adic and real regions, and if entanglement between regions representing physics in
different number fields vanishes, space-time indeed decomposes into selves in a natural manner.

It is assumed that the experiences of the self after the last ’wake-up’ sum up to single average
experience. This means that subjective memory is identifiable as conscious, immediate short term
memory. Selves form an infinite hierarchy with the entire Universe at the top. Self can be also
interpreted as mental images: our mental images are selves having mental images and also we represent
mental images of a higher level self. A natural hypothesis is that self S experiences the experiences
of its subselves as kind of abstracted experience: the experiences of subselves Si are not experienced
as such but represent kind of averages 〈Sij〉 of sub-subselves Sij . Entanglement between selves, most
naturally realized by the formation of join along boundaries bonds between cognitive or material space-
time sheets, provides a possible a mechanism for the fusion of selves to larger selves (for instance, the
fusion of the mental images representing separate right and left visual fields to single visual field) and
forms wholes from parts at the level of mental images.

An attractive possibility suggested by zero energy ontology is that the notions of self and quantum
jump reduce to each other and that a fractal hierarchy of quantum jumps within quantum jumps
is enough. CDs would serve as imbedding space correlates of selves and quantum jumps would be
followed by cascades of state function reductions beginning from given CD and proceeding downwards
to the smaller scales (smaller CDs). State function reduction cascades could also take place in parallel
branches of the quantum state. One ends up with concrete ideas about how the arrow of geometric
time is induced from that of subjective time defined by the experiences induced by the sequences
of quantum jumps for sub-selves of self. One ends also ends up with concrete ideas about how the
localization of the contents of sensory experience and cognition to the upper boundaries of CD could
take place.

Relationship to quantum measurement theory

The third basic element relates TGD inspired theory of consciousness to quantum measurement theory.
The assumption that localization occurs in zero modes in each quantum jump implies that the world
of conscious experience looks classical. It also implies the state function reduction of the standard
quantum measurement theory as the following arguments demonstrate (it took incredibly long time
to realize this almost obvious fact!).

1. The standard quantum measurement theory a la von Neumann involves the interaction of brain
with the measurement apparatus. If this interaction corresponds to entanglement between mi-
croscopic degrees of freedom m with the macroscopic effectively classical degrees of freedom M
characterizing the reading of the measurement apparatus coded to brain state, then the reduc-
tion of this entanglement in quantum jump reproduces standard quantum measurement theory
provide the unitary time evolution operator U acts as flow in zero mode degrees of freedom and
correlates completely some orthonormal basis of configuration space spinor fields in non-zero
modes with the values of the zero modes. The flow property guarantees that the localization is
consistent with unitarity: it also means 1-1 mapping of quantum state basis to classical variables
(say, spin direction of the electron to its orbit in the external magnetic field).

2. Since zero modes represent classical information about the geometry of space-time surface
(shape, size, classical Kähler field,...), they have interpretation as effectively classical degrees
of freedom and are the TGD counterpart of the degrees of freedom M representing the reading
of the measurement apparatus. The entanglement between quantum fluctuating non-zero modes
and zero modes is the TGD counterpart for the m−M entanglement. Therefore the localization
in zero modes is equivalent with a quantum jump leading to a final state where the measurement
apparatus gives a definite reading.

This simple prediction is of utmost theoretical importance since the black box of the quantum
measurement theory is reduced to a fundamental quantum theory. This reduction is implied by the
replacement of the notion of a point like particle with particle as a 3-surface. Also the infinite-
dimensionality of the zero mode sector of the configuration space of 3-surfaces is absolutely essential.
Therefore the reduction is a triumph for quantum TGD and favors TGD against string models.
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Standard quantum measurement theory involves also the notion of state preparation which reduces
to the notion of self measurement. Each localization in zero modes is followed by a cascade of self
measurements leading to a product state. This process is obviously equivalent with the state prepa-
ration process. Self measurement is governed by the so called Negentropy Maximization Principle
(NMP) stating that the information content of conscious experience is maximized. In the self mea-
surement the density matrix of some subsystem of a given self localized in zero modes (after ordinary
quantum measurement) is measured. The self measurement takes place for that subsystem of self for
which the reduction of the entanglement entropy is maximal in the measurement. In p-adic context
NMP can be regarded as the variational principle defining the dynamics of cognition. In real context
self measurement could be seen as a repair mechanism allowing the system to fight against quantum
thermalization by reducing the entanglement for the subsystem for which it is largest (fill the largest
hole first in a leaking boat).

Selves self-organize

The fourth basic element is quantum theory of self-organization based on the identification of quantum
jump as the basic step of self-organization [K67] . Quantum entanglement gives rise to the generation
of long range order and the emergence of longer p-adic length scales corresponds to the emergence of
larger and larger coherent dynamical units and generation of a slaving hierarchy. Energy (and quantum
entanglement) feed implying entropy feed is a necessary prerequisite for quantum self-organization.
Zero modes represent fundamental order parameters and localization in zero modes implies that the
sequence of quantum jumps can be regarded as hopping in the zero modes so that Haken’s classical
theory of self organization applies almost as such. Spin glass analogy is a further important element:
self-organization of self leads to some characteristic pattern selected by dissipation as some valley of
the ”energy” landscape.

Dissipation can be regarded as the ultimate Darwinian selector of both memes and genes. The
mathematically ugly irreversible dissipative dynamics obtained by adding phenomenological dissipa-
tion terms to the reversible fundamental dynamical equations derivable from an action principle can be
understood as a phenomenological description replacing in a well defined sense the series of reversible
quantum histories with its envelope.

Classical non-determinism of Kähler action

The fifth basic element are the concepts of association sequence and cognitive space-time sheet. The
huge vacuum degeneracy of the Kähler action suggests strongly that the absolute minimum space-time
is not always unique. For instance, a sequence of bifurcations can occur so that a given space-time
branch can be fixed only by selecting a finite number of 3-surfaces with time like(!) separations on the
orbit of 3-surface. Quantum classical correspondence suggest an alternative formulation. Space-time
surface decomposes into maximal deterministic regions and their temporal sequences have interpre-
tation a space-time correlate for a sequence of quantum states defined by the initial (or final) states
of quantum jumps. This is consistent with the fact that the variational principle selects preferred
extremals of Kähler action as generalized Bohr orbits.

In the case that non-determinism is located to a finite time interval and is microscopic, this sequence
of 3-surfaces has interpretation as a simulation of a classical history, a geometric correlate for contents
of consciousness. When non-determinism has long lasting and macroscopic effect one can identify it as
volitional non-determinism associated with our choices. Association sequences relate closely with the
cognitive space-time sheets defined as space-time sheets having finite time duration and psychological
time can be identified as a temporal center of mass coordinate of the cognitive space-time sheet. The
gradual drift of the cognitive space-time sheets to the direction of future force by the geometry of the
future light cone explains the arrow of psychological time.

p-Adic physics as physics of cognition and intentionality

The sixth basic element adds a physical theory of cognition to this vision. TGD space-time decomposes
into regions obeying real and p-adic topologies labelled by primes p = 2, 3, 5, .... p-Adic regions obey
the same field equations as the real regions but are characterized by p-adic non-determinism since
the functions having vanishing p-adic derivative are pseudo constants which are piecewise constant
functions. Pseudo constants depend on a finite number of positive pinary digits of arguments just like
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numerical predictions of any theory always involve decimal cutoff. This means that p-adic space-time
regions are obtained by gluing together regions for which integration constants are genuine constants.
The natural interpretation of the p-adic regions is as cognitive representations of real physics. The
freedom of imagination is due to the p-adic non-determinism. p-Adic regions perform mimicry and
make possible for the Universe to form cognitive representations about itself. p-Adic physics space-
time sheets serve also as correlates for intentional action.

A more more precise formulation of this vision requires a generalization of the number concept
obtained by fusing reals and p-adic number fields along common rationals (in the case of algebraic
extensions among common algebraic numbers). This picture is discussed in [K77] . The application
this notion at the level of the imbedding space implies that imbedding space has a book like structure
with various variants of the imbedding space glued together along common rationals (algebraics). The
implication is that genuinely p-adic numbers (non-rationals) are strictly infinite as real numbers so
that most points of p-adic space-time sheets are at real infinity, outside the cosmos, and that the
projection to the real imbedding space is discrete set of rationals (algebraics). Hence cognition and
intentionality are almost completely outside the real cosmos and touch it at a discrete set of points
only.

This view implies also that purely local p-adic physics codes for the p-adic fractality characterizing
long range real physics and provides an explanation for p-adic length scale hypothesis stating that
the primes p ' 2k, k integer are especially interesting. It also explains the long range correlations
and short term chaos characterizing intentional behavior and explains why the physical realizations
of cognition are always discrete (say in the case of numerical computations). Furthermore, a concrete
quantum model for how intentions are transformed to actions emerges.

The discrete real projections of p-adic space-time sheets serve also space-time correlate for a logical
thought. It is very natural to assign to p-adic pinary digits a p-valued logic but as such this kind
of logic does not have any reasonable identification. p-Adic length scale hypothesis suggest that the
p = 2k−n pinary digits represent a Boolean logic Bk with k elementary statements (the points of the
k-element set in the set theoretic realization) with n taboos which are constrained to be identically
true.

p-Adic and dark matter hierarchies and hierarchy of moments of consciousness

Dark matter hierarchy assigned to a spectrum of Planck constant having arbitrarily large values brings
additional elements to the TGD inspired theory of consciousness.

1. Macroscopic quantum coherence can be understood since a particle with a given mass can in
principle appear as arbitrarily large scaled up copies (Compton length scales as ~). The phase
transition to this kind of phase implies that space-time sheets of particles overlap and this makes
possible macroscopic quantum coherence.

2. The space-time sheets with large Planck constant can be in thermal equilibrium with ordinary
ones without the loss of quantum coherence. For instance, the cyclotron energy scale associated
with EEG turns out to be above thermal energy at room temperature for the level of dark matter
hierarchy corresponding to magnetic flux quanta of the Earth’s magnetic field with the size scale
of Earth and a successful quantitative model for EEG results [K23] .

Dark matter hierarchy leads to detailed quantitative view about quantum biology with several
testable predictions [K23] . The general prediction is that Universe is a kind of inverted Mandel-
brot fractal for which each bird’s eye of view reveals new structures in long length and time scales
representing scaled down copies of standard physics and their dark variants. These structures would
correspond to higher levels in self hierarchy. This prediction is consistent with the belief that 75 per
cent of matter in the universe is dark.

1. Living matter and dark matter

Living matter as ordinary matter quantum controlled by the dark matter hierarchy has turned out
to be a particularly successful idea. The hypothesis has led to models for EEG predicting correctly the
band structure and even individual resonance bands and also generalizing the notion of EEG [K23]
. Also a generalization of the notion of genetic code emerges resolving the paradoxes related to the
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standard dogma [K43, K23] . A particularly fascinating implication is the possibility to identify great
leaps in evolution as phase transitions in which new higher level of dark matter emerges [K23] .

It seems safe to conclude that the dark matter hierarchy with levels labelled by the values of
Planck constants explains the macroscopic and macro-temporal quantum coherence naturally. That
this explanation is consistent with the explanation based on spin glass degeneracy is suggested by
following observations. First, the argument supporting spin glass degeneracy as an explanation of
the macro-temporal quantum coherence does not involve the value of ~ at all. Secondly, the failure
of the perturbation theory assumed to lead to the increase of Planck constant and formation of
macroscopic quantum phases could be precisely due to the emergence of a large number of new degrees
of freedom due to spin glass degeneracy. Thirdly, the phase transition increasing Planck constant has
concrete topological interpretation in terms of many-sheeted space-time consistent with the spin glass
degeneracy.

2. Dark matter hierarchy and the notion of self

The vision about dark matter hierarchy leads to a more refined view about self hierarchy and
hierarchy of moments of consciousness [K22, K23] . The larger the value of Planck constant, the
longer the subjectively experienced duration and the average geometric duration T (k) ∝ ~ of the
quantum jump.

Quantum jumps form also a hierarchy with respect to p-adic and dark hierarchies and the geometric
durations of quantum jumps scale like ~. Dark matter hierarchy suggests also a slight modification of
the notion of self. Each self involves a hierarchy of dark matter levels, and one is led to ask whether
the highest level in this hierarchy corresponds to single quantum jump rather than a sequence of
quantum jumps. The averaging of conscious experience over quantum jumps would occur only for
sub-selves at lower levels of dark matter hierarchy and these mental images would be ordered, and
single moment of consciousness would be experienced as a history of events. The quantum parallel
dissipation at the lower levels would give rise to the experience of flow of time. For instance, hadron
as a macro-temporal quantum system in the characteristic time scale of hadron is a dissipating system
at quark and gluon level corresponding to shorter p-adic time scales. One can ask whether even entire
life cycle could be regarded as a single quantum jump at the highest level so that consciousness would
not be completely lost even during deep sleep. This would allow to understand why we seem to know
directly that this biological body of mine existed yesterday.

The fact that we can remember phone numbers with 5 to 9 digits supports the view that self corre-
sponds at the highest dark matter level to single moment of consciousness. Self would experience the
average over the sequence of moments of consciousness associated with each sub-self but there would
be no averaging over the separate mental images of this kind, be their parallel or serial. These mental
images correspond to sub-selves having shorter wake-up periods than self and would be experienced as
being time ordered. Hence the digits in the phone number are experienced as separate mental images
and ordered with respect to experienced time.

3. The time span of long term memories as signature for the level of dark matter hierarchy

The basic question is what time scale can one assign to the geometric duration of quantum jump
measured naturally as the size scale of the space-time region about which quantum jump gives con-
scious information. This scale is naturally the size scale in which the non-determinism of quantum
jump is localized. During years I have made several guesses about this time scales but zero energy
ontology and the vision about fractal hierarchy of quantum jumps within quantum jumps leads to a
unique identification.

Causal diamond as an imbedding space correlate of self defines the time scale τ for the space-
time region about which the consciousness experience is about. The temporal distances between the
tips of CD as come as integer multiples of CP2 length scales and for prime multiples correspond to
what I have christened as secondary p-adic time scales. A reasonable guess is that secondary p-adic
time scales are selected during evolution and the primes near powers of two are especially favored.
For electron, which corresponds to Mersenne prime M127 = 2127 − 1 this scale corresponds to .1
seconds defining the fundamental time scale of living matter via 10 Hz biorhythm (alpha rhythm).
The unexpected prediction is that all elementary particles correspond to time scales possibly relevant
to living matter.

Dark matter hierarchy brings additional finesse. For the higher levels of dark matter hierarchy τ
is scaled up by ~/~0. One could understand evolutionary leaps as the emergence of higher levels at
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the level of individual organism making possible intentionality and memory in the time scale defined
τ .

Higher levels of dark matter hierarchy provide a neat quantitative view about self hierarchy and
its evolution. Various levels of dark matter hierarchy would naturally correspond to higher levels in
the hierarchy of consciousness and the typical duration of life cycle would give an idea about the level
in question. The level would determine also the time span of long term memories as discussed in [K23]
. The emergence of these levels must have meant evolutionary leap since long term memory is also
accompanied by ability to anticipate future in the same time scale. This picture would suggest that
the basic difference between us and our cousins is not at the level of genome as it is usually understood
but at the level of the hierarchy of magnetic bodies [K43, K23]. In fact, higher levels of dark matter
hierarchy motivate the introduction of the notions of super-genome and hyper-genome. The genomes
of entire organ can join to form super-genome expressing genes coherently. Hyper-genomes would
result from the fusion of genomes of different organisms and collective levels of consciousness would
express themselves via hyper-genome and make possible social rules and moral.

1.3 Bird’s eye of view about the topics of the book

The focus of this book is the number theoretical vision about physics. This vision involves three
loosely related parts.

1. The fusion of real physic and various p-adic physics to a single larger whole by generalizing
the number concept by fusing real numbers and various p-adic number fields along common
rationals. Extensions of p-adic number fields can be introduced by gluing them along common
algebraic numbers to reals. Algebraic continuation of the physics from rationals and their their
extensions to various number fields (completion of rational physics to physics in various number
fields) is the key idea and the challenge is to understand whether how one could achieve this
dream. A very profound implication is that purely local p-adic physics codes for the p-adic
fractality of long length length scale real physics and vice versa. As a consequence one can
understand the origins of p-adic length scale hypothesis and ends up with a very concrete view
about space-time correlates of cognition and intentionality.

2. Second part of the vision involves what I call hyper counterparts of the classical number
fields defined as subspaces of their complexifications with Minkowskian signature of the met-
ric. The hypothesis is that allowed space-time surfaces correspond to what might be called
hyper-qunternionic sub-manifolds of a hyper-octonionic space. Second hypothesis is that space-
time surfaces can be also regarded hyper-quaternionic sub-manifolds of the hyper-octonionic
imbedding space. This means that one can assign to each point of space-time surface a hyper-
quanternionic 4-plane which is the plane defined by the modified gamma matrices and co-incides
with tangent plane only for action defined by the metric determinant. Hence the basic varia-
tional principle of TGD would have deep number theoretic content. Reduction to a closed form
would also mean that classical TGD would define a generalized topological field theory with
Noether charges defining topological invariants.

3. The third part of the vision involves infinite primes, which can be identified in terms of an infinite
hierarchy of second quantized arithmetic quantum fields theories on one hand, and as having
representations as space-time surfaces analogous to zero surfaces of polynomials on the other
hand. In this framework space-time surface would represent an infinite number. This vision
leads also the conclusion that single point of space-time has an infinitely complex structure
since real unity can be represented as a ratio of infinite numbers in infinitely many manners
each having its own number theoretic anatomy. Thus single space-time point is in principle able
to represent in its structure the quantum state of the entire universe. This number theoretic
variant of Brahman=Atman identity also means that Universe is an algebraic hologram.

Besides this holy trinity I will discuss also loosely related topics. Included are the possible
applications of the category theory in TGD and in TGD inspired theory of consciousness; various
TGD inspired considerations related to Riemann hypothesis - in particular, a strategy for proving
Riemann hypothesis using a modification of Hilbert-Polya conjecture replacing quantum states
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with coherent states of a unique conformally invariant physical system; topological quantum
computation in TGD Universe; and TGD inspired approach to Langlands program.

The seven online books about TGD [K84, K65, K66, K75, K58, K52, K73] and eight online books
about TGD inspired theory of consciousness and quantum biology [K79, K13, K62, K12, K34, K42,
K45, K72] are warmly recommended for the reader willing to get overall view about what is involved.

1.4 The contents of the book

1.4.1 PART I: Number theoretical vision

TGD as a Generalized Number Theory I: p-Adicization Program

The vision about a number theoretic formulation of quantum TGD is based on the gradual accu-
mulation of wisdom coming from different sources. The attempts to find a formulation allowing to
understand real and p-adic physics as aspects of some more general scenario have been an important
stimulus and generated a lot of, not necessarily mutually consistent ideas, some of which might serve
as building blocks of the final formulation.

The first part of the 3-part chapter is devoted to the p-adicization program attempting to construct
physics in various number fields as an algebraic continuation of physics in the field of rationals (or
appropriate extension of rationals). The program involves in essential manner the generalization of
number concept obtained by fusing reals and p-adic number fields to a larger structure by gluing them
together along common rationals. Highly non-trivial number theoretic conjectures are an i outcome
of the program.

1. Real and p-adic regions of the space-time as geometric correlates of matter and mind

The solutions of the equations determining space-time surfaces are restricted by the requirement
that the imbedding space coordinates are real. When this is not the case, one might apply instead of a
real completion with some rational-adic or p-adic completion: this is how rational-adic p-adic physics
could emerge from the basic equations of the theory. One could interpret the resulting rational-adic
or p-adic regions as geometrical correlates for ’mind stuff’.

p-Adic non-determinism implies extreme flexibility and therefore makes the identification of the
p-adic regions as seats of cognitive representations very natural. Unlike real completion, p-adic com-
pletions preserve the information about the algebraic extension of rationals and algebraic coding of
quantum numbers must be associated with ’mind like’ regions of space-time. p-Adics and reals are in
the same relationship as map and territory.

The implications are far-reaching and consistent with TGD inspired theory of consciousness: p-
adic regions are present even at elementary particle level and provide some kind of model of ’self’
and external world. In fact, p-adic physics must model the p-adic cognitive regions representing real
elementary particle regions rather than elementary particles themselves!

2. The generalization of the notion of number

The unification of real physics of material work and p-adic physics of cognition and intentionality
leads to the generalization of the notion of number field. Reals and various p-adic number fields
are glued along their common rationals (and common algebraic numbers too) to form a fractal book
like structure. Allowing all possible finite-dimensional extensions of p-adic numbers brings additional
pages to this ”Big Book”.

At space-time level the book like structure corresponds to the decomposition of space-time surface
to real and p-adic space-time sheets. This has deep implications for the view about cognition. For
instance, two points infinitesimally near p-adically are infinitely distant in real sense so that cognition
becomes a cosmic phenomenon.

3. Number theoretical Universality and number theoretical criticality

Number theoretic universality has been one of the basic guide lines in the construction of quantum
TGD. There are two forms of the principle.

1. The strong form of number theoretical universality states that physics for any system should
effectively reduce to a physics in algebraic extension of rational numbers at the level of M -matrix
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(generalization of S-matrix) so that an interpretation in both real and p-adic sense (allowing a
suitable algebraic extension of p-adics) is possible. One can however worry whether this principle
only means that physics is algebraic so that there would be no need to talk about real and p-
adic physics at the level of M -matrix elements. It is not possible to get rid of real and p-adic
numbers at the level of classical physics since calculus is a prerequisite for the basic variational
principles used to formulate the theory. For this option the possibility of completion is what
poses conditions on M -matrix.

2. The weak form of principle requires only that both real and p-adic variants of physics make sense
and that the intersection of these physics consist of physics associated with various algebraic
extensions of rational numbers. In this rational physics would be like rational numbers allowing
infinite number of algebraic extensions and real numbers and p-adic number fields as its com-
pletions. Real and p-adic physics would be completions of rational physics. In this framework
criticality with respect to phase transitions changing number field - number theoretical criticality
- becomes a viable concept. This form of principle allows also purely p-adic phenomena such as
p-adic pseudo non-determinism assigned to imagination and cognition. Genuinely p-adic physics
does not however allow definition of notions like conserved quantities since the notion of definite
integral is lacking and only the purely local form of real physics allows p-adic counterpart.

Experience has taught that it is better to avoid too strong statements and perhaps the weak form
of the principle is enough.

4. p-Adicization by algebraic continuation

One general idea which results as an outcome of the generalized notion of number is the idea of a
universal function continuable from a function mapping rationals to rationals or to a finite extension
of rationals to a function in any number field. It must be however emphasized that for weaker form of
number theoretical universality this restriction applies only at number theoretical quantum criticality.
This algebraic continuation is analogous to the analytical continuation of a real analytic function to
the complex plane. Rational functions with rational coefficients are obviously functions satisfying
this constraint. Algebraic functions with rational coefficients satisfy this requirement if appropriate
finite-dimensional algebraic extensions of p-adic numbers are allowed. Exponent function is such a
function.

For instance, residue calculus might be generalized so that the value of an integral along the real
axis could be calculated by continuing it instead of the complex plane to any number field via its
values in the subset of rational numbers forming the rim of the book like structure having number
fields as its pages. If the poles of the continued function in the finitely extended number field allow
interpretation as real numbers it might be possible to generalize the residue formula. One can also
imagine of extending residue calculus to any algebraic extension. An interesting situation arises when
the poles correspond to extended p-adic rationals common to different pages of the ”great book”.
Could this mean that the integral could be calculated at any page having the pole common. In
particular, could a p-adic residue integral be calculated in the ordinary complex plane by utilizing the
fact that in this case numerical approach makes sense.

Algebraic continuation is the basic tool of p-adicization program. Entire physics of the TGD
Universe should be algebraically continuable to various number fields. Real number based physics
would define the physics of matter and p-adic physics would describe correlates of cognition and
intentionality. The basic stumbling block of this program is integration and algebraic continuation
should allow to circumvent this difficulty. Needless to say, the requirement that the continuation exists
must pose immensely tight constraints on the physics.

Due to the fact that real and p-adic topologies are fundamentally different, ultraviolet and infrared
cutoffs in the set of rationals are unavoidable notions and correspond to a hierarchy of different
physical phases on one hand and different levels of cognition on the other hand. Two types of cutoffs
are predicted: p-adic length scale cutoff and a cutoff due to phase resolution. Zero energy ontology
provides a natural realization for the p-adic length scale cutoff. The latter cutoff seems to correspond
naturally to the hierarchy of algebraic extensions of p-adic numbers and quantum phases exp(i2π/n),
n ≥ 3, coming as roots of unity and defining extensions of rationals and p-adics allowing to define
p-adically sensible trigonometric functions These phases relate closely to the hierarchy of quantum
groups, braid groups, and II1 factors of von Neumann algebra.
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5. Number theoretic democracy

The interpretation allows all finite-dimensional extensions of p-adic number fields and perhaps
even infinite-P p-adics. The notion arithmetic quantum theory generalizes to include Gaussian and
Eisenstein variants of infinite primes and corresponding arithmetic quantum field theories. Also the
notion of p-adicity generalizes: it seems that one can indeed assign to Gaussian and Eisenstein primes
what might be called G-adic and E-adic numbers.

p-Adicization by algebraic continuation gives hopes of continuing quantum TGD from reals to
various p-adic number fields. The existence of this continuation poses extremely strong constraints
on theory.

TGD as a Generalized Number Theory II: Quaternions, Octonions and their Hyper
Counterparts

This chapter is second one in a multi-chapter devoted to the vision about TGD as a generalized number
theory. The basic theme is the role of classical number fields in quantum TGD. A central notion isM8−
H duality which might be also called number theoretic compactification. This duality allows to identify
imbedding space equivalently either asM8 orM4×CP2 and explains the symmetries of standard model
number theoretically. These number theoretical symmetries induce also the symmetries dictaging the
geometry of the ”world of classical worlds” (WCW) as a union of symmetric spaces. This infinite-
dimensional Kähler geometry is expected to be highly unique from the mere requirement of its existence
requiring infinite-dimensional symmetries provided by the generalized conformal symmetries of the
light-cone boundary δM4

+ × S and of light-like 3-surfaces and the answer to the question what makes
8-D imbedding space and S = CP2 so unique would be the reduction of these symmetries to number
theory.

Zero energy ontology has become the corner stone of both quantum TGD and number theoret-
ical vision. In zero energy ontology either light-like or space-like 3-surfaces can be identified as the
fundamental dynamical objects, and the extension of general coordinate invariance leads to effective
2-dimensionality (strong form of holography) in the sense that the data associated with partonic
2-surfaces and the distribution of 4-D tangent spaces at them located at the light-like boundaries
of causal diamonds (CDs) defined as intersections of future and past directed light-cones code for
quantum physics and the geometry of WCW.

The basic number theoretical structures are complex numbers, quaternions and octonions, and
their complexifications obtained by introducing additional commuting imaginary unit

√
−1. Hyper-

octonionic (-quaternionic,-complex) sub-spaces for which octonionic imaginary units are multiplied by
commuting

√
−1 have naturally Minkowskian signature of metric. The question is whether and how

the hyper-structures could allow to understand quantum TGD in terms of classical number fields.
The answer which looks the most convincing one relies on the existence of octonionic representation
of 8-D gamma matrix algebra.

1. The first guess is that associativity condition for the sub-algebras of the local Clifford algebra
defined in this manner could select 4-D surfaces as associative (hyper-quaternionic) sub-spaces
of this algebra and define WCW purely number theoretically. The associative sub-spaces in
question would be spanned by the modified gamma matrices defined by the modified Dirac
action fixed by the variational principle (Kähler action) selecting space-time surfaces as preferred
extremals.

2. This condition is quite not enough: one must strengthen it with the condition that a preferred
commutative and thus hyper-complex sub-algebra is contained in the tangent space of the space-
time surface. This condition actually generalizes somewhat since one can introduce a family of
so called Hamilton-Jacobi coordinates for M4 allowing an integrable distribution of decompo-
sitions of tangent space to the space of non-physical and physical polarizations. The physical
interpretation is as a number theoretic realization of gauge invariance selecting a preferred local
commutative plane of non-physical polarizations.

3. Even this is not yet the whole story: one can define also the notions of co-associatitivy and
co-commutativity applying in the regions of space-time surface with Euclidian signature of the
induced metric. The basic unproven conjecture is that the decomposition of space-time surfaces
to associative and co-associative regions containing preferred commutative resp. co-commutative
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2-plane in the 4-D tangent plane is equivalent with the preferred extremal property of Kähler
action and the hypothesis that space-time surface allows a slicing by string world sheets and by
partonic 2-surfaces.

TGD as a Generalized Number Theory III: Infinite Primes

Infinite primes are besides p-adicization and the representation of space-time surface as a hyper-
quaternionic sub-manifold of hyper-octonionic space the basic pillars of the vision about TGD as a
generalized number theory and will be discussed in the third part of the multi-chapter devoted to the
attempt to articulate this vision as clearly as possible.

1. Why infinite primes are unavoidable

Suppose that 3-surfaces could be characterized by p-adic primes characterizing their effective p-adic
topology. p-Adic unitarity implies that each quantum jump involves unitarity evolution U followed
by a quantum jump. Simple arguments show that the p-adic prime characterizing the 3-surface
representing the entire universe increases in a statistical sense. This leads to a peculiar paradox: if
the number of quantum jumps already occurred is infinite, this prime is most naturally infinite. On the
other hand, if one assumes that only finite number of quantum jumps have occurred, one encounters
the problem of understanding why the initial quantum history was what it was. Furthermore, since
the size of the 3-surface representing the entire Universe is infinite, p-adic length scale hypothesis
suggest also that the p-adic prime associated with the entire universe is infinite.

These arguments motivate the attempt to construct a theory of infinite primes and to extend
quantum TGD so that also infinite primes are possible. Rather surprisingly, one can construct what
might be called generating infinite primes by repeating a procedure analogous to a quantization of a
super symmetric quantum field theory. At given level of hierarchy one can identify the decomposition
of space-time surface to p-adic regions with the corresponding decomposition of the infinite prime to
primes at a lower level of infinity: at the basic level are finite primes for which one cannot find any
formula.

2. Two views about the role of infinite primes and physics in TGD Universe

Two different views about how infinite primes, integers, and rationals might be relevant in TGD
Universe have emerged.

1. The first view is based on the idea that infinite primes characterize quantum states of the
entire Universe. 8-D hyper-octonions make this correspondence very concrete since 8-D hyper-
octonions have interpretation as 8-momenta. By quantum-classical correspondence also the
decomposition of space-time surfaces to p-adic space-time sheets should be coded by infinite
hyper-octonionic primes. Infinite primes could even have a representation as hyper-quaternionic
4-surfaces of 8-D hyper-octonionic imbedding space.

2. The second view is based on the idea that infinitely structured space-time points define space-
time correlates of mathematical cognition. The mathematical analog of Brahman=Atman iden-
tity would however suggest that both views deserve to be taken seriously.

3. Infinite primes and infinite hierarchy of second quantizations

The discovery of infinite primes suggested strongly the possibility to reduce physics to number
theory. The construction of infinite primes can be regarded as a repeated second quantization of a
super-symmetric arithmetic quantum field theory. Later it became clear that the process generalizes
so that it applies in the case of quaternionic and octonionic primes and their hyper counterparts.
This hierarchy of second quantizations means an enormous generalization of physics to what might
be regarded a physical counterpart for a hierarchy of abstractions about abstractions about.... The
ordinary second quantized quantum physics corresponds only to the lowest level infinite primes. This
hierarchy can be identified with the corresponding hierarchy of space-time sheets of the many-sheeted
space-time.

One can even try to understand the quantum numbers of physical particles in terms of infinite
primes. In particular, the hyper-quaternionic primes correspond four-momenta and mass squared
is prime valued for them. The properties of 8-D hyper-octonionic primes motivate the attempt to
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identify the quantum numbers associated with CP2 degrees of freedom in terms of these primes. The
representations of color group SU(3) are indeed labelled by two integers and the states inside given
representation by color hyper-charge and iso-spin.

It turns out that associativity constraint allows only rational infinite primes. One can however
replace classical associativity with quantum associativity for quantum states assigned with infinite
prime. One can also decompose rational infinite primes to hyper-octonionic infinite primes at lower
level of the hierarchy. Physically this would mean that the number theoretic 8-momenta have only
time-component. This decomposition is completely analogous to the decomposition of hadrons to its
colored constituents and might be even interpreted in terms of color confinement. The interpretation
of the decomposition of rational primes to primes in the algebraic extensions of rationals, hyper-
quaternions, and hyper-octonions would have an interpretation as an increase of number theoretical
resolution and the principle of number theoretic confinement could be seen as a fundamental physical
principle implied by associativity condition.

4. Space-time correlates of infinite primes

Infinite primes code naturally for Fock states in a hierarchy of super-symmetric arithmetic quantum
field theories. Quantum classical correspondence leads to ask whether infinite primes could also code
for the space-time surfaces serving as symbolic representations of quantum states. This would a
generalization of algebraic geometry would emerge and could reduce the dynamics of Kähler action
to algebraic geometry and organize 4-surfaces to a physical hierarchy according to their algebraic
complexity. Note that this conjecture should be consistent with two other conjectures about the
dynamics of space-time surfaces (space-time surfaces as preferred extrema of Kähler action and space-
time surfaces as quaternionic or co-quaternionic (as associative or co-associative) 4-surfaces of hyper-
octonion space M8).

The representation of space-time surfaces as algebraic surfaces in M8 is however too naive idea
and the attempt to map hyper-octonionic infinite primes to algebraic surfaces seems has not led to
any concrete progress.

The endless updating of quantum TGD might be blamed to be a waste of time. The interaction of
new ideas with old ones has however again and again turned out to be an extremely fruitful process
leading to rather precise view about how infinite hyper-octonionic rationals can be mapped to space-
time surfaces without ad hoc assumptions. The progress in quantum TGD during the second half of
the first decade of the new millenium led to several new and quite convincing ideas. Mention only zero
energy ontology, the generalization of the imbedding space concept realizing the hierarchy of Planck
constants, hyper-finite factors and their inclusions, and in particular, the realization of quantum
classical correspondence in terms of measurement interaction term associated with the modified Dirac
action.

The crucial observation is that quantum classical correspondence allows to map quantum numbers
of configuration space spinor fields to space-time geometry. Therefore, if one wants to map infinite
rationals to space-time geometry it is enough to map infinite primes to quantum numbers. This map
can be indeed achieved thanks to the detailed picture about the interpretation of the symmetries of
infinite primes in terms of standard model symmetries.

5. Generalization of ordinary number fields: infinite primes and cognition

Both fermions and p-adic space-time sheets are identified as correlates of cognition in TGD Uni-
verse. The attempt to relate these two identifications leads to a rather concrete model for how bosonic
generators of super-algebras correspond to either real or p-adic space-time sheets (actions and inten-
tions) and fermionic generators to pairs of real space-time sheets and their p-adic variants obtained
by algebraic continuation (note the analogy with fermion hole pairs).

The introduction of infinite primes, integers, and rationals leads also to a generalization of real
numbers since an infinite algebra of real units defined by finite ratios of infinite rationals multiplied by
ordinary rationals which are their inverses becomes possible. These units are not units in the p-adic
sense and have a finite p-adic norm which can be differ from one. This construction generalizes also to
the case of hyper- quaternions and -octonions although non-commutativity and in case of octonions
also non-associativity pose technical problems. Obviously this approach differs from the standard
introduction of infinitesimals in the sense that sum is replaced by multiplication meaning that the set
of real and also more general units becomes infinitely degenerate.

Infinite primes form an infinite hierarchy so that the points of space-time and imbedding space can
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be seen as infinitely structured and able to represent all imaginable algebraic structures. Certainly
counter-intuitively, single space-time point is even capable of representing the quantum state of the
entire physical Universe in its structure. For instance, in the real sense surfaces in the space of units
correspond to the same real number 1, and single point, which is structure-less in the real sense could
represent arbitrarily high-dimensional spaces as unions of real units.

One might argue that for the real physics this structure is completely invisible and is relevant
only for the physics of cognition. On the other hand, one can consider the possibility of mapping
the configuration space and configuration space spinor fields to the number theoretical anatomies of
a single point of imbedding space so that the structure of this point would code for the world of
classical worlds and for the quantum states of the Universe. Quantum jumps would induce changes
of configuration space spinor fields interpreted as wave functions in the set of number theoretical
anatomies of single point of imbedding space in the ordinary sense of the word, and evolution would
reduce to the evolution of the structure of a typical space-time point in the system. Physics would
reduce to space-time level but in a generalized sense. Universe would be an algebraic hologram,
and there is an obvious connection both with Brahman=Atman identity of Eastern philosophies and
Leibniz’s notion of monad.

Infinite rationals are in one-one correspondence with quantum states and in zero energy ontology
hyper-octonionic units identified as ratios of the infinite integers associated with the positive and
negative energy parts of the zero energy state define a representation of WCW spinor fields. The action
of subgroups of SU(3) and rotation group SU(2) preserving hyper-octonionic and hyper-quaternionic
primeness and identification of momentum and electro-weak charges in terms of components of hyper-
octonionic primes makes this representation unique. Hence Brahman-Atman identity has a completely
concrete realization and fixes completely the quantum number spectrum including particle masses and
correlations between various quantum numbers.

TGD and Non-Standard Numbers

The chapter represents a comparison of ultrapower fields (loosely surreals, hyper-reals, long line) and
number fields generated by infinite primes having a physical interpretation in Topological Geometro-
dynamics. Ultrapower fields are discussed in very physicist friendly manner in the articles of Elemer
Rosinger and these articles are taken as a convenient starting point. The physical interpretations and
principles proposed by Rosinger are considered against the background provided by TGD. The con-
struction of ultrapower fields is associated with physics using the close analogies with gauge theories,
gauge invariance, and with the singularities of classical fields. Non-standard numbers are compared
with the numbers generated by infinite primes and it is found that the construction of infinite primes,
integers, and rationals has a close similarity with construction of the generalized scalars. The con-
struction replaces at the lowest level the index set Λ = N of natural numbers with algebraic numbers
A, Frechet filter of N with that of A, and R with unit circle S1 represented as complex numbers
of unit magnitude. At higher levels of the hierarchy generalized -possibly infinite and infinitesimal-
algebraic numbers emerge. This correspondence maps a given set in the dual of Frechet filter of A to a
phase factor characterizing infinite rational algebraically so that correspondence is like representation
of algebra. The basic difference between two approaches to infinite numbers is that the counterpart
of infinitesimals is infinitude of real units with complex number theoretic anatomy: one might loosely
say that these real units are exponentials of infinitesimals.

Infinite Primes and Motives

In this chapter the goal is to find whether the general mathematical structures associated with twistor
approach, superstring models and M-theory could have a generalization or a modification in TGD
framework. The contents of the chapter is an outcome of a rather spontaneous process, and represents
rather unexpected new insights about TGD resulting as outcome of the comparisons.

1. Infinite primes, Galois groups, algebraic geometry, and TGD

In algebraic geometry the notion of variety defined by algebraic equation is very general: all number
fields are allowed. One of the challenges is to define the counterparts of homology and cohomology
groups for them. The notion of cohomology giving rise also to homology if Poincare duality holds true
is central. The number of various cohomology theories has inflated and one of the basic challenges
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to find a sufficiently general approach allowing to interpret various cohomology theories as variations
of the same motive as Grothendieck, who is the pioneer of the field responsible for many of the basic
notions and visions, expressed it.

Cohomology requires a definition of integral for forms for all number fields. In p-adic context the
lack of well-ordering of p-adic numbers implies difficulties both in homology and cohomology since the
notion of boundary does not exist in topological sense. The notion of definite integral is problematic
for the same reason. This has led to a proposal of reducing integration to Fourier analysis working for
symmetric spaces but requiring algebraic extensions of p-adic numbers and an appropriate definition
of the p-adic symmetric space. The definition is not unique and the interpretation is in terms of the
varying measurement resolution.

The notion of infinite has gradually turned out to be more and more important for quantum TGD.
Infinite primes, integers, and rationals form a hierarchy completely analogous to a hierarchy of second
quantization for a super-symmetric arithmetic quantum field theory. The simplest infinite primes
representing elementary particles at given level are in one-one correspondence with many-particle
states of the previous level. More complex infinite primes have interpretation in terms of bound
states.

1. What makes infinite primes interesting from the point of view of algebraic geometry is that
infinite primes, integers and rationals at the n:th level of the hierarchy are in 1-1 correspondence
with rational functions of n arguments. One can solve the roots of associated polynomials and
perform a root decomposition of infinite primes at various levels of the hierarchy and assign to
them Galois groups acting as automorphisms of the field extensions of polynomials defined by
the roots coming as restrictions of the basic polynomial to planes xn = 0, xn = xn−1 = 0, etc...

2. These Galois groups are suggested to define non-commutative generalization of homotopy and
homology theories and non-linear boundary operation for which a geometric interpretation in
terms of the restriction to lower-dimensional plane is proposed. The Galois group Gk would be
analogous to the relative homology group relative to the plane xk−1 = 0 representing boundary
and makes sense for all number fields also geometrically. One can ask whether the invariance of
the complex of groups under the permutations of the orders of variables in the reduction process
is necessary. Physical interpretation suggests that this is not the case and that all the groups
obtained by the permutations are needed for a full description.

3. The algebraic counterpart of boundary map would map the elements of Gk identified as analog
of homotopy group to the commutator group [Gk−2, Gk−2] and therefore to the unit element of
the abelianized group defining cohomology group. In order to obtains something analogous to
the ordinary homology and cohomology groups one must however replaces Galois groups by their
group algebras with values in some field or ring. This allows to define the analogs of homotopy
and homology groups as their abelianizations. Cohomotopy, and cohomology would emerge as
duals of homotopy and homology in the dual of the group algebra.

4. That the algebraic representation of the boundary operation is not expected to be unique turns
into blessing when on keeps the TGD as almost topological QFT vision as the guide line. One
can include all boundary homomorphisms subject to the condition that the anticommutator
δikδ

j
k−1 + δjkδ

i
k−1 maps to the group algebra of the commutator group [Gk−2, Gk−2]. By adding

dual generators one obtains what looks like a generalization of anticommutative fermionic algebra
and what comes in mind is the spectrum of quantum states of a SUSY algebra spanned by bosonic
states realized as group algebra elements and fermionic states realized in terms of homotopy and
cohomotopy and in abelianized version in terms of homology and cohomology. Galois group
action allows to organize quantum states into multiplets of Galois groups acting as symmetry
groups of physics. Poincare duality would map the analogs of fermionic creation operators
to annihilation operators and vice versa and the counterpart of pairing of k:th and n − k:th
homology groups would be inner product analogous to that given by Grassmann integration.
The interpretation in terms of fermions turns however to be wrong and the more appropriate
interpretation is in terms of Dolbeault cohomology applying to forms with homomorphic and
antiholomorphic indices.

5. The intuitive idea that the Galois group is analogous to 1-D homotopy group which is the
only non-commutative homotopy group, the structure of infinite primes analogous to the braids
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of braids of braids of ... structure, the fact that Galois group is a subgroup of permutation
group, and the possibility to lift permutation group to a braid group suggests a representation
as flows of 2-D plane with punctures giving a direct connection with topological quantum field
theories for braids, knots and links. The natural assumption is that the flows are induced from
transformations of the symplectic group acting on δM2

±×CP2 representing quantum fluctuating
degrees of freedom associated with WCW (”world of classical worlds”). Discretization of WCW
and cutoff in the number of modes would be due to the finite measurement resolution. The
outcome would be rather far reaching: finite measurement resolution would allow to construct
WCW spinor fields explicitly using the machinery of number theory and algebraic geometry.

6. A connection with operads is highly suggestive. What is nice from TGD perspective is that
the non-commutative generalization homology and homotopy has direct connection to the basic
structure of quantum TGD almost topological quantum theory where braids are basic objects
and also to hyper-finite factors of type II1. This notion of Galois group makes sense only for the
algebraic varieties for which coefficient field is algebraic extension of some number field. Braid
group approach however allows to generalize the approach to completely general polynomials
since the braid group make sense also when the ends points for the braid are not algebraic points
(roots of the polynomial).

This construction would realize the number theoretical, algebraic geometrical, and topological
content in the construction of quantum states in TGD framework in accordance with TGD as almost
TQFT philosophy, TGD as infinite-D geometry, and TGD as generalized number theory visions.

2. p-Adic integration and cohomology

This picture leads also to a proposal how p-adic integrals could be defined in TGD framework.

1. The calculation of twistorial amplitudes reduces to multi-dimensional residue calculus. Motivic
integration gives excellent hopes for the p-adic existence of this calculus and braid representa-
tion would give space-time representation for the residue integrals in terms of the braid points
representing poles of the integrand: this would conform with quantum classical correspondence.
The power of 2π appearing in multiple residue integral is problematic unless it disappears from
scattering amplitudes. Otherwise one must allow an extension of p-adic numbers to a ring
containing powers of 2π.

2. Weak form of electric-magnetic duality and the general solution ansatz for preferred extremals
reduce the Kähler action defining the Kähler function for WCW to the integral of Chern-Simons
3-form. Hence the reduction to cohomology takes places at space-time level and since p-adic
cohomology exists there are excellent hopes about the existence of p-adic variant of Kähler
action. The existence of the exponent of Kähler gives additional powerful constraints on the
value of the Kähler fuction in the intersection of real and p-adic worlds consisting of algebraic
partonic 2-surfaces and allows to guess the general form of the Kähler action in p-adic context.

3. One also should define p-adic integration for vacuum functional at the level of WCW. p-Adic
thermodynamics serves as a guideline leading to the condition that in p-adic sector exponent
of Kähler action is of form (m/n)r, where m/n is divisible by a positive power of p-adic prime
p. This implies that one has sum over contributions coming as powers of p and the challenge is
to calculate the integral for K= constant surfaces using the integration measure defined by an
infinite power of Kähler form of WCW reducing the integral to cohomology which should make
sense also p-adically. The p-adicization of the WCW integrals has been discussed already earlier
using an approach based on harmonic analysis in symmetric spaces and these two approaches
should be equivalent. One could also consider a more general quantization of Kähler action as
sum K = K1 +K2 where K1 = rlog(m/n) and K2 = n, with n divisible by p since exp(n) exists
in this case and one has exp(K) = (m/n)r × exp(n). Also transcendental extensions of p-adic
numbers involving n+ p− 2 powers of e1/n can be considered.

4. If the Galois group algebras indeed define a representation for WCW spinor fields in finite
measurement resolution, also WCW integration would reduce to summations over the Galois
groups involved so that integrals would be well-defined in all number fields.
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3. Floer homology, Gromov-Witten invariants, and TGD

Floer homology defines a generalization of Morse theory allowing to deduce symplectic homology
groups by studying Morse theory in loop space of the symplectic manifold. Since the symplectic
transformations of the boundary of δM4

± ×CP2 define isometry group of WCW, it is very natural to
expect that Kähler action defines a generalization of the Floer homology allowing to understand the
symplectic aspects of quantum TGD. The hierarchy of Planck constants implied by the one-to-many
correspondence between canonical momentum densities and time derivatives of the imbedding space
coordinates leads naturally to singular coverings of the imbedding space and the resulting symplectic
Morse theory could characterize the homology of these coverings.

One ends up to a more precise definition of vacuum functional: Kähler action reduces Chern-
Simons terms (imaginary in Minkowskian regions and real in Euclidian regions) so that it has both
phase and real exponent which makes the functional integral well-defined. Both the phase factor and
its conjugate must be allowed and the resulting degeneracy of ground state could allow to understand
qualitatively the delicacies of CP breaking and its sensitivity to the parameters of the system. The
critical points with respect to zero modes correspond to those for Kähler function. The critical points
with respect to complex coordinates associated with quantum fluctuating degrees of freedom are not
allowed by the positive definiteness of Kähler metric of WCW. One can say that Kähler and Morse
functions define the real and imaginary parts of the exponent of vacuum functional.

The generalization of Floer homology inspires several new insights. In particular, space-time
surface as hyper-quaternionic surface could define the 4-D counterpart for pseudo-holomorphic 2-
surfaces in Floer homology. Holomorphic partonic 2-surfaces could in turn correspond to the extrema
of Kähler function with respect to zero modes and holomorphy would be accompanied by super-
symmetry.

Gromov-Witten invariants appear in Floer homology and topological string theories and this in-
spires the attempt to build an overall view about their role in TGD. Generalization of topological
string theories of type A and B to TGD framework is proposed. The TGD counterpart of the mirror
symmetry would be the equivalence of formulations of TGD in H = M4 × CP2 and in CP3 × CP3

with space-time surfaces replaced with 6-D sphere bundles.

4. K-theory, branes, and TGD

K-theory and its generalizations play a fundamental role in super-string models and M-theory since
they allow a topological classification of branes. After representing some physical objections against
the notion of brane more technical problems of this approach are discussed briefly and it is proposed
how TGD allows to overcome these problems. A more precise formulation of the weak form of electric-
magnetic duality emerges: the original formulation was not quite correct for space-time regions with
Euclidian signature of the induced metric. The question about possible TGD counterparts of R-R
and NS-NS fields and S, T, and U dualities is discussed.

5. p-Adic space-time sheets as correlates for Boolean cognition

p-Adic physics is interpreted as physical correlate for cognition. The so called Stone spaces are in
one-one correspondence with Boolean algebras and have typically 2-adic topologies. A generalization
to p-adic case with the interpretation of p pinary digits as physically representable Boolean statements
of a Boolean algebra with 2n > p > pn−1 statements is encouraged by p-adic length scale hypothesis.
Stone spaces are synonymous with profinite spaces about which both finite and infinite Galois groups
represent basic examples. This provides a strong support for the connection between Boolean cognition
and p-adic space-time physics. The Stone space character of Galois groups suggests also a deep
connection between number theory and cognition and some arguments providing support for this
vision are discussed.

1.4.2 PART II: TGD and p-Adic Numbers

p-Adic Numbers and Generalization of Number Concept

In this chapter the general TGD inspired mathematical ideas related to p-adic numbers are dis-
cussed. The extensions of the p-adic numbers including extensions containing transcendentals, the
correspondences between p-adic and real numbers, p-adic differential and integral calculus, and p-adic
symmetries and Fourier analysis belong the topics of the chapter.
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The basic hypothesis is that p-adic space-time regions correspond to cognitive representations for
the real physics appearing already at the elementary particle level. The interpretation of the p-adic
physics as a physics of cognition is justified by the inherent p-adic non-determinism of the p-adic
differential equations making possible the extreme flexibility of imagination.

p-Adic canonical identification and the identification of reals and p-adics by common rationals are
the two basic identification maps between p-adics and reals and can be interpreted as two basic types
of cognitive maps. The concept of p-adic fractality is defined and p-adic fractality is the basic property
of the cognitive maps mapping real world to the p-adic internal world. Canonical identification is not
general coordinate invariant and at the fundamental level it is applied only to map p-adic probabilities
and predictions of p-adic thermodynamics to real numbers. The correspondence via common rationals
is general coordinate invariant correspondence when general coordinate transformations are restricted
to rational or extended rational maps: this has interpretation in terms of fundamental length scale
unit provided by CP2 length.

A natural outcome is the generalization of the notion of number. Different number fields form
a book like structure with number fields and their extensions representing the pages of the book
glued together along common rationals representing the rim of the book. This generalization forces
also the generalization of the manifold concept: both imbedding space and configuration space are
obtained as union of copies corresponding to various number fields glued together along common
points, in particular rational ones. Space-time surfaces decompose naturally to real and p-adic space-
time sheets. In this framework the fusion of real and various p-adic physics reduces more or less
to to an algebraic continuation of rational number based physics to various number fields and their
extensions.

p-Adic differential calculus obeys the same rules as real one and an interesting outcome are p-
adic fractals involving canonical identification. Perhaps the most crucial ingredient concerning the
practical formulation of the p-adic physics is the concept of the p-adic valued definite integral. Quite
generally, all general coordinate invariant definitions are based on algebraic continuation by common
rationals. Integral functions can be defined using just the rules of ordinary calculus and the ordering
of the integration limits is provided by the correspondence via common rationals. Residy calculus
generalizes to p-adic context and also free Gaussian functional integral generalizes to p-adic context
and is expected to play key role in quantum TGD at configuration space level.

The special features of p-adic Lie-groups are briefly discussed: the most important of them being
an infinite fractal hierarchy of nested groups. Various versions of the p-adic Fourier analysis are
proposed: ordinary Fourier analysis generalizes naturally only if finite-dimensional extensions of p-
adic numbers are allowed and this has interpretation in terms of p-adic length scale cutoff. Also p-adic
Fourier analysis provides a possible definition of the definite integral in the p-adic context by using
algebraic continuation.

p-Adic Physics: Physical Ideas

The most important p-adic concepts and ideas are p-adic fractality, spin glass analogy, p-adic length
scale hypothesis, p-adic realization of the Slaving Principle, p-adic criticality, and the non-determinism
of the p-adic differential equations justifying the interpretation of the p-adic space-time regions as
cognitive representations. These ideas are discussed in this chapter in a more concrete level than in
previous chapters in the hope that this might help the reader to assimilate the material more easily.
Some of the considerations might be a little bit out of date since the chapter is written much earlier
than the preceding chapters.

a) The criticality of quantum TGD and the need to generalize conformal invariance to the 4-
dimensional context were the original motivations of the p-adic approach. It however turned out that
quaternion conformal invariance, rather than p-adic conformal invariance for the space-time surface
regarded as an algebraic extension of p-adics, is the correct manner to realize conformal invariance. In
TGD as a generalized number theory approach p-adic space-time regions emerge completely naturally
and have interpretation as cognitive representations of the real physics. If this occurs already at the
level of elementary particles, one can understand p-adic physics as a model for a cognitive model
about physics provided by Nature itself. The basic motivation for this assumption is the p-adic
non-determinism of the p-adic field equations making them ideal for the simulation purposes. The
p-adic–real phase transitions are the second basic concept allowing to understand how intention is
transformed to action and vice versa: the occurrence of this process even at elementary particle
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level explains why p-adic length scale hypothesis works. This picture is consistent with the idea about
evolution occurring already at the level of elementary particles and allowing the survival of the systems
with largest cognitive resources.

b) Spin glass analogy, which was the original motivation for p-adicization before the discovery
that p-adic regions of space-time emerge automatically from TGD as a generalized number theory
approach, is discussed at configuration space level. The basic idea is that the maximum (several
of them are possible) of the exponential of the Kähler function with respect to the fiber degrees of
freedom as function of zero modes is p-adic fractal. This together with spin glass analogy suggest
p-adic ultra-metricity of the reduced configuration space CHred, the TGD counterpart of the energy
landscape.

c) Slaving Principle states that there exists a hierarchy of dynamics with increasing characteristic
length (time) scales and the dynamical variables of a given length scale obey dynamics, where the
dynamical variables of the longer length (time) scale serve as ”masters” that is effectively as external
parameters or integration constants. The dynamics of the ”slave” corresponds to a rapid adaptation to
the conditions posed by the ”master”. p-Adic length scale hypothesis allows a concrete quantification
of this principle predicting a hierarchy of preferred length, time, energy and frequency scales.

d) Critical systems are fractals and the natural guess is that p-adic topology serves also as an
effective topology of real space-time sheets in some length scale range and that real non-determinism
of Kähler action mimics p-adic non-determinism for some value of prime p. This motivates some
qualitative p-adic ideas about criticality.

e) The properties of the CP2 type extremals providing TGD based model for elementary particles
and topological sum contacts, are discussed in detail. CP2 type extremals are for TGD what black
holes are for General Relativity. Black hole elementary particle analogy is discussed in detail and
the generalization of the Hawking-Bekenstein formula is shown to lead to a prediction for the radius
of the elementary particle horizon and to a justification for the p-adic length scale hypothesis. A
deeper justification for the p-adic length scale hypothesis comes from the assumption that systems
with maximal cognitive resources are winners in the fight for survival even in elementary particle
length scales.

f) Quantum criticality allows the dependence of the Kähler coupling strength on zero modes. It
would be nice if αK were RG invariant in strong sense but the expression for gravitational coupling
constant implies that it increases rapidly as a function of p-adic length scale in this case. This led to
the hypothesis that G is RG invariant. The hypothesis fixes the p-adic evolution of αK completely
and implies logarithmic dependence of αK on p-adic length scale. It has however turned out that
the RG invariance might after all be possible and is actually strongly favored by different physical
arguments. The point is that M127 is the largest Mersenne prime for which p-adic length scale is non-
super-astronomical. If gravitational interaction is mediated by space-time sheets labelled by Mersenne
prime, gravitational constant is effective RG invariant even if αK is RG invariant in strong sense. This
option is also ideal concerning the p-adicization of the theory.

Fusion of p-Adic and Real Variants of Quantum TGD to a More General Theory

The mathematical aspects of p-adicization of quantum TGD are discussed. In a well-defined sense
Nature itself performs the p-adicization and p-adic physics can be regarded as physics of cognitive
regions of space-time which in turn provide representations of real space-time regions. Cognitive
representations presumably involve the p-adicization of the geometry at the level of the space-time
and imbedding space by a mapping of a real space time region to a p-adic one. One can differentiate
between two kinds of maps: the identification induced by the common rationals of real and p-adic
space time region and the representations of the external real world to internal p-adic world induced
by a canonical identification type maps.

Only the identification by common rationals respects general coordinate invariance, and it leads to
a generalization of the number concept. Different number fields form a book like structure with number
fields and their extensions representing the pages of the book glued together along common rationals
representing the rim of the book. This generalization forces also the generalization of the manifold
concept: both imbedding space and configuration space are obtained as union of copies corresponding
to various number fields glued together along common points, in particular rational ones. Space-time
surfaces decompose naturally to real and p-adic space-time sheets. In this framework the fusion of
real and various p-adic physics reduces more or less to to an algebraic continuation of rational number
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based physics to various number fields and their extensions.
The program makes sense only if also extensions containing transcendentals are allowed: the p-

dimensional extension containing powers of e is perhaps the most important transcendental extension
involved. Entire cognitive hierarchy of extension emerges and the dimension of extension can be
regarded as a measure for the cognitive resolution and the higher the dimension the shorter the length
scale of resolution. Cognitive resolution provides also number theoretical counterpart for the notion
of length scale cutoff unavoidable in quantum field theories: now the length scale cutoffs are part of
the physics of cognition rather than reflecting the practical limitations of theory building.

There is a lot of p-adicizing to do.
a) The p-adic variant of classical TGD must be constructed. Field equations make indeed sense

also in the p-adic context. The strongest assumption is that real space time sheets have the same
functional form as real space-time sheet so that there is non-uniqueness only due to the hierarchy of
dimensions of extensions.

b) Probability theory must be generalized. Canonical identification playing central role in p-
adic mass calculations using p-adic thermodynamics maps genuinely p-adic probabilities to their
real counterparts. p-Adic entropy can be defined and one can distinguish between three kinds of
entropies: real entropy, p-adic entropy mapped to its real counterpart by canonical identification,
and number theoretical entropies applying when probabilities are in finite-dimensional extension of
rationals. Number theoretic entropies can be negative and provide genuine information measures, and
it turns that bound states should correspond in TGD framework to entanglement coefficients which
belong to a finite-dimensional extension of rationals and have negative number theoretic entanglement
entropy. These information measures generalize by quantum-classical correspondence to space-time
level.

c) p-Adic quantum mechanics must be constructed. p-Adic unitarity differs in some respects from
its real counterpart: in particular, p-adic cohomology allows unitary S-matrices S = 1 + T such that
T is hermitian and nilpotent matrix. p-Adic quantum measurement theory based on Negentropy
Maximization Principle (NMP) leads to the notion of monitoring, which might have relevance for the
physics of cognition.

d) Generalized quantum mechanics results as fusion of quantum mechanics in various number
fields using algebraic continuation from the field of rational as a basic guiding principle. It seems
possible to generalize the notion of unitary process in such a manner that unitary matrix leads from
rational Hilbert space HQ to a formal superposition of states in all Hilbert spaces HF , where F runs
over number fields. If this is accepted, state function reduction is a pure number theoretical necessity
and involves a reduction to a particular number field followed by state function reduction and state
preparation leading ultimately to a state containing only entanglement which is rational or finitely-
extended rational and because of its negative number theoretic entanglement entropy identifiable as
bound state entanglement stable against NMP.

e) Generalization of the configuration space and related concepts is also necessary and again gluing
along common rationals and algebraic continuation is the basic guide line also now. Configuration
space is a union of symmetric spaces and this allows an algebraic construction of the configuration
space Kähler metric and spinor structure, whose definition reduces to the super canonical algebra
defined by the function basis at the light cone boundary. Hence the algebraic continuation is relatively
straightforward. Even configuration space functional integral could allow algebraic continuation. The
reason is that symmetric space structure together with Duistermaat Hecke theorem suggests strongly
that configuration space integration with the constraints posed by infinite-dimensional symmetries on
physical states is effectively equivalent to Gaussian functional integration in free field theory around the
unique maximum of Kähler function using contravariant configuration space metric as a propagator.
Algebraic continuation is possible for a subset of rational valued zero modes if Kähler action and
Kähler function are rational functions of configuration space coordinates for rational values of zero
modes.

Negentropy Maximization Principle

In TGD Universe the moments of consciousness are associated with quantum jumps between quantum
histories. The proposal is that the dynamics of consciousness is governed by Negentropy Maximization
Principle, which states the information content of conscious experience is maximal. The formulation
of NMP is the basic topic of this chapter.
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Negentropy Maximization Principle (NMP) codes for the dynamics of standard state function
reduction and states that the state function reduction process following U -process gives rise to a
maximal reduction of entanglement entropy at each step. In the generic case this implies at each step
a decomposition of the system to unique unentangled subsystems and the process repeats itself for
these subsystems. The process stops when the resulting subsystem cannot be decomposed to a pair of
free systems since energy conservation makes the reduction of entanglement kinematically impossible
in the case of bound states. The natural assumption is that self loses consciousness when it entangles
via bound state entanglement.

There is an important exception to this vision based on ordinary Shannon entropy. There exists
an infinite hierarchy of number theoretical entropies making sense for rational or even algebraic entan-
glement probabilities. In this case the entanglement negentropy can be negative so that NMP favors
the generation of negentropic entanglement, which need not be bound state entanglement in standard
sense. Negentropic entanglement might serve as a correlate for emotions like love and experience of
understanding. The reduction of ordinary entanglement entropy to random final state implies second
law at the level of ensemble. For the generation of negentropic entanglement the outcome of the
reduction is not random: the prediction is that second law is not a universal truth holding true in all
scales. Since number theoretic entropies are natural in the intersection of real and p-adic worlds, this
suggests that life resides in this intersection. The existence effectively bound states with no binding
energy might have important implications for the understanding the stability of basic bio-polymers
and the key aspects of metabolism. A natural assumption is that self experiences expansion of con-
sciousness as it entangles in this manner. Quite generally, an infinite self hierarchy with the entire
Universe at the top is predicted.

The identification of life as a number theoretically critical phenomenon is also consistent with
the idea that the transformation of intention to action corresponds to a U -process inducing leakage
between different sectors. This leakage makes sense in the intersection where same mathematical
expression defines both real and p-adic partonic 2-surfaces which are the fundamental objects in TGD
framework. What these statements really mean requires a construction of number theoretical variant
of quantum theory applying in the intersection of real and p-adic worlds.

Besides number theoretic negentropies there are also other new elements as compared to the earlier
formulation of NMP. Zero energy ontology modifies dramatically the formulation of NMP since U -
matrix acts between zero energy states and can be regarded as a collection of M -matrices, which
generalize the ordinary S-matrix and define what might be called a complex square root of density
matrix so that kind of a square root of thermodynamics at single particle level justifying also p-adic
mass calculations based on p-adic thermodynamics is in question. The hierarchy of Planck constants is
a further new element having important implications for conciousness and biology. Hyper-finite factors
of type II1 represent an additional technical complication requiring separate treatment of NMP taking
into account finite measurement resolution realized in terms of inclusions of these factors.

NMP has important implications for thermodynamics. In particular, one must give up the standard
view about second law and replace it with a formulation taking into accoung the hierarchy of causal
diamonds assigned with zero energy ontology and dark matter hierarchy labeled partially by the values
of Planck constants, as well as the effects due to negentropic entanglement. In particular, in the case
of living matter breaking of second law in standard sense is expected to take place and be crucial for
the understanding of evolution. Self hierarchy having the hierarchy of causal diamonds as imbedding
space correlate leads naturally to a thermodynamical description of the contents of consciousness and
quantum jumps is very much analogous to quantum computation. This leads to a vision about the
role of bound state entanglement and negentropic entanglement in the generation of sensory qualia.
Negentropic entanglement leads to a vision about cognition. Negentropically entangled state consisting
of a superposition of pairs can be interpreted as a conscious abstraction or rule: negentropically
entangled Schrödinger cat knows that it is better to keep the bottle closed. A connection with fuzzy
qubits and quantum groups with negentropic entanglement is highly suggestive. The implications
are highly non-trivial also for quantum computation, which allows three different variants in TGD
context. The negentropic variant would correspond to conscious quantum computation like process.

A Possible Explanation of Shnoll Effect

Shnoll and collaborators have discovered strange repeating patterns of random fluctuations of physical
observables such as the number n of nuclear decays in a given time interval. Periodically occurring
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peaks for the distribution of the number N(n) of measurements producing n events in a series of
measurements as a function of n is observed instead of a single peak. The positions of the peaks are
not random and the patterns depend on position and time varying periodically in time scales possibly
assignable to Earth-Sun and Earth-Moon gravitational interaction.

These observations suggest a modification of the expected probability distributions but it is very
difficult to imagine any physical mechanism in the standard physics framework. Rather, a universal
deformation of predicted probability distributions would be in question requiring something analogous
to the transition from classical physics to quantum physics.

The hint about the nature of the modification comes from the TGD inspired quantum measurement
theory proposing a description of the notion of finite measurement resolution in terms of inclusions
of so called hyper-finite factors of type II1 (HFFs) and closely related quantum groups. Also p-adic
physics -another key element of TGD- is expected to be involved. A modification of a given prob-
ability distribution P (n|λi) for a positive integer valued variable n characterized by rational-valued
parameters λi is obtained by replacing n and the integers characterizing λi with so called quantum
integers depending on the quantum phase qm = exp(i2π/m). Quantum integer nq must be defined
as the product of quantum counterparts pq of the primes p appearing in the prime decomposition of
n. One has pq = sin(2πp/m)/sin(2π/m) for p 6= P and pq = P for p = P . m must satisfy m ≥ 3,
m 6= p, and m 6= 2p.

The quantum counterparts of positive integers can be negative. Therefore quantum distribution is
defined first as p-adic valued distribution and then mapped by so called canonical identification I to a
real distribution by the map taking p-adic −1 to P and powers Pn to P−n and other quantum primes
to themselves and requiring that the mean value of n is for distribution and its quantum variant. The
map I satisfies I(

∑
Pn) =

∑
I(Pn). The resulting distribution has peaks located periodically with

periods coming as powers of P . Also periodicities with peaks corresponding to n = n+n−, n+
q > 0 with

fixed n−q < 0, are predicted. These predictions are universal and easily testable. The prime P and
integer m characterizing the quantum variant of distribution can be identified from data. The shapes
of the distributions obtained are qualitatively consistent with the findings of Shnoll but detailed tests
are required to see whether the number theoretic predictions are correct.

The periodic dependence of the distributions would be most naturally assignable to the gravita-
tional interaction of Earth with Sun and Moon and therefore to the periodic variation of Earth-Sun
and Earth-Moon distances. The TGD inspired proposal is that the p-dic prime P and integer m
characterizing the quantum distribution are determined by a process analogous to a state function
reduction and their most probably values depend on the deviation of the distance R through the
formulas ∆p/p ' kp∆R/R and ∆m/m ' km∆R/R. The p-adic primes assignable to elementary
particles are very large unlike the primes which could characterize the empirical distributions. The
hierarchy of Planck constants allows the gravitational Planck constant assignable to the space-time
sheets mediating gravitational interactions to have gigantic values and this allows p-adicity with small
values of the p-adic prime P .

Infinite Primes and Motives

In this chapter the goal is to find whether the general mathematical structures associated with twistor
approach, superstring models and M-theory could have a generalization or a modification in TGD
framework. The contents of the chapter is an outcome of a rather spontaneous process, and represents
rather unexpected new insights about TGD resulting as outcome of the comparisons.

1. Infinite primes, Galois groups, algebraic geometry, and TGD

In algebraic geometry the notion of variety defined by algebraic equation is very general: all number
fields are allowed. One of the challenges is to define the counterparts of homology and cohomology
groups for them. The notion of cohomology giving rise also to homology if Poincare duality holds true
is central. The number of various cohomology theories has inflated and one of the basic challenges
to find a sufficiently general approach allowing to interpret various cohomology theories as variations
of the same motive as Grothendieck, who is the pioneer of the field responsible for many of the basic
notions and visions, expressed it.

Cohomology requires a definition of integral for forms for all number fields. In p-adic context the
lack of well-ordering of p-adic numbers implies difficulties both in homology and cohomology since the
notion of boundary does not exist in topological sense. The notion of definite integral is problematic
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for the same reason. This has led to a proposal of reducing integration to Fourier analysis working for
symmetric spaces but requiring algebraic extensions of p-adic numbers and an appropriate definition
of the p-adic symmetric space. The definition is not unique and the interpretation is in terms of the
varying measurement resolution.

The notion of infinite has gradually turned out to be more and more important for quantum TGD.
Infinite primes, integers, and rationals form a hierarchy completely analogous to a hierarchy of second
quantization for a super-symmetric arithmetic quantum field theory. The simplest infinite primes
representing elementary particles at given level are in one-one correspondence with many-particle
states of the previous level. More complex infinite primes have interpretation in terms of bound
states.

1. What makes infinite primes interesting from the point of view of algebraic geometry is that
infinite primes, integers and rationals at the n:th level of the hierarchy are in 1-1 correspondence
with rational functions of n arguments. One can solve the roots of associated polynomials and
perform a root decomposition of infinite primes at various levels of the hierarchy and assign to
them Galois groups acting as automorphisms of the field extensions of polynomials defined by
the roots coming as restrictions of the basic polynomial to planes xn = 0, xn = xn−1 = 0, etc...

2. These Galois groups are suggested to define non-commutative generalization of homotopy and
homology theories and non-linear boundary operation for which a geometric interpretation in
terms of the restriction to lower-dimensional plane is proposed. The Galois group Gk would be
analogous to the relative homology group relative to the plane xk−1 = 0 representing boundary
and makes sense for all number fields also geometrically. One can ask whether the invariance of
the complex of groups under the permutations of the orders of variables in the reduction process
is necessary. Physical interpretation suggests that this is not the case and that all the groups
obtained by the permutations are needed for a full description.

3. The algebraic counterpart of boundary map would map the elements of Gk identified as analog
of homotopy group to the commutator group [Gk−2, Gk−2] and therefore to the unit element of
the abelianized group defining cohomology group. In order to obtains something analogous to
the ordinary homology and cohomology groups one must however replaces Galois groups by their
group algebras with values in some field or ring. This allows to define the analogs of homotopy
and homology groups as their abelianizations. Cohomotopy, and cohomology would emerge as
duals of homotopy and homology in the dual of the group algebra.

4. That the algebraic representation of the boundary operation is not expected to be unique turns
into blessing when on keeps the TGD as almost topological QFT vision as the guide line. One
can include all boundary homomorphisms subject to the condition that the anticommutator
δikδ

j
k−1 + δjkδ

i
k−1 maps to the group algebra of the commutator group [Gk−2, Gk−2]. By adding

dual generators one obtains what looks like a generalization of anticommutative fermionic algebra
and what comes in mind is the spectrum of quantum states of a SUSY algebra spanned by bosonic
states realized as group algebra elements and fermionic states realized in terms of homotopy and
cohomotopy and in abelianized version in terms of homology and cohomology. Galois group
action allows to organize quantum states into multiplets of Galois groups acting as symmetry
groups of physics. Poincare duality would map the analogs of fermionic creation operators
to annihilation operators and vice versa and the counterpart of pairing of k:th and n − k:th
homology groups would be inner product analogous to that given by Grassmann integration.
The interpretation in terms of fermions turns however to be wrong and the more appropriate
interpretation is in terms of Dolbeault cohomology applying to forms with homomorphic and
antiholomorphic indices.

5. The intuitive idea that the Galois group is analogous to 1-D homotopy group which is the
only non-commutative homotopy group, the structure of infinite primes analogous to the braids
of braids of braids of ... structure, the fact that Galois group is a subgroup of permutation
group, and the possibility to lift permutation group to a braid group suggests a representation
as flows of 2-D plane with punctures giving a direct connection with topological quantum field
theories for braids, knots and links. The natural assumption is that the flows are induced from
transformations of the symplectic group acting on δM2

±×CP2 representing quantum fluctuating
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degrees of freedom associated with WCW (”world of classical worlds”). Discretization of WCW
and cutoff in the number of modes would be due to the finite measurement resolution. The
outcome would be rather far reaching: finite measurement resolution would allow to construct
WCW spinor fields explicitly using the machinery of number theory and algebraic geometry.

6. A connection with operads is highly suggestive. What is nice from TGD perspective is that
the non-commutative generalization homology and homotopy has direct connection to the basic
structure of quantum TGD almost topological quantum theory where braids are basic objects
and also to hyper-finite factors of type II1. This notion of Galois group makes sense only for the
algebraic varieties for which coefficient field is algebraic extension of some number field. Braid
group approach however allows to generalize the approach to completely general polynomials
since the braid group make sense also when the ends points for the braid are not algebraic points
(roots of the polynomial).

This construction would realize the number theoretical, algebraic geometrical, and topological
content in the construction of quantum states in TGD framework in accordance with TGD as almost
TQFT philosophy, TGD as infinite-D geometry, and TGD as generalized number theory visions.

2. p-Adic integration and cohomology

This picture leads also to a proposal how p-adic integrals could be defined in TGD framework.

1. The calculation of twistorial amplitudes reduces to multi-dimensional residue calculus. Motivic
integration gives excellent hopes for the p-adic existence of this calculus and braid representa-
tion would give space-time representation for the residue integrals in terms of the braid points
representing poles of the integrand: this would conform with quantum classical correspondence.
The power of 2π appearing in multiple residue integral is problematic unless it disappears from
scattering amplitudes. Otherwise one must allow an extension of p-adic numbers to a ring
containing powers of 2π.

2. Weak form of electric-magnetic duality and the general solution ansatz for preferred extremals
reduce the Kähler action defining the Kähler function for WCW to the integral of Chern-Simons
3-form. Hence the reduction to cohomology takes places at space-time level and since p-adic
cohomology exists there are excellent hopes about the existence of p-adic variant of Kähler
action. The existence of the exponent of Kähler gives additional powerful constraints on the
value of the Kähler fuction in the intersection of real and p-adic worlds consisting of algebraic
partonic 2-surfaces and allows to guess the general form of the Kähler action in p-adic context.

3. One also should define p-adic integration for vacuum functional at the level of WCW. p-Adic
thermodynamics serves as a guideline leading to the condition that in p-adic sector exponent
of Kähler action is of form (m/n)r, where m/n is divisible by a positive power of p-adic prime
p. This implies that one has sum over contributions coming as powers of p and the challenge is
to calculate the integral for K= constant surfaces using the integration measure defined by an
infinite power of Kähler form of WCW reducing the integral to cohomology which should make
sense also p-adically. The p-adicization of the WCW integrals has been discussed already earlier
using an approach based on harmonic analysis in symmetric spaces and these two approaches
should be equivalent. One could also consider a more general quantization of Kähler action as
sum K = K1 +K2 where K1 = rlog(m/n) and K2 = n, with n divisible by p since exp(n) exists
in this case and one has exp(K) = (m/n)r × exp(n). Also transcendental extensions of p-adic
numbers involving n+ p− 2 powers of e1/n can be considered.

4. If the Galois group algebras indeed define a representation for WCW spinor fields in finite
measurement resolution, also WCW integration would reduce to summations over the Galois
groups involved so that integrals would be well-defined in all number fields.

3. Floer homology, Gromov-Witten invariants, and TGD

Floer homology defines a generalization of Morse theory allowing to deduce symplectic homology
groups by studying Morse theory in loop space of the symplectic manifold. Since the symplectic
transformations of the boundary of δM4

± ×CP2 define isometry group of WCW, it is very natural to
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expect that Kähler action defines a generalization of the Floer homology allowing to understand the
symplectic aspects of quantum TGD. The hierarchy of Planck constants implied by the one-to-many
correspondence between canonical momentum densities and time derivatives of the imbedding space
coordinates leads naturally to singular coverings of the imbedding space and the resulting symplectic
Morse theory could characterize the homology of these coverings.

One ends up to a more precise definition of vacuum functional: Kähler action reduces Chern-
Simons terms (imaginary in Minkowskian regions and real in Euclidian regions) so that it has both
phase and real exponent which makes the functional integral well-defined. Both the phase factor and
its conjugate must be allowed and the resulting degeneracy of ground state could allow to understand
qualitatively the delicacies of CP breaking and its sensitivity to the parameters of the system. The
critical points with respect to zero modes correspond to those for Kähler function. The critical points
with respect to complex coordinates associated with quantum fluctuating degrees of freedom are not
allowed by the positive definiteness of Kähler metric of WCW. One can say that Kähler and Morse
functions define the real and imaginary parts of the exponent of vacuum functional.

The generalization of Floer homology inspires several new insights. In particular, space-time
surface as hyper-quaternionic surface could define the 4-D counterpart for pseudo-holomorphic 2-
surfaces in Floer homology. Holomorphic partonic 2-surfaces could in turn correspond to the extrema
of Kähler function with respect to zero modes and holomorphy would be accompanied by super-
symmetry.

Gromov-Witten invariants appear in Floer homology and topological string theories and this in-
spires the attempt to build an overall view about their role in TGD. Generalization of topological
string theories of type A and B to TGD framework is proposed. The TGD counterpart of the mirror
symmetry would be the equivalence of formulations of TGD in H = M4 × CP2 and in CP3 × CP3

with space-time surfaces replaced with 6-D sphere bundles.

4. K-theory, branes, and TGD

K-theory and its generalizations play a fundamental role in super-string models and M-theory since
they allow a topological classification of branes. After representing some physical objections against
the notion of brane more technical problems of this approach are discussed briefly and it is proposed
how TGD allows to overcome these problems. A more precise formulation of the weak form of electric-
magnetic duality emerges: the original formulation was not quite correct for space-time regions with
Euclidian signature of the induced metric. The question about possible TGD counterparts of R-R
and NS-NS fields and S, T, and U dualities is discussed.

5. p-Adic space-time sheets as correlates for Boolean cognition

p-Adic physics is interpreted as physical correlate for cognition. The so called Stone spaces are in
one-one correspondence with Boolean algebras and have typically 2-adic topologies. A generalization
to p-adic case with the interpretation of p pinary digits as physically representable Boolean statements
of a Boolean algebra with 2n > p > pn−1 statements is encouraged by p-adic length scale hypothesis.
Stone spaces are synonymous with profinite spaces about which both finite and infinite Galois groups
represent basic examples. This provides a strong support for the connection between Boolean cognition
and p-adic space-time physics. The Stone space character of Galois groups suggests also a deep
connection between number theory and cognition and some arguments providing support for this
vision are discussed.

Quantum Arithmetics and the Relationship between Real and p-Adic Physics

This chapter considers possible answers to the basic questions of the p-adicization program, which are
following.

1. Is there a duality between real and p-adic physics? What is its precice mathematic formulation?
In particular, what is the concrete map p-adic physics in long scales (in real sense) to real physics
in short scales? Can one find a rigorous mathematical formulationof canonical identification
induced by the map p→ 1/p in pinary expansion of p-adic number such that it is both continuous
and respects symmetries.

2. What is the origin of the p-adic length scale hypothesis suggesting that primes near power of
two are physically preferred? Why Mersenne primes are especially important?
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The attempt answer to these questions relies on the following ideas inspired by the model of Shnoll
effect. The first piece of the puzzle is the notion of quantum arithmetics formulated in non-rigorous
manner already in the model of Shnoll effect.

1. For Option I sums are mapped to sums and products to products and is effectively equivalent with
ordinary p-adic arithmetics. Quantum map of primes p1 < p only accompanies the canonical
identification mapping p-adic numbers to reals. This option respects p-adic symmetries only in
finite measurement resolution.

2. For Option II primes p1 < p are mapped also to their quantum counterparts and generate a
ring. Sums are not mapped to sums and there are two options depending on whether products
are mapped to products or not. One obtains the analog of Kac-Moody algebra with coefficients
for given power of p defining an algebra analogies to polynomial algebra. One can define also
rationals and obtains a structure analogous to a function field. This field allows projection to
p-adic numbers but is much larger than p-adic numbers. The construction works also for the
general quantum phases q than those defined by primes. For this option the symmetries of
quantum p-adics would be preserved in the canonical identification.

3. p-Adic–real duality can be identified as the analog of canonical identification induced by the
map p → 1/p in the pinary expansion of quantum rational. This maps maps p-adic and real
physics to each other and real long distances to short ones and vice versa. This map is especially
interesting as a map for defining cognitive representations.

Quantum arithmetics inspires the notion of quantum matrix group as counterpart of quantum
group for which matrix elements are ordinary numbers. Quantum classical correspondence and the
notion of finite measurement resolution realized at classical level in terms of discretization suggest
that these two views about quantum groups could be closely related. The preferred prime p defining
the quantum matrix group is identified as p-adic prime and canonical identification p→ 1/p is group
homomorphism so that symmetries are respected for Option II.

1. The quantum counterparts of special linear groups SL(n, F ) exists always. For the covering
group SL(2, C) of SO(3, 1) this is the case so that 4-dimensional Minkowski space is in a very
special position. For orthogonal, unitary, and orthogonal groups the quantum counterpart exists
only if the number of powers of p for the generating elements of the quantum matrix group
satisfies an upper bound characterizing the matrix group.

2. For the quantum counterparts of SO(3) (SU(2)/ SU(3)) the orthogonality conditions state
that at least some multiples of the prime characterizing quantum arithmetics is sum of three
(four/six) squares. For SO(3) this condition is strongest and satisfied for all integers, which are
not of form n = 22r(8k + 7)). The number r3(n) of representations as sum of squares is known
and r3(n) is invariant under the scalings n → 22rn. This means scaling by 2 for the integers
appearing in the square sum representation.

The findings about quantum SO(3) suggest a possible explanation for p-adic length scale hypothesis
and preferred p-adic primes.

1. The idea to be studied is that the quantum matrix group which is discrete is in some sense very
large for preferred p-adic primes. If cognitive representations correspond to the representations
of quantum matrix group, the representational capacity of cognitive representations is high and
this kind of primes are survivors in the algebraic evolution leading to algebraic extensions with
increasing dimension. The simple estimates of this chapter restricting the consideration to finite
fields (O(p) = 0 approximation) do not support this idea in the case of Mersenne primes.

2. An alternative idea is that number theoretic evolution leading to algebraic extensions of rationals
with increasing dimension favors p-adic primes which do not split in the extensions to primes
of the extension. There is also a nice argument that infinite primes which are in one-one cor-
respondence with prime polynomials code for algebraic extensions. These primes code also for
bound states of elementary particles. Therefore the stable bound states would define preferred
p-adic primes as primes which do not split in the algebraic extension defined by infinite prime.
This should select Mersenne primes as preferred ones.



34 Chapter 1. Introduction

Quantum Adeles

Quantum arithmetics provides a possible resolution of a long-lasting challenge of finding a mathemat-
ical justification for the canonical identification mapping p-adics to reals playing a key role in TGD
- in particular in p-adic mass calculations. p-Adic numbers have p-adic pinary expansions

∑
anp

n

satisfying an < p. of powers pn to be products of primes p1 < p satisfying an < p for ordinary
p-adic numbers. One could map this expansion to its quantum counterpart by replacing an with their
counterpart and by canonical identification map p → 1/p the expansion to real number. This defi-
nition might be criticized as being essentially equivalent with ordinary p-adic numbers since one can
argue that the map of coefficients an to their quantum counterparts takes place only in the canonical
identification map to reals.

One could however modify this recipe. Represent integer n as a product of primes l and allow
for l all expansions for which the coefficients an consist of primes p1 < p but give up the condition
an < p. This would give 1-to-many correspondence between ordinary p-adic numbers and their
quantum counterparts.

It took time to realize that l < p condition might be necessary in which case the quantization in
this sense - if present at all - could be associated with the canonical identification map to reals. It
would correspond only to the process taking into account finite measurement resolution rather than
replacement of p-adic number field with something new, hopefully a field. At this step one might
perhaps allow l > p so that one would obtain several real images under canonical identification.

One can however imagine a third generalization of number concept. One can replace integer n
with n-dimensional Hilbert space and sum + and product × with direct sum ⊕ and tensor product
⊗ and introduce their co-operations, the definition of which is highly non-trivial. This procedure
yields also Hilbert space variants of rationals, algebraic numbers, p-adic number fields, and even
complex, quaternionic and octonionic algebraics. Also adeles can be replaced with their Hilbert space
counterparts. Even more, one can replace the points of Hilbert spaces with Hilbert spaces and repeat
this process, which is very similar to the construction of infinite primes having interpretation in
terms of repeated second quantization. This process could be the counterpart for construction of nth

order logics and one might speak of Hilbert or quantum mathematics. The construction would also
generalize the notion of algebraic holography and provide self-referential cognitive representation of
mathematics.

This vision emerged from the connections with generalized Feynman diagrams, braids, and with
the hierarchy of Planck constants realized in terms of coverings of the imbedding space. Hilbert
space generalization of number concept seems to be extremely well suited for the purposes of TGD.
For instance, generalized Feynman diagrams could be identifiable as arithmetic Feynman diagrams
describing sequences of arithmetic operations and their co-operations. One could interpret ×q and
+q and their co-algebra operations as 3-vertices for number theoretical Feynman diagrams describing
algebraic identities X = Y having natural interpretation in zero energy ontology. The two vertices
have direct counterparts as two kinds of basic topological vertices in quantum TGD (stringy vertices
and vertices of Feynman diagrams). The definition of co-operations would characterize quantum
dynamics. Physical states would correspond to the Hilbert space states assignable to numbers. One
prediction is that all loops can be eliminated from generalized Feynman diagrams and diagrams are
in projective sense invariant under permutations of incoming (outgoing legs).

What p-adic icosahedron could mean? And what about p-adic manifold?

The original focus of this chapter was p-adic icosahedron. The discussion of attempt to define this
notion however leads to the challenge of defining the concept of p-adic sphere, and more generally,
that of p-adic manifold, and this problem soon became the main target of attention since it is one of
the key challenges of also TGD.

There exists two basic philosophies concerning the construction of both real and p-adic manifolds:
algebraic and topological approach. Also in TGD these approaches have been competing: algebraic
approach relates real and p-adic space-time points by identifying the common rationals. Finite pinary
cutoff is however required to avoid totally wild fluctuations and has interpretation in terms of finite
measurement resolution. Canonical identification maps p-adics to reals and vice versa in a continuous
manner but is not consistent with p-adic analyticity nor field equations unless one poses a pinary
cutoff. It seems that pinary cutoff reflecting the notion of finite measurement resolution is necessary
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in both approaches. This represents a new notion from the point of view of mathematics.

1. One can try to generalize the theory of real manifolds to p-adic context. The basic problem is
that p-adic balls are either disjoint or nested so that the usual construction by gluing partially
overlapping spheres fails. One attempt to solve the problem relies on the notion of Berkovich
disk obtained as a completion of p-adic disk having path connected topology (non-ultrametric)
and containing p-adic disk as a dense subset. This plus the complexity of the construction is
heavy price to be paid for path-connectedness. A related notion is Bruhat-Tits tree defining
kind of skeleton making p-adic manifold path connected. The notion makes sense for the p-adic
counterparts of projective spaces, which suggests that p-adic projective spaces (S2 and CP2 in
TGD framework) are physically very special.

2. Second approach is algebraic and restricts the consideration to algebraic varieties for which
also topological invariants have algebraic counterparts. This approach looks very natural in
TGD framework - at least for imbedding space. Preferred extremals of Kähler action can be
characterized purely algebraically - even in a manner independent of the action principle - so
that they might make sense also p-adically.

Number theoretical universality is central element of TGD. Physical considerations force to gener-
alize the number concept by gluing reals and various p-adic number fields along rationals and possible
common algebraic numbers. This idea makes sense also at the level of space-time and of ”world of
classical worlds” (WCW).

Algebraic continuation between different number fields is the key notion. Algebraic continuation
between real and p-adic sectors takes place along their intersection , which at the level of WCW (”world
of classical worlds”) correspond to surfaces allowing interpretation both as real and p-adic surfaces for
some value(s) of prime p. The algebraic continuation from the intersection of real and p-adic WCWs
is not possible for all p-adic number fields. For instance, real integrals as functions of parameters need
not make sense for all p-adic number fields. This apparent mathematical weakness can be however
turned to physical strength: real space-time surfaces assignable to elementary particles can correspond
only some particular p-adic primes. This would explain why elementary particles are characterized by
preferred p-adic primes. The p-adic prime determining the mass scale of the elementary particle could
be fixed number theoretically rather than by some dynamical principle formulated in real context
(number theoretic anatomy of rational number does not depend smoothly on its real magnitude!).

Although Berkovich construction of p-adic disk does not look promising in TGD framework, it
suggests that the difficulty posed by the total disconnectedness of p-adic topology is real. TGD
in turn suggests that the difficulty could be overcome without the completion to a non-ultrametric
topology. Two approaches emerge, which ought to be equivalent.

1. The TGD inspired solution to the construction of path connected effective p-adic topology
is based on the notion of canonical identification mapping reals to p-adics and vice versa in a
continuous manner. The trivial but striking observation was that canonical identification satisfies
triangle inequality and thus defines an Archimedean norm allowing to induce real topology to
p-adic context. Canonical identification with finite measurement resolution defines chart maps
from p-adics to reals and vice versa and preferred extremal property allows to complete the
discrete image to hopefully space-time surface unique within finite measurement resolution so
that topological and algebraic approach are combined. Finite resolution would become part of
the manifold theory. p-Adic manifold theory would also have interpretation in terms of cognitive
representations as maps between realities and p-adicities.

2. One can ask whether the physical content of path connectedness could be also formulated as
a quantum physical rather than primarily topological notion, and could boil down to the non-
triviality of correlation functions for second quantized induced spinor fields essential for the
formulation of WCW spinor structure. Fermion fields and their n-point functions could become
part of a number theoretically universal definition of manifold in accordance with the TGD in-
spired vision that WCW geometry - and perhaps even space-time geometry - allow a formulation
in terms of fermions. This option is a mere conjecture whereas the first one is on rigorous basis.
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1.4.3 PART III: Related topics

Category theory, quantum TGD and TGD inspired theory of consciousness

Category theory has been proposed as a new approach to the deep problems of modern physics, in
particular quantization of General Relativity. Category theory might provide the desired systematic
approach to fuse together the bundles of general ideas related to the construction of quantum TGD
proper. Category theory might also have natural applications in the general theory of consciousness
and the theory of cognitive representations.

a) The ontology of quantum TGD and TGD inspired theory of consciousness based on the trinity of
geometric, objective and subjective existences could be expressed elegantly using the language of the
category theory. Quantum classical correspondence might allow a mathematical formulation in terms
of structure respecting functors mapping the categories associated with the three kinds of existences
to each other. Basic results are following.

i) Self hierarchy has indeed functorial map to the hierarchy of space-time sheets and also configu-
ration space spinor fields reflect it. Thus the self referentiality of conscious experience has a functorial
formulation (it is possible to be conscious about what one was conscious).

ii) The inherent logic for category defined by Heyting algebra must be modified in TGD context.
Set theoretic inclusion is replaced with the topological condensation. The resulting logic is two-valued
but since same space-time sheet can simultaneously condense at two disjoint space-time sheets the
classical counterpart of quantum superposition has a space-time correlate so that also quantum jump
should have space-time correlate in many-sheeted space-time.

iii) The category of light cones with inclusion as an arrow defining time ordering appears naturally
in the construction of the configuration space geometry and realizes the cosmologies within cosmologies
scenario. In particular, the notion of the arrow of psychological time finds a nice formulation unifying
earlier two different explanations.

iv) The category of light cones with inclusion as an arrow defining time ordering appears naturally
in the construction of the configuration space geometry and realizes the cosmologies within cosmologies
scenario. In particular, the notion of the arrow of psychological time finds a nice formulation unifying
earlier two different explanations.

b) Cognition is categorizing and category theory suggests itself as a tool for understanding cognition
and self hierarchies and the abstraction processes involved with conscious experience.

c) Categories possess inherent generalized logic based on set theoretic inclusion which in TGD
framework is naturally replaced with topological condensation: the outcome is quantum variants for
the notions of sieve, topos, and logic. This suggests the possibility of geometrizing the logic of both
geometric, objective and subjective existences and perhaps understand why ordinary consciousness
experiences the world through Boolean logic and Zen consciousness experiences universe through
three-valued logic. Also the right-wrong logic of moral rules and beautiful-ugly logic of aesthetics
seem to be too naive and might be replaced with a more general quantum logic.

Riemann hypothesis and physics

Riemann hypothesis states that the nontrivial zeros of Riemann Zeta function lie on the critical
line Re(s) = 1/2. Since Riemann zeta function allows a formal interpretation as thermodynamical
partition function for a quantum field theoretical system consisting of bosons labeled by primes, it
is interesting to look Riemann hypothesis from the perspective of physics. The complex value of
temperature is not however consistent with thermodynamics. In zero energy ontology one obtains
quantum theory as a square root of thermodynamics and this objection can be circumvented and a
nice argument allowing to interpret RH physically emerges.

Conformal invariance leads to a beautiful generalization of Hilbert-Polya conjecture allowing to
interpret RH in terms of coherent states rather than energy eigenstates of a Hamiltonian. In zero
energy ontology the interpretation is that the coherent states in question represent Bose-Einstein
condensation at criticality. Zeros of zeta correspond to coherent states orthogonal to the coherent
state characterized by s = 0, which has finite norm, and therefore does not represent Bose-Einstein
condensation.

Quantum TGD and also TGD inspired theory of consciousness provide additional view points to
the hypothesis and suggests sharpening of Riemann hypothesis, detailed strategies of proof of the
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sharpened hypothesis, and heuristic arguments for why the hypothesis is true. These considerations
are however highly speculative and are represented at the end of the chapter.

1. Super-conformal invariance and generalization of Hilbert-Polya hypothesis

Super-conformal invariance inspires a strategy for proving the Riemann hypothesis. The vanishing
of the Riemann Zeta reduces to an orthogonality condition for the eigenfunctions of a non-Hermitian
operator D+ having the zeros of Riemann Zeta as its eigenvalues. The construction of D+ is inspired
by the conviction that Riemann Zeta is associated with a physical system allowing super-conformal
transformations as its symmetries and second quantization in terms of the representations of the
super-conformal algebra. The eigenfunctions of D+ are analogous to coherent states of a harmonic
oscillator and in general they are not orthogonal to each other. The states orthogonal to a vacuum
state (having a negative norm squared) correspond to the zeros of Riemann Zeta. The physical
states having a positive norm squared correspond to the zeros of Riemann Zeta at the critical line.
Riemann hypothesis follows both from the hermiticity and positive definiteness of the metric in the
space of states corresponding to the zeros of ζ. Also conformal symmetry in appropriate sense implies
Riemann hypothesis and after one year from the discovery of the basic idea it became clear that one
can actually construct a rigorous twenty line long analytic proof for the Riemann hypothesis using a
standard argument from Lie group theory.

2. Zero energy ontology and RH

A further approach to RH is based on zero energy ontology and is consistent with the approach
based on the notion of coherent state. The postulate that all zero energy states for Riemann system are
zeros of zeta and critical in the sense being non-normalizable (Bose-Einstein condensation) combined
with the fact that s = 1 is the only pole of ζ implies that the all zeros of ζ correspond to Re(s) = 1/2 so
that RH follows from purely physical assumptions. The behavior at s = 1 would be an essential element
of the argument. The interpretation as a zero energy counterpart of a coherent state seems to makes
sense also now. Note that in ZEO coherent state property is in accordance with energy conservation.
In the case of coherent states of Cooper pairs same applies to fermion number conservation. With this
interpretation the condition would state orthogonality with respect to the coherent zero energy state
characterized by s = 0, which has finite norm and does not represent Bose-Einstein condensation.
This would give a connection for the proposal for the strategy for proving Riemann Hypothesis by
replacing eigenstates of energy with coherent states.

3. Miscellaneous ideas

During years I have also considered several ideas about Riemann hypothesis which I would not call
miscellaneous. I have moved them to the end of the chapter because of the highly speculative nature.

3.1. Logarithmic waves for zeros of zeta as complex algebraic numbers?

The idea that the evolution of cognition involves the increase of the dimensions of finite-dimensional
extensions of p-adic numbers associated with p-adic space-time sheets emerges naturally in TGD
inspired theory of consciousness. A further input that led to a connection with Riemann Zeta was
the work of Hardmuth Mueller suggesting strongly that e and its p− 1 powers at least should belong
to the extensions of p-adics. The basic objects in Mueller’s approach are so called logarithmic waves
exp(iklog(u)) which should exist for u = n for a suitable choice of the scaling momenta k.

Logarithmic waves appear also as the basic building blocks (the terms ns = exp(log(n)(Re[s] +
iIm[s])) in Riemann Zeta. This inspires naturally the hypothesis that also Riemann Zeta function is
universal in the sense that it is defined at is zeros s = 1/2 + iy not only for complex numbers but also
for all p-adic number fields provided that an appropriate finite-dimensional extensions involving also
transcendentals are allowed. This allows in turn to algebraically continue Zeta to any number field.
The zeros of Riemann zeta are determined by number theoretical quantization and are thus universal

and should appear in the physics of critical systems. The hypothesis log(p) = q1(p)exp[q2(p)]
π explains

the length scale hierarchies based on powers of e, primes p and Golden Mean.
Mueller’s logarithmic waves lead also to an elegant concretization of the Hilbert Polya conjecture

and to a sharpened form of Riemann hypothesis: the phases q−iy for the zeros of Riemann Zeta belong
to a finite-dimensional extension of Rp for any value of primes q and p and any zero 1/2 + iy of ζ.
The question whether the imaginary parts of the Riemann Zeta are linearly independent (as assumed
in the previous work) or not is of crucial physical significance. Linear independence implies that the
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spectrum of the super-symplectic weights is essentially an infinite-dimensional lattice. Otherwise a
more complex structure results. The numerical evidence supporting the translational invariance of
the correlations for the spectrum of zeros together with p-adic considerations leads to the working
hypothesis that for any prime p one can express the spectrum of zeros as the product of a subset
of Pythagorean phases and of a fixed subset U of roots of unity. The spectrum of zeros could be
expressed as a union over the translates of the same basic spectrum defined by the roots of unity
translated by the phase angles associated with a subset of Pythagorean phases: this is consistent with
what the spectral correlations strongly suggest. That decompositions defined by different primes p
yield the same spectrum would mean a powerful number theoretical symmetry realizing p-adicities at
the level of the spectrum of Zeta.

3.2. Universality Principle

A second strategy is based on, what I call, Universality Principle. The function, that I refer to as
ζ̂, is defined by the product formula for ζ and exists in the infinite-dimensional algebraic extension
Q∞ of rationals containing all roots of primes. ζ̂ is defined for all values of s for which the partition
functions 1/(1 − p−z) appearing in the product formula have value in Q∞. Universality Principle

states that |ζ̂|2, defined as the product of the p-adic norms of |ζ̂|2 by reversing the order of producting
in the adelic formula, equals to |ζ|2 and, being an infinite dimensional vector in Q∞, vanishes only if
it contains a rational factor which vanishes. This factor is present only provided an infinite number
of partition functions appearing in the product formula of ζ̂ have rational valued norm squared: this
locates the plausible candidates for the zeros on the lines Re[s] = n/2.

Universality Principle implies the following stronger variant about sharpened form of the Riemann
hypothesis: the real part of the phase p−iy is rational for an infinite number of primes for zeros of ζ.
Universality Principle, even if proven, does not however yield a proof of the Riemann hypothesis. The
failure of the Riemann hypothesis becomes however extremely implausible. An important outcome
of this approach is the realization that super-conformal invariance is a natural symmetry associated
with ζ (not surprisingly, since the symmetry group of complex analysis is in question!).

These approaches reflect the evolution of the vision about TGD based physics as a generalized
number theory. Two new realizations of the super-conformal algebra result and the second realization
has direct application to the modelling of 1/f noise. The zeros of ζ would code for the states of an
arithmetic quantum field theory coded also by infinite primes: also the hierarchical structure of the
many-sheeted space-time would be coded.

Langlands Program and TGD

Number theoretic Langlands program can be seen as an attempt to unify number theory on one hand
and theory of representations of reductive Lie groups on the other hand. So called automorphic func-
tions to which various zeta functions are closely related define the common denominator. Geometric
Langlands program tries to achieve a similar conceptual unification in the case of function fields. This
program has caught the interest of physicists during last years.

TGD can be seen as an attempt to reduce physics to infinite-dimensional Kähler geometry and
spinor structure of the ”world of classical worlds” (WCW). Since TGD ce be regarded also as a
generalized number theory, it is difficult to escape the idea that the interaction of Langlands program
with TGD could be fruitful.

More concretely, TGD leads to a generalization of number concept based on the fusion of reals and
various p-adic number fields and their extensions implying also generalization of manifold concept,
which inspires the notion of number theoretic braid crucial for the formulation of quantum TGD. TGD
leads also naturally to the notion of infinite primes and rationals. The identification of Clifford algebra
of WCW as a hyper-finite factors of type II1 in turn inspires further generalization of the notion of
imbedding space and the idea that quantum TGD as a whole emerges from number theory. The
ensuing generalization of the notion of imbedding space predicts a hierarchy of macroscopic quantum
phases characterized by finite subgroups of SU(2) and by quantized Planck constant. All these new
elements serve as potential sources of fresh insights.

1. The Galois group for the algebraic closure of rationals as infinite symmetric group?

The naive identification of the Galois groups for the algebraic closure of rationals would be as
infinite symmetric group S∞ consisting of finite permutations of the roots of a polynomial of infinite
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degree having infinite number of roots. What puts bells ringing is that the corresponding group
algebra is nothing but the hyper-finite factor of type II1 (HFF). One of the many avatars of this
algebra is infinite-dimensional Clifford algebra playing key role in Quantum TGD. The projective
representations of this algebra can be interpreted as representations of braid algebra B∞ meaning a
connection with the notion of number theoretical braid.

2. Representations of finite subgroups of S∞ as outer automorphisms of HFFs

Finite-dimensional representations of Gal(Q/Q) are crucial for Langlands program. Apart from
one-dimensional representations complex finite-dimensional representations are not possible if S∞
identification is accepted (there might exist finite-dimensional l-adic representations). This suggests
that the finite-dimensional representations correspond to those for finite Galois groups and result
through some kind of spontaneous breaking of S∞ symmetry.

a) Sub-factors determined by finite groups G can be interpreted as representations of Galois groups
or, rather infinite diagonal imbeddings of Galois groups to an infinite Cartesian power of Sn acting as
outer automorphisms in HFF. These transformations are counterparts of global gauge transformations
and determine the measured quantum numbers of gauge multiplets and thus measurement resolution.
All the finite approximations of the representations are inner automorphisms but the limit does not
belong to S∞ and is therefore outer. An analogous picture applies in the case of infinite-dimensional
Clifford algebra.

b) The physical interpretation is as a spontaneous breaking of S∞ to a finite Galois group. One
decomposes infinite braid to a series of n-braids such that finite Galois group acts in each n-braid in
identical manner. Finite value of n corresponds to IR cutoff in physics in the sense that longer wave
length quantum fluctuations are cut off. Finite measurement resolution is crucial. Now it applies to
braid and corresponds in the language of new quantum measurement theory to a sub-factor N ⊂M
determined by the finite Galois group G implying non-commutative physics with complex rays replaced
by N rays. Braids give a connection to topological quantum field theories, conformal field theories
(TGD is almost topological quantum field theory at parton level), knots, etc..

c) TGD based space-time correlate for the action of finite Galois groups on braids and for the
cutoff is in terms of the number theoretic braids obtained as the intersection of real partonic 2-surface
and its p-adic counterpart. The value of the p-adic prime p associated with the parton is fixed by the
scaling of the eigenvalue spectrum of the modified Dirac operator (note that renormalization group
evolution of coupling constants is characterized at the level free theory since p-adic prime characterizes
the p-adic length scale). The roots of the polynomial would determine the positions of braid strands
so that Galois group emerges naturally. As a matter fact, partonic 2-surface decomposes into regions,
one for each braid transforming independently under its own Galois group. Entire quantum state is
modular invariant, which brings in additional constraints.

Braiding brings in homotopy group aspect crucial for geometric Langlands program. Another
global aspect is related to the modular degrees of freedom of the partonic 2-surface, or more precisely
to the regions of partonic 2-surface associated with braids. Sp(2g,R) (g is handle number) can act
as transformations in modular degrees of freedom whereas its Langlands dual would act in spinorial
degrees of freedom. The outcome would be a coupling between purely local and and global aspects
which is necessary since otherwise all information about partonic 2-surfaces as basic objects would be
lost. Interesting ramifications of the basic picture about why only three lowest genera correspond to
the observed fermion families emerge.

3. Correspondence between finite groups and Lie groups

The correspondence between finite and Lie group is a basic aspect of Langlands.
a) Any amenable group gives rise to a unique sub-factor (in particular, compact Lie groups are

amenable). These groups act as genuine outer automorphisms of the group algebra of S∞ rather than
being induced from S∞ outer automorphism. If one gives up uniqueness, it seems that practically
any group G can define a sub-factor: G would define measurement resolution by fixing the quantum
numbers which are measured. Finite Galois group G and Lie group containing it and related to it
by Langlands correspondence would act in the same representation space: the group algebra of S∞,
or equivalently configuration space spinors. The concrete realization for the correspondence might
transform a large number of speculations to theorems.

b) There is a natural connection with McKay correspondence which also relates finite and Lie
groups. The simplest variant of McKay correspondence relates discrete groups G ⊂ SU(2) to ADE
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type groups. Similar correspondence is found for Jones inclusions with index M : N ≤ 4. The
challenge is to understand this correspondence.

i) The basic observation is that ADE type compact Lie algebras with n-dimensional Cartan algebra
can be seen as deformations for a direct sum of n SU(2) Lie algebras since SU(2) Lie algebras appear
as a minimal set of generators for general ADE type Lie algebra. The algebra results by a modification
of Cartan matrix. It is also natural to extend the representations of finite groups G ⊂ SU(2) to those
of SU(2).

ii) The idea would that is that n-fold Connes tensor power transforms the direct sum of n SU(2)
Lie algebras by a kind of deformation to a ADE type Lie algebra with n-dimensional Cartan Lie
algebra. The deformation would be induced by non-commutativity. Same would occur also for the
Kac-Moody variants of these algebras for which the set of generators contains only scaling operator
L0 as an additional generator. Quantum deformation would result from the replacement of complex
rays with N rays, where N is the sub-factor.

iii) The concrete interpretation for the Connes tensor power would be in terms of the fiber bundle
structure H = M4

± × CP2 → H/Ga × Gb, Ga × Gb ⊂ SU(2) × SU(2) ⊂ SL(2, C) × SU(3), which
provides the proper formulation for the hierarchy of macroscopic quantum phases with a quantized
value of Planck constant. Each sheet of the singular covering would represent single factor in Connes
tensor power and single direct SU(2) summand. This picture has an analogy with brane constructions
of M-theory.

4. Could there exist a universal rational function giving rise to the algebraic closure of rationals?

One could wonder whether there exists a universal generalized rational function having all units
of the algebraic closure of rationals as roots so that S∞ would permute these roots. Most naturally it
would be a ratio of infinite-degree polynomials.

With motivations coming from physics I have proposed that zeros of zeta and also the factors
of zeta in product expansion of zeta are algebraic numbers. Complete story might be that non-
trivial zeros of Zeta define the closure of rationals. A good candidate for this function is given by
(ξ(s)/ξ(1 − s)) × (s − 1)/s), where ξ(s) = ξ(1 − s) is the symmetrized variant of ζ function having
same zeros. It has zeros of zeta as its zeros and poles and product expansion in terms of ratios
(s − sn)/(1 − s + sn) converges everywhere. Of course, this might be too simplistic and might give
only the algebraic extension involving the roots of unity given by exp(iπ/n). Also products of these
functions with shifts in real argument might be considered and one could consider some limiting
procedure containing very many factors in the product of shifted ζ functions yielding the universal
rational function giving the closure.

5. What does one mean with S∞?

There is also the question about the meaning of S∞. The hierarchy of infinite primes suggests that
there is entire infinity of infinities in number theoretical sense. Any group can be formally regarded
as a permutation group. A possible interpretation would be in terms of algebraic closure of rationals
and algebraic closures for an infinite hierarchy of polynomials to which infinite primes can be mapped.
The question concerns the interpretation of these higher Galois groups and HFFs. Could one regard
these as local variants of S∞ and does this hierarchy give all algebraic groups, in particular algebraic
subgroups of Lie groups, as Galois groups so that almost all of group theory would reduce to number
theory even at this level?

Be it as it may, the expressive power of HFF:s seem to be absolutely marvellous. Together with the
notion of infinite rational and generalization of number concept they might unify both mathematics
and physics!

About Absolute Galois Group

Absolute Galois Group defined as Galois group of algebraic numbers regarded as extension of ratio-
nals is very difficult concept to define. The goal of classical Langlands program is to understand the
Galois group of algebraic numbers as algebraic extension of rationals - Absolute Galois Group (AGG)
- through its representations. Invertible adeles -ideles - define Gl1 which can be shown to be isomor-
phic with the Galois group of maximal Abelian extension of rationals (MAGG) and the Langlands
conjecture is that the representations for algebraic groups with matrix elements replaced with adeles
provide information about AGG and algebraic geometry.



1.4. The contents of the book 41

I have asked already earlier whether AGG could act is symmetries of quantum TGD. The basis
idea was that AGG could be identified as a permutation group for a braid having infinite number of
strands. The notion of quantum adele leads to the interpretation of the analog of Galois group for
quantum adeles in terms of permutation groups assignable to finite l braids. One can also assign to
infinite primes braid structures and Galois groups have lift to braid groups.

Objects known as dessins d’enfant provide a geometric representation for AGG in terms of action
on algebraic Riemann surfaces allowing interpretation also as algebraic surfaces in finite fields. This
representation would make sense for algebraic partonic 2-surfaces, and could be important in the
intersection of real and p-adic worlds assigned with living matter in TGD inspired quantum biology,
and would allow to regard the quantum states of living matter as representations of AGG. Adeles would
make these representations very concrete by bringing in cognition represented in terms of p-adics and
there is also a generalization to Hilbert adeles.
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Chapter 2

TGD as a Generalized Number
Theory I: p-Adicization Program

2.1 Introduction

The vision about a number theoretic formulation of quantum TGD is based on the gradual accu-
mulation of wisdom coming from different sources. The attempts to find a formulation allowing to
understand real and p-adic physics as aspects of some more general scenario have been an important
stimulus and generated a lot of, not necessarily mutually consistent ideas, some of which might serve
as building blocks of the final formulation. The original chapter representing the number theoretic
vision as a consistent narrative grew so massive that I decided to divide it to three parts.

The first part is devoted to the p-adicization program attempting to construct physics in various
number fields as an algebraic continuation of physics in the field of rationals (or appropriate extension
of rationals). The program involves in essential manner the generalization of number concept obtained
by fusing reals and p-adic number fields to a larger structure by gluing them together along common
rationals. Highly non-trivial number theoretic conjectures are an i outcome of the program.

Second part focuses on the idea that the tangent spaces of space-time and imbedding space can
be regarded as 4- resp. 8-dimensional algebras such that space-time tangent space defines sub-algebra
of imbedding space. The basic candidates for the pair of algebras are hyper-quaternions and hyper-
octonions.

The great idea is that space-time surfaces X4 correspond to hyper-quaternionic or co-hyper-
quaternionic sub-manifolds of HO = M8. The possibility to assign to X4 a surface in M4 × CP2

means a number theoretic analog for spontaneous compactification. Of course, nothing dynamical is
involveda dual relation between totally different descriptions of the physical world are in question.

The third part is devoted to infinite primes. Infinite primes are in one-one correspondence with
the states of super-symmetric arithmetic quantum field theories. The infinite-primes associated with
hyper-quaternionic and hyper-octonionic numbers are the most natural ones physically because of the
underlying Lorentz invariance, and the possibility to interpret them as momenta with mass squared
equal to prime. Most importantly, the polynomials associated with hyper-octonionic infinite primes
have automatically space-time surfaces as representatives so that space-time geometry becomes a
representative for the quantum states.

2.1.1 The painting is the landscape

The work with TGD inspired theory of consciousness has led to a vision about the relationship of
mathematics and physics. Physics is not in this view a model of reality but objective reality itself:
painting is the landscape. One can also equate mathematics and physics in a well defined sense and
the often implicitly assumed Cartesian theory-world division disappears. Physical realities are mathe-
matical ideas represented by configuration space spinor fields (quantum histories) and quantum jumps
between quantum histories give rise to consciousness and to the subjective existence of mathematician.

The concrete realization for the notion algebraic hologram based on the notion of infinite prime is
a second new element. The notion of infinite rationals leads to the generalization of also the notion of
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finite number since infinite-dimensional space of real units obtained from finite rational valued ratios
q of infinite integers divided by q. These units are not units in p-adic sense. The generalization
to the quaternionic and octonionic context means that ordinary space-time points become infinitely
structured and space-time point is able to represent even the quantum physical state of the Universe
in its algebraic structure. Single space-time point becomes the Platonia not visible at the level of real
physics but essential for mathematical cognition.

In this view evolution becomes also evolution of mathematical structures, which become more and
more self-conscious quantum jump by quantum jump. The notion of p-adic evolution is indeed a
basic prediction of quantum TGD but even this vision might be generalized by allowing rational-adic
topologies for which topology is defined by a ring with unit rather than number field.

2.1.2 Real and p-adic regions of the space-time as geometric correlates of
matter and mind

One could end up with p-adic space-time sheets via field equations. The solutions of the equations
determining space-time surfaces are restricted by the requirement that the coordinates are real. When
this is not the case, one might apply instead of a real completion with some p-adic completion. It
however seems that p-adicity is present at deeper level and automatically present via the generalization
of the number concept obtained by fusing reals and p-adics along rationals and common algebraics.

p-Adic non-determinism due to the presence of non-constant functions with vanishing derivative
implies extreme flexibility and therefore suggests the identification of the p-adic regions as seats of
cognitive representations. Unlike the completion of reals to complex numbers, the completions of p-
adic numbers preserve the information about the algebraic extension of rationals and algebraic coding
of quantum numbers must be associated with ’mind like’ regions of space-time. p-Adics and reals are
in the same relationship as map and territory.

The implications are far-reaching and consistent with TGD inspired theory of consciousness: p-
adic regions are present even at elementary particle level and provide some kind of model of ’self’
and external world. In fact, p-adic physics must model the p-adic cognitive regions representing real
elementary particle regions rather than elementary particles themselves!

2.1.3 The generalization of the notion of number

The unification of real physics of material work and p-adic physics of cognition and intentionality
leads to the generalization of the notion of number field. Reals and various p-adic number fields
are glued along their common rationals (and common algebraic numbers too) to form a fractal book
like structure. Allowing all possible finite-dimensional extensions of p-adic numbers brings additional
pages to this ”Big Book”.

At space-time level the book like structure corresponds to the decomposition of space-time surface
to real and p-adic space-time sheets. This has deep implications for the view about cognition. For
instance, two points infinitesimally near p-adically are infinitely distant in real sense so that cognition
becomes a cosmic phenomenon.

2.1.4 Zero energy ontology, cognition, and intentionality

One could argue that conservation laws forbid p-adic-real phase transitions in practice so that cog-
nitions (intentions) realized as real-to-padic (p-adic-to-real) transitions would not be possible. The
situation changes if one accepts zero energy ontology [K20, K19] .

Zero energy ontology classically

In TGD inspired cosmology [K71] the imbeddings of Robertson-Walker cosmologies are vacuum ex-
tremals. Same applies to the imbeddings of Reissner-Nordström solution [K80] and in practice to all
solutions of Einstein’s equations imbeddable as extremals of Kähler action. Since four-momentum
currents define a collection of vector fields rather than a tensor in TGD, both positive and negative
signs for energy corresponding to two possible assignments of the arrow of the geometric time to a
given space-time surface are possible. This leads to the view that all physical states have vanishing
net energy classically and that physically acceptable universes are creatable from vacuum.
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The result is highly desirable since one can avoid unpleasant questions such as ”What are the net
values of conserved quantities like rest mass, baryon number, lepton number, and electric charge for
the entire universe?”, ”What were the initial conditions in the big bang?”, ”If only single solution of
field equations is selected, isn’t the notion of physical theory meaningless since in principle it is not
possible to compare solutions of the theory?”. This picture fits also nicely with the view that entire
universe understood as quantum counterpart 4-D space-time is recreated in each quantum jump and
allows to understand evolution as a process of continual re-creation.

Zero energy ontology at quantum level

Also the construction of S-matrix [K19] leads to the conclusion that all physical states possess van-
ishing conserved quantum numbers. Furthermore, the entanglement coefficients between positive and
negative energy components of the state have interpretation as M -matrix identifiable as a ”complex
square root” of density matrix expressible as a product of positive diagonal square root of the density
matrix and of a unitary S-matrix. S-matrix thus becomes a property of the zero energy state and
physical states code by their structure what is usually identified as quantum dynamics.

The collection of M -matrices defines an orthonormal state basis for zero energy states and together
they define unitary U -matrix charactering transition amplitudes between zero energy states. This
matrix would not be however the counterpart of the usual S-matrix. Rather the unitary matrix
phase of a given M -matrix would define the S-matrix measured in laboratory. U -matrix would also
characterize the transitions between different number fields possible in the intersection of rel and
p-adic worlds and having interpretation in terms of intention and cognition.

At space-time level this would mean that positive energy component and negative energy compo-
nent are at a temporal distance characterized by the time scale of the causal diamond (CD) and the
rational (perhaps integer) characterizing the value of Planck constant for the state in question. The
scale in question would also characterize the geometric duration of quantum jump and the size scale
of space-time region contributing to the contents of conscious experience. The interpretation in terms
of a mini bang followed by a mini crunch suggests itself also. CDs are indeed important also in TGD
inspired cosmology [K71] .

Hyper-finite factors of type II1 and new view about S-matrix

The representation of S-matrix as unitary entanglement coefficients would not make sense in ordinary
quantum theory but in TGD the von Neumann algebra in question is not a type I factor as for quan-
tum mechanics or a type III factor as for quantum field theories, but what is called hyper-finite factor
of type II1 [K87] . This algebra is an infinite-dimensional algebra with the almost defining, and at
the first look very strange, property that the infinite-dimensional unit matrix has unit trace. The in-
finite dimensional Clifford algebra spanned by the configuration space gamma matrices (configuration
space understood as the space of 3-surfaces, the ”world of classical worlds”, WCW briefly) is indeed
very naturally algebra of this kind since infinite-dimensional Clifford algebras provide a canonical
representations for hyper-finite factors of type II1.

The new view about quantum measurement theory

This mathematical framework leads to a new kind of quantum measurement theory. The basic as-
sumption is that only a finite number of degrees of freedom can be quantum measured in a given
measurement and the rest remain untouched. What is known as Jones inclusions N ⊂ M of von
Neumann algebras allow to realize mathematically this idea [K87] . N characterizes measurement
resolution and quantum measurement reduces the entanglement in the non-commutative quantum
space M/N . The outcome of the quantum measurement is still represented by a unitary S-matrix
but in the space characterized by N . It is not possible to end up with a pure state with a finite
sequence of quantum measurements.

The obvious objection is that the replacement of a universal S-matrix coding entire physics with a
state dependent unitary entanglement matrix is too heavy a price to be paid for the resolution of the
above mentioned paradoxes. Situation could be saved if the S-matrices have fractal structure. The
quantum criticality of TGD Universe indeed implies fractality. The possibility of an infinite sequence
of Jones inclusions for hyperfinite type II1 factors isomorphic as von Neumann algebras expresses
this fractal character algebraically. Thus one can hope that the S-matrix appearing as entanglement
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coefficients is more or less universal in the same manner as Mandelbrot fractal looks more or less the
same in all length scales and for all resolutions. Whether this kind of universality must be posed as
an additional condition on entanglement coefficients or is an automatic consequence of unitarity in
type II1 sense is an open question.

The S-matrix for p-adic-real transitions makes sense

In zero energy ontology conservation laws do not forbid p-adic-real transitions and one can develop a
relatively concrete vision about what happens in these kind of transitions. The starting point is the
generalization of the number concept obtained by gluing p-adic number fields and real numbers along
common rationals (expressing it very roughly). At the level of the imbedding space this means that
p-adic and real space-time sheets intersect only along common rational points of the imbedding space
and transcendental p-adic space-time points are infinite as real numbers so that they can be said to
be infinite distant points so that intentionality and cognition become cosmic phenomena.

In this framework the long range correlations characterizing p-adic fractality can be interpreted
as being due to a large number of common rational points of imbedding space for real space-time
sheet and p-adic space-time sheet from which it resulted in the realization of intention in quantum
jump. Thus real physics would carry direct signatures about the presence of intentionality. Intentional
behavior is indeed characterized by short range randomness and long range correlations.

One can even develop a general vision about how to construct the S-matrix elements characterizing
the process [K19] . The basic guideline is the vision that real and various p-adic physics as well as
their hybrids are continuable from the rational physics. This means that these S-matrix elements
must be characterizable using data at rational points of the imbedding space shared by p-adic and
real space-time sheets so that more or less same formulas describe all these S-matrix elements. Note
that also p1 → p2 p-adic transitions are possible.

2.1.5 What number theoretical universality might mean?

Number theoretic universality has been one of the basic guide lines in the construction of quantum
TGD. There are two forms of the principle.

1. The strong form of number theoretical universality states that physics for any system should
effectively reduce to a physics in algebraic extension of rational numbers at the level of M -matrix
so that an interpretation in both real and p-adic sense (allowing a suitable algebraic extension
of p-adics) is possible. One can however worry whether this principle only means that physics is
algebraic so that there would be no need to talk about real and p-adic physics at the level of M -
matrix elements. It is not possible to get rid of real and p-adic numbers at the level of classical
physics since calculus is a prerequisite for the basic variational principles used to formulate the
theory. For this option the possibility of completion is what poses conditions on M -matrix.

2. The weak form of principle requires only that both real and p-adic variants of physics make
sense and that the intersection of these physics consist of physics associated with various alge-
braic extensions of rational numbers. In this rational physics would be like rational numbers
allowing infinite number of algebraic extensions and real numbers and p-adic number fields as
its completions. Real and p-adic physics would be completions of rational physics. In this
framework criticality with respect to phase transitions changing number field becomes a viable
concept. This form of principle allows also purely p-adic phenomena such as p-adic pseudo non-
determinism assigned to imagination and cognition. Genuinely p-adic physics does not however
allow definition of notions like conserved quantities since the notion of definite integral is lacking
and only the purely local form of real physics allows p-adic counterpart.

Experience has taught that it is better to avoid too strong statements and perhaps the weak
form of the principle is enough. It is however clear that number theoretical criticality could provide
important insights to quantum TGd. p-Adic thermodynamics [K52] is an excellent example of this.
In consciousness theory the transitions transforming intentions to actions and actions to cognitions
would be key applications. Needless to say, zero energy ontology is absolutely essential: otherwise
this kind of transitions would not make sense.
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2.1.6 p-Adicization by algebraic continuation

The basic challenges of the p-adicization program are following.

1. The first problem -the conceptual one- is the identification of preferred coordinates in which
functions are algebraic and for which algebraic values of coordinates are in preferred position.
This problem is encountered both at the level of space-time, imbedding space, and configuration
space. Here the group theoretical considerations play decisive role and the selection of preferred
coordinates relates closely to the selection of quantization axes. This selection has direct physical
correlates at the level of imbedding space and the hierarchy of Planck constants has interpretation
as a correlate for the selection of quantization axes [K26] .

Algebraization does not necessarily mean discretization at space-time level: for instance, the
coordinates characterizing partonic 2-surface can be algebraic so that algebraic point of the
configuration space results and surface is not discretized. If this kind of function spaces are
finite-dimensional, it is possible to fix X2 completely data for a finite number of points only.

2. Local physics generalizes as such to p-adic context (field equations, etc...). The basic stumbling
block of this program is integration already at space-time (Kähler action etc..). The problem
becomes really horrible looking at configuration space level (functional integral). Algebraic con-
tinuation could allow to circumvent this difficulty. Needless to say, the requirement that the
continuation exists must pose immensely tight constraints on the physics. Also the existence
of the Kähler geometry does this and the solution to the constraint is that WCW is a union
of symmetric spaces. In the case of symmetric spaces Fourier analysis generalizes to harmonics
analysis and one can reduces integration to summation for functions allowing Fourier decompo-
sition. In p-adic context the existence of plane waves requires an algebraic extension allowing
roots of unity characterizing the measurement accuracy of angle like variables. This leads in the
case of symmetric spaces to a general p-adicization recipe. One starts from a discrete variantnof
the symmetric space defined for which points correspond to roots of unity and replaces each
discrete point with is p-adic completion representing the p-adic variant of the symmetric space.
There is infinite hierarchy of p-adicizations corresponding to measurement resolutions and to the
choice of preferred coordinates and the interpretation is in terms of cognitive representations and
refined view about General Coordinate Invariance taking into account the fact that cognition is
also part of the quantum state.

One general idea which results as an outcome of the generalized notion of number is the idea of a
universal function continuable from a function mapping rationals to rationals or to a finite extension of
rationals to a function in any number field. This algebraic continuation is analogous to the analytical
continuation of a real analytic function to the complex plane.

1. Rational functions with rational coefficients are obviously functions satisfying this constraint. Al-
gebraic functions with rational coefficients satisfy this requirement if appropriate finite-dimensional
algebraic extensions of p-adic numbers are allowed. Exponent function is also such a function.

2. For instance, residue calculus essential in the construction of N-point functions of conformal
field theory might be generalized so that the value of an integral along the real axis could be
calculated by continuing it instead of the complex plane to any number field via its values in
the subset of rational numbers forming the rim of the book like structure having number fields
as its pages. If the poles of the continued function in the finitely extended number field allow
interpretation as real numbers it might be possible to generalize the residue formula. One can
also imagine of extending residue calculus to any algebraic extension. An interesting situation
arises when the poles correspond to extended p-adic rationals common to different pages of the
”Big Book”. Could this mean that the integral could be calculated at any page having the pole
common. In particular, could a p-adic residue integral be calculated in the ordinary complex
plane by utilizing the fact that in this case numerical approach makes sense.

3. Algebraic continuation is the basic tool of p-adicization program. Entire physics of the TGD
Universe should be algebraically continuable to various number fields. Real number based physics
would define the physics of matter and p-adic physics would describe correlates of cognition and
intentionality.
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4. For instance, the idea that number theoretically critical partonic 2-surfaces are expressible in
terms of rational functions with rational or algebraic coefficients so that also p-adic variants of
these surfaces make sense, is very attractive.

5. Finite sums and products respect algebraic number property and the condition of finiteness is
coded naturally by the notion of finite measurement resolution in terms of the notion of (number
theoretic) braid. This simplifies dramatically the algebraic continuation since configuration space
reduces to a finite-dimensional space and the space of configuration space spinor fields reduces
to finite-dimensional function space.

The real configuration space can well contain sectors for which p-adicization does not make sense.
For instance, if the exponent of Kähler function and Kähler are not expressible in terms of alge-
braic functions with rational or at most algebraic functions or more general functions making sense
p-adically, the continuation is not possible. p-Adic non-determinism in p-adic sectors makes also im-
possible the continuation to real sector. All this is consistent with vision about rational and algebraic
physics as as analog of rational and algebraic numbers allowing completion to various continuous
number fields.

Due to the fact that real and p-adic topologies are fundamentally different, ultraviolet and infrared
cutoffs in the set of rationals are unavoidable notions and correspond to a hierarchy of different physical
phases on one hand and different levels of cognition on the other hand. For instance, most points p-
adic space-time sheets reside at infinity in real sense and p-adically infinitesimal is infinite in real sense.
Two types of cutoffs are predictedp-adic length scale cutoff and a cutoff due to phase resolution related
to the hierarchy of Planck constants. Zero energy ontology provides natural realization for the p-adic
length scale cutoff. The latter cutoff seems to correspond naturally to the hierarchy of algebraic
extensions of p-adic numbers and quantum phases exp(i2π/n), n ≥ 3, coming as roots of unity
and defining extensions of rationals and p-adics allowing to define p-adically sensible trigonometric
functions. These phases relate closely to the hierarchy of quantum groups, braid groups, and II1

factors of von Neumann algebra.

2.1.7 For the reader

Most of this chapter has been written for about decade before the above discussion of number theoret-
ical universality and criticality. Therefore the chapter in its original form reflects the first violent burst
of ideas of an innocent novice rather than the recent more balanced vision about the role of number
theory in quantum TGD. For instance, in the original view about number theoretic universality is the
strong one and is un-necessarily restricting. Although I have done my best to update the sections, the
details of the representation may still reflect in many aspects quantum TGD as I understood it for a
decade ago and the recent vision differs dramatically from this view.

The plan of the chapter is following. In the first one half I describe general ideas as they emerged
years ago in a rather free flowing ”Alice in the Wonderland” mood. I also describe phenomenological
applications, such as conjectures about number theoretic anatomy of coupling constants which are
now at rather firm basis. The chapter titled ”The recent view about Quantum TGD” represents kind
of turning point and introduces quantum TGD in its recent formulation in the real context. The
remaining chapters are devoted to the challenge of understanding p-adic counterpart of this general
theory.

2.2 How p-adic numbers emerge from algebraic physics?

The new algebraic vision leads to several generalization of the p-adic philosophy. Besides p-adic topolo-
gies more general rational-adic topologies are possible. Topology is purely dynamically determined
and -adic topologies are quite ’real’. There is a physics oriented review article by Brekke and Fre-
und [A129] . The books of Gouvêa [A164] and Khrennikov [A186] give a more mathematics-oriented
views about p-adics.

This section is written before the discovery that it is possible to generalize the notion of the number
field by the fusion reals and various p-adic numbers fields and their extensions together along common
rationals (and also common algebraic numbers) to form a book like structure. The interpretation of
p-adic physics as physics of intention and cognition removes interpretational problems. This vision
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provides immediately an answer to many questions raised in the text. In particular, it leads naturally
to a complete algebraic democracy. The introduction of infinite primes, which are discussed in next
chapter, extends the algebraic democracy even further and gives hopes of describing mathematically
also mathematical cognition.

2.2.1 Basic ideas and questions

It is good to list the basic ideas and pose the basic question before more detailed considerations.

Topology is dynamical

The dynamical emergence of p-adicity is strongly supported both by the applications of p-adic and
algebraic physics. The solutions of polynomial equations involving more than one variable involve
roots of polynomials. Only roots in the real algebraic extensions of rationals are allowed since the
components of quaternions must be real numbers. When the root is complex in real topology, one can
however introduce p-adic topology such that the root exists as a number in a real extension of p-adics.
In p-adic context only a finite-dimensional algebraic extension of rational numbers is needed. The
solutions of the derivative conditions guaranteing Lagrange manifold property involve p-adic pseudo
constants so that the p-adic solutions are non-deterministic. The interpretation is that real roots
of polynomials correspond to geometric correlates of matter whereas p-adic regions are geometric
correlates of mind in consistency with the p-adic non-determinism.

Does this picture imply the physically attractive working hypothesis stating that the decomposition
of infinite prime into primes of lower level corresponds to a decomposition of the space-time surface
to various p-adic regions appearing in the definition of the infinite prime? Generating infinite primes
correspond to quaternionic rationals and these rationals contain powers of quaternionic primes defining
the infinite prime. The convergence of the power series solution of the polynomial equations defining
space-time surface might depend crucially on the norms of these rationals in the p-adic topology used.
This could actually force in a given space-time region p-adic topology associated with some prime
involved in the expansion. This is in complete accordance with the idea that p-adic topologies are
topologies of sensory experience and real topology is the topology of reality.

Various generalizations of p-adic topologies

p-Adicized quaternions is not a number field anymore. One could allow also rational-adic extensions
[A186] for which pinary expansions are replaced by expansions in powers of rational. These extensions
give rise to rings with unit but not to number fields. In this approach p-adic, or more generally
rational-adic, topology determined by the algebraic number field on a given space-time sheet would
be absolutely ’real’ rather than mere effective topology. Space-time surface decomposes into regions
which look like fractal dust when seen by an observer characterized by different number field unless
the observer uses some resolution.

This approach suggests even further generalizations. The original observation stimulated by the
work with Riemann hypothesis was that the primes associated with the algebraic extensions of ratio-
nals, in particular Gaussian primes and Eisenstein primes, have very attractive physical interpretation.
Quaternionic primes and rationals might in turn define what might be regarded as noncommutative
generalization of the p-adic and rational-adic topology.

...-Adic topology measures the complexity of the quantum state

The higher the degree of the polynomial, and thus the number of particles in the physical state and
its complexity, the higher the algebraic dimension of the rational quaternions. A complete algebraic
and quaternion and octonion-dimensional democracy would prevail. Accordingly, space-time topology
would be completely dynamical in the sense that space-time contains both rational-adic, p-adic regions,
and real regions. Physical evolution could be seen as evolution of mathematical structures in this
framework: p-adic topologies would be obviously winners over rational-adic topologies and p-adic
length scale hypothesis would select the surviving p-adic topologies. For instance, Gaussian-adic and
Eisenstein-adic topologies would in turn be higher level survivors possibly associated with biological
systems.



52 Chapter 2. TGD as a Generalized Number Theory I: p-Adicization Program

Dimensional democracy would be realized in the sense that one can regard the space-time sheets
defining n-sheeted topological condensate also as a 4n-dimensional surface in Hn. This hypothesis
fixes the interactions associated with the topological condensation, and the hierarchical structure of
the topological condensate conforms with the hierarchical ordering of the quaternionic arguments of
the polynomials to which infinite primes are mapped. Polynomials (infinite integers) at a given level
of hierarchy in turn can be interpreted in terms of formation of bound states by the formation of join
along boundaries bonds.

Is adelic principle consistent with the dynamical topology?

There is competing, and as it seems, almost diametrically opposite view. Just like adelic formula allows
to express the norm of a rational number as product of its p-adic norms, various algebraic number
fields and even more general structures such as quaternions allowing the notion of prime, provide a
collection of incomplete but hopefully calculable views about physics. The net description gives rise
to quantum TGD formulated using real numbers. These descriptions would be like summary over all
experiences about world of conscious experiencers characterized by p-adic completions of various four-
dimensional algebraic number rationals. What is important is that the descriptions using algebraic
number fields or their generalization might be calculable. This view need not be conflict with the
dynamical view and one could indeed claim that the p-adic physics associated with various algebraic
extensions of rational quaternions provide a model about physics constructed by various conscious
observers. For a given quantum state there would be however minimal algebraic extension containing
all points of the space-time surface in it.

2.2.2 Are more general adics indeed needed?

The considerations related to Riemann hypothesis inspired the notion of G- and E-adic numbers in
which rational prime p is replaced with Gaussian or Eisenstein prime. The notion of Eisenstein prime
is so attractive because it makes possible to circumvent the complexification of p-adic numbers for
p mod 4 = 1 for which

√
−1 exists as a p-adic number. What forces to take the notion of G-adics

very seriously is that Gaussian Mersennes correspond to the p-adic length scale of atomic nucleus and
to important biological length scales in the range between 10 nanometers and few micrometers. Also
the key role of Golden Mean τ in biology and self-organizing systems could be understood if Q(τ, i)
defines D-adic topology. Thus there is great temptation to believe that the notion of p-adic number
generalizes in these sense that any irreducible associated with real or complex algebraic extension
defines generalization of p-adic numbers and that these extensions appear in the algebraic extensions
of quaternions.

Thus one must consider seriously also generalized p-adic numbers, D-adics as they were called
in [K68] . D-adics would correspond to powers series of a prime belonging to a complex algebraic
extension of rationals. Quaternions decompose naturally in longitudinal and transversal part and
transversal part can be interpreted as a complex algebraic extension of rationals in the case of both
M4 and CP2. Thus some irreducibles of this complex extension could define a generalization of p-adic
numbers used to define the algebraic extension of rational quaternions reduced to a pair of complex
coordinates.

Perhaps one could go even further: quaternion-adics defined as power series of quaternionic primes
of norm p suggest themselves. What would be nice that this prime could perhaps be interpreted as a
representation for the momentum of corresponding space-time sheets. The components of the prime
belong to algebraic extension of rationals and would even code information about external world if
the proposed interpretations are correct. One can also ask whether quaternionic primes could define
what might be called quaternion-adic algebras and whether these algebras might be a basic element
of algebraic physics.

This would mean that space-time topology would code information about the quantum numbers of
a physical state. Rings with unit rather than number fields are in question since the p-adic counterparts
of quaternionic integers in general fail to have inverse. It must be emphasized that the field property
might not be absolutely essential. For instance ’rational-adics’ [A186] , for which prime p is replaced
with a rational q such that norm comes as a power of q, exists as rings with unit and define topology.
Rational-adic topologies could have also quaternionic counterparts.
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The idea of q-rational topologies is supported by the physical picture about the correspondence
between Fock states and space-time sheets. Single 3-surface can in principle carry arbitrarily high
fermion and boson numbers but is unstable to a topological decay to 3-surfaces carrying single fermion
and boson states. The translation of this statement to ...-adic context would be that the Fock states
associated with infinite primes which correspond to rational-adic quaternionic topologies are unstable
against decay to states described by polynomial primes in which each factor corresponds to prime
(bosons) or its inverse (fermions) in algebraic extension of quaternions. This tendency to evolve to
prime-adic topologies could be seen also as a manifestation of p-adic evolution and self-organization.
Rational-adic topologies would be simply losers in the fight for survival against topologies defining
number fields. Since also quaternion-adic topologies fail to define number fields they are expected to
be losers in the fight for survival. Winners would be ...-adic topologies defining number fields. At the
level of Fock states this would mean the instability of states which contain more than one prime: that
this is indeed the case, is one of the basic assumptions of quantum TGD forced by the experimental
fact that elementary particles correspond to simplest Fock states associated with configuration space
spinors.

2.2.3 Why completion to p-adics necessarily occurs?

There is rather convincing argument in favor of ...-adic physics. Typically one must find zeros of
rational functions of several variables. Simplifying somewhat, at the first level one must find zeros
of polynomials P (x1, x2). Newton’s theorem states that the monic polynomial Pn(y, x) = yn +
an−1x

n−1 + .. allows a factorization in an algebraically closed number field

P (y, xm) =
∏
k

(y − fk(x)) . (2.2.1)

Here fk are polynomials and m is integer which divides n and equals to n for an irreducible polynomial
P . Since the multiplication of x by m:th root of unity (ζm) leaves left hand side invariant it must
permute the factors on right hand side. Thus one can express the formula also as

P (y, x) =
∏

k=1,..m

(y − fk(ζkmx
1/m)) . (2.2.2)

When number field is not algebraically closed this means that one must introduce an algebraic exten-
sion by m:th roots of all rationals.

The problem is that these roots are not real in general and one cannot solve the problem by using
a completion to complex numbers since only real extensions for the components of quaternion are
possible. Only in the region where some of the roots of the polynomial are real, this is possible.
The only manner to achieve consistency with the reality requirement is to allow p-adic topology or
possibly rational-adic topology: in this case also the algebraic extension allowing m:th roots is always
finite-dimensional. For instance, for m = 2 p-adic extension of rationals would be 4-dimensional for
p > 2. The situation is similar for rational-adic topology.

If this argument is correct, one can conclude that real topology is possible only in the regions
where real roots of the polynomial equation are possible: in the regions where all roots are complex,
p-adicization gives rise to roots in the algebraic extension of p-adics and p-adic topology emerges
naturally. This picture provides a precise view about how the space-time surface defined by the
polynomial of quaternions decomposes to real and p-adic regions. Also a connection with catastrophe
theory [A227] emerges: the boundaries of the catastrophe regions where some roots coincide, serve
also as boundaries between ...-adic and real regions.

2.2.4 Decomposition of space-time to ...-adic regions

Number-theoretic constraints are important in determining which ...-adic topologies are possible in a
given space-time region. There is no hope of building any unique vision unless one poses some general
principles. Complete algebraic and topological democracy and the generalization of the notion of
p-adic evolution to what might be called rational-adic evolution allow to build plausible and suffi-
ciently general working hypothesis not requiring too much ad hoc assumptions and allowing at least
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mathematical testing. A further natural principle states that the topology for a given region is such
that complex extension of rationals is not needed and that the series defining the normal quaternionic
coordinate as function of the space-time quaternionic coordinate converges and gives rise to a smooth
surface.

The power series defining solutions of polynomial equations must converge in some topol-
ogy

The roots of polynomials of several variables can be expressed as Taylor series. When the root is
complex, real topology is not possible and some p-adic topology must be considered. This suggests
a very attractive dynamical mechanism of p-adicization. In the regions where the root belongs to a
complex extension of rationals in the real topology, one could find those values of p for which the series
converges p-adically. The rational numbers characterizing the polynomials associated with the gener-
ating infinite primes certainly determine the convergence and the primes for which p-adic convergence
occurs are certainly functions of these rationals. Hence it could occur that the p-adic topologies for
which convergence occurs correspond to the primes appearing as factors in these rationals.

In this approach topology is a result of dynamics. Note that also the notion of symmetry depends
on the region of space-time. Contrary to the basic working hypothesis, ...-adic topology of a given
space-time sheet is its ’real’ topology rather than being only an effective topology and the topology of
space-time is completely dynamical being dictated by algebraic physics and smoothness requirement.

It is also possible that convergence does not occur with respect to any ...-adic topology and in this
case the topology would be discrete. This situation would correspond to primordial chaos but still
the algebraic formulation and Fock space description of the theory would make sense.

Space-time surfaces must be smooth in the completion

The completion must give rise to a smooth or at least continuous ....-adic or real surface defining a
critical extremal of Kähler action in the sense of having an infinite number of deformations for which
the second variation of Kähler action vanishes. This requirement might allow only finite number
of...-adic topologies for a given space-time region. If the completion involves functions expandable
in powers of a (possibly quaternionic) rational q = m/n, then the prime factors of m define natural
p-adic number fields for which completion is possible. Also q itself could define rational-adic topology.
Since the space-time surface decomposes into regions labeled by rationals in an algebraic extension
of rationals q1, there is interesting possibility that q1 as such defines the rational-adic topology so
that there would be no need to understand why the space-time region labeled by q decomposes into
space-time sheets labeled by the prime factors of q.

Whatever the details of the coding are, the coding would mean that the quantum numbers asso-
ciated with the space-time sheet would determine the generalized ...-adic topology associated with it.
The information about quantum systems would be mapped to space-time physics and the coding of
quantum numbers to ...-adic topology would solve at a general level the problem how the information
about quantum state is coded into the structure of space-time.

2.2.5 Universe as an algebraic hologram?

Quaternionic primes have a natural indentification as four-momenta. If the Minkowski norm for the
quaternion is defined using the algebraic norm of the real extension of rationals involved with the
state, mass squared is integer-valued as in super-conformal theories. The use of the algebraic norm
means a loss of information carried by the units of the real algebraic extension K(θ) (see the appendix
of this chapter). Hence one can say that besides ordinary elementary particle quantum numbers there
are algebraic quantum numbers which presumably carry algebraic information. Very effective coding
of information about quantum numbers becomes possible and these quantum numbers commute with
ordinary quantum numbers. This information does not become manifest for matter-like regions where
a real completion of rationals are used. In p-adic regions representing geometric correlates of mind the
situation is different since p-adic number field in question is a finite algebraic extension of rationals.

Almost every calculation is approximation and completion to reals or p-adics makes possible to
measure how good the approximation is. Real numbers are extremely practical in this respect but the
failure of the real number based physics is that it reduces number to a mere quantity having a definite
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size but no number-theoretical properties. This is practical from the point of view of numerics but
means huge loss of capacity for information storage and representation. In algebraic number theory
number contains representation for its construction recipe. It seems that the correct manner to see
numbers is as elements of the state space provided by the algebraic extension. p-Adic physics using p-
adic versions of the algebraic extensions does not lead to a loss of this information unlike real physics.
Thus the basic topology of the space-time sheet could code the quantum numbers associated with it.

Since the algebraic extension of rationals, and hence also of p-adics, depends on the number of
particles present in the Fock state coded by the infinite prime, the only possible interpretation is that
the additional quantum numbers code information about the many-particle state. Hence the idea
about ’cognitive representation’ of the fractal quantum numbers of particles of the external world
suggests itself naturally. In particular, the degree of the minimal polynomial for the real extension
Q(θ) is n, where n is the number of particles in the Fock state in the casethe resulting state represents
infinite prime. This means that there are n− 1 quantum numbers represented by fractal scalings (see
Appendix for Dirichlet’s unit theorem). The interpretation as a representation for the fractal quantum
numbers representing information about states of other particles in the system suggests itself. One
cannot exclude the possibility that the fractal quantum numbers represent momenta or some other
quantum numbers of other particles.

If this rather un-orthodox interpretation is correct, then cognitive representations are present
already at the elementary particle level in p-adic regions associated with particles and are realized
as algebraic holograms. Universe as a Computer consisting of sub-computers mimicking each other
would be realized already at the elementary particle level. This view is consistent with the TGD
inspired theory of consciousness. Algebraic physics would also make possible kind of a Gödelian loop
by providing a representation for how the information about the structure of a physical system is
coded into its properties.

This view has also immediate implications for complexity theory. The dimension of the minimal
algebraic extension containing the algebraic number is a unique measure for its complexity. More
concretely: the degree of the minimal polynomial measures the complexity. Everyone can solve second
order polynomial but very few of us remembers formulas for the roots of fourth order polynomials.
For higher orders quadratures do not even exist. Of course, numbers represent typically coordinates
and this is consistent with the general coordinate invariance only if some preferred coordinates exist.
In TGD based physics these coordinates exist: imbedding space allows (apart from isometries) unique
coordinates in which the components of the metric tensor are rational functions of the coordinates.

Similar realization is fundamental in the second almost-proof of Riemann hypothesis described
in [K68] . In this case ζ is interpreted as an element in an infinite-dimensional algebraic extension
of rationals allowing all roots of rationals. The vanishing of ζ requires that all components of this
infinite-dimensional vector contain a common rational factor which vanishes. This is possible only if
an infinite number of partition functions in the product representation of the modulus squared of ζ
are rational and their product vanishes. This implies Riemann hypothesis. The assumption that only
square roots of rationals are needed is very probably wrong and must be replaced with the assumption
that piy is algebraic numbers when z = 1/2 + iy is zero of ζ for any prime p. It is quite possible that
the almost-proof survives this generalization.

The notion of Platonia discussed already in the introduction adds cognition to this picture and
allows to understand where all those mathematical structures continually invented by mathematicians
but not realized physically in the conventional sense of the word reside. This notion takes also the
notion of algebraic hologram to its extreme by making space-time points infinitely structured.

2.2.6 How to assign a p-adic prime to a given real space-time sheet?

p-Adic mass calculations force to assign p-adic prime also to the real space-time sheets and the
longstanding problem is how this p-adic prime, or possibly many of them, are determined. Number
theoretic view about information concept provides a possible solution of this long-standing problem.

Number theoretic information concept

The notion of information in TGD framework differs in some respects from the standard notion.

1. The definition of the entropy in p-adic context is based on the notion p-adic logarithm depending
on the p-adic norm of the argument only (Logp(x) = Logp(|x|p) = n) [K47] . For rational- and
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even algebraic number valued probabilities this entropy can be regarded as a real number. The
entanglement entropy defined in this manner can be negative so that the entanglement can carry
genuine positive information. Rationally/algebraically entangled p-adic system has a positive
information content only if the number of the entangled state pairs is proportional to a positive
power of the p-adic prime p.

2. This kind of definition of entropy works also in the real-rational/algebraic case and makes always
sense for finite ensembles. This would have deep implications. For ordinary definition of the
entropy NMP [K47] states that entanglement is minimized in the state preparation process.
For the number theoretic definition of entropy entanglement could be generated during state
preparation for both p-adic and real sub-systems, and NMP forces the emergence of p-adicity
(say the number of entangled state is power of prime). The fragility of quantum coherence is
the basic problem of quantum computations and the good news would be that Nature itself
(according to TGD) tends to stabilize quantum coherence both in the real and p-adic contexts.

3. Quantum-classical correspondence suggests that the notion of information is well defined also at
the space-time level. In the presence of the classical non-determinism of Kähler action and p-adic
non-determinism one can indeed define ensembles, and therefore also probability distributions
and entropies. For a given space-time sheet the natural ensemble consists of the deterministic
pieces of the space-time sheet regarded as different states of the same system.

Are living systems in the intersection of real and p-adic world?

NMP combined with number theoretic entropies leads to an important exception to the rule that the
generation of bound state entanglement between system and its environment during U process leads
to a loss of consciousness. When entanglement probabilities are rational (or even algebraic) numbers,
the entanglement entropy defined as a number theoretic variant of Shannon entropy can be negative
so that entanglement carries information. NMP favors the generation of algebraic entanglement.
The attractive interpretation is that the generation of algebraic entanglement leads to an expansion
of consciousness (”fusion into the ocean of consciousness”) instead of its loss. Rational and even
algebraic entanglement coefficients make sense in the intersection of real and p-adic words, which
suggests that life and conscious intelligence reside in the intersection of the real and p-adic worlds.
Life would represent number theoretically criticality so that the quantum criticality of TGD Universe
would allow to understand also life.

1. To be in the intersection of real and p-adic worlds means that partonic 2-surfaces and their
4-D tangent planes representing the information about space-time sheet (holography) have a
mathematical representation allowing an interpretation either as a real or p-adic surface (just
like rationals can be regarded as being common to reals and p-adic numbers). Number theoretical
criticality makes also possible the transformation of intentions to actions as transformations of a
p-adic 2-surfaces to a real 2-surfaces via leakage through this common intersection. This process
makes sense only in zero energy ontology. This would generalize the observation that rationals
and algebraics in a well-defined sense represent islands of order in the seas of chaos defined by
real and p-adic continua.

2. A more concrete interpretation for the intersection of real and p-adic worlds would be as the
intersection of real and p-adic variants of space-time surface allowing intepretation in both
number fields. This intersection is discrete set containing besides rational points also algebraic
points common to reals and algebraic extension of p-adics involved.

3. These two interpretations for the intersection of real and p-adic worlds need not be independent.
The absence of definite integral in p-adic number fields suggests that the transition amplitudes
between p-adic and real sectors must be expressible using only the data associated with rational
and common algebraic points (in the algebraic extension of p-adic numbers used) of imbedding
space. This intersection is discrete and could even consist of a finite number of points. For
instance, Fermat’s last theorem tells that the surface xn + yn = zn contains only origin as
rational point for n = 3, 4, ... whereas for n = 2 it contains all rational multiples of integer
valued points defining Pythagorean triangles: this is due to the homogenity of the polynomial in
question. Therefore p-adic-to real transition amplitudes would have a purely number theoretical
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interpretation. One could speak of number theoretical field theory as an analogy for topological
field theory.

Does space-time sheet represent integer and its prime factorization?

A long-standing problem of quantum TGD is how to associate to a given real space-time sheet a (not
necessarily) unique p-adic prime as required by the p-adic length scale hypothesis. One could achieve
this by requiring that for this prime the negentropy associated with the ensemble is maximal. The
simplest hypothesis is that a real space-time sheet consisting of N deterministic pieces corresponds to
p-adic prime defining the largest factor of N . One could also consider a more general possibility. If
N contains pn as a factor, then the real fractality above n-ary p-adic length scale Lp(n) = p(n−1)/2Lp
corresponds to smoothness in the p-adic topology. This option is more attractive since it predicts that
the fundamental p-adic length scale Lp for a given p can be effectively replaced by any integer multiple
NLp, such that N is not divisible by p. There is indeed a considerable evidence for small p p-adicity
in long length scales. For instance, genetic code and the appearance of binary pairs like cell membrane
consisting of liquid layers suggests 2-adicity in nano length scales. This view means that the fractal
structure of a given real space-time sheet represents both an integer N and its decomposition to prime
factors physically. This obviously conforms with the physics as a generalized number theory vision.

Quantum-classical correspondence suggests that quantum computation processes might have coun-
terparts at the level of space-time. An especially interesting process of this kind is the factorization
of integers to prime factors. The classical cryptography relies on the fact that the factorization of
large integers to prime factors is a very slow process using classical computation: the time needed to
factor 100 digit number using modern computer would take more than the recent age of the universe.
For quantum computers the factorization is achieved very rapidly using the famous Shor’s algorithm.
Does the factorization process indeed have a space-time counterpart?

Suppose that one can map the integer N to be factored to a real space-time sheet with N deter-
ministic pieces. If one can measure the powers pnii of primes pi for which the fractality above the
appropriate p-adic length scale looks smoothness in the p-adic topology, it is possible to deduce the
factorization of N by direct physical measurements of the p-adic length scales characterizing the rep-
resentative space-time sheet (say from the resonance frequencies of the radiation associated with the
space-time sheet). If only the p-adic topology corresponding to the largest prime p1 is realized in this
manner, one can deduce first it, and repeat the process for N/pn1 , and so on, until the full factorization
is achieved. A possible test is to generate resonant radiation in a wave guide of having length which
is an integer multiple of the fundamental p-adic length scale and to see whether frequencies which
correspond to the factors of N appear spontaneously.

2.2.7 Gaussian and Eistenstein primes and physics

Gaussian and Eisenstein primes could give rise to what might be called G- and E-adicities and also
these -adicities might be of physical interest.

Gaussian and Eisenstein primes and elementary particle quantum numbers

The properties of Gaussian and Eisenstein primes have intriguing parallels with quantum TGD at the
level of elementary particle quantum numbers.

1. The lengths of the complex vectors defined by the non-degenerate Gaussian and Eisenstein
primes are square roots of primes as are also the preferred p-adic length scales Lp: this suggests
a direct connection with quantum TGD.

2. Each non-degenerate (purely real or imaginary) Gaussian prime of given norm p corresponds to
8 different complex numbers G = ±r ± is and G = ±s ± ir. This is the number of different
spin states for the imbedding space spinors and also for the color states of massless gluons
(note that in TGD quark color is not spin like quantum number but is analogous to orbital
angular momentum). Complex conjugation might be interpreted as a representation of charge
conjugation and multiplication by ±1,±i could give rise to different spin states. The 4-fold
degeneracy associated with the p mod 4 = 3 Gaussian primes could correspond to the quartet of
massless electro-weak gauge bosons with a given helicity [(γ, Z0)↔ ±p) and (W+,W−)↔ ±ip].
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3. For Eisenstein prime Ep1 the multiplication by ±i does not respect the rationality of the real
part of |Zp1 |2 and the number of states is reduced to four. Eisenstein primes r+ isw and s+ irw
have however the same norm squared so that also now the 8-fold degeneracy is present. When
piy1 is of the general form r + i

√
ks this degeneracy is not present.

4. The basic character of the quark color is triality realized as phases w which are third roots of
unity. The fact that the phases are associated with the Eisenstein primes suggests that they
might provide a representation of quark color. One can indeed multiply any Eisenstein prime in
the product decomposition by factor 1, w or w and the interpretation is that the three primes
represent three color states of quark. The obvious interpretation is that each factor Zp1 with
p1 mod 4 = 1 could represent 8 possible leptonic states. Each factor Zp1 satisfying p1 mod 4 = 3
and p1 mod 3 = 1 conditions simultaneously would correspond to a product of Eisenstein prime
with Eisenstein phase and each prime pi associated with Eisenstein phase would correspond to
one color state of quark. Even a number theoretical counterpart of color confinement could be
imagined.

There is also a further interesting analogy supporting the idea about number theoretical coun-
terpart of the quark color. ζ decomposes into a product ζ1 × ζ3, such that ζ1 is the product
of p mod 4 = 1 partition functions and ζ3 the product of p mod 4 = 3 partition functions.
This decomposition reminds of the leptonic color singlets and color triplet of quarks. Rather
interestingly, leptons and quarks correspond to Ramond and Neveu-Schwartz type super Vira-
soro representations and the fields of N-S representation indeed contain square roots of complex
variable existing p-adically for p mod 4 = 3.

5. What about the most general factors r + is
√
k? Can one assign some kind of color degeneracy

also with these factors? It seems that this is the case. One can always find phase factors of type
U± = (r± is

√
k)/n with minimal values of n (r2 + s2k = n2). The factors 1, U± clearly give rise

to a 3-fold degeneracy analogous to color degeneracy.

6. What about interpretation of the components of the complex integers? For Super Virasoro
representations basic quantum numbers of this kind correspond to energy and longitudinal mo-
mentum. This suggests the interpretation of r2 + s2k as energy, r2− s2k as mass, and 2rs

√
k as

momentum. For the squares r2−s2 +(2rs−s2)w of Eisenstein primes r2−s2/2−rs corresponds
to mass, r2 + s2 − rs to energy, and (2rs− s2)

√
3/2 to momentum. Note that the sign of mass

changes for Gaussian primes in the interchange r ↔ s. The fact that the hexagonal lattice
defined by Eisenstein integers correspond to the root lattice of SU(3) group means that energy,
momentum and mass corresponds to the sides of the triangles in the root lattice of color group.

The following argument suggests that finite Gaussian and Eistenstein primes might be forced by
zero energy ontology (ZEO)

1. In ZEO M-matrix is in a well-defined sense ”complex” square root of density matrix reducing
to a product of Hermitian square root of density matrix multiplied by unitary S-matrix. A
natural guess is that p-adic thermodynamics possesses this kind of square root or better to say:
is modulus squared for it.

2. For fermions the value of p-adic temperature is however T = 1 and thus maximal. It is not
possible to construct real square root by simply taking the square root of thermodynamical
probabilities for various conformal weights. One manner to solve the problem is to assume that
one has quadratic algebraic extension of p-adic numbers in which the p-adic prime splits as
p = ππ, π = m +

√
−kn. For k = 1 primes p mod 4 = 1 indeed allow a representation as

product of Gaussian prime and its conjugate.

3. For primes p mod 4 = 3 this is not the case and Mersenne primes are important examples of
these primes. Eisenstein primes provide the simplest extension of rationals splitting Mersenne
primes. For Eisenstein primes one has k = 3 and all ordinary primes satisfying either p = 3
or p mod 3 = 1 (true for Mersenne primes) allows this splitting. For the square root of p-adic
thermodynamics the complex square roots of probabilities would be given by πL0/T /

√
Z, and the

moduli squared would give thermodynamical probabilities as pL0/T /Z. Here Z is the partition
function.
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4. An interesting question is whether T = 1 for fermions means that complex square of thermody-
namics is indeed complex and whether T = 1/2 for bosons means that the square root is actually
real valued.

G-adic, E-adic and even more general fractals?

Still one line of thoughts relates to the possibility to generalize the notion of p-adicity so that could
speak about G-adic and E-adic number fields. The properties of the Gaussian and Einsenstein primes
indeed strongly suggest a generalization for the notion of p-adic numbers to include what might be
called G-adic or E-adic numbers. In fact, the argument generalizes to the case of all nine

√
−d type

extensions of rationals allowing a unique prime decomposition so that one might perhaps speak about
D-adics.

1. Consider for definiteness Gaussian primes. The basic point is that the decomposition into a
product of prime factors is unique. For a given Gaussian prime one could consider the represen-
tation of the algebraic extension involved (complex integers in the case of Gaussian primes) as
a ring formed by the formal power series

G =
∑
n

znG
n
p . (2.2.3)

Here zn is Gaussian integer with norm smaller than |Gp|, which equals to p for p mod 4 = 3 and√
p for p mod 4 = 1.

2. If any Gaussian integer z has a unique expansion in powers of Gp such that coefficients have
norm squared smaller than p, modulo G arithmetics makes sense and one can construct the
inverse of G and number field results. This is the case if Gaussian integers behave with respect
to modulo Gp arithmetics like finite field G(p, 2). For p mod 4 = 1 the extension of the p-adic
numbers by introducing

√
−1 as a unit is not possible since

√
−1 exists as a p-adic number: the

proposed structure might perhaps provide the counterpart of the p-adic complex numbers in the
casep mod 4 = 1. Thus the question is whether one could regard Gaussian p-adic numbers as
a natural complexification of p-adics for p mod 4 = 1, perhaps some kind of square root of Rp,
and if they indeed form a number field, do they reduce to some known algebraic extension of
Rp?

3. In the case of Eisenstein numbers one can identify the coefficients zn in the formal power series
E =

∑
znE

n
p as Eisenstein numbers having modulus square smaller than p associated with Ep

and similar argument works also in this case.

4. As already noticed, in the case of complex extensions of form r +
√
−ds a unique prime fac-

torization is obtained only in nine cases corresponding to d = 1, 2, 3, 7, 11, 19, 46, 67, 163 [A148]
. The poor man’s argument above does not distinguish between G- and E-adics (d = 1, 3) and
these extensions.One might perhaps call this extensions generally D-adics. This suggests that
generalized p-adics could exist also in this case. In fact, the generalization p-adics could make
sense also for higher-dimensional algebraic extensions allowing unique prime decomposition. For
d = 2 complex algebraic primes are of form r+ s

√
−2 satisfying the condition r2 + 2s2 = p. For

d > 2 complex algebraic primes are of form (r + s
√
−d)/2 such that both r and s are even or

odd. Quite generally, the condition p mod d = k2 must be satisfied.
√
−d corresponds to a root

of unity only for d = 1 and d = 3 so that the powers of a complex primes in this case have a
finite number of possible phase angles: this might make G- and E-adics physically special.

TGD suggests rather interesting physical applications of D-adics.

1. What is interesting from the physics point of view is that for p mod 4 = 1 the points Dn
p

are on the logarithmic spiral zn = pn/2exp(inφ0/2), where φ is the phase associated with D2
p.

The logarithmic spiral can be written also as ρ = exp(nlog(p)φ/φ0). This reminds strongly
of the logarithmic spirals, which are fractal structures frequently encountered in self-organizing
systems: D-adics might provide the mathematics for the modelling of these structures.
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2. p-Adic length scale hypothesis should hold true also for Gaussian primes, in particular, Gaussian
Mersennes of form (1± i)k − 1 should be especially interesting from TGD point of view.

i) The integers k associated with the lowest Gaussian Mersennes are following: 2, 3, 5, 7, 11, 19, 29, 47, 73, 79, 113.
k = 113 corresponds to the p-adic length scale associated with the atomic nucleus and muon.
Thus all known charged leptons, rather than only e and τ , as well as nuclear physics length
scale, correspond to Mersenne primes in the generalized sense.

ii) The primes k = 151, 157, 163, 167 define perhaps the most fundamental biological length
scales: k = 151 corresponds to the thickness of the cell membrane of about ten nanometers and
k = 167 to cell size about 2.56 µm. This strongly suggests that cellular organisms have evolved
to their present form through four basic stages.

iii) k = 239, 241, 283, 353, 367, 379, 457 associated with the next Gaussian Mersennes define as-
tronomical length scales. k = 239 and k = 241 correspond to the p-adic time scales .55 ms
and 1.1 ms: basic time scales associated with nerve pulse transmission are in question. k = 283
corresponds to the time scale of 38.6 min. An interesting question is whether this period could
define a fundamental biological rhythm. The length scale L(353) corresponds to about 2.6×106

light years, roughly the size scale of galaxies. The length scale L(367) ' ×3.3 × 108 light
years is of same order of magnitude as the size scale of the large voids containing galaxies on
their boundaries (note the analogy with cells). T (379) ' 2.1 × 1010 years corresponds to the
lower bound for the order of the age of the Universe. T (457) ∼ 1022 years defines a completely
super-astronomical time and length scale.

3. Eisenstein integers form a hexagonal lattice equivalent with the root lattice of the color group
SU(3). Microtubular surface defines a hexagonal lattice on the surface of a cylinder which
suggests an interpretation in terms of E-adicity. Also the patterns of neural activity form often
hexagonal lattices.

Gaussian and Eisenstein versions of infinite primes

The vision about quantum TGD as a generalized number theory generates a further line of thoughts.

1. As has been found, the zeros of ζ code for the physical states of a super-symmetric arithmetic
quantum field theory. As a matter fact, the arithmetic quantum field theory in question can
be identified as arithmetic quantum field theory in which single particle states are labeled by
Gaussian primes. The properties of the Gaussian primes imply that the single particle states of
this theory have 8-fold degeneracy plus the four-fold degeneracy related to the ±i or ±1-factor
which could be interpreted as a phase factor associated with any p mod 4 = 3 type Gaussian
prime. Also Eisenstein primes could allow the construction of a similar arithmetic quantum field
theory.

2. The construction of the infinite primes reduces to a repeated second quantization of an arithmetic
quantum field theory. A straightforward generalization of the procedure of the previous chapter
allows to define also the notion of infinite Gaussian and Eisenstein primes. Since each infinite
prime is in a well-defined sense a composite of finite primes playing the role of elementary
particles, this would mean that each composite prime in the expansion of an infinite prime has
either four-fold degeneracy or eight-fold degeneracy. The interpretation of infinite primes could
thus literally be as many-particle states of quantum TGD.

2.2.8 p-Adic length scale hypothesis and quaternionic primality

p-Adic length scale hypothesis states that fundamental length scales correspond to the so called p-adic
length scales proportional to

√
p, p prime. Even more: the p-adic primes p ' 2k, k prime or possibly

power of prime, are especially interesting physically. The so called elementary particle-blackhole
analogy gives strong support for this hypothesis. Elementary particles correspond to the so called
CP2 type extremals in TGD. Elementary particle horizon can be defined as a surface at which the
Euclidian signature of the metric of the space-time surface containing topologically condensed CP2

type extremal, changes to Minkowskian signature. The generalization of the Hawking-Bekenstein
formula relates the real counterpart of the p-adic entropy associated with the elementary particle to
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the area of the elementary particle horizon. If one requires that the radius of the elementary particle
horizon corresponds to a p-adic length scale: R = L(k) or kn/2L(k) where k is prime, then p is
automatically near to 2k

n

and p-adic length scale hypothesis is reproduced! The proportionality of
length scale to

√
p, rather than p, follows from p-adic thermodynamics for mass squared (!) operator

and from Uncertainty Principle.

What Tony Smith [A213] suggested, was a beautiful connection with number theory based on the
generalization of the concept of a prime number. In the so called D4 lattice regarded as consisting of
integer quaternions, one can identify prime quaternions as the generators of the multiplicative algebra
of the integer quaternions. From the basic properties of the quaternion norm it follows directly that
prime quaternions correspond to the 3-dimensional spheres R2 = p, p prime. The crucial point from
the TGD point of view is the appearance of the square of the norm instead of the norm. One can even
define the product of spheres R2 = n1 and R2 = n2 by defining the product sphere with norm squared
R2 = n1n2 to consist of the quaternions, which are products of quaternions with norms squared n1

and n2 respectively. Prime spheres correspond to n = p. The powers of sphere p correspond to a
multiplicatively closed structure consisting of powers pn of the sphere p. It is also possible to speak
about the multiplication of balls and prime balls in the case of integer quaternions.

p-Adic length scale hypothesis follows if one assumes that the Euclidian piece of the space-time
surrounding the topologically condensed CP2 type extremal can be approximated with a quaternion
integer lattice with radius squared equal to r2 = kn, k prime. One manner to understand the finiteness
in the time direction is that topological sum contacts of CP2 type extremal are not static 3-dimensional
topological sum contacts but genuinely four-dimensional: 3-dimensional contact is created, expands
to a maximum size and is gradually reduced to point. The Euclidian space-time volume containing
the contact would correspond to an Euclidian region R2 = kn of space-time. The distances of the
lattice points would be measured using the induced metric. These contacts could have arbitrarily
long duration from the point of view of external observer since classical gravitational fields give rise
to strong time dilation effects (strongest on the boundary of the Euclidian region where the metric
becomes degenerate with the emergence of a light like direction).

Lattice structure is essential for the argument. Lattice structures of type D4 indeed emerge
naturally in the p-adic QFT limit of TGD as also in the construction of the p-adic counterparts of
the space-time surfaces as p-adically analytic surfaces. The essential idea is to construct the p-adic
surface by first discretizing space-time surface using a p-adic cutoff in k:th pinary digit and mapping
this surface to its p-adic counterpart and complete this to a unique smooth p-adically analytic surface.
This leads to a fractal construction in which a given interval is decomposed to p smaller intervals, when
the resolution is increased. In the 4-dimensional case one naturally obtains a fractal hierarchy of nested
D4 lattices. The interior of the elementary particle horizon with Euclidian signature corresponds to
some subset of the quaternionic integer lattice D4: an attractive possibility is that the criticality of
the Kähler action and the maximization of the Kähler function force this set to be a ball R2 ≤ kn, k
prime.

2.3 Scaling hierarchies and physics as a generalized number
theory

The scaling hierarchies defined by powers of Φ and primes p probably reflect something very profound.
Mueller has proposed also a scaling law in powers of e [B4] . This scaling law can be however questioned
since Φ2 = 2.6180.. is rather near to e = 2.7183... Note that powers of e define p-dimensional extension
of Rp since ep exists as a p-adic number in this case.

The interpretation of the p-adic as physics of cognition and the vision about reduction of physics to
rational physics continuable algebraically to various extensions of rationals and p-adic number fields
is an attractive general framework allowing to understand how p-adic fractality could emerge in real
physics. In this section it will be found that this vision provides a concrete tool in principle allowing to
construct global solutions of field equations by reducing long length scale real physics to short length
scale p-adic physics. Also p-adic length scale hypothesis can be understood and the notion of multi-p
p-fractality can be formulated in precise sense in this framework. This vision leads also to a concrete
quantum model for how intentions are transformed to actions and the S-matrix for the process has
the same general form as the ordinary S-matrix.
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The fractal hierarchy associated with Golden mean cannot be understood in a manner analogous
to p-adic fractal hierarchies. Rather, the understanding of Golden Mean and Fibonacci series could
reduce to the hypothesis that space-time surfaces, and thus the geometry of physical systems, provide
a representations for the hierarchy of Fibonacci numbers characterizing the Jones inclusions of infinite-
dimensional Clifford sub-algebras of configuration space spinors identifiable as infinite-dimensional von
Neumann algebras known as hyper-finite factors of type II1 (not that configuration space corresponds
here to the ”world of classical worlds”). The emergence of powers of e has been discussed in [K68]
and will not be discussed here.

2.3.1 p-Adic physics and the construction of solutions of field equations

The number theoretic vision about physics relies on the idea that physics or, rather what we can
know about it, is basically rational number based. One interpretation would be that space-time
surfaces, the induced spinors at space-time surfaces, configuration space spinor fields, S-matrix, etc...,
can be obtained by algebraically continuing their values in a discrete subset of rational variant of the
geometric structure considered to appropriate completion of rationals (real or p-adic). The existence
of the algebraic continuation poses very strong additional constraints on physics but has not provided
any practical means to solve quantum TGD.

In the following it is however demonstrated that this view leads to a very powerful iterative method
of constructing global solutions of classical field equations from local data and at the same time gives
justification for the notion of p-adic fractality, which has provided very successful approach not only
to elementary particle physics but also physics at longer scales. The basic idea is that mere p-adic
continuity and smoothness imply fractal long range correlations between rational points which are
very close p-adically but far from each other in the real sense and vice versa.

The emergence of a rational cutoff

For a given p-adic continuation only a subset of rational points is acceptable since the simultaneous
requirements of real and p-adic continuity can be satisfied only if one introduces ultraviolet cutoff
length scale. This means that the distances between subset of rational points fixing the dynamics of
the quantities involved are above some cutoff length scale, which is expected to depend on the p-adic
number field Rp as well as a particular solution of field equations. The continued quantities coincide
only in this subset of rationals but not in shorter length scales.

The presence of the rational cutoff implies that the dynamics at short scales becomes effectively
discrete. Reality is however not discrete: discreteness and rationality only characterize the inherent
limitations of our knowledge about reality. This conforms with the fact that our numerical calculations
are always discrete and involve finite set of points.

The intersection points of various p-adic continuations with real space-time surface should code for
all actual information that a particular p-adic physics can give about real physics in classical sense.
There are reasons to believe that real space-time sheets are in the general case characterized by integers
n decomposing into products of powers of primes pi. One can expect that for pi-adic continuations
the sets of intersection points are especially large and that these p-adic space-time surfaces can be
said to provide a good discrete cognitive mimicry of the real space-time surface.

Adelic formula represents real number as product of inverse of its p-adic norms. This raises the
hope that taken together these intersections could allow to determine the real surface and thus classical
physics to a high degree. This idea generalizes to quantum context too.

The actual construction of the algebraic continuation from a subset of rational points is of course
something which cannot be done in practice and this is not even necessary since much more elegant
approach is possible.

Hierarchy of algebraic physics

One of the basic hypothesis of quantum TGD is that it is possible to define exponent of Kähler action
in terms of fermionic determinants associated with the modified Dirac operator derivable from a Dirac
action related super-symmetrically to the Kähler action.

If this is true, a very elegant manner to define hierarchy of physics in various algebraic extensions
of rational numbers and p-adic numbers becomes possible. The observation is that the continuation
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to various p-adic numbers fields and their extensions for the fermionic determinant can be simply
done by allowing only the eigenvalues which belong to the extension of rationals involved and solve
field equations for the resulting Kähler function. Hence a hierarchy of fermionic determinants results.
The value of the dynamical Planck constant characterizes in this approach the scale factor of the M4

metric in various number theoretical variants of the imbedding space H = M4 × CP2 glued together
along subsets of rational points of H. The values of ~ are determined from the requirement of quantum
criticality [K87] meaning that Kähler coupling strength is analogous to critical temperature.

In this approach there is no need to restrict the imbedding space points to the algebraic extension
of rationals and to try to formulate the counterparts of field equations in these discrete imbedding
spaces.

p-Adic short range physics codes for long range real physics and vice versa

One should be able to construct global solutions of field equations numerically or by engineering them
from the large repertoire of known exact solutions [K10] . This challenge looks formidable since the
field equations are extremely non-linear and the failure of the strict non-determinism seems to make
even in principle the construction of global solutions impossible as a boundary value problem or initial
value problem.

The hope is that short distance physics might somehow code for long distance physics. If this
kind of coding is possible at all, p-adicity should be crucial for achieving it. This suggests that one
must articulate the question more precisely by characterizing what we mean with the phrases ”short
distance” and ”long distance”. The notion of short distance in p-adic physics is completely different
from that in real physics, where rationals very close to each other can be arbitrary far away in the
real sense, and vice versa. Could it be that in the statement ”Short length scale physics codes for long
length scale physics” the attribute ”short”/”long” could refer to p-adic/real norm, real/p-adic norm,
or both depending on the situation?

The point is that rational imbedding space points very near to each other in the real sense are
in general at arbitrarily large distances in p-adic sense and vice versa. This observation leads to an
elegant method of constructing solutions of field equations.

1. Select a rational point of the imbedding space and solve field equations in the real sense in an
arbitrary small neighborhood U of this point. This can be done with an arbitrary accuracy by
choosing U to be sufficiently small. It is possible to solve the linearized field equations or use a
piece of an exact solution going through the point in question.

2. Select a subset of rational points in U and interpret them as points of p-adic imbedding space and
space-time surface. In the p-adic sense these points are in general at arbitrary large distances
from each and real continuity and smoothness alone imply p-adic long range correlations. Solve
now p-adic field equations in p-adically small neighborhoods of these points. Again the accuracy
can be arbitrarily high if the neighborhoods are choose small enough. The use of exact solutions
of course allows to overcome the numerical restrictions.

3. Restrict the solutions in these small p-adic neighborhoods to rational points and interpret these
points as real points having arbitrarily large distances. p-Adic smoothness and continuity alone
imply fractal long range correlations between rational points which are arbitrary distant in the
real sense. Return to 1) and continue the loop indefinitely.

In this manner one obtains even in numerical approach more and more small neighborhoods rep-
resenting almost exact p-adic and real solutions and the process can be continued indefinitely.

Some comments about the construction are in order.

1. Essentially two different field equations are in question: real field equations fix the local behavior
of the real solutions and p-adic field equations fix the long range behavior of real solutions.
Real/p-adic global behavior is transformed to local p-adic/real behavior. This might be the
deepest reason why for the hierarchy of p-adic physics.

2. The failure of the strict determinism for the dynamics dictated by Kähler action and p-adic
non-determinism due to the existence of p-adic pseudo constants give good hopes that the
construction indeed makes it possible to glue together the (not necessarily) small pieces of
space-time surfaces inside which solutions are very precise or exact.
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3. Although the full solution might be impossible to achieve, the predicted long range correlations
implied by the p-adic fractality at the real space-time surface are a testable prediction for which
p-adic mass calculations and applications of TGD to biology provide support.

4. It is also possible to generalize the procedure by changing the value of p at some rational points
and in this manner construct real space-time sheets characterized by different p-adic primes.

5. One can consider also the possibility that several p-adic solutions are constructed at given ratio-
nal point and the rational points associated with p-adic space-time sheets labeled by p1, ...., pn
belong to the real surface. This would mean that real surface would be multi-p p-adic fractal.

I have earlier suggested that even elementary particles are indeed characterized by integers and that
only particles for which the integers have common prime factors interact by exchanging particles
characterized by common prime factors. In particular, the primes p = 2, 3, ....., 23 would be common to
the known elementary particles and appear in the expression of the gravitational constant. Multi-p p-
fractality leads also to an explanation for the weakness of the gravitational constant. The construction
recipe for the solutions would give a concrete meaning for these heuristic proposals.

This approach is not restricted to space-time dynamics but is expected to apply also at the level
of say S-matrix and all mathematical object having physical relevance. For instance, p-adic four-
momenta appear as parameters of S-matrix elements. p-Adic four-momenta very near to each other
p-adically restricted to rational momenta define real momenta which are not close to each other and
the mere p-adic continuity and smoothness imply fractal long range correlations in the real momentum
space and vice versa.

p-Adic length scale hypothesis

Approximate p1-adicity implies also approximate p2-adicity of the space-time surface for primes p ' pk1 .
p-Adic length scale hypothesis indeed states that primes p ' 2k are favored and this might be due to
simultaneous p ' 2k- and 2-adicity. The long range fractal correlations in real space-time implied by
2-adicity would indeed resemble those implied by p ' 2k and both p ' 2k-adic and 2-adic space-time
sheets have larger number of common points with the real space-time sheet.

If the scaling factor λ of ~ appearing in the dark matter hierarchy is in good approximation λ = 211

also dark matter hierarchy comes into play in a resonant manner and dark space-time sheets at various
levels of the hierarchy tend to have many intersection points with each other.

There is however a problem involved with the understanding of the origin of the p-adic length
scale hypothesis if the correspondence via common rationals is assumed.

1. The mass calculations based on p-adic thermodynamics for Virasoro generator L0 predict that
mass squared is proportional to 1/p and Uncertainty Principle implies that Lp is proportional
to
√
p rather than p, which looks more natural if common rationals define the correspondence

between real and p-adic physics.

2. It would seem that length dp ' pR, R or order CP2 length, in the induced space-time metric must
correspond to a length Lp '

√
pR in M4. This could be understood if space-like geodesic lines

at real space-time sheet obeying effective p-adic topology are like orbits of a particle performing
Brownian motion so that the space-like geodesic connecting points with M4 distance rM4 has a
length rX4 ∝ r2

M4 . Geodesic random walk with randomness associated with the motion in CP2

degrees of freedom could be in question. The effective p-adic topology indeed induces a strong
local wiggling in CP2 degrees of freedom so that rX4 increases and can depend non-linearly on
rM4 .

3. If the size of the space-time sheet associated with the particle has size dp ∼ pR in the induced
metric, the corresponding M4 size would be about Lp ∝

√
pR and p-adic length scale hypothesis

results.

4. The strongly non-perturbative and chaotic behavior rX4 ∝ r2
M4 is assumed to continue only up

to Lp. At longer length scales the space-time distance dp associated with Lp becomes the unit
of space-time distance and geodesic distance rX4 is in a good approximation given by
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rX4 =
rM4

Lp
dp ∝

√
p× rM4 , (2.3.1)

and is thus linear in M4 distance rM4 .

Does cognition automatically solve real field equations in long length scales?

In TGD inspired theory of consciousness p-adic space-time sheets are identified as space-time correlates
of cognition. Therefore our thoughts would have literally infinite size in the real topology if p-adics
and reals correspond to each other via common rationals (also other correspondence based on the
separate canonical identification of integers m and n in q = m/n with p-adic numbers).

The cognitive solution of field equations in very small p-adic region would solve field equations
in real sense in a discrete point set in very long real length scales. This would allow to understand
why the notions of Universe and infinity are a natural part of our conscious experience although our
sensory input is about an infinitesimally small region in the scale of universe.

The idea about Universe performing mimicry at all possible levels is one of the basic ideas of TGD
inspired theory of consciousness. Universe could indeed understand and represent the long length scale
real dynamics using local p-adic physics. The challenge would be to make quantum jumps generating
p-adic surfaces having large number of common points with the real space-time surface. We are used
to call this activity theorizing and the progress of science towards smaller real length scales means
progress towards longer length scales in p-adic sense. Also real physics can represent p-adic physics:
written language and computer represent examples of this mimicry.

2.3.2 A more detailed view about how local p-adic physics codes for p-adic
fractal long range correlations of the real physics

The vision just described gives only a rough heuristic view about how the local p-adic physics could
code for the p-adic fractality of long range real physics. There are highly non-trivial details related to
the treatment of M4 and CP2 coordinates and to the mapping of p-adic H-coordinates to their real
counterparts and vice versa.

How real and p-adic space-time regions are glued together?

The first task is to visualize how real and p-adic space-time regions relate to each other. It is convenient
to start with the extension of real axis to contain also p-adic points. For finite rationals q = m/n, m
and n have finite power expansions in powers of p and one can always write q = pk × r/s such that r

and s are not divisible by p and thus have pinary expansion of in powers of p as x = x0 +
∑N

1 xnp
n,

xi ∈ {0, p}, x0 6= 0.
One can always express p-adic number as x = pny where y has p-adic norm 1 and has expansion in

non-negative powers of p. When x is rational but not integer the expansion contains infinite number
of terms but is periodic. If the expansion is infinite and non-periodic, one can speak about strictly
p-adic number having infinite value as a real number.

In the same manner real number x can be written as x = pny, where y is either rational or has
infinite non-periodic expansion y = r0 +

∑
n>0 rnp

−n in negative powers of p. As a p-adic number y
is infinite. In this case one can speak about strictly real numbers.

This gives a visual idea about what the solution of field equations locally in various number fields
could mean and how these solutions are glued together along common rationals. In the following I
shall be somewhat sloppy and treat the rational points of the imbedding space as if they were points
of real axis in order to avoid clumsy formulas.

1. The p-adic variants of field equations can be solved in the strictly p-adic realm and by p-adic
smoothness these solutions are well defined also in as subset of rational points. The strictly
p-adic points in a neighborhood of a given rational point correspond as real points to infinitely
distant points of M4. The possibility of p-adic pseudo constants means that for rational points
of M4 having sufficiently large p-adic norm, the values of CP2 coordinates or induced spinor
fields can be chosen more or less freely.
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2. One can solve the p-adic field equations in any p-adic neighborhood Un(q) = {x = q+ pny} of a
rational point q of M4, where y has a unit p-adic norm and select the values of fields at different
points q1 and q2 freely as long as the spheres Un(q1) and Un(q2) are disjoint (these spheres are
either identical or disjoint by p-adic ultra-metricity).

The points in the p-adic continuum part of these solutions are at an infinite distance from q in
M4. The points which are well-defined in real sense form a discrete subset of rational points of
M4. The p-adic space-time surface constructed in this manner defines a discrete fractal hierarchy
of rational space-time points besides the original points inside the p-adic spheres. In real sense
the rational points have finite distances and could belong to disjoint real space-time sheets.
The failure of the strict non-determinism for the field equations in the real sense gives hopes
for gluing these sheets partially together (say in particle reactions with particles represented as
3-surfaces).

3. All rational points q of the p-adic space-time sheet can be interpreted as real rational points and
one can solve the field equations in the real sense in the neighborhoods Un(q) = {x = q + pny}
corresponding to real numbers in the the range pn ≤ x ≤ pn+1. Real smoothness and continuity
fix the solutions at finite rational points inside Un(q) and by the phenomenon of p-adic pseudo
constants these values can be consistent with p-adic field equations. Obviously one can can
continue the construction process indefinitely.

p-Adic scalings act only in M4 degrees of freedom

p-Adic fractality suggests that finite real space-time sheets around points x+ pn, x = 0, are obtained
as by just scaling of the M4 coordinates having origin at x = 0 by pn of the solution defined in a
neighborhood of x and leaving CP2 coordinates as such. The known extremals of Kähler action indeed
allow M4 scalings as dynamical symmetries.

One can understand why no scaling should appear in CP2 degrees of freedom. CP2 is complex
projective space for which points can be regarded as complex planes and for these p-adic scalings act
trivially. It is worth of emphasizing that here could lie a further deep number theoretic reason for
why the space S in H = M4 × S must be a projective space.

What p-adic fractality for real space-time surfaces really means?

The identification of p-adic and real M4 coordinates of rational points as such is crucial for p-adic
fractality. On the other hand, the identification rational real and p-adic CP2 coordinates as such
would not be consistent with the idea that p-adic smoothness and continuity imply p-adic fractality
manifested as long range correlations for real space-time sheets

The point is that p-adic fractality is not stable against small p-adic deformations of CP2 coordinates
as function of M4 coordinates for solutions representable as maps M4 → CP2. Indeed, if the rational
valued p-adic CP2 coordinates are mapped as such to real coordinates, the addition of large power
pn to CP2 coordinate implies small modification in p-adic sense but large change in the real sense so
that correlations of CP2 at p-adically scaled M4 points would be completely lost.

The situation changes if the map of p-adic CP2 coordinates to real ones is continuous so that
p-adically small deformations of the p-adic space-time points are mapped to small real deformations
of the real space-time points.

1. Canonical identification I : x =
∑
xnp

n →
∑
xnp

−n satisfies continuity constraint but does not
map rationals to rationals.

2. The modification of the canonical identification given by

I(q = pk × r

s
) = pk × I(r)

I(s)
(2.3.2)

is uniquely defined for rational points, maps rationals to rationals, has a symmetry under
exchange of target and domain. This map reduces to a direct identification of rationals for
0 ≤ r < p and 0 ≤ s < p.
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3. The form of this map is not general coordinate invariant nor invariant under color isometries.
The natural requirement is that the map should respect the symmetries of CP2 maximally.
Therefore the complex coordinates transforming linearly under U(2) subgroup of SU(3) defining
the projective coordinates of CP2 are a natural choice. The map in question would map the real
components of complex coordinates to their p-adic variants and vice versa. The residual U(2)
symmetries correspond to rational unitary 2× 2-matrices for which matrix elements are of form
Uij = pkr/s, r < p, s < p. It would seem that these transformations must form a finite subgroup
if they define a subgroup at all. In case of U(1) Pythagorean phases define rational phases but
sufficiently high powers fail to satisfy the conditions r < p, s < p. Also algebraic extensions of
p-adic numbers can be considered.

4. The possibility of pseudo constant allows to modify canonical identification further so that it
reduces to the direct identification of real and p-adic rationals if the highest powers of p in
r and s (q = pnr/s) are not higher than pN . Write x =

∑
n≥0 xnp

n = xN) + pN+1y with

xN) =
∑N
n=0 xnp

n, x0 6= 0, y0 6= 0, and define IN (x) = xN) + pN+1I(y). For q = pnr/s
define IN (q) = pnIN (r)/IN (s). This map reduces to the direct identification of real and p-adic
rationals for y = 0.

5. There is no need to introduce the imaginary unit explicitly. In case of spinors imaginary unit
can be represented by the antisymmetric 2 × 2-matrix εij satisfying ε12 = 1. As a matter fact,
the introduction of imaginary unit as number would lead to problems since for p mod 4 = 3
imaginary unit should be introduced as an algebraic extension and CP2 in this sense would be
an algebraic extension of RP2. The fact that the algebraic extension of p-adic numbers by

√
−1

is equivalent with an extension introducing
√
p− 1 supports the view that algebraic imaginary

unit has nothing to do with the geometric imaginary unit defined by Kähler form of CP2. For
p mod 4 = 1

√
−1 exists as a p-adic number but is infinite as a real number so that the notion

of finite complex rational would not make sense.

Preferred CP2 coordinates as a space-time correlate for the selection of quantization axis

Complex CP2 coordinates are fixed only apart from the choice of the quantization directions of color
isospin and hyper charge axis in SU(3) Lie algebra. Hence the selection of quantization axes seems
to emerge at the level of the generalized space-time geometry as quantum classical correspondence
indeed requires.

In a well-defined sense the choice of the quantization axis and a special coordinate system implies
the breaking of color symmetry and general coordinate invariance. This breaking is induced by the
presence of p-adic space-time sheets identified as correlates for cognition and intentionality. One could
perhaps say that the cognition affects real physics via the imbedding space points shared by real and
p-adic space-time sheets and that these common points define discrete coordinatization of the real
space-time surface analogous to discretization resulting in any numerical computation.

Relationship between real and p-adic induced spinor fields

Besides imbedding space coordinates also induced spinor fields are fundamental variables in TGD.
The free second quantized induced spinor fields define the fermionic oscillator operators in terms of
which the gamma matrices giving rise to spinor structure of the ”world of classical worlds” can be
expressed.

p-Adic fractal long range correlations must hold true also for the induced spinor fields and they
are in exactly the same role as CP2 coordinates so that the variant of canonical identification mapping
rationals to rationals should map the real and imaginary parts of real induced spinor fields to their
p-adic counterparts and vice versa at the rational space-time points common to p-adic and real space-
time sheets.

Could quantum jumps transforming intentions to actions really occur?

The idea that intentional action corresponds to a quantum jump in which p-adic space-time sheet is
transformed to a real one traversing through rational points common to p-adic and real space-time
sheet is consistent with the conservation laws since the sign of the conserved inertial energy can be
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also negative in TGD framework and the density of inertial energy vanishes in cosmological length
scales [K71] . Also the non-diagonal transitions p1 → p2 are in principle possible and would correspond
to intersections of p-adic space-time sheets having a common subset of rational points. Kind of phase
transitions changing the character of intention or cognition would be in question.

1. Realization of intention as a scattering process

The first question concerns the interpretation of this process and possibility to find some familiar
counterpart for it in quantum field theory framework. The general framework of quantum TGD
suggests that the points common to real and p-adic space-time sheets could perhaps be regarded as
arguments of an n-point function determining the transition amplitudes for p-adic to real transition
or p1 → p2-adic transitions. The scattering event transforming an p-adic surface (infinitely distant
real surface in real M4) to a real finite sized surface (infinitely distant p-adic surface in p-adic M4)
would be in question.

2. Could S-matrix for realizations of intentions have the same general form as the ordinary S-
matrix?

One might hope that the realization of intention as a number theoretic scattering process could be
characterized by an S-matrix, which one might hope of being unitary in some sense. These S-matrix
elements could be interpreted at fundamental level as probability amplitudes between intentions to
prepare a define initial state and the state resulting in the process.

Super-conformal invariance is a basic symmetry of quantum TGD which suggests that the S-
matrix in question should be constructible in terms of n-point functions of a conformal field theory
restricted to a subset of rational points shared by real and p-adic space-time surfaces or their causal
determinants. According to the general vision discussed in [K20] , the construction of n-point functions
effectively reduces to that at 2-dimensional sections of light-like causal determinants of space-time
surfaces identified as partonic space-time sheets.

The idea that physics in various number fields results by algebraic continuation of rational physics
serves as a valuable guideline and suggests that the form of the S-matrices between different number
fields (call them non-diagonal S-matrices) could be essentially the same as that of diagonal S-matrices.
If this picture is correct then the basic differences to ordinary real S-matrix would be following.

1. Intentional action could transform p-adic space-time surface to a real one only if the exponent
of Kähler function for both is rational valued (or belongs to algebraic extension of rationals).

2. The points appearing as arguments of n-point function associated with the non-diagonal S-
matrix are a subset of rational points of imbedding space whereas in the real case, where the
integration over these points is well defined, all values of arguments can be allowed. Thus the
difference between ordinary S-matrix and more general S-matrices would be that a continuous
Fourier transform of n-point function in space-time domain is not possible in the latter case.
The inherent nature of cognition would be that it favors localization in the position space.

3. Objection and its resolution

Exponent of Kähler function is the key piece of the configuration space spinor field. There is a
strong counter argument against the existence of the Kähler function in the p-adic context. The basic
problem is that the definite integral defining the Kähler action is not p-adically well-defined except in
the special cases when it can be done algebraically. Algebraic integration is however very tricky and
numerically completely unstable.

The definition of the exponent of Kähler function in terms of Dirac determinants or, perhaps
equivalently, as a result of normal ordering of the modified Dirac action for second quantized induced
spinors might however lead to an elegant resolution of this problem. This approach is discussed in
detail in [K15, K10] . The idea is that Dirac determinant can be defined as a product of eigenvalues
of the modified Dirac operator and one ends up to a hierarchy of theories based on the restriction of
the eigenvalues to various algebraic extensions of rationals identified as a hierarchy associated with
corresponding algebraic extensions of p-adic numbers. This hierarchy corresponds to a hierarchy of
theories (and also physics!) based on varying values of Planck constant. The elegance of this approach
is that no discretization at space-time level would be neededeverything reduces to the generalized
eigenvalue spectrum of the modified Dirac operator.
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4. A more detailed view

Consider the proposed approach in more detail.

1. Fermionic oscillator operators are assigned with the generalized eigenvectors of the modified
Dirac operator defined at the light-like causal determinants:

Ψ =
∑
n

Ψnbn ,

DΨn = ΓαDαΨn = λnOΨn , O ≡ nαΓα . (2.3.3)

Here Γα = TαkΓk denote so called modified gamma matrices expressible in terms of the energy
momentum current Tαk assignable to Kähler action [K15] . The replacement of the ordinary
gamma matrices with modified ones is forced by the requirement that the super-symmetries of
the modified Dirac action are consistent with the property of being an extremal of Kähler action.
nα is a light like vector assignable to the light-like causal determinant and O = nαΓα must be
rational and have the same value at real and p-adic side at rational points. The integer n labels
the eigenvalues λn of the modified Dirac operator, and bn corresponds to the corresponding
fermionic oscillator operator.

2. The condition that the p-adic and real variants Ψ if the Ψ are identical at common rational points
of real and p-adic space-time surface (the same applies to 4-surfaces corresponding to different
p-adic number fields) poses a strong constraint on the algebraic continuation from rationals to
p-adics and gives hopes of deriving implications of this approach.

3. Ordinary fermionic anti-commutation relations do not refer specifically to any number field.
Super Virasoro (anti-)commutation relations involve only rationals. This suggest that fermionic
Fock space spanned by the oscillator operators bn is universal and same for reals and p-adic
numbers and can be regarded as rational. Same would apply to Super Virasoro representations.
Also the possibility to interpret configuration space spinor fields as quantum superpositions of
Boolean statements supports this kind of universality. This gives good hopes that the contri-
bution of the inner produces between Fock states to the S-matrix elements are number field
independent.

4. Dirac determinant can be defined as the product of the eigenvalues λn restricted to a given
algebraic extension of rationals. The solutions of the modified Dirac equation correspond to
vanishing eigen values and define zero modes generating conformal super-symmetries and are
not of course included.

5. Only those operators bn for which λn belongs to the algebraic extension of rationals in question
are used to construct physical states for a given algebraic extension of rationals. This might
mean an enormous simplification of the formalism in accordance with the fact that configuration
space Clifford algebra corresponds as a von Neumann algebra to a hyper-finite factor of type II1

for which finite truncations by definition allow excellent approximations [K87] . One can even
ask whether this hierarchy of algebraic extensions of rationals could in fact define a hierarchy of
finite-dimensional Clifford algebras. If so then the general theory of hyper-finite factors of type
II1 would provide an extremely powerful tool.

2.3.3 Cognition, logic, and p-adicity

There seems to be a nice connection between logic aspects of cognition and p-adicity. In particular,
p-valued logic for p = 2k − n has interpretation in terms of ordinary Boolean logic with n ”taboos”
so that p-valued logic does not conflict with common sense in this case. Also an interpretation of
projections of p-adic space-time sheets to an integer lattice of real Minkowski space M4 in terms of
generalized Boolean functions emerges naturally so that M4 projections of p-adic space-time would
represent Boolean functions for a logic with n taboos.
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2-adic valued functions of 2-adic variable and Boolean functions

The binary coefficients fnk in the 2-adic expansions of terms fnx
n in the 2-adic Taylor expan-

sion f(x) =
∑
n=0 fnx

n, assign a sequence of truth values to a 2-adic integer valued argument
x ∈ {0, 1, ..., 2N} defining a sequence of N bits. Hence f(x) assigns to each bit of this sequence
a sequence of truth values which are ordered in the sense that the truth values corresponding to bits
are not so important p-adically: much like higher decimals in decimal expansion. If a binary cutoff in
N :th bit of f(x) is introduced, BM -valued function in BN results, where B denotes Boolean algebra
fo 2 elements. The formal generalization to p-adic case is trivial: 2 possible truth values are only
replaced by p truth values representable as 0, ..., p− 1.

p-Adic valued functions of p-adic variable as generalized Boolean functions

One can speak of a generalized Boolean function mapping finite sequences of p-valued Boolean ar-
guments to finite sequences of p-valued Boolean arguments. The restriction to a subset x = kpn,
k = 0, ..., p − 1 and the replacement of the function f(x) with its lowest pinary digit gives a gen-
eralized Boolean function of a single p-valued argument. If f(x) is invariant under the scalings by
powers of pk, one obtains a hologram like representation of the generalized Boolean function with
same function represented in infinitely many length scales. This guarantees the robustness of the
representation.

The special role of 2-adicity explaining p-adic length scale hypothesis p ' 2k, k integer, in terms
of multi-p-acidic fractality would correlate with the special role of 2-valued logic in the world order.
The fact that all generalizations of 2-valued logic ultimately involve 2-adic logic at the highest level,
where the generalization is formulated would be analog of p-adic length scale hypothesis.

p = 2k − n-adicity and Boolean functions with taboos

It is difficult to assign any reasonable interpretation to p > 2-valued logic. Also the generalization of
logical connectives AND and OR is far from obvious. In the case p = 2k − n favored by the p-adic
length scale hypothesis situation is however different. In this case one has interpretation in terms

Bk with n Boolean statements dropped out so that one obtains what might be called b̂k. Since n is
odd this set is not invariant under Boolean conjugation so that there is at least one statement, which
is identically true and could be called taboo, axiom, or dogma: depending on taste. The allowed
Boolean functions would be constructed in this case using standard Boolean functions AND and OR
with the constraint that taboos are respectedin other words, both the inputs and values of functions

belong to b̂k.
A unique manner to define the logic with taboos is to require that the number of taboos is maximal

so that if statement is dropped its negation remains in the logic. This implies n > Bk/2.

The projections of p-adic space-time sheets to real imbedding space as representations
of Boolean functions

Quantum classical correspondence suggests that generalized Boolean functions should have space-time
correlates. Since Boolean cognition involves free will, it should be possible to construct space-time
representations of arbitrary Boolean functions with finite number of arguments freely. The non-
determinism of p-adic differential equations guarantees this freedom.

p-Adic space-time sheets and p-adic non-determinism make possible to represent generalization of
Boolean functions of four Boolean variables obtained by replacing both argument and function with
p-valued pinary digit instead of bit. These representations result as discrete projections of p-adic
space-time sheets to integer valued points of real Minkowski space M4. The interpretation would be
in terms of 4 sequences of truth values of p-valued logic associated with a finite 4-D integer lattice
whose lattice points can be identified as sequences of truth values of a p-valued logic with a set of
p-valued truth value at each point so that in the 2-adic case one has map B4M → B4N . Here the
number of lattice points in a given coordinate direction of M4 is M and N is the number of bits
allowed by binary cutoff for CP2 coordinates. For p = 2k − n representing Boolean algebra with n
taboos, the maps can be interpreted as maps b̂4M → b̂4N .

These lattices can be seen as subsets of rational shadows of p-adic space-time sheets to Minkowski
space. The condensed matter analog would be a lattice with a a sequence of p-valued dynamical
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variables (sequence of bits/spins for p = 2) at each lattice point. At a fixed spatial point of M4 the
lowest bits define a time evolution of a generalized Boolean function: B → B.

These observations support the view that intentionality and logic related cognition could perhaps
be regarded as 2-adic aspects of consciousness. The special role of primes p = 2k − n could also
be understood as special role of Boolean logic among p-valued logics and p = 2k − n logic would
correspond to Bk with n axioms representing logic respecting a belief system with n beliefs. Recall
that multi-p p-adic fractality involving 2-adic fractality is possible for the solutions of field equations
and explains p-adic length scale hypothesis.

Most points of the p-adic space-time sheets correspond to real points which are literally infinite as
real points. Therefore cognition would be in quite literal sense outside the real cosmos. Perhaps this
is a direct correlate for the basic experience that mind is looking the material world from outside.

Connection with the theory of computational complexity?

There are interesting questions concerning the interpretation of four generalized Boolean arguments.
TGD explains the number D = 4 for space-time dimensions and also the dimension of imbedding
space. Could one also find explanation why d = 4 defines special value for the number of generalized
Boolean inputs and outputs?

1. Could the general theory of computational complexity allow to understand d = 4 as a maximum
number of inputs and outputs allowing the computation of something related to these functions in
polynomial time? For instance, complexity theorist could probably immediately answer following
questions. Could the computation of the 2-adic values of CP2 coordinates as a function of 2-
adic M4 coordinates expressed in terms of fundamental logical connectives take a time which is
polynomial as a function of the number of N4 pinary digits of M4 coordinates and N4 pinary
digits of CP2 coordinates? Is this time non-polynomial for Md and Sd, Sd d-dimensional internal
space, d > 4. Unfortunately I do not possess the needed complexity theoretic knowhow to answer
these questions.

2. The same question could make sense also for p > 2 if the notion of the logical connectives and
functions generalizes as it indeed does for p = 2k − n. Therefore the question would be whether
p-adic length scale hypothesis and dimensions of imbedding space and space-time are implied by
a polynomial computation time? This could be the case since essentially a restriction of values
and arguments of Boolean functions to a subset of Bk is in question.

Some calculational details

In the following the details of p-adic non-determinism are described for a differential equation of single
p-adic variable and some comments about the generalization to the realistic case are given.

1. One-dimensional case

To understand the essentials consider for simplicity a solution of a p-adic differential equation
giving function y = f(x) of one independent variable x =

∑
n≥n0

xnp
n.

1. p-Adic non-determinism means that the initial values f(x) of the solution can be fixed arbi-
trarily up to N + 1:th pinary digit. In other words, f(xN ), where xN =

∑
n0≤n≥N xnp

n is a
rational obtained by dropping all pinary digits higher than N in x =

∑
n≥n0

xnp
n can be chosen

arbitrarily.

2. Consider the projection of f(x) to the set of rationals assumed to be common to reals and
p-adics.

i) Genuinely p-adic numbers have infinite number of positive pinary digits in their non-periodic
expansion (non-periodicity guarantees non-rationality) and are strictly infinite as real numbers.
In this regime p-adic differential equation fixes completely the solution. This is the case also at
rational points q = m/n having infinite number of pinary digits in their pinary expansion.

ii) The projection of p-adic x-axis to real axis consists of rationals. The set in which solution of
p-adic differential equations is non-vanishing can be chosen rather freely. For instance, p-adic
ball of radius p−n consisting of points x = pMy, y 6= 0, |y|p ≤ 1, can be considered. Assume
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N > M . p-Adic nondeterminism implies that f(q) for q =
∑
M≤n≤N xnp

n, can be chosen
arbitrarily. For M ≥ 0 q is always integer valued and the scaling of x by a suitable power of p
always allows to get a finite integer lattice at x-axis.

iii) The lowest pinary digit in the expansion of f(q) in powers of p in defines a pinary digit.
These pinary digits would define a representation for a sequence of truth values of p-logic. p = 2
gives the ordinary Boolean logic. It is also interpret this pinary function as a function of pinary
argument giving Boolean function of one variable in 2-adic case.

2. Generalization to the space-time level

This picture generalizes to space-time level in a rather straight forward manner. y is replaced with
CP2 coordinates, x is replaced with M4 coordinates, and differential equation with field equations
deducible from the Kähler action. The essential point is that p-adic space-time sheets have projection
to real Minkowski space which consists of a discrete subset of integers when suitable scaling of M4

coordinates is allowed. The restriction of 4 CP2 coordinates to a finite integer lattice of M4 defines
4 Boolean functions of four Boolean arguments or their generalizations for p > 2. Also the modes of
the induce spinor field define a similar representation.

2.3.4 Fibonacci numbers, Golden Mean, and Jones inclusions

The picture discussed above does not apply in the case of Golden Mean since powers of Φ do not have
any special role for the algebraic extension of rationals by

√
5. It is however possible to understand

the emergence of Fibonacci numbers and Golden Mean using quantum classical correspondence and
the fact that the Clifford algebra and its sub-algebras associated with configuration space spinors
corresponds to the so called hyper-finite factor of type II1 (configuration space refers to the ”world of
classical worlds”).

Infinite braids as representations of Jones inclusions

The appearance of hyper-finite factor of type II1 at the level of basic quantum tGD justifies the
expectation that Jones inclusions N ⊂ M of these factors play a key role in TGD Universe. For
instance, subsystem system inclusions could induce Jones inclusions.

For the Jones inclusion N ⊂MM can be regarded as an N -module with fractal dimension given
by Beraha number Bn = 4cos2(π/n), n ≥ 3 or equivalently by the quantum group phases exp(iπ/n).
B5 satisfies B5 = 4cos2(π/5) = Φ2 = Φ + 1 so that the special role of n = 5 inclusion could explain
the special role of Golden Mean in Nature.

Hecke algebras Hn, which are also characterized by quantum phase q = exp(iπ/n) or the corre-
sponding Beraha number Bn = 4cos2(π/n), characterize the anyonic quantum statistics of n-braid
system. Braids are understood as threads which can get linked and define in this manner braiding.
Braid group describes these braidings. Like any algebra, Hecke algebra Hn can be decomposed into
a direct sum of matrix algebras. Fibonacci numbers characterize the dimensions of these matrix al-
gebras for n = 5. Interestingly, topological quantum computation is based on the idea that computer
programs can be coded into braidings. What is remarkable is that n = 5 characterizes the simplest
universal quantum computer so that Golden Mean could indeed have very deep roots to quantum
information processing.

The so called Bratteli diagrams characterize the inclusions of various direct summands of Hk to
direct summands Hk+1 in the sequence H3 ⊂ H4 ⊂ ... ⊂ Hk ⊂ ... of Hecke algebras. Essentially the
reduction of the representations of Hk+1 to those of Hk is in question. The same Bratteli diagrams
characterize also the Jones inclusions N ⊂ M of hyper-finite factors of type II1 with index n as a
limit of a finite-dimensional inclusion. Thus Jones inclusion can be visualized as a system consisting
of infinite number of braids. In TGD framework the braids could be represented by magnetic flux
lines or flux tubes.

Logarithmic spirals as representations of Jones inclusions

The inclusion sequence for Hecke algebras has a representations as a logarithmic spiral. The angle
π/5 can be identified as a limit for angles φn with cos(φn) = Fn+1/2Fn assignable to orthogonal
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triangle with hypothenuse 2Fn and short side Fn+1 and
√

4F 2
n − F 2

n+1. Fibonacci sequence defines

via this prescription a logarithmic spiral as a symbolic representation of the n = 5 Jones inclusion
representable also in terms of infinite number of braids.

DNA as a topological quantum computer?

Quantum classical correspondence encourages to think that space-time geometry could define a corre-
late for Jones inclusions of hyper-finite factors of Clifford sub-algebras associated with Clifford algebra
of configuration space spinors. The appearance of Fibonacci series in living systems could represent
one example of this correspondence. The angle π/10 closely related to Golden Mean characterizes the
winding of DNA double strand. Could this mean that DNA allows to realize topological quantum com-
puter programs as braidings? A possible realization would be based on the notion of super-genes [K43]
, which are like pages of a book identified as magnetic flux sheets containing genomes of sequences
of cell nuclei as text lines. These text lines would represent line through which magnetic flux lines
traverse.

The braiding of magnetic flux lines (or possibly flux sheets regarded as flattened tubes) would
define the braiding and the particles involved would be anyons obeying dynamics having quantum
group SU(2)q, q = exp(iπ/5), as its symmetries. The anyons could be assigned with DNA nucleotides
or triplets.

TGD predicts also different kind of new physics to DNA double strand. So called HN -atoms
consist of ordinary proton an N dark electrons at space-time sheet which is λ-fold covering of space-
time sheet of ordinary hydrogen atom. The effective charge of HN -atom is 1 − N/λ since the fine
structure constant for dark electrons is scaled down by 1/λ. Hλ-atoms have full electron shell and are
therefore exceptionally stable. The proposal is that Hλ-atoms could replace ordinary hydrogen atoms
in hydrogen bonds [K43, K29] . Single base pair corresponds to 2 or 3 hydrogen bonds. The question
is whether λ-hydrogen atom might somehow relate to the anyons involved with topological quantum
computation.

Anyons could be dark protons resulting in the formation dark hydrogen bond in the fusion of HN

atom and its conjugate HNc , Nc = λ−N . Neutron scattering and electron diffraction suggest

2.4 The recent view about quantum TGD

Before detailed discussion of what p-adicization of quantum TGD could mean, it is good to have an
overall view about what quantum TGD in real context is.

2.4.1 Basic notions

The notions of imbedding space, 3-surface (and 4-surface), and configuration space (world of classical
worlds (WCW)) are central to quantum TGD. The original idea was that 3-surfaces are space-like
3-surfaces of H = M4 × CP2 or H = M4

+ × CP2, and WCW consists of all possible 3-surfaces in
H. The basic idea was that the definition of Kähler metric of WCW assigns to each X3 a unique
space-time surface X4(X3) allowing in this manner to realize general coordinate invariance. During
years these notions have however evolved considerably. Therefore it seems better to begin directly
from the recent picture.

The notion of imbedding space

Two generalizations of the notion of imbedding space were forced by number theoretical vision [K78,
K76] .

1. p-Adicization forced to generalize the notion of imbedding space by gluing real and p-adic
variants of imbedding space together along rationals and common algebraic numbers. The
generalized imbedding space has a book like structure with reals and various p-adic number
fields (including their algebraic extensions) representing the pages of the book.

2. With the discovery of zero energy ontology [K15, K20] it became clear that the so called causal
diamonds (CDs) interpreted as intersections M4

+ ∩M4
− of future and past directed light-cones



74 Chapter 2. TGD as a Generalized Number Theory I: p-Adicization Program

of M4 × CP2 define correlates for the quantum states. The position of the ”lower” tip of CD
characterizes the position of CD in H. If the temporal distance between upper and lower tip of
CD is quantized power of 2 multiples of CP2 length, p-adic length scale hypothesis [K57] follows
as a consequence. The upper resp. lower light-like boundary δM4

+ × CP2 resp. δM4
− × CP2

of CD can be regarded as the carrier of positive resp. negative energy part of the state. All
net quantum numbers of states vanish so that everything is creatable from vacuum. Space-time
surfaces assignable to zero energy states would would reside inside CD × CP2s and have their
3-D ends at the light-like boundaries of CD × CP2. Fractal structure is present in the sense
that CDs can contains CDs within CDs, and measurement resolution dictates the length scale
below which the sub-CDs are not visible.

3. The realization of the hierarchy of Planck constants [K26] led to a further generalization of
the notion of imbedding space. Generalized imbedding space is obtained by gluing together
Cartesian products of singular coverings and factor spaces of CD and CP2 to form a book like
structure. The particles at different pages of this book behave like dark matter relative to each
other. This generalization also brings in the geometric correlate for the selection of quantization
axes in the sense that the geometry of the sectors of the generalized imbedding space with non-
standard value of Planck constant involves symmetry breaking reducing the isometries to Cartan
subalgebra. Roughly speaking, each CD and CP2 is replaced with a union of CDs and CP2s
corresponding to different choices of quantization axes so that no breaking of Poincare and color
symmetries occurs at the level of entire WCW.

4. The construction of quantum theory at partonic level brings in very important delicacies related
to the Kähler gauge potential of CP2. Kähler gauge potential must have what one might call
pure gauge parts in M4 in order that the theory does not reduce to mere topological quantum
field theory. Hence the strict Cartesian product structure M4 × CP2 breaks down in a delicate
manner. These additional gauge components -present also in CP2- play key role in the model
of anyons, charge fractionization, and quantum Hall effect [K61] .

The notions of 3-surface and space-time surface

The question what one exactly means with 3-surface turned out to be non-trivial.

1. The original identification of 3-surfaces was as arbitrary space-like 3-surfaces subject to Equiva-
lence implied by General Coordinate Invariance. There was a problem related to the realization
of Equivalence Principle since it was not at all obvious why the preferred extremal X4(Y 3) for
Y 3 at X4(X3) and Diff4 related X3 should satisfy X4(Y 3) = X4(X3) .

2. Much later it became clear that light-like 3-surfaces have unique properties for serving as basic
dynamical objects, in particular for realizing the General Coordinate Invariance in 4-D sense
(obviously the identification resolves the above mentioned problem) and understanding the con-
formal symmetries of the theory. On basis of these symmetries light-like 3-surfaces can be
regarded as orbits of partonic 2-surfaces so that the theory is locally 2-dimensional. It is how-
ever important to emphasize that this indeed holds true only locally. At the level of WCW metric
this means that the components of the Kähler form and metric can be expressed in terms of
data assignable to 2-D partonic surfaces. It is however essential that information about normal
space of the 2-surface is needed.

3. Rather recently came the realization that light-like 3-surfaces can have singular topology in the
sense that they are analogous to Feynman diagrams. This means that the light-like 3-surfaces
representing lines of Feynman diagram can be glued along their 2-D ends playing the role of
vertices to form what I call generalized Feynman diagrams. The ends of lines are located at
boundaries of sub-CDs. This brings in also a hierarchy of time scales: the increase of the
measurement resolution means introduction of sub-CDs containing sub-Feynman diagrams. As
the resolution is improved, new sub-Feynman diagrams emerge so that effective 2-D character
holds true in discretized sense and in given resolution scale only.

The basic vision has been that space-time surfaces correspond to preferred extremals X4(X3) of
Kähler action. Kähler function K(X3) defining the Kähler geometry of the world of classical worlds
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would correspond to the Kähler action for the preferred extremal. The precise identification of the
preferred extremals actually has however remained open.

1. The obvious guess motivated by physical intuition was that preferred extremals correspond to
the absolute minima of Kähler action for space-time surfaces containing X3. This choice has
some nice implications. For instance, one can develop an argument for the existence of an
infinite number of conserved charges. If X3 is light-like surface- either light-like boundary of
X4 or light-like 3-surface assignable to a wormhole throat at which the induced metric of X4

changes its signature- this identification circumvents the obvious objections.

2. Much later number theoretical vision led to the conclusion that X4(X3
l,i), where X3

l,i denotes

a connected component of the light-like 3-surfaces X3
l , contain in their 4-D tangent space

T (X4(X3
l,i)) a subspace M2

i ⊂ M4 having interpretation as the plane of non-physical polar-
izations. This means a close connection with super string models. Geometrically this would
mean that the deformations of 3-surface in the plane of non-physical polarizations would not
contribute to the line element of WCW. This is as it must be since complexification does not
make sense in M2 degrees of freedom.

In number theoretical framework M2
i has interpretation as a preferred hyper-complex sub-space

of hyper-octonions defined as 8-D subspace of complexified octonions with the property that
the metric defined by the octonionic inner product has signature of M8. A stronger condition
would be that the condition holds true at all points of X4(X3) for a global choice M2 but this
is un-necessary and leads to strong un-proven conjectures. The condition M2

i ⊂ T (X4(X3
l,i))

in principle fixes the tangent space at X3
l,i, and one has good hopes that the boundary value

problem is well-defined and fixes X4(X3) uniquely as a preferred extremal of Kähler action.
This picture is rather convincing since the choice M2

i ⊂M3 plays also other important roles.

3. The next step [K15] was the realization that the construction of the configuration space geometry
in terms of modified Dirac action strengthens the boundary conditions to the condition that there
exists space-time coordinates in which the induced CP2 Kähler form and induced metric satisfy
the conditions Jni = 0, gni = 0 hold at X3

l . One could say that at X3
l situation is static both

metrically and for the Maxwell field defined by the induced Kähler form. There are reasons to
hope that this is the final step in a long process.

4. The weakest form of number theoretic compactification [K78] states that light-like 3-surfaces
X3 ⊂ X4(X3) ⊂ M8, where X4(X3) hyper-quaternionic surface in hyper-octonionic M8 can
be mapped to light-like 3-surfaces X3 ⊂ X4(X3) ⊂M4 × CP2, where X4(X3) is now preferred
extremum of Kähler action. The natural guess is that X4(X3) ⊂M8 is a preferred extremal of
Kähler action associated with Kähler form of E4 in the decomposition M8 = M4 × E4, where
M4 corresponds to hyper-quaternions. The conjecture would be that the value of the Kähler
action in M8 is same as in M4×CP2: in fact that 2-surface would have identical induced metric
and Kähler form so that this conjecture would follow trivial. M8−H duality would in this sense
be Kähler isometry.

The notion of configuration space

From the beginning there was a problem related to the precise definition of the configuration space
(”world of classical worlds” (WCW)). Should one regard CH as the space of 3-surfaces of M4 ×CP2

or M4
+ × CP2 or perhaps something more delicate.

1. For a long time I believed that the question ”M4
+ or M4?” had been settled in favor of M4

+ by
the fact that M4

+ has interpretation as empty Roberson-Walker cosmology. The huge conformal
symmetries assignable to δM4

+ × CP2 were interpreted as cosmological rather than laboratory
symmetries. The work with the conceptual problems related to the notions of energy and time,
and with the symmetries of quantum TGD, however led gradually to the realization that there
are strong reasons for considering M4 instead of M4

+.

2. With the discovery of zero energy ontology it became clear that the so called causal diamonds
(CDs) define excellent candidates for the fundamental building blocks of the configuration space
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or ”world of classical worlds” (WCW). The spaces CD ×CP2 regarded as subsets of H defined
the sectors of WCW.

3. This framework allows to realize the huge symmetries of δM4
±×CP2 as isometries of WCW. The

gigantic symmetries associated with the δM4
± × CP2 are also laboratory symmetries. Poincare

invariance fits very elegantly with the two types of super-conformal symmetries of TGD. The first
conformal symmetry corresponds to the light-like surfaces δM4

± × CP2 of the imbedding space
representing the upper and lower boundaries of CD. Second conformal symmetry corresponds
to light-like 3-surface X3

l , which can be boundaries of X4 and light-like surfaces separating
space-time regions with different signatures of the induced metric. This symmetry is identifiable
as the counterpart of the Kac Moody symmetry of string models.

A rather plausible conclusion is that configuration space (WCW) is a union of configuration spaces
associated with the spaces CD×CP2. CDs can contain CDs within CDs so that a fractal like hierarchy
having interpretation in terms of measurement resolution results. Since the complications due to p-
adic sectors and hierarchy of Planck constants are not relevant for the basic construction, it reduces
to a high degree to a study of a simple special case δM4

+ × CP2.
A further piece of understanding emerged from the following observations.

1. The induced Kähler form at the partonic 2-surface X2 - the basic dynamical object if holography
is accepted- can be seen as a fundamental symplectic invariant so that the values of εαβJαβ at
X2 define local symplectic invariants not subject to quantum fluctuations in the sense that they
would contribute to the configuration space metric. Hence only induced metric corresponds
to quantum fluctuating degrees of freedom at configuration space level and TGD is a genuine
theory of gravitation at this level.

2. Configuration space can be divided into slices for which the induced Kähler forms of CP2 and
δM4
± at the partonic 2-surfaces X2 at the light-like boundaries of CDs are fixed. The symplectic

group of δM4
±×CP2 parameterizes quantum fluctuating degrees of freedom in given scale (recall

the presence of hierarchy of CDs).

3. This leads to the identification of the coset space structure of the sub-configuration space asso-
ciated with given CD in terms of the generalized coset construction for super-symplectic and
super Kac-Moody type algebras (symmetries respecting light-likeness of light-like 3-surfaces).
Configuration space in quantum fluctuating degrees of freedom for given values of zero modes
can be regarded as being obtained by dividing symplectic group with Kac-Moody group. Equiv-
alently, the local coset space S2 × CP2 is in question: this was one of the first ideas about
configuration space which I gave up as too naive!

4. Generalized coset construction and coset space structure have very deep physical meaning since
they realize Equivalence Principle at quantum level: the identity of Super Virasoro generators
for super-symplectic and super Kac-Moody algebras implies that inertial and gravitational four-
momenta are identical.

2.4.2 The most recent vision about zero energy ontology

The generalization of the number concept obtained by fusing real and p-adics along rationals and
common algebraics is the basic philosophy behind p-adicization. This however requires that it is pos-
sible to speak about rational points of the imbedding space and the basic objection against the notion
of rational points of imbedding space common to real and various p-adic variants of the imbedding
space is the necessity to fix some special coordinates in turn implying the loss of a manifest general
coordinate invariance. The isometries of the imbedding space could save the situation provided one
can identify some special coordinate system in which isometry group reduces to its discrete subgroup.
The loss of the full isometry group could be compensated by assuming that WCW is union over
sub-WCW:s obtained by applying isometries on basic sub-WCW with discrete subgroup of isometries.

The combination of zero energy ontology realized in terms of a hierarchy causal diamonds and
hierarchy of Planck constants providing a description of dark matter and leading to a generalization
of the notion of imbedding space suggests that it is possible to realize this dream. The article [L10]
provides a brief summary about recent state of quantum TGD helping to understand the big picture
behind the following considerations.
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Zero energy ontology briefly

1. The basic construct in the zero energy ontology is the space CD × CP2, where the causal
diamond CD is defined as an intersection of future and past directed light-cones with time-like
separation between their tips regarded as points of the underlying universal Minkowski space
M4. In zero energy ontology physical states correspond to pairs of positive and negative energy
states located at the boundaries of the future and past directed light-cones of a particular CD.
CD:s form a fractal hierarchy and one can glue smaller CD:s within larger CD along the upper
light-cone boundary along a radial light-like ray: this construction recipe allows to understand
the asymmetry between positive and negative energies and why the arrow of experienced time
corresponds to the arrow of geometric time and also why the contents of sensory experience is
located to so narrow interval of geometric time. One can imagine evolution to occur as quantum
leaps in which the size of the largest CD in the hierarchy of personal CD:s increases in such a
manner that it becomes sub-CD of a larger CD. p-Adic length scale hypothesis follows if the
values of temporal distance T between tips of CD come in powers of 2n: a weaker condition
would be Tp = pT0, p prime, and would assign all p-adic time scales to the size scale hierarchy
of CDs. All conserved quantum numbers for zero energy states have vanishing net values. The
interpretation of zero energy states in the framework of positive energy ontology is as physical
events, say scattering events with positive and negative energy parts of the state interpreted as
initial and final states of the event.

2. In the realization of the hierarchy of Planck constants CD × CP2 is replaced with a Cartesian
product of book like structures formed by almost copies of CD:s and CP2:s defined by singular
coverings and factors spaces of CD and CP2 with singularities corresponding to intersection
M2∩CD and homologically trivial geodesic sphere S2 of CP2 for which the induced Kähler form
vanishes. The coverings and factor spaces of CD:s are glued together along common M2 ∩CD.
The coverings and factors spaces of CP2 are glued together along common homologically non-
trivial geodesic sphere S2. The choice of preferred M2 as subspace of tangent space of X4 at
all its points and having interpretation as space of non-physical polarizations, brings M2 into
the theory also in different manner. S2 in turn defines a subspace of the much larger space of
vacuum extremals as surfaces inside M4 × S2.

3. Configuration space (the world of classical worlds, WCW) decomposes into a union of sub-
WCW:s corresponding to different choices of M2 and S2 and also to different choices of the
quantization axes of spin and energy and and color isospin and hyper-charge for each choice of
this kind. This means breaking down of the isometries to a subgroup. This can be compensated
by the fact that the union can be taken over the different choices of this subgroup.

4. p-Adicization requires a further breakdown to discrete subgroups of the resulting sub-groups of
the isometry groups but again a union over sub-WCW:s corresponding to different choices of the
discrete subgroup can be assumed. Discretization relates also naturally to the notion of number
theoretic braid.

Consider now the critical questions.

1. Very naively one could think that center of mass wave functions in the union of sectors could
give rise to representations of Poincare group. This does not conform with zero energy ontology,
where energy-momentum should be assignable to say positive energy part of the state and
where these degrees of freedom are expected to be pure gauge degrees of freedom. If zero energy
ontology makes sense, then the states in the union over the various copies corresponding to
different choices of M2 and S2 would give rise to wave functions having no dynamical meaning.
This would bring in nothing new so that one could fix the gauge by choosing preferred M2 and
S2 without losing anything. This picture is favored by the interpretation of M2 as the space of
longitudinal polarizations.

2. The crucial question is whether it is really possible to speak about zero energy states for a given
sector defined by generalized imbedding space with fixed M2 and S2. Classically this is possible
and conserved quantities are well defined. In quantal situation the presence of the light-cone
boundaries breaks full Poincare invariance although the infinitesimal version of this invariance
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is preserved. Note that the basic dynamical objects are 3-D light-like ”legs” of the generalized
Feynman diagrams.

Definition of energy in zero energy ontology

Can one then define the notion of energy for positive and negative energy parts of the state? There
are two alternative approaches depending on whether one allows or does not allow wave-functions for
the positions of tips of light-cones.

Consider first the naive option for which four momenta are assigned to the wave functions assigned
to the tips of CD:s.

1. The condition that the tips are at time-like distance does not allow separation to a product but
only following kind of wave functions

Ψ = exp[ip · (m+ −m−)]Θ(T 2)Θ(m0
+ −m0

−)Φ(p) , T 2 = (m+ −m−)2 . (2.4.1)

Here m+ and m− denote the positions of the light-cones and Θ denotes step function. Φ denotes
configuration space spinor field in internal degrees of freedom of 3-surface. One can introduce
also the decomposition into particles by introducing sub-CD:s glued to the upper light-cone
boundary of CD.

2. The first criticism is that only a local eigen state of 4-momentum operators p± = ~∇/i is in
question everywhere except at boundaries and at the tips of the CD with exact translational
invariance broken by the two step functions having a natural classical interpretation. The second
criticism is that the quantization of the temporal distance between the tips to T = 2kT0 is in
conflict with translational invariance and reduces it to a discrete scaling invariance.

The less naive approach relying of super conformal structures of quantum TGD assumes fixed
value of T and therefore allows the crucial quantization condition T = 2kT0.

1. Since light-like 3-surfaces assignable to incoming and outgoing legs of the generalized Feynman
diagrams are the basic objects, can hope of having enough translational invariance to define the
notion of energy. If translations are restricted to time-like translations acting in the direction of
the future (past) then one has local translation invariance of dynamics for classical field equations
inside δM4

± as a kind of semigroup. Also the M4 translations leading to interior of X4 from the
light-like 2-surfaces surfaces act as translations. Classically these restrictions correspond to non-
tachyonic momenta defining the allowed directions of translations realizable as particle motions.
These two kinds of translations have been assigned to super-symplectic conformal symmetries
at δM4

± × CP2 and and super Kac-Moody type conformal symmetries at light-like 3-surfaces.
Equivalence Principle in TGD framework states that these two conformal symmetries define
a structure completely analogous to a coset representation of conformal algebras so that the
four-momenta associated with the two representations are identical [K20] .

2. The condition selecting preferred extremals of Kähler action is induced by a global selection of
M2 as a plane belonging to the tangent space of X4 at all its points [K20] . The M4 translations
of X4 as a whole in general respect the form of this condition in the interior. Furthermore, if M4

translations are restricted to M2, also the condition itself - rather than only its general form - is
respected. This observation, the earlier experience with the p-adic mass calculations, and also the
treatment of quarks and gluons in QCD encourage to consider the possibility that translational
invariance should be restricted to M2 translations so that mass squared, longitudinal momentum
and transversal mass squared would be well defined quantum numbers. This would be enough to
realize zero energy ontology. Encouragingly, M2 appears also in the generalization of the causal
diamond to a book-like structure forced by the realization of the hierarchy of Planck constant
at the level of the imbedding space.
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3. That the cm degrees of freedom for CD would be gauge like degrees of freedom sounds strange.
The paradoxical feeling disappears as one realizes that this is not the case for sub-CD:s, which
indeed can have non-trivial correlation functions with either upper or lower tip of the CD playing
a role analogous to that of an argument of n-point function in QFT description. One can also
say that largest CD in the hierarchy defines infrared cutoff.

2.4.3 Configuration space geometry

The reader not familiar with the basic ideas related to the construction of the configuration space
geometry and spinor structure is warmly encouraged to read [K36, K17, K15] . The number theoretic
ideas as all other ideas have evolved through un-necessarily strong conjectures. One of them was the
idea that conformal weights are complex and given by the zeros of Riemann zeta. Some numerical
accidents motivated this idea but it soon lead to non-plausible conjectures about the number theoretic
anatomy for the zeros of zeta and many of them turned out to be wrong. The idea about the role of
zeta function was not however completely wrong. It turned out that one can assign to the eigenvalues
of the modified Dirac operator what might be called Dirac zeta and ζD is expressible in terms of
gamma functions and Rieman Zeta with shifted argument but do not satisfy Riemann Hypothesis.

Configuration space as a union of symmetric spaces

The idea about symmetric space is extremely beautiful but it took a long time and several false
alarms before the time was ripe for identifying the precise form of the Cartan decomposition g = t+h
satisfying the defining conditions

g = t+ h , [t, t] ⊂ h , [h, t] ⊂ t . (2.4.2)

The ultimate solution of the puzzle turned out to be amazingly simple and came only after quantum
TGD was understood well enough.

Configuration space geometry allows two super-conformal symmetries. The first one corresponds to
super-symplectic transformations acting at the level of imbedding space. The second one corresponds
to super Kac-Moody symmetry acting as deformations of light-like 3-surfaces respecting their light-
likeness. Super Kac-Moody algebra can be regarded as sub-algebra of super-symplectic algebra, and
quantum states correspond to the coset representations for these two algebras so that the differences
of the corresponding super-Virasoro generators annihilate physical states. This obviously generalizes
Goddard-Olive-Kent construction [A217] . The physical interpretation is in terms of Equivalence
Principle. After having realized this it took still some time to realize that this coset representation
and therefore also Equivalence Principle also corresponds to the coset structure of the configuration
space!

The conclusion would be that t corresponds to super-symplectic algebra made also local with
respect to X3 and h corresponds to super Kac-Moody algebra. The experience with finite-dimensional
coset spaces would suggest that super Kac-Moody generators interpreted in terms of h leave the points
of configuration space analogous to the origin of say CP2 invariant and in fact vanish at this point.
Therefore super Kac-Moody generators should vanish for those 3-surfaces X3

l which correspond to
the origin of coset space. The maxima of Kähler function could correspond to this kind of points
and could play also an essential role in the integration over configuration space by generalizing the
Gaussian integration of free quantum field theories.

The identification of the precise form of the coset space structure is however somewhat delicate.

1. The essential point is that both symplectic and Kac-Moody algebras allow representation in
terms of X3-local Hamiltonians. The general expression for the Hamilton of Kac-Moody algebra
is

H =
∑

ΦA(x)HA . (2.4.3)

Here HA are Hamiltonians of SO(3)× SU(3) acting in δX3
l ×CP2. For symplectic algebra any

Hamiltonian is allowed. If x corresponds to any point of X3
l , one must assume a slicing of the

causal diamond CD by translates of δM4
±.
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2. The functions Φ(x) are not arbitrary but constrained by the condition that J = εαβJαβ
√
g2

remains invariant under to action of the algebra at X2 at least. Let us assume that one can
restrict the consideration to single Hamiltonian so that the transformation is generated by
Φ(x)HA and that to each Φ(x) there corresponds a diffeomorphism of X2, which is a symplectic
transformation of X2 with respect to symplectic form εαβ and generated by Hamiltonian Ψ(x).
This transforms the invariance condition to

{HA,Φ} ≡ ∂αH
Aεαβ∂βΦ = ∂αJε

αβ∂βΨA = {J,ΨA} . (2.4.4)

This condition can be solved identically by assuming that ΦA and Ψ are proportional to arbitrary
smooth function of J :

Φ = f(J) , ΨA = −f(J)HA . (2.4.5)

Therefore the X2 local symplectomorphisms of H reduce to symplectic transformations of X2

with Hamiltonians depending on single coordinate J of X2. The analogy with conformal invari-
ance for which transformations depend on single coordinate z is obvious. By effective metric
2-dimensionality these conditions can be formulated and satisfied at entire light-like 3-surface
Y 3
l since εα exists as a tensor also now. As far as the anti-commutation relations for induced

spinor fields are considered this means that J = consant curves behave as points points. For
extrema of J appearing as candidates for points of number theoretic braids J = constant curves
reduce to points.

3. For symplectic generators the dependence of form on r∆ on light-like coordinate of δX3
l × CP2

is allowed. ∆ is complex parameter whose modulus squared is interpreted as conformal weight.
∆ is identified as analogous quantum number labeling the modes of induced spinor field.

4. One can wonder whether the choices of the rM = constant sphere S2 is the only choice. The
Hamiltonin-Jacobi coordinate for X4

X3
l

suggest an alternative choice as E2 in the decomposition

of M4 = M2(x)×E2(x) required by number theoretical compactification and present for known
extremals of Kähler action with Minkowskian signature of induced metric. In this case SO(3)
would be replaced with SO(2). It however seems that the radial light-like coordinate u of X4(X3

l )
would remain the same since any other curve along light-like boundary would be space-like.

5. The vector fields for representing Kac-Moody algebra must vanish at the partonic 2-surface
X2 ⊂ δM4

± × CP2. The corresponding vector field must vanish at each point of X2:

jk =
∑

ΦA(x)JklHA
l = 0 . (2.4.6)

This means that the vector field corresponds to SO(2) × U(2) defining the isotropy group of
the point of S2 × CP2. This expression must be generalized to the case when Kac-Moody
transformation is allowed to induced diffeomorphism of X2.

This expression could be deduced from the idea that the surfaces X2 are analogous to origin of
CP2 at which U(2) vector fields vanish. Configuration space at X2 could be also regarded as the
analog of the origin of local S2×CP2. This interpretation is in accordance with the original idea
which however was given up in the lack of proper realization. The same picture can be deduced
from braiding in which case the Kac-Moody algebra corresponds to local SO(2)×U(2) for each
point of the braid at X2. The condition that Kac-Moody generators with positive conformal
weight annihilate physical states could be interpreted by stating effective 2-dimensionality in the
sense that the deformations of X3

l preserving its light-likeness do not affect the physics. Note
however that Kac-Moody type Virasoro generators do not annihilate physical states.
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6. Kac-Moody algebra generators must leave induced Kähler form invariant at X2 but this trivially
true since they vanish at each point of X2. Their commutators with symplectic generators do
not however vanish.

7. The conditions of Cartan decomposition are satisfied. The commutators of the Kac-Moody
vector fields with symplectic generators are non-vanishing since the action of symplectic gen-
erator on Kac-Moody generator restricted to X2 gives a non-vanishing result belonging to the
symplectic algebra. Also the commutators of Kac-Moody generators are Kac-Moody generators.

Zero modes

Zero modes are by definition those degrees of freedom which do not correspond to the complex
coordinates of the configuration space contributing to the metric.

1. J as function of X2 coordinates defines the fundamental collection of zero modes and its extrema
at the points of braid defines subset of zero modes. There are also other zero modes labeled
by symplectic invariants described in [K17] . The size and shape of the 3-surface and classical
Kähler field correspond to these zero modes. In particular, the induced Kähler form is purely
symplectic invariant from which one can deduce this kind of non-local invariants. Especially
interesting local symplectic and diffeo-invariants are the extrema of J = εµνJµν . Both CP2 and
δM4
± Kähler form define this kind of invariants. These appear in the construction of symplectic

fusion algebras [K14] .

2. Zero modes decompose to symplectic covariants and invariants. The symplectic transformations
are generated by the function basis of M4

+ × CP2 consist of complexified Hamiltonians labeled
by the label -call it n - assignable to the functions fn(J) and by the labels of Hamiltonians of
δM4
± × CP2. If Hamiltonian is real it corresponds to zero mode. The most obvious candidates

for zero modes are Hamiltonians which do not depend neither on the radial coordinate of δM4
±

nor on J .

3. Since the values of the induced Kähler form represent local zero modes, the quantum fluctuating
degrees of freedom are parameterized by the symplectic transformations of δM± × CP2 [K19] .
From the point of view of quantum theory configuration space decomposes into slices character-
ized by the induced Kähler form at partonic 2-surfaces and functional integral reduces to that
over the symplectic group. Induced Kähler form is genuinely classical field and only the induced
metric quantum fluctuates so that TGD in a well-defined sense reduces to quantum gravity in
the quantum fluctuating configuration space degrees of freedom.

Kac-Moody algebra respecting the light-like character of 3-surface and leaving partonic surface
X2 invariant defines second candidate for a sub-space of zero modes. These zero modes correspond
to the interior of space-like 3-surface X3 or its light-like dual X3

l . Zero mode is in question only if
the configuration space metric remains invariant under Kac-Moody symmetries. The identification of
Kähler function as Dirac determinant makes zero mode condition non-trivial.

1. If the eigenvalues correspond to the generalized eigenvalues of X2 part D(X2) of D(X3
l ) rather

than those of D(X3
l ), this independence is achieved. This implies also the effective finite-

dimensionality of the configuration space. One can however argue that General Coordinate
Invariance allows the replacement of X2 with an arbitrary time=constant section X2(v) along
X3
l . The condition would be that the eigenvalues of D(X2(v)) for X3

l and its Kac-Moody
transforms differ by a multiplication by modulus squared of a holomorphic function of parameters
characterizing Kac-Moody group. Also the replacement ofX3

l with Y 3
l parallel should be possible

by General Coordinate Invariance and accompanied by the replacement X2 → X2(u). Obviously
General Coordinate Invariance would pose immense constraints on configuration space metric.

2. In the presence of instanton term D(X3
l ) could be used to define Dirac determinant. If the part

xk of eigenvalue λk +
√
nxk scales like λk in Kac-Moody transformations and if the scaling is as

above, zero mode property is guaranteed.
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3. The value of the Kähler function in principle varies and can have maximum for some values
of deformation parameters. If one can define functional integral over zero modes (not possible
in terms of the functional integral defined by configuration space metric), quantum classical
correspondence realized in terms of stationary phase approximation of functional integral by
utilizing a phase factor depending on quantum numbers assigned to the braid strands would
provide the general gauge fixing procedure. On the other hand, conformal cutoff would reduce
the integration to that over a finite-dimensional space so that stationary phase approximation
could work. If there exist no functional integral of this kind, one could still select the preferred
zero mode as by stationary phase criterion. This would be natural since genuinely classical
degrees of freedom are in question. This option would be also p-adically very natural.

How to construct the super-symplectic algebra?

The configuration space of 3-surfaces Y 3 as a union of infinite-dimensional symmetric spaces labeled
by zero modes obeying real topology and having metric and spinor structure determined solely by
super-symmetry, is the basic intuitive picture about configuration space geometry.

Algebraic physics vision suggests that the representation of the generators of the symplectic trans-
formations of the lightlike 7-surface δM4

± × CP2 must be expressible in terms of rational functions.
In the case that Hamiltonians correspond to irreducible representations of SU(3), they are products
of rational functions of preferred CP2 coordinates with functions depending on coordinates of X3

l . If
the Hamiltonians transform according to an irreducible representation of the rotation group leaving
rM = constant sphere S2 invariant, they are rational functions of the complex coordinates of S2.
The remaining problems relate to the 3-integrals appearing in the definition of configuration space
Hamiltonians. The solution of these problems comes in terms of (number theoretic) braids, which
are now a basic notion of quantum TGD. Integrals are simply replaced by sums making sense also
p-adically.

The modified Dirac action allows to deduce explicit expressions for the super generators. This
allows to extend the formulas for the configuration space Hamiltonians in terms of the classical sym-
plectic charges associated with the Kähler action to the formulas for super-symplectic charges. Con-
figuration space metric, being numerically equal to the Kähler form in complex coordinates, in turn
relates directly to the symplectic charges. A natural expectation is that gamma matrices can be
related by an analogous formula to the expressions for the super-symplectic charges.

2.4.4 The identification of number theoretic braids

To specify number theoretical criticality one must specify some physically preferred coordinates for
M4 × CP2 or at least δM4

± × CP2. Number theoretical criticality requires that braid belongs to the
algebraic intersection of real and p-adic variants of the partonic 2-surface so that number theoretical
criticality reduces to a finite number of conditions. This is however not strong enough condition and
one must specify further physical conditions.

What are the preferred coordinates for H?

What are the preferred coordinates of M4 and CP2 in which algebraicity of the points is required
is not completely clear. The isometries of these spaces must be involved in the identification as well
as the choice of quantization axes for given CD. In [K53] I have discussed the natural preferred
coordinates of M4 and CP2.

1. For M4 linear M4 coordinates chosen in such manner that M2×E2 decomposition fixing quan-
tization axes is respected are very natural. This restricts the allowed Lorentz transformations to
Lorentz boosts in M2 and rotations in E2 and the identification of M2 as hyper-complex plane
fixes time coordinate uniquely. E2 coordinates are fixed apart from the action of SO(2) rotation.
The rationalization of trigonometric functions of angle variables allows angles associated with
Pythagorean triangles as number theoretically simplest ones.

2. The case of CP2 is not so easy. The most obvious guess in the case of CP2 the coordinates
corresponds to complex coordinates of CP2 transforming linearly under U(2). The condition
that color isospin rotations act as phase multiplications fixes the complex coordinates uniquely.
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Also the complex coordinates transforming linearly under SO(3) rotations are natural choice for
S2 (rM = constant sphere at δM4

±).

3. Another manner to deal with CP2 is to apply number M8−H duality. In M8 CP2 corresponds to
E4 and the situation reduces to linear one and SO(4) isometries help to fix preferred coordinate
axis by decomposing E4 as E4 = E2 × E2. Coordinates are fixed apart the action of the
commuting SO(2) sub-groups acting in the planes E2. It is not clear whether the images of
algebraic points of E4 at space-time surface are mapped to algebraic points of CP2.

The notion of number theoretical braid

Braids -not necessary number theoretical- provide a realization discretization as a space-time correlate
for the finite measurement resolution. The notion of braid was inspired by the idea about quantum
TGD as almost topological quantum field theory. Although the original form of this idea has been
buried, the notion of braid has survived: in the decomposition of space-time sheets to string world
sheets, the ends of strings define representatives for braid strands at light-like 3-surfaces.

The notion of number theoretic universality inspired the much more restrictive notion of number
theoretic braid requiring that the points in the intersection of the braid with the partonic 2-surface
correspond to rational or at most algebraic points of H in preferred coordinates fixed by symmetry
considerations. The challenge has been to find a unique identification of the number theoretic braid or
at least of the end points of the braid. The following consideration suggest that the number theoretic
braids are not a useful notion in the generic case but make sense and are needed in the intersection
of real and p-adic worlds which is in crucial role in TGD based vision about living matter [K47] .

It is only the braiding that matters in topological quantum field theories used to classify braids.
Hence braid should require only the fixing of the end points of the braids at the intersection of the braid
at the light-like boundaries of CDs and the braiding equivalence class of the braid itself. Therefore it
is enough is to specify the topology of the braid and the end points of the braid in accordance with
the attribute ”number theoretic”. Of course, the condition that all points of the strand of the number
theoretic braid are algebraic is impossible to satisfy.

The situation in which the equations defining X2 make sense both in real sense and p-adic sense
using appropriate algebraic extension of p-adic number field is central in the TGD based vision about
living matter [K47] . The reason is that in this case the notion of number entanglement theoretic
entropy having negative values makes sense and entanglement becomes information carrying. This
motivates the identification of life as something in the intersection of real and p-adic worlds. In
this situation the identification of the ends of the number theoretic braid as points belonging to the
intersection of real and p-adic worlds is natural. These points -call them briefly algebraic points- belong
to the algebraic extension of rationals needed to define the algebraic extension of p-adic numbers.
This definition however makes sense also when the equations defining the partonic 2-surfaces fail
to make sense in both real and p-adic sense. In the generic case the set of points satisfying the
conditions is discrete. For instance, according to Fermat’s theorem the set of rational points satisfying
Xn + Y n = Zn reduces to the point (0, 0, 0) for n = 3, 4, .... Hence the constraint might be quite
enough in the intersection of real and p-adic worlds where the choice of the algebraic extension is
unique.

One can however criticize this proposal.

1. One must fix the the number of points of the braid and outside the intersection and the non-
uniquencess of the algebraic extension makes the situation problematic. Physical intuition sug-
gests that the points of braid define carriers of quantum numbers assignable to second quantized
induced spinor fields so that the total number of fermions antifermions would define the number
of braids. In the intersection the highly non-trivial implication is that this number cannot exceed
the number of algebraic points.

2. In the generic case one expects that even the smallest deformation of the partonic 2-surface
can change the number of algebraic points and also the character of the algebraic extension
of rational numbers needed. The restriction to rational points is not expected to help in the
generic case. If the notion of number theoretical braid is meant to be practical, must be able to
decompose WCW to open sets inside which the numbers of algebraic points of braid at its ends
are constant. For real topology this is expected to be impossible and it does not make sense
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to use p-adic topology for WCW whose points do not allow interpretation as p-adic partonic
surfaces.

3. In the intersection of real and p-adic worlds which corresponds to a discrete subset of WCW,
the situation is different. Since the coefficients of polynomials involved with the definition of
the partonic 2-surface must be rational or at most algebraic, continuous deformations are not
possible so that one avoids the problem.

4. This forces to ask the reason why for the number theoretic braids. In the generic case they
seem to produce only troubles. In the intersection of real and p-adic worlds they could however
allow the construction of the elements of M -matrix describing quantum transitions changing
p-adic to real surfaces and vice versa as realizations of intentions and generation of cognitions.
In this the case it is natural that only the data from the intersection of the two worlds are used.
In [K47] I have sketched the idea about number theoretic quantum field theory as a description
of intentional action and cognition.

There is also the the problem of fixing the interior points of the braid modulo deformations not
affecting the topology of the braid.

1. Infinite number of non-equivalent braidings are possible. Should one allow all possible braidings
for a fixed light-like 3-surface and say that their existence is what makes the dynamics essentially
three-dimensional even in the topological sense? In this case there would be no problems with
the condition that the points at both ends of braid are algebraic.

2. Or should one try to characterize the braiding uniquely for a given partonic 2-surfaces and
corresponding 4-D tangent space distributions? The slicing of the space-time sheet by partonic
2-surfaces and string word sheets suggests that the ends of string world sheets could define the
braid strands in the generic context when there is no algebraicity condition involved. This could
be taken as a very natural manner to fix the topology of braid but leave the freedom to choose
the representative for the braid. In the intersection of real and p-adic worlds there is no good
reason for the end points of strands in this case to be algebraic at both ends of the string world
sheet. One can however start from the braid defined by the end points of string world sheets,
restrict the end points to be algebraic at the end with a smaller number of algebraic points and
and then perform a topologically non-trivial deformation of the braid so that also the points
at the other end are algebraic? Non-trivial deformations need not be possible for all possible
choices of algebraic braid points at the other end of braid and different choices of the set of
algebraic points would give rise to different braidings. A further constraint is that only the
algebraic points at which one has assign fermion or antifermion are used so that the number of
braid points is not always maximal.

3. One can also ask whether one should perform the gauge fixing for the strands of the number
theoretic braid using algebraic functions making sense both in real and p-adic context. This
question does not seem terribly relevant since since it is only the topology of the braid that
matters.

Symplectic triangulations and braids

The identification of the edges of the symplectic triangulation as the end points of the braid is favored
by conceptual economy. The nodes of the symplectic triangulation would naturally correspond to
the points in the intersection of the braid with the light-like boundaries of CD carrying fermion or
antifermion number. The number of these points could be arbitrarily large in the generic case but
in the intersection of real and p-adic worlds these points correspond to subset of algebraic points
belonging to the algebraic extension of rationals associated with the definition of partonic 2-surfaces
so that the sum of fermion and antifermion numbers would be bounded above. The presence of
fermions in the nodes would be the physical prerequisite for measuring the phase factors defined by
the magnetic fluxes. This could be understood in terms of gauge invariance forcing to assign to a pair
of points of triangulation the non-integrable phase factor defined by the Kähler gauge potential.

The remaining problem is how uniquely the edges of the triangulation can be determined.
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1. The allowance of all possible choices for edges would bring in an infinite number of degrees
of freedom. These curves would be analogous to freely vibrating strings. This option is not
attractive. One should be able to pose conditions on edges and whatever the manner to specify
the edges might be, it must make sense also in the intersection of real and p-adic worlds. In
this case the total phase factor must be a root of unity in the algebraic extension of rationals
involved and this poses quantization rules analogous to those for magnetic flux. The strongest
condition is that the edges are such that the non-integrable phase factor is a root of unity
for each edge. It will be found that similar quantization is implied also by the associativity
conditions and this justifies the interpretation of phase factors defining the fusion algebra in
terms of the Kähler magnetic fluxes. This would pose strong constraints on the choice of edges
but would not fix completely the phase factors, and it seems that one must allow all possible
triangulations consistent with this condition and the associativity conditions so that physical
state is a quantum superposition over all possible symplectic triangulations characterized by the
fusion algebras.

2. In the real context one would have an infinite hierarchy of symplectic triangulations and fusion
algebras satisfying the associativity conditions with the number of edges equal to the total
number N of fermions and antifermions. Encouragingly, this hierarchy corresponds also to a
hierarchy of N = N SUSY algebras [K28] (large values of N are not a catastrophe in TGD
framework since the physical content of SUSY symmetry is not the same as that in the standard
approach). In the intersection of real and p-adic worlds the value of N would be bounded by the
total number of algebraic points. Hence the notion of finite measurement resolution, cutoff in
N and bound on the total fermion number would make physics very simple in the intersection
of real and p-adic worlds.

Two kinds of symplectic triangulations are possible since one can use the symplectic forms associ-
ated with CP2 and rM = constant sphere S2 of light-cone boundary. For a given collection of nodes
the choices of edges could be different for these two kinds of triangulations. Physical state would be
proportional to the product of the phase factors assigned to these triangulations.

2.4.5 Finite measurement resolution and reduced configuration space

Finite measurement resolution implies the notion of braid which is now central part of construction
of M -matric [K15] . The notion of braid in turn leads to the notion of reduced configuration space.

1. 3-surface reduces effectively to a set of points defined by the intersection of δM4
± ×CP2 projec-

tion of the partonic 2-surface X2 with light-like radial geodesic or the intersection of its CP2

projection with the geodesic sphere S2
i , i = I, II.

2. Second kind of braid corresponds to the extrema of J = εαβJαβ
√
g2 at X2. Here the induced

Kähler forms of both δM4
± and CP2 can be considered. Also this option defines the braid

physically and the number of points is finite in the generic situation.

Number theoretic braids reduce the configuration space to a finite-dimensional space defined as
a coset space of symplectic group of δM4

± × CP2 obtained by dividing with the sub-group of the
symplectic group leaving the braid points invariant. The resulting space is (δM4

± ×CP2)n/Sn, where
n is the number of braid points. If the proposed criteria define the braid, n and measurement resolution
is characterized by the geometry of X2.

This raises issues about the metric of the reduced configuration space as deduced from the spectrum
of the modified Dirac operator.

1. Kac-Moody symmetry would suggest that the finite number of n = 0 modes determine the Kähler
function and metric exactly. Also the metric of the coset space determined by measurement
resolution could naturally determined as derivatives of the logarithms of the eigen values with
respect to the complex coordinates of (S2×CP2)n. In principle, it would be possible to deduced
the metric numerically. If one allows arbitrary number of braid points then n→∞ limit could
give rise to the continuum formulation of configuration space Hamiltonians and metric.
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2. The simplest option would be that the metric reduces apart from a scaling factor to a direct
sum of the metrics assignable to the factors of the Cartesian power. Even if this happens, the
scaling factor must be non-trivial and carry dependence on the induced Kähler form which is
constant along the symplectic orbit and defines the fundamental zero modes. This expectation
is probably wrong. Kähler function codes correlations even between different components of
partonic 2-surfaces and it would be surprising if there were no correlations between points
of the same partonic 2-surface. A new element as compared to general relativity would be
geometrization of n-particle system in terms of the metric of the reduced configuration space.

2.4.6 Does reduced configuration space allow TGD Universe to act as a
universal math machine?

The title relates only the very loosely to the main topic of the chapter. The excuse for including this
material is that TGD inspired theory of consciousness allows to interpret the notions of zero energy
state and reduced configuration space in terms of mathematical cognition.

The questions which lead to the arguments represented below were represented in different context
[K38] related to the TGD inspired ideas about number theoretic Langlands correspondence. TGD
inspired theory of consciousness - in particular the question about the physical correlates of Boolean
statements and conscious mathematical deductions- is second definer of context.

The questions are following. Could one find a representations of both Lie groups and their linear
and non-linear representation spaces -and even more - of any manifold representable as a sub-manifold
of some linear space in terms of braid points at partonic 2-surfaces X2? What about various kinds
of projective spaces and coset spaces? Can one construct representations of corresponding function
spaces in terms of configuration space spinor fields? Can one build representations of parameter groups
of Lie groups as braided representations defined by the orbits of braid points in X3

l ?
A professional mathematician - if she still continues reading - might regard the following argument

as rather pathetic poor man’s argument but I want to be honest and demonstrate my stupidity openly.

1. The n braid points represent points of δH = δM4
± ×CP2 so that braid points represent a point

of 7n-dimensional space δHn/Sn. δM4
± corresponds to E3 with origin removed but E2n/Sn =

Cn/Sn can be represented as a sub-manifold of δM4
±. This allows to almost-represent both real

and complex linear spaces. E2 has a unique identification based on M4 = M2×E2 decomposition
required by the choice of quantization axis. One can also represent the spaces (CP2)n/Sn in
this manner.

2. The first - and really serious - problem is caused by the identification of the points obtained
by permuting the n coordinates: this is of course what makes possible the braiding since braid
group is the fundamental group of (X2)n. Could the quantum numbers at the braid points act
as markers distinguishing between them so that one would effectively have E2n? Could the fact
that the representing points are those of imbedding space rather than X2 be of significance?
Second - less serious - problem is that the finite size of CD allows to represent only a finite
region of E2. On the other hand, ideal mathematician is a non-existing species and even non-
ideal mathematician can imagine the limit at which the size of CD becomes infinite.

3. Matrix groups can be represented as sub-manifolds of linear spaces defined by the general linear
group Gl(n,R) and Gl(n,C). In the p-adic pages of the imbedding space one can realize also
the p-adic variants of general linear groups. Hence it is possible to imbed any real (complex)
Lie group to E2n (Cn), if n is chosen large enough.

4. Configuration space spinor fields restricted to the linear representations spaces or to the group
itself represented in this manner would allow to realize as a special case various function spaces,
in particular groups algebras. If configuration space spinor fields satisfy additional symmetries,
projective spaces and various coset spaces can be realized as effective spaces. For instance CP2

could be realized effectively as SU(3)/U(2) by requiring U(2) invariance of the configuration
space spinor fields in SU(3) or as C3/Z by requiring that configuration space spinor field is scale
invariant. Projective spaces might be also realized more concretely as imbeddings to (CP2)n.

5. The action of group element g = exp(Xt) belonging to a one-parameter sub-group of a non-
compact linear group in a real (complex) linear representation space of dimension m could be
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realized in a subspace of E2n, m < 2n (Cn, m ≤ n), as a flow in X3
l taking the initial configu-

ration of points of representation space to the final configuration. Braid strands - the orbits of
points pi defining the point p of the representation manifold under the action of one-parameter
subgroup- would correspond to the points exp(Xu)(p) , 0 ≤ u ≤ t. Similar representation would
work also in the group itself represented in a similar manner.

6. Braiding in X3
l would induce a braided representation for the action of the one parameter

subgroup. This representation is not quite the same thing as the automorphic representation
since braiding is involved. Also trivial braid group representation is possible if the representation
can be selected freely rather than being determined by the transformation properties of fermionic
oscillator operator basis in the braiding.

7. An important prerequisite for math machine property is that the wave function in the space of
light-like 3-surfaces with fixed ends can be chosen freely. This is the case since the degrees of
freedom associate with the interior of light-like 3-surface X3

l correspond to zero modes assignable
to Kac-Moody symmetries [K17] . Dicretization seems however necessary since functional in-
tegral in these degrees of freedom is not-well defined even in the real sense and even less so
p-adically. This conforms with the fact that real world mathematical representations are always
discrete. Quantum classical correspondence suggests the dynamics represented by X3

l correlates
with the quantum numbers assigned with X2 so that Boolean statements represented in terms
of Fermionic Fock states would be in one-one correspondence with these wave functions.

Besides representing mathematical structures this kind of math machine would be able to perform
mathematical deductions. The fermionic part of the state zero energy state could be interpreted as a
quantum super-position of Boolean statement Ai → Bi representing various instances of the general
rule A → B. Only the statements consistent with fundamental conservation laws would be possible.
Quantum measurements performed for both positive and negative energy parts of the state would
produce statements. Performing the measurement of the observable O(A → B) would produce from
a given state a zero energy state representing statement A → B. If the measurement of observable
O(C → D) affects this state then the statement (A → B) → (C → D) cannot hold true. For A = B
the situation reduces to simpler logic where one tests truth value of statements of form A → B. By
increasing the number of instances in the quantum states generalizations of the rule can be tested.

2.4.7 Configuration space Kähler function as Dirac determinant

The recent progress in the understanding of how the information about preferred extremal of Kähler
action is feeded to the eigenvalue spectrum of modified Dirac operator [K15] provides additional
insights and suggests that p-adic variant of configuration space might make sense in very general
sense.

The basic conjecture is that the exponent of Kähler function is identifiable as Dirac determinant.
The basic problem is which modified Dirac action should one choose. The four-dimensional modified
Dirac action associated with Kähler action or the 3-D modified Dirac action associated with C − S
action? Or something else?

1. The first guess inspired by TGD as almost-TQFT was that C−S action is enough. The problems
are encountered when one tries to define Dirac determinant. The eigenvalues of the modified
Dirac equation are functions rather than constants and this leads to difficulties in the definition
of the Dirac determinant. The proposal was that Dirac determinant could be defined as product
of the the values of generalized eigenvalues in the set of points defined by the number theoretic
braid. This kind of definition is however questionable since it does not have obvious connection
with the standard definition.

2. Second guess was that also 4-D modified Dirac action is needed. The physical picture would
be that the induced spinor fields restricted to the light-like 3-surfaces are singular solutions of
4-D Dirac operator. Since the modified Dirac equation can be written as a conservation law for
super current this idea translates to the condition that the ”normal” component of the super
current vanishes at X43l and tangential component satisfies current conservation meaning that
3-D variant of modified Dirac equation results. There is a unique function of the light-like
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coordinate r defining the time coordinate and eigenmodes of transversal part of modified Dirac
operator define the spectrum of also the modified Dirac operator associated with C − S action
naturally. The system is 2-dimensional and if the modes of spinor fields are localized in regions
of strong induced electro-weak magnetic field, their number is finite and the Dirac determinant
defined in the standard manner is finite. A close connection with anyonic systems emerges. One
can indeed define the action of DK also at the limit when the light-like 3-surface associated
with a wormhole throat is approached. This limit is singular since det(g4) = 0 and det(g3) = 0
hold true at this limit. As a consequence the normal component of Kähler electric field typically
diverges in accordance with the idea that at short distances U(1) gauge charges approach to
infinity. Also the modified Gamma matrices diverge like 1/det(g4)3. One of the problems is
that only light-like 3-surfaces with 2-D CP2 projection are allowed since DC−S reduces to 1-D
operator only for these.

3. The third guess inspired by the results relating to the number theoretic compactification was that
DC−S is not needed at all! Number theoretical compactification strongly suggets dual slicings of
X4 to string word sheets Y 2 and partonic 2-surfaces X2, and the generalized eigenvalues can be
identified as those associated with the longitudinal part DK(Y 2) or transverse part DK(X2) of
the modified Dirac operator DK . The outcome is exactly the same as for DC−S except that one
avoids the problems associated with it. There is also an additional symmetry: the eigenvalue
spectra associated with transversal slices must be such that Kähler action gives rise to the same
Kähler metric.

4. The fourth guess was the inclusion of instanton term to the action meaning complexification of
Kähler action. This does not affect configuration space metric at all but brings in CP breaking
and also makes possible construction of generalized Feynman diagrammatics.

This identification led to a considerable increase in the understanding of quantum TGD at funda-
mental level.

1. A fermion in 2-D magnetic field provides the physical analog system. If CP breaking term is
absent the zero modes are restricted to regions inside which the induced Kähler form is non-
vanishing and are analogous to cyclotron states in a magnetic field restricted to a finite region of
3-D space-time. Hence the number of zero modes and therefore also the number of generalized
eigenvalues of the modified Dirac operator is finite. Second quantization therefore requires
selection of finite subset of points of X2 and this leads to the notion of number theoretic braid.

2. With finite number of zero eigenvalues Dirac determinant can be defined as the product of
the eigenvalues without any regularization procedure. Dirac determinant reduces to a product
of determinants associated with regions of X3

l inside which the induced Kähler form- having
interpretation as magnetic field - is non-vanishing.

3. If CP breaking instanton term complexifying Kähler action is allowed, the situation becomes
more intricate since infinite number of additional labeled by conformal weights is present.
Since the localization of symplectic allows only functions of X2 coordinates depending on
J = εαβJαβ

√
g2, the situation is effectively 1-dimensional and anti-commutations of induced

spinor fields are 1-dimensional since J = constant curves are effectively points in accordance
with the fact that conformal excitations are labeled by an integer. Zeta function regularization
reduces to that using zeta function and exponent of Kähler function identified as Dirac deter-
minant is infinite powers series in eigenvalues and it would be a miracle if it would reduce to
an algebraic function of configuration space coordinates. If one accepts number theoretic braids
as primary objects and identified in the proposed purely physical manner, one must introduce
cutoff in conformal weights and the number of eigenvalues contributing to the Dirac determinant
is finite.

4. One cannot exclude renormalization group invariance in these sense that configuration metric is
independent of the cutoff for the conformal modes. This does not mean RG invariance of Kähler
function.
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2.5 p-Adicization at the level of imbedding space and space-
time

In this section p-adicization program at the level if imbedding space and space-time is discussed. The
general problems of p-adicization, namely the selection of preferred coordinates and the problems
caused by the non-existence of p-adic definite integral and algebraic continuation a solution of these
problems has been discussed in the introduction.

2.5.1 p-Adic variants of the imbedding space

Consider now the construction of p-adic variants of the imbedding space.

1. Rational values of p-adic coordinates are non-negative so that light-cone proper time a4,+ =√
t2 − z2 − x2 − y2 is the unique Lorentz invariant choice for the p-adic time coordinate near the

lower tip of CD. For the upper tip the identification of a4 would be a4,− =
√

(t− T )2 − z2 − x2 − y2.
In the p-adic context the simultaneous existence of both square roots would pose additional con-
ditions on T . For 2-adic numbers T = 2nT0, n ≥ 0 (or more generally T =

∑
k≥n0

bk2k), would
allow to satisfy these conditions and this would be one additional reason for T = 2nT0 implying
p-adic length scale hypothesis. Note however that also Tp = pT0, p prime, can be considered.
The remaining coordinates of CD are naturally hyperbolic cosines and sines of the hyperbolic
angle η±,4 and cosines and sines of the spherical coordinates θ and φ.

2. The existence of the preferred plane M2 of un-physical polarizations would suggest that the 2-D
light-cone proper times a2,+ =

√
t2 − z2 a2,− =

√
(t− T )2 − z2 can be also considered. The

remaining coordinates would be naturally η±,2 and cylindrical coordinates (ρ, φ).

3. The transcendental values of a4 and a2 are literally infinite as real numbers and could be visu-
alized as points in infinitely distant geometric future so that the arrow of time might be said
to emerge number theoretically. For M2 option p-adic transcendental values of ρ are infinite as
real numbers so that also spatial infinity could be said to emerge p-adically.

4. The selection of the preferred quantization axes of energy and angular momentum unique apart
from a Lorentz transformation of M2 would have purely number theoretic meaning in both
cases. One must allow a union over sub-WCW s labeled by points of SO(1, 1). This suggests a
deep connection between number theory, quantum theory, quantum measurement theory, and
even quantum theory of mathematical consciousness.

5. In the case of CP2 there are three real coordinate patches involved [K11] . The compactness of
CP2 allows to use cosines and sines of the preferred angle variable for a given coordinate patch.

ξ1 = tan(u)exp(i
(Ψ + Φ)

2
)cos(

Θ

2
) ,

ξ2 = tan(u)exp(i
(Ψ− Φ)

2
)sin(

Θ

2
) . (2.5.1)

The ranges of the variables u,Θ,Φ,Ψ are [0, π/2], [0, π], [0, 4π], [0, 2π] respectively. Note that
u has naturally only the positive values in the allowed range. S2 corresponds to the values
Φ = Ψ = 0 of the angle coordinates.

6. The rational values of the (hyperbolic) cosine and sine correspond to Pythagorean triangles
having sides of integer length and thus satisfying m2 = n2 +r2 (m2 = n2−r2). These conditions
are equivalent and allow the well-known explicit solution [A75] . One can construct a p-adic
completion for the set of Pythagorean triangles by allowing p-adic integers which are infinite as
real integers as solutions of the conditions m2 = r2 ± s2. These angles correspond to genuinely
p-adic directions having no real counterpart. Hence one obtains p-adic continuum also in the
angle degrees of freedom. Algebraic extensions of the p-adic numbers bringing in cosines and
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sines of the angles π/n lead to a hierarchy increasingly refined algebraic extensions of the gen-
eralized imbedding space. Since the different sectors of WCW directly correspond to correlates
of selves this means direct correlation with the evolution of the mathematical consciousness.
Trigonometric identities allow to construct points which in the real context correspond to sums
and differences of angles.

7. Negative rational values of the cosines and sines correspond as p-adic integers to infinite real
numbers and it seems that one use several coordinate patches obtained as copies of the octant
(x ≥ 0, y ≥ 0, z ≥ 0, ). An analogous picture applies in CP2 degrees of freedom.

8. The expression of the metric tensor and spinor connection of the imbedding in the proposed
coordinates makes sense as a p-adic numbers in the algebraic extension considered. The induc-
tion of the metric and spinor connection and curvature makes sense provided that the gradients
of coordinates with respect to the internal coordinates of the space-time surface belong to the
extensions. The most natural choice of the space-time coordinates is as subset of imbedding
space-coordinates in a given coordinate patch. If the remaining imbedding space coordinates
can be chosen to be rational functions of these preferred coordinates with coefficients in the alge-
braic extension of p-adic numbers considered for the preferred extremals of Kähler action, then
also the gradients satisfy this condition. This is highly non-trivial condition on the extremals
and if it works might fix completely the space of exact solutions of field equations. Space-time
surfaces are also conjectured to be hyper-quaternionic [K78] , this condition might relate to the
simultaneous hyper-quaternionicity and Kähler extremal property. Note also that this picture
would provide a partial explanation for the decomposition of the imbedding space to sectors
dictated also by quantum measurement theory and hierarchy of Planck constants.

2.5.2 p-Adicization at the level of space-time

Number theoretical Universality in weak sense does not seem to pose problems. The field equations
defining the preferred extremals of Kähler action make sense also p-adically if the preferred extremals
correspond to critical space-time sheets for which the second variation of Kähler action vanishes [K15]
: this guarantees that the Noether currents associated with the modified Dirac action are conserved.
A weaker condition that the matrix determined by second variations has rank which is not maximal.
The interpretation is in terms of a generalized catastrophe theory: space-time surfaces are critical
with respect to the variation of Kähler action. These conditions are algebraic and make sense also
p-adically. Also the conditions implied by number theoretical compactification make sense p-adically.
Therefore one can construct the p-adic variants of preferred extremals of Kähler action. The new
element is the possibility of p-adic pseudo constants depending on finite number of pinary digits only.

At number theoretical criticality it should be possible to assign to the real partonic 2-surfacea
unique p-adic counterpart. This might be true also for X3

l and even for the space-time sheet X4(X3
l ).

This is possible if the objects in question are defined by algebraic equations making sense also p-
adically. Also trigonometric functions and exponential functions can be considered. Obviously p-adic
pseudo constants are genuine constants for the geometric objects being shared in algebraic sense by
the worlds defined by different number fields.

1. The starting point are the algebraic equations defining light-like partonic 3-surfaces X3
l via

the condition that the determinant of the induced metric vanishes. If the coordinate functions
appearing in the determinant are algebraic functions with algebraic coefficients, p-adicization
should make sense.

2. General Coordinate Invariance would suggest that this true also for the light-like 3-surfaces
parallel to X3

l appearing in the slicing of X4(X3
l ) assumed in the quantization of induced spinor

fields and suggested by the properties of known extremals.

3. If the 4-dimensional real space-time sheet is expressible as a hyper-quaternionic surface of hyper-
octonionic variantM8 of the imbedding space as number-theoretic vision suggests [K78] , it might
be possible to construct also the p-adic variant of the space-time sheet by algebraic continuation
in the case that the functions appearing in the definition of the space-time sheet are algebraic.

Some preferred space-time coordinates are necessary.
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1. Standard Minkowski coordinates associated with M2 × E2 decomposition are implied by the
selection of quantization axes also also preferred CP2 coordinates and preferred coordinates for
geodesic sphere S2

i , i = I or II. These coordinates could be used to define coordinates also for
X4. Which combination of coordinate variables is good would be determined by the dimensions
of projections to M4 and CP2.

2. The construction of solutions of field equations leads to the so called Hamilton-Jacobi coordinates
for M4, when the induced metric has Minkowski signature [K10] . These coordinates define a
slicing of X4(X3

l ) by string world sheets and their partonic duals required also by the number
theoretic compactification. For 4-D M4 projection these coordinates could be used also as
X4 coordinates. The light-like coordinates u, v assigned with the string world sheets resp.
complex coordinate w associated with the partonic 2-surface would give a candidate for preferred
coordinates fixed apart from hyper-conformal resp. conformal transformations.

3. A good candidate for preferred coordinates for X2(v) is defined by the fluxes J = εαβJαβ
√
g2

and their canonical conjugates assignable to partonic 2-surfaces X2 and their translates X2(v)
along X3

l (X2). Here J could correspond to either S2 or CP2 Kähler form. These coordinates
are discussed in detail in the section about number theoretic braids.

4. For u, v coordinates the basic condition is that v varies along X3
l (u) and u labels these slices.

This condition allows only scalings as hyper-complex analytic transformations and one might
hope of fixing this scaling uniquely.

2.5.3 p-Adicization of second quantized induced spinor fields

Induction procedure makes it possible to geometrize the concept of a classical gauge field and also of
the spinor field with internal quantum numbers. In the case of the electro-weak gauge fields induction
means the projection of the H-spinor connection to a spinor connection on the space-time surface.

In the most recent formulation induced spinor fields appear only at light-like 3-surfaces and satisfy
modified Dirac action associated with Kähler action possibly complexified by addition imaginary CP
breaking instanton term. The modified Dirac equation makes sense also p-adically as also the anti-
commutation relations of the induced spinor fields at different points of the (number theoretic) braid.
Here discreteness is essential since delta functions are not easy to define in p-adic context. Also the
notion of generalized eigenvalues makes sense and in terms of them one can construct p-adic variant
of Dirac determinant and therefore of configuration space metric.

Possible difficulties relate to the definition of p-adic variants of plane wave factors appearing in
the construction and being defined with respect to the variable u labeling the slices in the slicing of
X4(X3

l ) by light-like 3-surfaces X3
l (v) ”parallel” to X3

l . Exponent function as such is well-defined in
p-adic context if the argument has p-adic norm smaller than one. It however fails to have the basic
properties of its real variant failing to be periodic and having fixed unit p-adic norm for all values
of its argument. Periodicity does not however seem to be essential for the formulation of quantum
TGD in its recent form. The exponential functions involved are of form exp(i

√
nu), and are not

periodic even in real sense. The p-adic existence requires u mod p = 0 unless one introduces e and
possibly also some roots of e to the extension of p-adics used (ep exists so that the extension would
be finite-dimensional).

These observations raise the hope that the continuation of the second quantized induced spinor
fields to various p-adic number fields is a straightforward procedure at the level of principle.

2.6 p-Adicization at the level of configuration space

This section is not a distilled final answer to the challenges involved with the p-adicization of the
configuration space geometry and spinor structure. There are several questions. What is the precise
meaning of concepts like number theoretical universality and criticality? What does p-adicization
mean and is it needed/possible? Is algebraic continuation the manner to achieve it?

The notion of reduced configuration space implied by the notion of finite measurement resolution
is what gives hopes about performing this continuation in practice.
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1. The weaker notion of reduced configuration space emerges from finite measurement resolution
and for given induced Kähler form at partonic 2-surfaces reduces configuration space to a finite-
dimensional space (δM4

±×CP2)n/Sn for given number of points of number theoretic braid. The
metric and Kähler structure of this space is determined dynamically in terms of the spectrum
of the modified Dirac operator.

2. The stronger notion of reduced configuration space identified as the space of the maxima of
Kähler function in quantum fluctuating degrees of freedom labeled by symplectic group is second
key notion and suggests strongly discretization. The points of reduced configuration space with
rational of algebraic coordinates would correspond to those 3-surfaces through which leakage
between different sectors of configuration space is possible. Reduced configuration space in this
sense is the direct counterpart of the spin glass landscape known to obey ultrametric topology
naturally. This approach is reasonably concrete and relies heavily on the most recent, admittedly
still speculative, view about quantum TGD.

2.6.1 Generalizing the construction of the configuration space geometry
to the p-adic context

A problematics analogous to that related with the entanglement between real and p-adic number fields
is encountered also in the construction of the configuration space geometry. The original construction
was performed in the real context. What is needed are Kähler geometry and spinor structure for
the configuration space of 3-surfaces, and a construction of the configuration space spinor fields.
What might solve these immense architectural challenges are the equally immense symmetries of the
configuration space and algebraic continuation as the method of p-adicization.

What one can hope that everything of physical interest reduces to the level of algebra (rational or
algebraic numbers) and that topology (be it real or p-adic) disappears totally at the level of the matrix
elements of the metric and of U -matrix mediating transitions between sectors of configuration space
corresponding to different number fields. It is not necessary to require this to happen for M -matrix
identified as time-like entanglement coefficients between positive and negative energy parts of zero
energy states.

The notions of number theoretical universality and number theoretical criticality

An essential question is however what one means with the notions of number theoretical universality
and criticality.

1. The weak form of the number theoretical universality means that there are sub-configuration
spaces which can be regarded as real, those which are genuinely p-adic, and those which are
algebraic in the sense that the representation of partonic 2-surface, perhaps also 3-surface, and
perhaps even space-time surface is in terms of rational/algebraic functions allows the interpre-
tation in terms of both real and p-adic numbers. These surfaces would be like rational and
algebraic numbers common for the continua formed by reals and p-adics. This poses conditions
on the representations of surfaces and typically rational functions with rational coefficients would
represent these surfaces.

For these surfaces - and only for these- physics should be expressible in terms of algebraic
numbers and define as a completion the physics in real and p-adic number fields. This would
allow p-adic non-determinism. Book analogy is convenient here: the physics corresponding to
various number fields would be like pages of books glued together along rational and algebraic
physics. If the transitions between states in different number field taking place via a leakage
between different pages of the book are allowed, one can regard the algebraic sectors of the
configuration space as critical. This number theoretic criticality could be interpreted in terms of
intentionality and cognition, and living matter would represent a school example about number
theoretically critical phase. For this option it is not at all obvious whether it makes sense
to speak about configuration space geometry. The construction of configuration space spinor
structure reducing exponent of Kähler function to determinant is what gives some hopes.

2. A much stronger condition - which I adopted originally - is that all 3-surfaces allow interpretation
as as both real and p-adic surfaces: in this case p-adic non-determinism would be excluded. The
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objection is that this kind of number theoretical universality might reduce to a purely algebraic
physics. This condition has interpretation in terms of number theoretical criticality if the weaker
notion of universality is adopted.

Generalizing the construction for configuration space metric

It is not enough to generalize this construction to the p-adic context. 3-surfaces contain both real and
p-adic regions and should be able to perform the construction for this kind of objects.

1. Very naively, one could start from the Riemannian construction of the line element which tells
the length squared between infinitesimally close points at each point of the Riemann manifold.
The notion of line element involves the notion of nearness and one obviously cannot do without
topology here. The line element makes formally sense sense for real and p-adic contexts but
since p-adic definite integral does not exist, the notions of p-adic length and volume do not exist
naturally. Of course, p-adic norm defines very rough measure of distance in number theoretic
sense. The notion of line-element is not needed in the quantum theory at configuration space
level since only the matrix elements of the configuration space metric matter.

2. Configuration space metric can be constructed in terms if Dirac determinant identified as expo-
nent of Kähler function and the formula for matrix elements is expressible in terms of derivatives
of logarithms of the eigen values of the modified Dirac operator with respect to complex coordi-
nates of the configuration space. This means enormous simplication if the number of eigenvalues
is finite as implied by finite measurement resolution realized in terms of braids defined by physical
conditions. If eigenvalues are algebraic functions of complex coordinates of configuration space
then also the exponent of Kähler function and configuration space covariant metric defining as
its inverse as propagator in configuration space degrees of freedom are algebraic functions.

I have also proposed a formula for the matrix elements of configuration space metric and Kähler
form between the Killing vector fields of isometry generators. Isometries are identified as X2 local
symplectic symmetries. These expressions can be given also in terms of configuration space Hamil-
tonians as ”half Poisson brackets” in complex coordinates. Also the construction of quantum states
involves configuration space Hamiltonians and their super counterparts.

1. The definition of configuration spaces Hamiltonians involves definite integrals of corresponding
complexified Hamiltonians of (δM4

± × CP2)n over X2. Definite integrals are problematic in
the p-adic context, as is clear from the fact that in-numerable number of definitions of definite
integral have been proposed.

2. Finite measurement resolution would reduce integrals to sums since configuration space reduces
to (δM4

±×CP2)n/Sn for given CD. Furthermore, only the Hamiltonians corresponding to triplet
resp. octet representations of SO(3) resp. SU(3) would be needed to coordinatize S2 × CP2

part of the reduced configuration space.

3. Without number theoretic braids the definition of these integrals seems really difficult in p-adic
context. Residue calculus might give some hopes but One might however hope that one could
reduce the construction in the real case to that for the representations of super-conformal and
symplectic symmetries, and analytically continue the construction from the real context to the p-
adic contexts by defining the matrix elements of the metric to be what the symmetry respecting
analytical continuation gives.

Configuration space integration should be also continued algebraically to the p-adic context. Quan-
tum criticality realized as the vanishing of loop corrections associated with the configuration space
integral, would reduce configuration space integration to purely algebraic process much like in free field
theory and this would give could hopes about p-adicization. Matrix elements would be proportional
to the exponent of Kähler function at its maximum plus matrix elements expressible as correlation
functions of conformal field theory: the recent state of construction is considered in [K19] . This
encourages further the hopes about complete algebraization of the theory so that the independence of
the basic formulation on number field could be raised to a principle analogous to general coordinate
invariance.
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Is the exponential of the Kähler function rational function?

The simplest possibility that one can imagine are that the exponent e2K of Kähler function appearing
in the configuration space inner products is a rational or at most a simple algebraic function existing
in a finite-dimensional algebraic extension of p-adic numbers.

The exponent of the CP2 Kähler function is a rational function of the standard complex coordinates
and thus rational-valued for all rational values of complex CP2 coordinates. Therefore one is lead to
ask whether this property holds true quite generally for symmetric spaces and even in the infinite-
dimensional context. If so, then the continuation of the vacuum functional to the p-adic sectors of the
configuration space would be possible in the entire configuration space. Also the spherical harmonics of
CP2 are rational functions containing square roots in normalization constants. That also configuration
space spinor fields could use rational functions containing square roots as normalization constant as
basic building blocks would conform with general number theoretical ideas as well as with the general
features of harmonic oscillator wave functions.

The most obvious manner to realize this idea relies on the restriction of light-like 3-surfaces X3
l to

those representable in terms of polynomials or rational functions with rational or at most algebraic
coefficients serving as natural preferred coordinates of the configuration space. This of course requires
identification of preferred coordinates also for H. This would lead to a hierarchy of inclusions for
sub-configuration spaces induced by algebraic extensions of rationals.

The presence of cutoffs for the degrees of polynomials involved makes the situation finite-dimensional
and give rise to a hierarchy of inclusions also now. These inclusion hierarchies would relate naturally
also to hierarchies of inclusions for hyperfinite factors of type II1 since the spinor spaces associated
with these finite-D versions of WCW would be finite-dimensional. Hyper-finiteness means that this
kind of cutoff can give arbitrarily precise approximate representation of the infinite-D situation.

This vision is supported by the recent understanding related to the definition of exponent of Kähler
function as Dirac determinant [K15] . The number of eigenvalues involved is necessarily finite, and if
the eigenvalues of DK are algebraic numbers for 3-surfaces X3

l for which the coefficients characterizing
the rational functions defining X3

l are algebraic numbers, the exponent of Kähler function is algebraic
number.

The general number theoretical conjectures implied by p-adic physics and physics of cognition and
intention support also this conjecture. Although one must take these arguments with a big grain of
salt, the general idea might be correct. Also the elements of the configuration space metric would be
rational functions as is clear from the fact that one can express the second derivatives of the Kähler
function in terms of F = exp(K) as

∂K∂LK =
∂K∂LF

F
−
∂KF∂LF

F 2
. (2.6.1)

An expression of same form but with sum over eigenvalues of the modified Dirac operator with F
replaced with eigenvalue results if exponent of Kähler function is expressible as Dirac determinant:

∂K∂LK =
∂K∂Lλk
λk

−
∂Kλ∂Lλk

λ2
k

. (2.6.2)

What is important that this formula in principles relates configuration space geometry directly to
quantum physics as represented by the modified Dirac operator.

Generalizing the notion of configuration space spinor field

One must also construct spinor structure. Also this construction relies crucially super Kac-Moody and
super-symplectic symmetries. Spinors at a given point of the configuration space correspond to the
Fock space spanned by fermionic oscillator operators and again one might hope that super-symmetries
would allow algebraization of the whole procedure.

The identification of configuration space gamma matrices as super Hamiltonians of configuration
space. The generators of various super-algebras are also needed in order to construction configuration
space spinors at given point of configuration space. In ideal measurement resolution these algebra
elements are expressible as integrals of Hamiltonians and super-Hamiltonians of δM4

± ×CP2 and this
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leads to difficulties in p-adic context. It might be that finite measurement resolution which seems to be
coded by the classical dynamics provides the only possible solution of these difficulties. In the case of
reduced configuration space the construction of orthonormalized based of configuration space spinor
fields looks a rather reasonable challenge and the continuation of this procedure to p-adic context
might make sense.

2.6.2 Configuration space functional integral

One can make some general statements about configuration space functional integral.

1. If only braid points are specified, there is a functional integral over a huge number of 2-surfaces
meaning sum of perturbative contributions from very large number of partonic 2-surfaces se-
lected as maxima of Kähler function or by stationary phase approximation. This kind of non-
perturbative contribution makes it very difficult to understand what is involved so that it seems
that some restrictions must be posed. Also all information about crucial vacuum degeneracy of
Kähler action would be lost as a non-local information.

2. Induced Kähler form represents perhaps the most fundamental zero modes since it remains invari-
ant under symplectic transformations acting as isometries of the configuration space. Therefore
it seems natural organize configuration space integral in such a manner that each choice of the
induced Kähler form represents its own quantized theory and functional integral is only over
deformations leaving induced Kähler form invariant. The deformations of the partonic 2-surfaces
would leave invariant both the induced areas and magnetic fluxes. The symplectic orbits of the
partonic 2-surfaces (and 3-surfaces) would therefore define a slicing of the configuration space
with separate quantization for each slice.

3. The functional integral would be over the symplectic group of CP2 and over M4 degrees of
freedom -perhaps also in this case over the symplectic group of δM4

+ - a rather well-defined
mathematical structure. Symplectic transformations of CP2 affect only the CP2 part of the
induced metric so that a nice separation of degrees of freedom results and the functional integral
can be assigned solely to the gravitational degrees of freedom in accordance with the idea that
fundamental quantum fluctuating bosonic degrees of freedom are gravitational.

4. Configuration space integration around a partonic 2-surface for which the Kähler function is
maximum with respect to quantum fluctuating degrees of freedom should give only tree diagrams
with propagator factors proportional to g2

K if loop corrections to the configuration space integral
vanish. One could hope that there exist preferred S2 and CP2 coordinates such that vertex
factors involving finite polynomials of S2 and CP2 coordinates reduce to a finite number of
diagrams just as in free field theory.

If the configuration space functional integral algebraizes by the vanishing of loop corrections, one
has hopes that even p-adic variant of configuration space functional integral might make sense. The
exponent of Kähler function appears and if given by the Dirac determinant it would reduce to a finite
product of eigenvalues of modified Dirac operator which makes sense also p-adically.

Algebraization of the configuration space functional integral

Configuration space is a union of infinite-dimensional symmetric spaces labeled by zero modes. One
can hope that the functional integral could be performed perturbatively around the maxima of the
Kähler function. In the case of CP2 Kähler function has only single maximum and is a monotonically
decreasing function of the radial variable r of CP2 and thus defines a Morse function. This suggests
that a similar situation is true for all symmetric spaces and this might indeed be the case.

1. The point is that the presence of several maxima implies also saddle points at which the matrix
defined by the second derivatives of the Kähler function is not positive definite. If the derivatives
of type ∂K∂LK and ∂K∂LK vanish at the saddle point (this is the crucial assumption) in some
complex coordinates holomorphically related to those in which the same holds true at maximum,
the Kähler metric is not positive definite at this point. On the other hand, by symmetric space
property the metric should be isometric with the positive define metric at maxima so that a
contradiction results.
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2. If this argument holds true, for given values of zero modes Kähler function has only one maxi-
mum, whose value depends on the values zero modes. Staying in the optimistic mood, one could
go on to guess that the Duistermaat-Heckman theorem generalizes and the functional integral
is simply the exponent of the Kähler function at the maximum (due to the compensation of
Gaussian and metric determinants). Even more, one could bravely guess that for configuration
space spinor fields belonging to the representations of symmetries the inner products reduces
to the generalization of correlation functions of Gaussian free field theory. Each configuration
space spinor field would define a vertex from which lines representing the propagators defined
by the contravariant configuration space metric in isometry basis emanate.

If this optimistic line of reasoning makes sense, the definition of the p-adic configuration space
integral reduces to a purely algebraic one. What is needed is that the contravariant Kähler metric
fixed by the symmetric space-property exists and that the exponent of the maximum of the Kähler
function exists for rational values of zero modes or subset of them if finite-dimensional algebraic
extension is allowed. This would give could hopes that the U -matrix elements resulting from the
configuration space integrals would exist also in the p-adic sense.

Should one p-adicize only the reduced configuration space?

An attractive approach to p-adicization might be characterized as minimalism and would involve ge-
ometrization of only the reduced configuration space consisting of the maxima of Kähler function in
quantum fluctuating degrees of freedom. A further reduction results from the finite measurement res-
olution replacing configuration space effectively with (δM4

±×CP2)n/Sn. In zero modes discretization
realizing quantum classical correspondence is attractive possibility.

1. If Duistermaat-Heckman theorem [A141] holds true in TGD context, one could express real
configuration space functional integral in terms of exactly calculable Gaussian integrals around
the maxima of the Kähler function in quantum fluctuating degrees of freedom defining what
might be called reduced configuration space CHred. The exponent of Kähler function and
propagator identified as contravariant metric of configuration space could be deduced from the
spectrum of the modified Dirac operator.

2. The huge super-conformal symmetries raise the hope that the rest of M -matrix elements could
be deduced using group theoretical considerations so that everything would become algebraic.
If this optimistic scenario is realized, the p-adicization of CHred might be enough to p-adicize
all operations needed to construct the p-adic variant of M -matrix.

3. A possible problem of this reduction is that the number of degrees of freedom in functional
integral is still infinite, which might mean problems in terms of algebraization. For instance,
the inverse of covariant metric identified as algebraic function need not represent algebraic ob-
ject. Finite measurement resolution improves the situation in this respect. Finite measurement
resolution realized in terms of number theoretic braids would reduce configuration space to
(δM4

± × CP2)n/Sn for given CD and this would reduce the situation to a finite dimensional
one and maxima of Kähler function would form a discrete set, possibly only single point of
(δM4

±×CP2)n/Sn. Also in this case exponent of Kähler function and the spectrum of modified
Dirac operator are needed. Also the values of J = εαβJαβ

√
g2 at the points of number theoretic

braids labeled by δM4
± × CP2/Sn are needed.

Zero modes pose a further problem.

1. The absence of functional integral measure in zero modes would suggest that states depend on
finite number of zero modes only and that there is localization in this degrees of freedom. Finite
measurement resolution suggests the same. The extrema of the quantity J = εαβJαβ

√
g2 at the

points of number theoretic represent finite set of values of fundamental zero modes assignable to
X2 forming a finite-dimensional space naturally. Non-local isometry invariants can be defined
as Kähler magnetic fluxes if it is possible to define symplectic triangulation of X2 with vertices
identifiable naturally as points of number theoretic braid corresponding to the extrema of J .
The notion of symplectic fusion algebra based on this kind of triangulation is discussed in [K14]
.



2.6. p-Adicization at the level of configuration space 97

2. Kac-Moody group parameterizes zero modes assignable to X3
l and a correlation between these

zero modes and the quantum numbers of quantum state is natural and could result by stationary
phase approximation if finite-dimensional variant of functional integral can be defined. If there
is localization in zero modes, this correspondence could be discrete and implied by classical
equations of motion for braid points. A unique selection of preferred quantization axis would
be made possible by the hierarchy of Planck constants selecting M2 ⊂ M4 and S2

i ⊂ CP2 as
critical manifolds with respect to the change of Planck constant.

What other difficulties can one imagine?

1. The optimal situation would be that M -matrix elements in real case are algebraic functions or at
least functions continuable to the p-adic context in a form having sensible physical interpretation.

2. If one starts directly from Fourier transforms in p-adic context, difficulties are caused by trigono-
metric functions and exponent function whose p-adic counterparts do not behave in physically
acceptable manner. It seems that it is phase factors defined by plane waves which should should
restricted to roots of unity and continued to the p-adic realm as such. In p-adic context either
momentum or position makes sense as p-adic number unless one introduces infinite-dimensional
extension containing logarithms and π. Maybe the only manner to avoid problems is to accept
discretization and algebraization of the phase factors.

Concerning number field changing transitions at number theoretical criticality possibly relevant
for U -matrix some comments are in order. For real↔ p-adic transitions only the algebraic points of
number theoretic braid common to both real and p-adic variant of partonic 2-surface are relevant and
situation reduces to algebraic braid points in (δM4

±×CP2)/Sn. Algebraic points in a given extension
of rationals would be common to real and p-adic surfaces. It could happen that there are very few
common algebraic points. For instance, Fermat’s theorem says that the surface xn + yn = zn has
no rational points for n > 2. The integral over reduced configuration space should reduce to a sum
over possible values of coordinates for these points. If only maxima of Kähler function an analytic
continuation of real M -matrix to p-adic-real M -matri could make sense.

If this picture is correct, the p-adicization of the configuration space would mean p-adicization
of CHred consisting of the maxima of the Kähler function with respect to both fiber degrees of
freedom and zero modes acting effectively as control parameters of the quantum dynamics. Finite
measurement resolution simplifies the situation dramatically. If CHred is a discrete subset of CH
or its finite-dimensional variant, ultrametric topology induced from finite-p p-adic norm is indeed
natural for it. ’Discrete set in CH’ need not mean a discrete set in the usual sense and the reduced
configuration space could be even finite-dimensional continuum. p-Adicization as a cognitive model
would suggest that p-adicization in given point of CHred is possible for all p-adic primes associated
with the corresponding space-time surface (maximum of Kähler function) and represents a particular
cognitive representation about CHred.

2.6.3 Number theoretic constraints on M-matrix

Assume that U -matrix assignable to quantum jump between zero energy states exists simultaneously
in all number fields and perhaps even between different number fields at number theoretical quantum
criticality (allowing finite-dimensional extensions of p-adics). If so the immediate question is whether
also the construction procedure of the M -matrix defined as time-like entanglement coefficients between
positive and negative energy parts of zero energy state could have a p-adic counterpart for each p,
and whether the mere requirement that this is the case could provide non-trivial intuitions about the
general structure of the theory. The identification of M -matrices as building blocks of U -matrix in the
manner discussed in [K19] supports affirmative answer to the first question. Not only the configuration
space but also Kähler function and its exponent, Kähler metric, and configuration space functional
integral should have p-adic variants. In the following this challenge is discussed in a rather optimistic
number theoretic mood using the ideas stimulated by the connections between number theory and
cognition.
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Number theoretical Universality and M-matrix

Number theoretic constraints on M -matrix are non-trivial even for the weaker notion of number
theoretical universality. Number theoretical criticality (or number theoretical universality in strong
sense) requires that M -matrix elements are algebraic numbers. This is achieved naturally if the
definition of M -matrix elements involves only the data associated with the number theoretic braid.
Note that this data is non-local since it involves information about tangent space of X4 at the point
so that discretization happens in geometric sense but not in information theoretic sense. Note also
that for algebraic surfaces finite number of points of surface allows to deduce the parameters of the
polynomials involved and thus to deduce the entire surface.

If quantum version of configuration space is adopted one must perform quantization for E2 ⊂M4

coordinates of points S2
i braid and CP2 coordinates of M2 braid. In this kind of situation it becomes

unclear whether one can speak about braiding anymore. This might make sense if each braid topology
corresponds to its own quantization containing information about the fact that deformations of X3

l

respect the braiding topology.
The partonic vertices appearing in M -matrix elements should be expressible in terms of N-point

functions of some rational super-conformal field theory but with the p-adically questionable N-fold
integrals over string appearing in the definition of n-point functions. The most elegant manner to
proceed is to replace them with their explicit expressions if they are algebraic functions- quite generally
or at number theoretical criticality. Spin chain type string discretization is an alternative, not so
elegant option.

Propagators, that is correlations between partonic 2-surfaces, would be due to the interior dynamics
of space-time sheets which means a deviation from super string theory. Another function of interior
degrees of freedom is to provide zero modes of metric of WCW identifiable as classical degrees of
freedom of quantum measurement theory entangling with quantal degrees of freedom at partonic
3-surfaces.

Number theoretical criticality and M-matrix

Number theoretical criticality poses very strong conditions on the theory.

1. The p-adic variants of 4-D field equations associated with Kähler action make sense. Also the
notion of preferred extremal makes sense in p-adic context if it corresponds to quantum criticality
in the sense that second variation of Kähler action vanishes for dynamical symmetries. A natural
further condition is that the surface is representable in terms of algebraic equations involving
only rational or algebraic coefficients and thus making sense both in real and p-adic sense. In
this case also Kähler action and classical charges could exist in some algebraic extension of p-adic
numbers.

2. Also modified Dirac equation makes sense p-adically. The exponent of Kähler function defining
vacuum functional is well-defined notion p-adically if the identification as product of finite num-
ber of eigenvalues of the modified Dirac operator is accepted and eigenvalues are algebraic. Also
the notion of configuration space metric expressible in terms of derivatives of the eigenvalues
with respect to complex coordinates of configuration space makes sense.

3. The functional integral over configuration space can be defined only as an algebraic extension of
real functional integral around maximum of Kähler function if the theory is integrable and gives
as a result an algebraic number. One might hope that algebraic p-adicization makes sense for
the vacuum function at points corresponding to the maxima of Kähler function with respect to
quantum fluctuating degrees of freedom (assuming they exist) and with respect to zero modes.
As discussed already earlier, in the case of zero modes quantum classical correspondence allows
to select preferred value of zero modes even if functional integral in zero modes does not make
sense. The basic requirement is that the inverse of the matrix defined by the Kähler metric
defining propagator is algebraic function of the complex coordinate of configuration space. If
the eigen-values of the modified Dirac operator satisfy this condition this is indeed the case.

4. Ordinary perturbation series based on Feynman diagrams makes sense also in p-adic sense since
the presence of cutoff for the size of CD implies that the number of terms if finite. One must
be however cautious with momentum integrations which should reduce to finite sum due to the
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presence of both IR and UV cutoff implied by the finite size of CD. The formulation in terms
of number theoretic braids whose intersections with partonic 2-surfaces consist of finite number
of points supports the possibility of number theoretic universality.

There are hopes that M -matrix make sense p-adically. As far M -matrix is considered, The most
plausible interpretation relies on the weaker form of number theoretic universality so that genuinely
p-adic M -matrices should exist.

1. Dirac determinant exists for any p-adic 3-surfaces since the eigenvalues of modified Dirac op-
erator represent a purely local notion sensible also in p-adic context. The reason is that finite
measurement resolution - now deducible from the vacuum degeneracy of Kähler action- implies
that the number of eigenvalues is finite. Preferred extremals of Kähler action obey quantum
criticality condition meaning that the second variation of Kähler action vanishes. This condition
makes sense also p-adically.

2. If loops vanish, configuration space integration gives only contractions with propagator express-
ible as the contravariant configuration space Kähler metric expressible in terms of derivatives of
the Kähler function with respect to the preferred complex coordinates of configuration space. If
this function is algebraic function, it allows algebraic continuation to p-adic context and all that
is needed for calculation of M -matrix elements makes sense p-adically. The crucial question is
whether the Kähler metric is algebraic function in preferred coordinates.

3. N-point functions involve also symplectically invariant multiplicative factors discussed in [K14]
in terms of symplectic fusion algebras. For them algebraic universality holds true. N-point func-
tions of conformal field theory associated with the generalized vertices should also be algebraic
functions.

4. Finite measurement resolution realized in terms of braids for given J = εαβJαβ means a reduc-
tion of a given sector of the configuration space in quantum fluctuating degrees of freedom to
finite-dimensional space δM4

± × CP2/Sn associated with the boundaries of CD. For instance,
configuration space Hamiltonians reduce apart from J factor to those assignable naturally to
the reduced configuration space. Finite-dimensionality gives hopes of algebraic continuation of
M -matrix defined in terms of general Feynman diagrams in real context using finite purely alge-
braic operations due to the cutoff in the size of CDs. In zero modes the simplest option would
be that quantum states correspond to sums over different values of zero modes, in particular J
as function in X2.

Also number theoretical criticality is consistent with this picture.

1. If partonic 2-surface X2 is determined by algebraic equations involving only rational coefficients,
same equations define real and p-adic variants of X2.

2. Number theoretic criticality for braids means that their points are algebraic and common to real
and p-adic partonic 2-surfaces. The extrema of J -determined by algebraic conditions- must be
algebraic numbers.

3. At quantum criticality Dirac determinant is algebraic number if the number of eigenvalues is
finite (implied by finite measurement resolution) and if they are algebraic numbers. If the p-adic
counterpart of X3

l exists, this allows to assign to the p-adic counterpart of X3
l the exponent of

Kähler function as Dirac determinant although Kähler action remains ill-defined p-adically.

The relationship between U-matrix and M-matrix

The following represents the latest result concerning the relationship between the notions of U -matrix
and M -matrix and probably provides answer to some of the questions posed in the chapter. What
is highly satisfactory that U -matrix dictates M -matrix completely via unitarity conditions. A more
detailed discussion can be [K47] discussing Negentropy Maximization Principle, which is the basic
dynamical principle of TGD inspired theory of consciousness and states that the information content
of conscious experience is maximal.
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If state function reduction associated with time-like entanglement leads always to a product of
positive and negative energy states (so that there is no counterpart of bound state entanglement and
negentropic entanglement possible for zero energy states: these notions are discussed below) U -matrix
and can be regarded as a collection of M -matrices

Um+n−,r+,s− = M(m+, n−)r+,s− (2.6.3)

labeled by the pairs (m+, n−) labelling zero energy states assumed to reduced to pairs of positive
and negative energy states. M -matrix element is the counterpart of S-matrix element Sr,s in positive
energy ontology. Unitarity conditions for U -matrix read as

(UU†)m+n−,r+s− =
∑
k+,l−

M(m+, n−)k+,l−M(r+, s−)k+,l− = δm+r+,n−s− ,

(U†U)m+n−,r+s− =
∑
k+,l−

M(k+, l−)m+,n−M(k+, l−)r+,s− = δm+r+,n−s− .

(2.6.4)

The conditions state that the zero energy states associated with different labels are orthogonal as zero
energy states and also that the zero energy states defined by the dual M -matrix

M†(m+, n−)k+,l− ≡M(k+l−)m+,n− (2.6.5)

-perhaps identifiable as phase conjugate states- define an orthonormal basis of zero energy states.
When time-like binding and negentropic entanglement are allowed also zero energy states with

a label not implying a decomposition to a product state are involved with the unitarity condition
but this does not affect the situation dramatically. As a matter fact, the situation is mathematically
the same as for ordinary S-matrix in the presence of bound states. Here time-like bound states
are analogous to space-like bound states and by definition are unable to decay to product states (free
states). Negentropic entanglement makes sense only for entanglement probabilities, which are rationals
or belong to their algebraic extensions. This is possible in what might be called the intersection of
real and p-adic worlds (partonic surfaces in question have representation making sense for both real
and p-adic numbers). Number theoretic entropy is obtained by replacing in the Shannon entropy the
logarithms of probabilities with the logarithms of their p-adic norms. They satisfy the same defining
conditions as ordinary Shannon entropy but can be also negative. One can always find prime p for
which the entropy is maximally negative. The interpretation of negentropic entanglement is in terms of
formations of rule or association. Schrödinger cat knows that it is better to not open the bottle: open
bottle-dead cat, closed bottle-living cat and negentropic entanglement measures this information.

2.7 Weak form electric-magnetic duality and its implications

The notion of electric-magnetic duality [B8] was proposed first by Olive and Montonen and is central
in N = 4 supersymmetric gauge theories. It states that magnetic monopoles and ordinary particles
are two different phases of theory and that the description in terms of monopoles can be applied
at the limit when the running gauge coupling constant becomes very large and perturbation theory
fails to converge. The notion of electric-magnetic self-duality is more natural since for CP2 geometry
Kähler form is self-dual and Kähler magnetic monopoles are also Kähler electric monopoles and
Kähler coupling strength is by quantum criticality renormalization group invariant rather than running
coupling constant. The notion of electric-magnetic (self-)duality emerged already two decades ago
in the attempts to formulate the Kähler geometric of world of classical worlds. Quite recently a
considerable step of progress took place in the understanding of this notion [K17] . What seems to be
essential is that one adopts a weaker form of the self-duality applying at partonic 2-surfaces. What
this means will be discussed in the sequel.

Every new idea must be of course taken with a grain of salt but the good sign is that this concept
leads to precise predictions. The point is that elementary particles do not generate monopole fields in
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macroscopic length scales: at least when one considers visible matter. The first question is whether
elementary particles could have vanishing magnetic charges: this turns out to be impossible. The next
question is how the screening of the magnetic charges could take place and leads to an identification
of the physical particles as string like objects identified as pairs magnetic charged wormhole throats
connected by magnetic flux tubes.

1. The first implication is a new view about electro-weak massivation reducing it to weak confine-
ment in TGD framework. The second end of the string contains particle having electroweak
isospin neutralizing that of elementary fermion and the size scale of the string is electro-weak
scale would be in question. Hence the screening of electro-weak force takes place via weak
confinement realized in terms of magnetic confinement.

2. This picture generalizes to the case of color confinement. Also quarks correspond to pairs of
magnetic monopoles but the charges need not vanish now. Rather, valence quarks would be
connected by flux tubes of length of order hadron size such that magnetic charges sum up to
zero. For instance, for baryonic valence quarks these charges could be (2,−1,−1) and could be
proportional to color hyper charge.

3. The highly non-trivial prediction making more precise the earlier stringy vision is that elementary
particles are string like objects in electro-weak scale: this should become manifest at LHC
energies.

4. The weak form electric-magnetic duality together with Beltrami flow property of Kähler leads to
the reduction of Kähler action to Chern-Simons action so that TGD reduces to almost topological
QFT and that Kähler function is explicitly calculable. This has enormous impact concerning
practical calculability of the theory.

5. One ends up also to a general solution ansatz for field equations from the condition that the
theory reduces to almost topological QFT. The solution ansatz is inspired by the idea that all
isometry currents are proportional to Kähler current which is integrable in the sense that the flow
parameter associated with its flow lines defines a global coordinate. The proposed solution ansatz
would describe a hydrodynamical flow with the property that isometry charges are conserved
along the flow lines (Beltrami flow). A general ansatz satisfying the integrability conditions
is found. The solution ansatz applies also to the extremals of Chern-Simons action and and
to the conserved currents associated with the modified Dirac equation defined as contractions
of the modified gamma matrices between the solutions of the modified Dirac equation. The
strongest form of the solution ansatz states that various classical and quantum currents flow
along flow lines of the Beltrami flow defined by Kähler current (Kähler magnetic field associated
with Chern-Simons action). Intuitively this picture is attractive. A more general ansatz would
allow several Beltrami flows meaning multi-hydrodynamics. The integrability conditions boil
down to two scalar functions: the first one satisfies massless d’Alembert equation in the induced
metric and the the gradients of the scalar functions are orthogonal. The interpretation in terms
of momentum and polarization directions is natural.

6. The general solution ansatz works for induced Kähler Dirac equation and Chern-Simons Dirac
equation and reduces them to ordinary differential equations along flow lines. The induced spinor
fields are simply constant along flow lines of indued spinor field for Dirac equation in suitable
gauge. Also the generalized eigen modes of the modified Chern-Simons Dirac operator can be
deduced explicitly if the throats and the ends of space-time surface at the boundaries of CD are
extremals of Chern-Simons action. Chern-Simons Dirac equation reduces to ordinary differential
equations along flow lines and one can deduce the general form of the spectrum and the explicit
representation of the Dirac determinant in terms of geometric quantities characterizing the 3-
surface (eigenvalues are inversely proportional to the lengths of strands of the flow lines in the
effective metric defined by the modified gamma matrices).

2.7.1 Could a weak form of electric-magnetic duality hold true?

Holography means that the initial data at the partonic 2-surfaces should fix the configuration space
metric. A weak form of this condition allows only the partonic 2-surfaces defined by the wormhole
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throats at which the signature of the induced metric changes. A stronger condition allows all partonic
2-surfaces in the slicing of space-time sheet to partonic 2-surfaces and string world sheets. Number
theoretical vision suggests that hyper-quaternionicity resp. co-hyperquaternionicity constraint could
be enough to fix the initial values of time derivatives of the imbedding space coordinates in the space-
time regions with Minkowskian resp. Euclidian signature of the induced metric. This is a condition
on modified gamma matrices and hyper-quaternionicity states that they span a hyper-quaternionic
sub-space.

Definition of the weak form of electric-magnetic duality

One can also consider alternative conditions possibly equivalent with this condition. The argument
goes as follows.

1. The expression of the matrix elements of the metric and Kähler form of WCW in terms of
the Kähler fluxes weighted by Hamiltonians of δM4

± at the partonic 2-surface X2 looks very
attractive. These expressions however carry no information about the 4-D tangent space of the
partonic 2-surfaces so that the theory would reduce to a genuinely 2-dimensional theory, which
cannot hold true. One would like to code to the WCW metric also information about the electric
part of the induced Kähler form assignable to the complement of the tangent space of X2 ⊂ X4.

2. Electric-magnetic duality of the theory looks a highly attractive symmetry. The trivial manner
to get electric magnetic duality at the level of the full theory would be via the identification of
the flux Hamiltonians as sums of of the magnetic and electric fluxes. The presence of the induced
metric is however troublesome since the presence of the induced metric means that the simple
transformation properties of flux Hamiltonians under symplectic transformations -in particular
color rotations- are lost.

3. A less trivial formulation of electric-magnetic duality would be as an initial condition which
eliminates the induced metric from the electric flux. In the Euclidian version of 4-D YM theory
this duality allows to solve field equations exactly in terms of instantons. This approach involves
also quaternions. These arguments suggest that the duality in some form might work. The full
electric magnetic duality is certainly too strong and implies that space-time surface at the
partonic 2-surface corresponds to piece of CP2 type vacuum extremal and can hold only in the
deep interior of the region with Euclidian signature. In the region surrounding wormhole throat
at both sides the condition must be replaced with a weaker condition.

4. To formulate a weaker form of the condition let us introduce coordinates (x0, x3, x1, x2) such
(x1, x2) define coordinates for the partonic 2-surface and (x0, x3) define coordinates labeling
partonic 2-surfaces in the slicing of the space-time surface by partonic 2-surfaces and string
world sheets making sense in the regions of space-time sheet with Minkowskian signature. The
assumption about the slicing allows to preserve general coordinate invariance. The weakest
condition is that the generalized Kähler electric fluxes are apart from constant proportional to
Kähler magnetic fluxes. This requires the condition

J03√g4 = KJ12 . (2.7.1)

A more general form of this duality is suggested by the considerations of [K36] reducing the
hierarchy of Planck constants to basic quantum TGD and also reducing Kähler function for
preferred extremals to Chern-Simons terms [B2] at the boundaries of CD and at light-like
wormhole throats. This form is following

Jnβ
√
g4 = Kε× εnβγδJγδ

√
g4 . (2.7.2)

Here the index n refers to a normal coordinate for the space-like 3-surface at either boundary of
CD or for light-like wormhole throat. ε is a sign factor which is opposite for the two ends of CD.
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It could be also opposite of opposite at the opposite sides of the wormhole throat. Note that the
dependence on induced metric disappears at the right hand side and this condition eliminates
the potentials singularity due to the reduction of the rank of the induced metric at wormhole
throat.

5. Information about the tangent space of the space-time surface can be coded to the configuration
space metric with loosing the nice transformation properties of the magnetic flux Hamiltonians
if Kähler electric fluxes or sum of magnetic flux and electric flux satisfying this condition are
used and K is symplectic invariant. Using the sum

Je + Jm = (1 +K)J , (2.7.3)

where J can denotes the Kähler magnetic flux, makes it possible to have a non-trivial configu-
ration space metric even for K = 0, which could correspond to the ends of a cosmic string like
solution carrying only Kähler magnetic fields. This condition suggests that it can depend only
on Kähler magnetic flux and other symplectic invariants. Whether local symplectic coordinate
invariants are possible at all is far from obvious, If the slicing itself is symplectic invariant then
K could be a non-constant function of X2 depending on string world sheet coordinates. The
light-like radial coordinate of the light-cone boundary indeed defines a symplectically invariant
slicing and this slicing could be shifted along the time axis defined by the tips of CD.

Electric-magnetic duality physically

What could the weak duality condition mean physically? For instance, what constraints are obtained
if one assumes that the quantization of electro-weak charges reduces to this condition at classical
level?

1. The first thing to notice is that the flux of J over the partonic 2-surface is analogous to magnetic
flux

Qm =
e

~

∮
BdS = n .

n is non-vanishing only if the surface is homologically non-trivial and gives the homology charge
of the partonic 2-surface.

2. The expressions of classical electromagnetic and Z0 fields in terms of Kähler form [L2] , [L2]
read as

γ =
eFem
~

= 3J − sin2(θW )R03 ,

Z0 =
gZFZ
~

= 2R03 . (2.7.4)

Here R03 is one of the components of the curvature tensor in vielbein representation and Fem
and FZ correspond to the standard field tensors. From this expression one can deduce

J =
e

3~
Fem + sin2(θW )

gZ
6~
FZ . (2.7.5)

3. The weak duality condition when integrated over X2 implies
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e2

3~
Qem +

g2
Zp

6
QZ,V = K

∮
J = Kn ,

QZ,V =
I3
V

2
−Qem , p = sin2(θW ) . (2.7.6)

Here the vectorial part of the Z0 charge rather than as full Z0 charge QZ = I3
L + sin2(θW )Qem

appears. The reason is that only the vectorial isospin is same for left and right handed compo-
nents of fermion which are in general mixed for the massive states.

The coefficients are dimensionless and expressible in terms of the gauge coupling strengths and
using ~ = r~0 one can write

αemQem + p
αZ
2
QZ,V =

3

4π
× rnK ,

αem =
e2

4π~0
, αZ =

g2
Z

4π~0
=

αem
p(1− p)

. (2.7.7)

4. There is a great temptation to assume that the values of Qem and QZ correspond to their
quantized values and therefore depend on the quantum state assigned to the partonic 2-surface.
The linear coupling of the modified Dirac operator to conserved charges implies correlation
between the geometry of space-time sheet and quantum numbers assigned to the partonic 2-
surface. The assumption of standard quantized values for Qem and QZ would be also seen as
the identification of the fine structure constants αem and αZ . This however requires weak isospin
invariance.

The value of K from classical quantization of Kähler electric charge

The value of K can be deduced by requiring classical quantization of Kähler electric charge.

1. The condition that the flux of F 03 = (~/gK)J03 defining the counterpart of Kähler electric field
equals to the Kähler charge gK would give the condition K = g2

K/~, where gK is Kähler cou-
pling constant which should invariant under coupling constant evolution by quantum criticality.
Within experimental uncertainties one has αK = g2

K/4π~0 = αem ' 1/137, where αem is finite
structure constant in electron length scale and ~0 is the standard value of Planck constant.

2. The quantization of Planck constants makes the condition highly non-trivial. The most general
quantization of r is as rationals but there are good arguments favoring the quantization as
integers corresponding to the allowance of only singular coverings of CD andn CP2. The point
is that in this case a given value of Planck constant corresponds to a finite number pages of
the ”Big Book”. The quantization of the Planck constant implies a further quantization of K
and would suggest that K scales as 1/r unless the spectrum of values of Qem and QZ allowed
by the quantization condition scales as r. This is quite possible and the interpretation would
be that each of the r sheets of the covering carries (possibly same) elementary charge. Kind
of discrete variant of a full Fermi sphere would be in question. The interpretation in terms of
anyonic phases [K61] supports this interpretation.

3. The identification of J as a counterpart of eB/~ means that Kähler action and thus also Kähler
function is proportional to 1/αK and therefore to ~. This implies that for large values of ~
Kähler coupling strength g2

K/4π becomes very small and large fluctuations are suppressed in
the functional integral. The basic motivation for introducing the hierarchy of Planck constants
was indeed that the scaling α→ α/r allows to achieve the convergence of perturbation theory:
Nature itself would solve the problems of the theoretician. This of course does not mean that
the physical states would remain as such and the replacement of single particles with anyonic
states in order to satisfy the condition for K would realize this concretely.
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4. The condition K = g2
K/~ implies that the Kähler magnetic charge is always accompanied by

Kähler electric charge. A more general condition would read as

K = n× g2
K

~
, n ∈ Z . (2.7.8)

This would apply in the case of cosmic strings and would allow vanishing Kähler charge possible
when the partonic 2-surface has opposite fermion and antifermion numbers (for both leptons and
quarks) so that Kähler electric charge should vanish. For instance, for neutrinos the vanishing
of electric charge strongly suggests n = 0 besides the condition that abelian Z0 flux contributing
to em charge vanishes.

It took a year to realize that this value of K is natural at the Minkowskian side of the wormhole
throat. At the Euclidian side much more natural condition is

K =
1

hbar
. (2.7.9)

In fact, the self-duality of CP2 Kähler form favours this boundary condition at the Euclidian side of
the wormhole throat. Also the fact that one cannot distinguish between electric and magnetic charges
in Euclidian region since all charges are magnetic can be used to argue in favor of this form. The
same constraint arises from the condition that the action for CP2 type vacuum extremal has the value
required by the argument leading to a prediction for gravitational constant in terms of the square of
CP2 radius and αK the effective replacement g2

K → 1 would spoil the argument.
The boundary condition JE = JB for the electric and magnetic parts of Kählwer form at the

Euclidian side of the wormhole throat inspires the question whether all Euclidian regions could be
self-dual so that the density of Kähler action would be just the instanton density. Self-duality follows if
the deformation of the metric induced by the deformation of the canonically imbedded CP2 is such that
in CP2 coordinates for the Euclidian region the tensor (gαβgµν −gανgµβ)/

√
g remains invariant. This

is certainly the case for CP2 type vacuum extremals since by the light-likeness of M4 projection the
metric remains invariant. Also conformal scalings of the induced metric would satisfy this condition.
Conformal scaling is not consistent with the degeneracy of the 4-metric at the wormhole throat. Full
self-duality is indeed an un-necessarily strong condition.

Reduction of the quantization of Kähler electric charge to that of electromagnetic charge

The best manner to learn more is to challenge the form of the weak electric-magnetic duality based
on the induced Kähler form.

1. Physically it would seem more sensible to pose the duality on electromagnetic charge rather
than Kähler charge. This would replace induced Kähler form with electromagnetic field, which
is a linear combination of induced K”ahler field and classical Z0 field

γ = 3J − sin2θWR03 ,

Z0 = 2R03 . (2.7.10)

Here Z0 = 2R03 is the appropriate component of CP2 curvature form [L2]. For a vanishing
Weinberg angle the condition reduces to that for Kähler form.

2. For the Euclidian space-time regions having interpretation as lines of generalized Feynman dia-
grams Weinberg angle should be non-vanishing. In Minkowskian regions Weinberg angle could
however vanish. If so, the condition guaranteing that electromagnetic charge of the partonic
2-surfaces equals to the above condition stating that the em charge assignable to the fermion
content of the partonic 2-surfaces reduces to the classical Kähler electric flux at the Minkowskian
side of the wormhole throat. One can argue that Weinberg angle must increase smoothly from a
vanishing value at both sides of wormhole throat to its value in the deep interior of the Euclidian
region.
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3. The vanishing of the Weinberg angle in Minkowskian regions conforms with the physical intu-
ition. Above elementary particle length scales one sees only the classical electric field reducing
to the induced Kähler form and classical Z0 fields and color gauge fields are effectively ab-
sent. Only in phases with a large value of Planck constant classical Z0 field and other classical
weak fields and color gauge field could make themselves visible. Cell membrane could be one
such system [K64]. This conforms with the general picture about color confinement and weak
massivation.

The GRT limit of TGD suggests a further reason for why Weinberg angle should vanish in
Minkowskian regions.

1. The value of the Kähler coupling strength mut be very near to the value of the fine structure
constant in electron length scale and these constants can be assumed to be equal.

2. GRT limit of TGD with space-time surfaces replaced with abstract 4-geometries would naturally
correspond to Einstein-Maxwell theory with cosmological constant which is non-vanishing only
in Euclidian regions of space-time so that both Reissner-Nordström metric and CP2 are allowed
as simplest possible solutions of field equations [K80]. The extremely small value of the observed
cosmological constant needed in GRT type cosmology could be equal to the large cosmological
constant associated with CP2 metric multiplied with the 3-volume fraction of Euclidian regions.

3. Also at GRT limit quantum theory would reduce to almost topological QFT since Einstein-
Maxwell action reduces to 3-D term by field equations implying the vanishing of the Maxwell
current and of the curvature scalar in Minkowskian regions and curvature scalar + cosmological
constant term in Euclidian regions. The weak form of electric-magnetic duality would guarantee
also now the preferred extremal property and prevent the reduction to a mere topological QFT.

4. GRT limit would make sense only for a vanishing Weinberg angle in Minkowskian regions. A
non-vanishing Weinberg angle would make sense in the deep interior of the Euclidian regions
where the approximation as a small deformation of CP2 makes sense.

The weak form of electric-magnetic duality has surprisingly strong implications for the basic view
about quantum TGD as following considerations show.

2.7.2 Magnetic confinement, the short range of weak forces, and color
confinement

The weak form of electric-magnetic duality has surprisingly strong implications if one combines it with
some very general empirical facts such as the non-existence of magnetic monopole fields in macroscopic
length scales.

How can one avoid macroscopic magnetic monopole fields?

Monopole fields are experimentally absent in length scales above order weak boson length scale and one
should have a mechanism neutralizing the monopole charge. How electroweak interactions become
short ranged in TGD framework is still a poorly understood problem. What suggests itself is the
neutralization of the weak isospin above the intermediate gauge boson Compton length by neutral
Higgs bosons. Could the two neutralization mechanisms be combined to single one?

1. In the case of fermions and their super partners the opposite magnetic monopole would be a
wormhole throat. If the magnetically charged wormhole contact is electromagnetically neutral
but has vectorial weak isospin neutralizing the weak vectorial isospin of the fermion only the
electromagnetic charge of the fermion is visible on longer length scales. The distance of this
wormhole throat from the fermionic one should be of the order weak boson Compton length.
An interpretation as a bound state of fermion and a wormhole throat state with the quantum
numbers of a neutral Higgs boson would therefore make sense. The neutralizing throat would
have quantum numbers of X−1/2 = νLνR or X1/2 = νLνR. νLνR would not be neutral Higgs
boson (which should correspond to a wormhole contact) but a super-partner of left-handed
neutrino obtained by adding a right handed neutrino. This mechanism would apply separately
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to the fermionic and anti-fermionic throats of the gauge bosons and corresponding space-time
sheets and leave only electromagnetic interaction as a long ranged interaction.

2. One can of course wonder what is the situation situation for the bosonic wormhole throats feeding
gauge fluxes between space-time sheets. It would seem that these wormhole throats must always
appear as pairs such that for the second member of the pair monopole charges and I3

V cancel
each other at both space-time sheets involved so that one obtains at both space-time sheets
magnetic dipoles of size of weak boson Compton length. The proposed magnetic character of
fundamental particles should become visible at TeV energies so that LHC might have surprises
in store!

Magnetic confinement and color confinement

Magnetic confinement generalizes also to the case of color interactions. One can consider also the
situation in which the magnetic charges of quarks (more generally, of color excited leptons and quarks)
do not vanish and they form color and magnetic singles in the hadronic length scale. This would mean
that magnetic charges of the state q±1/2−X∓1/2 representing the physical quark would not vanish and
magnetic confinement would accompany also color confinement. This would explain why free quarks
are not observed. To how degree then quark confinement corresponds to magnetic confinement is an
interesting question.

For quark and antiquark of meson the magnetic charges of quark and antiquark would be opposite
and meson would correspond to a Kähler magnetic flux so that a stringy view about meson emerges.
For valence quarks of baryon the vanishing of the net magnetic charge takes place provided that the
magnetic net charges are (±2,∓1,∓1). This brings in mind the spectrum of color hyper charges
coming as (±2,∓1,∓1)/3 and one can indeed ask whether color hyper-charge correlates with the
Kähler magnetic charge. The geometric picture would be three strings connected to single vertex.
Amusingly, the idea that color hypercharge could be proportional to color hyper charge popped up
during the first year of TGD when I had not yet discovered CP2 and believed on M4 × S2.

p-Adic length scale hypothesis and hierarchy of Planck constants defining a hierarchy of dark
variants of particles suggest the existence of scaled up copies of QCD type physics and weak physics.
For p-adically scaled up variants the mass scales would be scaled by a power of

√
2 in the most general

case. The dark variants of the particle would have the same mass as the original one. In particular,
Mersenne primes Mk = 2k − 1 and Gaussian Mersennes MG,k = (1 + i)k − 1 has been proposed to
define zoomed copies of these physics. At the level of magnetic confinement this would mean hierarchy
of length scales for the magnetic confinement.

One particular proposal is that the Mersenne prime M89 should define a scaled up variant of the
ordinary hadron physics with mass scaled up roughly by a factor 2(107−89)/2 = 512. The size scale
of color confinement for this physics would be same as the weal length scale. It would look more
natural that the weak confinement for the quarks of M89 physics takes place in some shorter scale
and M61 is the first Mersenne prime to be considered. The mass scale of M61 weak bosons would
be by a factor 2(89−61)/2 = 214 higher and about 1.6× 104 TeV. M89 quarks would have virtually no
weak interactions but would possess color interactions with weak confinement length scale reflecting
themselves as new kind of jets at collisions above TeV energies.

In the biologically especially important length scale range 10 nm -2500 nm there are as many as
four Gaussian Mersennes corresponding to MG,k, k = 151, 157, 163, 167. This would suggest that the
existence of scaled up scales of magnetic-, weak- and color confinement. An especially interesting
possibly testable prediction is the existence of magnetic monopole pairs with the size scale in this
range. There are recent claims about experimental evidence for magnetic monopole pairs [D4] .

Magnetic confinement and stringy picture in TGD sense

The connection between magnetic confinement and weak confinement is rather natural if one recalls
that electric-magnetic duality in super-symmetric quantum field theories means that the descriptions
in terms of particles and monopoles are in some sense dual descriptions. Fermions would be replaced
by string like objects defined by the magnetic flux tubes and bosons as pairs of wormhole contacts
would correspond to pairs of the flux tubes. Therefore the sharp distinction between gravitons and
physical particles would disappear.
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The reason why gravitons are necessarily stringy objects formed by a pair of wormhole contacts
is that one cannot construct spin two objects using only single fermion states at wormhole throats.
Of course, also super partners of these states with higher spin obtained by adding fermions and anti-
fermions at the wormhole throat but these do not give rise to graviton like states [K28] . The upper
and lower wormhole throat pairs would be quantum superpositions of fermion anti-fermion pairs with
sum over all fermions. The reason is that otherwise one cannot realize graviton emission in terms of
joining of the ends of light-like 3-surfaces together. Also now magnetic monopole charges are necessary
but now there is no need to assign the entities X± with gravitons.

Graviton string is characterized by some p-adic length scale and one can argue that below this
length scale the charges of the fermions become visible. Mersenne hypothesis suggests that some
Mersenne prime is in question. One proposal is that gravitonic size scale is given by electronic
Mersenne prime M127. It is however difficult to test whether graviton has a structure visible below
this length scale.

What happens to the generalized Feynman diagrams is an interesting question. It is not at all
clear how closely they relate to ordinary Feynman diagrams. All depends on what one is ready to
assume about what happens in the vertices. One could of course hope that zero energy ontology could
allow some very simple description allowing perhaps to get rid of the problematic aspects of Feynman
diagrams.

1. Consider first the recent view about generalized Feynman diagrams which relies zero energy
ontology. A highly attractive assumption is that the particles appearing at wormhole throats
are on mass shell particles. For incoming and outgoing elementary bosons and their super
partners they would be positive it resp. negative energy states with parallel on mass shell
momenta. For virtual bosons they the wormhole throats would have opposite sign of energy
and the sum of on mass shell states would give virtual net momenta. This would make possible
twistor description of virtual particles allowing only massless particles (in 4-D sense usually and
in 8-D sense in TGD framework). The notion of virtual fermion makes sense only if one assumes
in the interaction region a topological condensation creating another wormhole throat having
no fermionic quantum numbers.

2. The addition of the particles X± replaces generalized Feynman diagrams with the analogs of
stringy diagrams with lines replaced by pairs of lines corresponding to fermion and X±1/2. The
members of these pairs would correspond to 3-D light-like surfaces glued together at the vertices
of generalized Feynman diagrams. The analog of 3-vertex would not be splitting of the string to
form shorter strings but the replication of the entire string to form two strings with same length
or fusion of two strings to single string along all their points rather than along ends to form a
longer string. It is not clear whether the duality symmetry of stringy diagrams can hold true
for the TGD variants of stringy diagrams.

3. How should one describe the bound state formed by the fermion and X±? Should one describe
the state as superposition of non-parallel on mass shell states so that the composite state would
be automatically massive? The description as superposition of on mass shell states does not
conform with the idea that bound state formation requires binding energy. In TGD framework
the notion of negentropic entanglement has been suggested to make possible the analogs of
bound states consisting of on mass shell states so that the binding energy is zero [K47] . If this
kind of states are in question the description of virtual states in terms of on mass shell states is
not lost. Of course, one cannot exclude the possibility that there is infinite number of this kind
of states serving as analogs for the excitations of string like object.

4. What happens to the states formed by fermions and X±1/2 in the internal lines of the Feynman
diagram? Twistor philosophy suggests that only the higher on mass shell excitations are possible.
If this picture is correct, the situation would not change in an essential manner from the earlier
one.

The highly non-trivial prediction of the magnetic confinement is that elementary particles should
have stringy character in electro-weak length scales and could behaving to become manifest at LHC
energies. This adds one further item to the list of non-trivial predictions of TGD about physics at
LHC energies [K48] .
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Should J + J1 appear in Kähler action?

The presence of the S2 Kähler form J1 in the weak form of electric-magnetic duality was originally
suggested by an erratic argument about the reduction to almost topological QFT to be described in
the next subsection. In any case this argument raises the question whether one could replace J with
J +J1 in the Kähler action. This would not affect the basic non-vacuum extremals but would modify
the vacuum degeneracy of the Kähler action. Canonically imbedded M4 would become a monopole
configuration with an infinite magnetic energy and Kähler action due to the monopole singularity at
the line connecting tips of the CD. Action and energy can be made small by drilling a small hole
around origin. This is however not consistent with the weak form of electro-weak duality. Amusingly,
the modified Dirac equation reduces to ordinary massless Dirac equation in M4.

This extremal can be transformed to a vacuum extremal by assuming that the solution is also
a CP2 magnetic monopole with opposite contribution to the magnetic charge so that J + J1 = 0
holds true. This is achieved if one can regard space-time surface as a map M4 → CP2 reducing to
a map (Θ,Φ) = (θ,±φ) with the sign chosen by properly projecting the homologically non-trivial
rM = constant spheres of CD to the homologically non-trivial geodesic sphere of CP2. Symplectic
transformations of S2×CP2 produce new vacuum extremals of this kind. Using Darboux coordinates
in which one has J =

∑
k=1,2 PkdQ

k and assuming that (P1, Q1) corresponds to the CP2 image of

S2, one can take Q2 to be arbitrary function of P 2, which in turn is an arbitrary function of M4

coordinates to obtain even more general vacuum extremals with 3-D CP2 projection. Therefore the
spectrum of vacuum extremals, which is very relevant for the TGD based description of gravitation
in long length scales because it allows to satisfy Einstein’s equations as an additional condition, looks
much richer than for the original option, and it is natural to ask whether this option might make
sense.

An objection is that J1 is a radial monopole field and this breaks Lorentz invariance to SO(3).
Lorentz invariance is broken to SO(3) for a given CD also by the presence of the preferred time
direction defined by the time-like line connecting the tips of the CD becoming carrying the monopole
charge but is compensated since Lorentz boosts of CDs are possible. Could one consider similar com-
pensation also now? Certainly the extremely small breaking of Lorentz invariance and the vanishing
of the monopole charge for the vacuum extremals is all that is needed at the space-time level. No
new gauge fields would be introduced since only the Kähler field part of photon and Z0 boson would
receive an additional contribution.

The ultimate fate of the modification depends on whether it is consistent with the general relativis-
tic description of gravitation. Since a breaking of spherical symmetry is involved, it is not at all clear
whether one can find vacuum extremals which represent small deformations of the Reissner-Nordström
metric and Robertson-Walker metric. The argument below shows that this option does not allow the
imbedding of small deformations of physically plausible space-time metrics as vacuum extremals.

The basic vacuum extremal whose deformations should give vacuum extremals allowing interpre-
tation as solutions of Einstein’s equations is given by a map M4 → CP2 projecting the rM constant
spheres S2 of M2 to the homologically non-trivial geodesic sphere of CP2. The winding number of
this map is −1 in order to achieve vanishing of the induced Kähler form J + J1. For instance, the
following two canonical forms of the map are possible

(Θ,Ψ) = (θM ,−φM ) ,

(Θ,Ψ) = (π − θM , φM ) .

(2.7.11)

Here (Θ,Ψ) refers to the geodesic sphere of CP2 and (θM , φM ) to the sphere of M4.
The resulting space-time surface is not flat and Einstein tensor is non-vanishing. More complex metrics
can be constructed from this metric by a deformation making the CP2 projection 3-dimensional.

Using the expression of the CP2 line element in Eguchi-Hanson coordinates [L23]

ds2

R2
=

dr2

F 2
+
r2

F
(dΨ + cosΘdΦ)2 +

r2

4F
(dΘ2 + fracr24Fsin2ΘdΦ2)

(2.7.12)
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and s the relationship r = tan(Θ), one obtains following expression for the CP2 metric

ds2

R2
= dθ2

M + sin2(θM )

[
(dφM + cos(θ)dΦ)2 +

1

4
(dθ2 + sin2(θ)dΦ2

]
.

(2.7.13)

The resulting metric is obtained from the metric of S2 by replacing dφ2 which 3-D line element. The
factor sin2(θM ) implies that the induced metric becomes singular at North and South poles of S2.
In particular, the gravitational potential is proportional to sin2(θM ) so that gravitational force in
the radial direction vanishes at equators. It is very difficult to imagine any manner to produce a
small deformation of Reissner-Nordstrm metric or Robertson-Walker metric. Hence it seems that the
vacuum extremals produce by J + J1 option are not physical.

2.7.3 Could Quantum TGD reduce to almost topological QFT?

There seems to be a profound connection with the earlier unrealistic proposal that TGD reduces to
almost topological quantum theory in the sense that the counterpart of Chern-Simons action assigned
with the wormhole throats somehow dictates the dynamics. This proposal can be formulated also
for the modified Dirac action action. I gave up this proposal but the following argument shows that
Kähler action with weak form of electric-magnetic duality effectively reduces to Chern-Simons action
plus Coulomb term.

1. Kähler action density can be written as a 4-dimensional integral of the Coulomb term jαKAα plus
and integral of the boundary term JnβAβ

√
g4 over the wormhole throats and of the quantity

J0βAβ
√
g4 over the ends of the 3-surface.

2. If the self-duality conditions generalize to Jnβ = 4παKε
nβγδJγδ at throats and to J0β =

4παKε
0βγδJγδ at the ends, the Kähler function reduces to the counterpart of Chern-Simons

action evaluated at the ends and throats. It would have same value for each branch and the
replacement ~0 → r~0 would effectively describe this. Boundary conditions would however give
1/r factor so that ~ would disappear from the Kähler function! The original attempt to real-
ize quantum TGD as an almost topological QFT was in terms of Chern-Simons action but was
given up. It is somewhat surprising that Kähler action gives Chern-Simons action in the vacuum
sector defined as sector for which Kähler current is light-like or vanishes.

Holography encourages to ask whether also the Coulomb interaction terms could vanish. This
kind of dimensional reduction would mean an enormous simplification since TGD would reduce to an
almost topological QFT. The attribute ”almost” would come from the fact that one has non-vanishing
classical Noether charges defined by Kähler action and non-trivial quantum dynamics in M4 degrees
of freedom. One could also assign to space-time surfaces conserved four-momenta which is not possible
in topological QFTs. For this reason the conditions guaranteeing the vanishing of Coulomb interaction
term deserve a detailed analysis.

1. For the known extremals jαK either vanishes or is light-like (”massless extremals” for which
weak self-duality condition does not make sense [K10] ) so that the Coulombic term vanishes
identically in the gauge used. The addition of a gradient to A induces terms located at the ends
and wormhole throats of the space-time surface but this term must be cancelled by the other
boundary terms by gauge invariance of Kähler action. This implies that the M4 part of WCW
metric vanishes in this case. Therefore massless extremals as such are not physically realistic:
wormhole throats representing particles are needed.

2. The original naive conclusion was that since Chern-Simons action depends on CP2 coordinates
only, its variation with respect to Minkowski coordinates must vanish so that the WCW met-
ric would be trivial in M4 degrees of freedom. This conclusion is in conflict with quantum
classical correspondence and was indeed too hasty. The point is that the allowed variations of
Kähler function must respect the weak electro-magnetic duality which relates Kähler electric
field depending on the induced 4-metric at 3-surface to the Kähler magnetic field. Therefore the
dependence on M4 coordinates creeps via a Lagrange multiplier term
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∫
Λα(Jnα −KεnαβγJβγ)

√
g4d

3x . (2.7.14)

The (1,1) part of second variation contributing to M4 metric comes from this term.

3. This erratic conclusion about the vanishing of M4 part WCW metric raised the question about
how to achieve a non-trivial metric in M4 degrees of freedom. The proposal was a modification of
the weak form of electric-magnetic duality. Besides CP2 Kähler form there would be the Kähler
form assignable to the light-cone boundary reducing to that for rM = constant sphere - call it
J1. The generalization of the weak form of self-duality would be Jnβ = εnβγδK(Jγδ + εJ1

γδ).

This form implies that the boundary term gives a non-trivial contribution to the M4 part of
the WCW metric even without the constraint from electric-magnetic duality. Kähler charge is
not affected unless the partonic 2-surface contains the tip of CD in its interior. In this case the
value of Kähler charge is shifted by a topological contribution. Whether this term can survive
depends on whether the resulting vacuum extremals are consistent with the basic facts about
classical gravitation.

4. The Coulombic interaction term is not invariant under gauge transformations. The good news
is that this might allow to find a gauge in which the Coulomb term vanishes. The vanishing
condition fixing the gauge transformation φ is

jαK∂αφ = −jαAα . (2.7.15)

This differential equation can be reduced to an ordinary differential equation along the flow
lines jK by using dxα/dt = jαK . Global solution is obtained only if one can combine the flow
parameter t with three other coordinates- say those at the either end of CD to form space-
time coordinates. The condition is that the parameter defining the coordinate differential is
proportional to the covariant form of Kähler current: dt = φjK . This condition in turn implies
d2t = d(φjK) = d(φjK) = dφ ∧ jK + φdjK = 0 implying jK ∧ djK = 0 or more concretely,

εαβγδjKβ ∂γj
K
δ = 0 . (2.7.16)

jK is a four-dimensional counterpart of Beltrami field [B33] and could be called generalized
Beltrami field.

The integrability conditions follow also from the construction of the extremals of Kähler action
[K10] . The conjecture was that for the extremals the 4-dimensional Lorentz force vanishes (no
dissipation): this requires jK ∧ J = 0. One manner to guarantee this is the topologization of
the Kähler current meaning that it is proportional to the instanton current: jK = φjI , where
jI = ∗(J ∧ A) is the instanton current, which is not conserved for 4-D CP2 projection. The
conservation of jK implies the condition jαI ∂αφ = ∂αj

αφ and from this φ can be integrated if the
integrability condition jI∧djI = 0 holds true implying the same condition for jK . By introducing
at least 3 or CP2 coordinates as space-time coordinates, one finds that the contravariant form of
jI is purely topological so that the integrability condition fixes the dependence onM4 coordinates
and this selection is coded into the scalar function φ. These functions define families of conserved
currents jαKφ and jαI φ and could be also interpreted as conserved currents associated with the
critical deformations of the space-time surface.

5. There are gauge transformations respecting the vanishing of the Coulomb term. The vanishing
condition for the Coulomb term is gauge invariant only under the gauge transformations A →
A+∇φ for which the scalar function the integral

∫
jαK∂αφ reduces to a total divergence a giving

an integral over various 3-surfaces at the ends of CD and at throats vanishes. This is satisfied
if the allowed gauge transformations define conserved currents
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Dα(jαφ) = 0 . (2.7.17)

As a consequence Coulomb term reduces to a difference of the conserved chargesQeφ =
∫
j0φ
√
g4d

3x
at the ends of the CD vanishing identically. The change of the imons type term is trivial if the
total weighted Kähler magnetic flux Qmφ =

∑∫
JφdA over wormhole throats is conserved. The

existence of an infinite number of conserved weighted magnetic fluxes is in accordance with the
electric-magnetic duality. How these fluxes relate to the flux Hamiltonians central for WCW
geometry is not quite clear.

6. The gauge transformations respecting the reduction to almost topological QFT should have some
special physical meaning. The measurement interaction term in the modified Dirac interaction
corresponds to a critical deformation of the space-time sheet and is realized as an addition
of a gauge part to the Kähler gauge potential of CP2. It would be natural to identify this
gauge transformation giving rise to a conserved charge so that the conserved charges would
provide a representation for the charges associated with the infinitesimal critical deformations
not affecting Kähler action. The gauge transformed Kähler potential couples to the modified
Dirac equation and its effect could be visible in the value of Kähler function and therefore also
in the properties of the preferred extremal. The effect on WCW metric would however vanish
since K would transform only by an addition of a real part of a holomorphic function. Kähler
function is identified as a Dirac determinant for Chern-Simons Dirac action and the spectrum
of this operator should not be invariant under these gauge transformations if this picture is
correct. This is is achieved if the gauge transformation is carried only in the Dirac action
corresponding to the Chern-Simons term: this assumption is motivated by the breaking of time
reversal invariance induced by quantum measurements. The modification of Kähler action can
be guessed to correspond just to the Chern-Simons contribution from the instanton term.

7. A reasonable looking guess for the explicit realization of the quantum classical correspondence
between quantum numbers and space-time geometry is that the deformation of the preferred
extremal due to the addition of the measurement interaction term is induced by a U(1) gauge
transformation induced by a transformation of δCD×CP2 generating the gauge transformation
represented by φ. This interpretation makes sense if the fluxes defined by Qmφ and corresponding
Hamiltonians affect only zero modes rather than quantum fluctuating degrees of freedom.

To sum up, one could understand the basic properties of WCW metric in this framework. Effec-
tive 2-dimensionality would result from the existence of an infinite number of conserved charges in
two different time directions (genuine conservation laws plus gauge fixing). The infinite-dimensional
symmetric space for given values of zero modes corresponds to the Cartesian product of the WCWs
associated with the partonic 2-surfaces at both ends of CD and the generalized Chern-Simons term
decomposes into a sum of terms from the ends giving single particle Kähler functions and to the terms
from light-like wormhole throats giving interaction term between positive and negative energy parts of
the state. Hence Kähler function could be calculated without any knowledge about the interior of the
space-time sheets and TGD would reduce to almost topological QFT as speculated earlier. Needless
to say this would have immense boost to the program of constructing WCW Kähler geometry.

2.7.4 Kähler action for Euclidian regions as Kähler function and Kähler
action for Minkowskian regions as Morse function?

One of the nasty questions about the interpretation of Kähler action relates to the square root of
the metric determinant. If one proceeds completely straightforwardly, the only reason conclusion is
that the square root is imaginary in Minkowskian space-time regions so that Kähler action would be
complex. The Euclidian contribution would have a natural interpretation as positive definite Kähler
function but how should one interpret the imaginary Minkowskian contribution? Certainly the path
integral approach to quantum field theories supports its presence. For some mysterious reason I
was able to forget this nasty question and serious consideration of the obvious answer to it. Only
when I worked betweeen possibile connections between TGD and Floer homology [K89] I realized
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that the Minkowskian contribution is an excellent candidate for Morse function whose critical points
give information about WCW homology. This would fit nicely with the vision about TGD as almost
topological QFT.

Euclidian regions would guarantee the convergence of the functional integral and one would have
a mathematically well-defined theory. Minkowskian contribution would give the quantal interference
effects and stationary phase approximation. The analog of Floer homology would represent quantum
superpositions of critical points identifiable as ground states defined by the extrema of Kähler action
for Minkowskian regions. Perturbative approach to quantum TGD would rely on functional integrals
around the extrema of Kähler function. One would have maxima also for the Kähler function but
only in the zero modes not contributing to the WCW metric.

There is a further question related to almost topological QFT character of TGD. Should one assume
that the reduction to Chern-Simons terms occurs for the preferred extremals in both Minkowskian and
Euclidian regions or only in Minkowskian regions?

1. All arguments for this have been represented for Minkowskian regions [K27] involve local light-
like momentum direction which does not make sense in the Euclidian regions. This does not
however kill the argument: one can have non-trivial solutions of Laplacian equation in the
region of CP2 bounded by wormhole throats: for CP2 itself only covariantly constant right-
handed neutrino represents this kind of solution and at the same time supersymmetry. In the
general case solutions of Laplacian represent broken super-symmetries and should be in one-one
correspondences with the solutions of the modified Dirac equation. The interpretation for the
counterparts of momentum and polarization would be in terms of classical representation of
color quantum numbers.

2. If the reduction occurs in Euclidian regions, it gives in the case of CP2 two 3-D terms corre-
sponding to two 3-D gluing regions for three coordinate patches needed to define coordinates
and spinor connection for CP2 so that one would have two Chern-Simons terms. I have ear-
lier claimed that without any other contributions the first term would be identical with that
from Minkowskian region apart from imaginary unit and different coefficient. This statement is
wrong since the space-like parts of the corresponding 3-surfaces are discjoint for Euclidian and
Minkowskian regions.

3. There is also another very delicate issue involved. Quantum classical correspondence requires
that the quantum numbers of partonic states must be coded to the space-time geometry, and
this is achieved by adding to the action a measurement interaction term which reduces to what
is almost a gauge term present only in Chern-Simons-Dirac equation but not at space-time
interior [K27]. This term would represent a coupling to Poincare quantum numbers at the
Minkowskian side and to color and electro-weak quantum numbers at CP2 side. Therefore the
net Chern-Simons contributions would be different.

4. There is also a very beautiful argument stating that Dirac determinant for Chern-Simons-Dirac
action equals to Kähler function, which would be lost if Euclidian regions would not obey
holography. The argument obviously generalizes and applies to both Morse and Kähler function
which are definitely not proportional to each other.

The Minkowskian contribution of Kähler action is imaginary due to the negative of the metric
determinant and gives a phase factor to vacuum functional reducing to Chern-Simons terms at worm-
hole throats. Ground state degeneracy due to the possibility of having both signs for Minkowskian
contribution to the exponent of vacuum functional provides a general view about the description of
CP breaking in TGD framework.

1. In TGD framework path integral is replaced by inner product involving integral over WCV. The
vacuum functional and its conjugate are associated with the states in the inner product so that
the phases of vacuum functionals cancel if only one sign for the phase is allowed. Minkowskian
contribution would have no physical significance. This of course cannot be the case. The ground
state is actually degenerate corresponding to the phase factor and its complex conjugate since√
g can have two signs in Minkowskian regions. Therefore the inner products between states

associated with the two ground states define 2 × 2 matrix and non-diagonal elements contain
interference terms due to the presence of the phase factor. At the limit of full CP2 type vacuum
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extremal the two ground states would reduce to each other and the determinant of the matrix
would vanish.

2. A small mixing of the two ground states would give rise to CP breaking and the first principle
description of CP breaking in systems like K − K and of CKM matrix should reduce to this
mixing. K0 mesons would be CP even and odd states in the first approximation and correspond
to the sum and difference of the ground states. Small mixing would be present having exponential
sensitivity to the actions of CP2 type extremals representing wormhole throats. This might allow
to understand qualitatively why the mixing is about 50 times larger than expected for B0 mesons.

3. There is a strong temptation to assign the two ground states with two possible arrows of geo-
metric time. At the level of M-matrix the two arrows would correspond to state preparation at
either upper or lower boundary of CD. Do long- and shortlived neutral K mesons correspond
to almost fifty-fifty orthogonal superpositions for the two arrow of geometric time or almost
completely to a fixed arrow of time induced by environment? Is the dominant part of the arrow
same for both or is it opposite for long and short-lived neutral measons? Different lifetimes
would suggest that the arrow must be the same and apart from small leakage that induced by
environment. CP breaking would be induced by the fact that CP is performed only K0 but not
for the environment in the construction of states. One can probably imagine also alternative
interpretations.

2.8 How to define generalized Feynman diagrams?

S-matrix codes to a high degree the predictions of quantum theories. The longstanding challenge of
TGD has been to construct or at least demonstrate the mathematical existence of S-matrix- or actually
M-matrix which generalizes this notion in zero energy ontology (ZEO) [K66] . This work has led to the
notion of generalized Feynman diagram and the challenge is to give a precise mathematical meaning
for this object. The attempt to understand the counterpart of twistors in TGD framework [K86]
has inspired several key ideas in this respect but it turned out that twistors themselves need not be
absolutely necessary in TGD framework.

1. The notion of generalized Feyman diagram defined by replacing lines of ordinary Feynman dia-
gram with light-like 3-surfaces (elementary particle sized wormhole contacts with throats carry-
ing quantum numbers) and vertices identified as their 2-D ends - I call them partonic 2-surfaces
is central. Speaking somewhat loosely, generalized Feynman diagrams (plus background space-
time sheets) define the ”world of classical worlds” (WCW). These diagrams involve the analogs
of stringy diagrams but the interpretation is different: the analogs of stringy loop diagrams have
interpretation in terms of particle propagating via two different routes simultaneously (as in the
classical double slit experiment) rather than as a decay of particle to two particles. For stringy
diagrams the counterparts of vertices are singular as manifolds whereas the entire diagrams
are smooth. For generalized Feynman diagrams vertices are smooth but entire diagrams rep-
resent singular manifolds just like ordinary Feynman diagrams do. String like objects however
emerge in TGD and even ordinary elementary particles are predicted to be magnetic flux tubes
of length of order weak gauge boson Compton length with monopoles at their ends as shown in
accompanying article. This stringy character should become visible at LHC energies.

2. Zero energy ontology (ZEO) and causal diamonds (intersections of future and past directed
lightcones) is second key ingredient. The crucial observation is that in ZEO it is possible to
identify off mass shell particles as pairs of on mass shell particles at throats of wormhole contact
since both positive and negative signs of energy are possible. The propagator defined by modified
Dirac action does not diverge (except for incoming lines) although the fermions at throats are on
mass shell. In other words, the generalized eigenvalue of the modified Dirac operator containing
a term linear in momentum is non-vanishing and propagator reduces to G = i/λγ, where γ is so
called modified gamma matrix in the direction of stringy coordinate [K15] . This means opening
of the black box of the off mass shell particle-something which for some reason has not occurred
to anyone fighting with the divergences of quantum field theories.
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3. A powerful constraint is number theoretic universality requiring the existence of Feynman am-
plitudes in all number fields when one allows suitable algebraic extensions: roots of unity are
certainly required in order to realize p-adic counter parts of plane waves. Also imbedding space,
partonic 2-surfaces and WCW must exist in all number fields and their extensions. These con-
straints are enormously powerful and the attempts to realize this vision have dominated quantum
TGD for last two decades.

4. Representation of 8-D gamma matrices in terms of octonionic units and 2-D sigma matrices is
a further important element as far as twistors are considered [K86] . Modified gamma matrices
at space-time surfaces are quaternionic/associative and allow a genuine matrix representation.
As a matter fact, TGD and WCW can be formulated as study of associative local sub-algebras
of the local Clifford algebra of 8-D imbedding space parameterized by quaternionic space-time
surfaces. Central conjecture is that quaternionic 4-surfaces correspond to preferred extremals
of Kähler action [K15] identified as critical ones (second variation of Kähler action vanishes for
infinite number of deformations defining super-conformal algebra) and allow a slicing to string
worldsheets parametrized by points of partonic 2-surfaces.

5. As far as twistors are considered, the first key element is the reduction of the octonionic twistor
structure to quaternionic one at space-time surfaces and giving effectively 4-D spinor and twistor
structure for quaternionic surfaces.

Quite recently quite a dramatic progress took place in this approach [K86] .

1. The progress was stimulated by the simple observation that on mass shell property puts enor-
mously strong kinematic restrictions on the loop integrations. With mild restrictions on the
number of parallel fermion lines appearing in vertices (there can be several since fermionic
oscillator operator algebra defining SUSY algebra generates the parton states)- all loops are
manifestly finite and if particles has always mass -say small p-adic thermal mass also in case of
massless particles and due to IR cutoff due to the presence largest CD- the number of diagrams
is finite. Unitarity reduces to Cutkosky rules [B17] automatically satisfied as in the case of
ordinary Feynman diagrams.

2. Ironically, twistors which stimulated all these development do not seem to be absolutely necessary
in this approach although they are of course possible. Situation changes if one does not assume
small p-adically thermal mass due to the presence of massless particles and one must sum infinite
number of diagrams. Here a potential problem is whether the infinite sum respects the algebraic
extension in question.

This is about fermionic and momentum space aspects of Feynman diagrams but not yet about the
functional (not path-) integral over small deformations of the partonic 2-surfaces. The basic challenges
are following.

1. One should perform the functional integral over WCW degrees of freedom for fixed values of
on mass shell momenta appearing in the internal lines. After this one must perform integral or
summation over loop momenta. Note that the order is important since the space-time surface
assigned to the line carries information about the quantum numbers associated with the line by
quantum classical correspondence realized in terms of modified Dirac operator.

2. One must define the functional integral also in the p-adic context. p-Adic Fourier analysis relying
on algebraic continuation raises hopes in this respect. p-Adicity suggests strongly that the loop
momenta are discretized and ZEO predicts this kind of discretization naturally.

It indeed seems that the functional integrals over WCW could be carried out at general level
both in real and p-adic context. This is due to the symmetric space property (maximal number
of isometries) of WCW required by the mere mathematical existence of Kähler geometry [K36] in
infinite-dimensional context already in the case of much simpler loop spaces [A153] .

1. The p-adic generalization of Fourier analysis allows to algebraize integration- the horrible looking
technical challenge of p-adic physics- for symmetric spaces for functions allowing the analog
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of discrete Fourier decomposion. Symmetric space property is indeed essential also for the
existence of Kähler geometry for infinite-D spaces as was learned already from the case of loop
spaces. Plane waves and exponential functions expressible as roots of unity and powers of p
multiplied by the direct analogs of corresponding exponent functions are the basic building
bricks and key functions in harmonic analysis in symmetric spaces. The physically unavoidable
finite measurement resolution corresponds to algebraically unavoidable finite algebraic dimension
of algebraic extension of p-adics (at least some roots of unity are needed). The cutoff in roots
of unity is very reminiscent to that occurring for the representations of quantum groups and
is certainly very closely related to these as also to the inclusions of hyper-finite factors of type
II¡sub¿1¡/sub¿ defining the finite measurement resolution.

2. WCW geometrization reduces to that for a single line of the generalized Feynman diagram defin-
ing the basic building brick for WCW. Kähler function decomposes to a sum of ”kinetic” terms
associated with its ends and interaction term associated with the line itself. p-Adicization boils
down to the condition that Kähler function, matrix elements of Kähler form, WCW Hamilto-
nians and their super counterparts, are rational functions of complex WCW coordinates just as
they are for those symmetric spaces that I know of. This allows straightforward continuation to
p-adic context.

3. As far as diagrams are considered, everything is manifestly finite as the general arguments (non-
locality of Kähler function as functional of 3-surface) developed two decades ago indeed allow to
expect. General conditions on the holomorphy properties of the generalized eigenvalues λ of the
modified Dirac operator can be deduced from the conditions that propagator decomposes to a
sum of products of harmonics associated with the ends of the line and that similar decomposition
takes place for exponent of Kähler action identified as Dirac determinant. This guarantees that
the convolutions of propagators and vertices give rise to products of harmonic functions which
can be Glebsch-Gordanized to harmonics and only the singlet contributes to the WCW integral
in given vertex. The still unproven central conjecture is that Dirac determinant equals the
exponent of Kähler function.

In the following this vision about generalized Feynman diagrams is discussed in more detail.

2.8.1 Questions

The goal is a proposal for how to perform the integral over WCW for generalized Feynman digrams
and the best manner to proceed to to this goal is by making questions.

What does finite measurement resolution mean?

The first question is what finite measurement resolution means.

1. One expects that the algebraic continuation makes sense only for a finite measurement resolution
in which case one obtains only finite sums of what one might hope to be algebraic functions.
The finiteness of the algebraic extension would be in fact equivalent with the finite measurement
resolution.

2. Finite measurement resolution means a discretization in terms of number theoretic braids. p-
Adicization condition suggests that that one must allow only the number theoretic braids. For
these the ends of braid at boundary of CD are algebraic points of the imbedding space. This
would be true at least in the intersection of real and p-adic worlds.

3. The question is whether one can localize the points of the braid. The necessity to use momentum
eigenstates to achieve quantum classical correspondence in the modified Dirac action [K15]
suggests however a delocalization of braid points, that is wave function in space of braid points.
In real context one could allow all possible choices for braid points but in p-adic context only
algebraic points are possible if one wants to replace integrals with sums. This implies finite
measurement resolution analogous to that in lattice. This is also the only possibility in the
intersection of real and p-adic worlds.
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A non-trivial prediction giving a strong correlation between the geometry of the partonic 2-
surface and quantum numbers is that the total number nF +nF of fermions and antifermions is
bounded above by the number nalg of algebraic points for a given partonic 2-surface: nF +nF ≤
nalg. Outside the intersection of real and p-adic worlds the problematic aspect of this definition
is that small deformations of the partonic 2-surface can radically change the number of algebraic
points unless one assumes that the finite measurement resolution means restriction of WCW to
a sub-space of algebraic partonic surfaces.

4. One has also a discretization of loop momenta if one assumes that virtual particle momentum
corresponds to ZEO defining rest frame for it and from the discretization of the relative position
of the second tip of CD at the hyperboloid isometric with mass shell. Only the number of braid
points and their momenta would matter, not their positions. The measurement interaction term
in the modified Dirac action gives coupling to the space-time geometry and Kähler function
through generalized eigenvalues of the modified Dirac operator with measurement interaction
term linear in momentum and in the color quantum numbers assignable to fermions [K15] .

How to define integration in WCW degrees of freedom?

The basic question is how to define the integration over WCW degrees of freedom.

1. What comes mind first is Gaussian perturbation theory around the maxima of Kähler function.
Gaussian and metric determinants cancel each other and only algebraic expressions remain.
Finiteness is not a problem since the Kähler function is non-local functional of 3-surface so that
no local interaction vertices are present. One should however assume the vanishing of loops
required also by algebraic universality and this assumption look unrealistic when one considers
more general functional integrals than that of vacuum functional since free field theory is not
in question. The construction of the inverse of the WCW metric defining the propagator is also
a very difficult challenge. Duistermaat-Hecke theorem states that something like this known as
localization might be possible and one can also argue that something analogous to localization
results from a generalization of mean value theorem.

2. Symmetric space property is more promising since it might reduce the integrations to group
theory using the generalization of Fourier analysis for group representations so that there would
be no need for perturbation theory in the proposed sense. In finite measurement resolution the
symmetric spaces involved would be finite-dimensional. Symmetric space structure of WCW
could also allow to define p-adic integration in terms of p-adic Fourier analysis for symmetric
spaces. Essentially algebraic continuation of the integration from the real case would be in
question with additional constraints coming from the fact that only phase factors corresponding
to finite algebraic extensions of rationals are used. Cutoff would emerge automatically from the
cutoff for the dimension of the algebraic extension.

How to define generalized Feynman diagrams?

Integration in symmetric spaces could serve as a model at the level of WCW and allow both the
understanding of WCW integration and p-adicization as algebraic continuation. In order to get a
more realistic view about the problem one must define more precisely what the calculation of the
generalized Feynman diagrams means.

1. WCW integration must be carried out separately for all values of the momenta associated with
the internal lines. The reason is that the spectrum of eigenvalues λi of the modified Dirac
operator D depends on the momentum of line and momentum conservation in vertices translates
to a correlation of the spectra of D at internal lines.

2. For tree diagrams algebraic continuation to the p-adic context if the expression involves only
the replacement of the generalized eigenvalues of D as functions of momenta with their p-adic
counterparts besides vertices. If these functions are algebraically universal and expressible in
terms of harmonics of symmetric space , there should be no problems.



118 Chapter 2. TGD as a Generalized Number Theory I: p-Adicization Program

3. If loops are involved, one must integrate/sum over loop momenta. In p-adic context difficulties
are encountered if the spectrum of the momenta is continuous. The integration over on mass
shell loop momenta is analogous to the integration over sub-CDs, which suggests that internal
line corresponds to a sub − CD in which it is at rest. There are excellent reasons to believe
that the moduli space for the positions of the upper tip is a discrete subset of hyperboloid of
future light-cone. If this is the case, the loop integration indeed reduces to a sum over discrete
positions of the tip. p-Adizication would thus give a further good reason why for zero energy
ontology.

4. Propagator is expressible in terms of the inverse of generalized eigenvalue and there is a sum
over these for each propagator line. At vertices one has products of WCW harmonics assignable
to the incoming lines. The product must have vanishing quantum numbers associated with the
phase angle variables of WCW. Non-trivial quantum numbers of the WCW harmonic correspond
to WCW quantum numbers assignable to excitations of ordinary elementary particles. WCW
harmonics are products of functions depending on the ”radial” coordinates and phase factors
and the integral over the angles leaves the product of the first ones analogous to Legendre
polynomials Pl,m, These functions are expected to be rational functions or at least algebraic
functions involving only square roots.

5. In ordinary QFT incoming and outgoing lines correspond to propagator poles. In the recent case
this would mean that the generalized eigenvalues λ = 0 characterize them. Internal lines coming
as pairs of throats of wormhole contacts would be on mass shell with respect to momentum but
off shell with respect to λ.

2.8.2 Generalized Feynman diagrams at fermionic and momentum space
level

Negative energy ontology has already led to the idea of interpreting the virtual particles as pairs of
positive and negative energy wormhole throats. Hitherto I have taken it as granted that ordinary
Feynman diagrammatics generalizes more or less as such. It is however far from clear what really
happens in the verties of the generalized Feynmann diagrams. The safest approach relies on the
requirement that unitarity realized in terms of Cutkosky rules in ordinary Feynman diagrammatics
allows a generalization. This requires loop diagrams. In particular, photon-photon scattering can
take place only via a fermionic square loop so that it seems that loops must be present at least in the
topological sense.

One must be however ready for the possibility that something unexpectedly simple might emerge.
For instance, the vision about algebraic physics allows naturally only finite sums for diagrams and
does not favor infinite perturbative expansions. Hence the true believer on algebraic physics might
dream about finite number of diagrams for a given reaction type. For simplicity generalized Feyn-
man diagrams without the complications brought by the magnetic confinement since by the previous
arguments the generalization need not bring in anything essentially new.

The basic idea of duality in early hadronic models was that the lines of the dual diagram repre-
senting particles are only re-arranged in the vertices. This however does not allow to get rid of off
mass shell momenta. Zero energy ontology encourages to consider a stronger form of this principle in
the sense that the virtual momenta of particles could correspond to pairs of on mass shell momenta
of particles. If also interacting fermions are pairs of positive and negative energy throats in the in-
teraction region the idea about reducing the construction of Feynman diagrams to some kind of lego
rules might work.

Virtual particles as pairs of on mass shell particles in ZEO

The first thing is to try to define more precisely what generalized Feynman diagrams are. The direct
generalization of Feynman diagrams implies that both wormhole throats and wormhole contacts join
at vertices.

1. A simple intuitive picture about what happens is provided by diagrams obtained by replacing
the points of Feynman diagrams (wormhole contacts) with short lines and imagining that the
throats correspond to the ends of the line. At vertices where the lines meet the incoming on
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mass shell quantum numbers would sum up to zero. This approach leads to a straightforward
generalization of Feynman diagrams with virtual particles replaced with pairs of on mass shell
throat states of type ++, −−, and +−. Incoming lines correspond to ++ type lines and outgoing
ones to −− type lines. The first two line pairs allow only time like net momenta whereas +−
line pairs allow also space-like virtual momenta. The sign assigned to a given throat is dictated
by the the sign of the on mass shell momentum on the line. The condition that Cutkosky
rules generalize as such requires ++ and −− type virtual lines since the cut of the diagram in
Cutkosky rules corresponds to on mass shell outgoing or incoming states and must therefore
correspond to ++ or −− type lines.

2. The basic difference as compared to the ordinary Feynman diagrammatics is that loop integrals
are integrals over mass shell momenta and that all throats carry on mass shell momenta. In
each vertex of the loop mass incoming on mass shell momenta must sum up to on mass shell
momentum. These constraints improve the behavior of loop integrals dramatically and give
excellent hopes about finiteness. It does not however seem that only a finite number of dia-
grams contribute to the scattering amplitude besides tree diagrams. The point is that if a the
reactions N1 → N2 and N2 → N3,, where Ni denote particle numbers, are possible in a common
kinematical region for N2-particle states then also the diagrams N1 → N2 → N2 → N3 are
possible. The virtual states N2 include all all states in the intersection of kinematically allow
regions for N1 → N2 and N2 → N3. Hence the dream about finite number possible diagrams is
not fulfilled if one allows massless particles. If all particles are massive then the particle number
N2 for given N1 is limited from above and the dream is realized.

3. For instance, loops are not possible in the massless case or are highly singular (bringing in mind
twistor diagrams) since the conservation laws at vertices imply that the momenta are parallel.
In the massive case and allowing mass spectrum the situation is not so simple. As a first example
one can consider a loop with three vertices and thus three internal lines. Three on mass shell
conditions are present so that the four-momentum can vary in 1-D subspace only. For a loop
involving four vertices there are four internal lines and four mass shell conditions so that loop
integrals would reduce to discrete sums. Loops involving more than four vertices are expected
to be impossible.

4. The proposed replacement of the elementary fermions with bound states of elementary fermions
and monopoles X± brings in the analog of stringy diagrammatics. The 2-particle wave functions
in the momentum degrees of freedom of fermiona and X± migh allow more flexibility and allow
more loops. Note however that there are excellent hopes about the finiteness of the theory also
in this case.

Loop integrals are manifestly finite

One can make also more detailed observations about loops.

1. The simplest situation is obtained if only 3-vertices are allowed. In this case conservation of
momentum however allows only collinear momenta although the signs of energy need not be
the same. Particle creation and annihilation is possible and momentum exchange is possible
but is always light-like in the massless case. The scattering matrices of supersymmetric YM
theories would suggest something less trivial and this raises the question whether something is
missing. Magnetic monopoles are an essential element of also these theories as also massivation
and symmetry breaking and this encourages to think that the formation of massive states as
fermion X± pairs is needed. Of course, in TGD framework one has also high mass excitations
of the massless states making the scattering matrix non-trivial.

2. In YM theories on mass shell lines would be singular. In TGD framework this is not the case
since the propagator is defined as the inverse of the 3-D dimensional reduction of the modified
Dirac operator D containing also coupling to four-momentum (this is required by quantum
classical correspondence and guarantees stringy propagators),
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D = iΓ̂αpα + Γ̂αDα ,

pα = pk∂αh
k . (2.8.1)

The propagator does not diverge for on mass shell massless momenta and the propagator lines
are well-defined. This is of course of essential importance also in general case. Only for the
incoming lines one can consider the possibility that 3-D Dirac operator annihilates the induced
spinor fields. All lines correspond to generalized eigenstates of the propagator in the sense
that one has D3Ψ = λγΨ, where γ is modified gamma matrix in the direction of the stringy
coordinate emanating from light-like surface and D3 is the 3-dimensional dimensional reduction
of the 4-D modified Dirac operator. The eigenvalue λ is analogous to energy. Note that the
eigenvalue spectrum depends on 4-momentum as a parameter.

3. Massless incoming momenta can decay to massless momenta with both signs of energy. The
integration measure d2k/2E reduces to dx/x where x ≥ 0 is the scaling factor of massless
momentum. Only light-like momentum exchanges are however possible and scattering matrix
is essentially trivial. The loop integrals are finite apart from the possible delicacies related to
poles since the loop integrands for given massless wormhole contact are proportional to dx/x3

for large values of x.

4. Irrrespective of whether the particles are massless or not, the divergences are obtained only if
one allows too high vertices as self energy loops for which the number of momentum degrees of
freedom is 3N − 4 for N -vertex. The construction of SUSY limit of TGD in [K28] led to the
conclusion that the parallelly propagating N fermions for given wormhole throat correspond to a
product of N fermion propagators with same four-momentum so that for fermions and ordinary
bosons one has the standard behavior but for N > 2 non-standard so that these excitations are
not seen as ordinary particles. Higher vertices are finite only if the total number NF of fermions
propagating in the loop satisfies NF > 3N−4. For instance, a 4-vertex from which N = 2 states
emanate is finite.

Taking into account magnetic confinement

What has been said above is not quite enough. The weak form of electric-magnetic duality [B8] leads
to the picture about elementary particles as pairs of magnetic monopoles inspiring the notions of
weak confinement based on magnetic monopole force. Also color confinement would have magnetic
counterpart. This means that elementary particles would behave like string like objects in weak boson
length scale. Therefore one must also consider the stringy case with wormhole throats replaced with
fermion-X± pairs (X± is electromagnetically neutral and ± refers to the sign of the weak isospin
opposite to that of fermion) and their super partners.

1. The simplest assumption in the stringy case is that fermion-X± pairs behave as coherent objects,
that is scatter elastically. In more general case only their higher excitations identifiable in terms
of stringy degrees of freedom would be created in vertices. The massivation of these states
makes possible non-collinear vertices. An open question is how the massivation fermion-X±
pairs relates to the existing TGD based description of massivation in terms of Higgs mechanism
and modified Dirac operator.

2. Mass renormalization could come from self energy loops with negative energy lines as also vertex
normalization. By very general arguments supersymmetry implies the cancellation of the self
energy loops but would allow non-trivial vertex renormalization [K28] .

3. If only 3-vertices are allowed, the loops containing only positive energy lines are possible if on
mass shell fermion-X± pair (or its superpartner) can decay to a pair of positive energy pair
particles of same kind. Whether this is possible depends on the masses involved. For ordinary
particles these decays are not kinematically possible below intermediate boson mass scale (the
decays F1 → F2 + γ are forbidden kinematically or by the absence of flavor changing neutral
currents whereas intermediate gauge bosons can decay to on mass shell fermion-antifermion
pair).
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4. The introduction of IR cutoff for 3-momentum in the rest system associated with the largest
CD (causal diamond) looks natural as scale parameter of coupling constant evolution and p-adic
length scale hypothesis favors the inverse of the size scale of CD coming in powers of two. This
parameter would define the momentum resolution as a discrete parameter of the p-adic coupling
constant evolution. This scale does not have any counterpart in standard physics. For electron,
d quark, and u quark the proper time distance between the tips of CD corresponds to frequency
of 10 Hz, 1280 Hz, and 160 Hz: all these frequencies define fundamental bio-rhythms [K23] .

These considerations have left completely untouched one important aspect of generalized Feynman
diagrams: the necessity to perform a functional integral over the deformations of the partonic 2-
surfaces at the ends of the lines- that is integration over WCW. Number theoretical universality
requires that WCW and these integrals make sense also p-adically and in the following these aspects
of generalized Feynman diagrams are discussed.

2.8.3 How to define integration and p-adic Fourier analysis, integral cal-
culus, and p-adic counterparts of geometric objects?

p-Adic differential calculus exists and obeys essentially the same rules as ordinary differental calcu-
lus. The only difference from real context is the existence of p-adic pseudoconstants: any function
which depends on finite number of pinary digits has vanishing p-adic derivative. This implies non-
determinism of p-adic differerential equations. One can defined p-adic integral functions using the fact
that indefinite integral is the inverse of differentiation. The basis problem with the definite integrals
is that p-adic numbers are not well-ordered so that the crucial ordering of the points of real axis in
definite integral is not unique. Also p-adic Fourier analysis is problematic since direct counterparts of
ep(ix) and trigonometric functions are not periodic. Also exp(-x) fails to converse exponentially since
it has p-adic norm equal to 1. Note also that these functions exists only when the p-adic norm of x
is smaller than 1.

The following considerations support the view that the p-adic variant of a geometric objects,
integration and p-adic Fourier analysis exists but only when one considers highly symmetric geometric
objects such as symmetric spaces. This is wellcome news from the point of view of physics. At the
level of space-time surfaces this is problematic. The field equations associated with Kähler action
and modified Dirac equation make sense. Kähler action defined as integral over p-adic space-time
surface fails to exist. If however the Kähler function identified as Kähler for a preferred extremal of
Kähler action is rational or algebraic function of preferred complex coordinates of WCW with ratonal
coefficients, its p-adic continuation is expected to exist.

Circle with rotational symmetries and its hyperbolic counterparts

Consider first circle with emphasis on symmetries and Fourier analysis.

1. In this case angle coordinate φ is the natural coordinate. It however does not make sense as such
p-adically and one must consider either trigonometric functions or the phase exp(iφ) instead.
If one wants to do Fourier analysis on circle one must introduce roots Un,N = exp(in2π/N) of
unity. This means discretization of the circle. Introducing all roots Un,p = exp(i2πn/p), such
that p divides N , one can represent all Uk,n up to n = N . Integration is naturally replaced with
sum by using discrete Fourier analysis on circle. Note that the roots of unity can be expressed
as products of powers of roots of unity exp(in2π/pk), where pk divides N .

2. There is a number theoretical delicacy involved. By Fermat’s theorem ap−1 mod p = 1 for
a = 1, ...p−1 for a given p-adic prime so that for any integer M divisible by a factor of p−1 the
M :th roots of unity exist as ordinary p-adic numbers. The problem disappears if these values
of M are excluded from the discretization for a given value of the p-adic prime. The manner to
achieve this is to assume that N contains no divisors of p−1 and is consistent with the notion of
finite measurement resolution. For instance, N = pn is an especially natural choice guaranteing
this.

3. The p-adic integral defined as a Fourier sum does not reduce to a mere discretization of the
real integral. In the real case the Fourier coefficients must approach to zero as the wave vector
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k = n2π/N increases. In the p-adic case the condition consistent with the notion of finite
measurement resolution for angles is that the p-adic valued Fourier coefficients approach to zero
as n increases. This guarantees the p-adic convergence of the discrete approximation of the
integral for large values of N as n increases. The map of p-adic Fourier coefficients to real ones
by canonical identification could be used to relate p-adic and real variants of the function to
each other.

This finding would suggests that p-adic geometries -in particular the p-adic counterpart of CP2,
are discrete. Variables which have the character of a radial coordinate are in natural manner p-
adically continuous whereas phase angles are naturally discrete and described in terms of algebraic
extensions. The conclusion is disappoing since one can quite well argue that the discrete structures
can be regarded as real. Is there any manner to escape this conclusion?

1. Exponential function exp(ix) exists p-adically for |x|p ≤ 1/p but is not periodic. It provides rep-
resentation of p-adic variant of circle as group U(1). One obtains actually a hierarchy of groups
U(1)p,n corresponding to |x|p ≤ 1/pn. One could consider a generalization of phases as products
Expp(N,n2π/N + x) = exp(in2πn/N)exp(ix) of roots of unity and exponent functions with
an imaginary exponent. This would assign to each root of unity p-adic continuum interpreted
as the analog of the interval between two subsequent roots of unity at circle. The hierarchies
of measurement resolutions coming as 2π/pn would be naturally accompanied by increasingly
smaller p-adic groups U(1)p,n.

2. p-Adic integration would involve summation plus possibly also an integration over each p-adic
variant of discretization interval. The summation over the roots of unity implies that the integral
of
∫
exp(inx)dx would appear for n = 0. Whatever the value of this integral is, it is compensated

by a normalization factor guaranteing orthonormality.

3. If one interprets the p-adic coordinate as p-adic integer without the identification of points
differing by a multiple of n as different points the question whether one should require p-adic
continuity arises. Continuity is obtained if Un(x + mpm) = Un(x) for large values of m. This
is obtained if one has n = pk. In the spherical geometry this condition is not needed and
would mean quantization of angular momentum as L = pk, which does not look natural. If
representations of translation group are considered the condition is natural and conforms with
the spirit of the p-adic length scale hypothesis.

The hyperbolic counterpart of circle corresponds to the orbit of point under Lorentz group in
two 2-D Minkowski space. Plane waves are replaced with exponentially decaying functions of the
coordinate η replacing phase angle. Ordinary exponent function exp(x) has unit p-adic norm when it
exists so that it is not a suitable choice. The powers pn existing for p-adic integers however approach
to zero for large values of x = n. This forces discretization of η or rather the hyperbolic phase as
powers of px, x = n. Also now one could introduce products of Expp(nlog(p) + z) = pnexp(x) to
achieve a p-adic continuum. Also now the integral over the discretization interval is compensated
by orthonormalization and can be forgotten. The integral of exponential function would reduce to
a sum

∫
Exppdx =

∑
k p

k = 1/(1 − p). One can also introduce finite-dimensional but non-algebraic
extensions of p-adic numbers allowing e and its roots e1/n since ep exists p-adically.

Plane with translational and rotational symmetries

Consider first the situation by taking translational symmetries as a starting point. In this case
Cartesian coordinates are natural and Fourier analysis based on plane waves is what one wants to
define. As in the previous case, this can be done using roots of unity and one can also introduce
p-adic continuum by using the p-adic variant of the exponent function. This would effectively reduce
the plane to a box. As already noticed, in this case the quantization of wave vectors as multiples of
1/pk is required by continuity.

One can take also rotational symmetries as a starting point. In this case cylindrical coordinates
(ρ, φ) are natural.

1. Radial coordinate can have arbitrary values. If one wants to keep the connection ρ =
√
x2 + y2

with the Cartesian picture square root allowing extension is natural. Also the values of radial
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coordinate proportional to odd power of p are problematic since one should introduce
√
p: is

this extension internally consistent? Does this mean that the points ρ ∝ p2n+1 are excluded so
that the plane decomposes to annuli?

2. As already found, angular momentum eigen states can be described in terms of roots of unity
and one could obtain continuum by allowing also phases defined by p-adic exponent functions.

3. In radial direction one should define the p-adic variants for the integrals of Bessel functions and
they indeed might make sense by algebraic continuation if one consistently defines all functions
as Fourier expansions. Delta-function renormalization causes technical problems for a continuum
of radial wave vectors. One could avoid the problem by using expontentially decaying variants
of Bessel function in the regions far from origin, and here the already proposed description of
the hyperbolic counterparts of plane waves is suggestive.

4. One could try to understand the situation also using Cartesian coordinates. In the case of sphere
this is achieved by introducing two coordinate patches with Cartesian coordinates. Pythagorean
phases are rational phases (orthogonal triangles for which all sides are integer valued) and form
a dense set on circle. Complex rationals (orthogonal triangles with integer valued short sides)
define a more general dense subset of circle. In both cases it is difficult to imagine a discretized
version of integration over angles since discretization with constant angle increrement is not
possible.

The case of sphere and more general symmetric space

In the case of sphere spherical coordinates are favored by symmetry considerations. For spherical
coordinates sin(θ) is analogous to the radial coordinate of plane. Legedre polynomials expressible
as polynomials of sin(θ) and cos(θ) are expressible in terms of phases and the integration measure
sin2(θ)dθdφ reduces the integral of S2 to summation. As before one can introduce also p-adic contin-
uum. Algebraic cutoffs in both angular momentum l and m appear naturally. Similar cutoffs appear
in the representations of quantum groups and there are good reasons to expect that these phenomena
are correlated.

Exponent of Kähler function appears in the integration over configuration space. From the ex-
pression of Kähler gauge potential given by Aα = J θ

α ∂θK one obtains using Aα = cos(θ)δα,φ and
Jθφ = sin(θ) the expression exp(K) = sin(θ). Hence the exponent of Kähler function is expressible
in terms of spherical harmonics.

The completion of the discretized sphere to a p-adic continuum- and in fact any symmetric space-
could be performed purely group theoretically.

1. Exponential map maps the elements of the Lie-algebra to elements of Lie-group. This recipe
generalizes to arbitrary symmetric space G/H by using the Cartan decomposition g = t + h,
[h, h] ⊂ h,[h, t] ⊂ t,[t, t] ⊂ h. The exponentiation of t maps t to G/H in this case. The
exponential map has a p-adic generalization obtained by considering Lie algebra with coefficients
with p-adic norm smaller than one so that the p-adic exponent function exists. As a matter fact,
one obtains a hierarchy of Lie-algebras corresponding to the upper bounds of the p-adic norm
coming as p−k and this hierarchy naturally corresponds to the hierarchy of angle resolutions
coming as 2π/pk. By introducing finite-dimensional transcendental extensions containing roots
of e one obtains also a hierarchy of p-adic Lie-algebras associated with transcendental extensions.

2. In particular, one can exponentiate the complement of the SO(2) sub-algebra of SO(3) Lie-
algebra in p-adic sense to obtain a p-adic completion of the discrete sphere. Each point of the
discretized sphere would correspond to a p-adic continuous variant of sphere as a symmetric
space. Similar construction applies in the case of CP2. Quite generally, a kind of fractal or
holographic symmetric space is obtained from a discrete variant of the symmetric space by
replacing its points with the p-adic symmetric space.

3. In the N-fold discretization of the coordinates of M-dimensional space t one (N−1)M discretiza-
tion volumes which is the number of points with non-vanishing t-coordinates. It would be nice
if one could map the p-adic discretization volumes with non-vanishing t-coordinates to their
positive valued real counterparts by applying canonical identification. By group invariance it is
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enough to show that this works for a discretization volume assignable to the origin. Since the
p-adic numbers with norm smaller than one are mapped to the real unit interval, the p-adic Lie
algebra is mapped to the unit cell of the discretization lattice of the real variant of t. Hence by
a proper normalization this mapping is possible.

The above considerations suggest that the hierarchies of measurement resolutions coming as ∆φ =
2π/pn are in a preferred role. One must be however cautious in order to avoid too strong assumptions.
The following arguments however support this identification.

1. The vision about p-adicization characterizes finite measurement resolution for angle measure-
ment in the most general case as ∆φ = 2πM/N , where M and N are positive integers having
no common factors. The powers of the phases exp(i2πM/N) define identical Fourier basis irre-
spective of the value of M unless one allows only the powers exp(i2πkM/N) for which kM < N
holds true: in the latter case the measurement resolutions with different values of M corre-
spond to different numbers of Fourier components. Otherwise themeasurement ersolution is just
∆φ = 2π/pn. If one regards N as an ordinary integer, one must have N = pn by the p-adic
continuity requirement.

2. One can also interpret N as a p-adic integer and assume that state function reduction selects one
particular prime (no superposition of quantum states with different p-adic topologies). For N =
pnM , where M is not divisible by p, one can express 1/M as a p-adic integer 1/M =

∑
k≥0Mkp

k,

which is infinite as a real integer but effectively reduces to a finite integer K(p) =
∑N−1
k=0 Mkp

k.
As a root of unity the entire phase exp(i2πM/N) is equivalent with exp(i2πR/pn), R = K(p)M
mod pn. The phase would non-trivial only for p-adic primes appearing as factors in N . The
corresponding measurement resolution would be ∆φ = R2π/N . One could assign to a given
measurement resolution all the p-adic primes appearing as factors in N so that the notion of
multi-p p-adicity would make sense. One can also consider the identification of the measurement
resolution as ∆φ = |N/M |p = 2π/pk. This interpretation is supported by the approach based
on infinite primes [K76] .

What about integrals over partonic 2-surfaces and space-time surface?

One can of course ask whether also the integrals over partonic 2-surfaces and space-time surface could
be p-adicized by using the proposed method of discretization. Consider first the p-adic counterparts
of the integrals over the partonic 2-surface X2.

1. WCW Hamiltonians and Kähler form are expressible using flux Hamiltonians defined in terms
of X2 integrals of JHA, where HA is δCD × CP2 Hamiltonian, which is a rational function of
the preferred coordinates defined by the exponentials of the coordinates of the sub-space t in
the appropriate Cartan algebra decomposition. The flux factor J = εαβJαβ

√
g2 is scalar and

does not actually depend on the induced metric.

2. The notion of finite measurement resolution would suggest that the discretization of X2 is
somehow induced by the discretization of δCD × CP2. The coordinates of X2 could be taken
to be the coordinates of the projection of X2 to the sphere S2 associated with δM4

± or to the
homologically non-trivial geodesic sphere of CP2 so that the discretization of the integral would
reduce to that for S2 and to a sum over points of S2.

3. To obtain an algebraic number as an outcome of the summation, one must pose additional
conditions guaranteing that both HA and J are algebraic numbers at the points of discretization
(recall that roots of unity are involved). Assume for definiteness that S2 is rM = constant sphere.
If the remaining preferred coordinates are functions of the preferred S2 coordinates mapping
phases to phases at discretization points, one obtains the desired outcome. These conditions are
rather strong and mean that the various angles defining CP2 coordinates -at least the two cyclic
angle coordinates- are integer multiples of those assignable to S2 at the points of discretization.
This would be achieved if the preferred complex coordinates of CP2 are powers of the preferred
complex coordinate of S2 at these points. One could say that X2 is algebraically continued from
a rational surface in the discretized variant of δCD × CP2. Furthermore, if the measurement
resolutions come as 2π/pn as p-adic continuity actually requires and if they correspond to the
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p-adic group Gp,n for which group parameters satisfy |t|p ≤ p−n, one can precisely characterize
how a p-adic prime characterizes the real partonic 2-surface. This would be a fulfilment of one
of the oldest dreams related to the p-adic vision.

A even more ambitious dream would be that even the integral of the Kähler action for preferred
extremals could be defined using a similar procedure. The conjectured slicing of Minkowskian space-
time sheets by string world sheets and partonic 2-surfaces encourages these hopes.

1. One could introduce local coordinates of H at both ends of CD by introducing a continuous
slicing of M4×CP2 by the translates of δM4

±×CP2 in the direction of the time-like vector con-
necting the tips of CD. As space-time coordinates one could select four of the eight coordinates
defining this slicing. For instance, for the regions of the space-time sheet representable as maps
M4 → CP2 one could use the preferred M4 time coordinate, the radial coordinate of δM4

+, and
the angle coordinates of rM = constant sphere.

2. Kähler action density should have algebraic values and this would require the strengthening
of the proposed conditions for X2 to apply to the entire slicing meaning that the discretized
space-time surface is a rational surface in the discretized CD×CP2. If this condition applies to
the entire space-time surface it would effectively mean the discretization of the classical physics
to the level of finite geometries. This seems quite strong implication but is consistent with
the preferred extremal property implying the generalized Bohr rules. The reduction of Kähler
action to 3-dimensional boundary terms is implied by rather general arguments. In this case
only the effective algebraization of the 3-surfaces at the ends of CD and of wormhole throats is
needed [K36] . By effective 2-dimensionality these surfaces cannot be chosen freely.

3. If Kähler function and WCW Hamiltonians are rational functions, this kind of additional condi-
tions are not necessary. It could be that the integrals of defining Kähler action flux Hamiltonians
make sense only in the intersection of real and p-adic worlds assumed to be relevant for the
physics of living systems.

Tentative conclusions

These findings suggest following conclusions.

1. Exponent functions play a key role in the proposed p-adicization. This is not an accident since
exponent functions play a fundamental role in group theory and p-adic variants of real geometries
exist only under symmetries- possibly maximal possible symmetries- since otherwise the notion
of Fourier analysis making possible integration does not exist. The inner product defined in
terms of integration reduce for functions representable in Fourier basis to sums and can be
carried out by using orthogonality conditions. Convolution involving integration reduces to a
product for Fourier components. In the case of imbedding space and WCW these conditions are
satisfied but for space-time surfaces this is not possible.

2. There are several manners to choose the Cartan algebra already in the case of sphere. In the
case of plane one can consider either translations or rotations and this leads to different p-adic
variants of plane. Also the realization of the hierarchy of Planck constants leads to the conclusion
that the extended imbedding space and therefore also WCW contains sectors corresponding to
different choices of quantization axes meaning that quantum measurement has a direct geometric
correlate.

3. The above described 2-D examples represent symplectic geometries for which one has natural
decomposition of coordinates to canonical pairs of cyclic coordinate (phase angle) and cor-
responding canonical conjugate coordinate. p-Adicization depends on whether the conjugate
corresponds to an angle or noncompact coordinate. In both cases it is however possible to define
integration. For instance, in the case of CP2 one would have two canonically conjugate pairs
and one can define the p-adic counterparts of CP2 partial waves by generalizing the procedure
applied to spherical harmonics. Products of functions expressible using partial waves can be
decomposed by tensor product decomposition to spherical harmonics and can be integrated.
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In particular inner products can be defined as integrals. The Hamiltonians generating isome-
tries are rational functions of phases: this inspires the hope that also WCW Hamiltonians also
rational functions of preferred WCW coordinates and thus allow p-adic variants.

4. Discretization by introducing algebraic extensions is unavoidable in the p-adicization of geomet-
rical objects but one can have p-adic continuum as the analog of the discretization interval and
in the function basis expressible in terms of phase factors and p-adic counterparts of exponent
functions. This would give a precise meaning for the p-adic counterparts of the imbedding space
and WCW if the latter is a symmetric space allowing coordinatization in terms of phase angles
and conjugate coordinates.

5. The intersection of p-adic and real worlds would be unique and correspond to the points defining
the discretization.

2.8.4 Harmonic analysis in WCW as a manner to calculate WCW func-
tional integrals

Previous examples suggest that symmetric space property, Kähler and symplectic structure and the
use of symplectic coordinates consisting of canonically conjugate pairs of phase angles and correspond-
ing ”radial” coordinates are essential for WCW integration and p-adicization. Kähler function, the
components of the metric, and therefore also metric determinant and Kähler function depend on the
”radial” coordinates only and the possible generalization involves the identification the counterparts
of the ”radial” coordinates in the case of WCW.

Conditions guaranteing the reduction to harmonic analysis

The basic idea is that harmonic analysis in symmetric space allows to calculate the functional integral
over WCW.

1. Each propagator line corresponds to a symmetric space defined as a coset space G/H of the
symplectic group and Kac-Moody group and one might hope that the proposed p-adicization
works for it- at least when one considers the hierarchy of measurement resolutions forced by
the finiteness of algebraic extensions. This coset space is as a manifold Cartesian product
(G/H) × (G/H) of symmetric spaces G/H associated with ends of the line. Kähler metric
contains also an interaction term between the factors of the Cartesian product so that Kähler
function can be said to reduce to a sum of ”kinetic” terms and interaction term.

2. Effective 2-dimensionality and ZEO allow to treat the ends of the propagator line independently.
This means an enormous simplification. Each line contributes besides propagator a piece to
the exponent of Kähler action identifiable as interaction term in action and depending on the
propagator momentum. This contribution should be expressible in terms of generalized spherical
harmonics. Essentially a sum over the products of pairs of harmonics associated with the ends of
the line multiplied by coefficients analogous to 1/(p2−m2) in the case of the ordinary propagator
would be in question. The optimal situation is that the pairs are harmonics and their conjugates
appear so that one has invariance under G analogous to momentum conservation for the lines
of ordinary Feynman diagrams.

3. Momentum conservation correlates the eigenvalue spectra of the modified Dirac operator D at
propagator lines [K15] . G-invariance at vertex dictates the vertex as the singlet part of the
product of WCW harmonics associated with the vertex and one sums over the harmonics for
each internal line. p-Adicization means only the algebraic continuation to real formulas to p-adic
context.

4. The exponent of Kähler function depends on both ends of the line and this means that the ge-
ometries at the ends are correlated in the sense that that Kähler form contains interaction terms
between the line ends. It is however not quite clear whether it contains separate ”kinetic” or self
interaction terms assignable to the line ends. For Kähler function the kinetic and interaction
terms should have the following general expressions as functions of complex WCW coordinates:
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Kkin,i =
∑
n

fi,n(Zi)fi,n(Zi) + c.c ,

Kint =
∑
n

g1,n(Z1)g2,n(Z2) + c.c , i = 1, 2 . (2.8.2)

Here Kkin,i define ”kinetic” terms and Kint defines interaction term. One would have what
might be called holomorphic factorization suggesting a connection with conformal field theories.

Symmetric space property -that is isometry invariance- suggests that one has

fi,n = f2,n ≡ fn , g1,n = g2,n ≡ gn (2.8.3)

such that the products are invariant under the group H appearing in G/H and therefore have
opposite H quantum numbers. The exponent of Kähler function does not factorize although the
terms in its Taylor expansion factorize to products whose factors are products of holomorphic
and antihilomorphic functions.

5. If one assumes that the exponent of Kähler function reduces to a product of eigenvalues of the
modified Dirac operator eigenvalues must have the decomposition

λk =
∏
i=1,2

exp

[∑
n

ck,ngn(Zi)gn(Zi) + c.c

]
× exp

[∑
n

dk,ngn(Z1)gn(Z2) + c.c

]
.(2.8.4)

Hence also the eigenvalues coming from the Dirac propagators have also expansion in terms
of G/H harmonics so that in principle WCW integration would reduce to Fourier analysis in
symmetric space.

Generalization of WCW Hamiltonians

This picture requires a generalization of the view about configuration space Hamiltonians since also
the interaction term between the ends of the line is present not taken into account in the previous
approach.

1. The proposed representation of WCW Hamiltonians as flux Hamiltonians [K17, K15]

Q(HA) =

∫
HA(1 +K)Jd2x ,

J = εαβJαβ , J03√g4 = KJ12 . (2.8.5)

works for the kinetic terms only since J cannot be the same at the ends of the line. The formula
defining K assumes weak form of self-duality (03 refers to the coordinates in the complement
of X2 tangent plane in the 4-D tangent plane). K is assumed to be symplectic invariant and
constant for given X2. The condition that the flux of F 03 = (~/gK)J03 defining the counterpart
of Kähler electric field equals to the Kähler charge gK gives the condition K = g2

K/~, where gK

is Kähler coupling constant. Within experimental uncertainties one has αK = g
/
K4π~0 = αem '

1/137, where αem is finite structure constant in electron length scale and ~0 is the standard
value of Planck constant.

The assumption that Poisson bracket of WCW Hamiltonians reduces to the level of imbed-
ding space - in other words {Q(HA), Q(HB} = Q({HA, HB}) - can be justified. One starts
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from the representation in terms of say flux Hamiltonians Q(HA) and defines JA,B as JA,B ≡
Q({HA, HB}). One has ∂HA/∂tB = {HB , HA}, where tB is the parameter associated with the
exponentiation of HB . The inverse JAB of JA,B = ∂HB/∂tA is expressible as JA,B = ∂tA/∂HB .
From these formulas one can deduce by using chain rule that the bracket {Q(HA), Q(HB} =
∂tCQ(HA)JCD∂tDQ(HB) of flux Hamiltonians equals to the flux Hamiltonian Q({HA, HB}).

2. One should be able to assign to WCW Hamiltonians also a part corresponding to the interac-
tion term. The symplectic conjugation associated with the interaction term permutes the WCW
coordinates assignable to the ends of the line. One should reduce this apparently non-local sym-
plectic conjugation (if one thinks the ends of line as separate objects) to a non-local symplectic
conjugation for δCD × CP2 by identifying the points of lower and upper end of CD related
by time reflection and assuming that conjugation corresponds to time reflection. Formally this
gives a well defined generalization of the local Poisson brackets between time reflected points at
the boundaries of CD. The connection of Hermitian conjugation and time reflection in quantum
field theories is is in accordance with this picture.

3. The only manner to proceed is to assign to the flux Hamiltonian also a part obtained by the
replacement of the flux integral over X2 with an integral over the projection of X2 to a sphere
S2 assignable to the light-cone boundary or to a geodesic sphere of CP2, which come as two
varieties corresponding to homologically trivial and non-trivial spheres. The projection is defined
as by the geodesic line orthogonal to S2 and going through the point of X2. The hierarchy of
Planck constants assigns to CD a preferred geodesic sphere of CP2 as well as a unique sphere
S2 as a sphere for which the radial coordinate rM or the light-cone boundary defined uniquely
is constant: this radial coordinate corresponds to spherical coordinate in the rest system defined
by the time-like vector connecting the tips of CD. Either spheres or possibly both of them could
be relevant.

Recall that also the construction of number theoretic braids and symplectic QFT [K19] led to
the proposal that braid diagrams and symplectic triangulations could be defined in terms of
projections of braid strands to one of these spheres. One could also consider a weakening for
the condition that the points of the number theoretic braid are algebraic by requiring only that
the S2 coordinates of the projection are algebraic and that these coordinates correspond to the
discretization of S2 in terms of the phase angles associated with θ and φ.

This gives for the corresponding contribution of the WCW Hamiltonian the expression

Q(HA)int =

∫
S2
±

HAXδ
2(s+, s−)d2s± =

∫
P (X2

+)∩P (X2
−)

∂(s1, s2)

∂(x1
±, x

2
±)
d2x± . (2.8.6)

Here the Poisson brackets between ends of the line using the rules involve delta function
δ2(s+, s−) at S2 and the resulting Hamiltonians can be expressed as a similar integral of H[A,B]

over the upper or lower end since the integral is over the intersection of S2 projections.

The expression must vanish when the induced Kähler form vanishes for either end. This is
achieved by identifying the scalar X in the following manner:

X = Jkl+ J
−
kl ,

Jkl± = (1 +K±)∂αs
k∂βs

lJαβ± . (2.8.7)

The tensors are lifts of the induced Kähler form of X2
± to S2 (not CP2).

4. One could of course ask why these Hamiltonians could not contribute also to the kinetic terms
and why the brackets with flux Hamiltonians should vanish. This relate to how one defines
the Kähler form. It was shown above that in case of flux Hamiltonians the definition of Kähler
form as brackets gives the basic formula {Q(HA), Q(HB)} = Q({HA, HB} and same should hold
true now. In the recent case JA,B would contain an interaction term defined in terms of flux
Hamiltonians and the previous argument should go through also now by identifying Hamiltonians
as sums of two contributions and by introducing the doubling of the coordinates tA.
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5. The quantization of the modified Dirac operator must be reconsidered. It would seem that one
must add to the super-Hamiltonian completely analogous term obtained by replacing (1 +K)J
with X∂(s1, s2)/∂(x1

±, x
2
±). Besides the anticommutation relations defining correct anticom-

mutators to flux Hamiltonians, one should pose anticommutation relations consistent with the
anticommutation relations of super Hamiltonians. In these anticommutation relations (1 +
K)Jδ2(x, y) would be replaced with Xδ2(s+, s−). This would guarantee that the oscillator op-
erators at the ends of the line are not independent and that the resulting Hamiltonian reduces
to integral over either end for H[A,B].

6. In the case of CP2 the Hamiltonians generating isometries are rational functions. This should
hold true also now so that p-adic variants of Hamiltonians as functions in WCW would make
sense. This in turn would imply that the components of the WCW Kähler form are rational
functions. Also the exponentiation of Hamiltonians make sense p-adically if one allows the
exponents of group parameters to be functions Expp(t).

Does the expansion in terms of partial harmonics converge?

The individual terms in the partial wave expansion seem to be finite but it is not at all clear whether
the expansion in powers of K actually converges.

1. In the proposed scenario one performs the expansion of the vacuum functional exp(K) in powers
of K and therefore in negative powers of αK . In principle an infinite number of terms can be
present. This is analogous to the perturbative expansion based on using magnetic monopoles
as basic objects whereas the expansion using the contravariant Kähler metric as a propagator
would be in positive powers of αK and analogous to the expansion in terms of magnetically
bound states of wormhole throats with vanishing net value of magnetic charge. At this moment
one can only suggest various approaches to how one could understand the situation.

2. Weak form of self-duality and magnetic confinement could change the sitution. Performing
the perturbation around magnetic flux tubes together with the assumed slicing of the space-
time sheet by stringy world sheets and partonic 2-surfaces could mean that the perturbation
corresponds to the action assignable to the electric part of Kähler form proportional to αK by
the weak self-duality. Hence by K = 4παK relating Kähler electric field to Kähler magnetic
field the expansion would come in powers of a term containing sum of terms proportional to α0

K

and αK . This would leave to the scattering amplitudes the exponents of Kähler function at the
maximum of Kähler function so that the non-analytic dependence on αK would not disappear.

A further reason to be worried about is that the expansion containing infinite number of terms
proportional to α0

K could fail to converge.

1. This could be also seen as a reason for why magnetic singlets are unavoidable except perhaps
for ~ < ~0. By the holomorphic factorization the powers of the interaction part of Kähler
action in powers of 1/αK would naturally correspond to increasing and opposite net values of
the quantum numbers assignable to the WCW phase coordinates at the ends of the propagator
line. The magnetic bound states could have similar expansion in powers of αK as pairs of
states with arbitrarily high but opposite values of quantum numbers. In the functional integral
these quantum numbers would compensate each other. The functional integral would leave only
an expansion containing powers of αK starting from some finite possibly negative (unless one
assumes the weak form of self-duality) power. Various gauge coupling strengths are expected to
be proportional to αK and these expansions should reduce to those in powers of αK .

2. Since the number of terms in the fermionic propagator expansion is finite, one might hope on
basis of super-symmetry that the same is true in the case of the functional integral expansion.
By the holomorpic factorization the expansion in powers of K means the appearance of terms
with increasingly higher quantum numbers. Quantum number conservation at vertices would
leave only a finite number of terms to tree diagrams. In the case of loop diagrams pairs of
particles with opposite and arbitrarily high values of quantum numbers could be generated at
the vertex and magnetic confinement might be necessary to guarantee the convergence. Also
super-symmetry could imply cancellations in loops.
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Could one do without flux Hamiltonians?

The fact that the Kähler functions associated with the propagator lines can be regarded as interaction
terms inspires the question whether the Kähler function could contain only the interaction terms so
that Kähler form and Kähler metric would have components only between the ends of the lines.

1. The basic objection is that flux Hamiltonians too beautiful objects to be left without any role
in the theory. One could also argue that the WCW metric would not be positive definite if only
the non-diagonal interaction term is present. The simplest example is Hermitian 2 × 2-matrix
with vanishing diagonal for which eigenvalues are real but of opposite sign.

2. One could of course argue that the expansions of exp(K) and λk give in the general powers
(fnfn)m analogous to diverging tadpole diagrams of quantum field theories due to local in-
teraction vertices. These terms do not produce divergences now but the possibility that the
exponential series of this kind of terms could diverge cannot be excluded. The absence of the
kinetic terms would allow to get rid of these terms and might be argued to be the symmetric
space counterpart for the vanishing of loops in WCW integral.

3. In zero energy ontology this idea does not look completely non-sensical since physical states are
pairs of positive and negative energy states. Note also that in quantum theory only creation
operators are used to create positive energy states. The manifest non-locality of the interaction
terms and absence of the counterparts of kinetic terms would provide a trivial manner to get rid
of infinities due to the presence of local interactions. The safest option is however to keep both
terms.

Summary

The discussion suggests that one must treat the entire Feynman graph as single geometric object
with Kähler geometry in which the symmetric space is defined as product of what could be regarded
as analogs of symmetric spaces with interaction terms of the metric coming from the propagator
lines. The exponent of Kähler function would be the product of exponents associated with all lines
and contributions to lines depend on quantum numbers (momentum and color quantum numbers)
propagating in line via the coupling to the modified Dirac operator. The conformal factorization
would allow the reduction of integrations to Fourier analysis in symmetric space. What is of decisive
importance is that the entire Feynman diagrammatics at WCW level would reduce to the construction
of WCW geometry for a single propagator line as a function of quantum numbers propagating on the
line.

2.9 Appendix: Basic facts about algebraic numbers, quater-
nions and octonions

To understand the detailed connection between infinite primes, polynomial primes and Fock states,
some basic concepts of algebraic number theory related to the generalization of prime and prime
factorization [A148, A145, A117] (the first reference is warmly recommended for a physicist because
it teaches the basic facts through exercises; also second book is highly enjoyable reading because of
its non-Bourbakian style of representation).

2.9.1 Generalizing the notion of prime

Algebraic numbers are defined as roots of polynomial equations with rational coefficients. Algebraic
integers are identified as roots of monic polynomials (highest coefficient equals to one) with integer
coefficients. Algebraic number fields correspond to algebraic extensions of rationals and can have any
dimension as linear spaces over rationals. The notion of prime is extremely general and involves rather
actract mathematics in general case.

Quite generally, commutative ring R called integral domain, if the product ab vanishes only if
a or b vanishes. To a given integral domain one can assign a number field by essentially the same
construction by which one assigns the field of rationals to ordinary integers. The integer valued



2.9. Appendix: Basic facts about algebraic numbers, quaternions and octonions 131

function a→ N(a) in R is called norm if it has the properties N(ab) = N(a)N(b) and N(1) = 1. For
instance, for the algebraic extension Q(

√
−D) of rationals consisting of points z = r +

√
−Ds, the

function N(z) = r2 + Ds2 defines norm. More generally, the determinant of the linear map defined
by the action of z in algebraic number field defines norm function. This determinant reduces to the
product of all conjugates of z in K and is n:th order polynomial with respect to the components of z
when K is n-dimensional.

Irreducible elements (almost the counterparts of primes) can be defined as elements P of integral
domain having the property that if one has P = bc, then either b or c has unit norm. Elements with
unit norm are called units and elements differing by a multiplication with unit are called associates.
Note that in the case of p-adics all p-adic numbers with unit norm are units.

2.9.2 UFDs, PIDs and EDs

If the elements of R allow a unique factorization to irreducible elements, R is said to be unique
factorization domain (UFD). Ordinary integers are obviously UFD. The field Z(

√
−5) is not UFd for

instance, one has 6 = 2 × 3 = (1 +
√
−5)(1 −

√
−5). The fact that prime factorization is not unique

forces to generalize the notion of primeness such that ideals in the ring of algebraic integers take the
role of integers. The counterparts of primes can be identified as irreducible elements, which generate
prime ideals containing one and only one rational prime. Irreducible elements, such as 1 ±

√
−5 in

Z(
√
−5), are not primes in this sense.

Principal ideal domain (PID) is defined as an integral domain for which all ideals are principal,
that is are generated as powers of single element. In the case of ordinary integers powers of integers
define PID.

Euclidian domain (ED) is integral domain with the property that for any pair a and b one can find
pair (q, r) such that a = bq+ r with N(r) < N(a). This guarantees that the Euclidian algorithm used
in the division of rationals converges. Integers form an Euclidian domain but polynomials with integer
coefficients do not (elements 2 and x do not allow decomposition 2 = q(x)x+ r). It can be shown that
EDs are PIDs in turn are UFDs. For instance, for complex quadratic extensions of integers Z(

√
−d)

there are only 9 UFDs and they correspond to d = 1, 2, 3, 7, 11, 19, 43, 67, 163. For extensions of type
Z(
√
d) the number of UFD:s is infinite. There are not too many quadratic extensions which are ED:s

and the possible values of d are d = −1,±2,±3, 5, 6,±7,±11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73.
Any algebraic number field K is representable always as a polynomial ring Q[θ] obtained from the

polynomial ring Q[x] by replacing x with an algebraic number θ, which is a root of an irreducible
polynomial with rational coefficients. This field has dimension n over rationals, where n is the degree
of the polynomial in question.

2.9.3 The notion of prime ideal

As already noticed, a general algebraic number field K does not allow a unique factorization into
irreducibles and one must generalize the notion of prime number and integer in order to achieve a
unique factorization. The ideals of the ring OK of algebraic integers in K take the role of integers
whereas prime ideals take the role of primes. The factorization of an ideal to a product of prime ideals
is unique and each prime ideal contains single rational prime characterizing it. One can assign to an
ideal norm which orders the ideals: N(a) < N(b)↔ b ⊂ a. The smaller the integer generating ideal,
the larger the ideal is and the ideals generated by primes are maximal ones in PID. The equivalence
classes of the ideals of OK under equivalence defined by integer multiplication form a group. The
number of classes is a characteristic of an algebraic number field. For class-one algebraic number
fields prime factorization of ideals is equivalent with the factorization to irreducibles in K. Z(

√
−5),

which is not UFD, allows two classes of prime ideals. Cyclotomic number fields Q(ζm), where ζm
is m:th root of unity have class number one for 3 ≤ m ≤ 10. In particular, the four-dimensional
algebraic number fields Q(ζ8) and Q(ζ5) = Q(ζ10) are ED and thus UFD.

Basic facts about primality for polynomial rings

The notion of primality can be abstracted to the level of polynomial algebras in field K and these
polynomial algebras seem to be more or less identical with the algebra formed by infinite integers.
The following two results are crucial for the argument demonstrating that this is indeed the case.
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Polynomial ring associated with any number field is UFD

The elements in the ring K[x1, ..., xn] formed by the polynomials having coefficients in any field K
and xi having values in K, allow a unique decomposition into prime factors. This means that things
are much simpler at the next abstraction level, since there is no need for refined class theories needed
in the case of algebraic number fields.

The number field K appearing as a coefficient field of polynomials could correspond to finite
fields (Galois fields), rationals, any algebraic number field obtained as an extension of rational, p-
adic numbers, reals or complex numbers. For Q[x], where Q denotes rationals, the simplest prime
factors are monomials of form x− q, q rational number. More complicated prime factors correspond
to minimal polynomials having algebraic number α and its conjugates as their roots. In the case of
complex number field only monomomials x − z, z complex number are the only prime polynomials.
Clearly, the primes at the higher level of abstraction are generalized rationals of previous level plus
numbers which are algebraic with respect to the generalized rationals.

The polynomial rings associated with any UFD are UFD

If R is a unique factorization domain (UFD), then also R[x] is UFD: this holds also for R[x1, ..., xn].
Hence one obtains an infinite hierarchy of UFDs by a repeated abstraction process by starting from a
given algebraic number field K. At the first step one obtains the ring K[x] of polynomials in K. At the
next step one obtains the ring of polynomials K2)[y] having as coefficient ring the ring K[x] ≡ K1)[x]
of polynomials. At the next step one obtains K2)[z], etc.. Note that OK [x] is not ED in general and
need not be UFD neither unless OK is UFD. OK [x] is not however interesting from the viewpoint of
TGD.

An element of K2)(y) corresponds to a polynomial P (y, x) of y such that its coefficients are K-
rational functions of x. A polynomial in K3)(z) corresponds to a polynomial of P (z, y, z) such that
the coefficients of z are K-rational functions of functions of y with coefficients which are K-rational
functions of z. Note that as a special case, polynomials of all n variables result. Note also the
hierarchical ordering of the variables. Thus the hierarchy of polynomials gives rise to a hierarchy of
functions having increasingly number of independent variables.

2.9.4 Examples of two-dimensional algebraic number fields

The general two-dimensional (in algebraic sense) algebraic extension of rationals corresponds to K(θ),
where θ = (−b±

√
b2 − 4c)/2 is root of second order irreducible polynomial x2 + bx+ c. Depending on

whether the discriminant D = b2−4c is positive or negative, one obtains real and complex extensions.
θ and its conjugate generate equivalent extensions and all extensions can be obtained as extensions of
form Q(

√
±d).

For Q(
√
d), d square-free integer, units correspond to powers of x = ±(pn−1 + qn−1

√
d), where n

defines the period of the continued fraction expansion of
√
d and pk/qk defines k:th convergent in the

continued fraction expansion. For Q(
√
−d), d > 1 units form group Z2. For d = 1 the group is Z2

2

and for Q(w) where w = −1/2 +
√

3/2 is the third root of unity (w3 = 1), this group is Z2×Z3 (note
that in this case the minimal polynomial is (x3 − 1)/(x− 1).

Z(w) and Z(i) are exceptional in the sense that the group of the roots of unity is exceptionally
large. Z(i) and Z(w) allow a unique factorization of their elements into products of irreducibles. The
primes π of Z(w) consist of rational primes p, p mod 4 = 3 and complex Gaussian primes satisfying
N(π) = ππ = p, p mod 4 = 1. Squares of the Gaussian primes generate as their product complex
numbers giving rise to Pythagorean phases. The primes π of Z(w) consist of rational primes p,
p mod 3 = 2 and complex Eisenstein primes satisfing N(π) = ππ = p, p mod 3 = 1.

2.9.5 Cyclotomic number fields as examples of four-dimensional algebraic
number fields

By the ’theorem of primitive element’ all algebraic number fields are obtained by replacing the poly-
nomial algebra Q[x], by Q[θ], where θ is a root of an irreducible minimal polynomial which is of
fourth order. One can readily calculate the extensions associated with a given irreducible poly-
nomial by using quadratures for 4:th order polynomials. These polynomials are of general form
P4(x) = x4 + a3x

3 + a2x
2 + a1x+ a0 and by a substitution x = y − a3/4) which does not change the
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nature of algbebraic number field, they can be reduced to a canonical form P4(x) = x4+a2x
2+a1x+a0.

Thus a very rough view is that three rationals parametrize the 4-dimensional algebraic number fields.
A second manner to represent extensions is in form K(θ1, θ, ..) such that the units θi have no

common factors different from one. In this case the dimension of the extension is 2n, where n is the
number of units. Examples of four-dimensional extensions are the algebraic extensions
Q(
√
±d1,

√
±d2) of rationals, where di are square-free integers, reduce to form Q(θ). The cyclic ex-

tension of rationals by the powers of the m:th root of unity with m = 5, 8, 12 are four-dimensional ex-
tensions called cyclotomic number fields. Also the extensions Q((±)d)1/4) are simple four-dimensional
extensions. These extensions allow completion to a corresponding p-adic algebraic extension for some
p-adic primes.

Quite generally, cyclotomic number fields Q(ζm) are obtained from polynomial algebra Q[x] by
replacing x with the m:th primitive root of unity denoted by ζm and thus satisfying ζmm = 1. There
are three cyclic extensions of dimension 4 and they correspond to Q(ζ5) = Q(ζ10), Q(ζ8) and Q(ζ12).
Cyclotomic extensions are higly symmetric since the roots of unity act as symmetries of the norm.

The units of cyclotomic field Q(ζm) form group Z2×Zm×Z. Z corresponds to the powers of units
for Q(ζm + 1/ζm). These powers have unit norm only with respect to the norm of Q(ζm) whereas
with respect to the ordinary complex norm they correspond to fractal scalings. What looks fractal
obtained by repeated scalings of the same structure with respect to the real norm looks like a lattice
when algebraic norm is used.

1. Q(ζ8)

The cyclotomic number field Q(ζ8), ζ8 = exp(iπ/4) satisfying ζ8
8 = 1, consists of numbers of form

k = m+ in+
√
i(r + is). All roots (±i1/2 and ±i3/2) are complex. The group of units is Z4

2 × Z. Z
corresponds in real topology to the fractal scalings generated by L = 1 +

√
2. The integer multiples

of log(L) could be interpreted as a quantized momentum. Q(ζ8) can be generated by ±ζ8 and ±iζ8.
This means additional Z2

2 Galois symmetry which does not define multiplicative quantum number.

2. Q(ζ12)

The extension Q(
√
−1, w), w = ζ3, can be regarded as a cyclic extension Q(iw) = Q(ζ12) as is clear

from the fact that the six lowest powers of iw come as iw,−w2,−i, w = −1− w2, iw2 = −iw − i,−1.
Z(iw) is especially interesting because it contains Q(i) and Q(w) for which primes correspond to
Gaussian and Eisenstein primes. A unique factorization to a product of irreducibles is possible only
for Q(ζm) m ≤ 10: thus the algebraic integers in Z(iw) do not always allow a unique decomposition
into irreducibles. The most obvious candidates for primes not allowing unique factorization are primes
satisfying simultaneously the conditions p mod 4 = 3 = 1 implying decomposition into a product of
Gaussian prime and its conjugate and p mod 3 = 1 guaranteing the decomposition into a product of
Eisestein prime and its conjugate.

The group of units reduces to Z2
2 ×Z3 ×Z might have something to do with the group of discrete

quantum numbers C,P and SU(3) triality telling the number of quarks modulo 3 in the state. For the
extensions Q(

√
−1,
√
d) the roots of unity form the group Z2

2 : these extensions could correspond to
gauge bosons and the quantum numbers would correspond to C and P . For real extensions the group
of the roots of unity reduces to Z2: in this case the interpretation inters of parity suggests itself.

The lattice defined by Z corresponds to the scalings by powers of
√

3 + 2. It could be also
interpreted also as the lattice of longitudinal momenta for hadronic quarks which move collinearly
inside space-time sheet which might be identified as a massless extremal (ME) for which longitudinal
direction is a preferred spatial direction.

Q(ζ12) can be generated by ±iw,±iw2 and the replacement of iw with these alternatives generates
Z2

2 symmetry not realizable as a multiplication with units.

3. Q(ζ5) and biology

Q(ζ5) indeed gives 4-dimensional extension of rationals since one has 1 + ζ5 + ...ζ4
5 = 0 implying

that ζ4
5 = 1/ζ5 is expressible as rational combination of other units. Both Q(ζ5) and Q(ζ8) allows a

unique decomposition of rational integers into prime factors. The primes in Q(ζ5) allow decomposition
to a product of r = 1, 2 or 4 primes of Q(ζ5) [A145] . The value of r for a given p is fixed by the
requirement that f = 4/r is the smallest natural number for which pf − 1 mod p = 0 holds true.
For instance, p = 2, 3 correspond to f = 4 and are primes of Q(ζ5), p = 11 has decomposition into a
product of four primes of Q(ζ5), and p = 19 has decomposition into two primes of Q(ζ5)).
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What makes this extension interesting is that the phase angle associated with ζ5 corresponds to
the angle of 72 degrees closely related with Golden Mean τ = (1 +

√
5)/2 satisfying the equation

τ2 − τ − 1 = 0. The phase of the fifth root is given by ζ5 = (τ − 1 + i
√

2 + τ)2. The group of units
is Z2 × Z5 × Z. Z corresponds to the factal scalings by τ = (1 +

√
5)/2. The conjugations ζ5 → ζk5 ,

k = 1, 2, 3, 4 leave the norm invariant and generate group Z5
2 .

Fractal scalings by Golden Mean and the closely related Fibonacci numbers are closely related with
the fractal structures associated with living systems (botany is full of logarithmic spirals involving
Golden Mean and the phase angle 36 is involved even with DNA). Of course, the very fact that
Golden Mean emerges in biological length scales provides strongest evidence for its dynamical origin
in algebraic framework.

Q(ζ5) cannot be realized as an algebraic extension K(θ, i) naturally associated with the transver-
sal part of quaternionic primes but can appear only as a subfield of the 8-dimensional extension
K(i, cos(2π/5), sin(2π/5) containing also 20:th root of unity as ζ20 = iζ5. In [K85] it is indeed found
that Golden Mean plays a fundamental role in topological quantum computation and is indeed a
fundamental constant in TGD Universe.

Fractal scalings

By Dirichlet’s unit theorem the group of units quite generally reduces to Zm × Zr, where Zm is
cyclic group of roots of unity and Zr can be regarded as an r-dimensional lattice with latticed units
determined by the extension. For real extensions Zm reduces to Z2 since the only real roots of unity
are {±1}. All components of four-momentum represented by a quaternionic prime can be multiplied
by separate real units of Q(θ). For a given quaternionic prime, one can always factor out the common
factor of the units of Q(θ) or Q(θ, i).

The units generate nontrivial transformations at the level of single quaternionic prime. If the
dimension of the real extension is n, the transformations form an n−1-dimensional lattice of scalings.
Alternative but less plausible interpretation is that the logarithms of the scalings represent n − 1-
dimensional momentum lattice. Particle would be like a part of an algebraic hologram carrying
information about external world in accordance with the ideas about fractality. Of course, units
represent fractal scalings only with respect to ordinary real norm, with respect to number theoretical
norm they act like phase factors.

For instance, in the case of Q(
√

5) the units correspond to scalings by powers of Golden Mean
τ = (1+

√
5)/2 having number theoretic norm equal to one. Bio-systems are indeed full of fractals with

scaling symmetry. For K = Q(
√

3) the scalings correspond to powers of L = 2 +
√

3. An interesting
possibility is that hadron physics might reveal fractality in powers of L. More generally, for Q(

√
d),

d square-free integer, the basic fractal scaling is L = pn−1 + qn−1

√
d, where n defines the period of

the continued fraction expansion of
√
d and pk/qk defines k:th convergent in the continued fraction

expansion.
Four-dimensional algebraic extensions are very interesting for several reasons. First, algebraic

dimension four is a borderline in complexity in the sense that for higher-dimensional irreducible
algebraic extensions there is no general quadratures analogous to the formulas associated with second
order polynomials giving the roots of the polynomial. Secondly, in transversal degrees of freedom the
minimal dimension for K(θ, i) is four. The units of K which are algebraic integers having a unit norm
in K. Quite generally, the group of units is a product Z2k × Zr of two groups. Z2k = Z2 × Zk is
the cyclic group generated by k:th root of unity. For real extensions one has k = 1. In transversal
degrees of freedom one can have k > 1 since extension is Q(θ, i). The roots of unity possible in
four-dimensional case correspond to k = 2, 4, 6, 8, 10, 12. Corresponding cyclic groups are products of
Zi2, Z3 and Z5. Z2, Z2 and Z3 and act as symmetries of the root lattices of Cartan algebras.

Z3 gives rise to the Cartan algebra of SU(3) and an interesting question is whether color symmetry
is generated dynamically or whether it can be regarded as a basic symmetry with the lattice of integer
quaternions providing scaled-up version for the root lattice of color group. Note that in TGD quark
color is not spin like quantum number but corresponds to CP2 partial waves for quark like spinors.

Permutations of the real roots of the minimal polynomial of θ

The replacements of the primitive element θ of K(θ) with a new one obtained by acting in it with the
elements of Galois group of the minimal polynomial of θ generate different internal states of number
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theoretic fermions and bosons. The subgroup G1 of Galois group permuting the real roots of the
minimal polynomial with each other acts also as a symmetry. The number of equivalent primitive
elements is n1 = n−2r1, where r2 is the number of complex root pairs. For instance, for 2-dimensional
extensions these symmetries permute the real roots of a second order polynomial irreducible in the set
of rationals. Since the entire polynomial has rational coefficients, kind of G1-confinement is realized.
One could say that kind of algebraically confined n-color is in question.

2.9.6 Quaternionic primes

Primeness makes sense for quaternions and octonions. The following considerations are however
restricted to quaternionic primes but can be easily generalized to the octonionic case. Quaternionic
primes have Euclidian norm squared equal to a rational prime. The number N(p) of primes associated
with a given rational p depends on p and each p allows at least two primes. Quaternionic primes
correspond to points of 3-sphere with prime-valued radius squared. Prime-valued radius squared is
consistent with p-adic length scale hypothesis, and one can indeed reduce p-adic length scale hypothesis
to the assumption that the Euclidian region associated with CP2 type extremal has prime-valued
radius squared.

It is interesting to count the number of quaternionic primes with same prime valued length squared.

1. In the case of algebraic extensions the first definition of quaternionic norm is by using number
theoretic norm either for entire quaternion squared or for each component of quaternion sepa-
rately. The construction of infinite primes suggests that the first definition is more appropriate.
Both definitions of norm are natural for four-momentum squared since they give integer valued
mass squared spectrum associated with super-conformally invariant systems. One could also
decompose quaternion to two parts as q = (q0 + Iq1) + J(q2 + Iq3) and define number theoretic
norm with respect to the algebraic extension Q(θ, I).

2. Quaternionic primes with the same norm are related by SO(4) rotation plus a change of sign
of the real component of quaternion. The components of integer quaternion are analogous to
components of four-momentum.

3. There are 24 quaternionic ±Ei and multiplication by these units defines symmetries. Non-
commutativity of the quaternionic multiplication makes the interpretation of units as parity
like quantum numbers somewhat problematic since the net parity associated with a product of
primes representing physical particles associated with the infinite primes depends on the order
of quaternionic primes. For real algebraic extensions K = Q(θ) there is also the units defining
a ’momentum’ lattice with dimension n − 1, where n is the degree of the minimal polynomial
P (θ).

4. Quaternionic primes cannot be real so that a given quaternionic prime with k ≥ 2 components
has 2k conjugates obtained by changing the signs of the components of quaternion. Basic
conjugation changes the signs of imagy components of quaternion. This corresponds to group
Zk2 ⊂ Z4

2 , 2 ≤ k ≤ 4.

5. The group S4 of 4! = 24 permutations of four objects preserves the norm of a prime quaternion:
these permutations are representable as a multiplication with non-prime quaternion and thus
identifiable as subgroup of SO(4) and also as a subgroup of SO(3) (invariance group of tedra-
hedron). In degenerate cases (say when some components of q are identical), some subgroup of
S4 leaves quaternionic prime invariant and the rotational degeneracy reduces from D = 24 to
some smaller number which is some factor of 24 and equals to 4, 6 or 12 as is easy to see. There
are 16 quaternionic conjugations corresponding to change of sign of any quaternion unit but all
these conjugations are obtained from single quaternionic conjugation changing the sign of the
imaginary part of quaternion by combining them with a multiplication with unit and its inverse.
Thus the restricted group of symmetries is S4 × Z2.

6. It is possible to find for every prime p at least two quaternionic ( primes with norm squared
equal to p. For a given prime p there are in general several quaternionic primes not obtainable
from each other by transformations of S4. There must exist some discrete subgroup of SO(4)
relating these quaternionic primes to each other.
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7. The maximal number of quaternionic primes generated by S4×Z2 is 24×2. In noncommutative
situation it is not clear whether units can be regarded as parity type quantum numbers. In any
case, one can divide the entire group with Z4

2 to obtain Z3. This group corresponds to cyclic
permutations of imaginary quaternion units.

D = 24 is the number of physical dimensions in bosonic string model. In TGD framework a possible
interpretation is based on the observation that infinite primes constructed from rational primes the
product of all primes contains the first power of each prime having interpretation as a representation
for a single filled state of the fermionic sea. In the case of quaternions the Fock vacuum defined as a
product of all quaternionic primes gives rise to a vacuum state

X =
∏
p

pN(p)/2 ,

since each prime and its quaternionic conjugate contribute one power of p.

2.9.7 Imbedding space metric and vielbein must involve only rational func-
tions

Algebraization requires that imbedding space exists in the algebraic sense containing only points for
which preferred coordinate variables have values in some algebraic extension of rationals. Imbedding
space metric at the algebraic level can be defined as a quadratic form without any reference to metric
concepts like line element or distance. The metric tensors of both M4

+ and CP2 are indeed represented
by algebraic functions in the preferred coordinates dictated by the symmetries of these spaces.

One should also construct spinor structure and this requires the introduction of an algebraic
extension containing square roots since vielbein vectors appearing in the definition of the gamma
matrices involve square roots of the components of the metric. In CP2 degrees of freedom this forces
the introduction of square root function, and thus all square roots, unless one restricts the values of
the radial CP2 coordinate appearing in the vielbein in such a manner that rationals result. What
is interesting is that all components of spinor curvature and Kähler form of CP2 are quadratic with
respect to vierbein and algebraic functions of CP2 complex coordinates. Also the square root of
the determinant of the induce metric appears only as a multiplicative factor in the Euler-Lagrange
equations so that one can get rid of the square roots.

Induced spinor structure and Dirac equation relies on the notion of the induced gamma matrices
and here the projections of the vierbein of CP2 containing square roots are unavoidable. In complex
coordinates the components of CP2 vielbein in complex coordinates ξ1, ξ2, in which the action of U(2)
is linear holomorphic transformation, involve the square roots r =

√
|ξ|2 + |ξ2|2 and

√
1 + r2 (for

detailed formulas see Appendix at the end of the book). If one has r = m/n, the requirement that√
1 + r2 is rational, implies m2 + n2 = k2 so that (m,n) defines Pythagorean square. Thus induced

Dirac equation is rationalized if the allowed values of r correspond to Pythagorean phases. The notion
of the phase preserving canonical identification [K30] , crucial for the earlier formulation of TGD, is
consistent with this assumption. The metric of S2 = CP1 is a simplified example of what happens.
One can write the metric as gzz̄=r2 = 1

1+r2 and vielbein component is proportional to 1/
√

1 + r2, this

exists for r = m/n as rational number if one has m2 + n2 = k2, which indeed defines Pythagorean
triangle.

The restriction of the phases associated with the CP2 coordinates to Pythagorean ones has deeper
coordinate-invariant meaning. Rational CP2 can be defined as a coset space SUQ(3)/UQ(2) of rational
groups SUQ(3) and UQ(2): rationality is required in the linear matrix representation of these groups.



Chapter 3

TGD as a Generalized Number
Theory II: Quaternions, Octonions,
and their Hyper Counterparts

3.1 Introduction

This chapter is second one in a multi-chapter devoted to the vision about TGD as a generalized number
theory. The basic theme is the role of classical number fields in quantum TGD. A central notion isM8−
H duality which might be also called number theoretic compactification. This duality allows to identify
imbedding space equivalently either asM8 orM4×CP2 and explains the symmetries of standard model
number theoretically. These number theoretical symmetries induce also the symmetries dictaging the
geometry of the ”world of classical worlds” (WCW) as a union of symmetric spaces. This infinite-
dimensional Kähler geometry is expected to be highly unique from the mere requirement of its existence
requiring infinite-dimensional symmetries provided by the generalized conformal symmetries of the
light-cone boundary δM4

+ × S and of light-like 3-surfaces and the answer to the question what makes
8-D imbedding space and S = CP2 so unique would be the reduction of these symmetries to number
theory.

Zero energy ontology has become the corner stone of both quantum TGD and number theoret-
ical vision. In zero energy ontology either light-like or space-like 3-surfaces can be identified as the
fundamental dynamical objects, and the extension of general coordinate invariance leads to effective
2-dimensionality (strong form of holography) in the sense that the data associated with partonic
2-surfaces and the distribution of 4-D tangent spaces at them located at the light-like boundaries
of causal diamonds (CDs) defined as intersections of future and past directed light-cones code for
quantum physics and the geometry of WCW.

The basic number theoretical structures are complex numbers, quaternions and octonions, and
their complexifications obtained by introducing additional commuting imaginary unit

√
−1. Hyper-

octonionic (-quaternionic,-complex) sub-spaces for which octonionic imaginary units are multiplied by
commuting

√
−1 have naturally Minkowskian signature of metric. The question is whether and how

the hyper-structures could allow to understand quantum TGD in terms of classical number fields.
The answer which looks the most convincing one relies on the existence of octonionic representation
of 8-D gamma matrix algebra.

1. The first guess is that associativity condition for the sub-algebras of the local Clifford algebra
defined in this manner could select 4-D surfaces as associative (hyper-quaternionic) sub-spaces
of this algebra and define WCW purely number theoretically. The associative sub-spaces in
question would be spanned by the modified gamma matrices defined by the modified Dirac
action fixed by the variational principle (Kähler action) selecting space-time surfaces as preferred
extremals [K27] .

2. This condition is quite not enough: one must strengthen it with the condition that a preferred
commutative and thus hyper-complex sub-algebra is contained in the tangent space of the space-
time surface. This condition actually generalizes somewhat since one can introduce a family of so
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called Hamilton-Jacobi coordinates for M4 allowing an integrable distribution of decompositions
of tangent space to the space of non-physical and physical polarizations [K10] . The physical
interpretation is as a number theoretic realization of gauge invariance selecting a preferred local
commutative plane of non-physical polarizations.

3. Even this is not yet the whole story: one can define also the notions of co-associatitivy and
co-commutativity applying in the regions of space-time surface with Euclidian signature of the
induced metric. The basic unproven conjecture is that the decomposition of space-time surfaces
to associative and co-associative regions containing preferred commutative resp. co-commutative
2-plane in the 4-D tangent plane is equivalent with the preferred extremal property of Kähler
action and the hypothesis that space-time surface allows a slicing by string world sheets and by
partonic 2-surfaces [K27] .

3.1.1 Hyper-octonions and hyper-quaternions

The discussions for years ago with Tony Smith [A213] stimulated very general ideas about space-time
surface as an associative, quaternionic sub-manifold of octonionic 8-space. Also the observation that
quaternionic and octonionic primes have norm squared equal to prime in complete accordance with p-
adic length scale hypothesis, led to suspect that the notion of primeness for quaternions, and perhaps
even for octonions, might be fundamental for the formulation of quantum TGD. The original idea was
that space-time surfaces could be regarded as four-surfaces in 8-D imbedding space with the property
that the tangent spaces of these spaces can be locally regarded as 4- resp. 8-dimensional quaternions
and octonions.

It took some years to realize that the difficulties related to the realization of Lorentz invari-
ance might be overcome by replacing quaternions and octonions with hyper-quaternions and hyper-
octonions. Hyper-quaternions resp. -octonions is obtained from the algebra of ordinary quaternions
and octonions by multiplying the imaginary part with

√
−1 and can be regarded as a sub-space of

complexified quaternions resp. octonions. The transition is the number theoretical counterpart of the
transition from Riemannian to pseudo-Riemannin geometry performed already in Special Relativity.
The loss of number field and even sub-algebra property is not fatal and has a clear physical meaning.
The notion of primeness is inherited from that for complexified quaternions resp. octonions.

At the end of the chapter it will be found that it might be possible to do without the hyper-variants
of classical number fields (not of course number fields!). The idea is obvious already from string model
context.

1. For strings in Minkowskian target space the target space coordinates as function of string world
sheet coordinates are analytic with respect to hyper-complex coordinate. Quantum theory is
however constructed by performing first a Wick rotation to Euclidian target space, calculat-
ing the n-point functions using ordinary Euclidian theory, and performing the reverse of Wick
rotation.

2. One could generalize the procedure in TGD framework so that octonionic variant of conformal
field theory results by algebraic continuation from complex number field to octonionic realm.
Octonionic real-analytic functions f(o) are expressible as f(o) = q1+Iq2, where qi are quaternion
valued functions and I is octonionic imaginary unit anticommuting with quaternionic imaginary
units. They map the Euclidian variant of H = M4 × CP2 to itself. Space-time surfaces can be
identified as quaternionic (co-quaternionic) 4-surfaces defined as surfaces for which the imag-
inary (real) part of an octonion real-analytic function vanishes.The reversal of Wick rotation
maps these Euclidian surfaces to space-time surfaces. One could also see the this process as a
complexification in of octonions in which real-analytic functions of complexified octonions are
restricted to octonionic and hyper-octonionic sectors. Therefore the two views should be more
or less equivalent.

Note that hyper-variants of number fields make also sense p-adically unlike the notions of number
fields themselves unless restricted to be algebraic extensions of rational variants of number fields.
What deserves separate emphasis is that the basic structure of the standard model would reduce to
number theory.
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3.1.2 Number theoretical compactification and M8 −H duality

The notion of hyper-quaternionic and octonionic manifold makes sense but it not plausible that
H = M4 × CP2 could be endowed with a hyper-octonionic manifold structure. Situation changes
if H is replaced with hyper-octonionic M8. Suppose that X4 ⊂ M8 consists of hyper-quaternionic
and co-hyper-quaternionic regions. The basic observation is that the hyper-quaternionic sub-spaces
of M8 with a fixed hyper-complex structure (containing in their tangent space a fixed hyper-complex
subspace M2 or at least one of the light-like lines of M2) are labeled by points of CP2. Hence each
hyper-quaternionic and co-hyper-quaternionic four-surface of M8 defines a 4-surface of M4 × CP2.
One can loosely say that the number-theoretic analog of spontaneous compactification occurs: this of
course has nothing to do with dynamics.

This picture was still too naive and it became clear that not all known extremals of Kähler action
contain fixed M2 ⊂M4 or light-like line of M2 in their tangent space.

1. The first option represents the minimal form of number theoretical compactification. M8 is
interpreted as the tangent space of H. Only the 4-D tangent spaces of light-like 3-surfaces X3

l

(wormhole throats or boundaries) are assumed to be hyper-quaternionic or co-hyper-quaternionic
and contain fixed M2 or its light-like line in their tangent space. Hyper-quaternionic regions
would naturally correspond to space-time regions with Minkowskian signature of the induced
metric and their co-counterparts to the regions for which the signature is Euclidian. What is
of special importance is that this assumption solves the problem of identifying the boundary
conditions fixing the preferred extremals of Kähler action since in the generic case the intersection
of M2 with the 3-D tangent space of X3

l is 1-dimensional. The surfaces X4(X3
l ) ⊂ M8 would

be hyper-quaternionic or co-hyper-quaternionic but would not allow a local mapping between
the 4-surfaces of M8 and H.

2. One can also consider a more local map of X4(X3
l ) ⊂ H to X4(X3

l ) ⊂ M8. The idea is to
allow M2 ⊂M4 ⊂M8 to vary from point to point so that S2 = SO(3)/SO(2) characterizes the
local choice of M2 in the interior of X4. This leads to a quite nice view about strong geometric
form of M8 −H duality in which M8 is interpreted as tangent space of H and X4(X3

l ) ⊂ M8

has interpretation as tangent for a curve defined by light-like 3-surfaces at X3
l and represented

by X4(X3
l ) ⊂ H. Space-time surfaces X4(X3

l ) ⊂ M8 consisting of hyper-quaternionic and co-
hyper-quaternionic regions would naturally represent a preferred extremal of E4 Kähler action.
The value of the action would be same as CP2 Kähler action. M8−H duality would apply also
at the induced spinor field and at the level of configuration space.

3. Strong form of M8−H duality satisfies all the needed constraints if it represents Kähler isometry
between X4(X3

l ) ⊂ M8 and X4(X3
l ) ⊂ H. This implies that light-like 3-surface is mapped to

light-like 3-surface and induced metrics and Kähler forms are identical so that also Kähler action
and field equations are identical. The only differences appear at the level of induced spinor fields
at the light-like boundaries since due to the fact that gauge potentials are not identical.

4. The map of X3
l ⊂ H → X3

l ⊂M8 would be crucial for the realization of the number theoretical
universality. M8 = M4 × E4 allows linear coordinates as those preferred coordinates in which
the points of imbedding space are rational/algebraic. Thus the point of X4 ⊂ H is algebraic
if it is mapped to algebraic point of M8 in number theoretic compactification. This of course
restricts the symmetry groups to their rational/algebraic variants but this does not have practical
meaning. Number theoretical compactication could thus be motivated by the number theoretical
universality.

5. The possibility to use either M8 or H picture might be extremely useful for calculational pur-
poses. In particular, M8 picture based on SO(4) gluons rather than SU(3) gluons could per-
turbative description of low energy hadron physics. The strong SO(4) symmetry of low energy
hadron physics can be indeed seen direct experimental support for the M8 −H duality.

3.1.3 Romantic stuff

Octonions and quaternions have generated a lot of romantic speculations and my only defence is that I
did not know! Combined with free speculation about dualities this generated a lot of non-sense which
has been dropped from this version of the chapter.
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1. A long standing romantic speculation was that conformal invariance could somehow extend to
4-D context. Conformal invariance indeed extends to 3-D situation in the case of light-like 3-
surfaces and they indeed are the basic dynamical objects of quantum TGD. It seems however
un-necessary to extend the conformal invariance to 4-D context except by slicing X4(X3

l ) by
3-D light-like slices possessing the 3-D conformal invariance.

2. The triality between 8-D spinors, their conjugates, and vectors has generated a lot of speculative
literature and this triality is indeed important in super string models. If M8 has hyper-octonionic
structure, one can ask whether also the spinors of M8 could be regarded as complexified octo-
nions. Complexified octonions provide also a representation of 8-D gamma matrices which is
not a matrix representation. In this framework the Clifford algebra defined by gamma matrices
degenerates to algebra of complexified octonions identifiable as the algebra of octonionic spinors
and coordinates of M8

c . One can make all kinds of questions. For instance, could it be that
hyper-octonionic triality for hyper-octonionic spinor fields could allow construction of N-point
functions in interaction vertices? One cannot exclude the possibility that trialities are important
but the recent formulation of M-matrix elements does quite well without them.

3. The 1+1+3+3 decomposition of complexified octonion units with respect to group SU(3) ⊂ G2

acting as automorphisms of octonions inspired the idea that hyper-octonion spinor field could
represent leptons, antileptons, quarks and antiquarks. This proposal is problematic. Hyper-
octonionic coordinates would carry color and generic hyper-octonionic spinor is superposition of
spinor components which correspond to quarks, leptons and and their antifermions and a lot of
super-selection rules would be needed. The motivations behind these speculations was that in
H picture color would correspond to CP2 partial waves and spin and ew quantum numbers to
spin like quantum numbers whereas in M8 picture color would correspond to spin like quantum
number and spin and electro-weak quantum numbers to E4 partial waves.

4. There was an idea that hyper-octonion analyticity and hyper-octonionic spinors might somehow
allow to understand how to construct the preferred extremals of Kähler action. The idea was to
map of hyper-octonionic spinor field to an element of local SU(3) Lie algebra, whose (unfortu-
nately non-unique!) exponentiation gives rise to SU(3) element in turn allowing a projection to
local CP2. Hence the points of M8 could have been mapped to those of H by the correspondence
(m, e)→ (m, g(ψ(m, e)), where ψ(m, e) would be hyper-octonionic spinor field.

5. The romantic stuff made comeback as I realized that Wick rotation used routinely to assign
to string models conformal field theories could generalize to TGD framework. The question is
whether the notion of quaternionicity for space-time surfaces defined in terms of modified gamma
matrices for Kähler action could have a much more concrete interpretation in terms of octonion
real-analytic maps f of the imbedding space to itself such that the preferred extremals correspond
to the quaternionic (co-quaternionic) surfaces for which the real (imaginary) part of f vanishes.
This would mean that quantum TGD is an exactly solvable theory in very much the same
manner as conformal field theories. The first guess would be that effective two-dimensionality is
realized exactly since octonion analytic functions can be regarded as analytic continuations of
real-analytic complex functions. The moduli space of octonion structures is however non-trivial
and parametrized by G2. This raises the possibiity that the bases of imaginary octonion units
depends on space-time point: the proposal is that it is constant for partonic 2-surfaces but varies
along string world sheets. This dependence is characterized by a map from string world sheet
to G2/SU(3) so that one obtains string theory in this sense.

3.1.4 Notations

Some notational conventions are in order before continuing. The fields of quaternions resp. octonions
having dimension 4 resp. 8 and will be denoted by Q and O. Their complexified variants will
be denoted by QC and OC . The sub-spaces of hyper-quaternions HQ and hyper-octonions HO
are obtained by multiplying the quaternionic and octonionic imaginary units by

√
−1. These sub-

spaces are very intimately related with the corresponding algebras, and can be seen as Euclidian
and Minkowkian variants of the same basic structure. Also the Abelianized versions of the hyper-
quaternionic and -octonionic sub-spaces can be consideredthese algebras have a representation in the
space of spinors of imbedding space H = M4 × CP2.
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3.2 Quaternion and octonion structures and their hyper coun-
terparts

In this introductory section the notions of quaternion and octonion structures and their hyper counter-
parts are introduced with strong emphasis on the physical interpretation. Literature contains several
variants of these structures (Hyper Kähler structure and quaternion Kähler structure possed also
by CP2 [A125] ). The notion introduced here is inspired by the physical motivations coming from
TGD. As usual the first proposal based on the notions of (hyper-)quaternion and (hyper-)octonion
analyticity was not the correct one. Much later a local variant of the notion based on tangent space
emerged.

3.2.1 Octonions and quaternions

In the following only the basic definitions relating to octonions and quaterions are given. There
is an excellent article by John Baez [A122] describing octonions and their relations to the rest of
mathematics and physics.

Octonions can be expressed as real linear combinations
∑
k x

kIk of the octonionic real unit I0 = 1
(counterpart of the unit matrix) and imaginary units Ia, a = 1, ..., 7 satisfying

I2
0 = I0 ≡ 1 ,

I2
a = −I0 = −1 ,

I0Ia = Ia . (3.2.1)

Octonions are closed with respect to the ordinary sum of the 8-dimensional vector space and with
respect to the octonionic multiplication, which is neither commutative (ab 6= ba in general) nor
associative (a(bc) 6= (ab)c in general).

/Users/mattipitkanen/Desktop/tgd/figuresold/octonio.png

Figure 3.1: Octonionic triangle: the six lines and one circle containing three vertices define the seven
associative triplets for which the multiplication rules of the ordinary quaternion imaginary units hold
true. The arrow defines the orientation for each associative triplet. Note that the product for the
units of each associative triplets equals to real unit apart from sign factor.

A concise manner to summarize octonionic multiplication is by using octonionic triangle. Each
line (6 altogether) containing 3 octonionic imaginary units forms an associative triple which together
with I0 = 1 generate a division algebra of quaternions. Also the circle spanned by the 3 imaginary
units at the middle of the sides of the triangle is associative triple. The multiplication rules for each
associative triple are simple:
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IaIb = εabcIc , (3.2.2)

where εabc is 3-dimensional permutation symbol. εabc = 1 for the clockwise sequence of vertices (the
direction of the arrow along the circumference of the triangle and circle). As a special case this rule
gives the multiplication table of quaternions. A crucial observation for what follows is that any pair
of imaginary units belongs to one associative triple.

The non-vanishing structure constants d c
ab of the octonionic algebra can be read directly from

the octonionic triangle. For a given pair Ia, Ib one has

IaIb = d c
ab Ic ,

dab c = ε c
ab ,

I2
a = d 0

aa I0 = −I0 ,

I2
0 = d 0

00 I0 ,

I0Ia = d a
0a Ia = Ia . (3.2.3)

For εabc c belongs to the same associative triple as ab.
Non-associativity means that is not possible to represent octonions as matrices since matrix prod-

uct is associative. Quaternions can be represented and the structure constants provide the defining
representation as Ia → dabc, where b and c are regarded as matrix indices of 4 × 4 matrix. The
algebra automorphisms of octonions form 14-dimensional group G2, one of the so called exceptional
Lie-groups. The isotropy group of imaginary octonion unit is the group SU(3). The Euclidian inner
product of the two octonions is defined as the real part of the product xy

(x, y) = Re(xy) =
∑

k=0,..7

xkyk ,

x = x0I0 −
∑

i=1,..,7

xkIk , (3.2.4)

and is just the Euclidian norm of the 8-dimensional space.

3.2.2 Hyper-octonions and hyper-quaternions

The Euclidicity of the quaternion norm suggests that octonions are not a sensible concept in TGD
context. One can imagine two manners to circumvent this conclusion.

1. Minkowskian metric for octonions and quaternions is obtained by identifying Minkowski inner
product xy as the real counterpart of the product

x · y ≡ Re(xy) = x0y0 −
∑
k

xkyk . (3.2.5)

SO(1, 7) (SO(1, 3) in quaternionic case) Lorentz invariance appears completely naturally as the
symmetry of the real part of the octonion (quaternion) product and hence of octonions/quaternions
and there is no need to perform the complexification of the octonion algebra. Furthermore, only
the signature (1, 7) ((1, 3) in the quaternionic case) is possible and this would raise M4

+ × CP2

in a preferred position.

This norm does not give rise to a number theoretic norm defining a homomorphism to real
numbers. Indeed, the number theoretic norm defined by the determinant of the linear mapping
defined by the multiplication with quaternion or octonion, is inherently Euclidian. This is in
conflict with the idea that quaternionic and octonionic primes and their infinite variants should
have key role in TGD [K76] .
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2. Hyper-octonions and hyper-quaternions provide a possible solution to these problems. These are
obtained by multiplying imaginary units by commutative and associative

√
−1. These numbers

form a sub-space of complexified octonions/quaternions and the cross product of imaginary parts
leads out from this sub-space. In this case number theoretic norm induced from QC/OC gives
the fourth/eighth power of Minkowski length and Lorentz group acts as its symmetries. Light-
like hyper-quaternions and -octonions causing the failure of the number field property have also
a clear physical interpretation.

A criticism against the notion of hyper-quaternionic and octonionic primeness is that the tangent
space as an algebra property is lost and the notion of primeness is inherited from QC/OC . Also
non-commutativity and non-associativity could cause difficulties.

Zero energy ontology leads to a possible physical interpretation of complexified octonions. The
moduli space for causal diamonds corresponds to a Cartesian product of M4×CP2 whose points label
the position of either tip of CD × CP2 and space I whose points label the relative positive of the
second tip with respect to the first one. p-Adic length scale hypothesis results if one assumes that the
proper time distance between the tips comes in powers of two so that one has union of hyperboloids
Hn × CP2, Hn = {m ∈ M4

+|a = 2na0)}. A further quantization of hyperboloids Hn is obtained
by replacing it with a lattice like structure is highly suggestive and would correspond to an orbit
of a point of Hn under a subgroup of SL(2, QC) or SL(2, ZC) acting as Lorentz transformations in
standard manner. Also algebraic extensions of QC and ZC can be considered. Also in the case of CP2

discretization is highly suggestive so that one would have an orbit of a point of CP2 under a discrete
subgroup of SU(3, Q).

The outcome could be interpreted by saying that the moduli space in question is H × I such that
H corresponds to hyper-octonions and I to a discretized version of

√
−1H and thus a subspace of

complexified octonions. An open question whether the quantization has some deeper mathematical
meaning.

3.2.3 Basic constraints

Before going to details it is useful to make clear the constraints on the concept of the hyper-octonionic
structure implied by TGD view about physics.

M4 ×CP2 cannot certainly be regarded as having any global octonionic structure (for instance in
the sense that it could be regarded as a coset space associated with some exceptional group). There
are however clear indications for the importance of the hyper-quaternionic and -octonionic structures.

1. SU(3) is the only simple 8-dimensional Lie-group and acts as the group of isometries of CP2:
if SU(3) had some kind of octonionic structure, CP2 would become unique candidate for the
space S. The decomposition SU(3) = h+ t to U(2) subalgebra and its complement corresponds
rather closely to the decomposition of (hyper-)octonions to (hyper-)quaternionic sub-space and
its complement. The electro-weak U(2) algebra has a natural 1+3 decomposition and genera-
tors allow natural hyper-quaternionic structure. Hyper Kähler structure with three covariantly
constant quaternionic imaginary units represented Kähler forms is however not possible. The
components of the Weyl tensor of CP2 behave with respect to multiplication like quaternionic
imaginary units but only one of them is covariantly constant so that hyper-Kähler structure is
not possible. These tensors and metric tensor however define quaternionic structure.

2. M4
+ has a natural 1+3 decomposition and a unique cosmic time coordinate defined as the light

cone proper time. Hyper-quaternionic structure is consistent with the Minkowskian signature
of the inner product and hyper quaternion units have a natural representation in terms of
covariantly constant self-dual symplectic forms and their contractions with sigma matrices. It
is not however clear whether this representation is physically intereting.

3.2.4 How to define hyper-quaternionic and hyper-octonionic structures?

I have considered several proposals for how to define quaternionic and octonionic structures and their
hyper-counterparts.
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1. (Hyper-)octonionic manifolds would obtained by gluing together coordinate patches using (hyper-
)octonion analytic functions with real Laurent coefficients (this guarantees associativity and
commutativity). This definition does not yet involve metric or any other structures (such as
Kähler structure). This approach does not seem to be physically realistic.

2. Second option is based on the idea of representing quaternionic and octonionic imaginary units
as antisymmetric tensors. This option makes sense for quaternionic manifolds and CP2 indeed
represents an example represents of this kind of manifold. The problem with the octonionic
structure is that antisymmetric tensors cannot define non-associative product.

3. If the manifold is endowed with metric, octonionic structure should be defined as a local tangent
space structure analogous to eight-bein structure and local gauge algebra structures. This can
be achieved by contracting octo-bein vectors with the standard octonionic basis to get octonion
form Ik. Each vector field ak defines naturally octonion field A = akIk. The product of two
vector fields can be defined by the octonionic multiplication and this leads to the introduction
of a tensor field dklm of these structure constants obtained as the contraction of the octobein
vectors with the octonionic structure constants dabc. Hyper-octonion structure can defined in a
completely analogous manner.

It is possible to induce octonionic structure to any 4-dimensional space-time surface by forming
the projection of Ik to the space-time surface and redefining the products of Ik:s by dropping
away that part of the product, which is orthogonal to the space-time surface. This means that
the structure constants of the new 4-dimensional algebra are the projections of dklm to the space-
time surface. One can also define similar induced algebra in the 4-dimensional normal space of
the space-time surface. The hypothesis would be that the induced tangential is associative or
hyper-quaternionic algebra. Also co-associativity defined as associativity of the normal space
algebra is possible. This property would give for the 4-dimensionality of the space-time surface
quite special algebraic meaning. The problem is now that there is no direct connection with
quantum TGD proper- in particular the connection with the classical dynamics defined by Kähler
action is lacking.

4. 8-dimensional gamma matrices allow a representation in terms of tensor products of octonions
and 2 × 2 matrices. Genuine matrices are of course not in question since the product of the
gamma matrices fails to be associative. An associative representation is obtained by restrict-
ing the matrices to a quaternionic plane of complex octonions. If the space-time surface is
hyper-quaternionic in the sense that induced gamma matrices define a quaternionic plane of
complexified octonions at each point of space-time surface the resulting local Clifford algebra
is associative and structure constants define a matrix representation for the induced gamma
matrices.

A more general definition allows gamma matrices to be modified gamma matrices defined by
Kähler action appearing in the modified Dirac action and forced both by internal consistency
and super-conformal symmetry [K15, K27] . The modified gamma matrices associated with
Kähler action do not in general define tangent space of the space-time surface as the induced
gamma matrices do. Also co-associativity can be considered if one can identify a preferred
imaginary unit such that the multiplication of the modified gamma matrices with this unit gives
a quaternionic basis. This condition makes sense only if the preferred extremals of the action
are hyper-quaternionic surfaces in the sense defined by the action. That this is true for Kähler
action at least is an is an unproven conjecture.

In the sequel only the fourh option will be considered.

3.2.5 How to end up to quantum TGD from number theory?

An interesting possibility is that quantum TGD could emerge from a condition that a local version
of hyper-finite factor of type II1 represented as a local version of infinite-dimensional Clifford algebra
exists. The conditions are that ”center or mass” degrees of freedom characterizing the position of CD
separate uniquely from the ”vibrational” degrees of freedom being represented in terms of octonions
and that for physical states associativity holds true. The resulting local Clifford algebra would be
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identifiable as the local Clifford algebra of WCW (being an analog of local gauge groups and conformal
fields).

The uniqueness of M8 and M4×CP2 as well as the role of hyper-quaternionic space-time surfaces
as fundamental dynamical objects indeed follow from rather weak conditions if one restricts the
consideration to gamma matrices and spinors instead of assuming that M8 coordinates are hyper-
octonionic as was done in the first attempts.

1. The unique feature ofM8 and any 8-dimensional space with Minkowski signature of metric is that
it is possible to have an octonionic representation of the complexified gamma matrices [K15, K20]
and of spinors. This does not require octonionic coordinates for M8. The restriction to a
quaternionic plane for both gamma matrices and spinors guarantees the associativity.

2. One can also consider a local variant of the octonionic Clifford algebra in M8. This algebra con-
tains associative subalgebras for which one can assign to each point of M8 a hyper-quaternionic
plane. It is natural to assume that this plane is either a tangent plane of 4-D manifold defined
naturally by the induced gamma matrices defining a basis of tangent space or more generally,
by modified gamma matrices defined by a variational principle (these gamma matrices do not
define tangent space in general). Kähler action defines a unique candidate for the variational
principle in question. Associativity condition would automatically select sub-algebras associated
with 4-D hyper-quaternionic space-time surfaces.

3. This vision bears a very concrete connection to quantum TGD. In [K20] the octonionic formu-
lation of the modified Dirac equation is studied and shown to lead to a highly unique general
solution ansatz for the equation working also for the matrix representation of the Clifford al-
gebra. An open question is whether the resulting solution as such defined also solutions of the
modified Dirac equation for the matrix representation of gammas. Also a possible identification
for 8-dimensional counterparts of twistors as octo-twistors follows: associativity implies that
these twistors are very closely related to the ordinary twistors. In TGD framework octo-twistors
provide an attractive manner to get rid of the difficulties posed by massive particles for the
ordinary twistor formalism.

4. Associativity implies hyperquaternionic space-time surfaces (in a more general sense as usual)
and this leads naturally to the notion of WCW and local Clifford algebra in this space. Number
theoretic arguments imply M8 −H duality. The resulting infinite-dimensional Clifford algebra
would differ from von Neumann algebras in that the Clifford algebra and spinors assignable to
the center of mass degrees of freedom of causal diamond CD would be expressed in terms of
octonionic units although they are associative at space-time surfaces. One can therefore say that
quantum TGD follows by assuming that the tangent space of the imbedding space corresponds
to a classical number field with maximal dimension.

5. The slicing of the Minkowskian space-time surface inside CD by stringy world sheets and by par-
tonic 2-surfaces inspires the question whether the modified gamma matrices associated with the
stringy world sheets resp. partonic 2-surfaces could be could commutative resp. co-commutative.
Commutativity would also be seen as the justification for why the fundamental objects are ef-
fectively 2-dimensional.

This formulation is undeniably the most convincing one found hitherto since the notion of hyper-
quaternionic structure is local and has elegant formulation in terms of modified gamma matrices.

3.2.6 p-Adic length scale hypothesis and quaternionic and hyper-quaternionic
primes

p-Adic length scale hypothesis [K57] states that fundamental length scales correspond to the p-adic
length scales proportional to

√
p, p prime. Even more: the p-adic primes p ' 2k, k prime or possibly

power of prime, are especially interesting physically. The so called elementary particle-blackhole
analogy gives a partial theoretical justification for this hypothesis [K57] . A strong empirical support
for the hypothesis comes from p-adic mass calculations [K44, K54, K55, K48] .

Elementary particles correspond to the so called CP2 type extremals in TGD Universe [K10, K57] .
Elementary particle horizon can be defined as a surface at which the Euclidian signature of the metric of
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the space-time surface containing topologically condensed CP2 type extremal, changes to Minkowskian
signature. The generalization of the Hawking-Bekenstein formula relates the real counterpart of the
p-adic entropy associated with the elementary particle to the area of the elementary particle horizon.
If one requires that the radius of the elementary particle horizon corresponds to a p-adic length scale:
R = L(k) or kn/2L(k) where k is prime, then p is automatically near to 2k

n

and p-adic length scale
hypothesis is reproduced! The proportionality of length scale to

√
p, rather than p, follows from p-adic

thermodynamics for mass squared (!) operator and from Uncertainty Principle.

What Tony Smith [A213] suggested, was a beautiful connection with number theory based on the
generalization of the concept of a prime number. In the so called D4 lattice regarded as consisting
of integer quaternions, one could identify prime quaternions as the generators of the multiplicative
algebra of the integer quaternions. From the basic properties of the quaternion norm it follows directly
that prime quaternions correspond to the 3-dimensional spheres R2 = p, p prime, with integer value
E4 coordinates. The worries are of course raised by the Euclidian signature of the number theoretical
norm of quaternions.

Hyper-quaternionic and -octonionic primes and effective 2-dimensionality

The notion of prime generalizes to hyper-quaternionic and -octonionic case. The factorization n2
0−n2

3 =
(n0 + n3)(n0 − n3) implies that any hyper-quaternionic and -octonionic primes can be represented as
(n0, n3, 0, ...) = (n3 + 1, n3, 0, ...), n3 = (p−1)/2 for p > 2. p = 2 is exceptional: a representation with
minimal number of components is given by (2, 1, 1, 0, ...). The interpretation of hyper-quaternionic
primes (or integers) as four-momenta suggests itself. Note that it is not possible to find a rest system
for a massive particle unless the energy is allowed to be a square root of integer.

The notion of ”irreducible” (see Appendix of [K77] ) is defined as the equivalence class of primes
related by a multiplication with a unit (integer with unit norm) and is more fundamental than that of
prime. All Lorentz boosts of a hyper prime obtained by multiplication with units labeling SO(D− 1)
cosets of SO(D − 1, 1), D = 4, 8 to a hyper prime, combine to form a hyper irreducible. Note that
the units cannot correspond to real particles in the arithmetic quantum field theory in which primes
correspond to D-momenta labeling the physical states.

If the situation for p > 2 is effectively 2-dimensional in the sense that it is always possible to
transform the hyper prime to a 2-component form by multiplying it by a suitable unit representing
Lorentz boost, the theory for time-like hyper primes effectively reduces to the hyper-complex case.
This hypothesis is physically highly attractive since it would imply number theoretic universality and
conform with the effective 2-dimensionality.

Hyper-complex numbers H2 define the maximal sub-algebra of HQ and HO. In the case of H2 the
failure of the number field property is due to the existence of light-like hyper-complex numbers with
vanishing norm. The light-likeness of hyper-quaternions and -octonions is expected to have a deep
physical significance and could define a number theoretic analog of propagator pole and light-like 3-D
and 7-D causal determinants.

Also the rigorous notion of hyper primeness seems to require effective 2-dimensionality. If effective
2-dimensionality holds true, hyper integers have a decomposition to a product of hyper primes multi-
plied by a suitable unit. The representation is obtained by Lorentz boosting the hyper integer first to
a 2-component form and then decomposing it to a product of hyper-complex primes. Note that the
hyper-octonionic primes related by SO(7, 1) boosts need not represent physically equivalent states.

The situation becomes more complex if also space-like hyper primes with negative norm squared
n2

0 − n2
1 − ... = −p are allowed. Gaussian primes with p mod4 = 1 would be representable as primes

of form (0, n1, n2, 0): n2
1 + n2

2 = p. If all quaternionic primes allow a representation as a quaternionic
integer with three non-vanishing components, they can be identified as space-like hyper-quaternionic
primes. Space-like primes with p mod 4 = 3 have at least 3 non-vanishing components which are odd
integers. By their tachyonity space-like primes are not physically favored.

Hyper-quaternionic hyperboloids and p-adic length scale hypothesis

In the hyper-quaternionic case the 3-dimensional sphere R2 = p is replaced with Lobatchevski space
(hyperboloid of M4 with points having integer valued M4 coordinates. Hence integer valued hyper-
quaternions allow interpretation as quantized four-momenta.
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Prime mass hyperboloids correspond to n = p. It is not possible to multiply hyperboloids since
the cross product leads out of hyper sub-space. It is however possible to multiply the 2-dimensional
hyperboloids and act on these by units to get full 3-D hyperboloids. The powers of hyperboloid
p correspond to a multiplicatively closed structure consisting of powers pn of the hyperboloid p. At
space-time level the hyper-quaternionic lattice gives rise to a one-dimensional lattices of hyperboloidal
lattices labeled by powers pn, and the values of light-cone proper time a ∝ √p are expected to define
fundamental p-adic time scales.

Also the space-like hyperboloids R2 = −n are possible and the notion of primeness makes sense
also in this case. The space-like hyperboloids define one-dimensional lattice of space-like hyper-
quaternionic lattices and an explanation for the spatial variant of the p-adic length scale hypothesis
stating that p-adic length scales are proportional to

√
p emerges in this manner naturally.

Euclidian version of the p-adic length scale hypothesis

Hyper-octonionic integers have a decomposition into hyper-quaternion and a product of
√
−1K with

quaternion so that quaternionic primes can be identified as hyper-octonionic space-like primes. The
Euclidian version of the p-adic length scale hypothesis follows if one assumes that the Euclidian piece
of the space-time surrounding the topologically condensed CP2 type extremal can be approximated
with a quaternion integer lattice with radius squared equal to r2 = kn, k prime. One manner to
understand the finiteness in the time direction is that topological sum contacts of CP2 type extremal
are not static 3-dimensional topological sum contacts but genuinely four-dimensional: 3-dimensional
contact is created, expands to a maximum size and is gradually reduced to point. The Euclidian space-
time volume containing the contact would correspond to an Euclidian region R2 = kn of space-time.
The distances of the lattice points would be measured using the induced metric. These contacts could
have arbitrarily long duration from the point of view of external observer since classical gravitational
fields give rise to strong time dilation effects (strongest on the boundary of the Euclidian region where
the metric becomes degenerate with the emergence of a light like direction).

Lattice structure is essential for the argument. Lattice structures of type D4 indeed emerge
naturally in the construction of the p-adic counterparts of the space-time surfaces as p-adically analytic
surfaces. The essential idea is to construct the p-adic surface by first discretizing space-time surface
using a p-adic cutoff in k:th pinary digit and mapping this surface to its p-adic counterpart and
complete this to a unique smooth p-adically analytic surface.

This leads to a fractal construction in which a given interval is decomposed to p smaller intervals,
when the resolution is increased. In the 4-dimensional case one naturally obtains a fractal hierarchy
of nested D4 lattices. The interior of the elementary particle horizon with Euclidian signature cor-
responds to some subset of the quaternionic integer lattice D4: an attractive possibility is that the
absolute minimization of the Kähler action and the maximization of the Kähler function force this set
to be a ball R2 ≤ kn, k prime.

3.3 Quantum TGD in nutshell

This section provides a summary about quantum TGD, which is essential for understanding the
recent developments related to M8 −H duality. The discussions are based on the general vision that
quantum states of the Universe correspond to the modes of classical spinor fields in the ”world of
the classical worlds” identified as the infinite-dimensional configuration space of light-like 3-surfaces
of H = M4 × CP2 (more or less-equivalently, the corresponding 4-surfaces defining generalized Bohr
orbits).

3.3.1 Geometric ideas

TGD relies heavily on geometric ideas, which have gradually generalized during the years. Symme-
tries play a key role as one might expect on basis of general definition of geometry as a structure
characterized by a given symmetry.
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Physics as infinite-dimensional Kähler geometry

1. The basic idea is that it is possible to reduce quantum theory to configuration space geometry
and spinor structure. The geometrization of loop spaces inspires the idea that the mere exis-
tence of Riemann connection fixes configuration space Kähler geometry uniquely. Accordingly,
configuration space can be regarded as a union of infinite-dimensional symmetric spaces labeled
by zero modes labeling classical non-quantum fluctuating degrees of freedom.

The huge symmetries of the configuration space geometry deriving from the light-likeness of
3-surfaces and from the special conformal properties of the boundary of 4-D light-cone would
guarantee the maximal isometry group necessary for the symmetric space property. Quantum
criticality is the fundamental hypothesis allowing to fix the Kähler function and thus dynamics of
TGD uniquely. Quantum criticality leads to surprisingly strong predictions about the evolution
of coupling constants.

2. Configuration space spinors correspond to Fock states and anti-commutation relations for fermionic
oscillator operators correspond to anti-commutation relations for the gamma matrices of the con-
figuration space. Configuration space gamma matrices contracted with Killing vector fields give
rise to a super-algebra which together with Hamiltonians of the configuration space forms what
I have used to called super-symplectic algebra.

Super-symplectic degrees of freedom represent completely new degrees of freedom and have no
electroweak couplings. In the case of hadrons super-symplectic quanta correspond to what has
been identified as non-perturbative sector of QCdthey define TGD correlate for the degrees of
freedom assignable to hadronic strings. They are responsible for the most of the mass of hadron
and resolve spin puzzle of proton.

Besides super-symplectic symmetries there are Super-Kac Moody symmetries assignable to light-
like 3-surfaces and together these algebras extend the conformal symmetries of string models
to dynamical conformal symmetries instead of mere gauge symmetries. The construction of
the representations of these symmetries is one of the main challenges of quantum TGD. The
assumption that the commutator algebra of these super-symplectic and super Kac-Moody alge-
bras annihilates physical states gives rise to Super Virasoro conditions which could be regarded
as analogs of configuration space Dirac equation.

Modular invariance is one aspect of conformal symmetries and plays a key role in the under-
standing of elementary particle vacuum functionals and the description of family replication
phenomenon in terms of the topology of partonic 2-surfaces.

3. Configuration space spinors define a von Neumann algebra known as hyper-finite factor of type
II1 (HFFs). This realization has led also to a profound generalization of quantum TGD through a
generalization of the notion of imbedding space to characterize quantum criticality. The resulting
space has a book like structure with various almost-copies of imbedding space representing the
pages of the book meeting at quantum critical sub-manifolds. The outcome of this approach
is that the exponents of Kähler function and Chern-Simons action are not fundamental objects
but reduce to the Dirac determinant associated with the modified Dirac operator assigned to
the light-like 3-surfaces.

p-Adic physics as physics of cognition and intentionality

p-Adic mass calculations relying on p-adic length scale hypothesis led to an understanding of elemen-
tary particle masses using only super-conformal symmetries and p-adic thermodynamics. The need
to fuse real physics and various p-adic physics to single coherent whole led to a generalization of the
notion of number obtained by gluing together reals and p-adics together along common rationals and
algebraics. The interpretation of p-adic space-time sheets is as correlates for cognition and intentional-
ity. p-Adic and real space-time sheets intersect along common rationals and algebraics and the subset
of these points defines what I call number theoretic braid in terms of which both configuration space
geometry and S-matrix elements should be expressible. Thus one would obtain number theoretical
discretization which involves no adhoc elements and is inherent to the physics of TGD.

Perhaps the most dramatic implication relates to the fact that points, which are p-adically in-
finitesimally close to each other, are infinitely distant in the real sense (recall that real and p-adic
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imbedding spaces are glued together along rational imbedding space points). This means that any
open set of p-adic space-time sheet is discrete and of infinite extension in the real sense. This means
that cognition is a cosmic phenomenon and involves always discretization from the point of view of the
real topology. The testable physical implication of effective p-adic topology of real space-time sheets
is p-adic fractality meaning characteristic long range correlations combined with short range chaos.

Also a given real space-time sheets should correspond to a well-defined prime or possibly several of
them. The classical non-determinism of Kähler action should correspond to p-adic non-determinism
for some prime(s) p in the sense that the effective topology of the real space-time sheet is p-adic in some
length scale range. p-Adic space-time sheets with same prime should have many common rational
points with the real space-time and be easily transformable to the real space-time sheet in quantum
jump representing intention-to-action transformation. The concrete model for the transformation of
intention to action leads to a series of highly non-trivial number theoretical conjectures assuming that
the extensions of p-adics involved are finite-dimensional and can contain also transcendentals.

An ideal realization of the space-time sheet as a cognitive representation results if the CP2 coordi-
nates as functions of M4

+ coordinates have the same functional form for reals and various p-adic number
fields and that these surfaces have discrete subset of rational numbers with upper and lower length
scale cutoffs as common. The hierarchical structure of cognition inspires the idea that S-matrices form
a hierarchy labeled by primes p and the dimensions of algebraic extensions.

The number-theoretic hierarchy of extensions of rationals appears also at the level of configuration
space spinor fields and allows to replace the notion of entanglement entropy based on Shannon entropy
with its number theoretic counterpart having also negative values in which case one can speak about
genuine information. In this case case entanglement is stable against Negentropy Maximization Prin-
ciple stating that entanglement entropy is minimized in the self measurement and can be regarded
as bound state entanglement. Bound state entanglement makes possible macro-temporal quantum
coherence. One can say that rationals and their finite-dimensional extensions define islands of order
in the chaos of continua and that life and intelligence correspond to these islands.

TGD inspired theory of consciousness and number theoretic considerations inspired for years ago
the notion of infinite primes [K76] . It came as a surprise, that this notion might have direct rele-
vance for the understanding of mathematical cognition. The ideas is very simple. There is infinite
hierarchy of infinite rationals having real norm one but different but finite p-adic norms. Thus single
real number (complex number, (hyper-)quaternion, (hyper-)octonion) corresponds to an algebraically
infinite-dimensional space of numbers equivalent in the sense of real topology. Space-time and imbed-
ding space points ((hyper-)quaternions, (hyper-)octonions) become infinitely structured and single
space-time point would represent the Platonia of mathematical ideas. This structure would be com-
pletely invisible at the level of real physics but would be crucial for mathematical cognition and
explain why we are able to imagine also those mathematical structures which do not exist physically.
Space-time could be also regarded as an algebraic hologram. The connection with Brahman=Atman
idea is also obvious.

Hierarchy of Planck constants and dark matter hierarchy

The work with hyper-finite factors of type II1 (HFFs) combined with experimental input led to the
notion of hierarchy of Planck constants interpreted in terms of dark matter [K26] . The hierarchy
is realized via a generalization of the notion of imbedding space obtained by gluing infinite number
of its variants along common lower-dimensional quantum critical sub-manifolds. These variants of
imbedding space are characterized by discrete subgroups of SU(2) acting in M4 and CP2 degrees of
freedom as either symmetry groups or homotopy groups of covering. Among other things this picture
implies a general model of fractional quantum Hall effect.

This framework also leads to the identification of number theoretical braids as points of partonic
2-surface which correspond to the minima of a generalized eigenvalue of Dirac operator, a scalar field
to which Higgs vacuum expectation is proportional to. Higgs vacuum expectation has thus a purely
geometric interpretation. The outcome is an explicit formula for the Dirac determinant consistent with
the vacuum degeneracy of Kähler action and its finiteness and algebraic number property required by p-
adicization requiring number theoretic universality. The zeta function associated with the eigenvalues
(rather than Riemann Zeta as believed originally) in turn defines the super-symplectic conformal
weights as its zeros so that a highly coherent picture result.
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What is especially remarkable is that the construction gives also the 4-D space-time sheets as-
sociated with the light-like orbits of the partonic 2-surfaces: it remains to be shown whether they
correspond to preferred extremals of Kähler action. It is clear that the hierarchy of Planck constants
has become an essential part of the construction of quantum TGD and of mathematical realization of
the notion of quantum criticality rather than a possible generalization of TGD.

Number theoretical symmetries

TGD as a generalized number theory vision leads to the idea that also number theoretical symmetries
are important for physics.

1. There are good reasons to believe that the strands of number theoretical braids can be assigned
with the roots of a polynomial with suggests the interpretation corresponding Galois groups
as purely number theoretical symmetries of quantum TGD. Galois groups are subgroups of
the permutation group S∞ of infinitely manner objects acting as the Galois group of algebraic
numbers. The group algebra of S∞ is HFF which can be mapped to the HFF defined by
configuration space spinors. This picture suggest a number theoretical gauge invariance stating
that S∞ acts as a gauge group of the theory and that global gauge transformations in its
completion correspond to the elements of finite Galois groups represented as diagonal groups of
G×G× .... of the completion of S∞. The groups G should relate closely to finite groups defining
inclusions of HFFs.

2. HFFs inspire also an idea about how entire TGD emerges from classical number fields, actually
their complexifications. In particular, SU(3) acts as subgroup of octonion automorphisms leaving
invariant preferred imaginary unit and M4 × CP2 can be interpreted as a structure related to
hyper-octonions which is a subspace of complexified octonions for which metric has naturally
Minkowski signature. This would mean that TGD could be seen also as a generalized number
theory. This conjecture predicts the existence of two dual formulations of TGD based on the
identification space-times as 4-surfaces in hyper-octonionic space M8 resp. M4 × CP2.

3. The vision about TGD as a generalized number theory involves also the notion of infinite primes.
This notion leads to a further generalization of the ideas about geometry: this time the notion
of space-time point generalizes so that it has an infinitely complex number theoretical anatomy
not visible in real topology.

3.3.2 The notions of imbedding space, 3-surface, and configuration space

The notions of imbedding space, 3-surface (and 4-surface), and configuration space (world of classical
worlds (WCW)) are central to quantum TGD. The original idea was that 3-surfaces are space-like
3-surfaces of H = M4 × CP2 or H = M4

+ × CP2, and WCW consists of all possible 3-surfaces in
H. The basic idea was that the definition of Kähler metric of WCW assigns to each X3 a unique
space-time surface X4(X3) allowing in this manner to realize general coordinate invariance. During
years these notions have however evolved considerably.

The notion of imbedding space

Two generalizations of the notion of imbedding space were forced by number theoretical vision [K77,
K78, K76] .

1. p-Adicization forced to generalize the notion of imbedding space by gluing real and p-adic
variants of imbedding space together along rationals and common algebraic numbers. The
generalized imbedding space has a book like structure with reals and various p-adic number
fields (including their algebraic extensions) representing the pages of the book.

2. With the discovery of zero energy ontology [K15, K20] it became clear that the so called causal
diamonds (CDs) interpreted as intersections M4

+ ∩M4
− of future and past directed light-cones

of M4 × CP2 define correlates for the quantum states. The position of the ”lower” tip of CD
characterizes the position of CD in H. If the temporal distance between upper and lower tip of
CD is quantized in power-of-two multiples of CP2 length, p-adic length scale hypothesis [K57]
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follows as a consequence. The upper resp. lower light-like boundary δM4
+×CP2 resp. δM4

−×CP2

of CD can be regarded as the carrier of positive resp. negative energy part of the state. All
net quantum numbers of states vanish so that everything is creatable from vacuum. Space-time
surfaces assignable to zero energy states would would reside inside CD × CP2s and have their
3-D ends at the light-like boundaries of CD × CP2. Fractal structure is present in the sense
that CDs can contains CDs within CDs, and measurement resolution dictates the length scale
below which the sub-CDs are not visible.

3. The realization of the hierarchy of Planck constants [K26] led to a further generalization of
the notion of imbedding space. Generalized imbedding space is obtained by gluing together
Cartesian products of singular coverings and factor spaces of CD and CP2 to form a book like
structure. The particles at different pages of this book behave like dark matter relative to each
other. This generalization also brings in the geometric correlate for the selection of quantization
axes in the sense that the geometry of the sectors of the generalized imbedding space with non-
standard value of Planck constant involves symmetry breaking reducing the isometries to Cartan
subalgebra. Roughly speaking, each CD and CP2 is replaced with a union of CDs and CP2s
corresponding to different choices of quantization axes so that no breaking of Poincare and color
symmetries occurs at the level of entire WCW.

4. The construction of quantum theory at partonic level brings in very important delicacies related
to the Kähler gauge potential of CP2. Kähler gauge potential must have what one might call
pure gauge parts in M4 in order that the theory does not reduce to mere topological quantum
field theory. Hence the strict Cartesian product structure M4 × CP2 breaks down in a delicate
manner. These additional gauge components -present also in CP2- play key role in the model
of anyons, charge fractionization, and quantum Hall effect [K61] .

The notions of 3-surface and space-time surface

The question what one exactly means with 3-surface turned out to be non-trivial.

1. The original identification of 3-surfaces was as arbitrary space-like 3-surfaces subject to Equiva-
lence implied by General Coordinate Invariance. There was a problem related to the realization
of Equivalence Principle since it was not at all obvious why the absolute minimum X4(Y 3) for
Y 3 at X4(X3) and Diff4 related X3 should satisfy X4(Y 3) = X4(X3) .

2. Much later it became clear that light-like 3-surfaces have unique properties for serving as basic
dynamical objects, in particular for realizing the General Coordinate Invariance in 4-D sense
(obviously the identification resolves the above mentioned problem) and understanding the con-
formal symmetries of the theory. On basis of these symmetries light-like 3-surfaces can be
regarded as orbits of partonic 2-surfaces so that the theory is locally 2-dimensional. It is how-
ever important to emphasize that this indeed holds true only locally. At the level of WCW metric
this means that the components of the Kähler form and metric can be expressed in terms of
data assignable to 2-D partonic surfaces. It is however essential that information about normal
space of the 2-surface is needed.

3. Rather recently came the realization that light-like 3-surfaces can have singular topology in the
sense that they are analogous to Feynman diagrams. This means that the light-like 3-surfaces
representing lines of Feynman diagram can be glued along their 2-D ends playing the role of
vertices to form what I call generalized Feynman diagrams. The ends of lines are located at
boundaries of sub-CDs. This brings in also a hierarchy of time scales: the increase of the
measurement resolution means introduction of sub-CDs containing sub-Feynman diagrams. As
the resolution is improved, new sub-Feynman diagrams emerge so that effective 2-D character
holds true in discretized sense and in given resolution scale only.

The basic vision has been that space-time surfaces correspond to preferred extremals X4(X3) of
Kähler action. Kähler function K(X3) defining the Kähler geometry of the world of classical worlds
would correspond to the Kähler action for the preferred extremal. The precise identification of the
preferred extremals actually has however remained open.
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1. The obvious guess motivated by physical intuition was that preferred extremals correspond to
the absolute minima of Kähler action for space-time surfaces containing X3. This choice has
some nice implications. For instance, one can develop an argument for the existence of an
infinite number of conserved charges. If X3 is light-like surface- either light-like boundary of
X4 or light-like 3-surface assignable to a wormhole throat at which the induced metric of X4

changes its signature- this identification circumvents the obvious objections.

2. Much later number theoretical vision led to the conclusion that X4(X3
l,i), where X3

l,i denotes

a connected component of the light-like 3-surfaces X3
l , contain in their 4-D tangent space

T (X4(X3
l,i)) a subspace M2

i ⊂ M4 having interpretation as the plane of non-physical polar-
izations. This means a close connection with super string models. Geometrically this would
mean that the deformations of 3-surface in the plane of non-physical polarizations would not
contribute to the line element of WCW. This is as it must be since complexification does not
make sense in M2 degrees of freedom.

In number theoretical framework M2
i has interpretation as a preferred hyper-complex sub-space

of hyper-octonions defined as 8-D subspace of complexified octonions with the property that
the metric defined by the octonionic inner product has signature of M8. A stronger condition
would be that the condition holds true at all points of X4(X3) for a global choice M2 but this
is un-necessary and leads to strong un-proven conjectures. The condition M2

i ⊂ T (X4(X3
l,i))

in principle fixes the tangent space at X3
l,i, and one has good hopes that the boundary value

problem is well-defined and fixes X4(X3) uniquely as a preferred extremal of Kähler action.
This picture is rather convincing since the choice M2

i ⊂M3 plays also other important roles.

3. The next step [K15] was the realization that the construction of the configuration space geometry
in terms of modified Dirac action strengthens the boundary conditions to the condition that there
exists space-time coordinates in which the induced CP2 Kähler form and induced metric satisfy
the conditions Jni = 0, gni = 0 hold at X3

l . One could say that at X3
l situation is static both

metrically and for the Maxwell field defined by the induced Kähler form. There are reasons to
hope that this is the final step in a long process.

4. The weakest form of number theoretic compactification states that light-like 3-surfaces X3 ⊂
X4(X3) ⊂ M8, where X4(X3) hyper-quaternionic surface in hyper-octonionic M8 can be
mapped to light-like 3-surfaces X3 ⊂ X4(X3) ⊂ M4 × CP2, where X4(X3) is now preferred
extremum of Kähler action. The natural guess is that X4(X3) ⊂M8 is a preferred extremal of
Kähler action associated with Kähler form of E4 in the decomposition M8 = M4×E4, where M4

corresponds to hyper-quaternions. The conjecture would be that the value of the Kähler action
in M8 is same as in M4 × CP2. A second interesting conjecture is that the hyper-quaternionic
surfaces correspond to Kähler calibrations giving rise to absolute minima or maxima of Kähler
action for M8.

The notion of configuration space

From the beginning there was a problem related to the precise definition of the configuration space
(”world of classical worlds” (WCW)). Should one regard CH as the space of 3-surfaces of M4 ×CP2

or M4
+ × CP2 or perhaps something more delicate.

1. For a long time I believed that the question ”M4
+ or M4?” had been settled in favor of M4

+ by
the fact that M4

+ has interpretation as empty Roberson-Walker cosmology. The huge conformal
symmetries assignable to δM4

+ × CP2 were interpreted as cosmological rather than laboratory
symmetries. The work with the conceptual problems related to the notions of energy and time,
and with the symmetries of quantum TGD, however led gradually to the realization that there
are strong reasons for considering M4 instead of M4

+.

2. With the discovery of zero energy ontology it became clear that the so called causal diamonds
(CDs) define excellent candidates for the fundamental building blocks of the configuration space
or ”world of classical worlds” (WCW). The spaces CD ×CP2 regarded as subsets of H defined
the sectors of WCW.
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3. This framework allows to realize the huge symmetries of δM4
±×CP2 as isometries of WCW. The

gigantic symmetries associated with the δM4
± × CP2 are also laboratory symmetries. Poincare

invariance fits very elegantly with the two types of super-conformal symmetries of TGD. The first
conformal symmetry corresponds to the light-like surfaces δM4

± × CP2 of the imbedding space
representing the upper and lower boundaries of CD. Second conformal symmetry corresponds
to light-like 3-surface X3

l , which can be boundaries of X4 and light-like surfaces separating
space-time regions with different signatures of the induced metric. This symmetry is identifiable
as the counterpart of the Kac Moody symmetry of string models.

A rather plausible conclusion is that configuration space (WCW) is a union of configuration spaces
associated with the spaces CD×CP2. CDs can contain CDs within CDs so that a fractal like hierarchy
having interpretation in terms of measurement resolution results. Since the complications due to p-
adic sectors and hierarchy of Planck constants are not relevant for the basic construction, it reduces
to a high degree to a study of a simple special case δM4

+ × CP2.

3.3.3 The construction of M-matrix

The construction of S-matrix involves several ideas that have emerged during last years and involve
symmetries in an essential manner.

Zero energy ontology

Zero energy ontology motivated originally by TGD inspired cosmology means that physical states
have vanishing conserved net quantum numbers and are decomposable to positive and negative energy
parts separated by a temporal distance characterizing the system as a space-time sheet of finite size in
time direction. The particle physics interpretation is as initial and final states of a particle reaction.
Obviously a profound modification of existing views about realization of symmetries is in question.

S-matrix and density matrix are unified to the notion of M-matrix defining time-like entanglement
and expressible as a product of square root of density matrix and of unitary S-matrix. Thermody-
namics becomes therefore a part of quantum theory. One must distinguish M-matrix from U-matrix
defined between zero energy states and analogous to S-matrix and characterizing the unitary process
associated with quantum jump. U-matrix is most naturally related to the description of intentional
action since in a well-defined sense it has elements between physical systems corresponding to different
number fields.

Quantum TGD as almost topological QFT

Light-likeness of the basic fundamental objects suggests that TGD is almost topological QFT so that
the formulation in terms of category theoretical notions is expected to work. The original proposal
that Chern-Simons action for light-like 3-surfaces defined by the regions at which the signature of the
induced metric changes its sign however failed and one must use Kähler action and corresponding
modified Dirac action with measurement term to define the fundamental theory. At the limit when
the momenta of particles vanish, the theory reduces to topological QFT defined by Kähler action and
corresponding modified Dirac action. The imaginary exponent of the instanton term associated with
the induced Kähler form defines the counterpart of Chern-Simons action as a phase of the vacuum
functional and contributes also to modified Dirac equation.

M-matrices form in a natural manner a functor from the category of cobordisms to the category
of pairs of Hilbert spaces and this gives additional strong constraints on the theory. Super-conformal
symmetries implied by the light-likeness pose very strong constraints on both state construction and on
M-matrix and U-matrix. The notions of n-category and n-groupoid which represents a generalization
of the notion of group could be very relevant to this view about M-matrix.

Quantum measurement theory with finite measurement resolution

The notion of measurement resolution represented in terms of inclusions N ⊂ M of HFFs is an
essential element of the picture. Measurement resolution corresponds to the action of the included
sub-algebra creating zero energy states in time scales shorter than the cutoff scale. This means that
complex rays of state space are effectively replaced with N rays. The condition that the action of
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N commutes with the M-matrix is a powerful symmetry and implies that the time-like entanglement
characterized by M-matrix is consistent with Connes tensor product. This does not fix the M-matrix
as was the original belief but only realizes mathematically the notion of finite measurement resolution.
Together with super-conformal symmetries this constraint should fix possible M-matrices to a very
high degree if one assumes the existence of universal M-matrix from which M-matrices with finite
measurement resolution are obtained.

The notion of number theoretical braid realizes the notion of finite measurement resolution at
space-time level and gives a direct connection to topological QFTs describing braids. The connection
with quantum groups is highly suggestive since already the inclusions of HFFs involve these groups.
Effective non-commutative geometry for the quantum critical sub-manifolds M2 ⊂M4 and S2 ⊂ CP2

might provide an alternative notion for the reduction of stringy anti-commutation relations for induced
spinor fields to anti-commutations at the points of braids.

Generalization of Feynman diagrams

An essential difference between TGD and string models is the replacement of stringy diagrams with
generalized Feynman diagrams obtained by gluing 3-D light-like surfaces (instead of lines) together at
their ends represented as partonic 2-surfaces. This makes the construction of vertices very simple. The
notion of number theoretic braid in turn implies discretization having also interpretation in terms of
non-commutativity due to finite measurement resolution replacing anti-commutativity along stringy
curves with anti-commutativity at points of braids. Braids can replicate at vertices which suggests an
interpretation in terms of topological quantum computation combined with non-faithful copying and
communication of information. The analogs of stringy diagrams have quite different interpretation in
TGdfor instance, photons traveling via two different paths in double slit experiment are represented
in terms of stringy branching of the photonic 2-surface.

Symplectic variant of QFT as basic building block of construction

The latest discovery related to the construction of M-matrix was the realization that a symplectic vari-
ant of conformal field theories might be a further key element in the concrete construction of n-point
functions and M-matrix in zero energy ontology. Although I have known super-symplectic (super-
symplectic) symmetries to be fundamental symmetries of quantum TGD for almost two decades, I
failed for some reason to realize the existence of symplectic QFT, and discovered it while trying to
understand quite different problem - the fluctuations of cosmic microwave background! The sym-
plectic contribution to the n-point function satisfies fusion rules and involves only variables which are
symplectic invariants constructed using geodesic polygons assignable to the sub-polygons of n-polygon
defined by the arguments of n-point function. Fusion rules lead to a concrete recursive formula for
n-point functions and M-matrix in contrast to the iterative construction of n-point functions used in
perturbative QFT.

Bosonic emergence, extended space-time supersymmetry, and generalized twistors

During year 2009 several new ideas emerged and give hopes about a concrete construction of M-matrix.

1. The notion of bosonic emergence [K60] follows from the fact that gauge bosons are identifiable
as pairs of fermion and anti-fermion at opposite light-like throats of wormhole contact. As a
consequence, bosonic propagators and vertices are generated radiatively from a fundamental
action for fermions and their super partners. At QFT limit without super-symmetry this means
that Dirac action coupled to gauge bosons is the fundamental action and the counterpart of YM
action is generated radiatively. All coupling constants follow as predictions as they indeed must
do on basis of the general structure of quantum TGD.

2. Whether the counterparts of space-time supersymmetries are possible in TGD Universe has
remained a long-standing open question and my cautious belief has been that the super partners
do not exist. The resolution of the problem came with the introduction of the measurement
interaction term to the modified Dirac action defined by Kähler action [K27, K28] , which meant
a theoretical breakthrough in many respects. The oscillator operators associated with the modes
of the induced spinor field satisfy the anticommutation relations defining the generalization of
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space-time super-symmetry algebra and these oscillator operators serve as the building blocks
of various super-conformal algebras. The number of super-symmetry generators is very large,
perhaps even infinite. This forces a generalization of the standard super field concept. The action
for chiral super-fields emerges as a generalization of the Dirac action to include all possible super-
partners. The huge super-symmetry gives excellent hopes about cancelation of UV divergences.
The counterpart of super-symmetric YM action emerges radiatively. This formalism works at
the QFT limit. The generalization of the formalism to quantum TGD proper is yet to be carried
out.

3. Twistor program has become one of the most promising approaches to gauge theories. This
inspired the question whether TGD could allow twistorialization [K86] . Massive states -both
real and virtual- are the basic problem of twistor approach. In TGD framework the obvious
idea is that massive on mass shell states can be interpreted as massless states in 8-D sense.
Massive off-mass shell states in turn could be regarded as pairs of positive and negative on
mass shell states. This means opening of the black box of virtual state attempted already in
the model for bosonic propagators inspired by the bosonic emergence [K60] , and one can even
hope that individual loop integrals are finite and that Wick rotation is not needed. The third
observation is that 8-dimensional gamma matrices allow a representation in terms of octonions
(matrices are not in question anymore). If the modified gamma ”matrices” associated with
space-time surface define a quaternionic sub-algebra of the complexified octonion algebra, they
allow a matrix representation defined by octonionic structure constants. This holds true for
are hyper-quaternionic space-time surfaces so that a connection with number theoretic vision
emerges. This would more or less reduce the notion of twistor to its 4-dimensional counterpart.

3.4 Number theoretic compactification and M 8 −H duality

This section summarizes the basic vision about number theoretic compactification reducing the clas-
sical dynamics to number theory. In strong form M8 − H duality boils down to the assumption
that space-time surfaces can be regarded either as surfaces of H or as surfaces of M8 composed of
hyper-quaternionic and co-hyper-quaternionic regions identifiable as regions of space-time possessing
Minkowskian resp. Euclidian signature of the induced metric.

3.4.1 Basic idea behind M8 −M4 × CP2 duality

The hopes of giving M4×CP2 hyper-octonionic structure are meager. This circumstance forces to ask
whether four-surfaces X4 ⊂M8 could under some conditions define 4-surfaces in M4×CP2 indirectly
so that the spontaneous compactification of super string models would correspond in TGD to two
different manners to interpret the space-time surface. The following arguments suggest that this is
indeed the case.

The hard mathematical fact behind number theoretical compactification is that the quaternionic
sub-algebras of octonions with fixed complex structure (that is complex sub-space) are parameterized
by CP2 just as the complex planes of quaternion space are parameterized by CP1 = S2. Same applies
to hyper-quaternionic sub-spaces of hyper-octonions. SU(3) would thus have an interpretation as the
isometry group of CP2, as the automorphism sub-group of octonions, and as color group.

1. The space of complex structures of the octonion space is parameterized by S6. The subgroup
SU(3) of the full automorphism group G2 respects the a priori selected complex structure and
thus leaves invariant one octonionic imaginary unit, call it e1. Hyper-quaternions can be identi-
fied as U(2) Lie-algebra but it is obvious that hyper-octonions do not allow an identification as
SU(3) Lie algebra. Rather, octonions decompose as 1⊕1⊕3⊕3 to the irreducible representations
of SU(3).

2. Geometrically the choice of a preferred complex (quaternionic) structure means fixing of complex
(quaternionic) sub-space of octonions. The fixing of a hyper-quaternionic structure of hyper-
octonionic M8 means a selection of a fixed hyper-quaternionic sub-space M4 ⊂ M8 implying
the decomposition M8 = M4 ×E4. If M8 is identified as the tangent space of H = M4 × CP2,
this decomposition results naturally. It is also possible to select a fixed hyper-complex structure,
which means a further decomposition M4 = M2 × E2.
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3. The basic result behind number theoretic compactification and M8 −H duality is that hyper-
quaternionic sub-spaces M4 ⊂M8 containing a fixed hyper-complex sub-space M2 ⊂M4 or its
light-like line M± are parameterized by CP2. The choices of a fixed hyper-quaternionic basis
1, e1, e2, e3 with a fixed complex sub-space (choice of e1) are labeled by U(2) ⊂ SU(3). The choice
of e2 and e3 amounts to fixing e2 ±

√
−1e3, which selects the U(2) = SU(2) × U(1) subgroup

of SU(3). U(1) leaves 1 invariant and induced a phase multiplication of e1 and e2 ± e3. SU(2)
induces rotations of the spinor having e2 and e3 components. Hence all possible completions of
1, e1 by adding e2, e3 doublet are labeled by SU(3)/U(2) = CP2.

4. Space-time surface X4 ⊂ M8 is by the standard definition hyper-quaternionic if the tangent
spaces ofX4 are hyper-quaternionic planes. Co-hyper-quaternionicity means the same for normal
spaces. The presence of fixed hyper-complex structure means at space-time level that the tangent
space of X4 contains fixed M2 at each point. Under this assumption one can map the points
(m, e) ∈M8 to points (m, s) ∈ H by assigning to the point (m, e) of X4 the point (m, s), where
s ∈ CP2 characterize T (X4) as hyper-quaternionic plane. This definition is not the only one and
even the appropriate one in TGD context the replacement of the tangent plane with the 4-D
plane spanned by modified gamma matrices defined by Kähler action is a more natural choice.
This plane is not parallel to tangent plane in general. In the sequel T (X4) denotes the preferred
4-plane which co-incides with tangent plane of X4 only if the action defining modified gamma
matrices is 4-volume.

5. The choice of M2 can be made also local in the sense that one has T (X4) ⊃ M2(x) ⊂ M4 ⊂
H. It turns out that strong form of number theoretic compactification requires this kind of
generalization. In this case one must be able to fix the convention how the point of CP2 is
assigned to a hyper-quaternionic plane so that it applies to all possible choices of M2 ⊂ M4.
Since SO(3) hyper-quaternionic rotation relates the hyper-quaternionic planes to each other,
the natural assumption is hyper-quaternionic planes related by SO(3) rotation correspond to
the same point of CP2. Under this assumption it is possible to map hyper-quaternionic surfaces
of M8 for which M2 ⊂M4 depends on point of X4 to H.

3.4.2 Hyper-octonionic Pauli ”matrices” and modified definition of hyper-
quaternionicity

Hyper-octonionic Pauli matrices suggest an interesting possibility to define precisely what hyper-
quaternionicity means at space-time level (for background see [K86] ).

1. According to the standard definition space-time surface X4 is hyper-quaternionic if the tangent
space at each point of X4 in X4 ⊂ M8 picture is hyper-quaternionic. What raises worries is
that this definition involves in no manner the action principle so that it is far from obvious that
this identification is consistent with the vacuum degeneracy of Kähler action. It also unclear
how one should formulate hyper-quaternionicity condition in X4 ⊂M4 × CP2 picture.

2. The idea is to map the modified gamma matrices Γα = ∂LK
∂hkα

Γk, Γk = eAk γA, to hyper-octonionic

Pauli matrices σα by replacing γA with hyper-octonion unit. Hyper-quaternionicity would state
that the hyper-octonionic Pauli matrices σα obtained in this manner span complexified quater-
nion sub-algebra at each point of space-time. These conditions would provide a number theoretic
manner to select preferred extremals of Kähler action. Remarkably, this definition applies both
in case of M8 and M4 × CP2.

3. Modified Pauli matrices span the tangent space of X4 if the action is four-volume because one has
∂LK
∂hkα

=
√
ggαβ∂hlβhkl. Modified gamma matrices reduce to ordinary induced gamma matrices

in this case: 4-volume indeed defines a super-conformally symmetric action for ordinary gamma
matrices since the mass term of the Dirac action given by the trace of the second fundamental
form vanishes for minimal surfaces.

4. For Kähler action the hyper-quaternionic sub-space does not coincide with the tangent space
since ∂LK

∂hkα
contains besides the gravitational contribution coming from the induced metric also

the ”Maxwell contribution” from the induced Kähler form not parallel to space-time surface.
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Modified gamma matrices are required by super conformal symmetry for the extremals of Kähler
action and they also guarantee that vacuum extremals defined by surfaces in M4 × Y 2, Y 2 a
Lagrange sub-manifold of CP2, are trivially hyper-quaternionic surfaces. The modified definition
of hyper-quaternionicity does not affect in any manner M8 ↔M4×CP2 duality allowing purely
number theoretic interpretation of standard model symmetries.

A side comment not strictly related to hyper-quaternionicity is in order. The anticommutators
of the modified gamma matrices define an effective Riemann metric and one can assign to it the
counterparts of Riemann connection, curvature tensor, geodesic line, volume, etc... One would have
two different metrics associated with the space-time surface. Only if the action defining space-time
surface is identified as the volume in the ordinary metric, these metrics are equivalent. The index
raising for the effective metric could be defined also by the induced metric and it is not clear whether
one can define Riemann connection also in this case. Could this effective metric have concrete physical
significance and play a deeper role in quantum TGD? For instance, AdS-CFT duality leads to ask
whether interactions be coded in terms of the gravitation associated with the effective metric.

3.4.3 Minimal form of M8 −H duality

The basic problem in the construction of quantum TGD has been the identification of the preferred
extremals of Kähler action playing a key role in the definition of the theory. The most elegant manner
to do this is by fixing the 4-D tangent space T (X4(X3

l )) of X4(X3
l ) at each point of X3

l so that the
boundary value problem is well defined. What I called number theoretical compactification allows to
achieve just this although I did not fully realize this in the original vision. The minimal picture is
following.

1. The basic observations are following. Let M8 be endowed with hyper-octonionic structure. For
hyper-quaternionic space-time surfaces inM8 tangent spaces are by definition hyper-quaternionic.
If they contain a preferred plane M2 ⊂M4 ⊂M8 in their tangent space, they can be mapped to
4-surfaces in M4 × CP2. The reason is that the hyper-quaternionic planes containing preferred
the hyper-complex plane M2 of M± ⊂ M2 are parameterized by points of CP2. The map is
simply (m, e) → (m, s(m, e)), where m is point of M4, e is point of E4, and s(m, 2) is point of
CP2 representing the hyperquaternionic plane. The inverse map assigns to each point (m, s) in
M4×CP2 point m of M4, undetermined point e of E4 and 4-D plane. The requirement that the
distribution of planes containing the preferred M2 or M± corresponds to a distribution of planes
for 4-D surface is expected to fix the points e. The physical interpretation of M2 is in terms
of plane of non-physical polarizations so that gauge conditions have purely number theoretical
interpretation.

2. In principle, the condition that T (X4) contains M2 can be replaced with a weaker condition
that either of the two light-like vectors of M2 is contained in it since already this condition
assigns to T (X4) M2 and the map H → M8 becomes possible. Only this weaker form applies
in the case of massless extremals [K10] as will be found.

3. The original idea was that hyper-quaternionic 4-surfaces in M8 containing M2 ⊂ M4 in their
tangent space could correspond to preferred extremals of Kähler action. This condition does
not seem to be consistent with what is known about the extremals of Kähler action. The
weaker form of the hypothesis is that hyper-quaternionicity holds only for 4-D tangent spaces
of X3

l ⊂ H = M4 × CP2 identified as wormhole throats or boundary components lifted to 3-
surfaces in 8-D tangent space M8 of H. The minimal hypothesis would be that only T (X4(X3

l ))
at X3

l is associative that is hyper-quaternionic for fixed M2. X3
l ⊂ M8 and T (X4(X3

l )) at X3
l

can be mapped to X3
l ⊂ H if tangent space contains also M± ⊂ M2 or M2 ⊂ M4 ⊂ M8 itself

having interpretation as preferred hyper-complex plane. This condition is not satisfied by all
surfaces X3

l as is clear from the fact that the inverse map involves local E4 translation. The
requirements that the distribution of hyper-quaternionic planes containing M2 corresponds to
a distribution of 4-D tangent planes should fix the E4 translation to a high degree.

4. A natural requirement is that the image of X3
l ⊂ H in M8 is light-like. The condition that the

determinant of induced metric vanishes gives an additional condition reducing the number of
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free parameters by one. This condition cannot be formulated as a condition on CP2 coordinate
characterizing the hyper-quaternionic plane. Since M4 projections are same for the two repre-
sentations, this condition is satisfied if the contributions from CP2 and E4 and projections to
the induced metric are identical: skl∂αs

k∂βs
l = ekl∂αe

k∂βe
l. This condition means that only

a subset of light-like surfaces of M8 are realized physically. One might argue that this is as it
must be since the volume of E4 is infinite and that of CP2 finite: only an infinitesimal portion
of all possible light-like 3-surfaces in M8 can can have H counterparts. The conclusion would
be that number theoretical compactification is 4-D isometry between X4 ⊂ H and X4 ⊂M8 at
X3
l . This unproven conjecture is unavoidable.

5. M2 ⊂ T (X4(X3
l )) condition fixes T (X4(X3

l )) in the generic case by extending the tangent space
of X3

l , and the construction of configuration space spinor structure fixes boundary conditions
completely by additional conditions necessary when X3

l corresponds to a light-like 3 surfaces
defining wormhole throat at which the signature of induced metric changes. What is especially
beautiful that only the data in T (X4(X3

l )) at X3
l is needed to calculate the vacuum functional of

the theory as Dirac determinant: the only remaining conjecture (strictly speaking un-necessary
but realistic looking) is that this determinant gives exponent of Kähler action for the preferred
extremal and there are excellent hopes for this by the structure of the basic construction.

The basic criticism relates to the condition that light-like 3-surfaces are mapped to light-like 3-
surfaces guaranteed by the condition that M8 −H duality is isometry at X3

l .

3.4.4 Strong form of M8 −H duality

The proposed picture is the minimal one. One can of course ask whether the original much stronger
conjecture that the preferred extrema of Kähler action correspond to hyper-quaternionic surfaces could
make sense in some form. One can also wonder whether one could allow the choice of the plane M2

of non-physical polarization to be local so that one would have M2(x) ⊂M4 ⊂M4 × E4, where M4

is fixed hyper-quaternionic sub-space of M8 and identifiable as M4 factor of H.

1. If M2 is same for all points of X3
l , the inverse map X3

l ⊂ H → X3
l ⊂ M8 is fixed apart from

possible non-uniquencess related to the local translation in E4 from the condition that hyper-
quaternionic planes represent light-like tangent 4-planes of light-like 3-surfaces. The question is
whether not only X3

l but entire four-surface X4(X3
l ) could be mapped to the tangent space of

M8. By selecting suitably the local E4 translation one might hope of achieving the achieving
this. The conjecture would be that the preferred extrema of Kähler action are those for which
the distribution integrates to a distribution of tangent planes.

2. There is however a problem. What is known about extremals of Kähler action is not consistent
with the assumption that fixed M2 of M± ⊂ M2is contained in the tangent space of X4. This
suggests that one should relax the condition that M2 ⊂M4 ⊂M8 is a fixed hyper-complex plane
associated with the tangent space or normal space X4 and allow M2 to vary from point to point
so that one would have M2 = M2(x). In M8 → H direction the justification comes from the
observation (to be discussed below) that it is possible to uniquely fix the convention assigning
CP2 point to a hyper-quaternionic plane containing varying hyper-complex plane M2(x) ⊂M4.

Number theoretic compactification fixes naturally M4 ⊂M8 so that it applies to any M2(x) ⊂
M4. Under this condition the selection is parameterized by an element of SO(3)/SO(2) = S2.
Note that M4 projection of X4 would be at least 2-dimensional in hyper-quaternionic case. In
co-hyper-quaternionic case E4 projection would be at least 2-D. SO(2) would act as a number
theoretic gauge symmetry and the SO(3) valued chiral field would approach to constant at X3

l

invariant under global SO(2) in the case that one keeps the assumption that M2 is fixed ad X3
l .

3. This picture requires a generalization of the map assigning to hyper-quaternionic plane a point
of CP2 so that this map is defined for all possible choices of M2 ⊂M4. Since the SO(3) rotation
of the hyper-quaternionic unit defining M2 rotates different choices parameterized by S2 to each
other, a natural assumption is that the hyper-quaternionic planes related by SO(3) rotation
correspond to the same point of CP2. Denoting by M2 the standard representative of M2, this
means that for the map M8 → H one must perform SO(3) rotation of hyper-quaternionic plane



3.4. Number theoretic compactification and M8 −H duality 159

taking M2(x) to M2 and map the rotated plane to CP2 point. In M8 → H case one must first
map the point of CP2 to hyper-quaternionic plane and rotate this plane by a rotation taking
M2(x) to M2.

4. In this framework local M2 can vary also at the surfaces X3
l , which considerably relaxes the

boundary conditions at wormhole throats and light-like boundaries and allows much more general
variety of light-like 3-surfaces since the basic requirement is that M4 projection is at least 1-
dimensional. The physical interpretation would be that a local choice of the plane of non-physical
polarizations is possible everywhere in X4(X3

l ). This does not seem to be in any obvious conflict
with physical intuition.

These observation provide support for the conjecture that (classical) S2 = SO(3)/SO(2) conformal
field theory might be relevant for (classical) TGD.

1. General coordinate invariance suggests that the theory should allow a formulation using any
light-like 3-surface X3 inside X4(X3

l ) besides X3
l identified as union of wormhole throats and

boundary components. For these surfaces the element g(x) ∈ SO(3) would vary also at partonic
2-surfaces X2 defined as intersections of δCD×CP2 and X3 (here CD denotes causal diamond
defined as intersection of future and past directed light-cones). Hence one could have S2 =
SO(3)/SO(2) conformal field theory at X2 (regarded as quantum fluctuating so that also g(x)
varies) generalizing to WZW model for light-like surfaces X3.

2. The presence of E4 factor would extend this theory to a classical E4×S2 WZW model bringing
in mind string model with 6-D Euclidian target space extended to a model of light-like 3-surfaces.
A further extension to X4 would be needed to integrate the WZW models associated with 3-
surfaces to a full 4-D description. General Coordinate Invariance however suggests that X3

l

description is enough for practical purposes.

3. The choices of M2(x) in the interior of X3
l is dictated by dynamics and the first optimistic

conjecture is that a classical solution of SO(3)/SO(2) Wess-Zumino-Witten model obtained by
coupling SO(3) valued field to a covariantly constant SO(2) gauge potential characterizes the
choice of M2(x) in the interior of M8 ⊃ X4(X3

l ) ⊂ H and thus also partially the structure of
the preferred extremal. Second optimistic conjecture is that the Kähler action involving also E4

degrees of freedom allows to assign light-like 3-surface to light-like 3-surface.

4. The best that one can hope is that M8−H duality could allow to transform the extremely non-
linear classical dynamics of TGD to a generalization of WZW-type model. The basic problem
is to understand how to characterize the dynamics of CP2 projection at each point.

In H picture there are two basic types of vacuum extremals: CP2 type extremals representing
elementary particles and vacuum extremals having CP2 projection which is at most 2-dimensional
Lagrange manifold and representing say hadron. Vacuum extremals can appear only as limiting cases
of preferred extremals which are non-vacuum extremals. Since vacuum extremals have so decisive role
in TGD, it is natural to requires that this notion makes sense also in M8 picture. In particular, the
notion of vacuum extremal makes sense in M8.

This requires that Kähler form exist in M8. E4 indeed allows full S2 of covariantly constant Kähler
forms representing quaternionic imaginary units so that one can identify Kähler form and construct
Kähler action. The obvious conjecture is that hyper-quaternionic space-time surface is extremal of
this Kähler action and that the values of Kähler actions in M8 and H are identical. The elegant
manner to achieve this, as well as the mapping of vacuum extremals to vacuum extremals and the
mapping of light-like 3-surfaces to light-like 3-surfaces is to assume that M8 − H duality is Kähler
isometry so that induced Kähler forms are identical.

This picture contains many speculative elements and some words of warning are in order.

1. Light-likeness conjecture would boil down to the hypothesis that M8 − H correspondence is
Kähler isometry so that the metric and Kähler form of X4 induced from M8 and H would be
identical. This would guarantee also that Kähler actions for the preferred extremal are identical.
This conjecture is beautiful but strong.

2. The slicing of X4(X3
l ) by light-like 3-surfaces is very strong condition on the classical dynamics

of Kähler action and does not make sense for pieces of CP2 type vacuum extremals.
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Minkowskian-Euclidian ↔ associative–co-associative

The 8-dimensionality ofM8 allows to consider both associativity (hyper-quaternionicity) of the tangent
space and associativity of the normal space- let us call this co-assosiativity of tangent space- as
alternative options. Both options are needed as has been already found. Since space-time surface
decomposes into regions whose induced metric possesses either Minkowskian or Euclidian signature,
there is a strong temptation to propose that Minkowskian regions correspond to associative and
Euclidian regions to co-associative regions so that space-time itself would provide both the description
and its dual.

The proposed interpretation of conjectured associative-co-associative duality relates in an inter-
esting manner to p-adic length scale hypothesis selecting the primes p ' 2k, k positive integer as
preferred p-adic length scales. Lp ∝

√
p corresponds to the p-adic length scale defining the size of

the space-time sheet at which elementary particle represented as CP2 type extremal is topologically
condensed and is of order Compton length. Lk ∝

√
k represents the p-adic length scale of the worm-

hole contacts associated with the CP2 type extremal and CP2 size is the natural length unit now.
Obviously the quantitative formulation for associative-co-associative duality would be in terms p→ k
duality.

Are the known extremals of Kähler action consistent with the strong form of M8 − H
duality

It is interesting to check whether the known extremals of Kähler action [K10] are consistent with
strong form of M8−H duality assuming that M2 or its light-like ray is contained in T (X4) or normal
space.

1. CP2 type vacuum extremals correspond cannot be hyper-quaternionic surfaces but co-hyper-
quaternionicity is natural for them. In the same manner canonically imbedded M4 can be only
hyper-quaternionic.

2. String like objects are associative since tangent space obviously contains M2(x). Objects of form
M1 ×X3 ⊂M4 × CP2 do not have M2 either in their tangent space or normal space in H. So
that the map from H →M8 is not well defined. There are no known extremals of Kähler action
of this type. The replacement of M1 random light-like curve however gives vacuum extremal
with vanishing volume, which need not mean physical triviality since fundamental objects of the
theory are light-like 3-surfaces.

3. For canonically imbedded CP2 the assignment of M2(x) to normal space is possible but the
choice of M2(x) ⊂ N(CP2) is completely arbitrary. For a generic CP2 type vacuum extremals
M4 projection is a random light-like curve in M4 = M1 × E3 and M2(x) can be defined
uniquely by the normal vector n ∈ E3 for the local plane defined by the tangent vector dxµ/dt
and acceleration vector d2xµ/dt2 assignable to the orbit.

4. Consider next massless extremals. Let us fix the coordinates ofX4 as (t, z, x, y) = (m0,m2,m1,m2).
For simplest massless extremals CP2 coordinates are arbitrary functions of variables u = k ·m =
t−z and v = ε ·m = x, where k = (1, 1, 0, 0) is light-like vector of M4 and ε = (0, 0, 1, 0) a polar-
ization vector orthogonal to it. Obviously, the extremals defines a decomposition M4 = M2×E2.
Tangent space is spanned by the four H-vectors ∇αhk with M4 part given by ∇αmk = δkα and
CP2 part by ∇αsk = ∂us

kkα + ∂vs
kεα.

The normal space cannot contain M4 vectors since the M4 projection of the extremal is M4.
To realize hyper-quaternionic representation one should be able to from these vector two vectors
of M2, which means linear combinations of tangent vectors for which CP2 part vanishes. The
vector ∂th

k−∂zhk has vanishing CP2 part and corresponds to M4 vector (1,−1, 0, 0) fix assigns
to each point the plane M2. To obtain M2 one would need (1, 1, 0, 0) too but this is not
possible. The vector ∂yh

k is M4 vector orthogonal to ε but M2 would require also (1, 0, 0, 0).
The proposed generalization of massless extremals allows the light-like line M± to depend on
point of M4 [K10] , and leads to the introduction of Hamilton-Jacobi coordinates involving a
local decomposition of M4 to M2(x) and its orthogonal complement with light-like coordinate
lines having interpretation as curved light rays. M2(x) ⊂ T (X4) assumption fails fails also for
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vacuum extremals of form X1 × X3 ⊂ M4 × CP2, where X1 is light-like random curve. In
the latter case, vacuum property follows from the vanishing of the determinant of the induced
metric.

5. The deformations of string like objects to magnetic flux quanta are basic conjectural extremals of
Kähler action and the proposed picture supports this conjecture. In hyper-quaternionic case the
assumption that local 4-D plane of X3 defined by modified gamma matrices contains M2(x) but
that T (X3) does not contain it, is very strong. It states that T (X4) at each point can be regarded
as a product M2(x)×T 2, T 2 ⊂ T (CP2), so that hyper-quaternionic X4 would be a collection of
Cartesian products of infinitesimal 2-D planes M2(x) ⊂ M4 and T 2(x) ⊂ CP2. The extremals
in question could be seen as local variants of string like objects X2×Y 2 ⊂M4×CP2, where X2

is minimal surface and Y 2 holomorphic surface of CP2. One can say that X2 is replaced by a
collection of infinitesimal pieces of M2(x) and Y 2 with similar pieces of homologically non-trivial
geodesic sphere S2(x) of CP2, and the Cartesian products of these pieces are glued together to
form a continuous surface defining an extremal of Kähler action. Field equations would pose
conditions on how M2(x) and S2(x) can depend on x. This description applies to magnetic flux
quanta, which are the most important must-be extremals of Kähler action.

Geometric interpretation of strong M8 −H duality

In the proposed framework M8 −H duality would have a purely geometric meaning and there would
nothing magical in it.

1. X4(X3
l ) ⊂ H could be seen a curve representing the orbit of a light-like 3-surface defining a

4-D surface. The question is how to determine the notion of tangent vector for the orbit of X3
l .

Intuitively tangent vector is a one-dimensional arrow tangential to the curve at point X3
l . The

identification of the hyper-quaternionic surface X4(X3
l ) ⊂M8 as tangent vector conforms with

this intuition.

2. One could argue that M8 representation of space-time surface is kind of chart of the real space-
time surface obtained by replacing real curve by its tangent line. If so, one cannot avoid the
question under which conditions this kind of chart is faithful. An alternative interpretation is
that a representation making possible to realize number theoretical universality is in question.

3. An interesting question is whether X4(X3
l ) as orbit of light-like 3-surface is analogous to a

geodesic line -possibly light-like- so that its tangent vector would be parallel translated in the
sense that X4(X3) for any light-like surface at the orbit is same as X4(X3

l ). This would give
justification for the possibility to interpret space-time surfaces as a geodesic of configuration
space: this is one of the first -and practically forgotten- speculations inspired by the construction
of configuration space geometry. The light-likeness of the geodesic could correspond at the level
of X4 the possibility to decompose the tangent space to a direct sum of two light-like spaces and
2-D transversal space producing the foliation of X4 to light-like 3-surfaces X3

l along light-like
curves.

4. M8−H duality would assign to X3
l classical orbit and its tangent vector at X3

l as a generalization
of Bohr orbit. This picture differs from the wave particle duality of wave mechanics stating that
once the position of particle is known its momentum is completely unknown. The outcome is
however the same: for X3

l corresponding to wormhole throats and light-like boundaries of X4,
canonical momentum densities in the normal direction vanish identically by conservation laws
and one can say that the the analog of (q, p) phase space as the space carrying wave functions
is replaced with the analog of subspace consisting of points (q, 0). The dual description in M8

would not be analogous to wave functions in momentum space space but to those in the space
of unique tangents of curves at their initial points.

The Kähler and spinor structures of M8

If one introduces M8 as dual of H, one cannot avoid the idea that hyper-quaternionic surfaces obtained
as images of the preferred extremals of Kähler action in H are also extremals of M8 Kähler action
with same value of Kähler action. As found, this leads to the conclusion that theM8 −H duality is
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Kähler isometry. Coupling of spinors to Kähler potential is the next step and this in turn leads to the
introduction of spinor structure so that quantum TGD in H should have full M8 dual.

There are strong physical constraints on M8 dual and they could kill the hypothesis. The basic
constraint to the spinor structure of M8 is that it reproduces basic facts about electro-weak inter-
actions. This includes neutral electro-weak couplings to quarks and leptons identified as different
H-chiralities and parity breaking.

1. By the flatness of the metric of E4 its spinor connection is trivial. E4 however allows full S2 of
covariantly constant Kähler forms so that one can accommodate free independent Abelian gauge
fields assuming that the independent gauge fields are orthogonal to each other when interpreted
as realizations of quaternionic imaginary units.

2. One should be able to distinguish between quarks and leptons also inM8, which suggests that one
introduce spinor structure and Kähler structure in E4. The Kähler structure of E4 is unique
apart form SO(3) rotation since all three quaternionic imaginary units and the unit vectors
formed from them allow a representation as an antisymmetric tensor. Hence one must select one
preferred Kähler structure, that is fix a point of S2 representing the selected imaginary unit.
It is natural to assume different couplings of the Kähler gauge potential to spinor chiralities
representing quarks and leptons: these couplings can be assumed to be same as in case of H.

3. Electro-weak gauge potential has vectorial and axial parts. Em part is vectorial involving cou-
pling to Kähler form and Z0 contains both axial and vector parts. The free Kähler forms could
thus allow to produce M8 counterparts of these gauge potentials possessing same couplings as
their H counterparts. This picture would produce parity breaking in M8 picture correctly.

4. Only the charged parts of classical electro-weak gauge fields would be absent. This would
conform with the standard thinking that charged classical fields are not important. The predicted
classical W fields is one of the basic distinctions between TGD and standard model and in this
framework. A further prediction is that this distinction becomes visible only in situations,
where H picture is necessary. This is the case at high energies, where the description of quarks
in terms of SU(3) color is convenient whereas SO(4) QCD would require large number of E4

partial waves. At low energies large number of SU(3) color partial waves are needed and the
convenient description would be in terms of SO(4) QCD. Proton spin crisis might relate to this.

5. Also super-symmetries of quantum TGD crucial for the construction of configuration space
geometry force this picture. In the absence of coupling to Kähler gauge potential all constant
spinor fields and their conjugates would generate super-symmetries so that M8 would allow N =
8 super-symmetry. The introduction of the coupling to Kähler gauge potential in turn means
that all covariantly constant spinor fields are lost. Only the representation of all three neutral
parts of electro-weak gauge potentials in terms of three independent Kähler gauge potentials
allows right-handed neutrino as the only super-symmetry generator as in the case of H.

6. The SO(3) element characterizing M2(x) is fixed apart from a local SO(2) transformation, which
suggests an additional U(1) gauge field associated with SO(2) gauge invariance and representable
as Kähler form corresponding to a quaternionic unit of E4. A possible identification of this gauge
field would be as a part of electro-weak gauge field.

M8 dual of configuration space geometry and spinor structure?

If one introduces M8 spinor structure and preferred extremals of M8 Kähler action, one cannot avoid
the question whether it is possible or useful to formulate the notion of configuration space geometry
and spinor structure for light-like 3-surfaces in M8 using the exponent of Kähler action as vacuum
functional.

1. The isometries of the configuration space in M8 and H formulations would correspond to sym-
plectic transformation of δM4

± × E4 and δM4
± × CP2 and the Hamiltonians involved would

belong to the representations of SO(4) and SU(3) with 2-dimensional Cartan sub-algebras.
In H picture color group would be the familiar SU(3) but in M8 picture it would be SO(4).
Color confinement in both SU(3) and SO(4) sense could allow these two pictures without any
inconsistency.
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2. For M4×CP2 the two spin states of covariantly constant right handed neutrino and antineutrino
spinors generate super-symmetries. This super-symmetry plays an important role in the pro-
posed construction of configuration space geometry. As found, this symmetry would be present
also in M8 formulation so that the construction of M8 geometry should reduce more or less
to the replacement of CP2 Hamiltonians in representations of SU(3) with E4 Hamiltonians in
representations of SO(4). These Hamiltonians can be taken to be proportional to functions of
E4 radius which is SO(4) invariant and these functions bring in additional degree of freedom.

3. The construction of Dirac determinant identified as a vacuum functional can be done also in
M8 picture and the conjecture is that the result is same as in the case of H. In this framework
the construction is much simpler due to the flatness of E4. In particular, the generalized eigen
modes of the Dirac operator DK(Y 3

l ) restricted to the X3
l correspond to a situation in which

one has fermion in induced Maxwell field mimicking the neutral part of electro-weak gauge field
in H as far as couplings are considered. Induced Kähler field would be same as in H. Eigen
modes are localized to regions inside which the Kähler magnetic field is non-vanishing and apart
from the fact that the metric is the effective metric defined in terms of canonical momentum
densities via the formula Γ̂α = ∂LK/∂h

k
αΓk for effective gamma matrices. This in fact, forces

the localization of modes implying that their number is finite so that Dirac determinant is a
product over finite number eigenvalues. It is clear that M8 picture could dramatically simplify
the construction of configuration space geometry.

4. The eigenvalue spectra of the transversal parts of DK operators in M8 and H should identical.
This motivates the question whether it is possible to achieve a complete correspondence between
H and M8 pictures also at the level of spinor fields at X3 by performing a gauge transformation
eliminating the classical W gauge boson field altogether at X3

l and whether this allows to trans-
form the modified Dirac equation in H to that in M8 when restricted to X3

l . That something like
this might be achieved is supported by the fact that in Coulombic gauge the component of gauge
potential in the light-like direction vanishes so that the situation is effectively 2-dimensional and
holonomy group is Abelian.

Why M8 −H duality is useful?

Skeptic could of course argue that M8−H duality produces only an inflation of unproven conjectures.
There are however strong reasons for M8 −H duality: both theoretical and physical.

1. The map of X3
l ⊂ H → X3

l ⊂ M8 and corresponding map of space-time surfaces would al-
low to realize number theoretical universality. M8 = M4 × E4 allows linear coordinates as
natural coordinates in which one can say what it means that the point of imbedding space is
rational/algebraic. The point of X4 ⊂ H is algebraic if it is mapped to an algebraic point
of M8 in number theoretic compactification. This of course restricts the symmetry groups to
their rational/algebraic variants but this does not have practical meaning. Number theoretical
compactication could in fact be motivated by the number theoretical universality.

2. M8−H duality could provide much simpler description of preferred extremals of Kähler action
since the Kähler form in E4 has constant components. If the spinor connection in E4 is com-
bination of the three Kähler forms mimicking neutral part of electro-weak gauge potential, the
eigenvalue spectrum for the modified Dirac operator would correspond to that for a fermion in
U(1) magnetic field defined by an Abelian magnetic field whereas in M4 × CP2 picture U(2)ew
magnetic fields would be present.

3. M8 − H duality provides insights to low energy hadron physics. M8 description might work
when H-description fails. For instance, perturbative QCD which corresponds to H-description
fails at low energies whereas M8 description might become perturbative description at this limit.
Strong SO(4) = SU(2)L × SU(2)R invariance is the basic symmetry of the phenomenological
low energy hadron models based on conserved vector current hypothesis (CVC) and partially
conserved axial current hypothesis (PCAC). Strong SO(4) = SU(2)L × SU(2)R relates closely
also to electro-weak gauge group SU(2)L × U(1) and this connection is not well understood in
QCD description. M8−H duality could provide this connection. Strong SO(4) symmetry would
emerge as a low energy dual of the color symmetry. Orbital SO(4) would correspond to strong
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SU(2)L×SU(2)R and by flatness of E4 spin like SO(4) would correspond to electro-weak group
SU(2)L × U(1)R ⊂ SO(4). Note that the inclusion of coupling to Kähler gauge potential is
necessary to achieve respectable spinor structure in CP2. One could say that the orbital angular
momentum in SO(4) corresponds to strong isospin and spin part of angular momentum to the
weak isospin.

3.4.5 M8 −H duality and low energy hadron physics

The description of M8 −H at the configuration space level can be applied to gain a view about color
confinement and its dual for electro-weak interactions at short distance limit. The basic idea is that
SO(4) and SU(3) provide provide dual descriptions of quark color using E4 and CP2 partial waves and
low energy hadron physics corresponds to a situation in which M8 picture provides the perturbative
approach whereas H picture works at high energies. The basic prediction is that SO(4) should appear
as dynamical symmetry group of low energy hadron physics and this is indeed the case.

Consider color confinement at the long length scale limit in terms of M8 −H duality.

1. At high energy limit only lowest color triplet color partial waves for quarks dominate so that
QCD description becomes appropriate whereas very higher color partial waves for quarks and
gluons are expected to appear at the confinement limit. Since configuration space degrees of
freedom begin to dominate, color confinement limit transcends the descriptive power of QCD.

2. The success of SO(4) sigma model in the description of low lying hadrons would directly relate to
the fact that this group labels also the E4 Hamiltonians in M8 picture. Strong SO(4) quantum
numbers can be identified as orbital counterparts of right and left handed electro-weak isospin
coinciding with strong isospin for lowest quarks. In sigma model pion and sigma boson form
the components of E4 valued vector field or equivalently collection of four E4 Hamiltonians
corresponding to spherical E4 coordinates. Pion corresponds to S3 valued unit vector field with
charge states of pion identifiable as three Hamiltonians defined by the coordinate components.
Sigma is mapped to the Hamiltonian defined by the E4 radial coordinate. Excited mesons
corresponding to more complex Hamiltonians are predicted.

3. The generalization of sigma model would assign to quarks E4 partial waves belonging to the
representations of SO(4). The model would involve also 6 SO(4) gluons and their SO(4) partial
waves. At the low energy limit only lowest representations would be be important whereas at
higher energies higher partial waves would be excited and the description based on CP2 partial
waves would become more appropriate.

4. The low energy quark model would rely on quarks moving SO(4) color partial waves. Left resp.
right handed quarks could correspond to SU(2)L resp. SU(2)R triplets so that spin statistics
problem would be solved in the same manner as in the standard quark model.

5. Family replication phenomenon is described in TGD framework the same manner in both cases
so that quantum numbers like strangeness and charm are not fundamental. Indeed, p-adic mass
calculations allowing fractally scaled up versions of various quarks allow to replace Gell-Mann
mass formula with highly successful predictions for hadron masses [K55] .

To my opinion these observations are intriguing enough to motivate a concrete attempt to construct
low energy hadron physics in terms of SO(4) gauge theory.

3.4.6 The notion of number theoretical braid

Braids -not necessary number theoretical- provide a realization discretization as a space-time correlate
for the finite measurement resolution. The notion of braid was inspired by the idea about quantum
TGD as almost topological quantum field theory. Although the original form of this idea has been
buried, the notion of braid has survived: in the decomposition of space-time sheets to string world
sheets, the ends of strings define representatives for braid strands at light-like 3-surfaces.

The notion of number theoretic universality inspired the much more restrictive notion of number
theoretic braid requiring that the points in the intersection of the braid with the partonic 2-surface
correspond to rational or at most algebraic points of H in preferred coordinates fixed by symmetry
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considerations. The challenge has been to find a unique identification of the number theoretic braid or
at least of the end points of the braid. The following consideration suggest that the number theoretic
braids are not a useful notion in the generic case but make sense and are needed in the intersection
of real and p-adic worlds which is in crucial role in TGD based vision about living matter [K47] .

It is only the braiding that matters in topological quantum field theories used to classify braids.
Hence braid should require only the fixing of the end points of the braids at the intersection of the braid
at the light-like boundaries of CDs and the braiding equivalence class of the braid itself. Therefore it
is enough is to specify the topology of the braid and the end points of the braid in accordance with
the attribute ”number theoretic”. Of course, the condition that all points of the strand of the number
theoretic braid are algebraic is impossible to satisfy.

The situation in which the equations defining X2 make sense both in real sense and p-adic sense
using appropriate algebraic extension of p-adic number field is central in the TGD based vision about
living matter [K47] . The reason is that in this case the notion of number entanglement theoretic
entropy having negative values makes sense and entanglement becomes information carrying. This
motivates the identification of life as something in the intersection of real and p-adic worlds. In
this situation the identification of the ends of the number theoretic braid as points belonging to the
intersection of real and p-adic worlds is natural. These points -call them briefly algebraic points- belong
to the algebraic extension of rationals needed to define the algebraic extension of p-adic numbers.
This definition however makes sense also when the equations defining the partonic 2-surfaces fail
to make sense in both real and p-adic sense. In the generic case the set of points satisfying the
conditions is discrete. For instance, according to Fermat’s theorem the set of rational points satisfying
Xn + Y n = Zn reduces to the point (0, 0, 0) for n = 3, 4, .... Hence the constraint might be quite
enough in the intersection of real and p-adic worlds where the choice of the algebraic extension is
unique.

One can however criticize this proposal.

1. One must fix the the number of points of the braid and outside the intersection and the non-
uniquencess of the algebraic extension makes the situation problematic. Physical intuition sug-
gests that the points of braid define carriers of quantum numbers assignable to second quantized
induced spinor fields so that the total number of fermions antifermions would define the number
of braids. In the intersection the highly non-trivial implication is that this number cannot exceed
the number of algebraic points.

2. In the generic case one expects that even the smallest deformation of the partonic 2-surface
can change the number of algebraic points and also the character of the algebraic extension
of rational numbers needed. The restriction to rational points is not expected to help in the
generic case. If the notion of number theoretical braid is meant to be practical, must be able to
decompose WCW to open sets inside which the numbers of algebraic points of braid at its ends
are constant. For real topology this is expected to be impossible and it does not make sense
to use p-adic topology for WCW whose points do not allow interpretation as p-adic partonic
surfaces.

3. In the intersection of real and p-adic worlds which corresponds to a discrete subset of WCW,
the situation is different. Since the coefficients of polynomials involved with the definition of
the partonic 2-surface must be rational or at most algebraic, continuous deformations are not
possible so that one avoids the problem.

4. This forces to ask the reason why for the number theoretic braids. In the generic case they
seem to produce only troubles. In the intersection of real and p-adic worlds they could however
allow the construction of the elements of M -matrix describing quantum transitions changing
p-adic to real surfaces and vice versa as realizations of intentions and generation of cognitions.
In this the case it is natural that only the data from the intersection of the two worlds are used.
In [K47] I have sketched the idea about number theoretic quantum field theory as a description
of intentional action and cognition.

There is also the the problem of fixing the interior points of the braid modulo deformations not
affecting the topology of the braid.
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1. Infinite number of non-equivalent braidings are possible. Should one allow all possible braidings
for a fixed light-like 3-surface and say that their existence is what makes the dynamics essentially
three-dimensional even in the topological sense? In this case there would be no problems with
the condition that the points at both ends of braid are algebraic.

2. Or should one try to characterize the braiding uniquely for a given partonic 2-surfaces and
corresponding 4-D tangent space distributions? The slicing of the space-time sheet by partonic
2-surfaces and string word sheets suggests that the ends of string world sheets could define the
braid strands in the generic context when there is no algebraicity condition involved. This could
be taken as a very natural manner to fix the topology of braid but leave the freedom to choose
the representative for the braid. In the intersection of real and p-adic worlds there is no good
reason for the end points of strands in this case to be algebraic at both ends of the string world
sheet. One can however start from the braid defined by the end points of string world sheets,
restrict the end points to be algebraic at the end with a smaller number of algebraic points and
and then perform a topologically non-trivial deformation of the braid so that also the points
at the other end are algebraic? Non-trivial deformations need not be possible for all possible
choices of algebraic braid points at the other end of braid and different choices of the set of
algebraic points would give rise to different braidings. A further constraint is that only the
algebraic points at which one has assign fermion or antifermion are used so that the number of
braid points is not always maximal.

3. One can also ask whether one should perform the gauge fixing for the strands of the number
theoretic braid using algebraic functions making sense both in real and p-adic context. This
question does not seem terribly relevant since since it is only the topology of the braid that
matters.

3.4.7 Connection with string model and Equivalence Principle at space-
time level

Coset construction allows to generalize Equivalence Principle and understand it at quantum level. This
is however not quite enough: a precise understanding of Equivalence Principle is required also at the
classical level. Also the mechanism selecting via stationary phase approximation a preferred extremal
of Kähler action providing a correlation between quantum numbers of the particle and geometry of
the preferred extremals is still poorly understood.

Is stringy action principle coded by the geometry of preferred extremals?

It seems very difficult to deduce Equivalence Principle as an identity of gravitational and inertial
masses identified as Noether charges associated with corresponding action principles. Since string
model is an excellent theory of quantum gravitation, one can consider a less direct approach in which
one tries to deduce a connection between classical TGD and string model and hope that the bridge
from string model to General Relativity is easier to build. Number theoretical compactification gives
good hopes that this kind of connection exists.

1. Number theoretic compactification implies that the preferred extremals of Kähler action have
the property that one can assign to each point of M4 projection PM4(X4(X3

l )) of the preferred
extremal M2(x) identified as the plane of non-physical polarizations and also as the plane in
which local massless four-momentum lies.

2. If the distribution of the planes M2(x) is integrable, one can slice PM4(X4(X3
l )) to string world-

sheets. The intersection of string world sheets with X3 ⊂ δM4
±×CP2 corresponds to a light-like

curve having tangent in local tangent space M2(x) at light-cone boundary. This is the first
candidate for the definition of number theoretic braid. Second definition assumes M2 to be
fixed at δCD: in this case the slicing is parameterized by the sphere S2 defined by the light rays
of δM4

±.

3. One can assign to the string world sheet -call it Y 2 - the standard area action
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SG(Y 2) =

∫
Y 2

T
√
g2d

2y , (3.4.1)

where g2 is either the induced metric or only its M4 part. The latter option looks more natural
since M4 projection is considered. T is string tension.

4. The naivest guess would be T = 1/~G apart from some numerical constant but one must be
very cautious here since T = 1/L2

p apart from a numerical constant is also a good candidate if
one accepts the basic argument identifying G in terms of p-adic length Lp and Kähler action
for two pieces of CP2 type vacuum extremals representing propagating graviton. The formula
reads G = L2

pexp(−2aSK(CP2)), a ≤ 1 [K4, K26] . The interaction strength which would be
L2
p without the presence of CP2 type vacuum extremals is reduced by the exponential factor

coming from the exponent of Kähler function of configuration space.

5. One would have string model in either CD×CP2 or CD ⊂M4 with the constraint that stringy
world sheet belongs to X4(X3

l ). For the extremals of SG(Y 2) gravitational four-momentum
defined as Noether charge is conserved. The extremal property of string world sheet need
not however be consistent with the preferred extremal property. This constraint might bring
in coupling of gravitons to matter. The natural guess is that graviton corresponds to a string
connecting wormhole contacts. The strings could also represent formation of gravitational bound
states when they connect wormhole contacts separated by a large distance. The energy of the
string is roughly E ∼ ~TL and for T = 1/~G gives E ∼ L/G. Macroscopic strings are not
allowed except as models of black holes. The identification T ∼ 1/L2

p gives E ∼ ~L/L2
p, which

does not favor long strings for large values of ~. The identification Gp = L2
p/~0 gives T = 1/~Gp

and E ∼ ~0L/L
2
p, which makes sense and allows strings with length not much longer than p-

adic length scale. Quantization - that is the presence of configuration space degrees of freedom-
would bring in massless gravitons as deformations of string whereas strings would carry the
gravitational mass.

6. The exponent exp(iSG) can appear as a phase factor in the definition of quantum states for
preferred extremals. SG is not however enough. One can assign also to the points of number
theoretic braid action describing the interaction of a point like current Qdxµ/ds with induced
gauge potentials Aµ. The corresponding contribution to the action is

Sbraid =

∫
braid

iT r(Q
dxµ

ds
Aµ)dx . (3.4.2)

In stationary phase approximation subject to the additional constraint that a preferred extremal
of Kähler action is in question one obtains the desired correlation between the geometry of
preferred extremal and the quantum numbers of elementary particle. This interaction term
carries information only about the charges of elementary particle. It is quite possible that the
interaction term is more complex: for instance, it could contain spin dependent terms (Stern-
Gerlach experiment).

7. The constraint coming from preferred extremal property of Kähler action can be expressed in
terms of Lagrange multipliers

Sc =

∫
Y 2

λkDα(
∂LK
∂αhk

)
√
g2d

2y . (3.4.3)
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8. The action exponential reads as

exp(iSG + Sbraid + Sc) . (3.4.4)

The resulting field equations couple stringy M4 degrees of freedom to the second variation of
Kähler action with respect to M4 coordinates and involve third derivatives of M4 coordinates
at the right hand side. If the second variation of Kähler action with respect to M4 coordinates
vanishes, free string results. This is trivially the case if a vacuum extremal of Kähler action is
in question.

9. An interesting question is whether the preferred extremal property boils down to the condition
that the second variation of Kähler action with respect to M4 coordinates or actually all co-
ordinates vanishes so that gravitonic string is free. As a matter fact, the stronger condition is
required that the Noether currents associated with the modified Dirac action are conserved. The
physical interpretation would be in terms of quantum criticality which is the basic conjecture
about the dynamics of quantum TGD. This is clear from the fact that in 1-D system criticality
means that the potential V (x) = ax+bx2 + .. has b = 0. In field theory criticality corresponds to
the vanishing of the term m2φ2/2 so that massless situation corresponds to massless theory and
criticality and long range correlations. For more than one dynamical variable there is a hierarchy
of criticalities corresponding to the gradual reduction of the rank of the matrix of the matrix
defined by the second derivatives of V (x) and this gives rise to a classification of criticalities.
Maximum criticality would correspond to the total vanishing of this matrix. In infinite-D case
this hierarchy is infinite.

What does the equality of gravitational and inertial masses mean?

Consider next the question in what form Equivalence Principle could be realized in this framework.

1. Coset construction inspires the conjecture that gravitational and inertial four-momenta are iden-
tical. Also some milder form of it would make sense. What is clear is that the construction of
preferred extremal involving the distribution of M2(x) implies that conserved four-momentum
associated with Kähler action can be expressed formally as stringy four-momentum. The integral
of the conserved inertial momentum current over X3 indeed reduces to an integral over the curve
defining string as one integrates over other two degrees of freedom. It would not be surprising
if a stringy expression for four-momentum would result but with string tension depending on
the point of string and possibly also on the component of four-momentum. If the dependence
of string tension on the point of string and on the choice of the stringy world sheet is slow,
the interpretation could be in terms of coupling constant evolution associated with the stringy
coordinates. An alternative interpretation is that string tension corresponds to a scalar field.
A quite reasonable option is that for given X3

l T defines a scalar field and that the observed T
corresponds to the average value of T over deformations of X3

l .

2. The minimum option is that Kähler mass is equal to the sum gravitational masses assignable to
strings connecting points of wormhole throat or two different wormhole throats. This hypothesis
makes sense even for wormhole contacts having size of order Planck length.

3. The condition that gravitational mass equals to the inertial mass (rest energy) assigned to
Kähler action is the most obvious condition that one can imagine. The breaking of Poincare
invariance to Lorentz invariance with respect to the tip of CD supports this form of Equivalence
Principle. This would predict the value of the ratio of the parameter R2T and p-adic length
scale hypothesis would allow only discrete values for this parameter. p ' 2k following from
the quantization of the temporal distance T (n) between the tips of CD as T (n) = 2nT0 would
suggest string tension Tn = 2nR2 apart from a numerical factor. Gp ∝ 2nR2/~0 would emerge
as a prediction of the theory. G can be seen either as a prediction or RG invariant input
parameter fixed by quantum criticality. The arguments related to p-adic coupling constant
evolution suggest R2/~0G = 3× 223 [K4, K26] .
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4. The scalar field property of string tension should be consistent with the vacuum degeneracy of
Kähler action. For instance, for the vacuum extremals of Kähler action stringy action is non-
vanishing. The simplest possibility is that one includes the integral of the scalar JµνJµν over
the degrees transversal to M2 to the stringy action so that string tension vanishes for vacuum
extremals. This would be nothing but dimensional reduction of 4-D theory to a 2-D theory
using the slicing of X4(X3

l ) to partonic 2-surfaces and stringy word sheets. For cosmic strings
Kähler action reduces to stringy action with string tension T ∝ 1/g2

KR
2 apart from a numerical

constant. If one wants consistency with T ∝ 1/L2
p, one must have T ∝ 1/g2

K2nR2 for the cosmic
strings deformed to Kähler magnetic flux tubes. This looks rather plausible if the thickness of
deformed string in M4 degrees of freedom is given by p-adic length scale.

3.5 Quaternions, octonions, and modified Dirac equation

Classical number fields define one vision about quantum TGD. This vision about quantum TGD has
evolved gradually and involves several speculative ideas.

1. The hard core of the vision is that space-time surfaces as preferred extremals of Kähler action
can be identified as what I have called hyper-quaternionic surfaces of M8 or M4 × CP2. This
requires only the mapping of the modified gamma matrices to octonions or to a basis of subspace
of complexified octonions. This means also the mapping of spinors to octonionic spinors. There
is no need to assume that imbedding space-coordinates are octonionic.

2. I have considered also the idea that quantum TGD might emerge from the mere associativity.

(a) Consider Clifford algebra of WCW. Treat ”vibrational” degrees of freedom in terms second
quantized spinor fields and add center of mass degrees of freedom by replacing 8-D gamma
matrices with their octonionic counterparts - which can be constructed as tensor products of
octonions providing alternative representation for the basis of 7-D Euclidian gamma matrix
algebra - and of 2-D sigma matrices. Spinor components correspond to tensor products of
octonions with 2-spinors: different spin states for these spinors correspond to leptons and
baryons.

(b) Construct a local Clifford algebra by considering Clifford algebra elements depending on
point of M8 or H. The octonionic 8-D Clifford algebra and its local variant are non-
accociative. Associative sub-algebra of 8-D Clifford algebra is obtained by restricting the
elements so any quaternionic 4-plane. Doing the same for the local algebra means restriction
of the Clifford algebra valued functions to any 4-D hyper-quaternionic sub-manifold of M8

or H which means that the gamma matrices span complexified quaternionic algebra at each
point of space-time surface. Also spinors must be quaternionic.

(c) The assignment of the 4-D gamma matrix sub-algebra at each point of space-time surface
can be done in many manners. If the gamma matrices correspond to the tangent space of
space-time surface, one obtains just induced gamma matrices and the standard definition of
quaternionic sub-manifold. In this case induced 4-volume is taken as the action principle.
If Kähler action defines the space-time dynamics, the modified gamma matrices do not
span the tangent space in general.

(d) An important additional element is involved. If the M4 projection of the space-time surface
contains a preferred subspace M2 at each point, the quaternionic planes are labeled by
points of CP2 and one can equivalently regard the surfaces of M8 as surfaces of M4×CP2

(number-theoretical ”compactification”). This generalizes: M2 can be replaced with a
distribution of planes of M4 which integrates to a 2-D surface of M4 (for instance, for
string like objects this is necessarily true). The presence of the preferred local plane M2

corresponds to the fact that octonionic spin matrices ΣAB span 14-D Lie-algebra of G2 ⊂
SO(7) rather than that 28-D Lie-algebra of SO(7, 1) whereas octonionic imaginary units
provide 7-D fundamental representation of G2. Also spinors must be quaternionic and
this is achieved if they are created by the Clifford algebra defined by induced gamma
matrices from two preferred spinors defined by real and preferred imaginary octonionic
unit. Therefore the preferred plane M3 ⊂ M4 and its local variant has direct counterpart
at the level of induced gamma matrices and spinors.
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(e) This framework implies the basic structures of TGD and therefore leads to the notion of
world of classical worlds (WCW) and from this one ends up with the notion WCW spinor
field and WCW Clifford algebra and also hyper-finite factors of type II1 and III1. Note
that M8 is exceptional: in other dimensions there is no reason for the restriction of the
local Clifford algebra to lower-dimensional sub-manifold to obtain associative algebra.

3. I have used time also to wilder speculations inspired by the idea that one could treat imbedding
space coordinates or space-time coordinate as single hyper-octonionic or hyper-quaternionic
coordinate but this line of approach has not led to anything really interesting. For instance, I
have considered the generalization of conformal fields by replacing complex coordinate z with
complexified octonionic coordinate of M8 to obtain a generalization of configuration space spinor
fields and Clifford algebra elements to octonion-conformal fields. The dependence of the modes
of the octonion-conformal field on M4 coordinates seems however non-physical (one would expect
plane waves instead of powers) so that this approach does not seem promising.

The above line of ideas leads naturally to (hyper-)quaternionic sub-manifolds and to basic quantum
TGD (note that the ”hyper” is un-necessary if one accepts just the notion of quaternionic sub-manifold
formulated in terms of modified gamma matrices). One can pose some further questions.

1. Quantum TGD reduces basically to the second quantization of the induced spinor fields. Could
it be that the theory is integrable only for 4-D hyper-quaternionic space-time surfaces in M8

(equivalently in M4×CP2) in the sense than one can solve the modified Dirac equation exactly
only in these cases?

2. The construction of quantum TGD -including the construction of vacuum functional as exponent
of Kähler function reducing to Kähler action for a preferred extremal - should reduce to the
modified Dirac equation defined by Kähler action. Could it be that the modified Dirac equation
can be solved exactly only for Kähler action.

3. Is it possible to solve the modified Dirac equation for the octonionic gamma matrices and
octonionic spinors and map the solution as such to the real context by replacing gamma matrices
and sigma matrices with their standard counterparts? Could the associativity conditions for
octospinors and modified Dirac equation allow to pin down the form of solutions to such a high
degree that the solution can be constructed explicitly?

4. Octonionic gamma matrices provide also a non-associative representation for 8-D version of Pauli
sigma matrices and encourage the identification of 8-D twistors as pairs of octonionic spinors
conjectured to be highly relevant also for quantum TGD. Does the quaternionicity condition
imply that octo-twistors reduce to something closely related to ordinary twistors as the fact
that 2-D sigma matrices provide a matrix representation of quaternions suggests?

In the following I will try to answer these questions by developing a detailed view about the
octonionic counterpart of the modified Dirac equation and proposing explicit solution ansätze for the
modes of the modified Dirac equation.

3.5.1 The replacement of SO(7, 1) with G2

The basic implication of octonionization is the replacement of SO(7, 1) as the structure group of spinor
connection with G2. This has some rather unexpected consequences.

Octonionic representation of 8-D gamma matrices

Consider first the representation of 8-D gamma matrices in terms of tensor products of 7-D gamma
matrices and 2-D Pauli sigma matrices.

1. The gamma matrices are given by

γ0 = 1× σ1 , γi = γi ⊗ σ2 , i = 1, .., 7 . (3.5.1)
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7-D gamma matrices in turn can be expressed in terms of 6-D gamma matrices by expressing
γ7 as

γ
7)
i+1 = γ

6)
i , i = 1, ..., 6 , γ

7)
1 = γ

6)
7 =

6∏
i=1

γ
6)
i . (3.5.2)

2. The octonionic representation is obtained as

γ0 = 1× σ1 , γi = ei ⊗ σ2 . (3.5.3)

where ei are the octonionic units. e2
i = −1 guarantees that the M4 signature of the metric comes

out correctly. Note that γ7 =
∏
γi is the counterpart for choosing the preferred octonionic unit

and plane M2.

3. The octonionic sigma matrices are obtained as commutators of gamma matrices:

Σ0i = ei × σ3 , Σij = f k
ij ek ⊗ 1 . (3.5.4)

These matrices span G2 algebra having dimension 14 and rank 2 and having imaginary octonion
units and their conjugates as the fundamental representation and its conjugate. The Cartan
algebra for the sigma matrices can be chosen to be Σ01 and Σ23 and belong to a quaternionic
sub-algebra.

4. The lower dimension of the G2 algebra means that some combinations of sigma matrices vanish.
All left or right handed generators of the algebra are mapped to zero: this explains why the
dimension is halved from 28 to 14. From the octonionic triangle expressing the multiplication
rules for octonion units [A69] one finds e4e5 = e1 and e6e7 = −e1 and analogous expressions
for the cyclic permutations of e4, e5, e6, e7. From the expression of the left handed sigma matrix
I3
L = σ23 + σ30 representing left handed weak isospin (see the Appendix of the book about the

geometry of CP2) one can conclude that this particular sigma matrix and left handed sigma
matrices in general are mapped to zero. The quaternionic sub-algebra SU(2)L × SU(2)R is
mapped to that for the rotation group SO(3) since in the case of Lorentz group one cannot
speak of a decomposition to left and right handed subgroups. The elements of the complement
of the quaternionic sub-algebra are expressible in terms of Σij in the quaternionic sub-algebra.

Some physical implications of SO(7, 1)→ G2 reduction

This has interesting physical implications if one believes that the octonionic description is equivalent
with the standard one.

1. Since SU(2)L is mapped to zero only the right-handed parts of electro-weak gauge field survive
octonization. The right handed part is neutral containing only photon and Z0 so that the
gauge field becomes Abelian. Z0 and photon fields become proportional to each other (Z0 →
sin2(θW )γ) so that classical Z0 field disappears from the dynamics, and one would obtain just
electrodynamics. This might provide a deeper reason for why electrodynamics is an excellent
description of low energy physics and of classical physics. This is consistent with the fact that
CP2 coordinates define 4 field degrees of freedom so that single Abelian gauge field should
be enough to describe classical physics. This would remove also the interpretational problems
caused by the transitions changing the charge state of fermion induced by the classical W boson
fields.

Also the realization of M8 −H duality led to the conclusion M8 spinor connection should have
only neutral components. The isospin matrix associated with the electromagnetic charge is e1×1
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and represents the preferred imaginary octonionic unit so that that the image of the electro-weak
gauge algebra respects associativity condition. An open question is whether octonionization
is part of M8-H duality or defines a completely independent duality. The objection is that
information is lost in the mapping so that it becomes questionable whether the same solutions
to the modified Dirac equation can work as a solution for ordinary Clifford algebra.

2. If SU(2)R were mapped to zero only left handed parts of the gauge fields would remain. All
classical gauge fields would remain in the spectrum so that information would not be lost. The
identification of the electro-weak gauge fields as three covariantly constant quaternionic units
would be possible in the case of M8 allowing Hyper-Kähler structure, which has been speculated
to be a hidden symmetry of quantum TGD at the level of WCW. This option would lead to
difficulties with associativity since the action of the charged gauge potentials would lead out
from the local quaternionic subspace defined by the octonionic spinor.

3. The gauge potentials and gauge fields defined by CP2 spinor connection are mapped to fields
in SO(2) ⊂ SU(2)×U(1) in quaternionic sub-algebra which in a well-defined sense corresponds
to M4 degrees of freedom! Since the resulting interactions are of gravitational character, one
might say that electro-weak interactions are mapped to manifestly gravitational interactions.
Since SU(2) corresponds to rotational group one cannot say that spinor connection would give
rise only to left or right handed couplings, which would be obviously a disaster.

Octo-spinors and their relation to ordinary imbedding space spinors

Octo-spinors are identified as octonion valued 2-spinors with basis

ΨL,i = ei

(
1
0

)
,

Ψq,i = ei

(
0
1

)
. (3.5.5)

One obtains quark and lepton spinors and conjugation for the spinors transforms quarks to leptons.
Note that octospinors can be seen as 2-dimensional spinors with components which have values in the
space of complexified octonions.

The leptonic spinor corresponding to real unit and preferred imaginary unit e1 corresponds nat-
urally to the two spin states of the right handed neutrino. In quark sector this would mean that
right handed U quark corresponds to the real unit. The octonions decompose as 1 + 1 + 3 + 3 as
representations of SU(3) ⊂ G2. The concrete representations are given by

{1± ie1} , eR and νR with spin 1/2 ,
{e2 ± ie3} , eR and νL with spin -1/2 ,
{e4 ± ie5} eL and νL with spin 1/2 ,
{e6 ± ie7} eL and νL with spin 1/2 .

(3.5.6)

Instead of spin one could consider helicity. All these spinors are eigenstates of e1 (and thus of the
corresponding sigma matrix) with opposite values for the sign factor ε = ±. The interpretation is in
terms of vectorial isospin. States with ε = 1 can be interpreted as charged leptons and D type quarks
and those with ε = −1 as neutrinos and U type quarks. The interpretation would be that the states
with vanishing color isospin correspond to right handed fermions and the states with non-vanishing
SU(3) isospin (to be not confused with QCD color isospin) and those with non-vanishing SU(3) isospin
to left handed fermions. The only difference between quarks and leptons is that the induced Kähler
gauge potentials couple to them differently.

The importance of this identification is that it allows a unique map of the candidates for the
solutions of the octonionic modified Dirac equation to those of ordinary one. There are some delicacies
involved due to the possibility to chose the preferred unit e1 so that the preferred subspace M2 can
corresponds to a sub-manifold M2 ⊂M4.
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3.5.2 Octonionic counterpart of the modified Dirac equation

The solution ansatz for the octonionic counterpart of the modified Dirac equation discussed below
makes sense also for ordinary modified Dirac equation which raises the hope that the same ansatz,
and even same solution could provide a solution in both cases.

The general structure of the modified Dirac equation

In accordance with quantum holography and the notion of generalized Feynman diagram, the modified
Dirac equation involves two equations which must be consistent with each other.

1. There is 3-dimensional equation for which modified gamma matrices are defined by Chern-Simons
action. For on mass shell states the equation reads as

D3Ψ = [DC−S +QC−S ] Ψ = 0 ,

QC−S = QαΓ̂αC−S , Qα = QAg
ABjBα .

(3.5.7)

The charges QA correspond to four-momentum and color Cartan algebra and the term Q can
be rather general since it provides a representation for the measurement interaction by mapping
observables to Cartan algebra of isometry group and to the infinite hierarchy of conserved
currents implied by quantum criticality. The operator O characterizes the quantum critical
conserved current. The surface Y 3

l can be chosen to be any light-like 3-surface ”parallel” to
wormhole throat in the slicing of X4: this means an additional symmetry.

This equation is the counterpart of free Dirac equation since it involves momentum. 2-D spinor
sources at the ends of light-like 3-surface representing off mass shell particles give rise to a
superposition of additional off mass shell terms corresponding to different momenta and the
action of the modified Dirac operator on this term vanishes only in x-space. This contribution
to the solution will not be discussed here.

2. Second equation is the 4-D modified Dirac equation defined by Kähler action.

DKΨ = 0 . (3.5.8)

The dimensional reduction of this operator to a sum corresponding to DK,3 acting on light-like
3-surfaces and 1-D operator DK,1 acting on the coordinate labeling the 3-D light-like 3-surfaces
in the slicing allows to assign eigenvalues to DK,3 as analogs of energy eigenvalues for ordinary
Schrödinger equation. Dirac determinant is identified as the product of these eigen values.

3. The basic consistency condition is that the commutator of the two Dirac operators vanishes
for the solutions in the case of preferred extremals, which depend on the momentum and color
quantum numbers also.

[DK , D3] Ψ = 0 . (3.5.9)

This equation should fix the preferred extremal of Kähler action to which a term describing measure-
ment interaction has been added. The preferred extremal should be quantum critical allowing infinite
number of vanishing variations of Kähler action besides allowing interpretation as hyper-quaternionic
surface, and it should code the dependence on quantum numbers of the state to its geometry.
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About the hyper-octonionic variant of the modified Dirac equation

What gives excellent hopes that the octonionic variant of modified Dirac equation could lead to a
provide precise information about the solution spectrum of modified Dirac equation is the condition
that everything in the equation should be associative. Hence the terms which are by there nature
non-associative should vanish automatically.

1. The first implication is that the besides octonionic gamma matrices also octonionic spinors should
belong to the local quaternionic plane at each point of the space-time surface. Spinors are also
generated by quaternionic Clifford algebra from two preferred spinors defining a preferred plane
in the space of spinors. Hence spinorial dynamics seems to mimic very closely the space-time
dynamics and one might even hope that the solutions of the modified Dirac action could be seen
as maps of the space-time surface to surfaces of the spinor space. The reduction to quaternionic
sub-algebra suggest that some variant of ordinary twistors emerges in this manner in matrix
representation.

2. The crucial commutator [DK , D3] involves covariant derivatives DαΓ̂βC−S and DαΓ̂βK . One can
say that the associativity forces the vanishing of [DK , D3]. The point is that in general the
covariant derivatives do not belong to the local quaternionic plane. If the modified gamma
matrices are just induced gamma matrices these derivatives are orthogonal to the space-time
surface and belong to the complement of the quaternionic algebra as also there products with
gamma matrices. In the case of the modified gamma matrices defined by Kähler action one
can introduce the dynamical effective metric defined by the anticommutators of the modified
gamma matrices. With respect to this metric the modified gamma matrices belong to the
”tangent space” of X4 and the covariant derivatives are orthogonal to the local ”tangent space”.

3. The [DK , D3]Ψ = 0 gives 8 second order field equations and they might be seen as the coun-
terparts for the 8 field equations defined by Kähler action in the presence of couplings to the
operators defining measurement interaction.

4. The modified gamma matrices defined by Γ̂αC−S belong to the same quaternionic plane as those

defined by Γ̂αK . Geometrical intuition suggests this but a priori this not obvious since the vectors
∂LK/∂h

k
αek and ∂LCS/∂h

k
αek appearing in the expressions of the modified gamma matrices are

not parallel in general.

5. The octonionic sigma matrices span G2 where as ordinary sigma matrices define SO(7, 1). On
the other hand, the holonomies are identical in the two cases if right-handed charge matrices
are mapped to zero so that there are indeed hopes that the solutions of the octonionic Dirac
equation cannot be mapped to those of ordinary Dirac equation. If left-handed charge matrices
are mapped to zero, the resulting theory is essentially the analog of electrodynamics coupled to
gravitation at classical level but it is not clear whether this physically acceptable. It is not clear
whether associativity condition leaves only this option under consideration.

6. The solution ansatz to the modified Dirac equation is expected to be of the form Ψ = DK(Ψ0u0+
Ψ1u1), where u0 and u1 are constant spinors representing real unit and the preferred unit e1.
Hence constant spinors associated with right handed electron and neutrino and right-handed d
and u quark would appear in Ψ and Ψi could correspond to scalar coefficients of spinors with
different charge. This ansatz would reduce the modified Dirac equation to D2

KΨi = 0 since
there are no charged couplings present. The reduction of a d’Alembert type equation for single
scalar function coupling to U(1) gauge potential and U(1) ”gravitation” would obviously mean
a dramatic simplification raising hopes about integrable theory.

7. The condition D2
KΨ = 0 involves products of three octonions and involves derivatives of the

modified gamma matrices which can belong to the complement of the quaternionic sub-space.
Therefore (D2

K)DKΨi = DK(D2
KΨi) could fail. It is not clear whether the failure of this

condition is a catastrophe.
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A detailed form of the solution ansatz

Consider next the detailed form of the scalar functions Φi in the solution ansatz.

1. The function Φi -call it just Φ to simplify the notation - is proportional to a function, which is a
generalization of plane wave and guarantees that 3-D Chern-Simons Dirac equation is satisfied:

UQ = exp(iΦQ) , ΦQ =

∫
Qαdx

α . (3.5.10)

Here the curves γ3 define a slicing of Y 3
l . The stringy slicing of X4 encourages the identification

of these curves as the ends of the orbits of strings connecting different wormhole throats. For
four-momentum this expression reduces to a plane wave.

2. One must eliminate the covariant derivatives from the modified Dirac equation. For the Abelian
option the non-integrable phase factor is defined by the Abelian induced spinor connection
eliminates the coupling to gauge potentials in the modified Dirac equation. By abelianity these
factors are reduce to ordinary integrals:

UA = exp(i

∫
Aαdx

α) ≡ exp(iΦA) . (3.5.11)

The phase factor is actually diagonal 2× 2 matrix since A involves a coupling to spin.

One has non-integrable phase factor also in the direction of the coordinate labeling light-like
3-surfaces Y 3

l . The expressions differ from above ones only in that γ3 is replaced with a curve
γ1 representing string. The presence of the factors UQ and UA guarantees that DC−S + Q
annihilates the spinor field provided that the DC−S annihilates possible additional factors in the
ansatz.

3. Besides this one can assign to γ1 a phase factor representing the analog of energy eigenstate.
With a suitable identification of the coordinate t for γ1 constant along Y 3

l one can write this
phase factor as a plane wave

Uλ = exp(iλt) ≡ exp(iΦλ) . (3.5.12)

The modified Dirac equation should determine the eigen values of λ. The product of these eigen
values defines Dirac determinant conjectured to reduce to an exponent of Kähler action for the
preferred extremal. This factor is annihilated by DC−S and DK,3.

4. Besides this one expects a factor R which corresponds to the counterpart of Schrödinger ampli-
tude analogous to an oscillator Gaussian in an external magnetic field at Y 3

l defined by Abelian
gauge field. DC−SR must annihilate Ψi. Using

Γ̂αC−S∂αR ∝ γkXk , Xk = εαβγ(AkJαβ + 2AαJkβ)∂αR (3.5.13)

this gives

Xk = 0 . (3.5.14)
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Apparently this gives four conditions corresponding to the four coordinates of CP2. Since the
consideration is restricted to Y 3

l actually only 3 conditions are obtained. This raises the question
whether it is possible to have R 6= 1 for for D > 2. The answer to the question is affirmative.
One can express J in the standard form J =

∑
k=1,2 dPk ∧ dQk locally . For 3-D surfaces one

has always write J = dP ∧ dQ and DC−SR = 0 holds true if R is arbitrary function of P and Q
but does not depend on the third CP2 coordinate.

It is interesting to relate this picture that emerging from the study of the preferred extremals of
Kähler action [K10] .

1. The dimension D of CP2 projection corresponds to different phases of matter. D = 2 phase is
analogous to magnetized phase, D = 3 to spin glass phase, and D = 4 to chaotic phase with
random Kähler magnetic fields. In D = 3 phase the flow defined by Kähler magnetic field defines
a continuous mapping between two space-like slices of Y 3

l so that a global coordinate varying
along the flow lines exists. The exponent of this coordinate defines a phase having interpretation
as a super-conducting order parameter. The proposal was that living matter as a something at
the border between order and chaos corresponds to D = 3.

2. For D = 2 Chern-Simons action vanishes. D = 2 holds true for for the extremals of C-S action
and simple string like objects. QA,α vanishes for color charges since their definition involves
the contraction of gradients of the three CP2 coordinates with permutation tensor. Hence color
charges in this phase are not measurable and space-time sheets carry only information about
the four-momentum. Since string like objects are typical representative of this phase, this would
have interpretation in terms of color confinement making it impossible to see color.

3. D = 3 should correspond into spin glass phase at criticality in which string like objects are
replaced by space-time sheets. In hadronic context it would be associated with confinement-
de-confinement phase transition. The properties of color glass phase detected few years ago in
high energy collisions of heavy nuclei [C5, C4] differing from those expected for for quark gluon
plasma suggest that the phase in question corresponds to D = 3 critical phase.

4. Also for D = 4 color charges are non-vanishing. The interpretation in hadronic context could
be in terms of quark gluon plasma. Now the phase Uλ is expressible in terms CP2 coordinate
whereas for D = 2 it is expressible in terms of M4 coordinate.

The detailed form of the modified Dirac equation

Consider now the explicit form for the modified Dirac equation.

1. One can write the ansatz in the form

Ψ = DKΨi =
[
QK + ∂t(ΦQ + ΦA,3) +DKR+ Γ̂tλ

]
Ψi .

(3.5.15)

2. The modified Dirac equation reduces to

DKDKΨi = DK

[
QK,3 + ∂t(ΦQ + ΦA,3) + Γ̂tλ+

DK,3R

R

]
Ψi

=

[
(QK,3 + ∂t(ΦQ + ΦA,3) + Γ̂tλ+

DK,3R

R
)2

]
Ψi

+

[
DK , QK,3 + ∂t(ΦQ + ΦA,3) +

DK,3R

R

]
Ψi = 0 . (3.5.16)

3. The quantization of λ ought to have a description in terms of the analogy with the harmonic
oscillator Gaussian in an external Abelian magnetic field.
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4. The counterpart for the momentum squared as appears also in 4-D Dirac equation as the quan-
tity ĝαβK QαQβ , where the metric is the effective metric defined by the modified gamma matrices
for SK . If this quantity is non-vanishing something very much analogous to massivation takes
place also in interior of space-time surface although the 4-D modified Dirac equation is formally
a massless Dirac equation. One can consider the condition ĝαβK QαQβ = 0 as a possible general-
ization of masslessness condition motivated by twistorial considerations. This condition would
however pose an additional constraint on the preferred extremal and it is not clear whether it is
consistent with the vanishing of [DK , D3] = 0 condition which gives 8 equations.

3.5.3 Could the notion of octo-twistor make sense?

Twistors have led to dramatic successes in the understanding of Feynman diagrammatics of gauge
theories, N = 4 SUSYs, and N = 8 supergravity [B39, B44, B37] . This motivates the question
whether they might be applied in TGD framework too [K86] - at least in the description of the QFT
limit. The basic problem of the twistor program is how to overcome the difficulties caused by particle
massivation and TGD framework suggests possible clues in this respect.

1. In TGD framework it is natural to regard particles as massless particles in 8-D sense and to
introduce 8-D counterpart of twistors by relying on the geometric picture in which twistors
correspond to a pair of spinors characterizing light-like momentum ray and a point of M8

through which the ray traverses. Twistors would consist of a pair of spinors and quark and
lepton spinors define the natural candidate for the spinors in question.

2. In the case of ordinary Clifford algebra unit matrix and six-dimensional gamma matrices γi,
i = 1, ..., 6 and γ7 =

∏
i γi would define the variant of Pauli sigma matrices as σ0 = 1, σk = γk,

k = 1, .., 7 The problem is that masslessness condition does not correspond to the vanishing of
the determinant for the matrix pkσ

k.

3. In the case of octo-twistors Pauli sigma matrices σk would correspond to hyper-octonion units
{σ0, σk} = {1, iek} and one could assign to pkσ

k a matrix by the linear map defined by the
multiplication with P = pkσ

k. The matrix is of form Pmn = pkfkmn, where fkmn are the
structure constants characterizing multiplication by hyper-octonion. The norm squared for
octonion is the fourth root for the determinant of this matrix. Since pkσ

k maps its octonionic
conjugate to zero so that the determinant must vanish (as is easy to see directly by reducing the
situation to that for hyper-complex numbers by considering the hyper-complex plane defined by
P ).

4. The associtivity of octo-twistors means that the momentum like quantity and the two spinors
belong to the same complex quaternionic plane. This suggests that octo-twistor can be mapped
to an ordinary twistor by mapping the basis of hyper-quaternions to Pauli sigma matrices.
Quaternionization would also allow to assign to momentum to the spinors in standard manner.

One can consider two approaches to the notion of octo-twistor: global and local.

1. The global approach to the notion of octo-twistor starts from four-momentum and color charges
combined to form an 8-vector. Associativity requires that both the momentum and the spinors
defining the twistors are in the same quaternionic plane which suggests that 8-D twistors reduce
to 4-D twistors. In the case of M8 and assuming 8-momenta, this difficulty can be overcome
if fixed M4 ⊂ M8 defines Minkowski momentum. In the case of M4 × CP2 one can assign to
light-like geodesics light-like 8-momentum in terms of the tangent vector to a light-like geodesic
line reducing to circle in CP2. In quantum theory color isospin and hypercharge would be the
counterparts of CP2 momentum. In this case the geometric condition assigning to the light-like
ray a position assignable to light-cone boundary of M8 in second light-cone boundary of M8

requires M8 − H duality. The objection against this approach is that it is stringy propagator
which should fix the notion of twistor used.

2. The second approach is local and replaces 8-momentum with the charge vector Qα appearing in
the stringy propagator belonging to the local hyper-quaternionic plane of the space-time surface
by the associativity condition. Local twistorialization would be based on Qα, which together
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with the leptonic and quark-like spinors should belong to the local quaternionic sub-space. This
means four complex components for both spinors and four components for real components for
Qα. The defining equation would read in this case be

Qiα = ΨiΓ̂αΨi . (3.5.17)

Here i = q, L refers to leptonic/quark-like spinor. These conditions would hold true separately
for quark-like and lepton like charge vectors since quark and lepton currents are separately
conserved.

The experience with the ordinary twistors and the requirement that local octo-twistors can be
mapped to ordinary twistors suggest that one should consider the condition

gαβK QiαQiβ = 0 (3.5.18)

as a generalization of the masslessness condition. Here gK is the effective metric defined by
the anti-commutator of the modified gamma matrices defined by C-S action or Kähler action.
One can hope that this condition is consistent with the vanishing of the commutator [DK , D3]
giving already 8 conditions. If the dynamics of Kähler action manages to make massive particles
effectively massless, a local twistor description in essentially 4-dimensional sense would be pos-
sible by the effective metric defined by modified gamma matrices and the construction of local
twistors would reduce to standard recipes.

3.6 An attempt to understand preferred extremals of Kähler
action

There are pressing motivations for understanding the preferred extremals of Kähler action. For in-
stance, the conformal invariance of string models naturally generalizes to 4-D invariance defined by
quantum Yangian of quantum affine algebra (Kac-Moody type algebra) characterized by two complex
coordinates and therefore explaining naturally the effective 2-dimensionality [K88]. The problem is
however how to assign a complex coordinate with the string world sheet having Minkowskian signature
of metric. One can hope that the understanding of preferred extremals could allow to identify two
preferred complex coordinates whose existence is also suggested by number theoretical vision giving
preferred role for the rational points of partonic 2-surfaces in preferred coordinates. The best one
could hope is a general solution of field equations in accordance with the hints that TGD is integrable
quantum theory.

A lot is is known about properties of preferred extremals and just by trying to integrate all this
understanding, one might gain new visions. The problem is that all these arguments are heuristic
and rely heavily on physical intuition. The following considerations relate to the space-time regions
having Minkowskian signature of the induced metric. The attempt to generalize the construction also
to Euclidian regions could be very rewarding. Only a humble attempt to combine various ideas to a
more coherent picture is in question.

The core observations and visions are following.

1. Hamilton-Jacobi coordinates for M4 (discussed in this chapter) define natural preferred coordi-
nates for Minkowskian space-time sheet and might allow to identify string world sheets for X4

as those for M4. Hamilton-Jacobi coordinates consist of light-like coordinate m and its dual
defining local 2-plane M2 ⊂M4 and complex transversal complex coordinates (w,w) for a plane
E2
x orthogonal to M2

x at each point of M4. Clearly, hyper-complex analyticity and complex
analyticity are in question.

2. Space-time sheets allow a slicing by string world sheets (partonic 2-surfaces) labelled by partonic
2-surfaces (string world sheets).
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3. The quaternionic planes of octonion space containing preferred hyper-complex plane are labelled
by CP2, which might be called CPmod2 [K78]. The identification CP2 = CPmod2 motivates the
notion of M8 −−M4 × CP2 duality [K20]. It also inspires a concrete solution ansatz assuming
the equivalence of two different identifications of the quaternionic tangent space of the space-
time sheet and implying that string world sheets can be regarded as strings in the 6-D coset
space G2/SU(3). The group G2 of octonion automorphisms has already earlier appeared in
TGD framework.

4. The duality between partonic 2-surfaces and string world sheets in turn suggests that the CP2 =
CPmod2 conditions reduce to string model for partonic 2-surfaces in CP2 = SU(3)/U(2). String
model in both cases could mean just hypercomplex/complex analyticity for the coordinates of
the coset space as functions of hyper-complex/complex coordinate of string world sheet/partonic
2-surface.

The considerations of this section lead to a revival of an old very ambitious and very romantic
number theoretic idea.

1. To begin with express octonions in the form o = q1 + Iq2, where qi is quaternion and I is an
octonionic imaginary unit in the complement of fixed a quaternionic sub-space of octonions. Map
preferred coordinates of H = M4 × CP2 to octonionic coordinate, form an arbitrary octonion
analytic function having expansion with real Taylor or Laurent coefficients to avoid problems
due to non-commutativity and non-associativity. Map the outcome to a point of H to get a
map H → H. This procedure is nothing but a generalization of Wick rotation to get an 8-D
generalization of analytic map.

2. Identify the preferred extremals of Kähler action as surfaces obtained by requiring the vanishing
of the imaginary part of an octonion analytic function. Partonic 2-surfaces and string world
sheets would correspond to commutative sub-manifolds of the space-time surface and of imbed-
ding space and would emerge naturally. The ends of braid strands at partonic 2-surface would
naturally correspond to the poles of the octonion analytic functions. This would mean a huge
generalization of conformal invariance of string models to octonionic conformal invariance and
an exact solution of the field equations of TGD and presumably of quantum TGD itself.

3.6.1 Basic ideas about preferred extremals

The slicing of the space-time sheet by partonic 2-surfaces and string world sheets

The basic vision is that space-time sheets are sliced by partonic 2-surfaces and string world sheets.
The challenge is to formulate this more precisely at the level of the preferred extremals of Kähler
action.

1. Almost topological QFT property means that the Kähler action reduces to Chern-Simons terms
assignable to 3-surfaces. This is guaranteed by the vanishing of the Coulomb term in the action
density implied automatically if conserved Kähler current is proportional to the instanton current
with proportionality coefficient some scalar function.

2. The field equations reduce to the conservation of isometry currents. An attractive ansatz is that
the flow lines of these currents define global coordinates. This means that these currents are
Beltrami flows [B33] so that corresponding 1-forms J satisfy the condition J ∧ dJ = 0. These
conditions are satisfied if

J = Φ∇Ψ

hold true for conserved currents. From this one obtains that Ψ defines global coordinate varying
along flow lines of J .

3. A possible interpretation is in terms of local polarization and momentum directions defined by
the scalar functions involved and natural additional conditions are that the gradients of Ψ and
Φ are orthogonal:
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∇Φ · ∇Ψ = 0 ,

and that the Ψ satisfies massless d’Alembert equation

∇2Ψ = 0

as a consequence of current conservation. If Ψ defines a light-like vector field - in other words

∇Ψ · ∇Ψ = 0 ,

the light-like dual of Φ -call it Φc- defines a light-like like coordinate and Φ and Φc defines a
light-like plane at each point of space-time sheet.

If also Φ satisfies d’Alembert equation

∇2Φ = 0 ,

also the current

K = Ψ∇Φ

is conserved and its flow lines define a global coordinate in the polarization plane orthogonal to
time-lik plane defined by local light-like momentum direction.

If Φ allows a contination to an analytic function of the transversal complex coordinate, one
obtains a coordinatization of spacetime surface by Ψ and its dual (defining hyper-complex co-
ordinate) and w,w. Complex analyticity and its hyper-complex variant would allow to provide
space-time surface with four coordinates very much analogous with Hamilton-Jacobi coordinates
of M4.

This would mean a decomposition of the tangent space of space-time surface to orthogonal
planes defined by light-like momentum and plane orthogonal to it. If the flow lines of J defined
Beltrami flow it seems that the distribution of momentum planes is integrable.

4. General arguments suggest that the space-time sheets allow a slicing by string world sheets
parametrized by partonic 2-surfaces or vice versa. This would mean a intimate connection with
the mathematics of string models. The two complex coordinates assignable to the Yangian of
affine algebra would naturally relate to string world sheets and partonic 2-surfaces and the highly
non-trivial challenge is to identify them appropriately.

Hamilton-Jacobi coordinates for M4

The earlier attempts to construct preferred extremals [K10] led to the realization that so called
Hamilton-Jacobi coordinates (m,w) for M4 define its slicing by string world sheets parametrized by
partonic 2-surfaces. m would be pair of light-like conjugate coordinates associated with an integrable
distribution of planes M2 and w would define a complex coordinate for the integrable distribution of
2-planes E2 orthogonal to M2. There is a great temptation to assume that these coordinates define
prefered coorinates for M4.

1. The slicing is very much analogous to that for space-time sheets and the natural question is how
these slicings relate. What is of special interest is that the momentum plane M2 can be defined
by massless momentum. The scaling of this vector does not matter so that these planes are
labelled by points z of sphere S2 telling the direction of the line M2 ∩E3, when one assigns rest
frame and therefore S2 with the preferred time coordinate defined by the line connecting the tips
of CD. This direction vector can be mapped to a twistor consisting of a spinor and its conjugate.
The complex scalings of the twistor (u, u)→ λu, u/λ) define the same plane. Projective twistor
like entities defining CP1 having only one complex component instead of three are in question.
This complex number defines with certain prerequisites a local coordinate for space-time sheet



3.6. An attempt to understand preferred extremals of Kähler action 181

and together with the complex coordinate of E2 could serve as a pair of complex coordinates
(z, w) for space-time sheet. This brings strongly in mind the two complex coordinates appearing
in the expansion of the generators of quantum Yangian of quantum affine algebra [K88].

2. The coordinate Ψ appearing in Beltrami flow defines the light-like vector field defining M2

distribution. Its hyper-complex conjugate would define Ψc and conjugate light-like direction.
An attractive possibility is that Φ allows analytic continuation to a holomorphic function of w.
In this manner one would have four coordinates for M4 also for space-time sheet.

3. The general vision is that at each point of space-time surface one can decompose the tangent
space to M2(x) ⊂ M4 = M2

x × E2
x representing momentum plane and polarization plane E2 ⊂

E2
x × T (CP2). The moduli space of planes E2 ⊂ E6 is 8-dimensional and parametrized by

SO(6)/SO(2)× SO(4) for a given E2
x. How can one achieve this selection and what conditions

it must satisfy? Certainly the choice must be integrable but this is not the only condition.

Space-time surfaces as quaternionic surfaces

The idea that number theory determines classical dynamics in terms of associativity condition means
that space-time surfaces are in some sense quaternionic surfaces of an octonionic space-time. It took
several trials before the recent form of this hypothesis was achieved.

1. Octonionic structure is defined in terms of the octonionic representaton of gamma matrices
of the imbedding space existing only in dimension D = 8 since octonion units are in one-one
correspondence with tangent vectors of the tangent space. Octonionic real unit corresponds to
a preferred time axes (and rest frame) identified naturally as that connecting the tips of CD.
What modified gamma matrices mean depends on variational principle for space-time surface.
For volume action one would obtain induced gamma matrices. For Kähler action one obtains
something different. In particular, the modified gamma matrices do not define vector basis
identical with tangent vector basis of space-time surface.

2. Quaternionicity means that the modified gamma matrices defined as contractions of gamma
matrices of H with canonical momentum densities for Kähler action span quaternionic sub-
space of the octonionic tangent space [K27]. A further condition is that each quaternionic space
defined in this manner contains a preferred hyper-complex subspace of octonions.

3. The sub-space defined by the modified gamma matrices does not co-incide with the tangent
space of space-time surface in general so that the interpretation of this condition is far from
obvious. The canonical momentum densities need not define four independent vectors at given
point. For instance, for massless extremals these densities are proportional to light-like vector
so that the situation is degenerate and the space in question reduces to 2-D hyper-complex
sub-space since light-like vector defines plane M2.

The obvious questions are following.

1. Does the analog of tangent space defined by the octonionic modified gammas contain the local
tangent space M2 ⊂ M4 for preferred extremals? For massless extremals [K10] this condition
would be true. The orthogonal decomposition T (X4) = M2⊕⊥E2 can be defined at each point
if this is true. For massless extremals also the functions Ψ and Φ can be identified.

2. One should answer also the following delicate question. Can M2 really depend on point x of
space-time? CP2 as a moduli space of quaternionic planes emerges naturally if M2 is same
everywhere. It however seems that one should allow an integrable distribution of M2

x such that
M2
x is same for all points of a given partonic 2-surface.

How could one speak about fixed CP2 (the imbedding space) at the entire space-time sheet even
when M2

x varies?

(a) Note first that G2 defines the Lie group of octonionic automorphisms and G2 action is
needed to change the preferred hyper-octonionic sub-space. Various SU(3) subgroups of
G2 are related by G2 automorphism. Clearly, one must assign to each point of a string

http://en.wikipedia.org/wiki/G2_(mathematics)
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world sheet in the slicing parameterizing the partonic 2-surfaces an element of G2. One
would have Minkowskian string model with G2 as a target space. As a matter fact, this
string model is defined in the target space G2/SU(3) having dimension D = 6 since SU(3)
automorphisms leave given SU(3) invariant.

(b) This would allow to identify at each point of the string world sheet standard quaternionic
basis - say in terms of complexified basis vectors consisting of two hyper-complex units and
octonionic unit q1 with ”color isospin” I3 = 1/2 and ”color hypercharge” Y = −1/3 and
its conjugate q1 with opposite color isospin and hypercharge.

(c) The CP2 point assigned with the quaternionic basis would correspond to the SU(3) rotation
needed to rotate the standard basis to this basis and would actually correspond to the first
row of SU(3) rotation matrix. Hyper-complex analyticity is the basic property of the
solutions of the field equations representing Minkowskian string world sheets. Also now the
same assumption is highly natural. In the case of string models in Minkowski space, the
reduction of the induced metric to standard form implies Virasoro conditions and similar
conditions are expected also now. There is no need to introduce action principle -just the
hyper-complex analycitity is enough-since Kähler action already defines it.

3. The WZW model inspired approach to the situation would be following. The parametrization
corresponds to a map g : X2 → G2 for which g defines a flat G2 connection at string world sheet.
WZW type action would give rise to this kind of situation. The transition G2 → G2/SU(3)
would require that one gauges SU(3) degrees of freedom by bringing in SU(3) connection.
Similar procedure for CP2 = SU(3)/U(2) would bring in SU(3) valued chiral field and U(2)
gauge field. Instead of introducing these connections one can simply introduce G2/SU(3) and
SU(3)/U(2) valued chiral fields. What this observation suggests that this ansatz indeed predicts
gluons and electroweak gauge bosons assignable to string like objects so that the mathematical
picture would be consistent with physical intuition.

The two interpretations of CP2

An old observation very relevant for what I have called M8−H duality [K20] is that the moduli space
of quaternionic sub-spaces of octonionic space (identifiable as M8) containing preferred hyper-complex
plane is CP2. Or equivalently, the space of two planes whose addition extends hyper-complex plane to
some quaternionic subspace can be parametrized by CP2. This CP2 can be called it CPmod2 to avoid
confusion. In the recent case this would mean that the space E2(x) ⊂ E2

x × T (CP2) is represented by
a point of CPmod2 . On the other hand, the imbedding of space-time surface to H defines a point of
”real” CP2. This gives two different CP2s.

1. The highly suggestive idea is that the identification CPmod2 = CP2 (apart from isometry) is
crucial for the construction of preferred extremals. Indeed, the projection of the space-time
point to CP2 would fix the local polarization plane completely. This condition for E2(x) would
be purely local and depend on the values of CP2 coordinates only. Second condition for E2(x)
would involve the gradients of imbedding space coordinates including those of CP2 coordinates.

2. The conditions that the planes M2
x form an integrable distribution at space-like level and that

M2
x is determined by the modified gamma matrices. The integrability of this distribution for

M4 could imply the integrability for X2. X4 would differ from M4 only by a deformation in
degrees of freedom transversal to the string world sheets defined by the distribution of M2s.

Does this mean that one can begin from vacuum extremal with constant values of CP2 coordi-
nates and makes them non-constant but allows to depend only on transversal degrees of freedom?
This condition is too strong even for simplest massless extremals for which CP2 coordinates de-
pend on transversal coorinates defined by ε ·m and ε · k. One could however allow dependence
of CP2 coordinates on light-like M4 coordinate since the modification of the induced metric is
light-like so that light-like coordinate remains light-like coordinate in this modification of the
metric.

Therefore, if one generalizes directly what is known about massless extremals, the most general
dependence of CP2 points on the light-like coordinates assignable to the distribution of M2

x

would be dependence on either of the light-like coordinates of Hamilton-Jacobi coordinates but
not both.

http://en.wikipedia.org/wiki/WZW_model
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3.6.2 What could be the construction recipe for the preferred extremals
assuming CP2 = CPmod

2 identification?

The crucial condition is that the planes E2(x) determined by the point of CP2 = CPmod2 identification
and by the tangent space of E2

x × CP2 are same. The challenge is to transform this condition to an
explicit form. CP2 = CPmod2 identification should be general coordinate invariant. This requires that
also the representation of E2 as (e2, e3) plane is general coordinate invariant suggesting that the use
of preferred CP2 coordinates -presumably complex Eguchi-Hanson coordinates- could make life easy.
Preferred coordinates are also suggested by number theoretical vision. A careful consideration of the
situation would be required.

The modified gamma matrices define a quaternionic sub-space analogous to tangent space of X4

but not in general identical with the tangent space: this would be the case only if the action were
4-volume. I will use the notation Tmx (X4) about the modified tangent space and call the vectors of
Tmx (X4) modified tangent vectors. I hope that this would not cause confusion.

CP2 = CPmod2 condition

Quaternionic property of the counterpart of Tmx (X4) allows an explicit formulation using the tangent
vectors of Tmx (X4).

1. The unit vector pair (e2, e3) should correspond to a unique tangent vector of H defined by
the coordinate differentials dhk in some natural coordinates used. Complex Eguchi-Hanson
coordinates [L2] are a natural candidate for CP2 and require complexified octonionic imaginary
units. If octonionic units correspond to the tangent vector basis of H uniquely, this is possible.

2. The pair (e2, e3) as also its complexification (q1 = e2 + ie3, q1 = e2 − ie3) is expressible as a
linear combination of octonionic units I2, ...I7 should be mapped to a point of CPmod2 = CP2

in canonical manner. This mapping is what should be expressed explicitly. One should express
given (e2, e3) in terms of SU(3) rotation applied to a standard vector. After that one should
define the corresponding CP2 point by the bundle projection SU(3)→ CP2.

3. The tangent vector pair

(∂wh
k, ∂wh

k)

defines second representation of the tangent space of E2(x). This pair should be equivalent with
the pair (q1, q1). Here one must be however very cautious with the choice of coordinates. If the
choice of w is unique apart from constant the gradients should be unique. One can use also real
coordinates (x, y) instead of (w = x+ iy, w = x− iy) and the pair (e2, e3). One can project the
tangent vector pair to the standard vielbein basis which must correspond to the octonioni basis

(∂xh
k, ∂yh

k)→ (∂xh
keAk eA, ∂yh

keAk )eA)↔ (e2, e3) ,

where the eA denote the octonion units in 1-1 correspondence with vielbein vectors. This
expression can be compared to the expression of (e2, e3) derived from the knowledge of CP2

projection.

Formulation of quaternionicity condition in terms of octonionic structure constants

One can consider also a formulation of the quaternionic tangent planes in terms of (e2, e3) expressed
in terms of octonionic units deducible from the condition that unit vectors obey quaternionic algebra.
The expressions for octonionic resp. quaternionic structure constants can be found at [A69] resp. [A80].

1. The ansatz is

http://en.wikipedia.org/wiki/Octonion
http://en.wikipedia.org/wiki/Quaternions
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{Ek} = {1, I1, E2, E3} ,

E2 = E2ke
k ≡

7∑
k=2

E2ke
k , E3 = E3ke

k ≡
7∑
k=2

E3ke
k ,

|E2| = 1 , |E3| = 1 . (3.6.1)

2. The multiplication table for octonionic units expressible in terms of octonionic triangle [A69]
gives

f1klE2k = E3l , f1klE3k = −E2l , fklrE2kE3l = δr1 . (3.6.2)

Here the indices are raised by unit metric so that there is no difference between lower and upper
indices. Summation convention is assumed. Also the contribution of the real unit is present in
the structure constants of third equation but this contribution must vanish.

3. The conditions are linear and quadratic in the coefficients E2k and E3k and are expected to
allow an explicit solution. The first two conditions define homogenous equations which must
allow solution. The coefficient matrix acting on (E2, E3) is of the form(

f1 1
−1 f1

)
,

where 1 denotes unit matrix. The vanishing of the determinant of this matrix should be due to
the highly symmetric properties of the structure constants. In fact the equations can be written
as eigen conditions

f1 ◦ (E2 ± iE3) = ∓i(E2 ± iE3) ,

and one can say that the structure constants are eigenstates of the hermitian operator defined
by I1 analogous to color hyper charge. Both values of color hyper charged are obtained.

Explicit expression for the CP2 = CPmod2 conditions

The symmetry under SU(3) allows to construct the solutions of the above equations directly.

1. One can introduce complexified basis of octonion units transforming like (1, 1, 3, 3) under SU(3).
Note the analogy of triplet with color triplet of quarks. One can write complexified basis as
(1, e1, (q1, q2, q3), (q1q2, q3)). The expressions for complexified basis elements are

(q1, q2, q3) =
1√
2

(e2 + ie3, e4 + ie5, e6 + ie7) .

These options can be seen to be possible by studying octonionic triangle in which all lines
containing 3 units defined associative triple: any pair of octonion units at this kind o fline can
be used to form pair of complexified unit and its conjugate. In the tangent space of M4 × CP2

the basis vectors q1, and q2 are mixtures of E2
x and CP2 tangent vectors. q3 involves only CP2

tangent vectors and there is a temptation to interpret it as the analog of the quark having no
color isospin.

2. The quaternionic basis is real and must transform like (1, 1, q1, q1), where q1 is any quark in
the triplet and q1 its conjugate in antitriplet. Having fixed some basis one can perform SU(3)
rotations to get a new basis. The action of the rotation is by 3× 3 special unitary matrix. The
over all phases of its rows do not matter since they induce only a rotation in (e2, e3) plane not

http://en.wikipedia.org/wiki/Octonion
http://en.wikipedia.org/wiki/Octonion
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affecting the plane itself. The action of SU(3) on q1 is simply the action of its first row on
(q1, q2, q3) triplet:

q1 → (Uq)1 = U11q1 + U12q2 + U13q3 ≡ z1q1 + z2q2 + z3q3

= z1(e2 + ie3) + z2(e4 + ie5) + z3(e6 + ie7) . (3.6.3)

The triplets (z1, z2, z3) defining a complex unit vector and point of S5. Since overall phase does
not matter a point of CP2 is in question. The new real octonion units are given by the formulas

e2 → Re(z1)e2 +Re(z2)e4 +Re(z3)e6 − Im(z1)e3 − Im(z2)e5 − Im(z3)e7 ,

e3 → Im(z1)e2 + Im(z2)e4 + Im(z3)e6 +Re(z1)e3 +Re(z2)e5 +Re(z3)e7 .

(3.6.4)

For instance the CP2 coordinates corresponding to the coordinate patch (z1, z2, z3) with z3 6= 0
are obtained as (ξ1, ξ2) = (z1/z3, z2/z3).

Using these expressions the equations expressing the conjecture CP2 = CPmod2 equivalence can be
expressed explicitly as first order differential equations. The conditions state the equivalence

(e2, e3) ↔ (∂xh
keAk eA, ∂yh

keAk eA) , (3.6.5)

where eA denote octonion units. The comparison of two pairs of vectors requires normalization of the
tangent vectors on the right hand side to unit vectors so that one takes unit vector in the direction of
the tangent vector. After this the vectors can be equated. This allows to expresses the contractions
of the partial derivatives with vielbein vectors with the 6 components of e2 and e3. Each condition
gives 6+6 first order partial differential equations which are non-linear by the presence of the overal
normalization factor for the right hand side. The equations are invariant under scalings of (x, y). The
very special form of these equations suggests that some symmetry is involved.

It must be emphasized that these equations make sense only in preferred coordinates: ordinary
Minkowski coordinates and Hamiltonin-Jacobi coordinates for M4 and Eguchi-Hanson complex co-
ordinates in which SU(2) × U(1) is represented linearly for CP2. These coordinates are preferred
because they carry deep physical meaning.

Does TGD boil down to two string models?

It is good to look what have we obtained. Besides Hamilton-Jacobi conditions, and CP2 = CPmod2

conditions one has what one might call string model with 6-dimensional G2/SU(3) as targent space.
The orbit of string in G2/SU(3) allows to deduce the G2 rotation identifiable as a point of G2/SU(3)
defining what one means with standard quaternionic plane at given point of string world sheet. The
hypothesis is that hyper-complex analyticity solves these equations.

The conjectured electric-magnetic duality implies duality between string world sheet and partonic
2-surfaces central for the proposed mathematical applications of TGD [K37, K38, K76, K89]. This
duality suggests that the solutions to the CP2 = CPmod2 conditions could reduce to holomorphy
with respect to the coordinate w for partonic 2-surface plus the analogs of Virasoro conditions. The
dependence on light-like coordinate would appear as a parametric dependence.

If this were the case, TGD would reduce at least partially to what might be regaded as dual
string models in G2/SU(3) and SU(3)/U(2) and also to string model in M4 and X4! In the previous
arguments one ends up to string models in moduli spaces of string world sheets and partonic 2-surfaces.
TGD seems to yield an inflation of string models! This not actually surprising since the slicing of
space-time sheets by string world sheets and partonic 2-surfaces implies automatically various kinds
of maps having interpretation in terms of string orbits.
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3.6.3 Could octonion analyticity solve the field equations?

The interesting question is what happens in the space-time regions with Euclidian signature of induced
metric. In this case it is not possible to introduce light-like plane at each point of the space-time
sheet. Nothing however prevents from applying the above described procedure to construct conserved
currents whose flow lines define global coordinates. In both cases analytic continuation allows to
extend the coordinates to complex coordinates. Therefore one would have two complex functions
satisfying Laplace equation and having orthogonal gradients.

1. When CP2 projection is 4-dimensional, there is strong temptation to assume that these functions
could be reduced to complex CP2 coordinates analogous to the Hamilton-Jacobi coordinates for
M4. Complex Eguchi-Hanson coordinates transforming linearly under U(2) ⊂ SU(3) define the
simplest candidates in this respect. Laplace-equations are satisfied utomatically since holomor-
phic functions are in question. The gradients are also orthogonal automatically since the metric
is Kähler metric. Note however that one could argue that in innner product the conjugate of
the function appears. Any holomorphic map defines new coordinates of this kind. Note that the
maps need not be globally holomorphic since CP2 projection of space-time sheet need not cover
the entire CP2.

2. For string like objects X4 = X2 × Y 2 ⊂ M4 × CP2 with Minkowskian signature of the metric
the coordinate pair would be hyper-complex coordinate in M4 and complex coordinate in CP2.
If X2 has Euclidian signature of induced metric the coordinate in question would be complex
coordinate. The proposal in the case of CP2 allows all holomorphic functions of the complex
coordinates.

There is an objection against this construction. There should be a symmetry between M4 and
CP2 but this is not the case. Therefore this picture cannot be quite correct.

Could the construction of new preferred coordinates by holomorphic maps generalize as electic-
magnetic duality suggests? One can imagine several options, which bring in mind old ideas that what
I have christened as ”romantic stuff” [K78].

1. Should one generalize the holomorphic map to a quaternion analytic map with real Taylor
coefficients so that non-commutativity would not produce problems. One would map first M4

coordinates to quaternions, map these coordinates to new ones by quaternion analytic map
defined by a Taylor or even Laurnte expansion with real coefficients, and then map the resulting
quaternion valued coordinate back to hyper-quaternion defining four coordinates as fuctions in
M4. This procedure would be very much analogous to Wick rotation used in quantum field
theories. Similar quaternion analytic map be applied also in CP2 degrees of freedom followed
by the map of the quaternion to two complex numbers. This would give additional constraints
on the map. This option could be seen as a quaternionic generalization of conformal invariance.

The problem is that one decouples M4 and CP2 degrees of freedom completely. These degrees
are however coupled in the proposed construction since the E2(x) corresponds to subspace of
E2
x × T (CP2). Something goes still wrong.

2. This motivates to imagine even more ambitious and even more romantic option realizing the
original idea about octonionic generalization of conformal invariance. Assume linear M4 ×CP2

coordinates (Eguchi-Hanson coordinates transforming linearly under U(2) in the case of CP2).
Map these to octonionic coordinate h. Map the octonionic coordinate to itself by an octo-
nionic analytic map defined by Taylor or even Laurent series with real coefficients so that non-
commutativity and non-associativity do not cause troubles. Map the resulting octonion valued
coordinates back to ordinary H-coordinates and expressible as functions of original coordinates.

It must be emphasized that this would be nothing but a generalization of Wick rotation and its
inverse used routinely in quantum field theories in order to define loop integrals.

Could octonion real-analyticity make sense?

Suppose that one -for a fleeting moment- takes octonionic analyticity seriously. For space-time surfaces
themselves one should have in some sense quaternionic variant of conformal invariance. What does
this mean?
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1. Could one regard space-time surfaces analogous to the curves at which the imaginary part of
analytic function of complex argument vanishes so that complex analyticity reduces to real
analyticity. One can indeed divide octonion to quaternion and its imaginary part to give o =
q1 + Iq2: q1 and q2 are quaternionis and I is octonionic imaginary unit in the complement of
the quaternionic sub-space. This decomposition actually appears in the standard construction
of octonions. Therefore 4-dimensional surfaces at which the imaginary part of octonion valued
function vanishes make sense and defined in well-defined sense quaternionic 4-surfaces.

This kind of definition would be in nice accord with the vision about physics as algebraic geome-
try. Now the algebraic geometry would be extended from complex realm to the octonionic realm
since quaternionic surfaces/string world sheets could be regarded as associative/commutative
sub-algebras of the algebra of the octionic real-analytic functions.

2. Could these surfaces correspond to quaternionic 4-surfaces defined in terms of the modified
gamma matrices or induced gamma matrices? Contrary to the original expectations it will be
found that only induced gamma matrices is a plausible option. This would be an enormous
simplification and would mean that the theory is exactly solvable in the same sense as string
models are: complex analyticity would be replaced with octonion analyticity. I have considered
this option in several variants using the notion of real octonion analyticity [K78] but have not
managed to build any satisfactory scenario.

3. Hyper-complex and complex conformal symmetries would result by a restriction to hyper-
complex resp. complex sub-manifods of the imbedding space defined by string world sheets resp.
partonic 2-surfaces. The principle forcing this restriction would be commutativity. Yangian of
an affine algebra would unify these views to single coherent view [K88].

4-D n-point functions of the theory should result from the restriction on partonic 2-surfaces or
string world sheets with arguments of n-point functions identified as the ends of braid strands
so that a kind of analytic continuation from 2-D to the 4-D case would be in question. The
octonionic conformal invariance would be induced by the ordinary conformal invariance in ac-
cordance with strong form of General Coordinate Invariance.

4. This algebraic continuation of the ordinary conformal invariance could help to construct also
the representations of Yangians of affine Kac-Moody type algebras. For the Yangian symmetry
of 1+1 D integrable QFTs the charges are multilocal involving multiple integrals over ordered
multiple points of 1-D space. I

In the recent case multiple 1-D space is replaced with a space-like 3-surface at the light-like end
of CD. The point of the 1-D space appearing in the multiple integral are replaced by a partonic
2-surface represented by a collection of punctures. There is a strong temptation to assume
that the intermediate points on the line correspond to genuine physical particles and therefore
to partonic 2-surfaces at which the signature of the induced metric changes. If so, the 1-D
space would correspond to a closed curve connecting punctures of different partonic 2-surfaces
representing physical particles and ordered along a loop. The integral over multiple points would
correspond to an integral over WCW rather than over fixed back-ground space-time.

1-D space would be replaced with a closed curve going through punctures of a subset of partonic
2-surfaces associated with a space-like 3-surface. If a given partonic surface or a given puncture
can contribute only once to the multiple integral the multi-locality is bounded from above and
only a finite number of Yangian generators are obtained in this manner unless one allows the
number of partonic 2-surfaces and of punctures for them to vary. This variation is physically
natural and would correspond to generation of particle pairs by vacuum polarization. Although
only punctures would contribute, the Yangian charges would be defined in WCW rather than
in fixed space-time. Integral over positions of punctures and possible numbers of them would
be actually an integral over WCW. 2-D modular invariance of Yangian charges for the partonic
2-surfaces is a natural constraint.

The question is whether some conformal fields at the punctures of the partonic 2-surfaces ap-
pearing in the multiple integral define the basic building bricks of the conserved quantum charges
representing the multilocal generators of the Yangian algebra? Note that Wick rotation would
be involved.
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What Wick rotation could mean?

Second definition of quaternionicity is on more shaky basis and motivated by the solutions of 2-
D Laplace equation: quaternionic space-time surfaces would be obtained as zero loci of octonion
real–analytic functions. Unfortunately octonion real–analyticity does not make sense in Minkowskian
signature.

One could understand octonion real-analyticity in Minkowskian signature if one could understand
the deeper meaning of Wick rotation. Octonion real analyticity formulated as a condition for the
vanishing of the imaginary part of octonion real-analytic function makes sense for in octonionic co-
ordinates for E4 × CP2 with Euclidian signature of metric. M4 × CP2 is however only a subspace
of complexified octonions and not closed with respect to multiplication so that octonion real-analytic
functions do not make sense in M4 × CP2 . Wick rotation should transform the solution candidate
defined by an octonion real-analytic function to that defined in M4 × CP2. A natural additional
condition is that Wick rotation should reduce to that taking M2 ⊂M4 to E2 ⊂ E4.

The following trivial observation made in the construction of Hamilton-Jacobi structure in M4

with Minkowskian signature of the induced metric (see the appendix of [K94]) as a Wick rotation of
Hermitian structure in E4 might help here.

1. The components of the metric of E2 in complex coordinates (z, z) for E2 are given by gww = −1
whereas the metric of M2 in light-like coordinates (u = x+t, v = x−t) is given by guv = −1. The
metric is same and M2 and E2 correspond only to different interpretations for the coordinates!
One could say that M4 × CP2 and E4 × CP2 have same metric tensor, Kähler structure, and
spinor structure. Since only these appear in field equations, one could hope that the solutions
of field equations in M4×CP2 and E4×CP2 are obtained by Wick rotation. This for preferred
extremals at least and if the field equations reduce to purely algebraic ones.

2. If one accepts the proposed construction of preferred extremals of Kähler action discussed in
[K94], the field equations indeed reduce to purely algebraic conditions satisfied if space-time
surface possesses Hermitian structure in the case of Euclidian signature of the induced metric
and Hamilton-Jacobi structure in the case of Minkowskian signature. Just as in the case of
minimal surfaces, energy momentum tensor and second fundamental form have no common
non-vanishing components. The algebraization requires as a consistency condition Einstein’s
equations with a cosmological term. Gravitational constant and cosmological constant follow as
predictions.

3. If Wick rotation in the replacement of E2 coordinates (z, z) with M2 coordinates (u, v) makes
sense, one can hope that field equations for the preferred extremals hold true also for a Wick
rotated surfaces obtained by mapping M2 ⊂M4 to E2 ⊂ E4. Also Einstein’s equations should
be satisfied by the Wick rotated metric with Euclidian signature.

4. Wick rotation makes sense also for the surfaces defined by the vanishing of the imaginary part
(complementary to quaternionic part) of octonion real-analytic function. Therefore one can hope
that this ansatz could work. Wick rotation is non-trivial geometrically. For instance, light-like
lines v = 0 of hyper-complex plane M2 are taken to z = 0 defining a point of complex plane E2.
Note that non-invertible hyper-complex numbers correspond to the two light-like lines u = 0
and v = 0 whereas non-invertible complex numbers correspond to the origin of E2.

5. If the conjecture holds true, one can apply to both factors in E4 = E2×E2 and to get preferred
extremals in M2,2 ×CP2. Minkowski space M2,2 is essential in twistor approach and the possi-
bility to carry out Wick rotation for preferred extremals could justify Wick rotation in quantum
theory.

What the non-triviality of the moduli space of the octonionic structures means?

The moduli space G2 of the octonionic structures is essentially the Galois group defined as maps of
octonions to itself respecting octonionic sum and multiplication. This raises the question whether
octonion analyticity should be generalized in such a manner that the global choice of the octonionic
imaginary units - in particular that of preferred commuting complex sub-space- would become local.
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Physically this would correspond to the choice of momentum plane M2
x for a position dependent

light-iike momentum defining the plane of non-physical polarizations.
This question is inspired by the general solution ansatz based on the slicing of space-time sheets

which involves the dependence of the choice of the momentum plane M2
x on the point of string world

sheet. This dependence is parameterized by a point of G2/SU(3) and assumed to be constant along
partonic 2-surfaces. These slicings would be naturally associated with the two complex parts ci of the
quaternionic coordinate q1 = c1 + Ic2 of the space-time sheet.

This dependence is well-defined only for the quaternionic 4-surface defining the space-time surface
and can be seen as a local choice of a preferred complex imaginary unit along string world sheets.
CP2 would parametrize the remaining geometric degrees of freedom. Should/could one extend this
dependence to entire 8-D imbedding space? This is possible if the 8-D imbedding space allows a slicing
by the string world sheets. If the string world sheets correspond to the string world sheets appearing
in the slicing of M4 defined by Hamiton-Jacobi coordinates [K10], this slicing indeed exists.

Zero energy ontology and octonion analyticity

How does this picture relate to zero energy ontology and how partonic 2-surfaces and string world
sheets could be identified in this framework?

1. The intersection of the quaternionic four-surfaces with the 7-D light-like boundaries of CDs is 3-
D space-like surface. String world sheets are obtained as 2-D complex surfaces by putting c2 = 0,
where c2 is the imaginary part of the quaternion coordinate q = c1 + Ic2. Their intersections
with CD boundaries are generally 1-dimensional and represent space-like strings.

2. Partonic 2-surfaces could correspond to the intersections of Re(c1) = constant 3-surfaces with
the boundaries of CD. The variation of Re(c1) would give a family of (possibly light-like)
3-surfaces whose intersection with the boundaries of CD would be 2-dimensional. The interpre-
tation Re(c1) = constant surfaces as (possibly light-like) orbits of partonic 2-surfaces would be
natural. Wormhole throats at which the signature of the induced metric changes (by definition)
would correspond to some special value of Re(c1), naturally Re(c1) = 0.

What comes first in mind is that partonic 2-surfaces assignable to wormhole throats correspond
to co-complex 2-surfaces obtained by putting c1 = 0 (or c1 = constant) in the decomposition
q = c1 + ic2. This option is consistent with the above assumption if Im(c1) = 0 holds true at
the boundaries of CD. Note that also co-quaternionic surfaces make sense and would have Eu-
clidian signature of the induced metric: the interpretation as counterparts of lines of generalized
Feynman graphs might make sense.

3. One can of course wonder whether also the poles of c1 might be relevant. The most natural idea
is that the value of Re(c1) varies between 0 and ∞ between the ends of the orbit of partonic
2-surface. This would mean that c1 has a pole at the other end of CD (or light-like orbit of
partonic 2-surface). In light of this the earlier proposal [K76] that zero energy states might
correspond to rational functions assignable to infinite primes and that the zeros/poles of these
functions correspond to the positive/negative energy part of the state is interesting.

The intersections of string world sheets and partonic 2-surfaces identifiable as the common ends
of space-like and time like brand strands would correspond to the points q = c1 + Ic2 = 0
and q = ∞ + Ic2, where ∞ means real infinity. In other words, to the zeros and real poles
of quaternion analytic function with real coefficients. In the number theoretic vision especially
interesting situations correspond to polynomials with rational number valued coefficients and
rational functions formed from these. In this kind of situations the number of zeros and therefore
of braid strands is always finite.

Do induced or modified gamma matrices define quaternionicity?

The are two options to be considered: either induced or modified gamma matrices define quaternion-
icity.

1. There are several arguments supporting this view that induced gamma matrices define quater-
nionicity and that quaternionic planes are therefore tangent planes for space-time sheet.
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(a) H −M8 correspondence is based on the observation that quaternionic sub-spaces of octo-
nions containing preferred complex sub-space are labelled by points of CP2. The integra-
bility of the distribution of quaternionic spaces could follow from the parametrization by
points of CP2 (CP2 = CPmod condition). Quaternionic planes would be necessarily tangent
planes of space-time surface. Induced gamma matrices correspond naturally to the tangent
space vectors of the space-time surface.

Here one should however understand the role of the M4 coordinates. What is the func-
tional form of M4 coordinates as functions of space-time coordinates or does this matter
at all (general coordinate invariance): could one choose the space-time coordinates as M4

coordinates for surfaces representable as graphs for maps M4 → CP2? What about other
cases such as cosmic strings [K21]?

(b) Could one do entirely without gamma matrices and speak only about induced octonion
structure in 8-D tangent space (raising also dimension D = 8 to preferred role) with reduces
to quaternionic structure for quaternionic 4-surfaces. The interpretation of quaternionic
plane as tangent space would be unavoidable also now. In this approach there would be no
question about whether one should identify octonionic gamma matrices as induced gamma
matrices or as modified octonionic gamma matrices.

(c) If quaternion analyticity is defined in terms of modified gamma matrices defined by the
volume action why it would solve the field equations for Kähler action rather than for
minimal surfaces? Is the reason that quaternionic and octonionic analyticities defined as
generalized differentiability are not possible. The real and imaginary parts of quaternionic
real-analytic function with quaternion interpreted as bi-complex number are not analytic
functions of two complex variables of either complex variable. In 4-D situation minimal
surface property would be too strong a condition whereas Kähler action poses much weaker
conditions. Octonionic real-analyticity however poses strong symmetries and suggests ef-
fective 2-dimensionality.

2. The following argument suggest that modified gamma matrices cannot define the notion of
quaternionic plane.

(a) Modified gamma matrices can define sub-spaces of lower dimensionality so that they do
not defined a 4-plane. In this case they cannot define CP2 point so that CP2 = CPmod2

identity fails. Massless extremals represents the basic example about this. Hydrodynamic
solutions defined in terms of Beltrami flows could represent a more general phase of this
kind.

(b) Modified gamma matrices are not in general parallel to the space-time surface. The CP2

part of field equations coming from the variation of Kähler form gives the non-tangential
contribution. If the distribution of the quaternionic planes is integrable it defines another
space-time surface and this looks rather strange.

(c) Integrable quaternionicity can mean only tangent space quaternionicity. For modified
gamma matrices this cannot be the case. One cannot assign to the octonion analytic
map modified gamma matrices in any natural manner.

The conclusion seems to be that induced gamma matrices or induced octonion structure must
define quaternionicity and quaternionic planes are tangent planes of space-time surface and therefore
define an integrable distribution. An open question is whether CP2 = CPmod2 condition implies the
integrability automatically.

Volume action or Kähler action?

What seems clear is that quaternionicity must be defined by the induced gamma matrices obtained as
contractions of canonical momentum densities associated with volume action with imbedding space
gamma matrices. Probably equivalent definition is in terms of induced octonion structure. For the
believer in strings this would suggest that the volume action is the correct choice. There are however
strong objections against this choice.
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1. In 2-dimensional case the minimal surfaces allow conformal invariance and one can speak of
complex structure in their tangent space. In particular, string world sheets can be regarded as
complex 2-surfaces of quaternionic space-time surfaces. In 4-dimensional case the situation is
different since quaternionic differentiability fails by non-commutativity. It is quite possible that
only very few minimal surfaces (volume action) are quaternionic.

2. The possibility of Beltrami flows is a rather plausible property of quite many preferred extremals
of Kähler action. Beltrami flows are also possible for a 4-D minimal surface action. In particular,
M4 translations would define Beltrami flows for which the 1-forms would be gradients of linear
M4 coordinates. If M4 coordinate can be used on obtains flows in directions of all coordinate
axes. Hydrodynamical picture in the strong form therefore fails whereas for Kähler action various
isometry currents could be parallel (as they are for massless extremals).

3. For volume action topological QFT property fails as also fails the decomposition of solutions to
massless quanta in Minkowskian regions. The same applies to criticality. The crucial vacuum
degeneracy responsible for most nice features of Kähler action is absent and also the effective
2-dimensionality and almost topological QFT property are lost since the action does not reduce
to 3-D term.

One can however keep Kähler action and define quaternionicity in terms of induced gamma matrices
or induced octonion structure. Preferred extremals could be identified as extremals of Kähler action
which are also quaternionic 4-surfaces.

1. Preferred extremal property for Kähler action could be much weaker condition than minimal
surface property so that much larger set of quaternionic space-time surfaces would be extremals
of the Kähler action than of volume action. The reason would be that the rank of energy
momentum tensor for Maxwell action tends to be smaller than maximal. This expectation is
supported by the vacuum degeneracy, the properties of massless extremals and of CP2 type
vacuum extremals, and by the general hydrodynamical picture.

2. There is also a long list of beautiful properties supporting Kähler action which should be also
familiar: effective 2-dimensionality and slicing of space-time surface by string world sheets and
partonic 2-surfaces, reduction to almost topological QFT and to abelian Chern-Simons term,
weak form of electric-magnetic duality, quantum criticality, spin glass degeneracy, etc...

Are quaternionicities defined in terms of induced gamma matrices resp. octonion real-
analytic maps equivalent?

Quaternionicity could be defined by induced gamma matrices or in terms of octonion real-analytic
maps. Are these two definitions equivalent and how could one test the equivalence?

1. The calculation technical problem is that space-time surfaces are not defined in terms of imbed-
ding map involving some coordinate choice but in terms of four vanishing conditions for the
imaginary part of the octonion real-analytic function expressible as biquaternion valued func-
tions.

2. Integrability to 4-D surface is achieved if there exists a 4-D closed Lie algebra defined by vector
fields identifiable as tangent vector fields. This Lie algebra can be generalized to a local 4-D
Lie algebra. One cannot however represent octonionic units in terms of 8-D vector fields since
the commutators of the latter do not form an associative algebra. Also the representation of 7
octonionic imaginary units as 8-D vector fields is impossible since the algebra in question is non-
assciative Malcev algebra [A62] which can be seen as a Lie algebra over non-associative number
field (one speaks of 7-dimensional cross product [A90]). One must use instead of vector fields
either octonionic units as such or octonionic gamma ”matrices” to represent tangent vectors. The
use of octonionic units as such would mean the introduction of the notion of octonionic tangent
space structure. That the subalgebra generated by any two octonionic units is associative brings
strongly in mind effective 2-dimensionality.

http://en.wikipedia.org/wiki/Malcev_algebra
http://en.wikipedia.org/wiki/Seven-dimensional_cross_product
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3. The tangent vector fields of space-time surface in the representation using octonionic units can
be identified in the following manner. Map can be defined using 8-D octonionic coordinates
defined by standard M4 coordinates or possibly Hamilton-Jacobi coordinates and CP2 complex
coordinates for which U(2) is represented linearly. Gamma ”matrices” for H using octonionic
representation are known in these coordinates. One can introduce the 8 components of the image
of a given point under the octonion real-analytic map as new imbedding space coordinates. One
can calculate the covariant gamma matrices of H in these coordinates.

What should check whether the octonionic gamma matrices associated with the four non-
vanishing coordinates define quaternionic (and thus associative) algebra in the octonionic basis
for the gamma matrices. Also the interpretation as a associative subspace of local Malcev alge-
bra elements is possible and one should check whether if the algebra reduces to a quaternionic
Lie-algebra. Local SO(2)× U(1) algebra should emerge in this manner.

4. Can one identify quaternionic imaginary units with vector fields generating SO(3) Lie algebra
or its local variant? The Lie algebra of rotation generators defines algebra equivalent with that
based on commutars of quaternionic units. Could the slicing of space-time sheet by time axis
define local SO(3) algebra? Light-like momentum direction and momentum direction and its
dual define as their sum space-like vector field and together with vector fields defining transversal
momentum directions they might generate a local SO(3) algebra.

Questions related to quaternion real-analyticity

There are many poorly understood issues and and the following questions represent only some of very
many such questions picked up rather randomly.

1. The above considerations are restricted to Minkowskian regions of space-time sheets. What
happens in the Euclidian regions? Does the existence of light-like Beltrami field and its dual
generalize to the existence of complex vector field and its dual?

2. It would be nice to find a justification for the notion of CD from basic principles. The condition
qq = 0 implies q = 0 for quaternions. For hyper-quaternionic subspace of complexified quater-
nions obtained by Wick rotation it implies qq = 0 corresponds the entire light-cone boundary. If
n-point functions can be identified identified as products of quaternion valued n-point functions
and their quaternionic conjugates, the outcome could be proportional to 1/qq having poles at
light-cone boundaries or CD boundaries rather than at single point as in Euclidian realm.

3. This correspondence of points and light-cone boundaries would effectively identify the points
at future and past light-like boundaries of CD along light rays. Could one think that only
the 2-sphere at which the upper and lower light-like boundaries of CD meet remains after this
identification. The structure would be homologically very much like CP2 which is obtained by
compactifying E4 by adding a 2-sphere at infinity. Could this CD − CP2 correspondence have
some deep physical meaning? Do the boundaries of CD somehow correspond to zeros and/or
poles of quaternionic analytic functions in the Minkowskian realm? Could the light-like orbits of
partonic 2-surfaces at which the signature of the induced metric changes correspond to similar
counterparts of zeros or poles when the quaternion analytic variables is obtained as quaternion
real analytic function of H coordinates regarded as bi-quaternions?

4. Could braids correspond to zeros and poles of an octonion real-analytic function? Consider
the partonic 2-surfaces at which the signature of the induced metric changes. The intersections
of these surfaces with string world sheets at the ends of CDs. contain only complex and thus
commutative points meaning that the imaginary part of bi-complex number representing quater-
nionic value of octonion real-analytic function vanishes. Braid ends would thus correspond to
the origins of local complex coordinate patches. Finite measurement resolution would be forced
by commutativity condition and correlate directly with the complexity of the partonic 2-surface
measured by the minimal number of coordinate patches. Its realization would be as an upper
bound on the number of braid strands. A natural expectation would be that only the values of
n-point functions at these points contribute to scattering amplitudes. Number theoretic braids
would be realized but in a manner different from the original guess.
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How complex analysis could generalize?

One can make several questions related to the possible generalization of complex analysis to the
quaternionic and octonionic situation.

1. Does the notion of analyticity in the sense that derivatives df/dq and df/do make sense hold true?
The answer is ”No”: non-commutativity destroys all hopes about this kind of generalization.
Octonion and quaternion real-analyticity has however a well-defined meaning.

2. Could the generalization of residue calculus by keeping interaction contours as 1-D curves make
sense? Since residue formulas is the outcome of the fact that any analytic function g can be
written as g = df/dz locally, the answer is ”No”.

3. Could one generalize of the residue calculus by replacing 1-dimensional curves with 4-D surfaces
-possibly quaternionic 4-surfaces? Could one reduce the 4-D integral of quaternion analytic
function to a double residue integral? This would be the case if the quaternion real-analytic
function of q = c1 + Ic2 could be regarded as an analytic function of complex arguments c1
and c2. This is not the case. The product of two octonions decomposed to two quaternions as
oi = qi1 + Iqi2 , i = a, b reads as

oaob = qa1qb1 − qa2qb2 + I(qa1qb2 − qa2qb1) . (3.6.6)

The conjugations result from the anticommutativity of imaginary parts and I. This formula
gives similar formula for quaternions by restriction. As a special cas oa = ob = q1 + Iq2 one has

o2 = q2
1 − q2q2 + I(q1q2 − q2q1)

From this it is clear that the real part of an octonion real-analytic function cannot be regarded as
quaternion-analytic function unless one assumes that the imaginary part q2 vanishes. By similar
argument real part of quaternion real-analytic function q = c1 + Ic2 fails to be analytic unless
one restricts the consideration to a surface at which one has c2 = 0. These negative results are
obviously consistent with the effective 2-dimensionality.

4. One must however notice that physicists use often what might be called analytization trick [A8]
working if the non-analytic function f(x, y) = f(z, z) is differentiable. The trick is to inter-
pret z and z as independent variables. In the recent case this is rather natural. Wick rotation
could be used to transform the integral over the space-time sheet to integral in quaternionic
domain. For 4-dimensional integrals of quaternion real-analytic function with integration mea-
sure proportional to dc1dc1dc2dc2 one could formally define the integral using multiple residue
integration with four complex variables. The constraint is that the poles associated with ci and
ci are conjugates of each other. Quaternion real-analyticity should guarantee this. This would
of course be a definition of four-dimensional integral and might work for the 4-D generalization
of conformal field theory.

Mandelbrot and Julia sets are fascinating fractals and already now more or less a standard piece
of complex analysis. The fact that the iteration of octonion real-analytic map produces a sequence
of space-time surfaces and partonic 2-surfaces encourages to ask whether these notions -and more
generally, the dynamics based on iteration of analytic functions - might have a higher-dimensional
generalization in the proposed framework.

1. The canonical Mandelbrot set corresponds to the set of the complex parameters c in f(z) = z2+c
for which iterates of z = 0 remain finite. In octonionic and quaternionic real-analytic case c
would be real so that one would obtain only the intersection of the Mandelbrot set with real
axes and the outcome would be rather uninteresting. This is true quite generally.

http://en.wikipedia.org/wiki/Analytization_trick
http://en.wikipedia.org/wiki/Mandelbrot_set
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2. Julia set corresponds to the boundary of the Fatou set in which the dynamics defined by the
iteration of f(z) by definition behaves in a regular manner. In Julia set the behavior is chaotic.
Julia set can be defined as a set of complex plane resulting by taking inverse images of a generic
point belonging to the Julia set. For polynomials Julia set is the boundary of the region in which
iterates remain finite. In Julia set the dynamics defined by the iteration is chaotic.

Julia set could be interesting also in the recent case since it could make sense for real analytic
functions of both quaternions and octonions, and one might hope that the dynamics determined
by the iterations of octonion real-analytic function could have a physical meaning as a space-
time correlate for quantal self-organization by quantum jump in TGD framework. Single step in
iteration would be indeed a very natural space-time correlate for quantum jump. The restriction
of octonion analytic functions to string world sheets should produce the counterparts of the
ordinary Julia sets since these surfaces are mapped to themselves under iteration and octonion
real-analytic functions reduces to ordinary complex real-analytic functions at them. Therefore
one might obtain the counterparts of Julia sets in 4-D sense as extensions of ordinary Julia sets.
These extensions would be 3-D sets obtained as piles of ordinary Julia sets labelled by partonic
2-surfaces.

3.7 In what sense TGD could be an integrable theory?

During years evidence supporting the idea that TGD could be an integrable theory in some sense has
accumulated. The challenge is to show that various ideas about what integrability means form pieces
of a bigger coherent picture. Of course, some of the ideas are doomed to be only partially correct or
simply wrong. Since it is not possible to know beforehand what ideas are wrong and what are right
the situation is very much like in experimental physics and it is easy to claim (and has been and will
be claimed) that all this argumentation is useless speculation. This is the price that must be paid for
real thinking.

Integrable theories allow to solve nonlinear classical dynamics in terms of scattering data for a
linear system. In TGD framework this translates to quantum classical correspondence. The solutions
of modified Dirac equation define the scattering data. This data should define a real analytic function
whose octonionic extension defines the space-time surface as a surface for which its imaginary part
in the representation as bi-quaternion vanishes. There are excellent hopes about this thanks to the
reduction of the modified Dirac equation to geometric optics.

In the following I will first discuss briefly what integrability means in (quantum) field theories, list
some bits of evidence for integrability in TGD framework, discuss once again the question whether the
different pieces of evidence are consistent with other and what one really means with various notions.
An an outcome I represent what I regard as a more coherent view about integrability of TGD. The
notion of octonion analyticity developed in the previous section is essential for the for what follows.

3.7.1 What integrable theories are?

The following is an attempt to get some bird’s eye of view about the landscape of integrable theories.

Examples of integrable theories

Integrable theories are typically non-linear 1+1-dimensional (quantum) field theories. Solitons and
various other particle like structures are the characteristic phenomenon in these theories. Scattering
matrix is trivial in the sense that the particles go through each other in the scattering and suffer only a
phase change. In particular, momenta are conserved. Korteveg-de Vries equation [B6]was motivated
by the attempt to explain the experimentally discovered shallow water wave preserving its shape
and moving with a constant velocity. Sine-Gordon equation [B10] describes geometrically constant
curvature surfaces and defines a Lorentz invariant non-linear field theory in 1+1-dimensional space-
time, which can be applied to Josephson junctions (in TGD inspired quantum biology it is encountered
in the model of nerve pulse [K64]). Non-linear Schrödinger equation [B9] having applications to optics
and water waves represents a further example. All these equations have various variants.

From TGD point of view conformal field theories represent an especially interesting example of
integrable theories. (Super-)conformal invariance is the basic underlying symmetry and by its infinite-

http://en.wikipedia.org/wiki/Julia_set
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dimensional character implies infinite number of conserved quantities. The construction of the theory
reduces to the construction of the representations of (super-)conformal algebra. One can solve 2-
point functions exactly and characterize them in terms of (possibly anomalous) scaling dimensions of
conformal fields involved and the coefficients appearing in 3-point functions can be solved in terms
of fusion rules leading to an associative algebra for conformal fields. The basic applications are to
2-dimensional critical thermodynamical systems whose scaling invariance generalizes to conformal
invariance. String models represent second application in which a collection of super-conformal field
theories associated with various genera of 2-surface is needed to describe loop corrections to the
scattering amplitudes. Also moduli spaces of conformal equivalence classes become important.

Topological quantum field theories are also examples of integrable theories. Because of its inde-
pendence on the metric Chern-Simons action is in 3-D case the unique action defining a topological
quantum field theory. The calculations of knot invariants (for TGD approach see [K37]), topological
invariants of 3-manifolds and 4-manifolds, and topological quantum computation (for a model of DNA
as topological quantum computer see [K25]) represent applications of this approach. TGD as almost
topological QFT means that the Kähler action for preferred extremals reduces to a surface term by
the vanishing of Coulomb term in action and by the weak form of electric-magnetic duality reduces
to Chern-Simons action. Both Euclidian and Minkowskian regions give this kind of contribution.
N = 4 SYM is the a four-dimensional and very nearly realistic candidate for an integral quantum

field theory. The observation that twistor amplitudes allow also a dual of the 4-D conformal symmetry
motivates the extension of this symmetry to its infinite-dimensional Yangian variant [A112]. Also
the enormous progress in the construction of scattering amplitudes suggests integrability. In TGD
framework Yangian symmetry would emerge naturally by extending the symplectic variant of Kac-
Moody algebra from light-cone boundary to the interior of causal diamond and the Kac-Moody algebra
from light-like 3-surface representing wormhole throats at which the signature of the induced metric
changes to the space-time interior [K88].

About mathematical methods

The mathematical methods used in integrable theories are rather refined and have contributed to the
development of the modern mathematical physics. Mention only quantum groups, conformal algebras,
and Yangian algebras.

The basic element of integrability is the possibility to transform the non-linear classical problem
for which the interaction is characterized by a potential function or its analog to a linear scattering
problem depending on time. For instance, for the ordinary Schrödinger function one can solve potential
once single solution of the equation is known. This does not work in practice. One can however gather
information about the asymptotic states in scattering to deduce the potential. One cannot do without
information about bound state energies too.

In TGD framework asymptotic states correspond to partonic 2-surfaces at the two light-like bound-
aries of CD (more precisely: the largest CD involved and defining the IR resolution for momenta).
From the scattering data coding information about scattering for various values of energy of the
incoming particle one deduced the potential function or its analog.

1. The basic tool is inverse scattering transform known as Gelfand-Marchenko-Levitan (GML)
transform described in simple terms in [B12].

(a) In 1+1 dimensional case the S-matrix characterizing scattering is very simple since the
only thing that can take place in scattering is reflection or transmission. Therefore the S-
matrix elements describe either of these processes and by unitarity the sum of corresponding
probabilities equals to 1. The particle can arrive to the potential either from left or right
and is characterized by a momentum. The transmission coefficient can have a pole meaning
complex (imaginary in the simplest case) wave vector serving as a signal for the formation
of a bound state or resonance. The scattering data are represented by the reflection and
transmission coefficients as function of time.

(b) One can deduce an integral equation for a propagator like function K(t, x) describing how
delta pulse moving with light velocity is scattered from the potential and is expressible in
terms of time integral over scattering data with contributions from both scattering states
and bound states. The derivation of GML transform [B12] uses time reversal and time
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translational invariance and causality defined in terms of light velocity. After some tricks
one obtains the integral equation as well as an expression for the time independent potential
as V (x) = K(x, x). The argument can be generalized to more complex problems to deduce
the GML transform.

2. The so called Lax pair is one manner to describe integrable systems [B7]. Lax pair consists of
two operators L and M . One studies what might be identified as ”energy” eigenstates satisfying
L(x, t)Ψ = λΨ. λ does not depend on time and one can say that the dynamics is associated
with x coordinate whereas as t is time coordinate parametrizing different variants of eigenvalue
problem with the same spectrum for L. The operator M(t) does not depend on x at all and the
independence of λ on time implies the condition

∂tL = [L,M ] .

This equation is analogous to a quantum mechanical evolution equation for an operator induced
by time dependent ”Hamiltonian” M and gives the non-linear classical evolution equation when
the commutator on the right hand side is a multiplicative operator (so that it does not involve
differential operators acting on the coordinate x). Non-linear classical dynamics for the time
dependent potential emerges as an integrability condition.

One could say that M(t) introduces the time evolution of L(t, x) as an automorphism which
depends on time and therefore does not affect the spectrum. One has L(t, x) = U(t)L(0, x)U−1(t)
with dU(t)/dt = M(t)U(t). The time evolution of the analog of the quantum state is given by
a similar equation.

3. A more refined view about Lax pair is based on the observation that the above equation can be
generalized so that M depends also on x. The generalization of the basic equation for M(x, t)
reads as

∂tL− ∂xM − [L,M ] = 0 .

The condition has interpretation as a vanishing of the curvature of a gauge potential having
components Ax = L,At = M . This generalization allows a beautiful geometric formulation of
the integrability conditions and extends the applicability of the inverse scattering transform.
The monodromy of the flat connection becomes important in this approach. Flat connections
in moduli spaces are indeed important in topological quantum field theories and in conformal
field theories.

4. There is also a connection with the so called Riemann-Hilbert problem [A86]. The monodromies
of the flat connection define monodromy group and Riemann-Hilbert problem concerns the
existence of linear differential equations having a given monodromy group. Monodromy group
emerges in the analytic continuation of an analytic function and the action of the element of the
monodromy group tells what happens for the resulting many-valued analytic function as one
turns around a singularity once (’mono-’). The linear equations obviously relate to the linear
scattering problem. The flat connection (M,L) in turn defines the monodromy group. What is
needed is that the functions involved are analytic functions of (t, x) replaced with a complex or
hyper-complex variable. Again Wick rotation is involved. Similar approach generalizes also to
higher dimensional moduli spaces with complex structures.

In TGD framework the effective 2-dimensionality raises the hope that this kind of mathematical
apparatus could be used. An interesting possibility is that finite measurement resolution could
be realized in terms of a gauge group or Kac-Moody type group represented by trivial gauge
potential defining a monodromy group for n-point functions. Monodromy invariance would
hold for the full n-point functions constructed in terms of analytic n-point functions and their
conjugates. The ends of braid strands are natural candidates for the singularities around which
monodromies are defined.

http://en.wikipedia.org/wiki/Lax_pair
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3.7.2 Why TGD could be integrable theory in some sense?

There are many indications that TGD could be an integrable theory in some sense. The challenge is
to see which ideas are consistent with each other and to build a coherent picture where everything
finds its own place.

1. 2-dimensionality or at least effective 2-dimensionality seems to be a prerequisite for integrability.
Effective 2-dimensionality is suggested by the strong form of General Coordinate Invariance
implying also holography and generalized conformal invariance predicting infinite number of
conservation laws. The dual roles of partonic 2-surfaces and string world sheets supports a four-
dimensional generalization of conformal invariance. Twistor considerations [K86] indeed suggest
that Yangian invariance and Kac-Moody invariances combine to a 4-D analog of conformal
invariance induced by 2-dimensional one by algebraic continuation.

2. Octonionic representation of imbedding space Clifford algebra and the identification of the space-
time surfaces as quaternionic space-time surfaces would define a number theoretically natural
generalization of conformal invariance. The reason for using gamma matrix representation is
that vector field representation for octonionic units does not exist. The problem concerns the
precise meaning of the octonionic representation of gamma matrices.

Space-time surfaces could be quaternionic also in the sense that conformal invariance is ana-
lytically continued from string curve to 8-D space by octonion real-analyticity. The question is
whether the Clifford algebra based notion of tangent space quaternionicity is equivalent with
octonionic real-analyticity based notion of quaternionicity.

The notions of co-associativity and co-quaternionicity make also sense and one must consider se-
riously the possibility that associativity-co-associativity dichotomy corresponds to Minkowskian-
Euclidian dichotomy.

3. Field equations define hydrodynamic Beltrami flows satisfying integrability conditions of form
J ∧ dJ = 0.

(a) One can assign local momentum and polarization directions to the preferred extremals and
this gives a decomposition of Minkowskian space-time regions to massless quanta analogous
to the 1+1-dimensional decomposition to solitons. The linear superposition of modes with
4-momenta with different directions possible for free Maxwell action does not look plausible
for the preferred extremals of Kähler action. This rather quantal and solitonic character is
in accordance with the quantum classical correspondence giving very concrete connection
between quantal and classical particle pictures. For 4-D volume action one does not obtain
this kind of decomposition. In 2-D case volume action gives superposition of solutions with
different polarization directions so that the situation is nearer to that for free Maxwell
action and is not like soliton decomposition.

(b) Beltrami property in strong sense allows to identify 4 preferred coordinates for the space-
time surface in terms of corresponding Beltrami flows. This is possible also in Euclidian
regions using two complex coordinates instead of hyper-complex coordinate and complex
coordinate. The assumption that isometry currents are parallel to the same light-like
Beltrami flow implies hydrodynamic character of the field equations in the sense that one
can say that each flow line is analogous to particle carrying some quantum numbers. This
property is not true for all extremals (say cosmic strings).

(c) The tangent bundle theoretic view about integrability is that one can find a Lie algebra of
vector fields in some manifold spanning the tangent space of a lower-dimensional manifolds
and is expressed in terms of Frobenius theorem [A36]). The gradients of scalar functions
defining Beltrami flows appearing in the ansatz for preferred exremals would define these
vector fields and the slicing. Partonic 2-surfaces would correpond to two complex conjugate
vector fields (local polarization direction) and string world sheets to light-like vector field
and its dual (light-like momentum directions). This slicing generalizes to the Euclidian
regions.

4. Infinite number of conservation laws is the signature of integrability. Classical field equations
follow from the condition that the vector field defined by modified gamma matrices has vanishing
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divergence and can be identified an integrability condition for the modified Dirac equation
guaranteing also the conservation of super currents so that one obtains an infinite number of
conserved charges.

5. Quantum criticality is a further signal of integrability. 2-D conformal field theories describe
critical systems so that the natural guess is that quantum criticality in TGD framework relates
to the generalization of conformal invariance and to integrability. Quantum criticality implies
that Kähler coupling strength is analogous to critical temperature. This condition does affects
classical field equations only via boundary conditions expressed as weak form of electric magnetic
duality at the wormhole throats at which the signature of the metric changes.

For finite-dimensional systems the vanishing of the determinant of the matrix defined by the
second derivatives of potential is similar signature and applies in catastrophe theory. Therefore
the existence of vanishing second variations of Kähler action should characterize criticality and
define a property of preferred extremals. The vanishing of second variations indeed leads to an
infinite number of conserved currents [K27, K10].

3.7.3 Questions

There are several questions which are not completely settled yet. Even the question what preferred
extremals are is still partially open. In the following I try to de-learn what I have possibly learned
during these years and start from scratch to see which assumptions might be un-necessarily strong or
even wrong.

3.7.4 Could TGD be an integrable theory?

Consider first the abstraction of integrability in TGD framework. Quantum classical correspondence
could be seen as a correspondence between linear quantum dynamics and non-linear classical dynamics.
Integrability would realize this correspondence. In integrable models such as Sine-Gordon equation
particle interactions are described by potential in 1+1 dimensions. This too primitive for the purposes
of TGD. The vertices of generalized Feynman diagrams take care of this. At lines one has free particle
dynamics so that the situation could be much simpler than in integrable models if one restricts the
considerations to the lines or Minkowskian space-time regions surrounding them.

The non-linear dynamics for the space-time sheets representing incoming lines of generalized Feyn-
man diagram should be obtainable from the linear dynamics for the induced spinor fields defined by
modified Dirac operator. There are two options.

1. Strong form of the quantum classical correspondence states that each solution for the linear
dynamics of spinor fields corresponds to space-time sheet. This is analogous to solving the
potential function in terms of a single solution of Schrödinger equation. Coupling of space-time
geometry to quantum numbers via measurement interaction term is a proposal for realizing this
option. It is howwever the quantum numbers of positive/negative energy parts of zero energy
state which would be visible in the classical dynamics rather than those of induced spinor field
modes.

2. Only overall dynamics characterized by scattering data- the counterpart of S-matrix for the
modified Dirac operator- is mapped to the geometry of the space-time sheet. This is much more
abstract realization of quantum classical correspondence.

3. Can these two approaches be equivalent? This might be the case since quantum numbers of the
state are not those of the modes of induced spinor fields.

What the scattering data could be for the induced spinor field satisfying modified Dirac equation?

1. If the solution of field equation has hydrodynamic character, the solutions of the modified
Dirac equation can be localized to light-like Beltrami flow lines of hydrodynamic flow. These
correspond to basic solutions and the general solution is a superposition of these. There is no
dispersion and the dynamics is that of geometric optics at the basic level. This means geometric
optics like character of the spinor dynamics.
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Solutions of the modified Dirac equation are completely analogous to the pulse solutions defining
the fundamental solution for the wave equation in the argument leading from wave equation
with external time independent potential to Marchenko-Gelfand-Levitan equation allowing to
identify potential in terms of scattering data. There is however no potential present now since
the interactions are described by the vertices of Feynman diagram where the particle lines meet.
Note that particle like regions are Euclidian and that this picture applies only to the Minkowskian
exteriors of particles.

2. Partonic 2-surfaces at the ends of the line of generalized Feynman diagram are connected by flow
lines. Partonic 2-surfaces at which the signature of the induced metric changes are in a special
position. Only the imaginary part of the bi-quaternionic value of the octonion valued map is
non-vanishing at these surfaces which can be said to be co-complex 2-surfaces. By geometric
optics behavior the scattering data correspond to a diffeomorphism mapping initial partonic
2-surface to the final one in some preferred complex coordinates common to both ends of the
line.

3. What could be these preferred coordinates? Complex coordinates for S2 at light-cone bound-
ary define natural complex coordinates for the partonic 2-surface. With these coordinates the
diffeomorphism defining scattering data is diffeomorphism of S2. Suppose that this map is real
analytic so that maps ”real axis” of S2 to itself. This map would be same as the map defin-
ing the octonionic real analyticity as algebraic extension of the complex real analytic map. By
octonionic analyticity one can make large number of alternative choices for the coordinates of
partonic 2-surface.

4. There can be non-uniqueness due to the possibility of G2/SU(3) valued map characterizing
the local octonionic units. The proposal is that the choice of octonionic imaginary units can
depend on the point of string like orbit: this would give string model in G2/SU(3). Conformal
invariance for this string model would imply analyticity and helps considerably but would not
probably fix the situation completely since the element of the coset space would constant at the
partonic 2-surfaces at the ends of CD. One can of course ask whether the G2/SU(3) element
could be constant for each propagator line and would change only at the 2-D vertices?

This would be the inverse scattering problem formulated in the spirit of TGD. There could be
also dependence of space-time surface on quantum numbers of quantum states but not on indididual
solution for the induced spinor field since the scattering data of this solution would be purely geometric.
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Chapter 4

TGD as a Generalized Number
Theory III: Infinite Primes

4.1 Introduction

The third part of the multi-chapter discussing the idea about physics as a generalized number theory
is devoted to the possible role of infinite primes in TGD.

The notion of prime seems to capture something very essential about what it is to be elementary
building block of matter and has become a fundamental conceptual element of TGD. The notion
of prime gains it generality from its reducibility to the notion of prime ideal of an algebra. Thus
the notion of prime is well-defined, not only in case of quaternions and octonions, but also for their
complexifications and one can speak about infinite primes in the case of hyper-quaternions and -
octonions, which are especially natural physically and for which numbers having zero norm correspond
physically to light-like 8-vectors.

4.1.1 The notion of infinite prime

The original motivation for the notion of infinite prime came from the first attempts to construct
TGD inspired theory of consciousness (around 1995) [K79] . Suppose very naively that the 4-surfaces
in a given sector of the ”world of classical worlds” (WCW) are labelled by a fixed p-adic prime. The
natural expectation is that evolution by quantum jumps means dispersion in the space of these sectors
and leads to the increase of the p-adic prime characterizing the Universe. As one moves backwards
in subjective time (sequence of quantum jumps) one ends up to the situation in which the prime
characterizing the universe was p = 2. Should one assume that there was the first quantum jump
when everything began? If not, then it would seem that the p-adic prime characterizing the Universe
must be infinite. Second problem is that the p-adic length scales are finite and if the size scale of
Universe is given by p-adic length scale the Universe has finite sized: this does not make sense in TGD
framework. The only way out of the problems is the assumption that the p-adic prime characterizing
the entire Universe is literally infinite and that p-adic primes characterizing space-time sheets are
finite.

These argument, which are by no means central for the recent view about p-adic primes, motivated
the attempt to construct a theory of infinite primes and to extend quantum TGD accordingly. This
turns out to be possible. The recipe for constructing infinite primes is structurally equivalent with a
repeated second quantization of an arithmetic super-symmetric quantum field theory. At the lowest
level one has fermionic and bosonic states labeled by finite primes and infinite primes correspond to
many particle states of this theory. Also infinite primes analogous to bound states are predicted.
This hierarchy of quantizations can be continued indefinitely by taking the many particle states of the
previous level as elementary particles at the next level. It must be also emphasized that the notion
of infinity is relativistic. With respect to the p-adic norm infinite primes have unit norm for all finite
and infinite primes so that there is nothing to become scared of!

Construction could make sense also for hyper-quaternionic and hyper-octonionic primes although
non-commutativity and non-associativity pose technical challenges. One can also construct infinite
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number of real units as ratios of infinite integers with a precise number theoretic anatomy. The
fascinating finding is that the quantum states labeled by standard model quantum numbers allow
a representation as wave fuctions in the discrete space of these units. Space-time point becomes
infinitely richly structured in the sense that one can associate to it a wave function in the space of real
(or octonionic) units allowing to represent the WCW spinor fields. One can speak about algebraic
holography or number theoretic Brahman=Atman identity and one can also say that the points of
imbedding space and space-time surface are subject to a number theoretic evolution. In philosophical
mood one can of course also ask whether there exists a hierarchy of imbedding spaces in which the
imbedding space at the lower level represents something with infinitesimal size in the sense of real
topology and whether this hierarchy is accompanied also by a hierarchy of conscious entities.

This picture suggest that the Universe of quantum TGD might basically provide a physical rep-
resentation of number theory allowing also infinite primes. The proposal suggests also a possible
generalization of real numbers to a number system akin to hyper-reals introduced by Robinson in
his non-standard calculus [A200] providing a rigorous mathematical basis for calculus. In fact, some
rather natural requirements lead to a unique generalization for the concepts of integer, rational and
real. Infinite integers and reals can be regarded as infinite-dimensional vector spaces with integer and
real valued coefficients respectively. Same generalization could make sense for all classical number
fields.

4.1.2 Infinite primes and physics in TGD Universe

Several different views about how infinite primes, integers, and rationals might be relevant in TGD
Universe have emerged.

Infinite primes and super-symmetric quantum field theory

Consider next the physical interpretation.

1. The discovery of infinite primes suggested strongly the possibility to reduce physics to number
theory. The construction of infinite primes can be regarded as a repeated second quantization
of a super-symmetric arithmetic quantum field theory. This suggests that configuration space
spinor fields or at least the ground states of associated super-conformal representations could
be mapped to infinite primes in both bosonic and fermionic degrees of freedom. The process
might generalize so that it applies in the case of quaternionic and octonionic primes and their
hyper counterparts. This hierarchy of second quantizations means enormous generalization of
physics to what might be regarded a physical counterpart for a hierarchy of abstractions about
abstractions about.... The ordinary second quantized quantum physics corresponds only to the
lowest level infinite primes.

2. The ordinary primes appearing as building blocks of infinite primes at the first level of the
hierarchy could be identified as coding for p-adic primes assignable to fermionic and bosonic
partons identified as 2-surfaces of a given space-time sheet. The hierarchy of infinite primes
would correspond to hierarchy of space-time sheets defined by the topological condensate. This
leads also to a precise identification of p-adic and real variants of bosonic partonic 2-surfaces as
correlates of intention and action and pairs of p-adic and real fermionic partons as correlates for
cognitive representations.

3. The idea that infinite primes characterize quantum states of the entire Universe, perhaps ground
states of super-conformal representations, if not all states, could be taken further. It turns out
that this idea makes sense when one considers discrete wave functions in the space of infinite
primes and that one can indeed represent standard model quantum numbers in this manner.

4. The number theoretical supersymmetry suggests also space-time supersymmetry TGD frame-
work. Space-time super-symmetry in its standard form is not possible in TGD Universe and
this cheated me to believe that this supersymmetry is completely absent in TGD Universe.
The progress in the understanding of the properties of the modified Dirac action however led
to a generalization of the space-time super-symmetry as a dynamical and broken symmetry of
quantum TGD [K28] .
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Here however emerges the idea about the number theoretic analog of color confinement. Rational
(infinite) primes allow not only a decomposition to (infinite) primes of algebraic extensions of rationals
but also to algebraic extensions of quaternionic and octonionic (infinite) primes. The physical analog
is the decomposition of a particle to its more elementary constituents. This fits nicely with the idea
about number theoretic resolution represented as a hierarchy of Galois groups defined by the extensions
of rationals and realized at the level of physics in terms of Jones inclusions [K87] defined by these
groups having a natural action on space-time surfaces, induced spinor fields, and on configuration
space spinor fields representing physical states [K20] .

Infinite primes and physics as number theory

The hierarchy of algebraic extensions of rationals implying corresponding extensions of p-adic numbers
suggests that Galois groups, which are the basic symmetry groups of number theory, should have
concrete physical representations using induced spinor fields and configuration space spinor fields
and also infinite primes and real units formed as infinite rationals. These groups permute zeros of
polynomials and thus have a concrete physical interpretation both at the level of partonic 2-surfaces
dictated by algebraic equations and at the level of braid hierarchy. The vision about the role of
hyperfinite factors of II1 and of Jones inclusions as descriptions of quantum measurements with finite
measurement resolution leads to concrete ideas about how these groups are realized.

G2 acts as automorphisms of hyper-octonions and SU(3) as its subgroup respecting the choice of a
preferred imaginary unit. The discrete subgroups of SU(3) permuting to each other hyper-octonionic
primes are analogous to Galois group and turned out to play a crucial role in the understanding of the
correspondence between infinite hyper-octonionic primes and quantum states predicted by quantum
TGD.

The notion of finite measurement resolution as the key concept

TGD predicts several hierarchies: the hierarchy of space-time sheets, the hierarchy of infinite primes,
the hierarchy of Jones inclusions identifiable in terms of finite measurement resolution [K87] , the
dark matter hierarchy characterized by increasing values of ~ [K26] , the hierarchy of extensions of a
given p-adic number field. TGD inspired theory of consciousness predictes the hierarchy of selves and
quantum jumps with increasing duration with respect to geometric time. These hierarchies should be
closely related.

The notion of finite measurement resolution turns out to be the key concept: the p-adic norm of
the rational defined by the infinite prime characterizes the angle measurement resolution for given
p-adic prime p. It is essential that one has what might be called a state function reduction selecting
a fixed p-adic prime which could be also infinite. This gives direct connections with cognition and
with the p-adicization program relying also on angle measurement resolution. Also the value the
integers characterizing the singular coverings of CD and CP2 defining as their product Planck constant
characterize the measurement resolution for a given p-adic prime in CD and CP2 degrees of freedom.
This conforms with the fact that elementary particles are characterized by two infinite primes. Hence
finite measurement resolution ties tightly together the three threads of the number theoretic vision.
Finite measurement resolution relates also closely to the inclusions of hyper-finite factors central for
TGD inspired quantum measurement theory with finite measurement resolution.

Space-time correlates of infinite primes

Infinite primes code naturally for Fock states in a hierarchy of super-symmetric arithmetic quantum
field theories. Quantum classical correspondence leads to ask whether infinite primes could also code
for the space-time surfaces serving as symbolic representations of quantum states. This would a
generalization of algebraic geometry would emerge and could reduce the dynamics of Kähler action
to algebraic geometry and organize 4-surfaces to a physical hierarchy according to their algebraic
complexity. This conjecture should be consistent with two other conjectures about the dynamics of
space-time surfaces (space-time surfaces as preferred extrema of Kähler action and space-time surfaces
as quaternionic or co-quaternionic (as associative or co-associative) 4-surfaces of hyper-octonion space
M8).

Quantum classical correspondence requires the map of the quantum numbers of configuration space
spinor fields to space-time geometry. The modified Dirac equation with measurement interaction term
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realizes this requirement. Therefore, if one wants to map infinite rationals to space-time geometry it
is enough to map infinite primes to quantum numbers. This map can be indeed achieved thanks to
the detailed picture about the interpretation of the symmetries of infinite primes in terms of standard
model symmetries. The notion of finite measurement resolution allows to deduce much more detailed
about this correspondence. In particular, the rational defined by the infinite prime classifies the finite
sub-manifold geometry defined by the discretization of the partonic 2-surface implied by the finite
measurement resolution. Also a direct correlation between integers defining Planck constant and the
”fermionic” part of the infinite prime emerges.

4.1.3 Infinite primes, cognition, and intentionality

The correlation of infinite primes with cognition is the first fascinating possibility and this possibility
has stimulated several ideas.

1. One can define the notion of prime also for the algebraic extensions of rationals. The hierarchy
of infinite primes associated with algebraic extensions of rationals leading gradually towards
algebraic closure of rationals would in turn define cognitive hierarchy corresponding to algebraic
extensions of p-adic numbers.

2. The introduction of infinite primes, integers, and rationals leads also to a generalization of clas-
sical number fields since an infinite algebra of real (complex, etc...) units defined by finite ratios
of infinite rationals multiplied by ordinary rationals which are their inverses becomes possible.
These units are not units in the p-adic sense and have a finite p-adic norm which can be differ
from one. This construction generalizes also to the case of hyper- quaternions and -octonions
although non-commutativity and in case of octonions also non-associativity pose technical prob-
lems. Obviously this approach differs from the standard introduction of infinitesimals in the
sense that sum of infinitesimals (real zeros) is replaced by multiplication of real units meaning
that the set of real and also more general units becomes infinitely degenerate.

3. Infinite primes form an infinite hierarchy so that the points of space-time and imbedding space
can be seen as infinitely structured and able to represent all imaginable algebraic structures.
Certainly counter-intuitively, single space-time point -or more generally wave functions in the
space of the units associated with the point- might be even capable of representing the quantum
state of the entire physical Universe in its structure. For instance, in the real sense surfaces in
the space of units correspond to the same real number 1, and single point, which is structure-less
in the real sense could represent arbitrarily high-dimensional spaces as unions of real units. For
real physics this structure is completely invisible and is relevant only for the physics of cognition.
One can say that Universe is an algebraic hologram, and there is an obvious connection both
with Brahman=Atman identity of Eastern philosophies and Leibniz’s notion of monad.

4. In zero energy ontology hyper-octonionic units identified as ratios of the infinite integers associ-
ated with the positive and negative energy parts of the zero energy state define a representation
of WCW spinor fields. The action of subgroups of SU(3) and rotation group SU(2) preserv-
ing hyper-octonionic and hyper-quaternionic primeness and identification of momentum and
electro-weak charges in terms of components of hyper-octonionic primes makes this represen-
tation unique. Hence Brahman-Atman identity has a completely concrete realization and fixes
completely the quantum number spectrum including particle masses and correlations between
various quantum numbers.

5. One can assign to infinite primes at nth level of hierarchy rational functions of n rational argu-
ments which form a natural hierarchical structure in that highest level corresponds to a polyno-
mial with coefficients which are rational functions of the arguments at the lower level. One can
solve one of the arguments in terms of lower ones to get a hierarchy of algebraic extensions. At
the lowest level algebraic extensions of rationals emerge, at the next level algebraic extensions
of space of rational functions of single variable, etc... This would suggest that infinite primes
code for the correlation between quantum states and the algebraic extensions appearing in their
their physical description and characterizing their cognitive correlates. The hierarchy of infinite
primes would also correlate with a hierarchy of logics of various orders (hierarchy of statements
about statements about...).
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4.1.4 About literature

The reader not familiar with the basic algebra of quaternions and octonions is encouraged to study
some background material: the home page of Tony Smith provides among other things an excellent
introduction to quaternions and octonions [A213] . String model builders are beginning to grasp
the potential importance of octonions and quaternions and the articles about possible applications of
octonions [A139, A210, A169] provide an introduction to octonions using the language of physicist.

Personally I found quite frustrating to realize that I had neglected totally learning of the basic ideas
of algebraic geometry, despite its obvious potential importance for TGD and its applications in string
models. This kind of losses are the price one must pay for working outside the scientific community. It
is not easy for a physicist to find readable texts about algebraic geometry and algebraic number theory
from the bookshelves of mathematical libraries. The book ”Algebraic Geometry for Scientists and
Engineers” by Abhyankar [A117] , which is not so elementary as the name would suggest, introduces
in enjoyable manner the basic concepts of algebraic geometry and binds the basic ideas with the
more recent developments in the field. ”Problems in Algebraic Number Theory” by Esmonde and
Murty [A148] in turn teaches algebraic number theory through exercises which concretize the abstract
ideas. The book ”Invitation to Algebraic Geometry” by K. E. Smith. L. Kahanpää, P. Kekäläinen
and W. Traves is perhaps the easiest and most enjoyable introduction to the topic for a novice. It
also contains references to the latest physics inspired work in the field.

4.2 Infinite primes, integers, and rationals

The definition of the infinite integers and rationals is a straightforward procedure and structurally
similar to a repeated second quantization of a super-symmetric quantum field theory but including
also the number theoretic counterparts of bound states.

4.2.1 The first level of hierarchy

In the following the concept of infinite prime is developed gradually by stepwise procedure rather than
giving directly the basic definitions. The hope is that the development of the concept in the same
manner as it actually occurred would make it easier to understand it.

Step 1

One could try to define infinite primes P by starting from the basic idea in the proof of Euclid for
the existence of infinite number of primes. Take the product of all finite primes and add 1 to get a
new prime:

P = 1 +X ,
X =

∏
p p .

(4.2.1)

If P were divisible by finite prime then P −X = 1 would be divisible by finite prime and one would
encounter contradiction. One could of course worry about the possible existence of infinite primes
smaller than P and possibly dividing P . The numbers N = P − k, k > 1, are certainly not primes
since k can be taken as a factor. The number P ′ = P − 2 = −1 + X could however be prime. P is
certainly not divisible by P − 2. It seems that one cannot express P and P − 2 as product of infinite
integer and finite integer. Neither it seems possible to express these numbers as products of more
general numbers of form

∏
p∈U p+ q, where U is infinite subset of finite primes and q is finite integer.

Step 2

P and P − 2 are not the only possible candidates for infinite primes. Numbers of form

P (±, n) = ±1 + nX ,
k(p) = 0, 1, ..... ,
n =

∏
p p

k(p) ,

X =
∏
p p ,

(4.2.2)
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where k(p) 6= 0 holds true only in finite set of primes, are characterized by a integer n, and are also
good prime candidates. The ratio of these primes to the prime candidate P is given by integer n. In
general, the ratio of two prime candidates P (m) and P (n) is rational number m/n telling which of
the prime candidates is larger. This number provides ordering of the prime candidates P (n). The
reason why these numbers are good canditates for infinite primes is the same as above. No finite prime
p with k(p) 6= 0 appearing in the product can divide these numbers since, by the same arguments
as appearing in Euclid’s theorem, it would divide also 1. On the other hand it seems difficult to
invent any decomposition of these numbers containing infinite numbers. Already at this stage one
can notice the structural analogy with the construction of multiboson states in quantum field theory:
the numbers k(p) correspond to the occupation numbers of bosonic states of quantum field theory in
one-dimensional box, which suggests that the basic structure of QFT might have number theoretic
interpretation in some very general sense. It turns out that this analogy generalizes.

Step 3

All P (n) satisfy P (n) ≥ P (1). One can however also the possibility that P (1) is not the smallest
infinite prime and consider even more general candidates for infinite primes, which are smaller than
P (1). The trick is to drop from the infinite product of primes X =

∏
p p some primes away by dividing

it by integer s =
∏
pi
pi, multiply this number by an integer n not divisible by any prime dividing s

and to add to/subtract from the resulting number nX/s natural number ms such that m expressible
as a product of powers of only those primes which appear in s to get

P (±,m, n, s) = nXs ±ms ,
m =

∏
p|s p

k(p) ,

n =
∏
p|Xs

pk(p), k(p) ≥ 0 .
(4.2.3)

Here x|y means ’x divides y’. To see that no prime p can divide this prime candidate it is enough to
calculate P (±,m, n, s) modulo p: depending on whether p divides s or not, the prime divides only the
second term in the sum and the result is nonzero and finite (although its precise value is not known).
The ratio of these prime candidates to P (+, 1, 1, 1) is given by the rational number n/s: the ratio
does not depend on the value of the integer m. One can however order the prime candidates with
given values of n and s using the difference of two prime candidates as ordering criterion. Therefore
these primes can be ordered.

One could ask whether also more general numbers of the form nXs ±m are primes. In this case
one cannot prove the indivisibility of the prime candidate by p not appearing in m. Furthermore, for
s mod 2 = 0 and m mod 2 6= 0, the resulting prime candidate would be even integer so that it looks
improbable that one could obtain primes in more general case either.

Step 4

An even more general series of candidates for infinite primes is obtained by using the following
ansatz which in principle is contained in the original ansatz allowing infinite values of n

P (±,m, n, s|r) = nY r ±ms ,
Y = X

s ,
m =

∏
p|s p

k(p) ,

n =
∏
p|Xs

pk(p), k(p) ≥ 0 .

(4.2.4)

The proof that this number is not divisible by any finite prime is identical to that used in the previous
case. It is not however clear whether the ansatz for given r is not divisible by infinite primes belonging
to the lower level. A good example in r = 2 case is provided by the following unsuccessful ansatz

N = (n1Y +m1s)(n2Y +m2s) = n1n2X
2

s2 −m1m2s
2 ,

Y = X
s ,

n1m2 − n2m1 = 0 .

Note that the condition states that n1/m1 and −n2/m2 correspond to the same rational number or
equivalently that (n1,m1) and (n2,m2) are linearly dependent as vectors. This encourages the guess
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that all other r = 2 prime candidates with finite values of n and m at least, are primes. For higher
values of r one can deduce analogous conditions guaranteing that the ansatz does not reduce to a
product of infinite primes having smaller value of r. In fact, the conditions for primality state that
the polynomial P (n,m, r)(Y ) = nY r+m with integer valued coefficients (n > 0) defined by the prime
candidate is irreducible in the field of integers, which means that it does not reduce to a product of
lower order polynomials of same type.

Step 5

A further generalization of this ansatz is obtained by allowing infinite values for m, which leads to
the following ansatz:

P (±,m, n, s|r1, r2) = nY r1 ±ms ,
m = Pr2(Y )Y +m0 ,
Y = X

s ,
m0 =

∏
p|s p

k(p) ,

n =
∏
p|Y p

k(p), k(p) ≥ 0 .

(4.2.5)

Here the polynomial Pr2(Y ) has order r2 is divisible by the primes belonging to the complement of
s so that only the finite part m0 of m is relevant for the divisibility by finite primes. Note that the
part proportional to s can be infinite as compared to the part proportional to Y r1 : in this case one
must however be careful with the signs to get the sign of the infinite prime correctly. By using same
arguments as earlier one finds that these prime candidates are not divisible by finite primes. One must
also require that the ansatz is not divisible by lower order infinite primes of the same type. These
conditions are equivalent to the conditions guaranteing the polynomial primeness for polynomials of
form P (Y ) = nY r1 ± (Pr2(Y )Y + m0)s having integer-valued coefficients. The construction of these
polynomials can be performed recursively by starting from the first order polynomials representing
first level infinite primes: Y can be regarded as formal variable and one can forget that it is actually
infinite number.

By finite-dimensional analogy, the infinite value of m means infinite occupation numbers for the
modes represented by integer s in some sense. For finite values of m one can always write m as a
product of powers of pi|s. Introducing explicitly infinite powers of pi is not in accordance with the
idea that all exponents appearing in the formulas are finite and that the only infinite variables are X
and possibly S (formulas are symmetric with respect to S and X/S). The proposed representation
of m circumvents this difficulty in an elegant manner and allows to say that m is expressible as a
product of infinite powers of pi despite the fact that it is not possible to derive the infinite values of
the exponents of pi.

Summarizing, an infinite series of candidates for infinite primes has been found. The prime candi-
dates P (±,m, n, s) labeled by rational numbers n/s and integers m plus the primes P (±,m, n, s|r1, r2)
constructed as r1:th or r2:th order polynomials of Y = X/s: the latter ansatz reduces to the less gen-
eral ansatz of infinite values of n are allowed.

One can ask whether the p mod 4 = 3 condition guaranteing that the square root of −1 does not
exist as a p-adic number, is satisfied for P (±,m, n, s). P (±, 1, 1, 1) mod 4 is either 3 or 1. The value
of P (±,m, n, s) mod 4 for odd s on n only and is same for all states containing even/odd number of
p mod = 3 excitations. For even s the value of P (±,m, n, s) mod 4 depends on m only and is same for
all states containing even/odd number of p mod = 3 excitations. This condition resembles G-parity
condition of Super Virasoro algebras. Note that either P (+,m, n, s) or P (−,m, n, s) but not both
are physically interesting infinite primes (2m mod 4 = 2 for odd m) in the sense of allowing complex
Hilbert space. Also the additional conditions satisfied by the states involving higher powers of X/s
resemble to Virasoro conditions. An open problem is whether the analogy with the construction of
the many-particle states in super-symmetric theory might be a hint about more deeper relationship
with the representation of Super Virasoro algebras and related algebras.

It is not clear whether even more general prime candidates exist. An attractive hypothesis is that
one could write explicit formulas for all infinite primes so that generalized theory of primes would
reduce to the theory of finite primes.
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4.2.2 Infinite primes form a hierarchy

By generalizing using general construction recipe, one can introduce the second level prime candidates
as primes not divisible by any finite prime p or infinite prime candidate of type P (±,m, n, s) (or more
general prime at the first level: in the following we assume for simplicity that these are the only
infinite primes at the first level). The general form of these prime candidates is exactly the same as
at the first level. Particle-analogy makes it easy to express the construction receipe. In present case
’vacuum primes’ at the lowest level are of the form

X1

S ± S ,
X1 = X

∏
P (±,m,n,s) P (±,m, n, s) ,

S = s
∏
Pi
Pi ,

s =
∏
pi
pi .

(4.2.6)

S is product or ordinary primes p and infinite primes Pi(±,m, n, s). Primes correspond to physical
states created by multiplying X1/S (S) by integers not divisible by primes appearing S (X1/S). The
integer valued functions k(p) and K(p) of prime argument give the occupation numbers associated with
X/s and s type ’bosons’ respectively. The non-negative integer-valued function K(P ) = K(±,m, n, s)
gives the occupation numbers associated with the infinite primes associated with X1/S and S type
’bosons’. More general primes can be constructed by mimicking the previous procedure.

One can classify these primes by the value of the integer Ktot =
∑
P |X/S K(P ): for a given value

of Ktot the ratio of these prime candidates is clearly finite and given by a rational number. At given
level the ratio P1/P2 of two primes is given by the expression

P1(±,m1,n1,s1K1,S1

P2(±,m2,n2,s2,K,S2) = n1s2
n2s1

∏
±,m,n,s(

n
s )K

+
1 (±,n,m,s)−K+

2 (±,n,m,s) . (4.2.7)

Here K+
i denotes the restriction of Ki(P ) to the set of primes dividing X/S. This ratio must be

smaller than 1 if it is to appear as the first order term P1P2 → P1/P2 in the canonical identification
and again it seems that it is not possible to get all rationals for a fixed value of P2 unless one allows
infinite values of N expressed neatly using the more general ansatz involving higher power of S.

4.2.3 Construction of infinite primes as a repeated quantization of a super-
symmetric arithmetic quantum field theory

The procedure for constructing infinite primes is very much reminiscent of the second quantization of
an super-symetric arithmetic quantum field theory in which single particle fermion and boson states are
labeled by primes. In particular, there is nothing especially frightening in the particle representation
of infinite primes: theoretical physicists actually use these kind of representations quite routinely.

1. The binary-valued function telling whether a given prime divides s can be interpreted as a
fermion number associated with the fermion mode labeled by p. Therefore infinite prime is
characterized by bosonic and fermionic occupation numbers as functions of the prime labeling
various modes and situation is super-symmetric. X can be interpreted as the counterpart of
Dirac sea in which every negative energy state state is occupied and X/s± s corresponds to the
state containing fermions understood as holes of Dirac sea associated with the modes labeled by
primes dividing s.

2. The multiplication of the ’vacuum’ X/s with n =
∏
p|X/s p

k(p) creates k(p) ’p-bosons’ in mode

of type X/s and multiplication of the ’vacuum’ s with m =
∏
p|s p

k(p) creates k(p) ’p-bosons’.

in mode of type s (mode occupied by fermion). The vacuum states in which bosonic creation
operators act, are tensor products of two vacuums with tensor product represented as sum

|vac(±)〉 = |vac(X
s

)〉 ⊗ |vac(±s)〉 ↔ X

s
± s (4.2.8)



4.2. Infinite primes, integers, and rationals 209

obtained by shifting the prime powers dividing s from the vacuum |vac(X)〉 = X to the vacuum
±1. One can also interpret various vacuums as many fermion states. Prime property follows
directly from the fact that any prime of the previous level divides either the first or second factor
in the decomposition NX/S ±MS.

3. This picture applies at each level of infinity. At a given level of hierarchy primes P correspond to
all the Fock state basis of all possible many-particle states of second quantized super-symmetric
theory. At the next level these many-particle states are regarded as single particle states and
further second quantization is performed so that the primes become analogous to the momentum
labels characterizing various single-particle states at the new level of hierarchy.

4. There are two nonequivalent quantizations for each value of S due to the presence of ± sign
factor. Two primes differing only by sign factor are like G-parity +1 and −1 states in the sense
that these primes satisfy P mod 4 = 3 and P mod 4 = 1 respectively. The requirement that
−1 does not have p-adic square root so that Hilbert space is complex, fixes G-parity to say +1.
This observation suggests that there exists a close analogy with the theory of Super Virasoro
algebras so that quantum TGD might have interpretation as number theory in infinite context.
An alternative interpretation for the ± degeneracy is as counterpart for the possibility to choose
the fermionic vacuum to be a state in which either all positive or all negative energy fermion
states are occupied.

5. One can also generalize the construction to include polynomials of Y = X/S to get infinite
hierarchy of primes labeled by the two integers r1 and r2 associated with the polynomials in
question. An entire hierarchy of vacuums labeled by r1 is obtained. A possible interpretation
of these primes is as counterparts for the bound states of quantum field theory. The coefficient
for the power (X/s)r1 appearing in the highest term of the general ansatz, codes the occupa-
tion numbers associated with vacuum (X/s)r1 . All the remaining terms are proportional to s
and combine to form, in general infinite, integer m characterizing various infinite occupation
numbers for the subsystem characterized by s. The additional conditions guaranteing prime
number property are equivalent with the primality conditions for polynomials with integer val-
ued coefficients and resemble Super Virasoro conditions. For r2 > 0 bosonic occupation numbers
associated with the modes with fermion number one are infinite and one cannot write explicit
formula for the boson number.

6. One could argue that the analogy with super-symmetry is not complete. The modes of Super
Virasoro algebra are labeled by natural number whereas now modes are labeled by prime. This
need not be a problem since one can label primes using natural number n. Also 8-valued spin
index associated with fermionic and bosonic single particle states in TGD world is lacking (space-
time is surface in 8-dimensional space). This index labels the spin states of 8-dimensional spinor
with fixed chirality. One could perhaps get also spin index by considering infinite octonionic
primes, which correspond to vectors of 8-dimensional integer lattice such that the length squared
of the lattice vector is ordinary prime:

∑
k=1,...,8

n2
k = prime .

Thus one cannot exclude the possibility that TGD based physics might provide representation
for octonions extended to include infinitely large octonions. The notion of prime octonion is well
defined in the set of integer octonions and it is easy to show that the Euclidian norm squared for
a prime octonion is prime. If this result generalizes then the construction of generalized prime
octonions would generalize the construction of finite prime octonions. It would be interesting to
know whether the results of finite-dimensional case might generalize to the infinite-dimensional
context. One cannot exclude the possibility that prime octonions are in one-one correspondence
with physical states in quantum TGD.

These observations suggest a close relationship between quantum TGD and the theory of infinite
primes in some sense: even more, entire number theory and mathematics might be reducible to
quantum physics understood properly or equivalently, physics might provide the representation of basic
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mathematics. Of course, already the uniqueness of the basic mathematical structure of quantum TGD
points to this direction. Against this background the fact that 8-dimensionality of the imbedding space
allows introduction of octonion structure (also p-adic algebraic extensions) acquires new meaning.
Same is also suggested by the fact that the algebraic extensions of p-adic numbers allowing square
root of real p-adic number are 4- and 8-dimensional.

What is especially interesting is that the core of number theory would be concentrated in finite
primes since infinite primes are obtained by straightforward procedure providing explicit formulas for
them. Repeated quantization provides also a model of abstraction process understood as construc-
tion of hierarchy of natural number valued functions about functions about ...... At the first level
infinite primes are characterized by the integer valued function k(p) giving occupation numbers plus
subsystem-complement division (division to thinker and external world!). At the next level prime is
characterized in a similar manner. One should also notice that infinite prime at given level is char-
acterized by a pair (R = MN,S) of integers at previous level. Equivalently, infinite prime at given
level is characterized by fermionic and bosonic occupation numbers as functions in the set of primes
at previous level.

4.2.4 Construction in the case of an arbitrary commutative number field

The basic construction recipe for infinite primes is simple and generalizes even to the case of algebraic
extensions of rationals. Let K = Q(θ) be an algebraic number field (see the Appendix of [K77] for
the basic definitions). In the general case the notion of prime must be replaced by the concept of
irreducible defined as an algebraic integer with the property that all its decompositions to a product
of two integers are such that second integer is always a unit (integer having unit algebraic norm, see
Appendix of [K77] ).

Assume that the irreducibles of K = Q(θ) are known. Define two irreducibles to be equivalent if
they are related by a multiplication with a unit of K. Take one representative from each equivalence
class of units. Define the irreducible to be positive if its first non-vanishing component in an ordered
basis for the algebraic extension provided by the real unit and powers of θ, is positive. Form the
counterpart of Fock vacuum as the product X of these representative irreducibles of K.

The unique factorization domain (UFD) property (see Appendix of [K77] ) of infinite primes does
not require the ring OK of algebraic integers of K to be UFD although this property might be forced
somehow. What is needed is to find the primes of K; to construct X as the product of all irreducibles of
K but not counting units which are integers of K with unit norm; and to apply second quantization to
get primes which are first order monomials. X is in general a product of powers of primes. Generating
infinite primes at the first level correspond to generalized rationals for K having similar representation
in terms of powers of primes as ordinary rational numbers using ordinary primes.

4.2.5 Mapping of infinite primes to polynomials and geometric objects

The mapping of the generating infinite primes to first order monomials labeled by their rational zeros
is extremely simple at the first level of the hierarchy:

P±(m,n, s) =
mX

s
± ns→ x± ±

m

sn
. (4.2.9)

Note that a monomial having zero as its root is not obtained. This mapping induces the mapping of
all infinite primes to polynomials.

The simplest infinite primes are constructed using ordinary primes and second quantization of an
arithmetic number theory corresponds in one-one manner to rationals. Indeed, the integer s =

∏
i p
ki
i

defining the numbers ki of bosons in modes ki, where fermion number is one, and the integer r defining
the numbers of bosons in modes where fermion number is zero, are co-prime. Moreover, the generating
infinite primes can be written as (n/s)X ±ms corresponding to the two vacua V = X ± 1 and the
roots of corresponding monomials are positive resp. negative rationals.

More complex infinite primes correspond sums of powers of infinite primes with rational coefficients
such that the corresponding polynomial has rational coefficients and roots which are not rational but
belong to some algebraic extension of rationals. These infinite primes correspond simply to products
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of infinite primes associated with some algebraic extension of rationals. Obviously the construction
of higher infinite primes gives rise to a hierarchy of higher algebraic extensions.

It is possible to continue the process indefinitely by constructing the Dirac vacuum at the n:th
level as a product of primes of previous levels and applying the same procedure. At the second level
Dirac vacuum V = X ± 1 involves X which is the product of all primes at previous levels and in
the polynomial correspondence X thus correspond to a new independent variable. At the n:th level
one would have polynomials P (q1|q2|...) of q1 with coefficients which are rational functions of q2 with
coefficients which are.... The hierarchy of infinite primes would be thus mapped to the functional
hierarchy in which polynomial coefficients depend on parameters depending on ....

At the second level one representation of infinite primes would be as algebraic curve resulting as
a locus of P (q1|q2) = 0: this certainly makes sense if q1 and q2 commute. At higher levels the locus
is a higher-dimensional surface.

4.2.6 How to order infinite primes?

One can order the infinite primes, integers and rationals. The ordering principle is simple: one can
decompose infinite integers to two parts: the ’large’ and the ’small’ part such that the ratio of the
small part with the large part vanishes. If the ratio of the large parts of two infinite integers is different
from one or their sign is different, ordering is obvious. If the ratio of the large parts equals to one,
one can perform same comparison for the small parts. This procedure can be continued indefinitely.

In case of infinite primes ordering procedure goes like follows. At given level the ratios are rational
numbers. There exists infinite number of primes with ratio 1 at given level, namely the primes with
same values of N and same S with MS infinitesimal as compared to NX/S. One can order these
primes using either the relative sign or the ratio of (M1S1)/(M2S2) of the small parts to decide which
of the two is larger. If also this ratio equals to one, one can repeat the process for the small parts of
MiSi. In principle one can repeat this process so many times that one can decide which of the two
primes is larger. Same of course applies to infinite integers and also to infinite rationals build from
primes with infinitesimal MS. If NS is not infinitesimal it is not obvious whether this procedure
works. If NiXi/MiSi = xi is finite for both numbers (this need not be the case in general) then the

ratio M1S1

M2S2

(1+x2)
(1+x1) provides the needed criterion. In case that this ratio equals one, one can consider use

the ratio of the small parts multiplied by (1+x2)
(1+x1) of MiSi as ordering criterion. Again the procedure

can be repeated if needed.

4.2.7 What is the cardinality of infinite primes at given level?

The basic problem is to decide whether Nature allows also integers S , R = MN represented as infinite
product of primes or not. Infinite products correspond to subsystems of infinite size (S) and infinite
total occupation number (R) in QFT analogy.

1. One could argue that S should be a finite product of integers since it corresponds to the require-
ment of finite size for a physically acceptable subsystem. One could apply similar argument
to R. In this case the set of primes at given level has the cardinality of integers (alef0) and
the cardinality of all infinite primes is that of integers. If also infinite integers R are assumed
to involve only finite products of infinite primes the set of infinite integers is same as that for
natural numbers.

2. NMP is well defined in p-adic context also for infinite subsystems and this suggests that one
should allow also infinite number of factors for both S and R = MN . Super symmetric analogy
suggests the same: one can quite well consider the possibility that the total fermion number of
the universe is infinite. It seems however natural to assume that the occupation numbers K(P )
associated with various primes P in the representations R =

∏
P P

K(P ) are finite but nonzero
for infinite number of primes P . This requirement applied to the modes associated with S would
require the integer m to be explicitly expressible in powers of Pi|S (Pr2 = 0) whereas all values
of r1 are possible. If infinite number of prime factors is allowed in the definition of S, then the
application of diagonal argument of Cantor shows that the number of infinite primes is larger
than alef0 already at the first level. The cardinality of the first level is 2alef02alef0 == 2alef0 .
The first factor is the cardinality of reals and comes from the fact that the sets S form the
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set of all possible subsets of primes, or equivalently the cardinality of all possible binary valued
functions in the set of primes. The second factor comes from the fact that integers R = NM
(possibly infinite) correspond to all natural number-valued functions in the set of primes: if only
finite powers k(p) are allowed then one can map the space of these functions to the space of
binary valued functions bijectively and the cardinality must be 2alef0 . The general formula for
the cardinality at given level is obvious: for instance, at the second level the cardinality is the
cardinality of all possible subsets of reals. More generally, the cardinality for a given level is the
cardinality for the subset of possible subsets of primes at the previous level.

4.2.8 How to generalize the concepts of infinite integer, rational and real?

The allowance of infinite primes forces to generalize also the concepts concepts of integer, rational and
real number. It is not obvious how this could be achieved. The following arguments lead to a possible
generalization which seems practical (yes!) and elegant.

Infinite integers form infinite-dimensional vector space with integer coefficients

The first guess is that infinite integers N could be defined as products of the powers of finite and
infinite primes.

N =
∏
k

pnkk = nM , nk ≥ 0 , (4.2.10)

where n is finite integer and M is infinite integer containing only powers of infinite primes in its
product expansion.

It is not however not clear whether the sums of infinite integers really allow similar decomposition.
Even in the case that this decomposition exists, there seems to be no way of deriving it. This would
suggest that one should regard sums ∑

i

niMi

of infinite integers as infinite-dimensional linear space spanned by Mi so that the set of infinite integers
would be analogous to an infinite-dimensional algebraic extension of say p-adic numbers such that
each coordinate axes in the extension corresponds to single infinite integer of form N = mM . Thus
the most general infinite integer N would have the form

N = m0 +
∑

miMi . (4.2.11)

This representation of infinite integers indeed looks promising from the point of view of practical
calculations. The representation looks also attractive physically. One can interpret the set of integers
N as a linear space with integer coefficients m0 and mi:

N = m0|1〉+
∑

mi|Mi〉 . (4.2.12)

|Mi〉 can be interpreted as a state basis representing many-particle states formed from bosons labeled
by infinite primes pk and |1〉 represents Fock vacuum. Therefore this representation is analogous to a
quantum superposition of bosonic Fock states with integer, rather than complex valued, superposition
coefficients. If one interprets Mi as orthogonal state basis and interprets mi as p-adic integers, one
can define inner product as

〈Na, Nb〉 = m0(a)m0(b) +
∑
i

mi(a)mi(b) . (4.2.13)

This expression is well defined p-adic number if the sum contains only enumerable number of terms
and is always bounded by p-adic ultrametricity. It converges if the p-adic norm of of mi approaches
to zero when Mi increases.
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Generalized rationals

Generalized rationals could be defined as ratios R = M/N of the generalized integers. This works
nicely when M and N are expressible as products of powers of finite or infinite primes but for more
general integers the definition does not look attractive. This suggests that one should restrict the
generalized rationals to be numbers having the expansion as a product of positive and negative primes,
finite or infinite:

N =
∏
k

pnkk =
n1M1

nM
. (4.2.14)

Generalized reals form infinite-dimensional real vector space

One could consider the possibility of defining generalized reals as limiting values of the generalized
rationals. A more practical definition of the generalized reals is based on the generalization of the
pinary expansion of ordinary real number given by

x =
∑
n≥n0

xnp
−n ,

xn ∈ {0, .., p− 1} . (4.2.15)

It is natural to try to generalize this expansion somehow. The natural requirement is that sums
and products of the generalized reals and canonical identification map from the generalized reals to
generalized p-adcs are readily calculable. Only in this manner the representation can have practical
value.

These requirements suggest the following generalization

X = x0 +
∑
N

xNp
−N ,

N =
∑
i

miMi , (4.2.16)

where x0 and xN are ordinary reals. Note that N runs over infinite integers which has vanishing finite
part. Note that generalized reals can be regarded as infinite-dimensional linear space such that each
infinite integer N corresponds to one coordinate axis of this space. One could interpret generalized
real as a superposition of bosonic Fock states formed from single single boson state labeled by prime
p such that occupation number is either 0 or infinite integer N with a vanishing finite part:

X = x0|0〉+
∑
N

xN |N > . (4.2.17)

The natural inner product is

〈X,Y 〉 = x0y0 +
∑
N

xNyN . (4.2.18)

The inner product is well defined if the number of N :s in the sum is enumerable and xN approaches
zero sufficiently rapidly when N increases. Perhaps the most natural interpretation of the inner
product is as Rp valued inner product.

The sum of two generalized reals can be readily calculated by using only sum for reals:

X + Y = x0 + y0 +
∑
N

(xN + yN )p−N ,

(4.2.19)
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The product XY is expressible in the form

XY = x0y0 + x0Y +Xy0 +
∑
N1,N2

xN1yN2p
−N1−N2 ,

(4.2.20)

If one assumes that infinite integers form infinite-dimensional vector space in the manner proposed,
there are no problems and one can calculate the sums N1 +N2 by summing component wise manner
the coefficients appearing in the sums defining N1 and N2 in terms of infinite integers Mi allowing
expression as a product of infinite integers.

Canonical identification map from ordinary reals to p-adics

x =
∑
k

xkp
−k → xp =

∑
k

xkp
k ,

generalizes to the form

x = x0 +
∑
N

xNp
−N → (x0)p +

∑
N

(xN )pp
N , (4.2.21)

so that all the basic requirements making the concept of generalized real calculationally useful are
satisfied.

There are several interesting questions related to generalized reals.

1. Are the extensions of reals defined by various values of p-adic primes mathematically equivalent
or not? One can map generalized reals associated with various choices of the base p to each
other in one-one manner using the mapping

X = x0 +
∑
N

xNp
−N
1 → x0 +

∑
N

xNp
−N
2 .

(4.2.22)

The ordinary real norms of finite (this is important!) generalized reals are identical since the
representations associated with different values of base p differ from each other only infinitesi-
mally. This would suggest that the extensions are physically equivalent. It these extensions are
not mathematically equivalent then p-adic primes could have a deep role in the definition of the
generalized reals.

2. One can generalize previous formulas for the generalized reals by replacing the coefficients x0

and xi by complex numbers, quaternions or octonions so as to get generalized complex num-
bers, quaternions and octonions. Also inner product generalizes in an obvious manner. The
8-dimensionality of the imbedding space provokes the question whether it might be possible to
regard the infinite-dimensional configuration space of 3-surfaces, or rather, its tangent space, as
a Hilbert space realization of the generalized octonions. This kind of identification could perhaps
reduce TGD based physics to generalized number theory.

4.2.9 Comparison with the approach of Cantor

The main difference between the approach of Cantor and the proposed approach is that Cantor
uses only the basic arithmetic concepts such as sum and multiplication and the concept of successor
defining ordering of both finite and infinite ordinals. Cantor’s approach is also purely set theoretic.
The problems of purely set theoretic approach are related to the question what the statement ’Set is
Many allowing to regard itself as One’ really means and to the fact that there is no obvious connection
with physics.

The proposed approach is based on the introduction of the concept of prime as a basic concept
whereas partial ordering is based on the use of ratios: using these one can recursively define partial



4.3. Can one generalize the notion of infinite prime to the non-commutative and
non-associative context? 215

ordering and get precise quantitative information based on finite reals. The ordering is only partial
and there is infinite number of ratios of infinite integers giving rise to same real unit which in turn
leads to the idea about number theoretic anatomy of real point.

The ’Set is Many allowing to regard itself as One’ is defined as quantum physicist would define it:
many particle states become single particle states in the second quantization describing the counterpart
for the construction of the set of subsets of a given set. One could also say that integer as such
corresponds to set as ’One’ and its decomposition to a product of primes corresponds to the set as
’Many’. The concept of prime, the ultimate ’One’, has as its physical counterpart the concept of
elementary particle understood in very general sense. The new element is the physical interpretation:
the sum of two numbers whose ratio is zero correspond to completely physical finite-subsystem-infinite
complement division and the iterated construction of the set of subsets of a set at given level is
basically p-adic evolution understood in the most general possible sense and realized as a repeated
second quantization. What is attractive is that this repeated second quantization can be regarded
also as a model of abstraction process and actually the process of abstraction itself.

The possibility to interpret the construction of infinite primes either as a repeated bosonic quanti-
zation involving subsystem-complement division or as a repeated super-symmetric quantization could
have some deep meaning. A possible interpretation consistent with these two pictures is based on the
hypothesis that fermions provide a reflective level of consciousness in the sense that the 2N element
Fock basis of many-fermion states formed from N single-fermion states can be regarded as a set of
all possible statements about N basic statements. Statements about whether a given element of set
X belongs to some subset S of X are certainly the fundamental statements from the point of view of
mathematics. Hence one could argue that many-fermion states provide cognitive representation for
the subsets of some set. Single fermion states represent the points of the set and many-fermion states
represent possible subsets.

4.3 Can one generalize the notion of infinite prime to the non-
commutative and non-associative context?

The notion of prime and more generally, that of irreducible, makes sense also in more general number
fields and even algebras. The considerations of [K78] suggests that the notion of infinite prime should
be generalized to the case of complex numbers, quaternions, and octonions as well as to their hyper
counterparts which seem to be physically the most interesting ones [K78] . Also the hierarchy of
infinite primes should generalize as also the representation of infinite primes as polynomials although
associativity is expected to pose technical problems.

4.3.1 Quaternionic and octonionic primes and their hyper counterparts

The loss of commutativity and associativity implies that the definitions of quaternionic and octonionic
primes are not completely straightforward.

Basic facts about quaternions and octonions

Both quaternions and octonions allow both Euclidian norm and the Minkowskian norm defined as
a trace of the linear operator defined by the multiplication with octonion. Minkowskian norm has
the metric signature of H = M4 × CP2 or M4

+ × CP2 so that H can be regarded locally as an
octonionic space if one uses octonionic representation for the gamma matrices [K78] . Both norms are
a multiplicative and the notions of both quaternionic and octonionic prime are well defined despite
non-associativity. Quaternionic and octonionic primes have length squared equal to rational prime.

In the case of quaternions different basis of imaginary units I, J,K are related by 3-dimensional
rotation group and different quaternionic basis span a 3-dimensional sphere. There is 2-sphere of
complex structures since imaginary unit can be any unit vector of imaginary 3-space.

A basis for octonionic imaginary units J,K,L,M,N,O, P can be chosen in many manners and
fourteen-dimensional subgroup G2 of the group SO(7) of rotations of imaginary units is the group
labeling the octonionic structures related by octonionic automorphisms to each other. It deserves to
be mentioned that G2 is unique among the simple Lie-groups in that the ratio of the square roots of
lengths for long and short roots of G2 Lie-algebra are in ratio 3 : 1. For other Lie-groups this ratio is
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either 2:1 or all roots have same length. The set of equivalence classes of the octonion structures is
SO(7)/G2 = S7. In the case of quaternions there is only one equivalence class.

The group of automorphisms for octonions with a fixed imaginary part is SU(3). The coset space
S6 = G2/SU(3) labels possible complex structures of the octonion space specified by a selection
of a preferred imaginary unit. SU(3)/U(2) = CP2 could be thought of as the space of octonionic
structures giving rise to a given quaternionic structure with complex structure fixed. This can be seen
as follows. The units 1, I are SU(3) singlets whereas J, J1, J2 and K,K1,K2 form SU(3) triplet and
antitriplet. Under U(2) J and K transform like objects having vanishing SU(3) isospin and suffer
only a U(1) phase transformation determined by multiplication with complex unit I and are mixed
with each other in orthogonal mixture. Thus 1, I, J,K is transformed to itself under U(2).

Quaternionic and octonionic primes

Quaternionic primes with p mod 4 = 1 can correspond to (n1, n2) with n1 even and n2 odd or
vice versa. For p mod 4 = 3 (n1, n2, n3) with ni odd is the minimal option. In this case there is
however large number of primes having only two components: in particular, Gaussian primes with
p mod 4 = 1 define also quaternionic primes. Purely real Gaussian primes with p mod 4 = 3 with
norm zz equal to p2 are not quaternionic primes, and are replaced with 3-component quaternionic
primes allowing norm equal to p. Similar conclusions hold true for octonionic primes.

The reality condition for polynomials associated with Gaussian infinite primes requires that the
products of generating prime and its conjugate are present so that the outcome is a real polynomial
of second order.

Hyper primes

The notion of prime generalizes to hyper-quaternionic and octonionic case. The factorization n2
0−n2

3 =
(n0 + n3)(n0 − n3) implies that any hyper-quaternionic and -octonionic prime has one particualr
representative as (n0, n3, 0, ...) = (n3 + 1, n3, 0, ...), n3 = (p − 1)/2 for p > 2. p = 2 is exceptional: a
representation with minimal number of components is given by (2, 1, 1, 0, ...).

Notice that the interpretation of hyper-quaternionic primes (or integers) as four-momenta implies
that it is not possible to find rest system for them if one assumes the entire quaternionic prime as
four-momentum: only a system where energy is minimum is possible. The introduction of a preferred
hyper-complex plane necessary for several reasons- in particular for the possibility to identify standard
model quantum numbers in terms of infinite primes- allows to identify the momentum of particle in
the preferred plane as the first two components of the hyper prime in fixed coordinate frame. Note
that this leads to a universal spectrum for mass squared.

For time like hyper-primes the momentum is always time like for hyper-primes. In this case it is
possible to find a rest frame by applying a hyper-primeness preserving G2 transformation so that the
resulting momentum has no component in the preferred frame. As a matter fact, SU(3) rotation is
enough for a suitable choice of SU(3). These transformations form a discrete subgroup of SU(3) since
hyper-integer property must be preserved. Massless states correspond to a null norm for the corre-
sponding hyper integer unless one allows also tachyonic hyper primes with minimal representatives
(n3, n3 − 1, 0, ...), n3 = (p − 1)/2. Note that Gaussian primes with p mod4 = 1 are representable
as space-like primes of form (0, n1, n2, 0): n2

1 + n2
2 = p and would correspond to genuine tachyons.

Space-like primes with p mod 4 = 3 have at least 3 non-vanishing components which are odd integers.
The notion of ”irreducible” (see Appendix of [K77] ) is defined as the equivalence class of primes

related by a multiplication with a unit and is more fundamental than that of prime. All Lorentz
boosts of a hyper prime combine to form an irreducible. Note that the units cannot correspond to
real particles in corresponding arithmetic quantum field theory.

If the situation for p > 2 is effectively 2-dimensional in the sense that it is always possible to
transform the hyper prime to a 2-component form by multiplying it by a suitable unit representing
Lorentz boost, the theory for time-like hyper primes effectively reduces to the 2-dimensional hyper-
complex case when irreducibles are chosen to belong to H2. The physical counterpart for the choice
of H2 would be the choice of the plane of longitudinal polarizations, or equivalently, of quantization
axis for spin. This hypothesis is physically highly attractive since it would imply number theoretic
universality and conform with the effective 2-dimensionality. Of course, the hyper-octonionic primes
related by SO(7, 1) boosts need not represent physically equivalent states.
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Also the rigorous notion of hyper primeness seems to require effective 2-dimensionality. If effective
2-dimensionality holds true, hyper integers have a decomposition to a product of hyper primes mul-
tiplied by a suitable unit. The representation is obtained by Lorentz boosting the hyper integer first
to a 2-component form and then decomposing it to a product of hyper-complex primes.

4.3.2 Hyper-octonionic infinite primes

The infinite-primes associated with hyper-octonions are the most natural ones physically because of
the underlying Lorentz invariance. It is however not possible to interpret them as as 8-momenta with
mass squared equal to prime. The proper identification of standard model quantum numbers will be
discussed later.

Should infinite primes be commutative and associative?

The basic objections against (hyper-)quaternionic and (hyper-)octonionic infinite primes relate to the
non-commutativity and non-associativity.

In the case of quaternionic infinite primes non-commutativity, and in the case of octonionic infinite
primes also non-associativity, might be expected to cause difficulties in the definition of X. Fortu-
nately, the fact that all conjugates of a given finite prime appear in the product defining X, implies
that the contribution from each irreducible with a given norm p is real and X is real. Therefore the
multiplication and division of X with quaternionic or octonionic primes is a well-defined procedure,
and generating infinite primes are well-defined apart from the degeneracy due to non-commutativity
and non-associativity of the finite number of lower level primes. Also the products of infinite primes
are well defined, since by the reality of X it is possible to tell how the products AB and BA differ. Of
course, also infinite primes representing physical states containing infinite numbers of fermions and
bosons are possible and infinite primes of this kind must be analogous to generators of a free algebra
for which AB and BA are not related in any manner.

The original idea was that infinite hyper-octonionic primes could be mapped to polynomials and
one could assign to these space-time surfaces in analogy with the identification of surfaces as zero locii
of polynomals. Although this idea has been given up, it is good to make clear its problematic aspects.

1. The sums of products of monomials of generating infinite primes define higher level infinite
primes and also here non-commutativity and associativity cause potential technical difficulties.
The assignment of a monomial to a quaternionic or octonionic infinite prime is not unique since
the rational obtained by dividing the finite part mr with the integer n associated with infinite
part can be defined either as (1/n)×mr or mr×(1/n) and the resulting non-commuting rationals
are different.

2. If the polynomial associated with infinite prime has real-rational coefficients, these difficulties do
not appear. The problem is that the polynomials as such would not contain information about
the number field in question.

3. Commutativity requirement for infinite primes allows real-rationals or possibly algebraic exten-
sions of them as the coefficients of the polynomials formed from hyper-octonionic infinite primes.
If only infinite primes with complex rational coefficients are allowed and only the vacuum state
V± = X±1 involving product over all primes of the number field, would reveal the number field.
One could thus construct the generating infinite primes using the notion of hyper-octonionic
prime for any algebraic extension of rationals.

The idea about mapping of infinite primes to polynomials in turn defining space-time surfaces is
non-realistic. The recent view is more abstract and based on the mapping of wave functions in the space
of hyper-octonion units assignable to single imbedding space point by its number-theoretic anatomy
and a further mapping of quantum numbers to the geometry of space-time surface by the coupling
of the modified Dirac action to the quantum numbers via measurement interaction. In this approach
one cannot assume commutatitivity of hyper-octonionic primes at any level. The problems due to
non-commutativity and non-associativity are however circumvented by assuming that permutations
and associations of are represented as phase factors and therefore do not change the quantum state.
This means the introduction of association statistics besides permutation statistics. Besides Fermi and
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Bose statistics one can consider braid statistics. Note that Fermi statistics makes sense only when the
fermionic finite primes appearing in the state do not commute.

The construction recipe for hyper-octonionic infinite primes

The following argument represents the construction recipe for the first level hyper-octonionic primes
without the restriction to rational infinite primes. If the reduction is possible always by a suitable G2

rotation then the construction of the infinite primes analogous to bound states is obtained in trivial
manner from that for rational variants of these primes. The recipe generalizes to the higher levels in
trivial manner.

Each hyper-octonionic prime has a number of conjugates obtained by applying transformations of
G2 respecting the property of being hyper-octonionic integer.

1. The number of conjugates of given finite prime depends on the number of non-vanishing com-
ponents of the the prime with norm p in the minimal representation having minimal energy.
Several primes with a given norm p not related by a multiplication with unit or by automor-
phism are in principle possible. The degeneracy is determined by the number of elements of a
subgroup of Galois group acting non-trivially on the prime.

Galois group contains the permutations of 7 imaginary units and 7 conjugations of units consis-
tent with the octonionic product. X is proportional to pN(p) where N(p) in principle depends
on p.

There could exist also G2 transformations which change the number of components of the infinite
prime. They satisfy tight number theoretical constraints since the quantity

∑7
i=1 n

2
i must be

preserved. For instance, for the transformation from standard form with two components to
that with more than two components one has n2

1(i) =
∑
k n

2
k(f). For the transformation from 2-

component prime to 3-component prime one has a condition characterizing Pythagorean triangle.
One can however consider also a situation when no such G2 transformation exist so that one
has several G2 orbits corresponding to the same rational prime.

The construction itself would be relatively straightforward. Consider first the construction of the
”vacuum” primes.

1. In the case of ordinary infinite primes there are two different vacuum primes X ± 1. This is the
case also now. I turns out that this degeneracy corresponds to the spin and orbital degrees of
freedom for the spinor fields of WCW.

2. The product X of all hyper-octonionic irreducibles can be regarded as the counterpart of Dirac
vacuum in a rather concrete sense. Moreover, in the hyper-quaternionic and octonionic case the
norm of X is analogous to the Dirac determinant of a fermionic field theory with prime valued
mass spectrum and integer valued momentum components. The inclusion of only irreducible
eliminates from the infinite product defining Dirac determinant product over various Lorentz
boosts of pkγk −m.

3. Infinite prime property requires that X must be defined by taking one representative from each
G2 equivalence class representing irreducible and forming the product of all its G2 conjugates.
The standard representative for the hyper-octonionic primes can be taken to be time-like positive
energy prime unless one allows also tachyonic primes in which case a natural representative has
a vanishing real component. The conjugates of each irreducible appear in X so for a given norm
p the net result is real for each rational prime p.

The construction of non-vacuum primes is equally straighforward.

1. If the conjectured effective 2-dimensionality holds true, it is enough to construct hyper-complex
primes first. To the finite hyper-complex primes appearing in these infinite primes one can
apply transformations of G2 mapping hyper-octonionic integers to hyper-octonionic integers.
The infinite prime would have degeneracy defined by the product of G2 orbits of finite primes
involved. Every finite prime would be like particle possessing finite number of quantum states.
If there are several G2 orbits corresponding to the same finite prime exist they must be also
included and the conjectured effective 2-dimensionality fails.
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2. An interesting question is what happens when the finite part of an infinite prime is multiplied by
light like integer k. The first guess is that k describes the presence of a massless particle. If the
resulting infinite integer is multiplied with conjugates kc,i of k an integer of form

∏
i kc,imX/n

having formally zero norm results. It would thus seem that there is a kind of gauge invariance
in the sense that infinite primes for which both finite and infinite part are multiplied with the
same light-like primes, are divisors of zero and correspond to gauge degrees of freedom. This
conclusion is supported by the interpretation of the projection of infinite prime to the preferred
hyper-complex plane as momentum of particle in a preferred M2 plane assigned by the hierarchy
of Planck constants to each CD and also required by the p-adicization.

3. More complex infinite hyper-octonionic primes can be constructed from rational hyper-complex
and complex infinite primes using a representation in terms of polynomials and then acting on
the finite primes appering in their expression by elements of G2 preserving integer property.
This construction works at all levels of the hierarchy and one might hope that it is all that is
needed. If there are several G2 orbits for given finite prime p one encounters a problem since
hyper-octonionic primes with more than 2 components do not allow associative and commutative
polynomial representations. The interpretation as bound states is suggestive.

4.4 How to interpret the infinite hierarchy of infinite primes?

From the foregoing it should be clear that infinite primes might play key role in quantum physics. One
can even consider the possibility that physics reduces to a generalized number theory, and that infinite
primes are crucial for understanding mathematically consciousness and cognition. Of course, one must
leave open the question whether infinite primes really provide really the mathematics of consciousness
or whether they are only a beautiful but esoteric mathematical construct. In this spirit the following
subsections give only different points of view to the problem with no attempt to a coherent overall
view.

4.4.1 Infinite primes and hierarchy of super-symmetric arithmetic quan-
tum field theories

Infinite primes are a generalization of the notion of prime. They turn out to provide number theoretic
correlates of both free, interacting and bound states of a super-symmetric arithmetic quantum field
theory. It turns also possible to assign to infinite prime space-time surface as a geometric correlate
although the original proposal for how to achieve this failed. Hence infinite primes serve as a bridge
between classical and quantum and realize quantum classical correspondence stating that quantum
states have classical counterparts, and has served as a basic heuristic guideline of TGD. More pre-
cisely, the natural hypothesis is that infinite primes code for the ground states of super-symplectic
representations (for instance, ordinary particles correspond to states of this kind).

Generating infinite primes as counterparts of Fock states of a super-symmetric arithmetic
quantum field theory

The basic construction recipe for infinite primes is simple and generalizes to the quaternionic case.

1. Form the product of all primes and call it X:

X =
∏
p

p .

2. Form the vacuum states

V± = X ± 1 .
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3. From these vacua construct all generating infinite primes by the following process. Kick out from
the Dirac sea some negative energy fermions: they correspond to a product s of first powers of
primes: V → X/s ± s (s is thus square-free integer). This state represents a state with some
fermions represented as holes in Dirac sea but no bosons. Add bosons by multiplying by integer
r, which decomposes into parts as r = mn: m corresponding to bosons in X/s is product of
powers of primes dividing X/s and n corresponds to bosons in s and is product of powers of
primes dividing s. This step can be described as X/s± s→ mX/s± ns.

Generating infinite primes are thus in one-one correspondence with the Fock states of a super-
symmetric arithmetic quantum field theory and can be written as

P±(m,n, s) =
mX

s
± ns ,

where X is product of all primes at previous level. s is square free integer. m and n have no common
factors, and neither m and s nor n and X/s have common factors.

The physical analog of the process is the creation of Fock states of a super-symmetric arithmetic
quantum field theory. The factorization of s to a product of first powers of primes corresponds to
many-fermion state and the decomposition of m and n to products of powers of prime correspond to
bosonic Fock states since pk corresponds to k-particle state in arithmetic quantum field theory.

More complex infinite primes as counterparts of bound states

Generating infinite primes are not all that are possible. One can construct also polynomials of the
generating primes and under certain conditions these polynomials are non-divisible by both finite
primes and infinite primes already constructed. As found, the conjectured effective 2-dimensionality for
hyper-octonionic primes allows the reduction of polynomial representation of hyper-octonionic primes
to that for hyper-complex primes. This would be in accordance with the effective 2-dimensionality of
the basic objects of quantum TGD.

The physical counterpart of n:th order irreducible polynomial is as a bound state of n particles
whereas infinite integers constructed as products of infinite primes correspond to non-bound but
interacting states. This process can be repeated at the higher levels by defining the vacuum state
to be the product of all primes at previous levels and repeating the process. A repeated second
quantization of a super-symmetric arithmetic quantum field theory is in question.

The infinite primes represented by irreducible polynomials correspond to quantum states obtained
by mapping the superposition of the products of the generating infinite primes to a superposition of the
corresponding Fock states. If complex rationals are the coefficient field for infinite integers, this gives
rise to states in a complex Hilbert space and irreducibility corresponds to a superposition of states
with varying particle number and the presence of entanglement. For instance, the superpositions of
several products of type

∏
i=1,..,n Pi of n generating infinite primes are possible and in general give

rise to irreducible infinite primes decomposing into a product of infinite primes in algebraic extension
of rationals.

How infinite rationals correspond to quantum states and space-time surfaces?

The most promising answer to the question how infinite rationals correspond to space-time surfaces
is discussed in detail in the next section. Here it is enough to give only the basic idea.

1. In zero energy ontology hyper-octonionic units (in real sense) defined by ratios of infinite integers
have an nterpretation as representations for pairs of positive and negative energy states. Suppose
that the quantum number combinations characterizing positive and negative energy quantum
states are representable as superpositions of real units defined by ratios of infinite integers at each
point of the space-time surface. If this is true, the quantum classical correspondence coded by
the measurement interaction term of the modified Dirac action maps the quantum numbers also
to space-time geometry and implies a correspondence between infinite rationals and space-time
surfaces.

2. The space-time surface associated with the infinite rational is in general not a union of the space-
time surfaces associated with the primes composing the integers defining the rational. There the
classical description of interactions emerges automatically. The description of classical states in
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terms of infinite integers would be analogous to the description of many particle states as finite
integers in arithmetic quantum field theory. This mapping could in principle make sense both
in real and p-adic sectors of WCW.

The finite primes which correspond to particles of an arithmetic quantum field theory present in
Fock state, correspond to the space-time sheets of finite size serving as the building blocks of the
space-time sheet characterized by infinite prime.

What is the interpretation of the higher level infinite primes?

Infinite hierarchy of infinite primes codes for a hierarchy of Fock states such that many-particle Fock
states of a given level serve as elementary particles at next level. The unavoidable conclusion is that
higher levels represent totally new physics not described by the standard quantization procedures. In
particular, the assignment of fermion/boson property to arbitrarily large system would be in some
sense exact. Topologically these higher level particles could correspond to space-time sheets containing
many-particle states and behaving as higher level elementary particles.

This view suggests that the generating quantum numbers are present already at the lowest level
and somehow coded by the hyper-octonionic primes taking the role of momentum quantum number
they have in arithmetic quantum field theories. The task is to understand whether and how hyper-
octonionic primes can code for quantum numbers predicted by quantum TGD.

The quantum numbers coding higher level states are collections of quantum numbers of lower level
states. At geometric level the replacement of the coefficients of polynomials with rational functions
is the equivalent of replacing single particle states with new single particle states consisting of many-
particle states.

4.4.2 Infinite primes, the structure of many-sheeted space-time, and the
notion of finite measurement resolution

The mapping of infinite primes to space-time surfaces codes the structure of infinite prime to the struc-
ture of space-time surface in a rather non-implicit manner, and the question arises about the concrete
correspondence between the structure of infinite prime and topological structure of the space-time sur-
face. It turns out that the notion of finite measurement resolution is the key concept: infinite prime
characterizes angle measurement resolution. This gives a direct connection with the p-adicization
program relying also on angle measurement resolution as well as a connection with the hierarchy of
Planck constants. Finite measurement resolution relates also closely to the inclusions of hyper-finite
factors central for TGD inspired quantum measurement theory so that the characterization of the
finite measurement resolution, which has been the ugly ducling of theoretical physics transforms to a
beatiful swan.

The first intuitions

The concrete prediction of the general vision is that the hierarchy of infinite primes should somehow
correspond to the hierarchy of space-time sheets or partonic 2-surfacse if one accepts the effective
2-dimensionality. The challenge is to find space-time counterparts for infinite primes at the lowest
level of the hierarchy.

One could hope that the Fock space structure of infinite prime would have a more concrete corre-
spondence with the structure of the many-sheeted space-time. One might that the space-time sheets
labeled by primes p would directly correspond to the primes appearing in the definition of infinite
prime. This expectation seems to be too simplistic.

1. What seems to be a safe guess is that the simplest infinite primes at the lowest level of the
hierarchy should correspond to elementary particles. If inverses of infinite primes correspond
to negative energy space-time sheets, this would explain why negative energy particles are not
encountered in elementary particle physics.

2. More complex infinite primes at the lowest level of the hierarchy could be interpreted in terms of
structures formed by connecting these structures by join along boundaries bonds to get space-
time correlates of bound states. Even simplest infinite primes must correspond to bound state
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structures if the condition that the corresponding polynomial has real-rational coefficients is
taken seriously.

Infinite primes at the lowest level of hierarchy correspond to several finite primes rather than single
finite prime. The number of finite primes is however finite.

1. A possible interpretation for multi-p property is in terms of multi-p p-adic fractality prevailing
in the interior of space-time surface. The effective p-adic topology of these space-time sheets
would depend on length scale. In the longest scale the topology would correspond to pn, in some
shorter length scale there would be smaller structures with pn−1 < pn-adic topology, and so
on... . A good metaphor would be a wave containing ripples, which in turn would contain still
smaller ripples. The multi-p p-adic fractality would be assigned with the 4-D space-time sheets
associated with elementary particles. The concrete realization of multi-p p-adicity would be in
terms of infinite integers coming as power series

∑
xnN

n and having interpretation as p-adic
numbers for any prime dividing N .

2. Effective 2-dimensionality would suggest that the individual p-adic topologies could be assigned
with the 2-dimensional partonic surfaces. Thus infinite prime would characterize at the lowest
level space-time sheet and corresponding partonic 2-surfaces. There are however reasons to think
that even single partonic 2-surface corresponds to a multi-p p-adic topology.

Do infinite primes code for the finite measurement resolution?

The above describe heuristic picture is not yet satisfactory. In order to proceed, it is good to ask
what determines the finite prime or set of them associated with a given partonic 2-surface. It is good
to recall first the recent view about the p-adicization program relying crucially on the notion of finite
measurement resolution.

1. The vision about p-adicization characterizes finite measurement resolution for angle measure-
ment in the most general case as ∆φ = 2πM/N , where M and N are positive integers having
no common factors. The powers of the phases exp(i2πM/N) define identical Fourier basis ir-
respective of the value of M and measurement resolution does not depend on on the value of
M . Situation is different if one allows only the powers exp(i2πkM/N) for which kM < N holds
true: in the latter case the measurement resolutions with different values of M correspond to
different numbers of Fourier components. If one regards N as an ordinary integer, one must
have N = pn by the p-adic continuity requirement.

2. One can also interpret N as a p-adic integer. For N = pnM , where M is not divisible by
p, one can express 1/M as a p-adic integer 1/M =

∑
k≥0Mkp

k, which is infinite as a real

integer but effectively reduces to a finite integer K(p) =
∑N−1
k=0 Mkp

k. As a root of unity
the entire phase exp(i2πM/N) is equivalent with exp(i2πR/pn), R = K(p)M mod pn. The
phase would non-trivial only for p-adic primes appearing as factors in N . The corresponding
measurement resolution would be ∆φ = R2π/N if modular arithetmics is used to define the the
measurement resolution. This works at the first level of the hierarcy but not at higher levels.
The alternative manner to assign a finite measurement resolution to M/N for given p is as
∆φ = 2π|N/M |p = 2π/pn. In this case the small fermionic part of the infinite prime would fix
the measurement resolution. The argument below shows that only this option works also at the
higher levels of hierarchy and is therefore more plausible.

3. p-Adicization conditions in their strong form require that the notion of integration based on
harmonic analysis in symmetric spaces makes sense even at the level of partonic 2-surfaces.
These conditions are satisfied if the partonic 2-surfaces in a given measurement resolution can
be regarded as algebraic continuations of discrete surfaces whose points belong to the discrete
variant of the δM4

± × CP2. This condition is extremely powerful since it effectively allows to
code the geometry of partonic 2-surfaces by the geometry of finite sub-manifold geometries for a
given measurement resolution. This condition assigns the integer N to a given partonic surface
and all primes appearing as factors of N define possible effective p-adic topologies assignable to
the partonic 2-surface.
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How infinite primes could then code for the finite measurement resolution? Can one identify the
measurement resolution for M/N = M/(Rpn) as ∆φ = ((M/R) mod pn)× 2π/pn or as ∆φ = 2π/pn?
The following argument allows only the latter option.

1. Suppose that p-adic topology makes sense also for infinite primes and that state function reduc-
tion selects power of infinite prime P from the product of lower level infinite primes defining the
integer N in M/N . Suppose that the rational defined by infinite integer defines measurement
resolution also at the higher levels of the hierarchy.

2. The infinite primes at the first level of hierarchy representing Fock states are in one-one corre-
spondence with finite rationals M/N for which integers M and N can be chosen to characterize
the infinite bosonic part and finite fermionic part of the infinite prime. This correspondence
makes sense also at higher levels of the hierarchy but M and N are infinite integers. Also other
option obtained by exchanging ”bosonic” and ”fermionic” but later it will be found that only
the first identification makes sense.

3. The first guess is that the rational M/N characterizing the infinite prime characterizes the mea-
surement resolution for angles and therefore partially classifies also the finite sub-manifold geom-
etry assignable to the partonic 2-surface. One should define what M/N = ((M/R) mod Pn)×
P−n is for infinite primes. This would require expression of M/R in modular arithmetics modulo
Pn. This does not make sense.

4. For the second option the measurement resolution defined as ∆φ = 2π|N/M |P = 2π/Pn makes
sense. The Fourier basis obtained in this manner would be infinite but all states exp(ik/Pn)
would correspond in real sense to real unity unless one allows k to be infinite P -adic integer
smaller than Pn and thus expressible as k =

∑
m<n kmP

m, where km are infinite integers smaller
than P . In real sense one obtains all roots exp(iq2π) of unity with q < 1 rational. For instance,
for n = 1 one can have 0 < k/P < 1 for a suitably chosen infinite prime k. Thus one would have
essentially continuum theory at higher levels of the hierarchy. The purely fermionic part N of
the infinite prime would code for both the number of Fourier components in discretization for
each power of prime involved and the ratio characterize the angle resolution.

The proposed relation betweeen infinite prime and finite measurement resolution implies very
strong number theoretic selection rules on the reaction vertices.

1. The point is that the vertices of generalized Feyman diagrams correspond to partonic 2-surfaces
at which the ends of light-like 3-surfaces describing the orbits of partonic 2-surfaces join together.
Suppose that the partonic 2-surfaces appearing a both ends of the propagator lines correspond to
same rational as finite sub-manifold geometries. If so, then for a given p-adic effective topology
the integers assignable to all lines entering the vertex must contain this p-adic prime as a factor.
Particles would correspond to integers and only the particles having common prime factors could
appear in the same vertex.

2. In fact, already the work with modelling dark matter [K26] led to ask whether particle could
be characterized by a collection of p-adic primes to which one can assign weak, color, em,
gravitational interactions, and possibly also other interactions. It also seemed natural to assume
that that only the space-time sheets containing common primes in this collection can interact.
This inspired the notions of relative and partial darkness. An entire hierarchy of weak and color
physics such that weak bosons and gluons of given physics are characterized by a given p-adic
prime p and also the fermions of this physics contain space-time sheet characterized by same
p-adic prime, say M89 as in case of weak interactions. In this picture the decay widths of weak
bosons do not pose limitations on the number of light particles if weak interactions for them are
characterized by p-adic prime p 6= M89. Same applies to color interactions.

The possibility of multi-p p-adicity raises the question about how to fix the p-adic prime charac-
terizing the mass of the particle. The mass scale of the contribution of a given throat to the mass
squared is given by p−n/2, where T = 1/n corresponds to the p-adic temperature of throat. Hence the
dominating contribution to the mass squared corresponds to the smallest prime power pn associated
with the throats of the particle. This works if the integers characterizing other particles than graviton
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are divisible by the gravitonic p-adic prime or a product of p-adic primes assignable to graviton. If the
smallest power pn assignable to the graviton is large enough, the mass of graviton is consistent with
the empirical bounds on it. The same consideration applies in the case of photons. Recall that the
number theoretically very natural condition that in zero energy ontology the number of generalized
Feynman graphs contributing to a given process is finite is satisfied if all particles have a non-vanishing
but arbitrarily small p-adic thermal mass [K27] .

Interpretational problem

The identification of infinite prime as a characterizer of finite measurement resolution looks nice but
there is an interpretational problem.

1. The model characterizing the quantum numbers of WCW spinor fields to be discussed in the
next section involves a pair of infinite primes P+ and P− corresponding to the two vacuum
primes X ± 1. Do they correspond to two different measurement resolutions perhaps assignable
to CD and CP2 degrees of freedom?

2. Different measurement resolutions in CD and CP2 degrees of freedom need not be not a problem
as long as one considers only the discrete variants of symmetric spaces involved. What might
be a problem is that in the general case the p-adic primes associated with CD and CP2 degrees
of freedom would not be same unless the integers N+ and N− are assumed to have have same
prime factors (they indeed do if p0 = 1 is formally counted as prime power factors).

3. The idea of assigning different p-adic effective topologies to CD and CP2 does not look attractive.
Both CD and CP2 and thus also partonic 2-surface could however possess simultaneously both
p-adic effective topologies. This kind of option might make sense since the integers representable
as infinite powers series of integer N can be regarded as p-adic integers for all prime factors of
N . As a matter fact, this kind of multi-p p-adicity could make sense also for the partonic 2-
surfaces characterized by a measurement resolution ∆φ = 2πM/N . One would have what might
be interpreted as N+N−-adicity.

4. It will be found that quantum measurement means also the measurement of the p-adic prime
selecting same p-adic prime fromN+ andN−. IfN± is divisible only by p0 = 1, the corresponding
angle measurement resolution is trivial. From the point of view of consciousness state function
reduction selects also the p-adic prime characterizing the cognitive representation which is very
natural since quantum superpositions of different p-adic topologies are not natural physically.

4.4.3 How the hierarchy of Planck constants could relate to infinite primes
and p-adic hierarchy?

Besides the hierarchy of space-time sheets, TGD predicts, or at least suggests, several hierarchies
such as the hierarchy of infinite primes, the hierarchy of Jones inclusions identifiable in terms of
finite measurement resolution [K87] , the dark matter hierarchy characterized by increasing values of
~ [K24, K22] , the hierarchy of extensions of given p-adic number field, and the hierarchy of selves and
quantum jumps with increasing duration with respect to geometric time. There are good reasons to
expect that these hierarchies are closely related. Number theoretical considerations give hopes about
developing a more quantitative vision about the relationship between these hierarchies, in particular
between the hierarchy of infinite primes, p-adic length scale hierarchy, and the hierarchy if Planck
constants.

If infinite primes code for the hierarchy of measurement resolutions, the correlations between the
p-adic hierarchy and the hierarchy of Planck constants indeed suggest themselves and allow also to
select between two interpretations for the fact that two infinite primes N+ and N− are needed to
characterize elementary particles (see the next section).

Recall that the hierarchy of Planck constants in the most general situation corresponds to a
replacement M4 and CP2 factors of the imbedding space with singular coverings and factor spaces.
The condition that Planck constant is integer valued allows only singular coverings characterized by
two integers na resp. nb assignable to CD resp. CP2. This condition also guarantees that a given
value of Planck constant corresponds to only a finite number of pages of the ”Big Book” and therefore
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looks rather attractive mathematically. This option also forces evolution as a dispersion to the pages
of the books characterized by increasing values of Planck constant.

Concerning the correspondence between the hierarchy of Planck constants and p-adic length scale
hierarchy there seems to be only single working option. The following assumptions make precise the
relationship between finite measurement resolution, infinite primes and hierarchy of Planck constants.

1. Measurement resolution CD resp. CP2 degrees of freedom is assumed to correspond to the
rational M+/N+ resp. M−/N−. N± is identified as the integer assigned to the fermionic part
of the infinite integer..

2. One must always fix the consideration to a fixed p-adic prime. This process could be regarded
as analogous to fixing the quantization axes and p would also characterize the p-adic cognitive
space-time sheets involved. The p-adic prime is therefore same for CD and CP2 degrees of
freedom as required by internal consistency.

3. The relationship to the hierarchy of Planck constants is fixed by the identifications na = n+(p)
and nb = n−(p) so that the number of sheets of the covering equals to the number of bosons in
the fermionic mode p of the quantum state defined by infinite prime.

4. A physically attractive hypothesis is that number theoretical bosons resp. fermions correspond
to WCW orbital resp. spin degrees of freedom. The first ones correspond to the symplectic
algebra of WCW and the latter one to purely fermionic degrees of freedom.

Consider now the basic consequences of these assumptions from the point of view of physics and
cognition.

1. Finite measurement resolution reduces for a given value of p to

∆φ =
2π

pn±(p)+1
=

2π

pna/b
,

where n±(p) = na/b − 1 is the number of bosons in the mode p in the fermionic part of the
state. The number theoretical fermions and bosons and also their probably existing physical
counterparts are necessary for a non-trivial angle measurement resolution. The value of Planck
constant given by

~
~0

= nanb = (n+(p) + 1)× (n−(p) + 1)

tells the total number of bosons added to the fermionic mode p assigned to the infinite prime.

2. The presence of ~ > ~0 partonic 2-surfaces is absolutely essential for a Universe able to measure
its own state. This is in accordance with the interpretation of hierarchy of Planck constants
in TGD inspired theory of consciousness. One can also say that ~ = 0 sector does not allow
cognition at all since N± = 1 holds true. For given p ~ = nanb = 0 means that given fermionic
prime corresponds to a fermion in the Dirac sea meaning n±(p) = −1. Kicking out of fermions
from Direac sea makes possible cognition. For purely bosonic vacuum primes one has ~ =
0 meaning trivial measurement resolution so that the physics is purely classical and would
correspond to the purely bosonic sector of the quantum TGD.

3. For ~ = ~0 the number of bosons in the fermionic state vanishes and the general expression
for the measurement resolution reduces to ∆φ = 2π/p. When one adds n±(p) bosons to the
fermionic part of the infinite prime, the measurement resolution increases from ∆φ = 2π/p
to ∆φ = 2π/pn±(p)+1. Adding a sheet to the covering means addition of a number theoretic
boson to the fermionic part of infinite prime. The presence of both number theoretic bosons
and fermions with the values of p-adic prime p1 6= p does not affect the measurement resolution
∆φ = 2π/pn for a given prime p.
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4. The resolutions in CD and CP2 degrees of freedom correspond to the same value of the p-adic
prime p so that one has dicretizations based on ∆φ = 2π/pna in CD degrees of freedom and
∆φ = 2π/pnb in CP2 degrees of freedom. The finite sub-manifold geometries make sense in
this case and since the effective p-adic topology is same, the continuation to continuous p-adic
partonic 2-surface is possible.

p-Adic thermodynamics involves the p-adic temperature T = 1/n as basic parameter and the
p-adic mass scale of the particle comes as p−(n+1)/2. The natural question is whether one could
assume the relation T± = 1/(n±(p) + 1) between p-adic temperature and infinite prime and thus the
relations Ta = 1/na(p) and Tb = 1/nb(p). This identification is not consistent with the recent physical
interpretation of the p-adic thermodynamics nor with the view about dark matter hierarchy and must
be given up.

1. The minimal non-trivial measurement resolution with ni = 1 and ~ = ~0 corresponds to the
p-adic temperature Ti = 1. p-Adic mass calculations indeed predict T = 1 for fermions for
~ = ~0. In the case of gauge bosons T ≥ 2 is favored so that gauge bosons would be dark.
This would require that gauge bosons propagate along dark pages of the Big Book and become
”visible” before entering to the interaction vertex.

2. p-Adic thermodynamics also assumes same p-adic temperature in CD and CP2 degrees of free-
dom but the proposed identification allows also different temperatures. In principle the sepa-
ration of the super-conformal degrees of freedom of CD and CP2 might allow different p-adic
temperatures. This would assign to different p-adic mass scales to the particles and the larger
mass scale should give the dominant contribution.

3. For dark particles the p-adic mass scale would be by a factor 1/
√
pni(p)−1 lower than for ordinary

particles. This is in conflict with the assumption that the mass of the particle does not depend
on ~. This prediction would kill completely the recent vision about the dark matter.

4.5 How infinite primes could correspond to quantum states
and space-time surfaces?

The hierarchy of infinite primes is in one-one correspondence with a hierarchy of second quantizations
of an arithmetic quantum field theory. The additive quantum number in question is energy like quan-
tity for ordinary primes and given by the logarithm of prime whereas p-adic length scale hypothesis
suggests that the conserved quantity is proportional to the inverse of prime or its square root. For
infinite primes at the first level of hierarchy these quantum numbers label single particles states hav-
ing interpretation as ordinary elementary particles. For octonionic and hyper-octonionic primes the
quantum number is analogous to a momentum with 8 components. The question is whether these
number theoretic quantum numbers could have interpretation as genuine quantum numbers. Quan-
tum classical correspondence raises another question. Is it possible to label space-time surfaces by
infinite primes? Could this correspondence be even one-to-one?

I have considered these questions already more than decade ago. The discussion at that time was
necessarily highly speculative and just a mathematical exercise. After that time however a lot of
progress has taken place in quantum TGD and it is highly interaction to see what comes out from the
interaction of the notion of infinite prime with the notions of zero energy ontology and generalized
imbedding space, and with the recent vision about how measurement interaction in the modified Dirac
action allows to code information about quantum numbers to the space-time geometry. The possibility
of this coding allows to simplify the discussion dramatically. If one can map infinite hyper-octonionic
primes to quantum numbers of the standard model naturally, then the their map of to the geometry
of space-time surfaces realizes the coding of space-time surfaces by infinite primes (and more generally
by integers and rationals). Also a detailed realization of number theoretic Brahman=Atman identity
emerges as an outcome.

4.5.1 A brief summary about various moduli spaces and their symmetries

It is good to sum up the number theoretic symmetries before trying to construct an overall view
about the situation. Several kinds of number theoretical symmetry groups are involved corresponding
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to symmetries in the moduli spaces of hyper-octonionic and hyper-quaternionic structures, symmetries
mapping hyper-octonionic primes to hyper-octonionic primes, and translations acting in the space of
causal diamonds (CDs) and shifting. The moduli space for CDs labeled by pairs of its tips that its
pairs of points of M4 × CP2 is also in important role.

1. The basic idea is that color SU(3) ⊂ G2 acts as automorphisms of hyper-octonion structure
with a preferred imaginary unit. SO(7, 1) acts as symmetries in the moduli space of hyper-
octonion structures. Associativity implies symmetry breaking so that only hyper-quaternionic
structures are considered and SO(3, 1) × SO(4) acts as symmetries of the moduli space for
hyper-quaternionic structures.

2. CP2 parameterizes the moduli space of hyper-quaternionic structures induced from a given
hyper-octonionic structure with preferred imaginary unit.

3. Color group SU(3) is the analog of Galois group for the extension of reals to octonions and has
a natural action on the decompositions of rational infinite primes to hyper-octonionic infinite
primes. For given hyper-octonionic prime one can identify a subgroup of SU(3) generating a
finite set of hyper-octonionic primes for it at sphere S7. This suggests wave function at the orbit
of given hyper-octonionic prime in turn generalizing to wave functions in the space of infinite
primes.

4. Four-momenta correspond to translational degrees of freedom associated with the preferred
points of M4 coded by the infinite rational (tip of the light-cone). Color quantum numbers in
cm degrees of freedom can be assigned to the CP2 projection of the preferred point of H. As
a matter fact, the definition of hyper-octonionic structure involves the choice of origin of M8

giving rise to the preferred point of H.

These symmetries deserve a more detailed discussion.

1. The choice of global hyper-octonionic coordinate is dictated only modulo a transformation of
SO(1, 7) acting as isometries of hyper-octonionic norm and as transformations in moduli space
of hyper-octonion structures. SO(7) respects the choice of the real unit. SO(1, 3)× SO(4) acts
in the moduli space of global hyper-quaternionic structures identified as sub-structures of hyper-
octonionic structure. The choice of global hyper-octonionic structures involves also a choice of
origin implying preferred point of H. The M4 projection of this point corresponds to the tip of
CD. Since the integers representing physical states must be hyper-quaternionic by associativity
conditions, the symmetry breaking (”number theoretic compactification”) to SO(1, 3)× SO(4)
occurs very naturally. This group acts as spinor rotations in H picture and as isometries in M8

picture. The choice of both tips of CD reduces SO(1, 3) to SO(3).

2. SO(1, 7) allows 3 different 8-dimensional representations (8v, 8s, and 8s). All these represen-
tations must decompose under SU(3) as 1 + 1 + 3 + 3 as little exercise with SO(8) triality
demonstrates. Under SO(6) ∼= SU(4) the decompositions are 1 + 1 + 6 and 4 + 4 for 8v and
8s and its conjugate. Both hyper-octonion spinors and gamma matrices are identified as hyper-
octonion units rather than as matrices. It would be natural to assign to bosonic M8 primes 8v
and to fermionic M8 primes 8s and 8s. One can distinguish between 8v, 8s and 8s for hyper-
octonionic units only if one considers the full SO(1, 3) × SO(4) action in the moduli space of
hyper-octonionic structures.

3. G2 acts as automorphisms on octonionic imaginary units and SU(3) respects the choice of pre-
ferred imaginary unit meaning a choice of preferred hyper-complex plane M4 ⊂M4. Associativ-
ity requires a reduction to hyper-quaternionic primes and implies color confinement in number
theoretical and as it turns also in physical sense. For hyper-quaternionic primes the automor-
phisms restrict to SO(3) which has right/left action of fermionic hyper-quaternionic primes and
adjoint action on bosonic hyper-quaternionc primes. The choice of hyper-quaternionic structure
is global as opposed to the local choice of hyper-quaternionic tangent space of space-time sur-
face assigning to a point of HQ ⊂ HO a point of CP2. U(2) ⊂ SU(3) leaves invariant given
hyper-quaternionic structure which are thus parameterized by CP2. Color partial waves can be
interpreted as partial waves in this moduli space.
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4.5.2 Associativity and commutativity or only their quantum variants?

Associativity and commutativity conditions are absolutely essential notions in quantum TGD and
also in the mapping of infinite primes to the space-time sheets. Hyper-quaternionicity formulated in
terms of the modified gamma matrices defined by Kähler action fixes classical space-time dynamics
and a very beautiful algebra formulation of quantum TGD in terms of hyper-octonionic local Clifford
algebra of imbedding space emerges. There is no need for the use of hyper-octonion real analytic
maps although one cannot exclude the possibility that they might be involved with the construction
of hyper-quaternionic space-time surfaces.

Associativity implies hyper-quaternionicity and commutativity requirement in turn leads to com-
plex rational infinite primes. Since one can decompose complex rational primes to hyper-quaternionic
and even hyper-octonionic primes, one might hope that this could allow to represent states which
consist of colored constituents. This representations has however the flavor of a formal trick and the
considerations related to concrete representations of infinite primes suggest that the rationality of
infinite primes might be a too restrictive condition.

A more radical possibility is that physical states are only quantum associative and commutative.
In case of associativity this means that they are obtained as quantum superpositions in the space
of real units over all possible associations performed for a given product of hyper-octonion primes
(for instance, |A(BC)〉 + |(AB)C〉). These states would be associative in quantum sense but would
not reduce to hyper-quaternionic primes. Also the notion of quantum commutativity makes sense.
The fact that mesons are quantum superpositions of quark-antiquark pairs which each corresponds
to different pair of hyper-quaternionic primes and are thus not representable classically, suggests that
one can require only quantum associativity and quantum commutativity.

4.5.3 The correspondence between infinite primes and standard model
quantum numbers

I have considered several candidates for the correspondence between infinite primes and standard
model quantum numbers. The confusing aspect has been the dual nature of hyper-octonionic primes.
One one hand they could be interpreted as components of 8-D momentum representing perhaps
momentum and other quantum numbers. On the other hand, they transform like representations of
SU(3) ⊂ G2 and behave like color singlets and triplets so that the idea about quantum superpositions
of infinite primes related by SU(3) action is attractive. The second puzzling feature is that there are
two kinds of infinite primes corresponding to two signs for the ”small” part of the infinite prime. The
following proposal leads to an interpretation for these aspects.

1. The number of components of hyper-octonionic prime is 8 as is the dimension of the Cartan
algebra of the product of Poincare group, color group SU(3) and electro-weak gauge group
SU(2)L ×U(1) defining the quantum numbers of particles. One might therefore dream about a
number theoretic interpretation of elementary particle quantum numbers by intepreting hyper-
octonionic prime as 8-momentum. This form of the big idea fails. The point is that complexified
basis for octonions consists of two color singlets and color triplet and its conjugate. For a
given hyper-octonionic prime one can construct new primes by using a subgroup G of SU(3)
by definition respecting the property that the values of the components of prime as integers
and as a consquence also the modulus squared so that the primes are at sphere S7. This
group is analogous to Galois group. Identifying prime as an element of basis of quantum states,
one can form wave functions at the discrete orbit of given prime transforming according to
irreducible representations of color group. Triality t± 1 states correspond to color partial waves
associated with quarks and antiquarks and triality t = 0 states to gluons and leptons and their
color excitations. The states can be chosen to be eigenstates of the preferred hyper-octonionic
imaginary unit ie1. Additive four-momentum could be assigned the M2 part of the hyper-
octonion as will be found. Therefore the construction applies in special but natural coordinates
assignable to the particle required also by zero energy ontology and hierarchy of Planck constants
as well as by p-adicization program.

2. This construction gives only the quantum numbers assignable to color partial waves in config-
uration space degrees of freedom. Also the quantum numbers assignable to imbedding space
spinors are wanted. Luckily, there are two kinds of infinite primes, which might be denoted
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by P± because the sign of the ”small” part of the infinite prime can be chosen freely. Super-
conformal symmetry suggests that quantum numbers associated with spinorial and configuration
space degrees freedom can be assigned to the infinite primes of these two types.

(a) In the case of spinor degrees of freedom one can restrict the multiplets to those generated
by SU(2) subgroup of SU(3) identified as rotation group. The interpretation is in terms
of automorphism group of quaternions. Discrete subgroups of SU(2) generate the orbit
of given hyper-octonionic prime and one obtains finite number of SU(2) multiplets hav-
ing interpretation in terms of rotational degrees of freedom associated with the light-cone
boundary. In the case of fermions (bosons) only half odd integer (integer) spins are allowed.

(b) Remarkably, four of the hyper-octonionic units remain invariant under SU(2). Also now
only the hyper-complex projection in M2 ⊂ M4 can be interpreted as four-momentum in
the preferred frame and the interpretation as a counterpart of Dirac equation eliminating
four complex non-physical helicities of the imbedding spinor of given chirality. The states
of same spin associated with the two spin doublets have interpretation as electro-weak dou-
blets. As a representation of SU(3) electro-weak doublets would correspond to quark and
antiquark in color isospin doublet. This leaves two additional quantum numbers assignable
to the color isospin singlets. The natural interpretation is in terms of electromagnetic charge
and weak isospin. An analogous picture emerges also in the description of super-symmetric
QFT limit of TGD [K28] replacing massless particles identified as light-like geodesics of
M4 with light like geodesics of M4 × CP2 and assigning to them two quantum numbers
in the Cartan algebra of SU(3) and identified as electro-weak charges. Also conformal
weight expressible in terms of stringy mass formula allows a description in terms of infinite
primes. What is not achieved is the number theoretical description of genus of the partonic
2-surface and wave functions in the moduli space of the partonic 2-surfaces.

3. In this picture leptons, gauge bosons, and gluons correspond to an infinite prime of type P+

or P− whereas quarks as well as color excitations of leptons correspond to a pair of primes of
type P+ and P−. One can fix the notations by assigning color quantum numbers to P+ and and
spinorial quantum numbers to P−. Both P+ and P− contribute to four-momentum. Each pair of
infinite primes of this kind defines a finite-dimensional space of quantum states assignable to the
subgroups of SU(3) and SU(2) respecting the prime property. Needless to say, this prediction
is extremely powerful and fixes the spectrum of the quantum numbers almost completely!

4. An interesting question is whether one can require number theoretical color confinement in the
sense that the physical states resulting as tensor products of states assignable to a given infinite
prime in P+ are color singlets. This might be necessary to guarantee associativity. G2 singletness
would be even stronger condition but not possible for massless states. What is interesting is
that spin and color in well-defined sense separate from each other. One can wonder whether this
relates somehow to the spin puzzle of proton meaning that quarks do not seem to contribute to
baryonic spin.

5. The appearance of discrete subgroups of SU(3) and SU(2) strongly suggests a connection with
the inclusions of the hyper-finite factors of type II1 characterized by these subgroups, which are
expected to play a fundamental role in quantum TGD. An interesting question is whether also
infinite subgroups could be involved. For instance, one can consider the subgroups generated
by discrete subgroup and infinite cyclic group and these might be involved with the inclusions
for which the index is equal to four. The appearance of these groups suggests also a connection
with the hierarchy of Planck constants and one can ask how the singular coverings defining the
pages of the book like structure relate to the moduli space of causal diamonds.

The rather unexpected conclusion is that the wave functions in the discrete space defined by infinite
primes are able to code for the quantum numbers of configuration space spinor fields and thus for
configuration space spinor fields. A fascinating possibility is that even M-matrix- which is nothing but
a characterization of zero energy state- could find an elegant formulation as entanglement coefficients
associated with the pair of the integer and inverse integer characterizing the positive and negative
energy states.
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1. The great vision is that associativity and commutativity conditions fix the number theoretical
quantum dynamics completely. Quantum associativity states that the wave functions in the
space of infinite primes, integers, and rationals are invariant under associations of finite hyper-
octonionic primes (A(BC) and (AB)C are the basic associations), physics requires associativity
only apart from a phase factor, in the simplest situation +1/ − 1 but in more general case
phase factor. The condition of commutativity poses a more familiar condition implying that
permutations induce only a phase factor which is +/- 1 for boson and fermion statistics and a
more general phase for quantum group statistics for the anyonic phases, which correspond to
nonstandard values of Planck constant in TGD framework. These symmetries induce time-like
entanglement for zero energy stats and perhaps non-trivial enough M-matrix.

2. One must also remember that besides the infinite primes defining the counterparts of free Fock
states of supersymmetric QFT, also infinite primes analogous to bound states are predicted.
The analogy with polynomial primes illustrates what is involved. In the space of polynomials
with integer coefficients polynomials of degree one correspond free single particle states and one
can form free many particle states as their products. Higher degree polynomials with algebraic
roots correspond to bound states being not decomposable to a product of polynomials of first
degree in the field of rationals. Could also positive and negative energy parts of zero energy
states form a analog of bound state giving rise to highly non-trivial M-matrix?

4.5.4 How space-time geometry could be coded by infinite primes

Second key question is whether space-time geometry could be characterized in terms of infinite primes
(and integers and rationals in the most general case) and how this is achieved. This problem trivializes
by quantum classical correspondence realized in terms of the measurement interaction term in the
modified Dirac action.

1. The addition of the measurement interaction term to the modified Dirac action defined by Kähler
action implies that space-time sheets carry information about four-momentum, color quantum
numbers, and electro-weak quantum numbers. One must assing assign to the space-time sheet
assignable to a given collection of partonic 2-surfaces at least one pair of infinite primes or rather
wave function at the orbits of these primes under the group respecting the prime property. Pairs
of infinite-primes at the first level would characterize the quantum numbers assigned with the
partonic surface X2, that is the tangent space of the space-time surface at X2 fixing the initial
values for the preferred extremal of Kähler action.

2. Zero energy ontology implies a hierarchy of CDs within CDs and this hierarchy as well as the
hierarchy of space-time sheets corresponds naturally to the hierarchy of infinite primes. One
can assign standard model quantum numbers to various partonic 2-surfaces with positive and
negative energy parts of the quantum state assignable to the light-like boundaries of CD. Also
infinite integers and rationals are possible and the inverses of infinite primes would naturally
correspond to elementary particles with negative energy. The condition that zero energy state
has vanishing net quantum numbers implies that the ratio of infinite integers assignable to zero
energy state equals to real unit in real sense and has has vanishing total quantum numbers.

3. Neither quantum numbers nor infinite primes coding them cannot characterize the partonic
2-surface itself completely since they say nothing about the deformation of the space-time sur-
face but only about labels characterizing the WCW spinor field. Also the topology of partonic
2-surface fails to be coded. Quantum classical correspondence however suggests that this cor-
respondence could be possible in a weaker sense. In the Gaussian approximation for functional
integral over the world of classical worlds space-time surface and thus the collection of partonic
2-surfaces is effectively replaced with the one corresponding to the maximum of Kähler function,
and in this sense one-one correspondence is possible unless the situation is non-perturbative. In
this case the physics implied by the hierarchy of Planck constants could however guarantee
uniqueness. One of the basic ideas behind the identification of the dark matter as phases with
non-standard value of Planck constant is that when perturbative description of the system fails,
a phase transition increasing the value of Planck constant takes place and makes perturbative
description possible. Geometrically this phase transition means a leakage to another sector of
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the imbedding space realized as a book like structure with pages partially labeled by the values
of Planck constant. Anyonic phases and fractionization of quantum numbers is one possible
outcome of this phase transition. An interesting question is what the fractionization of the
quantum numbers means number theoretically.

4.5.5 How to achieve consistency with p-adic mass formula

The first argument against the proposal that infinite primes could code for four-momentum in preferred
coordinates is that the logarithms of finite primes and even less those of hyper-octonionic primes are
natural from the point of view of p-adic mass calculations predicting that the mass squared of particle
behaves as 1/p for Tp = 1 (fermions) and 1/p2 for Tp = 1/2 (gauge bosons). This difficulty might be
circumvented.

Ordinary primes

Consider first ordinary primes for which the inverse always exists.

1. One can map finite primes p to phase factors exp(i2π/p). The roots of unity play the role of
primes in the decomposition of the roots of unity exp(i2π/n), n =

∏
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Apart from a common normalization factor one can interpret the coefficients Pi as energy like
quantities assigned to the single particle states. The power pnii would correspond to various
p-adic inverse temperature 1/Tp = 2ni in this expansion.

2. The representation in terms of phase factors is not unique since P ki and P ki + npki define the
same phase. This non-uniqueness is completely analogous to the non-uniqueness of momentum
in the presence of a discrete translational symmetry and can be interpreted in terms of lattice
momentum. Physically this corresponds to a finite measurement resolution. Also in the formu-
lation of symplectic QFT defining one part of quantum TGD only phases defined by the roots
of unity appear and similar non-uniqueness emerges and is due to the discretization serving as
a space-time correlate for a finite measurement resolution implying UV cutoff.

3. Mass squared is proportional to 1/p2
i so that only the p-adic temperatures Tp = 1/2ni are

possible for rational primes. For more general primes one can however have also a situation in
which the modulus square of prime is ordinary prime. For instance, Gaussian (complex) primes
P = m + in satisfy |P |2 = p for p mod 4 = 1 and |P |2 = p2 for p mod 4 = 3 (for example,
rational prime 5 decomposes as 5 = (2 + i)(2 − i)). Therefore it is possible to have states
satisfying M2 ∝ 1/p, p ordinary prime for hyper-octonionic primes. These primes correspond
to the rational primes decomposing to the products of ordinary primes and also also higher
roots of p might be possible. The finite prime assignable to the hyper-octonionic prime has a
natural interpretation as the p-adic prime assignable to an elementary particle. In zero energy
ontology this assignment makes sense also for virtual particles having interpretation as pairs
of positive and negative energy on mass shell particles assignable to the light-like throats of
wormhole contact.
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Hyper-octonionic primes with inverse

Consider next the situation for hyper-octonionic primes when the integers in question have inverse.
We are interested only in the longitudinal part of infinite prime in M2. The phase factor makes sense
also in the case of hyper-octonionic primes if the condition |P | > 0 holds true so that one has massive
particles in 8-D sense possibly resulting via p-adic thermodynamics. If the imaginary unit appearing
in the exponent is the imaginary unit i appearing in the complexification of octonions, the exponent
has the character of a phase factor for hyper-octonionic primes. The reason is that 1/P = P ∗/|P |2 is
hyper-octonionic number of form O0 + iO1, where O1 is a purely imaginary octonion. The exponent
in the phase factor is therefore 2π(iO0 − O1) and involves only imaginary units, and one can write
exp(i2π(O0 + iO1)) = exp(iO0)×exp(−O1). Both factors are phase factors. This condition analogous
to unitarity is one further good reason for hyper-octonions and Minkowskian signature.

Light-like hyper-octonionic primes

The proposed representation as a phase factor fails for massless particles since light-like hyper-primes
do not possess an inverse. One must therefore define the notion of primeness differently to see what
might be the physical interpretation of these primes. Since the multiplication of hyper-octonionic
integer by light-like prime yields zero norm prime, the natural interpretation would be as a gauge
transformation and one might consider gauge transformations obtained by exponentiating Lie algebra
with light-like coefficients.

One can consider two options depending on whether one requires that the relevant algebra has
unit or not.

1. For the first option hyper-octonionic light-like integers are of form n(1 + e) and the product
of two light-like integers ni(1 + e) is of form 2n1n2(1 + e). Here e could be arbitrary hyper-
octonionic imaginary unit consistent with the prime property. This does not however allow unit
light-like integer acting like unit since one has (1 + e)2 = 2(1 + e). All odd integers would be
primes.

2. The number E = (1 + e)/2 behaves as a unit. If one requires that unit is included in the algebra
integers can be defined as numbers of form nE so that their product is n1n2E and equivalent
with the ordinary product of integers so that primes correspond to ordinary primes.

One can construct the first level infinite primes from these primes just as in the case of ordinary
primes. Now however X =

∏
pi is replaced with X =

∏
n[(2n + 1)(1 + e)] for the first option and

equal to the X = E
∏
pi for the second option.

The multiplicative phase factor could be defined for both options as exp(i2πE/N) where N is a
light-like hyper-octonionic integer. This definition would eliminate the singular 1/E factor and the
situation reduces essentially to that for ordinary primes in the case of massless states. If the infinite
prime P± is such that one can assign to it non-trivial multiplets in color or rotational degrees of freedom
(half odd integer spin for fermions) it must have a part in the complement of M2. For standard model
elementary particles this is always the case. The energy spectrum is of form 1/2(2m + 1) or 1/p.
For light-like hyper-octonions the projection to M2 is in general time-like and quantized. If one does
not allow the unit E in exponent the phase factor is ill-defined and one must identify the light-like
hyper-octonionic primes as gauge degrees of freedom.

M2 momentum is light-like only for states which are spinless color and electro-weak singlets hav-
ing no counterpart in standard model counterpart nor in quantum TGD. Therefore light-like hyper-
octonionic primes reducing to M2 could correspond to gauge degrees of freedom. M2 momentum is
of form P = (1, 1)/2(2m+ 1) for the first option and of form P = (1, 1)/p for the second option. Even
for graviton, photon, gluons, and right handed neutrino either hyper-octonionic prime is space-like
if the state is massless. Light-like hyper-octonions can however characterize massive states but the
proposed interpretation in terms of gauge degrees of freedom is highly suggestive.

If one interprets hyper-octonionic prime as 8-D momentum, which is of course not necessary in the
recent framework, one could worry about conflict with TGD variant of twistor program. In accordance
with associativity the role of 8-momentum in fermionic propagator is however taken by its projection
to the hyper-quaternionic sub-space defined by the modified gamma matrices at given point of space-
time sheet and masslessness holds for this projection so that 8-D tachyons are possible [K86] . This is
highly analogous to the identification of the four-momentum as M2 projection of hyperfinite prime.
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The treatment of zero modes

There are also zero modes which are absolutely crucial for quantum measurement theory. They
entangle with quantum fluctuating degrees of freedom in quantum measurement situation and thus
map quantum numbers to positions of pointers. The interior degrees of freedom of space-time interior
must correspond to zero modes and they represent space-time correlates for quantum states realized
at light-like partonic 3-surfaces. Quantum measurement theory suggests 1-1 correspondence between
zero modes and quantum fluctuating degrees of freedom so that also super-symmetry should have zero
mode counterpart. The recent progress in understanding of the modified Dirac action [K27] leads to
a concrete identification of the super-conformal algebra of zero modes as related to the deformation
of the space-time surface defining vanishing second variations of Kähler action.

4.5.6 Complexification of octonions in zero energy ontology

The complexification of octonions plays a crucial role in the number theoretical vision and could be
regarded as its weakest point. It has however a natural physical interpretation in zero energy ontology.

1. CD has two tips, which correspond to the points of M4. For M4 the fixing of the quantization
axes requires choosing a time-like direction fixing the rest system. This direction is naturally
defined by the tips of CD. The moduli space for CDs is M4 ×M4

+. The realization of the
hierarchy of Planck constants forces also a choice of a space-like direction fixing the quantization
axes of spin.

2. In the case of CP2 the choice of the quantization axes requires fixing of a preferred point of
CP2 remaining invariant under U(2) subgroup of SU(3) acting linearly on complex coordinates
having origin at this point and containing also the Cartan subgroup. This fixes the quantization
axes of color hyper-charge. If the preferred CP2 points associated with the light-like boundaries
of CD are different they fix a unique geodesic circle of CP2 fixing the quantization axes for color
isospin. The moduli space is therefore (CP2)2.

3. The full moduli space is M4×M4
+×(CP2)2. In M8 description the moduli space would naturally

correspond to pairs of points of M4 and E4 so that the moduli space for the choices CDs and
quantization axes would be M4 ×M4

+ × (E4)2. This space can be regarded locally as the space
of complexified octonions.

4. p-Adic length scale hypothesis follows if the time-like distance between the tips of CDs is quan-
tized in powers of two so that a union of 3-D proper-time constant hyperboloids of M4

+ results.
Hierarchy of Planck constants implies rational multiples of these basic distances. Hyperboloids
are coset spaces of Lorentz group and this suggests even more general quantization in which one
replaces the hyperboloids with spaces obtained by identifying the points related by the action
of a discrete subgroup of Lorentz group. This would give the analog of lattice cell obtained
and one would obtain a lattice like structure consisting of unit cells labeled by the elements of
the sub-group of Lorentz group. The interpretation of the moduli space of CDs as a discrete
momentum space dual to the configuration space is suggestive. In the case of CP2 similar quan-
tization could correspond to the replacement of CP2 with equivalence classes of points of CP2

under action of a discrete subgroup of SU(3).

5. Could this discrete space be identified as the space of hyper-octonionic primes as looks natural?
In other words, could the discrete points of the dual spaceM4

+×CP2 decompose to subsets in one-
one corresponds with the orbits of G+ and G− appearing in the reductions SO(7, 1)→ SO(7)→
G2 → SU(3)→ G+ for primes in P+ and SO(7, 1)→ SO(7)→ G2 → SU(3)→ SU(2)→ G− in
P−? One can also consider the subgroups of G2 respecting the hyperbolic prime property. This
would allow to integrate G+×G− multiplets to larger multiplets and get an over all view about
multiplet structure. An interesting question is whether SO(7, 1) could contain non-compact
discrete subgroups with infinite number of elements and respecting the property of being hyper-
octonionic prime. If this idea is correct, the dual space M4

+×CP2 would play a role of heavenly
sphere providing a representation for the quantum numbers labeling configuration space spinor
fields.
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4.5.7 The relation to number theoretic Brahman=Atman identity

Number theoretic Brahman=Atman identity -one might also use the term algebraic holography -
states the number theoretic anatomy of single space-time point is enough to code for both WCW and
and WCW spinors fields- the quantum states of entire Universe or at least the sub-Universe defined by
CD. The entire quantum TGD could be represented in terms of 8-D imbedding space with the notion
of number generalized to allow real units defined as ration of infinite integers and having number
theoretical anatomy.

Before continuing it is perhaps good to represent the most obvious objection against the idea.
The correspondence between WCW and WCW spinors with infinite rationals and their discreteness
means that also WCW (world of classical worlds) and space of WCW spinors should be discrete.
First this looks non-sensible but is indeed what one obtains if space-time surfaces correspond to light-
like 3-surfaces expressible in terms of algebraic equations involving rational functions with rational
coefficients.

By the above considerations it is indeed clear that zero energy states correspond to ratios of infinite
integers boiling down to a hyper-octonionic unit with vanishing net four-momentum and electro-weak
charges. Configuration space spinor fields can be mapped to wave functions in the space of these units
and even the reduced configuration space consisting of the maxima of Kähler function could be coded
by these wave functions. The wave functions in the space of hyper-octonion units would be induced
by the discrete wave functions associated with the orbits of hyper-octonionic finite primes appearing
in the decomposition of the infinite hyper-octonionic primes of type P+ and P−. The net color and
quantum numbers and spin associated with the wave function in the space of hyper-octonionic units
are vanishing. Clearly, a detailed realization of number theoretic Brahman=Atman identity emerges
predicting reducing even the spectrum of possible quantum numbers to number theory.

In the original formulation of Brahman-Atman identity the description based on H was used.
This leads to the conclusion that that the analog of a complex Schrödinger amplitude in the space
of number-theoretic anatomies of a given imbedding space point represented by single point of H
and represented as 8-tuples of real units should naturally represent the dependence of WCW spinors
understood as ground states of super-conformal representations obtained as an 8-fold tensor power of
a fundamental representation or product of representations perhaps differing somehow. The 8-tuples
define a number theoretical analog of U(1)8 group in terms of which all number theoretical symmetries
are represented. This description should be equivalent with the use of single hyper-octonion unit.

4.6 Infinite primes and mathematical consciousness

The mathematics of infinity relates naturally with the mystery of consciousness and religious and
mystic experience. In particular, mathematical cognition might have as a space-time correlate the
infinitely structured space-time points implied by the introduction of infinite-dimensional space of
real units defined by infinite (hyper-)octonionic rationals having unit norm in the real sense. I hope
that the reader takes this section as a noble attempt to get a glimpse about unknown rather than
final conclusions.

4.6.1 Algebraic Brahman=Atman identity

The proposed view about cognition and intentionality emerges from the notion of infinite primes,
which was actually the first genuinely new mathematical idea inspired by TGD inspired consciousness
theorizing. Infinite primes, integers, and rationals have a precise number theoretic anatomy. For
instance, the simplest infinite primes correspond to the numbers P± = X±1, where X =

∏
k pk is the

product of all finite primes. Indeed, P± mod p = 1 holds true for all finite primes. The construction
of infinite primes at the first level of the hierarchy is structurally analogous to the quantization of
super-symmetric arithmetic quantum field theory with finite primes playing the role of momenta
associated with fermions and bosons. Also the counterparts of bound states emerge. This process can
be iteratedat the second level the product of infinite primes constructed at the first level replaces X
and so on.

The structural similarity with repeatedly second quantized quantum field theory strongly suggests
that physics might in some sense reduce to a number theory for infinite rationals M/N and that
second quantization could be followed by further quantizations. As a matter fact, the hierarchy of
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space-time sheets could realize this endless second quantization geometrically and have also a direct
connection with the hierarchy of logics labeled by their order. This could have rather breathtaking
implications.

1. One is forced to ask whether this hierarchy corresponds to a hierarchy of realities for which level
below corresponds in a literal sense infinitesimals and the level next above to infinity.

2. Second implication is that there is an infinite number of infinite rationals behaving like real units
(M/N ≡ 1 in real sense) so that space-time points could have infinitely rich number theoretical
anatomy not detectable at the level of real physics. Infinite integers would correspond to positive
energy many particle states and their inverses (infinitesimals with number theoretic structure)
to negative energy many particle states and M/N ≡ 1 would be a counterpart for zero energy
ontology to which oneness and emptiness are assigned in mysticism.

3. Single space-time point, which is usually regarded as the most primitive and completely irre-
ducible structure of mathematics, would take the role of Platonia of mathematical ideas being
able to represent in its number theoretical structure even the quantum state of entire Universe.
Algebraic Brahman=Atman identity and algebraic holography would be realized in a rather
literal sense.

Number theoretic anatomy of space-time point

This number theoretical anatomy should relate to mathematical consciousness in some manner. For
instance, one can ask whether it makes sense to speak about quantum jumps changing the number
theoretical anatomy of space-time points and whether these quantum jumps give rise to mathematical
ideas. In fact, the identifications of Platonia as spinor fields in WCW on one hand and as the set
number theoretical anatomies of point of imbedding space force the conclusion that WCW spinor
fields (recall also the identification as correlates for logical mind) can be realized in terms of the
space for number theoretic anatomies of imbedding space points. Therefore quantum jumps would
be correspond to changes in the anatomy of the space-time points. Or more precisely, to the changes
of the WCW spinor fields regarded as wave functions in the set of imbedding space points which are
equivalent in real sense. Imbedding space would be experiencing genuine number theoretical evolution.
The whole physics would reduce to the anatomy of numbers. All mathematical notions which are more
than mere human inventions would be imbeddable to the Platonia realized as the number theoretical
anatomies of single imbedding space point.

To realize this picture would require that WCW spinor fields and perhaps even WCW allow a
mapping to the number theoretic anatomies of space-time point. In finite-dimension Euclidian spaces
momentum space labelling plane wavs is dual to the space. One could hope that also now the ”orbital”
quantum numbers of WCW spinor fields could code for WCW in given measurement resolution. The
construction of the previous sections realize the mapping of the quantum states defined by WCW
spinors fields assignable to given CD to wave function in the space of hyper-octonionic units. These
wave functions can be also regarded as linear combinations of these units if the coefficients are complex
numbers formed using the commuting imaginary unit of complexified octonions so that that the Hilbert
space like structure in question would have purely number theoretic meaning. The rationals defined
by infinite primes characterize also measurement resolution and classify the the finite sub-manifold
geometries associated with partonic two-surfaces. At higher levels one has rationals defined by ratios
of infinite integers and one can ask whether this interpretation generalizes.

Note that one must distinguish between two kinds of hyper-octonionic units.

1. Already in the case of complex numbers one has rational complex units defined in terms
of Pythagorean triangle and their products generate infinite dimensional space. The hyper-
octonionic units defined as ratios U of infinite integers and suggested to provide a representation
of WCW spinor fields correspond to these. The powers Um define roots of unity which can be
regarded analogous to exp(i2πx), where x is not rational but the exponent itself is complex
rational.

2. Besides this there are roots of unity which are in general algebraic complex numbers. These roots
of unit correspond to phases exp(i2πM/N), where M/N is ratio of real infinite integers and i
is the commuting hyper-octonionic imaginary unit. These real infinite integers can be assigned
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to hyper-octonionic integers by replacing everywhere finite hyper-octonionic primes with their
norm which is ordinary prime. By the previous considerations only the phases exp(i2πM/Pn)
make sense p-adically for infinite primes P .

4.6.2 Leaving the world of finite reals and ending up to the ancient Greece

If strong number theoretic vision is accepted, all physical predictions of quantum TGD would be
numbers in finite algebraic extensions of rationals at the first level of hierarchy. Just the numbers which
ancient Greeks were able to construct by the technical means at use! This seems rather paradoxical but
conforms also with the hypothesis that the dicrete algebraic intersections of real and p-adic 2-surfaces
provide the fundamental cognitive representations.

The proposed construction for infinite primes gives a precise division of infinite primes to classes:
the ratios of primes in given class span a subset of rational numbers. These classes give much more
refined classification of infinities than infinite ordinals or alephs. They would correspond to separate
phases in the evolution of consciousness identified as a sequence of quantum jumps defining sequence
of primes → p1 → p2...... Infinite primes could mean a transition from space-time level to the level
of function spaces. WCW is example of a space which can be parameterized by a space of functions
locally.

The minimal assumption is that infinite primes reflect their presence only in the possibility to
multiply the coordinates of imbedding space points by real units formed as ratios of infinite integers.
The correspondence between polynomials and infinite primes gives hopes of mapping at least the
reduced WCW consisting of the the maxima of Kähler function to the anatomy of space-time point.
Also WCW spinors and perhaps also the the modes of configuration space spinor fields would allow
this kind of map.

One can consider also the possibility that infinite integers and rationals give rise to a hierarchy
of imbedding spaces such that given level represents infinitesimals from the point of view of higher
levels in hierarchy. Even ’simultaneous’ time evolutions of conscious experiences at different aleph
levels with completely different time scales (to put it mildly) are possible since the time values around
which the contents of conscious experience are possibly located, are determined by the quantum jump:
also multi-snapshots containing snapshots also from different aleph levels are possible. Un-integrated
conscious experiences with all values of p could be contained in given quantum jump: this would give
rise to a hierarchy of conscious beings: the habitants above given level could be called Gods with full
reason: those above us would probably call us just ’epsilons’ if ready to admit that we exist at all
except in non-rigorous formulations of elementary calculus!

4.6.3 Infinite primes and mystic world view

The proposed interpretation deserves some additional comments from the point of consciousness the-
ory.

1. An open problem is whether the finite integer S appearing in the infinite prime is product of
only finite or possibly even infinite number of lower level primes at a given level of hierarchy.
The proposed physical identification of S indeed allows S to be a product of infinitely many
primes. One can allow also M and N appearing in the infinite and infinite part to be contain
infinite number of factors. In this manner one obtains a hierarchy of infinite primes expressible
in the form

P = nY r1 +mS , r = 1, 2, ...
m = m0 + Pr2(Y ) ,
Y = X

S ,
S =

∏
i Pi .

Note that this ansatz is in principle of the same general form as the original ansatz P = nY +mS.
These primes correspond in physical analogy to states containing infinite number of particles.

If one poses no restrictions on S this implies that that the cardinality for the set of infinite
primes at first level would be c = 2alef0 (alef0 is the cardinality of natural numbers). This is



4.6. Infinite primes and mathematical consciousness 237

the cardinality for all subsets of natural numbers equal to the cardinality of reals. At the next
level one obtains the cardinality 2c for all subsets of reals, etc....

If S were always a product of finite number of primes and k(p) would differ from zero for finite
number of primes only, the cardinality of infinite primes would be alef0 at each level. One could
pose the condition that mS is infinitesimal as compared to nX/S. This would guarantee that
the ratio of two infinite primes at the same level would be well defined and equal to n1S2/n2S1.
On the other hand, the requirement that all rationals are obtained as ratios of infinite primes
requires that no restrictions are posed on k(p): in this case the cardinality coming from possible
choices of r = ms is the cardinality of reals at first level.

The possibility of primes for which also S is finite would mean that the algebra determined by
the infinite primes must be generalized. For the primes representing states containing infinite
number of bosons and/or fermions it would be be possible to tell how P1P2 and P2P1 differ
and these primes would behave like elements of free algebra. As already found, this kind of free
algebra would provide single space-time point with enormous algebraic representative power and
analog of Brahman=Atman identity would result.

2. There is no physical subsystem-complement decomposition for the infinite primes of form X ± 1
since fermionic degrees of freedom are not excited at all. Mystic could interpret it as a state
of consciousness in which all separations vanish and there is no observer-observed distinction
anymore. A state of pure awareness would be in question if bosonic and fermionic excitations
represent the contents of consciousness! Since fermionic many particle states identifiable as
Boolean statements about basic statements are identified as representation for reflective level of
consciousness, S = 1 means that the reflective level of consciousness is absent: enlightment as
the end of thoughts according to mystics.

The mystic experiences of oneness (S = 1!), of emptiness (the subset of primes defined by S is
empty!) and of the absence of all separations (there is no subsystem-complement separation and
hence no division between observer and observed) could be related to quantum jumps to this
kind of sectors of the WCW. In super-symmetric interpretation S = 1 means that state contains
no fermions.

3. There is entire hierarchy of selves corresponding to the hierarchy of infinite primes and the
relationship between selves at different levels of the hierarchy is like the relationship between
God and human being. Infinite primes at the lowest level would presumably represent elementary
particles. This implies a hierarchy for moments of consciousness and it would be un-natural to
exclude the existence of higher level ’beings’ (one might call them Angels, Gods, etc...).

4.6.4 Infinite primes and evolution

The original argument leading to the notion of infinite primes was simple. Generalized unitarity
implies evolution as a gradual increase of the p-adic prime labeling the WCW sector Dp to which the
localization associated with quantum jump occurs. Infinite p-adic primes are forced by the requirement
that p-adic prime increases in a statistical sense and that the number of quantum jumps already
occurred is infinite (assuming finite number of these quantum jumps and therefore the first quantum
jump, one encounters the problem of deciding what was the first WCW spinor field).

Quantum classical correspondence requires that p-adic evolution of the space-time surface with
respect to geometric time repeats in some sense the p-adic evolution by quantum jumps implied by
the generalized unitarity [K30] . Infinite p-adic primes are in a well defined sense composites of the
primes belonging to lower level of infinity and at the bottom of this de-compositional hierarchy are
finite primes. This decomposition corresponds to the decomposition of the space-time surface into
p-adic regions which in TGD inspired theory of consciousness correspond to selves. Therefore the
increase of the composite primes at lower level of infinity induces the increase of the infinite p-adic
prime. p-Adic prime can increase in two manners.

1. One can introduce the concept of the p-adic sub-evolution: the evolution of infinite prime P is
induced by the sub-evolution of infinite primes belonging to a lower level of infinity being induced
by .... being induced by the evolution at the level of finite primes. For instance, the increase of
the cell size means increase of the p-adic prime characterizing it: neurons are indeed very large
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and complicated cells whereas bacteria are small. Sub-evolution occurs both in subjective and
geometric sense.

(a) For a given value of geometric time the p-adic prime of a given space-time sheet gradually
increases in the evolution by quantum jumps: our geometric past evolves also!

(b) The p-adic prime characterizing space-time sheet also increases as the geometric time as-
sociated with the space-time sheet increases (say during morphogenesis).

The notion of sub-evolution is in accordance with the ”Ontogeny recapitulates phylogeny” prin-
ciple: the evolution of organism, now the entire Universe, contains the evolutions of the more
primitive organisms as sub-evolutions.

2. Infinite prime increases also when entirely new finite primes emerge in the decomposition of
an infinite prime to finite primes. This means that entirely new space-time sheets representing
new structures emerge in quantum jumps. The creation of space-time sheets in quantum jumps
could correspond to this process. By quantum classical correspondence this process corresponds
at the space-time level to phase transitions giving rise to new material space-time sheets with
more and more refined effective p-adic effective topology.

4.7 Does the notion of infinite-P p-adicity make sense?

In this section speculations related to infinite-P p-adicity are represented in the form of shy questions
in order to not irritate too much the possible reader. The basic open question causing the tension
is whether infinite primes relate only to the physics of cognition or whether they might allow to say
something non-trivial about the physics of matter too.

The following list of questions is rather natural with the background provided by the p-adic physics.

1. Can one generalize the notion of p-adic norm and p-adic number field to include infinite primes?
Could one define the counterpart of p-adic topology for literally infinite values of p? Does the
topology RP for infinite values of P approximate or is it equivalent with real topology as p-adic
topology at the limit of infinite p is assumed to do (at least in the sense that p-adic variants of
Diophantine equations at this limit correspond to ordinary Diophantine equations)? This is is
possible is suggested by the fact that sheets of 3-surface are expected to have infinite size and
thus to correspond to infinite p-adic length scale.

2. Canonical identification maps p-adic numbers of unit norm to real numbers in the range [0, p].
Does the canonical identification map the p-adic numbers RP associated with infinite prime
to reals? Could the number fields RP provide alternative formulations/generalizations of the
non-standard analysis based on the hyper-real numbers of Robinson [A200] ?

3. The notion of finite measurement resolution for angle variables given naturally as a hierarchy
2π/pn of resolutions for a given p-adic prime defining aa hierarchy of algebraic extension of
p-adic numbers is central in the attempts to formulate p-adic variants of quantum TGD and
fuse them with real number based quantum TGD [K77] . If p is replaced with an infinite prime,
the angular resolution becomes ideal and the roots of unity exp(2πm/pn) are replaced with real
units unless also the integer m is replaced with an infinite integer M so that the ratio M/Pn

is finite rational number. Could this approach be regarded as alternative for real number based
notion of phase angle?

The consideration of infinite primes need not be a purely academic exercise: for infinite values of
p p-adic perturbation series contains only two terms and this limit, when properly formulated, could
give excellent approximation of the finite p theory for large p. Using infinite promes one might obtain
the real theory in this approximation.

The question discussed in this section is whether the notion of p-adic number field makes sense
makes sense for infinite primes and whether it might have some physical relevance. One can formally
introduce power series in powers of any infinite prime P and the coefficients can be taken to belong
to any ordinary number field. In the representation by polynomials P-adic power series correspond to
Laurent series in powers of corresponding polynomial and are completely finite.
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For straightforward generalization of the norm all powers of infinite-P prime have vanishing norm.
The infinite-p p-adic norm of infinite-p p-adic integer would be given by its finite part so that in this
sense positive powers of P would represent infinitesimals. For Laurent series this would mean that
the lowest term would give the whole approximation in the real topology. For finite-primes one could
however replace the norm as a power of p by a power of some other number. This would allow to have
a finite norm also for P-adic primes. Since the simplest P-adic primes at the lowest level of hierarchy
define naturally a rational one might consider the possibility of defining the norm of P as the inverse
of this rational.

4.7.1 Does infinite-P p-adicity reduce to q-adicity?

Any non-vanishing p-adic number is expressible as a product of power of p multiplied by a p-adic unit
which can be infinite as a normal integer and has pinary expansion in powers of p:

x = pn(x0 +
∑
k>0

xkp
k) , xk ∈ {0, .., p− 1} , x0 > 0 . (4.7.1)

The p-adic norm of x is given by Np(x) = p−n. Each unit has p-adic inverse which for finite integers
is always infinite as an ordinary integer.

To define infinite-P p-adic numbers one must generalize the pinary expansion to a infinite-P p-
adic expansion of an infinite rational. In particular, one must identify what the statement ’infinite
integer modulo P ’ means when P is infinite prime, and what are the infinite integers N satisfying
the condition N < P . Also one must be able to construct the p-adic inverse of any infinite prime.
The correspondence of infinite primes with polynomials allows to construct infinite-P p-adics in a
straightforward manner.

Consider first the infinite integers at the lowest level.

1. Infinite-P p-adics at the first level of hierarhcy correspond to Laurent series like expansions using
an irreducible polynomial P of degree n representing infinite prime. The coefficients of the series
are numbers in the coefficient fields. Modulo p operation is replaced with modulo polynomial
P operation giving a unique result and one can calculate the coefficients of the expansion in
powers of P by the same algorithm as in the case of the ordinary p-adic numbers. In the case
of n-variables the coefficients of Taylor series are naturally rational functions of at most n − 1
variables. For infinite primes this means rationals formed from lower level infinite-primes.

2. Infinite-P p-adic units correspond to expansions of this type having non-vanishing zeroth order
term. Polynomials take the role of finite integers. The inverse of a infinite integer in P-adic
number field is obtained by developing the polynomial counterpart of 1/N in the following
manner. Express N in the form N = N0(1 + x1P + ..), where N0 is polynomial with degree at
most equal to n − 1. The factor 1/(1 + x1P + ...) can be developed in geometric series so that
only the calculation of 1/N0 remains. Calculate first the inverse N̂−1

0 of N0 as an element of the
’finite field’ defined by the polynomials modulo P : a polynomial having degree at most equal to
n− 1 results. Express 1/N0 as

1

N0
= N̂−1

0 (1 + y1P + ...)

and calculate the coefficients in the expansion iteratively using the condition N × (1/N) = 1
by applying polynomial modulo arithmetics. Generalizing this, one can develop any rational
function to power series with respect to polynomial prime P . The expansion with respect to a
polynomial prime can in turn be translated to an expansion with respect to infinite prime and
also mapped to a superposition of Fock states.

3. What about the norm of infinite-P p-adic integers? Ultra-metricity suggest a straightforward
generalization of the usual p-adic norm. The direct generalization of the finite-p p-adic norm
would mean the identification of infinite-P p-adic norm as P−n, where n corresponds to the
lowest order term in the polymomial expansion. Thus the norm would be infinite for n < 0,
equal to one for n = 0 and vanish for n > 0. Any polynomial integer N would have vanishing
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norm with respect to those infinite-P p-adics for which P divides N . Essentially discrete topology
would result.

This seems too trivial to be interesting. One can however replace P−n with a−n, where a is any
finite number a without losing the multiplicativity and ultra-metricity properties of the norm. The
function space associated with the polynomial defined by P serves as a guideline also now. This
space is naturally q-adic for some rational number q. At the lowest level the infinite prime defines
naturally an ordinary rational number as the zero of the polynomial as is clear from the definition
of the polynomial. At higher levels of the hierarchy the rational number is rational function of lower
level infinite primes and by continuing the assignments of lower level rational functions to the infinite
primes one ends up with an assignment of a unique rational number with a given infinite prime serving
as an excellent candidate for a rational defining the q-adicity.

4.7.2 q-Adic topology determined by infinite prime as a local topology of
the configuration space

Since infinite primes correspond to polynomials, infinite-P p-adic topology, which by previous consid-
erations would be actually q-adic topology, is a natural candidate for a topology in function spaces,
in particular in the configuration space of 3-surfaces.

This view conforms also with the idea of algebraic holography. The sub-spaces of configuration
space can be modelled in terms of function spaces of rational functions, their algebraic extensions,
and their P-adic completions. The mapping of the elements of these spaces to infinite rationals would
make possible the correspondence between configuration space and number theoretic anatomy of point
of the imbedding space.

The q-adic norm for these function spaces is in turn consistent with the ultra-metricity for the
space of maxima of Kähler functions conjectured to be all that is needed to construct S-matrix.
Ultra-metricity conforms nicely with the expected four-dimensional spin glass degeneracy due to the
enormous vacuum degeneracy meaning that maxima of Kähler function define the analog of spin
glass free energy landscape. That only maxima of Kähler function would be needed would mean that
radiative corrections to the configuration space integral would vanish as quantum criticality indeed
requires. This TGD can be regarded as an analog of for an integrable quantum theory. Quantum
criticality is absolutely essential for guaranteing that S-matrix and U-matric elements are algebraic
numbers which in turn guarantees number theoretic universality of quantum TGD.

4.7.3 The interpretation of the discrete topology determined by infinite
prime

Also p = 1-adic topology makes formally sense and corresponds to a discrete topology in which all
rationals have unit norm. It results also results if one naively generalizes p-adic topology to infinite-p p-
adic topology by defining the norm of infinite prime at the lowest level of hierarchy as |P |P = 1/P = 0.
In this topology the distance between two points is either 1 or 0 and this topology is the roughest
possible topology one can imagine.

It must be however noticed that if one maps infinite-P p-adics to real by the formal generalization
of the canonical identification then one obtains real topology naturally if coefficients of powers of P
are taken to be reals. This would mean that infinite-P p-adic topology would be equivalent with real
topology.

Consider now the possible interpretations.

1. At the level of function spaces infinite-p p-adic topology in the naive sense has a completely
natural interpretation and states that the replacement of the Taylor series with its lowest term.

2. The formal possibility of p = 1-adic topology at space-time level suggests a possible interpre-
tation for the mysterious infinite degeneracy caused by the presence of the absolute minima of
the Kähler function: one can add to any absolute minimum a vacuum extremal, which behaves
completely randomly except for the constraints forcing the surface to be a vacuum extremal.
This non-determinism is much more general than the non-determinism involving a discrete se-
quence of bifurcations (I have used the term association sequence about this kind of sequences).
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This suggests that one must replace the concept of 3-surface with a more general one, allowing
also continuous association sequences consisting of a continuous family of space-like 3-surfaces
with infinitesimally small time like separations. These continuous association sequences would
be analogous to vacuum bubbles of the quantum field theories.

One can even consider the possibility that vacuum extremals are non-differentiable and even discon-
tinuous obeying only effective p = 1-adic topology. Also modified Dirac operator vanishes identically
in this case. Since vacuum surfaces are in question, p = 1 regions cannot correspond to material
sheets carrying energy and also the identification as cognitive space-time sheets is questionable. Since
p = 1, the smallest possible prime in generalized sense, it must represent the lowest possible level of
evolution, primordial chaos. Quantum classical correspondence suggests that p = 1 level is indeed
present at the space-time level and might realized by the mysterious vacuum extremals.

4.8 How infinite primes relate to other views about mathe-
matical infinity?

Infinite primes is a purely TGD inspired notion. The notion of infinity is number theoretical and
infinite primes have well defined divisibility properties. One can partially order them by the real norm.
p-Adic norms of infinite primes are well defined and finite. The construction of infinite primes is a
hierarchical procedure structurally equivalent to a repeated second quantization of a supersymmetric
arithmetic quantum field theory. At the lowest level bosons and fermions are labelled by ordinary
primes. At the next level one obtains free Fock states plus states having interpretation as bound
many particle states. The many particle states of a given level become the single particle states of
the next level and one can repeat the construction ad infinitum. The analogy with quantum theory
is intriguing and I have proposed that the quantum states in TGD Universe correspond to octonionic
generalizations of infinite primes.

It is interesting to compare infinite primes (and integers) to the Cantorian view about infinite
ordinals and cardinals. The basic problems of Cantor’s approach which relate to the axiom of choice,
continuum hypothesis, and Russell’s antinomy: all these problems relate to the definition of ordinals
as sets. In TGD framework infinite primes, integers, and rationals are defined purely algebraically
so that these problems are avoided. It is not surprising that these approaches are not equivalent.
For instance, sum and product for Cantorian ordinals are not commutative unlike for infinite integers
defined in terms of infinite primes.

Set theory defines the foundations of modern mathematics. Set theory relies strongly on classical
physics, and the obvious question is whether one should reconsider the foundations of mathematics in
light of quantum physics. Is set theory really the correct approach to axiomatization?

1. Quantum view about consciousness and cognition leads to a proposal that p-adic physics serves
as a correlate for cognition. Together with the notion of infinite primes this suggests that number
theory should play a key role in the axiomatics.

2. Algebraic geometry allows algebraization of the set theory and this kind of approach suggests
itself strongly in physics inspired approach to the foundations of mathematics. This means
powerful limitations on the notion of set.

3. Finite measurement resolution and finite resolution of cognition could have implications also for
the foundations of mathematics and relate directly to the fact that all numerical approaches
reduce to an approximation using rationals with a cutoff on the number of binary digits.

4. The TGD inspired vision about consciousness implies evolution by quantum jumps meaning that
also evolution of mathematics so that no fixed system of axioms can ever catch all the mathe-
matical truths for the simple reason that mathematicians themselves evolve with mathematics.

I will discuss possible impact of these observations on the foundations of physical mathematics
assuming that one accepts the TGD inspired view about infinity, about the notion of number, and
the restrictions on the notion of set suggested by classical TGD.
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4.8.1 Cantorian view about infinity

The question which I have but repeatedly under the rug during the last fifteen years concerns the
relationship of infinite primes to the notion of infinity as Cantor and his followers have understood it.
I must be honest: I have been too lazy to even explain to myself what Cantor really said. Therefore
the reading of the New Scientist article ”The Ultimate logic: to infinity and beyond” [A147] was a
pleasant surprise since it gave a bird’s eye of view about how the ideas about infinity have evolved
after Cantor as a response to severe difficulties in the set theoretic formulation for the foundations of
Mathematics.

Cantor’s paradize

I try to summarize Cantor’s view about infinity first. Cantor was the pioneer of set theory, in particular
the theory of infinite sets. Cantor started his work around 1870. His goal was to formulate all notions
of mathematics in terms of sets, in particular natural numbers. Cardinals and ordinals define two
kind of infinite numbers in Cantor’s approach.

1. Cantor realized that real numbers are ”more numerous” than natural numbers and understood
the importance of one-to-one correspondence (bijection) in set theory. One can say that two sets
related by bijection have same cardinality. This led to the notion of cardinal number. Cardinals
are represented as sets and two cardinals are same if a bijection exists between the corresponding
sets. For instance, the infinite cardinals assignable to natural numbers and reals are different
since no bijection between them exists.

2. The definition of ordinal relies on successor axiom of natural numbers generalized to allow
infinitely large ordinals. Given ordinal can be identified as the union of all ordinals strictly
smaller than it. Well ordering is a closely related notion and states that every subset of ordinals
has smallest element. One can classify ordinals to three types: 0, elements with predecessor,
and elements without predecessor such as ω, which corresponds to the ordinal defined as the
union of all natural numbers.

The number of ordinals much larger than the number of cardinals. This is clear since the notion
of ordinal involves additional structure coming from their ordering. A given cardinal corresponds
to infinitely many ordinals and one can identify the cardinal as the smallest ordinal of this kind.
For instance, ω and ω+n correspond to same cardinal α0 (countable infinity) for all finite values
of n.

3. Cantor introduced the notion of power set as the set of all subsets of the set and proved that
the cardinality of the power set is larger than that of set. Cantor introduced also the continuum
hypothesis stating that there are no cardinals between the cardinal ℵ0 resp. ℵ1 assignable to
natural numbers resp. reals. Hilbert represented continuum hypothesis as one of his 23 problems
in his talk at the 1900 International Congress of Mathematicians in Paris. Hilbert was also a
defender of Cantor and introduced the term Cantor’s paradize.

4. Cantor developed the arithmetics of ordinals based on sum, product, and power: each of these
operations is expressible in terms of set theoretic concepts. For infinite ordinals multiplication
and sum are not commutative anymore. This looks highly counter intuitive and requires detailed
definition of the sum and product. Sum means just writing the ordered sequences representing
ordinals in succession. To see the non-commutativity of sum it is enough to notice that the
number of elements having predecessor is not the same for ω + n and n+ ω.

To see the non-commutativity of product it is enough to notice that the product is define as
cartesian product S × T of the ordered sets representing the ordinals. This means that every
element of T is replaced with S. It is easy to see that n× ω and ω × n are different.

One can define also the powers (exponentials) in the arithemetics of ordinals: exponent must
reduce to the notion of power set XY , which can be realized as the set of maps Y → X and has
formally #X#Y elements.

It is pity that the we physicists have so pragmatic attitude to mathematics that we do not have
time to realize the beauty of the idea about reduction of all mathematics to set theory. This is even

http://www.newscientist.com/article/mg21128231.400-ultimate-logic-to-infinity-and-beyond.html
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more regrettable since it might well be that the manner to make progress in physics might require
replacing the mathematics with a mathematics which does not rely on set theory alone.

Snakes in Cantor’s paradize

Cantor’s paradize is extremely beautiful place but there are snakes there. Continuum hypothesis
looked to Cantor intuitively obvious but the attempts to prove it failed. Betrand Russel showed in
1901 that the logical basis of Cantor’s set theory was flawed. This manifested itself via a simple
paradox. Assume that it makes sense to speak about the set of all ordinals. This is by definition
ordinal itself since ordinal is a set consisting of all ordinals strictly smaller than it. But this would
mean that the set of all ordinals is its own member! The famous barber’s paradox is a more concrete
manner to express Russel’s antinomy. One cannot speak of the set of ordinals and must introduce the
notion of class. Russell introduced also the notion of types and type theory.

At 1920 Ernst Zermelo and Abraham Fraenkel devised a series of rules for manipulating sets but
these rules did not allow to resolve the status of the continuum hypothesis. The stumbling block
was the rule known as ”axiom of choice” stating that if you have a collection of sets you can form
a new set by picking one element from each of them. At first this sounds rather obvious but in the
case when there is no obvious rule telling how to do it, situation becomes non-trivial. Then Polish
mathematicians Stefan Banach and Alfred Tarski managed to show how the axiom would allow the
division of a spherical ball to six subsets which can then be arranged to two balls with the same size
as the original ball using only rotations and translations. These six sets are non-measurable in terms
of Lebesque measure. The non-intuitive outcome must relate to the definition of the volume of the
ball that is integration or measure theory: the axioms of measure theory should bring in constraints
preventing construction of the six sets.

Around 1931 Kurt Gödel proved the incompleteness theorem that it is not possible to axiomatize
arithmetics using any axiom system. There always remain unprovable propositions, which are true
and cannot be proved to be true. This kind of statement is analogous to ”I am a statement which
cannot be proved to be true”. If this statement could be proved to be true it would not be true.

Constructing logical universes

The attempts to expel the snakes from Cantor’s paradize led to the idea that by posing some con-
straints it might be possible to construct logically consistent set theory obeying Zermelo-Fraenkel
axioms such that continuum hypothesis and the axiom of choice would hold true and which would be
free of paradoxes such as Banach-Tarski paradox.

Around 1938 Gödel introduced what he called ”constructible universe” or L world satisfying these
constraints. The structure of L world is hierarchical and one can say that the successor idea manifests
itself directly in the construction. The levels are labeled by ordinals and one can always add a new
level. The introduction of a new level to the hierarchy means that new axioms are introduced to the
system bringing in meta level to the mathematical structure. The axiom system can be extended
indefinitely. Gödel’s theorem holds true at given level of hierarchy but by adding new levels non-
probable truths can be made provable.

1963 Paul Cohen however demonstrated that there is infinite number of this kind of L worlds.
In some of them continuum hypothesis holds true, in some of them the number of cardinals between
ℵ0 andα1 can be arbitrary large - even infinite. This initiated a boom of constructions brings in
mind the inflation of GUTs in particle physics and tge endless variety of brane constructions and the
landscape misery of M-theory. From the point of view of physicist the non-uniqueness in foundations
of mathematics does not seem to matter much since the everyday mathematics would remain the
familiar one. One can of course ask what about quantum theory: should quantum physics replace
classical physics in the formulation of fundamental fo mathematics.

For instance, von Neuman proposed one particular L world. In von Neumann unverse one starts
from natural numbers and constructs its power set and at each step in the construction one consideres
power set assigned to the sete obtained at the previous level. It is clear that one imagine several
options. One could consider all subsets, only finite subsets, or only subsets which have cardinality
smaller than the set itself. Power sets identified as the set of all finite subsets would give minimal
option. Power set identified as the set of all subsets would give the maximal option.

http://en.wikipedia.org/wiki/Constructible_universe
http://en.wikipedia.org/wiki/Von_Neumann_universe
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The work of Hugh Woodin represented in 2010 International Congress of Mathematicians in Hy-
derabad, India represents the last twist in the story. Woodin argues that one must step outside the
system that is conventional mathematical world to solve the problem. Woodin has introduced so called
Woodin cardinals whose existence implies that all ”projective” subsets of reals have a measurable size:
it is not an accident that the word ”measure” appears here when one recalls what Banach-Tarski para-
dox states. Woodin was motivated by the problems of set theory. He expresses this by saying ”Set
theory is riddled with unsolvability. Almost any problem of set theory is unsolvable”.

Woodin proposed his own constructive universe which he calls ultimate L. It has all the desired
properties: in particular, continuum hypothesis holds true. Physicists reader need not get frustrated
if he fails to intuit why this is the case: for a decade ago Wooding himself did not believe in this. Also
this L world is infinite tower to which one can add new levels.

4.8.2 The notion of infinity in TGD Universe

The construction of infinite primes, integers, and rationals brings strongly in mind the L worlds of
Gödel and followers and this inspires the idea about concrete comparison of these approaches to see
the differences.

Rule of thumb

It is good to start with a rule of thumb allowing to make strong conclusions about the cardinalities
of infinite primes. If one considers the set formed by all finite subsets of a countable set you get
a countable set because these subsets can be expressed as bit sequences with finite number if non-
vanishing binary digits telling whether given element of set belongs to the subset or not: this bit
sequence corresponds to a unique integer. If *all* subsets (also infinite) are allowed the set is not
countably finite. If continuum hypothesis holds true it has at least as many elements as real line.

2-adic integers are good example. Consider first all 2-adic numbers with a *finite* number of
non-vanishing bits (finite as real numbers). You get a countably infinite set since you can map these
bit sequences to natural numbers in an obvious manner.

Consider next all possible bit sequences: most of them have infinite number bits. These numbers
form naturally 2-adic continuum with 2-adic topology and differentiability. 2-adics can be mapped
to real continuum in simple manner: canonical identification allows to do this continuously. The
cardinality of these bit sequences is same as for reals as the rule of thumb would predict.

The hierarchy of infinite integers is based on number theoretical view about infinity and it would
seem that these infinities are between the countable infinity and infinity defining the number of points
of real axis. This reflects the fact that number theoretic infinity is much more refined notion than
the infinities associated with cardinals and even ordinals. For instance, one can divide these infinities
whereas Cantorian arithmetics contains only sum, product and power.

How Cantor’s ordinals relate to the construction of infinite primes?

The fascinating question is whether the comparison of the construction of infinite primes, integers and
rationals could relate to the work of Cantor and Gödel and his followers could provide new insights
about infinite primes themselves.

1. What is intriguing that L-worlds are defined as infinite hierarchies just as the hierarchy of infinite
primes and associated hierarchies. The great idea is that these constructions are essentially set
theoretic in accordance with the vision that mathematics should reduce to set theory. As already
noticed, naive set theory however leads to paradoxes which motivates the work of Gödel and
followers. The basic physical philosophy is the identification of physical state as a set: this is
essentially a notion belonging to classical physics.

2. TGD approach is algebraic rather than set theoretic. The construction is based on explicit
formulas assuming the existence of weird quantities defined as product of all primes at previous
level. These quantities can be taken as purely algebraic notions without any attempt to find a
set theoretic definition.

The possibility to interpret the construction as a repeated second quantization of a supersym-
metric arithmetic quantum field theory with bosons and fermions labeled by ordinary primes
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at the loweset level of hierarchy replaces the set theoretic picture. These weird products of all
primes represent Dirac sea at a given level of hierarchy and the many particles states of previous
level become elementary particles at the new level of hierarchy. This construction is proposed
to have a direct physical realization in terms of many-sheeted space-time and generalized to
the level of octonionic primes is suggested to allow number theoretic interpretation of standard
model quantum numbers.

Perhaps it is not mere arrogance of quantum physics to argue that the classical set theoretic
view about physical state is replaced with quantum view about it. Algebra replaces set theory
and real and p-adic topologies are essential: for instance, infinite primes are infinite only in real
topology.

One can raise many interesting questions. Although the underlying philosophies are very different,
one can ask whether it might be possible to reduce TGD inspired construction to set theory playing
key role in the construction of ordinals?

1. Can one assign to a given infinite integer a set in a natural manner? At the lowest level of
hierarchy infinite prime can be mapped to a rational. Could one assign to this rational a set in
cartesian product N×N? Does this argument generalize to higher levels? Could the construction
discussed in [K50] allow to realize the set theoretic representation?

2. The notion of divisibility and explicit formulas for infinite integers obviously imply that the
number of infinite numbers is much larger than cardinals of Cantor. This is true also for the
ordinals of Cantor. How infinite integers relate to the ordinals of Cantor for which successor
axiom is true? Also now it makes sense to form successors and in general they correspond to
products of infinite primes which can be mapped to polynomials of several variables. For infinite
integers however also the predecessor always exists. For instance X±1 are infinite primes, where
X represents the product of primes at previous level. Only zero fails to have predecessor for
infinite natural numbers.

3. In TGD framework one loses the very essential notion of well-orderedness stating that every
ordinal corresponds to a set with smallest element: that is element without predecessor. For
instance, the infinite numbers known as limits and by definition are infinite and have no pre-
decessor, the simplest example about limit is ω, which corresponds to the union of all natural
numbers. The study of predecessors allowed to conclude that the sum and product are non-
commutative for ordinals. Since the notion of well-ordered set does not make sense for infinite
integers, one cannot identify infinite integers as ordinals.

One must however remember that just the well-orderedness hypothesis together with successor
axiom allows to express ordinal as a union of strictly smaller ordinals. This in turn leads to the
conclusion that ordinals cannot form a set and to Russel’s antinomy and are responsible for the
many problems of set theory forcing Wooding to sigh ”Set theory is riddled with unsolvability.
Almost any problem of set theory is unsolvable”. Maybe the well-orderedness axiom is simply
too strong for infinite ordinals.

4. Sum, product, and power are the basic operations in the arithmetics of ordinals. All they reduce
to set theoretic constructions. One can however define these operations purely algebraically. The
algebraic definition of sum and product makes sense since one can map the infinite integers to
polynomials of several variables. The possibly existing set theoretic definition of infinite integers
using infinite sets cannot be consistent with the commutativity of sum and product defined
algebraically. Either algebra or set theory but not both!

5. Also the notion of power makes sense for ordinals and relies on the notion of power set. Could
the algebraic definition of exponential make sense? If the exponent N of MN is finite integer,
then the exponent makes sense for infinite M . If N is infinite integer it does not. Hence it seems
that the analogs of numbers like ωω do not exist in TGD inspired L universe.

6. The failure of set theoretic reductionism brings in mind the motivic approach to integration
as purely algebraic approach applied to the symbol defining the integral instead of a number
approach based on set theoretic notions. The motivation of the motivic approach in p-adic
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context is that p-adic numbers are not well-ordered so that one loses the notion of boundary
and orientation as topological concepts although they can make sense algebraically.

For the hierarchy infinite integers the notion of infinity relies on real norm, which is essentially
length rather than on the cardinality of a set. This infinity is essentially non-Cantorian and it is
perhaps useless to try to relate it to that of ordinal or cardinal. There is just an infinite hierarchy of
infinities which replaces the hiererachy of ordinals and for which the real norm of ratio makes possible
partial ordering. Clearly the notion of infinity is extremely slippery and one must carefully specify
what one means with infinite.

Cardinals in TGD Universe

What about cardinals in TGD framework? There seems to be no reason for giving them up and the
first guess is that TGD replaces cardinals and ordinals of Cantor with cardinals and the hierarchy of
infinite primes, integers, and rationals.

1. The first question is what is the cardinal assignable to infinite primes at the first level of hierarchy.
For the set of finite primes the cardinal is ℵ0. For the first level of infinite primes the situation
is not so simple. The simple infinite primes correspond to free Fock states constructed from
fermions and bosons labelled by primes. They are in one-one correspondence with rationals.
There is however infinite number of many particle bound states representable as products of
irreducible polynomials of one variable with integer coefficients and having finite number of
roots which are algebraic numbers. The set of algebraic numbers is countable. This suggests
that the cardinality of set of infinite primes at the first level of hierarchy corresponds to ℵ0.
This if course assuming that infinite integers and rationals for a set although they themselves
cannot be described as sets.

If one allows Fock states containing infinite number of particles and having thus infinite energy
one obtains formally polynomials of infinite degree identifiable as Taylor expansions. In this case
the roots can be transcendental numbers and one expects that a cardinal larger than ℵ0, say ℵ1

emerges. In von Neumann’s Universe one indeed allows all subsets and ℵ1 appears already at
the first level. The higher cardinals appear at higher levels.

One cannot exclude the Fock states containing infinite number of quanta if one accepts the idea
that infinite prime representing quantum state characterizing entire Universe make sense. Does
this mean that ℵ1 has meaning only for entire universe and for states carrying infinite energy
(in ZEO the positive energy part of zero energy state would carry the infinite energy)?

2. What happens at the next levels of the hierarchy? One possibility is that infinite primes at each
level define a countable set. The point is that in polynomials representation one considers only
finite degree polynomials depending on finite number of variables, having rational coefficients.
Therefore everything at the level of definitions is countable and finite and the product X of
primes of previous level is just an algebraic symbol identifiable as a variable of polynomial.

3. In an alternative construction of infinite integers suggested in [?]ne considers the first level of
the hierarchy the set of finite subsets of algebraic numbers and the set of finite subsets of this
set at the next level and so on. All these sets are countable which suggests that the number
of infinite primes at each level of the hierarchy is countable and that only the completion of
algebraic number to reals or p-adic can give rise to ℵ1. This would conform with the fact that
quantum physics is basically based on counting of quanta and that finite measurement resolution
is an essential restriction on what we can know.

What about the axiom of choice?

Axiom of choice has several variants. One variant is axiom of countable choice. Second variant is
generalized continuum hypothesis states that the cardinality of an infinite set is between that of infinite
set S and its power set: in other words there is no cardinal satisfying ℵα < λ < 2ℵα or equivalently:
ℵα+1 = 2ℵα . For a finite collection of sets it can be proved but already when on has a countable
collection of nonempty set and in the case that one cannot uniquely specify some preferred element
of each set, axiom of choice must be postulated. For instance, each subset of natural numbers has
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smallest element so that there is no need to postulate axiom of choice separately. Also closed intervals
of real axis have smallest element.

What happens to the axiom of choice in TGD Universe. TGD is a physical theory and this means
that the laws of classical physics strong considerations on the allowed sets. Classical physics is in
TGD framework the dictated by the Kähler action and by a principle selecting its preferred extremals.
Although several almost formulations for this principle exist, it is far from being well-understood and
it is not clear whether one can give explicit formula for preferred extremals. One formulation is as
quaternionic sub-manifolds of 8-D imbedding space allowing octonionic structure in its tangent space
and defined by octonionic representation of the gamma matrices defining the Clifford algebra.

1. The world of classical worlds can be regarded as the space of preferred extremals of Kähler
action identifiable as certain 4-surfaces in M4 × CP2. The mere extremal property implies also
smoothness of the partonic 2-surfaces so that very powerful constraints are involved: therefore
situation is very far from the extreme generality of set theory where one does assumes neither
continuity nor smoothness. Zero energy ontology means that this space effectively reduces to a
collection of spaces assignable to causal diamonds. Strong form of holography reduces this space
effectively to the space consisting of collectings of partonic 2-surfaces at the light-like boundaries
of CD plus 4-D tangent space data at them which very probably cannot be chosen freely.

2. In this kind of situation it might well happen that all collections of sets, say are finite or in the
case that that they are countable they allow a unique choice of preferred point. Axiom of choice
would not be needed. The specification of a preferred point of every 4-surface in the collection
does not look a problem for a pragmatic physicist, since one can restrict the consideration to the
boundaries of causal diamonds and consider for instance minimum of light-like radial coordinate.
In fact, finite measurement resolution leads to the effective replacement of partonic 2-surfaces
with the collection of ends of braid strands and the ends of braid strands define the preferred
points. One might say, that physics with finite measurement resolution performs the choice
automatically. A stronger form of this choice is that the points in question are rational points
for a natural choice of the imbedding space coordinates.

Generalization of real numbers inspired by infinite integers

Surreal numbers define a generalization of reals obtained by introducing a hierarchy of infinite reals
and infinitesimals as their inverses. Infinite integers and rationals in TGD sense could give rise to a
similar generalization so that one would have an infinite hierarchy of 8-D imbedding space such that
at given level previous level would represent infinitesimals.

TGD suggests another generalization of reals. One can construct from infinite integers rationals
with unit norm. A possible interpretation would be as zero energy states with denominator and
numerator represention positive and negative energy parts of the zero energy state and vanishing of
total quantum numbers represented by real unit property. These numbers would have arbitrarily
complex number theoretical anatomy however.

This structure has enormous representative power and one could dream that the world of classical
worlds and spinor fields in this space could allow representation in terms of these real units. Brahman
Atman Identity would be realized: the structure of single space-time point invisible to ordinary physics
would represent the world of classical worlds! Single space-time point would be the Platonia!

Could one say that the space of all infinite rationals which are real units is countable? If previous
arguments are correct this would seem to be true. If this is true, then TGD inspired notion of infinity
would be extremely conservative as compared to the view proposed by Cantor and his followers using
the Cantorian criteria. Just ℵn, n = 0, 1 and hierarchy of infinite integers which are countable sets.
One can of course, ask how many surfaces WCW contains, what ℵ is in question. This depends on
the properties of preferred extremals. If partonic 2-surfaces can be choosen freely at the boundaries
of CDs the restrictions come only from smoothness of the imbedding of the partonic 2-surfaces and
tangent space data. The space of all functions from reals to reals has cardinality 2ℵ1 which suggests
that the cardinality is not larger than this, perhaps smaller since continuity and smoothness poses
strong conditions. The natural guess is that the tangent space of WCW can be modelled as and
infinite-dimensional separable Hilbert space which has cardinality ℵ1.

TGD leads also a second generalization of the number concept motivated by number theoretical
universality inspiring the attempt to glue different number fields (reals and various p-adics) together
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among common numbers -rationals in particular- to form a larger structure [K77].
To sum up, the distinctions between Cantorian and TGD inspired approaches are clear. Cantorian

approach relies on set theory and TGD on number theory. What is common is the hierarchy of
infinities.

4.8.3 What could be the foundations of physical mathematics?

Theoretical physicists do not spend normally their time for questioning the foundations of mathemat-
ics. They calculate. There are exceptions: Von Neuman was both a theoretical physicist developing
mathematical foundations of quantum theory and mathematician buildingthe mathematics of quan-
tum theory and also proposing his own L world for foundations of mathematics.

A physicist posing the question ”What should be done for the foundations of mathematics?”
sounds blasphemous and the physicist should add the attribute ”physical” to ”mathematics” to avoid
irritation. In any case, the fact is that the problems plaguing set theory and therefore the foundations
of mathematics had been discovered roughly century ago and no commonly accepted solution to these
problems have been found. The foundations of mathematics rely on classical physics and quantum
view about existence suggests that the foundations of mathematics might need a revision.

Again the work of von Neuman comes readily into mind. The goal of von Neuman was to build a
non-commutative measure theory: the outcome was the three algebras bearing his name and defining
the mathematical backbone of three kinds of quantum theories. Factors of type I are natural for wave
mechanism with finite number of degreees of freedom. In QFT hyperfinite factors of type III appear.
In TGD framework hyperfinite factors of type II (and possibly of type III) are natural.

Connes who has studied von Neumann algebras highly relevant to quantum physics proposed the
notion of non-commutative geometry in terms of a spectral triplet defined by C∗ algebra A, Hilbert
space H, and Dirac operator D with some additional properties. As a special case one re-discovers
Riemannian manifolds using commutative function algebra, the Hilbert space of continuous functions,
and certain kind of Dirac operator.

Physicists are usually mathematical opportunists and do not want to use time to ponder the
foundations of mathematics My belief is that physicists should get rid of this attitude and make fool
of themselves by posing the childish questions of physicist in the hope that some real mathematician
might get interested. In order to not irritate mathematicians too much I will talk about physical
mathematics instead of mathematics in the sequel.

The proposal that infinite primes, integers, and rationals should replace Cantor’s ordinals and
surreal numbers [K50] has been already made. This would allow to get rid of Russell’s antinomy, leave
the notion of cardinal intact. Also axiom of choice looks too strong from the point of view of physics.

Does it make sense to speak about physical set theory?

For the physicist set theory looks quite too general. In the recent day physical theories sets are
typically manifolds, submanifolds, or orbifolds. Feynman diagrams represent example of 1-D singular
manifolds and in TGD generalized Feynman diagrams of TGD fail to be 3-manifolds only at the vertices
represented as 2-D partonic surfaces. In string theories and in twistor approach to gauge theories
algebraic geometry is important. Branes are typically algebraic surfaces. The spaces are endowed
with various structures: besides metric induced topology one differential structure, differential forms,
metric, spinor structure, complex and Kähler structure, etc...

1. In algebraic geometry sets are replaced with varieties and basic set theoretic operations such as
intersection and union are algebraized. Physicists should not fail to realize how profound this
algebraization of the set theory is. The price that must be paid is that varieties are manifolds
only locally. What limitations does this mean for set theory? Is it enough to formulate set
theory algebraically? In TGD framework this could be possible in the intersection of real and
p-adic worlds (WCWs) since set theoretic operations would have algebraic representation. For
instance, A ⊂ B would be formulated by adding additional functions for which the intersection
of zero locus with B defines A.

The algebraic notion of set as a variety is extremely restrictive: maybe the problems of set theory
are partially due to the neglect of the fact that allowed sets must have a physical realization.
Every physicists of course has her own pet theory, which he regards as the real physics, and one
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naturalcondition on any accceptable physics is that it can emulate sufficiently general spaces -
to act as a kind of mathematical Turing machine. At least real and complex manifolds with
arbitrary dimension should have some kind of physical representation. One can imagine this
kind of representation in terms of unions of partonic 2-surfaces since union can be regarded also
as a Cartesian product as long as the surfaces do not intersect.

2. The introduction of topology is the first step in bringing structure to the set theoretic primordial
chaos. Metric topology is standard in physics at space-time level. More refined topologies can be
certainly found in highly technical mathematical physics articles. In algebraic geomery Zariski
topology is important but has its problems realized by Groethendienck in his attempts to build
a universal cohomology theory working in all number fields. The closed sets of Zariski topology
are varieties. Their complements would be open sets open also in norm based topology. Zariski
topology is obviously much rougher than the metric opology. Zariski topology makes sense also
for p-adic number fields. This kind of topology might make sense in TGD framework if one
restricts the consideration to the intersection of real and p-adic worlds identified at the level of
WCW as the space of algebraic surfaces defined using polynomials with rational coefficients and
having finite degree.

3. In TGD framework preferred extremals of Kähler action define space-time surfaces and strong
form of holography makes the situation effectively 2-dimensional. The conjecture is that pre-
ferred extremals correspond to quaternionic surfaces of octonionic 8-space. Octonionic structure
is associated with the octonionic representation of the imbedding space gamma matrices (not
actually matrices any more!) defining the Clifford algebra. Associativity would be the basic
dynamical principle. Does this mean that number theory- in particular classical number fields-
should appear in the formulation of the foundations ofphysical mathematics? This idea is at-
tractive even when one does not assume that TGD Universe is the Universe.

What is beautiful that algebraic geometry brings in also number theory. One might hope that the
foundations of physical mathematics could be based on the fusion of set theory, geometry, algebra,
and number theory.

Quantum Boolean algebra instead of Boolean algebra?

Mathematical logic relies on the notion of Boolean algebra, which has a well-known representation
as the algebra of sets which in turn has in algebraic geometry a representation in terms of algebraic
varieties. This is not however attractive at space-time level since the dimension of the algebraic variety
is different for the intersection resp. union representing AND resp. OR so that only only finite number
of ANDs can appear in the Boolean function. TGD inspired interpretation of the fermionic sector
of the theory in terms of Boolean algebra inspires more concrete ideas about the the realization of
Boolean algebra at both quantum level and classical space-time level and also suggests a geometric
realization of the basic logical functions respecting the dimension of the representative objects.

1. In TGD framework WCW spinors correspond to fermionic Fock states and an attractive inter-
pretation for the basis of fermionic Fock states is as Boolean algebra. In zero energy ontology
one consider pairs of positive and negative energy states and zero energy states could be seen as
physical correlates for statements A→ B or A↔ B with individual state pairs in the quantum
superposition representing various instances of the rule A → B or A ↔ B. The breaking of
time reversal invariance means that either the positive or negative energy part of the state (but
not both) can correspond to a state with precisely definine number of particles with precisely
defining quantum numbers such as four-momentum. At the second end one has scattered state
which is a superposition of this kind of many-particle states. This would suggest that A→ B is
the correct interpretation.

2. In quantum group theory [A79] the notion of co-algebra [A20] is very natural and the binary
algebraic operations of co-algebra are in a well-defined sense time reversals of those of algebra.
Hence there is a great temptation to generalize Boolean algebra to include its co-algebra [A192]
so that one might speak about quantum Boolean algebra. The vertices of generalized Feynman
diagrams represent two topological binary operations for partonic two surfaces and there is a

http://en.wikipedia.org/wiki/Quantum_group
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strong temptation to interpret them as representations for the operations of Boolean algebra
and its co-algebra.

(a) The first vertex corresponds to the analog of a stringy trouser diagram in which partonic
2-surface decays to two and the reversal of this representing fusion of partonic 2-surfaces.
In TGD framework this diagram does not represent classically particle decay or fusion but
the propagation of particle along two paths after the decay or the reversal of this process.
The Boolean analog would be logical OR (A∨B) or set theoretical union A∪B resp. its co-
operation. The partonic two surfaces would represent the arguments (resp. co-arguments)
A and B.

(b) Second one corresponds to the analog of 3-vertex for Feynman diagram: the three 3-D
”lines” of generalized Feynman diagram meet at the partonic 2-surface. This vertex (co-
vertex) is the analog of Boolean AND (A ∧ B) or intersection A ∩ B of two sets resp. its
co-operation.

(c) I have already earlier ended up with the proposal that only three-vertices appear as fun-
damental vertices in quantum TGD [K18]. The interpretation of generalized Feynman
diagrams as a representation of quantum Boolean algebra would give a deeper meaning for
this proposal.

These vertices could therefore have interpretation as a space-time representation for operations
of Boolean algebra and its co-algebra so that the space-time surfaces could serve as classical
correlates for the generalized Boolean functions defined by generalized Feynman diagrams and
expressible in terms of basic operations of the quantum Boolean algebra. For this representation
the dimension of the variety representing the value of Boolean function at classical level is the
same as as the dimension of arguments: that is two. Hence this representation is not equivalent
with the representation provided by algebraic geometry for which the dimension of the geometric
variety representing A ∧B and A ∨B in general differs from that for A and B. If one however
restricts the algebra to that assignable to braid strands, statements would correspond to points
at partonic level, so that one would have discrete sets and the set theoretic representation
of quantum Boolean algebra could make sense. Discrete sets are indeed the only possibility
since otherwise the dimension of intersection and union are different if algebraic varieties are in
question.

3. The breaking of time reversal invariance is accompanied by a generation of entropy and loss of
information. The interpretation at the level of quantum Boolean algebra would be following.
The Boolean function and and OR assign to two statements a single statement: this means a
gain of information and at the level of physics this is indeed the case since entropy is reduced
in the process reducing the number of particles. The occurrence of co-operations of AND and
OR corresponds to particle decays and uncertainty about the path along which particle travels
(dispersion of wave packet) and therefore loss of information.

(a) The ”most logical” interpretation for the situation is in conflict with the identification of
the arrow of logic implication with the arrow of time: the direction of Boolean implication
arrow and the arrow of geometric time would be opposite so that final state could be said to
imply the initial state. The arrow of time would weaken logical equivalence to implication
arrow.

(b) If one naively identifies the arrows of logical implication and geometric time so that initial
state can be said to imply the final state, second law implies that logic becomes fuzzy.
Second law would weak logical equivalence to statistical implication arrow.

(c) The natural question is whether just the presence of both algebra and co-algebra operations
causing a loss of information in generalized Feynman diagrams could lead to what might
be called fuzzy Boolean functions expressing the presence of entropic element appears at
the level of Boolean cognition.

4. This picture requires a duality between Boolean algebra and its co-algebra and this duality would
naturally correspond to time reversal. Skeptic can argue that there is no guarantee about the
existence of the extended algebra analogous to Drinfeld double [A167] that would unify Boolean
algebra and its dual. Only the physical intuition suggests its existence.

http://www.impan.pl/~burgunde/WSBC09/Ddouble_Hajac.pdf
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These observations suggest that generalized Feynman diagrams and their space-time counterparts
could have a precise interpretation in quantum Boolean algebra and that one should perhaps consider
the extension of the mathematical logic to quantum logic. Alternatively, one could argue that quantum
Boolean algebra is more like a model for what mathematical cognition could be in the real world.

The restrictions of mathematical cognition as a guideline?

With the birth of quantum theory physicists ceased to be outsiders since it was impossible to consider
quantum measurement as something not affecting the measured system in any way. With the advent
of consciousness theory physicists have been forced to give up the idea about uni-directional action
with with reality and have become a part of quantum Universe - self. This also requires dramatic
modification of the basic ontology forcing to give up the physicalistic dogmas. Consciousness involves
free will manifested in ability to select and create something completely new in each quantum jump.
Physical Universe is not given but is re-created again and again and evolves.

In standard mathematics mathematician is still a complete outsider, and the possible limitations
of mathematical cognition are not considered seriously in the attempts to formulate the foundations of
mathematics. Mathematicians still choose effortlessly one element from each set of infinite collection
of sets. We know that in numerics one is always bound to introduce cutoff on the number of bits and
use finite subset of rational numbers but also this has not been taken into account in the formulation
of foundations as far as I know. If one takes consciousness theory seriously one is led to wonder
what are the physical restrictions on mathematical cognition and therefore on physical mathematics.
What looks obvious that the idea about mathematics based on fixed axiomatics must be given up.
The evolution of the physical universe and of consciousness means also the evolution of (at least
physical) mathematics. The paradox of self reference plaguing conventional view about consciousness
and leading to infinite regress disappears when this regress is replaced with evolution.

Suppose that life resides and cognitive representations are realized in the intersection of real and
p-adic worlds reducing to intersections of real and p-adic variants of partonic 2-surfaces at space-time
level. At the level of WCW the intersection of real and p-adic worlds could correspond to the space of
partonic 2-surfaces defined by rational functions constructed using polynomials of finite degree with
rational coefficients.

What kind of restrictions of this picture poses set theory, topology, and logic? The reader can of
course imagine restrictions on some other fields of mathematics involved. The question in the case of
the set theory and topology has been already touched. In the case of logic the key question seems to
concern the operational meaning of ∀ and ∃, when the finite resolution of measurements and cognitive
representation are taken into account. What these universal quantors really mean: what is their
domain of definition?

Consider first the domain of definition at space-time level.

1. Should all theorems be formulated using ∀ and ∃ restricted to the dense subset rationals of
8-D imbedding space. Since continuous function is fixed from its values in a dense subset, this
assumption is not so strong unless there are other restrictions.

2. At space-time surface and partonic 2-surfaces the situation is different. The assumption that
only the common rational points of real and p-adic surfaces define cognitive representations
poses a strong limitation since typically the number of rational points of 2-surface is expected to
be finite. Algebraic extensions of p-adic numbers extend the number of common points and one
can imagine an evolutionary hierarchy of mathematics realized in terms of geometry of partonic
2-surfaces reflecting itself as the geometry of space-time surfaces by strong form of holography.

3. The orbits of the rational points selected at the ends of partonic 2-surfaces are braids along
light-like 3-surfaces. At space-time level one has world sheets or strings which form in general
case 2-braids. This picture leads to a what I have used to call almost topological QFT.

What about the domain of definition of existence quantors at the level of WCW? The natural
conjecture is that the surfaces in the intersection of real and p-adic worlds form a dense set of full
WCW so that everything holding true in the intersection would hold true generally and one coul dhope
that systems which are living in the proposed sense are able to discover interesting mathematics.

Suppose that the partonic 2-surfaces decompose into patches such that in each patch the surface is
a zero locus of polynomials with rational coefficients. Since polynomials can be seen as Taylor series
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with cutoff one can hope that they form a dense subset. Since rationals are dense subset of reals,
one can hope that also the restriction to rational coefficients preserves the dense subset property and
living subsystems are able to represent all that is needed and completion takes care of the rest as it
does for rationals. The notion of completion leading from rationals to various algebraic numbers fields
and also to reals and complex numbers would become the fundamental principle leading from number
theory to metric topology.

Physicist reader has certainly noticed that ”rational point” does not represent a general coordinate
invariant notion.

1. The coordinates of point are rational in preferred coordinates and the symmetries of the 8-D
imbedding space suggest families of preferred coordinates. The moduli space for CDs would be
characterized by the choice of these preferred coordinates dictating also the choice of quantization
axes so that quantum measurement theory would be realized as a decomposition of WCW
to a union corresponding to different choices. State function reduction would involve also a
localization determining quantization axes.

2. There are many possible choices of quantization axes/preferred coordinates and this means a
restriction of general coordinate invariance from group of all coordinate transformations to a
discrete subgroup of isometries which is not unique. Cognition would break the general coor-
dinate invariance. The world in which the mathematician thinks using spherical coordinates
differs in some subtle manner from the world in which she thinks using Cartesian coordinates.
Mathematician does not remain outside Platonia anymore just as quantum physicists is not
outside the physical Universe!

Axiom of choice relates to selection, which can be regarded as a cognitive act. The question whether
axiom of choice is needed at all has been already discussed but a couple of clarifying comments are in
order.

1. At quantum level selection would be naturally assigned with state function reduction, also the
state function reduction selecting quantization axes. The cascade of state function reductions
- starting from the scale of CD and proceeding fractally downwards sub-CD by sub-CD and
stopping when only negentropic entanglement stabilized by NMP remains - could be how Nature
performs the choice. State function reduction would involve also the choice of quantization axes
dictating possible subsequence choices. Note that non-deterministic element would be involved
with the quantum choice.

2. If life and cognitive representations are at the intersection of real and p-adic worlds, it would
seem that rational points are chosen at space-time level and algebraic 2-surfaces at WCW level.
As explained, it is easy to imagine the collection of sets from which one selects points is always
finite or that there is a natural explicit criterion allowing to select preferred point from each
set. Finite measurement resolution implying braids and string world sheets could provide this
criterion. If so, the axiom of choice would be un-necessary in physical mathematics. Finite
measurement resolution suggests that for partonic 2-surfaces the ends of braid strands define
preferred points.

Platonia is a strange place about which many mathematicians claim to visit regularly. I already
proposed that the generalization of space-time point by bringing in the infinite number theoretical
anatomy of real (and octonionic) units might allow to realize number theoretical Brahman=Atman
identity by representing WCW in terms of the number theoretic anatomy of space-time points. This
kind of representation would certainly be the most audacious idea that physical mathematician could
dare to think of.

Is quantal Boolean reverse engineering possible?

The quantal version of Boolean algebra means that the basic logical functions have quantum inverses.
The inverse of C = A ∧ B represents the quantum superposition of all pairs A and B for which
A ∧B = C hols true. Same is true for ∨. How could these additional quantum logical functions with
no classical counterparts extend the capacities of logician?
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What comes in mind is logical reverse engineering. Consider the standard problem solving situation
repeatedly encountered by my hero Hercule Poirot. Someone has been murdered. Who could have
done it? Who did it? Actually scientists who want to explain instead of just applying the method
to get additional items to the CVC, meet this kind of problem repeatedly. One has something which
looks like an experimental anomaly and one has to explain it. Is this anomaly genuine or is it due
to a systematic error in the information processing? Could the interpretation of data be somehow
wrong? Is the model behind experiments based on existing theory really correct or has something very
delicate been neglected? If a genuine anomaly is in question (someone has been really murdered- this
is always obvious in the tales about the deeds of Hercule Poirot since the mere presence of Hercule
guarantees the murder unless it has been already done), one encounters what might be called Poirot
problem in honor of my hero. As a matter fact, from the point of view of Boolean algebra, one has
the same reverse Boolean engineering problem irrespective of whether it was a genuine anomaly or
not.

This brings in my mind the enormously simplified problem. The logical statement C is found to
be true. Which pairs A,B could have implied C as C = A∧B (or A∨B). Of course, much more com-
plex situations can be considered where C corresponds to some logical function C = f(A1, A2, ..., An).
Quantum Poirot could use quantum computer able to realize the co-gates for gates AND and OR (es-
sentially time reversals) and write a quantum computer program solving the problem by constructing
the Boolean co-function of Boolean function f .

What would happen in TGD Universe obeying zero enery ontology is following.

1. The statement C is represented as as positive energy part of zero energy state (analogous to initial
state of physical event) and A1, ..An is represented as one state in the quantum superposition
of final states representing various value combinations for A1, ..., An. Zero energy states (rather
than only their evolution) represents the arrow of time. The M -matrix characterizing time-like
entanglement between positive and negative energy states generalizes generalizes S-matrix. S-
matrix is such that initial states have well defined particle numbers and other quantum numbers
whereas final states do not. They are analogous to the outcomes of quantum measurement in
particle physics.

2. Negentropy Maximization Principle [K47] maximizing the information contents of conscious
experience (sic!) forces state function reduction to one particular A1, ..., An and one particular
value combination consistent with C is found in each state function reduction. At the ensemble
level one obtains probabilities for various outcomes and the most probable combination might
represent the most plausible candidate for the murderer in quantum Poirot problem. Also in
particle physics one can only speak about plausibility of the explanation and this leads to the
endless n sigma talk. Note that it is absolutely essential that state function reduction occurs.
Ironically, quantum problem solving causes dissipation at the level of ensemble but the ensemble
probabilities carry actually information! Second law of thermodynamics tells us that Nature is
a pathological problem solver- just like my hero!

3. In TGD framework basic logical binary operations have a representation at the level of Boolean
algebra realized in terms of fermionic oscillator operators. They have also space-time correlates
realized topologically. ∧ has a representation as the analog of three-vertex of Feynman graph for
partonic 2-surfaces: partonic 2-surfaces are glued along the ends to form outgoing partonic 2-
surface. ∨ has a representation as the analog of stringy trouser vertex in which partonic surfaces
fuse together. Here TGD differs from string models in a profound manner.

To conclude, I am a Boolean dilettante and know practically nothing about what quantum com-
puter theorists have done- in particular I do not know whether they have considered quantum inverse
gages. My feeling is that only the gates with bits replaced with qubits are considered: very natural
when one thinks in terms of Boolean logic. If this is really the case, quantal co-AND and co-OR
having no classical counterparts would bring a totally new aspect to quantum computation in solving
problems in which one cannot do without (quantum) Poirot and his little gray (quantum) brain cells.

How to understand transcendental numbers in terms of infinite integers?

Santeri Satama made in my blog a very interesting question about transcendental numbers. The
reformulation of Santeri’s question could be ”How can one know that given number defined as a limit

http://matpitka.blogspot.com/2011/08/quantum-boolean-algebra-instead-of.html
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of rational number is genuinely algebraic or transcendental?”. I answered to the question and since
it inspired a long sequence of speculations during my morning walk on sands of Tullinniemi I decided
to expand my hasty answer to a blog posting.

The basic outcome was the proposal that by bringing TGD based view about infinity based on
infinite primes, integers, and rationals one could regard transcendental numbers as algebraic numbers
by allowing genuinely infinite numbers in their definition.

1. In the definition of any transcendental as a limit of algebraic number (root of a polynomial and
rational in special case) in which integer n approaches infinity one can replace n with any infinite
integer. The transcendental would be an algebraic number in this generalized sense. Among
other things this might allow polynomials with degree given by infinite integer if they have finite
number of terms. Also mathematics would be generalized number theory, not only physics!

2. Each infinite integer would give a different variant of the transcendental: these variants would
have different number theoretic anatomies but with respect to real norm they would be identical.

3. This would extend further the generalization of number concept obtained by allowing all infi-
nite rationals which reduce to units in real sense and would further enrich the infinitely rich
number theoretic anatomy of real point and also of space-time point. Space-time point would
be the Platonia. One could call this number theoretic Brahman=Atman identity or algebraic
holography.

1. How can one know that the real number is transcendental?

The difficulty of telling whether given real number defined as a limit of algebraic number boils
down to the fact that there is no numerical method for telling whether this kind of number is rational,
algebraic, or transcendental. This limitation of numerics would be also a restriction of cognition if p-
adic view about it is correct. One can ask several questions. What about infinite-P p-adic numbers: if
they make sense could it be possible to cognize also transcendentally? What can we conclude from the
very fact that we cognize transcendentals? Transcendentality can be proven for some transcendentals
such as π. How this is possible? What distinguishes ”knowably transcendentals” like π and e from
those, which are able to hide their real number theoretic identity?

1. Certainly for ”knowably transcendentals” there must exist some process revealing their tran-
scendental character. How π and e are proven to be transcendental? What in our mathematical
cognition makes this possible? First of all one starts from the definitions of these numbers. e
can be defined as the limit of the rational number (1 + 1/n)n and 2π could be defined as the
limit for the length of the circumference of a regular n-side polygon and is a limit of an algebraic
number since Pythagoras law is involved in calculating the length of the side. The process of
proving ”knowable transcendentality” would be a demonstration that these numbers cannot be
solutions of any polynomial equation.

2. Squaring of circle is not possible because π is transcendental. When I search Wikipedia for
squaring of circle I find a link to Weierstrass theorem allowing to prove that π and e are tran-
scendentals. In the formulation of Baker this theorem states the following: If α1,...,αn are
distinct algebraic numbers then the numbers eα1 ,...,eαn are linearly independent over algebraic
numbers and therefore transcendentals. One says that the extension Q(eα1 , ..., eαn) of rationals
has transcendence degree n over Q. This is something extremely deep and unfortunately I do not
know what is the gist of the proof. In any case the proof defines a procedure of demonstrating
”knowable transcendentality” for these numbers. The number of these transcendentals is huge
but countable and therefore vanishingly small as compared to the uncountable cardinality of all
transcendentals.

3. This theorem allows to prove that π and e are transcendentals. Suppose on the contrary that
π is algebraic number. Then also iπ would be algebraic and the previous theorem would imply
that eiπ = −1 is transcendental. This is of course a contradiction. Theorem also implies that e
is transcendental. But how do we know that eiπ = −1 holds true? Euler deduced this from the
connection between exponential and trigonometric functions understood in terms of complex
analysis and related number theory. Clearly, rational functions and exponential function and

http://en.wikipedia.org/wiki/Squaring_of_the_circle
http://en.wikipedia.org/wiki/Lindemann–Weierstrass_theorem
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its inverse -logarithm- continued to complex plane are crucial for defining e and π and proving
also eiπ = −1. Exponent function and logarithm appear everywhere in mathematics: in group
theory for instance. All these considerations suggest that ”knowably transcendental” is a very
special mathematical property and deserves a careful analysis.

2. Exponentiation and formation of set of subsets as transcendence

What is so special in exponentiation? Why it sends algebraic numbers to ”knowably transcenden-
tals”. One could try to understand this in terms of exponentiation which for natural numbers has
also an interpretation in terms of power set just as product has interpretation in terms of Cartesian
product.

1. In Cantor’s approach to the notion of infinite ordinals exponentiation is involved besides sum and
product. All three binary operations - sum, product, exponent are expressed set theoretically.
Product and sum are ”algebraic” operations. Exponentiation is ”non-algebraic” binary operation
defined in terms of power set (set of subsets). For m and n definining the cardinalities of sets
X and Y , mn defines the cardinality of the set Y X defining the number of functions assigning
to each point of Y a point of X. When X is two-element set (bits 0 and 1) the power set is
just the set of all subsets of Y which bit 1 assigned to the subset and 0 with its complement.
If X has more than two elements one can speak of decompositions of Y to subsets colored with
different colors- one color for each point of X.

2. The formation of the power set (or of its analog for the number of colors larger than 2) means
going to the next level of abstraction: considering instead of set the set of subsets or studying the
set of functions from the set. In the case of Boolean algebras this means formation of statements
about statements. This could be regarded as the set theoretic view about transcendence.

3. What is interesting that 2-adic integers would label the elements of the power set of integers
(all possible subsets would be allowed, for finite subsets one would obtain just natural numbers)
and p-adic numbers the elements in the set formed by coloring integers with p colors. One could
thus say that p-adic numbers correspond naturally to the notion of cognition based on power
sets and their finite field generalizations.

4. But can one naively transcend the set theoretic exponent function for natural numbers to that
defined in complex plane? Could the ”knowably transcendental” property of numbers like e and
π reduce to the transcendence in this set theoretic sense? It is difficult to tell since this notion of
power applies only to integers m,n rather than to a pair of transcendentals e, π. Concretization
of eiπ in terms of sets seems impossible: it is very difficult to imagine what sets with cardinality
e and π could be.

3. Infinite primes and transcendence

TGD suggests also a different identification of transcendence not expressible as formation of a
power set or its generalizations.

1. The notion of infinite primes replaces the set theoretic notion of infinity with purely number
theoretic one.

(a) The mathematical motivation could be the need to avoid problems like Russell’s antinomy.
In Cantorian world a given ordinal is identified as the ordered set of all ordinals smaller
than it and the set of all ordinals would define an ordinal larger than every ordinal and at
the same time member of all ordinals.

(b) The physical motivation for infinite primes is that their construction corresponds to a
repeated second quantization of an arithmetic supersymmetric quantum field theory such
that the many particle states of the previous level become elementary particles of the new
level. At the lowest level finite primes label fermionic and bosonic states. Besides free
many-particle states also bound states are obtained and correspond at the first level of the
hierarchy to genuinely algebraic roots of irreducible polynomials.
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(c) The allowance of infinite rationals which as real numbers reduce to real units implies that
the points of real axes have infinitely rich number theoretical anatomy. Space-time point
would become the Platonia. One could speak of number theoretic Brahman=Atman iden-
tity or algebraic holography. The great vision is that the World of Classical Worlds has
a mathematical representation in terms of the number theoretical anatomy of space-time
point.

2. Transcendence in purely number theoretic sense could mean a transition to a higher level in the
hierarchy of infinite primes. The scale of new infinity defined as the product of all prime at the
previous level of hierarchy would be infinitely larger than the previous one. Quantization would
correspond to abstraction and transcendence.

This idea inspires some questions.

1. Could infinite integers allow the reduction of transcendentals to algebraic numbers when under-
stood in general enough sense. Could real algebraic numbers be reduced to infinite rationals
with finite real values (for complex algebraic numbers this is certainly not the case)? If so, then
all real numbers would be rationals identified as ratios of possibly infinite integers and having
finite value as real numbers? This turns out to be too strong a statement. The statement that
all real numbers can be represented as finite or infinite algebraic numbers looks however sensible
and would reduce mathematics to generalized number theory by reducing limiting procedure
involved with the transition from rationals to reals to algebraic transcendence. This applies also
to p-adic numbers.

2. p-Adic cognition for finite values of prime p does not explain why we have the notions of π
and e and more generally, that of transcendental number. Could the replacement of finite-
p p-adic number fields with infinite-P p-adic number fields allow us to understand our own
mathematical cognition? Could the infinite-P p-adic number fields or at least integers and
corresponding space-time sheets make possible mathematical cognition able to deduce analytic
formulas in which transcendentals and transcendental functions appear making it possible to
leave the extremely restricted realm of numerics and enter the realm of mathematics? Lie group
theory would represent a basic example of this transcendental aspect of cognition. Maybe this
framework might allow to understand why we can have the notion of transcendental number!

4. Identification of real transcendentals as infinite algebraic numbers with finite value as real
numbers

The following observations suggests that it could be possible to reduce transcendentals to gener-
alized algebraic numbers in the framework provided by infinite primes. This would mean that not
only physics but also mathematics (or at least ”physical mathematics”) could be seen as generalized
number theory.

1. In the definition of any transcendental as an n → ∞ limit of algebraic number (root of a
polynomial and rational in special case), one can replace n with any infinite integer if n appears
as an argument of a function having well defined value at this limit. If n appears as the number
of summands or factors of product, the replacement does not make sense. For instance, an
algebraic number could be defined as a limit of Taylor series by solving the polynomial equation
defining it. The replacement of the upper limit of the series with infinite integer does not
however make sense. Only transcendentals (and possibly also some algebraic numbers) allowing
a representation as n → ∞ limit with n appearing as argument of expression involving a finite
number of terms can have representation as infinite algebraic number. The rule would be simple.

Transcendentals or algebraic numbers allowing an identification as infinite algebraic number
must correspond to a term of a sequence with a fixed number of terms rather than sum of series
or infinite product.

2. Each infinite integer gives a different variant of the transcendental: these variants would have
different number theoretic anatomies but with respect to the real norm they would be identical.
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3. The heuristic guess is that any genuine algebraic number has an expression as Taylor series
obtained by writing the solution of the polynomial equation as Tarylor expansion. If so, algebraic
numbers must be introduced in the standard manner and do not allow a representation as infinite
rationals. Only transcendentals would allow a representation as infinite rationals or infinite
algebraic numbers. The infinite variety of representation in terms of infinite integers would
enormously expand the number theoretical anatomy of the real point. Do all transcendentals
allow an expression containing a finite number of terms and N appearing as argument? Or is
this the defining property of only ”knowably transcendentals”?

One can consider some examples to illustrate the situation.

1. The transcendental π could be defined as πN = −iN(eiπ/N − 1), where eiπ/N is N :th root of
unity for infinite integer N and as a real number real unit. In real sense the limit however gives
π. There are of course very many definitions of π as limits of algebraic numbers and each gives
rise to infinite variety of number theoretic anatomies of π.

2. One can also consider the roots exp(i2πn/N) of the algebraic equation xN = 1 for infinite integer
N . One might define the roots as limits of Taylor series for the exponent function but it does
not make sense to define the limit when the cutoff for the Taylor series approaches some infinite
integer. These roots would have similar multiplicative structure as finite roots of unity with
pn:th roots with p running over primes defining the generating roots. The presence of N th roots
of unity f or infinite N would further enrich the infinitely rich number theoretic anatomy of real
point and therefore of space-time points.

3. There would be infinite variety of Neper numbers identified as eN = (1 + 1/N)N , N any infinite
integer. Their number theoretic anatomies would be different but as real numbers they would
be identical.

To conclude, the talk about infinite primes might sound weird in the ears of a layman but mathe-
maticians do not lose their peace of mind when they here the word ”infinity”. The notion of infinity is
relative. For instance, infinite integers are completely finite in p-adic sense. One can also imagine com-
pletely ”real-worldish” realizations for infinite integers (say as states of repeatedly second quantized
arithmetic quantum field theory and this realization might provide completely new insights about how
to undestand bound states in ordinary QFT).

4.9 Local zeta functions, Galois groups, and infinite primes

The recent view about TGD leads to some conjectures about Riemann Zeta.

1. Non-trivial zeros should be algebraic numbers.

2. The building blocks in the product decomposition of ζ should be algebraic numbers for non-
trivial zeros of zeta.

3. The values of zeta for their combinations with positive imaginary part with positive integer
coefficients should be algebraic numbers.

These conjectures are motivated by the findings that Riemann Zeta seems to be associated with critical
systems and by the fact that non-trivial zeros of zeta are analogous to complex conformal weights. The
necessity to make such a strong conjectures, in particular conjecture c), is an unsatisfactory feature
of the theory and one could ask how to modify this picture. Also a clear physical interpretation of
Riemann zeta is lacking.

4.9.1 Zeta function and infinite primes

Fermionic Zeta function is expressible as a product of fermionic partition functions ZF,p = 1 + p−z

and could be seen as an image of X under algebraic homomorphism mapping prime p to ZF,p defining
an analog of prime in the commutative function algebra of complex numbers. For hyper-octonionic
infinite primes the contribution of each p to the norm of X is same finite power of p since only single
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representative from each Lorentz equivalence class is included, and there is one-one correspondence
with ordinary primes so that an appropriate power of ordinary ζF might be regarded as a representation
of X also in the case of hyper-octonionic primes.

Infinite primes suggest a generalization of the notion of ζ function. Real-rational infinite prime
X ± 1 would correspond to ζF ± 1. General infinite prime is mapped to a generalized zeta function
by dividing ζF with the product of partition functions ZF,p corresponding to fermions kicked out
from sea. The same product multiplies ’1’. The powers pn present in either factor correspond to the
presence of n bosons in mode p and to a factor Znp,B in corresponding summand of the generalized
Zeta. In the case of hyper-octonionic infinite primes some power of ZF multiplied by p-dependent

powers Z
n(p)
F,p of fermionic partition functions with n(p) → 0 for p → ∞ should replace the image of

X. If effective 2-dimensionality holds true n(p) = 2 holds true for p > 2.

For zeros of ζF which are same as those of Riemann ζ the image of infinite part of infinite prime
vanishes and only the finite part is represented faithfully. Whether this might have some physical
meaning is an interesting question.

4.9.2 Local zeta functions and Weil conjectures

Riemann Zeta is not the only zeta [A1, A114]. There is entire zoo of zeta functions and the natural
question is whether some other zeta sharing the basic properties of Riemann zeta having zeros at
critical line could be more appropriate in TGD framework.

The so called local zeta functions analogous to the factors ζp(s) = 1/(1 − p−s) of Riemann Zeta
can be used to code algebraic data about say numbers about solutions of algebraic equations reduced
to finite fields. The local zeta functions appearing in Weil’s conjectures [A108] associated with finite
fields G(p, k) and thus to single prime. The extensions G(p, nk) of this finite field are considered.
These local zeta functions code the number for the points of algebraic variety for given value of n.
Weil’s conjectures also state that if X is a mod p reduction of non-singular complex projective variety
then the degree for the polynomial multiplying the product ζ(s) × ζ(s − 1) equals to Betti number.
Betti number is 2 times genus in 2-D case.

It has been proven that the zetas of Weil are associated with single prime p, they satisfy functional
equation, their zeros are at critical lines, and rather remarkably, they are rational functions of p−s.
For instance, for elliptic curves zeros are at critical line [A108] .

The general form for the local zeta is ζ(s) = exp(G(s)), where G =
∑
gnp
−ns, gn = Nn/n, codes

for the numbers Nn of points of algebraic variety for nth extension of finite field F with nk elements
assuming that F has k = pr elements. This transformation resembles the relationship Z = exp(F )
between partition function and free energy Z = exp(F ) in thermodynamics.

The exponential form is motivated by the possibility to factorize the zeta function into a product
of zeta functions. Note also that in the situation when Nn approaches constant N∞, the division of
Nn by n gives essentially 1/(1 − N∞p−s) and one obtains the factor of Riemann Zeta at a shifted
argument s− logp(N∞). The local zeta associated with Riemann Zeta corresponds to Nn = 1.

4.9.3 Local zeta functions and TGD

The local zetas are associated with single prime p, they satisfy functional equation, their zeros lie at
the critical lines, and they are rational functions of p−s. These features are highly desirable from the
TGD point of view.

Why local zeta functions are natural in TGD framework?

In TGD framework modified Dirac equation assigns to a partonic 2-surface a p-adic prime p and
inverse of the zeta defines local conformal weight. The intersection of the real and corresponding p-
adic parton 2-surface is the set containing the points that one is interested in. Hence local zeta sharing
the basic properties of Riemann zeta is highly desirable and natural. In particular, if the local zeta
is a rational function then the inverse images of rational points of the geodesic sphere are algebraic
numbers. Of course, one might consider a stronger constraint that the inverse image is rational. Note
that one must still require that p−s as well as s are algebraic numbers for the zeros of the local zeta
(conditions 1) and 2) listed in the beginning) if one wants the number theoretical universality.
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Since the modified Dirac operator assigns to a given partonic 2-surface a p-adic prime p, one can ask
whether the inverse ζ−1

p (z) of some kind of local zeta directly coding data about partonic 2-surface
could define the generalized eigenvalues of the modified Dirac operator and radial super-canonical
conformal weights so that the conjectures about Riemann Zeta would not be needed at all.

The eigenvalues of the modified Dirac operator would in a holographic manner code for information
about partonic 2-surface. This kind of algebraic geometric data are absolutely relevant for TGD
since U-matrix and probably also S-matrix must be formulated in terms of the data related to the
intersection of real and partonic 2-surfaces (number theoretic braids) obeying same algebraic equations
and consisting of algebraic points in the appropriate algebraic extension of p-adic numbers. Note that
the hierarchy of algebraic extensions of p-adic number fields would give rise to a hierarchy of zetas so
that the algebraic extension used would directly reflect itself in the eigenvalue spectrum of the modified
Dirac operator and super-canonical conformal weights. This is highly desirable but not achieved if
one uses Riemann Zeta.

One must of course leave open the possibility that for real-real transitions the inverse of the zeta
defined as a product of the local zetas (very much analogous to Riemann Zeta) defines the conformal
weights. This kind of picture would conform with the idea about real physics as a kind of adele formed
from p-adic physics.

Finite field hierarchy is not natural in TGD context

That local zeta functions are assigned with a hierarchy of finite field extensions do not look natural
in TGD context. The reason is that these extensions are regarded as abstract extensions of G(p, k)
as opposed to a large number of algebraic extensions isomorphic with finite fields as abstract number
fields and induced from the extensions of p-adic number fields. Sub-field property is clearly highly
relevant in TGD framework just as the sub-manifold property is crucial for geometrizing also other
interactions than gravitation in TGD framework.

The O(pn) hierarchy for the p-adic cutoffs would naturally replace the hierarchy of finite fields.
This hierarchy is quite different from the hierarchy of finite fields since one expects that the number
of solutions becomes constant at the limit of large n and also at the limit of large p so that powers in
the function G coding for the numbers of solutions of algebraic equations as function of n should not
increase but approach constant N∞. The possibility to factorize exp(G) to a product exp(G0)exp(G∞)
would mean a reduction to a product of a rational function and factor(s) ζp(s) = 1/(1−p−s1) associated
with Riemann Zeta with argument s shifted to s1 = s− logp(N∞).

What data local zetas could code?

The next question is what data the local zeta functions could code.

1. It is not at clear whether it is useful to code global data such as the numbers of points of
partonic 2-surface modulo pn. The notion of number theoretic braid occurring in the proposed
approach to S-matrix suggests that the zeta at an algebraic point z of the geodesic sphere S2 of
CP2 or of light-cone boundary should code purely local data such as the numbers Nn of points
which project to z as function of p-adic cutoff pn. In the generic case this number would be
finite for non-vacuum extremals with 2-D S2 projection. The nth coefficient gn = Nn/n of the
function Gp would code the number Nn of these points in the approximation O(pn+1) = 0 for
the algebraic equations defining the p-adic counterpart of the partonic 2-surface.

2. In a region of partonic 2-surface where the numbers Nn of these points remain constant, ζ(s)
would have constant functional form and therefore the information in this discrete set of algebraic
points would allow to deduce deduce information about the numbers Nn. Both the algebraic
points and generalized eigenvalues would carry the algebraic information.

3. A rather fascinating self referentiality would result: the generalized eigen values of the mod-
ified Dirac operator expressible in terms of inverse of zeta would code data for a sequence of
approximations for the p-adic variant of the partonic 2-surface. This would be natural since
second quantized induced spinor fields are correlates for logical thought in TGD inspired theory
of consciousness. Even more, the data would be given at points ζ(s), s a rational value of a
super-canonical conformal weight or a value of generalized eigenvalue of modified Dirac operator
(which is essentially function s = ζ−1

p (z) at geodesic sphere of CP2 or of light-cone boundary).
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4.9.4 Galois groups, Jones inclusions, and infinite primes

Langlands program [A58, A158] is an attempt to unify mathematics using the idea that all zeta
functions and corresponding theta functions could emerge as automorphic functions giving rise to
finite-dimensional representations for Galois groups (Galois group is defined as a group of automor-
phisms of the extension of field F leaving invariant the elements of F ). The basic example corresponds
to rationals and their extensions. Finite fields G(p, k) and their extensions G(p, nk) represents another
example. The largest extension of rationals corresponds to algebraic numbers (algebraically closed
set). Although this non-Abelian group is huge and does not exist in the usual sense of the word its
finite-dimensional representations in groups GL(n,Z) make sense.

For instance, Edward Witten is working with the idea that geometric variant of Langlands duality
could correspond to the dualities discovered in string model framework and be understood in terms
of topological version of four-dimensional N = 4 super-symmetric YM theory [A225] . In particular,
Witten assigns surface operators to the 2-D surfaces of 4-D space-time. This brings unavoidably in
mind partonic 2-surfaces and TGD as N = 4 super-conformal almost topological QFT.

This observation stimulates some ideas about the role of zeta functions in TGD if one takes the
vision about physics as a generalized number theory seriously.

Galois groups, Jones inclusions, and quantum measurement theory

The Galois representations appearing in Langlands program could have a concrete physical/cognitive
meaning.

1. The Galois groups associated with the extensions of rationals have a natural action on partonic 2-
surfaces represented by algebraic equations. Their action would reduce to permutations of roots
of the polynomial equations defining the points with a fixed projection to the above mentioned
geodesic sphere S2 of CP2 or δM4

+. This makes possible to define modes of induced spinor fields
transforming under representations of Galois groups. Galois groups would also have a natural
action on configuration space-spinor fields. One can also speak about configuration space spinors
invariant under Galois group.

2. Galois groups could be assigned to Jones inclusions having an interpretation in terms of a finite
measurement resolution in the sense that the discrete group defining the inclusion leaves invariant
the operators generating excitations which are not detectable.

3. The physical interpretation of the finite resolution represented by Galois group would be based
on the analogy with particle physics. The field extension K/F implies that the primes (more
precisely, prime ideals) of F decompose into products of primes (prime ideals) of K. Physically
this corresponds to the decomposition of particle into more elementary constituents, say hadrons
into quarks in the improved resolution implied by the extension F → K. The interpretation in
terms of cognitive resolution would be that the primes associated with the higher extensions of
rationals are not cognizable: in other words, the observed states are singlets under corresponding
Galois groups: one has algebraic/cognitive counterpart of color confinement.

4. For instance, the system labeled by an ordinary p-adic prime could decompose to a system
which is a composite of Gaussian primes. Interestingly, the biologically highly interesting p-adic
length scale range 10 nm-5 µm contains as many as four Gaussian Mersennes (Mk = (1+ i)k−1,
k = 151, 157, 163, 167), which suggests that the emergence of living matter means an improved
cognitive resolution.

Galois groups and infinite primes

In particular, the notion of infinite prime suggests a manner to realize the modular functions as
representations of Galois groups. Infinite primes might also provide a new perspective to the concrete
realization of Langlands program.

1. The discrete Galois groups associated with various extensions of rationals and involved with
modular functions which are in one-one correspondence with zeta functions via Mellin transform
defined as

∑
xnn

−s →
∑
xnz

n [A64] . Various Galois groups would have a natural action in
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the space of infinite primes having interpretation as Fock states and more general bound states
of an arithmetic quantum field theory.

2. The number theoretic anatomy of space-time points due to the possibility to define infinite
number of number theoretically non-equivalent real units using infinite rationals [L9] allows the
imbedding space points themselves to code holographically various things. Galois groups would
have a natural action in the space of real units and thus on the number theoretical anatomy of
a point of imbedding space.

3. Since the repeated second quantization of the super-symmetric arithmetic quantum field theory
defined by infinite primes gives rise to a huge space of quantum states, the conjecture that the
number theoretic anatomy of imbedding space point allows to represent configuration space (the
world of classical worlds associated with the light-cone of a given point of H) and configuration
space spinor fields emerges naturally [L9] .

4. Since Galois groups G are associated with inclusions of number fields to their extensions, this
inclusion could correspond at quantum level to a generalized Jones inclusion N ⊂M such that
G acts as automorphisms of M and leaves invariant the elements of N . This might be possible
if one allows the replacement of complex numbers as coefficient fields of hyper-finite factors of
type II1 with various algebraic extensions of rationals. Quantum measurement theory with a
finite measurement resolution defined by Jones inclusion N ⊂ M [L11] could thus have also a
purely number theoretic meaning provided it is possible to define a non-trivial action of various
Galois groups on configuration space spinor fields via the imbedding of the configuration space
spinors to the space of infinite integers and rationals (analogous to the imbedding of space-time
surface to imbedding space).

This picture allows to develop rather fascinating ideas about mathematical structures and their
relationship to physical world. For instance, the functional form of a map between two sets the points
of the domain and target rather than only its value could be coded in a holographic manner by
using the number theoretic anatomy of the points. Modular functions giving rise to generalized zeta
functions would emerge in especially natural manner in this framework. Configuration space spinor
fields would allow a physical realization of the holographic representations of various maps as quantum
states.

4.9.5 Prime Hilbert spaces and infinite primes

There is a result of quantum information science providing an additional reason why for p-adic physics.
Suppose that one has N -dimensional Hilbert space which allows N + 1 unbiased basis. This means
that the moduli squared for the inner product of any two states belonging to different basis equals
to 1/N . If one knows all transition amplitudes from a given state to all states of all N + 1 mutually
unbiased basis, one can fully reconstruct the state. For N = pn dimensional N + 1 unbiased basis
can be found and the article of Durt [A142] gives an explicit construction of these basis by applying
the properties of finite fields. Thus state spaces with pn elements - which indeed emerge naturally
in p-adic framework - would be optimal for quantum tomography. For instance, the discretization of
one-dimensional line with length of pn units would give rise to pn-dimensional Hilbert space of wave
functions.

The observation motivates the introduction of prime Hilbert space as as a Hilbert space possessing
dimension which is prime and it would seem that this kind of number theoretical structure for the
category of Hilbert spaces is natural from the point of view of quantum information theory. One might
ask whether the tensor product of mutually unbiased bases in the general case could be constructed
as a tensor product for the bases for prime power factors. This can be done but since the bases cannot
have common elements the number of unbiased basis obtained in this manner is equal to M+1, where
M is the smallest prime power factor of N . It is not known whether additional unbiased bases exists.

Hierarchy of prime Hilbert spaces characterized by infinite primes

The notion of prime Hilbert space provides also a new interpretation for infinite primes, which are in
1-1 correspondence with the states of a supersymmetric arithmetic QFT. The earlier interpretation
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was that the hierarchy of infinite primes corresponds to a hierarchy of quantum states. Infinite primes
could also label a hierarchy of infinite-D prime Hilbert spaces with product and sum for infinite primes
representing unfaithfully tensor product and direct sum.

1. At the lowest level of hierarchy one could interpret infinite primes as homomorphisms of Hilbert
spaces to generalized integers (tensor product and direct sum mapped to product and sum)
obtained as direct sum of infinite-D Hilbert space and finite-D Hilbert space. (In)finite-D Hilbert
space is (in)finite tensor product of prime power factors. The map of N -dimensional Hilbert
space to the set of N -orthogonal states resulting in state function reduction maps it to N -element
set and integer N . Hence one can interpret the homomorphism as giving rise to a kind of shadow
on the wall of Plato’s cave projecting (shadow quite literally!) the Hilbert space to generalized
integer representing the shadow. In category theoretical setting one could perhaps see generalize
integers as shadows of the hierarchy of Hilbert spaces.

2. The interpretation as a decomposition of the universe to a subsystem plus environment does
not seem to work since in this case one would have tensor product. Perhaps the decomposition
could be to degrees of freedom to those which are above and below measurement resolution.
One could of course consider decomposition to a tensor product of bosonic and fermionic state
spaces.

3. The construction of the Hilbert spaces would reduce to that of infinite primes. The analog of
the fermionic sea would be infinite-D Hilbert space which is tensor product of all prime Hilbert
spaces Hp with given prime factor appearing only once in the tensor product. One can ”add n
bosons” to this state by replacing of any tensor factor Hp with its n+1:th tensor power. One
can ”add fermions” to this state by deleting some prime factors Hp from the tensor product and
adding their tensor product as a finite-direct summand. One can also ”add n bosons” to this
factor.

4. At the next level of hierarchy one would form infinite tensor product of all infinite-dimensional
prime Hilbert spaces obtained in this manner and repeat the construction. This can be con-
tinued ad infinitum and the construction corresponds to abstraction hierarchy or a hierarchy of
statements about statements or a hierarchy of n:th order logics. Or a hierarchy of space-time
sheets of many-sheeted space-time. Or a hierarchy of particles in which certain many-particle
states at the previous level of hierarchy become particles at the new level (bosons and fermions).
There are many interpretations.

5. Note that at the lowest level this construction can be applies also to Riemann Zeta function. ζ
would represent fermionic vacuum and the addition of fermions would correspond to a removal
of a product of corresponding factors ζp from ζ and addition of them to the resulting truncated ζ
function. The addition of bosons would correspond to multiplication by a power of appropriate
ζp. The analog of ζ function at the next level of hierarchy would be product of all these modified
ζ functions and might well fail to exist since the product might typically converge to either zero
or infinity.

Hilbert spaces assignable to infinite integers and rationals make also sense

1. Also infinite integers make sense since one can form tensor products and direct sums of infinite
primes and of corresponding Hilbert spaces. Also infinite rationals exist and this raises the
question what kind of state spaces inverses of infinite integers mean.

2. Zero energy ontology suggests that infinite integers correspond to positive energy states and
their inverses to negative energy states. Zero energy states would be always infinite rationals
with real norm which equals to real unit.

3. The existence of these units would give for a given real number an infinite rich number theoretic
anatomy so that single space-time point might be able to represent quantum states of the entire
universe in its anatomy (number theoretical Brahman=Atman). Also the world of classical
worlds (light-like 3-surfaces of the imbedding space) might be imbeddable to this anatomy so
that basically one would have just space-time surfaces in 8-D space and configuration space
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would have representation in terms of space-time based on generalized notion of number. Note
that infinitesimals around a given number would be replaced with infinite number of number-
theoretically non-equivalent real units multiplying it.

Should one generalize the notion of von Neumann algebra?

Especially interesting are the implications of the notion of prime Hilbert space concerning the notion of
von Neumann algebra -in particular the notion of hyper-finite factors of type II1 playing a key role in
TGD framework. Does the prime decomposition bring in additional structure? Hyper-finite factors of
type II1 are canonically represented as infinite tensor power of 2×2 matrix algebra having a represen-
tation as infinite-dimensional fermionic Fock oscillator algebra and allowing a natural interpretation
in terms of spinors for the world of classical worlds having a representation as infinite-dimensional
fermionic Fock space.

Infinite primes would correspond to something different: a tensor product of all p × p matrix
algebras from which some factors are deleted and added back as direct summands. Besides this
some factors are replaced with their tensor powers. Should one refine the notion of von Neumann
algebra so that one can distinguish between these algebras as physically non-equivalent? Is the full
algebra tensor product of this kind of generalized hyper-finite factor and hyper-finite factor of type
II1 corresponding to the vibrational degrees of freedom of 3-surface and fermionic degrees of freedom?
Could p-adic length scale hypothesis - stating that the physically favored primes are near powers of 2
- relate somehow to the naturality of the inclusions of generalized von Neumann algebras to HFF of
type II1?

4.10 Miscellaneous

This section is devoted to what might be called miscellaneous since it does not relate directly to
quantum TGD.

4.10.1 The generalization of the notion of ordinary number field

The notion of infinite rationals leads also to the generalization of the notion of a finite number. The
obvious generalization would be based on the allowance of infinitesimals. Much more interesting
approach is however based on the observation that one obtains infinite number of real units by taking
two infinite primes with a finite rational valued ratio q and by dividing this ratio by ordinary rational
number q. As a real number the resulting number differs in no manner from ordinary unit of real
numbers but in p-adic sense the points are not equivalent. This construction generalizes also to
quaternionic and octonionic case.

Space-time points would become structured since infinite rationals normed to unity define naturally
a gigantically infinite-dimensional free algebra generated by the units serving in well-define sense as
Mother of All Algebras. The units of the algebra multiplying ordinary rational numbers (and also other
elements) of various number fields are invisible at the level of real physics so that the interpretation
as the space-time correlate of mathematical cognition realizing the idea of monad is natural. Universe
would be an algebraic hologram with single point being able to represent the state of the Universe in its
structure. Infinite rationals would allow the realization of the Platonia of all imaginable mathematical
constructs at the level of space-time.

The generalized units for quaternions and octonions

In the case of real and complex rationals the group of generalized units generated by primes resp.
infinite Gaussian primes is commutative. In the case of unit quaternions and hyper-quaternions group
becomes non-commutative and in case of unit hyper-octonions the group is replaced by a kind non-
associative generalization of group.

1. For infinite primes for which only finite number of bosonic and fermionic modes are excited it
is possible to tell how the products AB and BA of two infinite primes explicitly since finite
hyper-octonionic primes can be assumed to multiply the infinite integer X from say left.
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2. Situation changes if an infinite number of bosonic excitations are present since one would be
forced to move finite H- or O-primes past a infinite number of primes in the product AB. Hence
one must simply assume that the group G generated by infinite units with infinitely many
bosonic excitations is a free group. Free group interpretation means that non-associativity is
safely localized inside infinite primes and reduced to the non-associativity of ordinary hyper-
octonions. Needless to say free group is the best one can hope of achieving since free group
allows maximal number of factor groups.

The free group G can be extended into a free algebra A by simply allowing superpositions of units
with coefficients which are real-rationals or possibly complex rationals. Again free algebra fulfils the
dreams as system with a maximal representative power. The analogy with quantum states defined as
functions in the group is highly intriguing and unit normalization would correspond to the ordinary
normalization of Schrödinger amplitudes. Obviously this would mean that single point is able to mimic
quantum physics in its structure. Could state function reduction and preparation be represented at the
level of space-time surfaces so that initial and final 3-surfaces would represent pure states containing
only bound state entanglement or negentropic entangelment represented algebraically, and could the
infinite rationals generating the group of quaternionic units (no sums over them) represent pure states?

The free algebra structure of A together with the absolutely gigantic infinite-dimensionality of the
endless hierarchy of infinite rational units suggests that the resulting free algebra structure is universal
in the sense that any algebra defined with coefficients in the field of rationals can be imbedded to
the resulting algebra or represented as a factor algebra obtained by the sequence A→ A1 = A/I1 →
A1/I2... where the ideal Ik is defined by k : th relation in Ak−1.

Physically the embedding would mean that some field quantities defined in the algebra are re-
stricted to the subalgebra. The representation of algebra B as an iterated factor algebra would mean
that some field quantities defined in the algebra are constant inside the ideals Ik of A defined by the
relations. For instance, the induced spinor field at space-time surface could have the same value for all
points of A which differ by an element of the ideal. At the configuration space level, the configuration
space spinor field would be constant inside an ideal associated with the algebra of A-valued functions
at space-time surfaces.

The units can be interpreted as defining an extension of rationals in C, H, or O. Galois group is
defined as automorphisms of the extension mapping the original number field to itself and obviously
the transformations x→ gxg−1, where g belongs to the extended number field act as automorphisms.
One can regard also the extension by real units as the extended number field and in this case the
automorphisms contain also the automorphisms induced by the multiplication of each infinite prime
Πi by a real unit Ui: Πi → Π̂i = UiΠi.

The free algebra generated by generalized units and mathematical cognition

One of the deepest questions in theory of consciousness concerns about the space-time correlates
of mathematical cognition. Mathematician can imagine endlessly different mathematical structures.
Platonist would say that in some sense these structures exist. The claim classical physical worlds cor-
respond to certain 4-surfaces in M4

+×CP2 would leave out all these beautiful mathematical structures
unless they have some other realization than the physical one.

The free algebra A generated by the generalized multiplicative units of rationals allows to under-
stand how Platonia is realized at the space-time level. A has no correlate at the level of real physics
since the generalized units correspond to real numbers equal to one. This holds true also in quater-
nionic and octonionic cases since one can require that the units have net quaternionic and octonionic
phases equal to one. By its gigantic size A and free algebra character might be able represent all
possible algebras in the proposed manner. Also non-associative algebras can be represented.

Algebraic equations are the basic structural building blocks of mathematical thinking. Consider
as a simple example the equation AB = C. The equations are much more than tautologies since they
contain the information at the left hand side about the variables of the algebraic operation giving the
outcome on the right hand side. For instance, in the case of multiplication AB = C the information
about the factors is present although it is completely lost when the product is evaluated. These
equations pop up into our consciousness in some mysterious manner and the question is what are the
space-time correlates of these experiences suggested to exist by quantum-classical correspondence.

The algebra of units is an excellent candidate for the sought for correlate of mathematical cognition.
Leibniz might have been right about his monads! The idealization is in complete accordance with the
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idea about the Universe as an algebraic hologram taken to its extreme. One might perhaps say that
each point represents an equation.

One could also try interpret generalized Feynman diagrams as sequences of mathematical opera-
tions. For instance, the scattering AB → CD by exchange of particle C could be seen as an arithmetic
operation AB → (AE−1)(EB) = CD. If this is really the case, then at least tree diagrams might
allow interpretation in terms of arithmetic operations for the complexified octonionic units. In case
of loop diagrams it seems that one must allow sums over units.

When two points are cobordant?

Topological quantum field theories have led to a dramatic success in the understanding of 3- and
4-dimensional topologies and cobordisms of these manifolds (two n-manifolds are cobordant if there
exists an n + 1-manifold having them as boundaries). In his thought-provoking and highly inspiring
article Pierre Cartier [A134] poses a question which at first sounds absurd. What might be the the
counterpart of cobordism for points? The question is indeed absurd unless the points have some
structure.

If one takes seriously the idea that each point of space-time sheet corresponds to a unit defined by
an infinite rational, the obvious question is under what conditions there is a continuous line connecting
these points with continuity being defined in some generalized sense. In real sense the line is continuous
always but in p-adic sense only if all p-adic norms of the two units are identical. Since the p-adic norm
of the unit of Y (n/m) = X/Π(n/m) is that of q = n/m, the norm of two infinite rational numbers is
same only if they correspond to the same ordinary rational number.

Suppose that one has

YI =
∏
i Y (qI1i)∏
i Y (qI2i)

, YF =
∏
i Y (qF1i)∏
i Y (qF2i)

,

qIki =
nIki
mIki

, qFki =
nFki
mFki

,

(4.10.1)

Here m· . representing arithmetic many-fermion state is a square free integer and n. . representing
arithmetic many-boson state is an integer having no common factors with m.

..
The two units have same p-adic norm in all p-adic number fields if the rational numbers associated

with YI and YF are same:
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The logarithm of this condition gives a conservation law of energy encountered in arithmetic quantum
field theories, where the energy of state labeled by the prime p is Ep = log(p):
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(4.10.3)

There are both positive and negative energy particles present in the system. The possibility of negative
energies is indeed one of the basic predictions of quantum TGD distinguishing it from standard physics.
As one might have expected, Y I and Y F represent the initial and final states of a particle reaction
and the line connecting the two points represents time evolution giving rise to the particle reaction.
In principle one can even localize various steps of the reaction along the line and different lines give
different sequences of reaction steps but same overall reaction. This symmetry is highly analogous to
the conformal invariance implying that integral in complex plane depends only on the end points of
the curve.

Whether the entire four-surface should correspond to the same value of topological energy or
whether E can be discontinuous at elementary particle horizons separating space-time sheets and
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represented by light-like 3-surfaces around wormhole contacts remains an open question. Discontinuity
through elementary particle horizons would make possible the arithmetic analogs of poles and cuts of
analytic functions since the limiting values of Y from different sides of the horizon are different. Note
that the construction generalizes to the quaternionic and octonionic case.

TGD inspired analog for d-algebras

Maxim Kontsevich has done deep work with quantizations interpreted as a deformation of algebraic
structures and there are deep connections with this work and braid group [A189] . In particular, the
Grothendienck-Teichmueller algebra believed to act as automorphisms for the deformation structures
acts as automorphisms of the braid group at the limit of infinite number of strands. I must admit
that my miserable skills in algebra do not allow to go to the horrendous technicalities but occasionally
I have the feeling that I have understood some general ideas related to this work. In his article
”Operads and Motives in Deformation Quantization” Kontsevich introduces the notions of operad
and d-algebras over operad. Without going to technicalities one can very roughly say that d-algebra
is essentially d-dimensional algebraic structure, and that the basic conjecture of Deligne generalized
and proved by Kontsevich states in its generalized form that d + 1-algebras have a natural action in
all d-algebras.

In the proposed extension of various rationals a notion resembling that of universal d-algebra to
some degree but not equivalent with it emerges naturally. The basic idea is simple.

1. Points correspond to the elements of the assumed to be universal algebra A which in this sense
deserves the attribute d = 0 algebra. By its universality A should be able to represent any
algebra and in this sense it cannot correspond d = 0-algebra of Kontsevich defined as a complex,
that is a direct sum of vector spaces Vn and possessing d operation Vn → Vn+1, satisfying d2 = 0.
Each point of a manifold represents one particular element of 0-algebra and one could loosely
say that multiplication of points represents algebraic multiplication. This algebra has various
subalgebras, in particular those corresponding to reals, complex numbers and quaternions. One
can say that sub-algebra is non-associative, non-commutative, etc.. if its real evaluation has this
property.

2. Lines correspond to evolutions for the elements of A which are continuous with respect to real
(trivially) and all p-adic number fields. The latter condition is nontrivial and allows to interpret
evolution as an evolution conserving number theoretical analog of total energy. Universal 1-
group would consist of curves along which one has the analog of group valued field (group being
the group of generalized units) having values in the universal 0-group G. The action of the
1-group in 0-group would simply map the element of 0-group at the first end of the curve its
value at the second end. Curves define a monoid in an obvious manner. The interpretation as a
map to A allows pointwise multiplication of these mappings which generalizes to all values of d.

One could also consider the generalization of local gauge field so that there would be gauge po-
tential defined in the algebra of units having values on A. This potential would define holonomy
group acting on 0-algebra and mapping the element at the first end of the curve to its gauge
transformed variant at the second end. In this case also closed curves would define non-trivial
elements of the holonomy group. In fact, practically everything is possible since probably any
algebra can be represented in the algebra generated by units.

3. Two-dimensional structures correspond to dynamical evolutions of one-dimensional structures.
The simplest situation corresponds to 2-cubes with the lines corresponding to the initial and
final values of the second coordinate representing initial and final states. One can also consider
the possibility that the two-surface is topologically non-trivial containing handles and perhaps
even holes. One could interpret this cognitive evolution as a 1-dimensional flow so that the
initial points travel to final points. Obviously there is symmetry breaking involved since the
second coordinate is in the role of time and this defines kind of time orientation for the surface.

4. The generalization to 4- and higher dimensional cases is obvious. One just uses d-manifolds with
edges and uses their time evolution to define d+ 1-manifolds with edges. Universal 3-algebra is
especially interesting from the point of view of braid groups and in this case the maps between
initial and final elements of 2-algebra could be interpreted as braid operations if the paths of
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the elements along 3-surface are entangled. For instance field lines of Kähler gauge potential or
of magnetic field could define this kind of braiding.

5. The d-evolutions define a monoid since one can glue two d-evolutions together if the outcome
of the first evolution equals to the initial state of the second evolution. d + 1-algebra also acts
naturally in d-algebra in the sense that the time evolution f(A → B) assigns to the d-algebra
valued initial state A a d-algebra valued final state and one can define the multiplication as
f(A → B)C = B for A = C, otherwise the action gives zero. If time evolutions correspond to
standard cubes one gets more interesting structure in this manner since the cubes differing by
time translation can be identified and the product is always non-vanishing.

6. It should be possible to define generalizations of homotopy groups to what might be called
”cognitive” homotopy groups. Effectively the target manifold would be replaced by the tensor
product of an ordinary manifold and some algebraic structure represented in A. All kinds of
”cognitive” homotopy groups would result when the image is cognitively non-contractible. Also
homology groups could be defined by generalizing singular complex consisting of cubes with
cubes having the hierarchical decomposition into time evolutions of time evolutions of... in
some sub-algebraic structure of A. If one restricts time evolutions to sub-algebraic structures
one obtains all kinds of homologies. For instance, associativity reduces 3-evolutions to paths in
rational SU(3) and since SU(3) just like any Lie group has non-trivial 3-homology, one obtains
nontrivial ”cognitive” homology for 3-surfaces with non-trivial 3-homology.

The following heuristic arguments are inspired by the proposed vision about algebraic cognition
and the conjecture that Grothendienck-Teichmueller group acts as automorphisms of Feynman dia-
grammatics relating equivalent quantum field theories to each other.

1. The operations of d + 1-algebra realized as time evolution of d-algebra elements suggests an
interpretation as cognitive counterparts for sequences of algebraic manipulations in d-algebra
which themselves become elements of d+1 algebra. At the level of paths of points the sequences of
algebraic operations correspond to transitions in which the number of infinite primes defining an
infinite rational can change in discrete steps but is subject to the topological energy conservation
guaranteing the p-adic continuity of the process for all primes. Different paths connecting a and
b represent different but equivalent manipulations sequences.

For instance, at d = 2 level one has a pile of these processes and this in principle makes it possible
an abstraction to algebraic rules involved with the process by a pile of examples. Higher values
of d in turn make possible further abstractions bringing in additional parameters to the system.
All kinds of algebraic processes can be represented in this manner. For instance, multiplication
table can be represented as paths assigning to an the initial state product of elements a and
b represented as infinite rationals and to the final state their product ab represented as single
infinite rational. Representation is of course always approximate unless the algebra is finite.
All kinds abstract rules such as various commutative diagrams, division of algebra by ideal by
choosing one representative from each equivalence class of A/I as end point of the path, etc...
can be represented in this manner.

2. There is also second manner to represent algebraic rules. Entanglement is a purely algebraic
notion and it is possible to entangle the many-particle states formed as products of infinite
rationals representing inputs of an algebraic operation A with the outcomes of A represented in
the same manner such that the entanglement is consistent with the rule.

3. There is nice analogy between Feynman diagrams and sequences of algebraic manipulations.
Multiplication ab corresponds to a map A⊗A→ A is analogous to a fusion of elementary particles
since the product indeed conserves the number theoretical energy. Co-algebra operations are
time reversals of algebra operations in this evolution. Co-multiplication ∆ assigns to a ∈ A
an element in A ⊗ A via algebra homomorphism and corresponds to a decay of initial state
particle to two final state particles. It defines co-multiplication assign to a ⊗ b ∈ A ⊗ A an
element of A ⊗ A → A ⊗ A ⊗ A and corresponds to a scattering of elementary particles with
the emission of a third particle. Hence a sequence of algebraic manipulations is like a Feynman
diagram involving both multiplications and co-multiplications and thus containing also loops.
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When particle creation and annihilation are absent, particle number is conserved and the process
represents algebra endomorphism A → A. Otherwise a more general operation is in question.
This analogy inspires the question whether particle reactions could serve as a blood and flesh
representation for d = 4 algebras.

4. The dimension d = 4 is maximal dimension of single space-time evolution representing an al-
gebraic operation (unless one allows the possibility that space-time and imbedding space di-
mensions are come as multiples of four and 8). Higher dimensions can be effectively achieved
only if several space-time sheets are used defining 4n-dimensional configuration space. This
could reflect some deep fact about algebras in general and also relate to the fact that 3- and
4-dimensional manifolds are the most interesting ones topologically.

4.10.2 One element field, quantum measurement theory and its q-variant,
and the Galois fields associated with infinite primes

John Baez talked in This Weeks Finds (Week 259) [B14] about one-element field - a notion inspired by
the q = exp(i2π/n)→ 1 limit for quantum groups. This limit suggests that the notion of one-element
field for which 0=1 - a kind of mathematical phantom for which multiplication and sum should be
identical operations - could make sense. Physicist might not be attracted by this kind of identification.

In the following I want to articulate some comments from the point of view of quantum measure-
ment theory and its generalization to q-measurement theory which I proposed for some years ago and
which is represented above.

I also consider and alternative interpretation in terms of Galois fields assignable to infinite primes
which form an infinite hierarchy. These Galois fields have infinite number of elements but the map to
the real world effectively reduces the number of elements to 2: 0 and 1 remain different.

q → 1 limit as transition from quantum physics to effectively classical physics?

The q → 1 limit of quantum groups at q-integers become ordinary integers and n-D vector spaces
reduce to n-element sets. For quantum logic the reduction would mean that 2N -D spinor space
becomes 2N -element set. N qubits are replaced with N bits. This brings in mind what happens in
the transition from wave mechanism to classical mechanics. This might relate in interesting manner
to quantum measurement theory.

Strictly speaking, q → 1 limit corresponds to the limit q = exp(i2π/n), n→∞ since only roots of
unity are considered. This also correspond to Jones inclusions at the limit when the discrete group Zn
or or its extension-both subgroups of SO(3)- to contain reflection has infinite elements. Therefore this
limit where field with one element appears might have concrete physical meaning. Does the system
at this limit behave very classically?

In TGD framework this limit can correspond to either infinite or vanishing Planck constant de-
pending on whether one consider orbifolds or coverings. For the vanishing Planck constant one should
have classicality: at least naively! In perturbative gauge theory higher order corrections come as pow-
ers of g2/4π~ so that also these corrections vanish and one has same predictions as given by classical
field theory.

Q-measurement theory and q → 1 limit

Q-measurement theory differs from quantum measurement theory in that the coordinates of the state
space, say spinor space, are non-commuting. Consider in the sequel q-spinors for simplicity.

Since the components of quantum spinor do not commute, one cannot perform state function
reduction. One can however measure the modulus squared of both spinor components which indeed
commute as operators and have interpretation as probabilities for spin up or down. They have a
universal spectrum of eigen values. The interpretation would be in terms of fuzzy probabilities and
finite measurement resolution but may be in different sense as in case of HFF:s. Probability would
become the observable instead of spin for q not equal to 1.

At q → 1 limit quantum measurement becomes possible in the standard sense of the word and one
obtains spin down or up. This in turn means that the projective ray representing quantum states is
replaced with one of n possible projective rays defining the points of n-element set. For HFF:s of type
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II1 it would be N-rays which would become points, N the included algebra. One might also say that
state function reduction is forced by this mapping to single object at q → 1 limit.

On might say that the set of orthogonal coordinate axis replaces the state space in quantum
measurement. We do this replacement of space with coordinate axis all the time when at blackboard.
Quantum consciousness theorist inside me adds that this means a creation of symbolic representations
and that the function of quantum classical correspondences is to build symbolic representations for
quantum reality at space-time level.

q → 1 limit should have space-time correlates by quantum classical correspondence. A TGD
inspired geometro-topological interpretation for the projection postulate might be that quantum mea-
surement at q → 1 limit corresponds to a leakage of 3-surface to a dark sector of imbedding space with
q → 1 (Planck constant near to 0 or ∞ depending on whether one has n → ∞ covering or division
of M4 or CP2 by a subgroup of SU(2) becoming infinite cyclic - very roughly!) and Hilbert space
is indeed effectively replaced with n rays. For q 6= 1 one would have only probabilities for different
outcomes since things would be fuzzy.

In this picture classical physics and classical logic would be the physical counterpart for the shadow
world of mathematics and would result only as an asymptotic notion.

Could 1-element fields actually correspond to Galois fields associated with infinite primes?

Finite field Gp corresponds to integers modulo p and product and sum are taken only modulo p. An
alternative representation is in terms of phases exp(ik2π/p), k = 0, ..., p − 1 with sum and product
performed in the exponent. The question is whether could one define these fields also for infinite
primes by identifying the elements of this field as phases exp(ik2π/Π) with k taken to be finite integer
and Π an infinite prime (recall that they form infinite hierarchy). Formally this makes sense. 1-element
field would be replaced with infinite hierarchy of Galois fields with infinite number of elements!

The probabilities defined by components of quantum spinor make sense only as real numbers and
one can indeed map them to real numbers by interpreting q as an ordinary complex number. This
would give same results as q → 1 limit and one would have effectively 1-element field but actually a
Galois field with infinite number of elements.

If one allows k to be also infinite integer but not larger than than Π in the real sense, the phases
exp(ik2π/Π) would be well defined as real numbers and could differ from 1. All real numbers in the
range [−1, 1] would be obtained as values of cos(k2π/Π) so that this limit would effectively give real
numbers.

This relates also interestingly to the question whether the notion of p-adic field makes sense for
infinite primes. The p-adic norm of any infinite-p p-adic number would be power of π either infinite,
zero, or 1. Excluding infinite normed numbers one would have effectively only p-adic integers in the
range 1, ...Π− 1 and thus only the Galois field G < sub > Π < /sub > representable also as quantum
phases.

I conclude with a nice string of text from John’z page:
What’s a mathematical phantom? According to Wraith, it’s an object that doesn’t exist within a

given mathematical framework, but nonetheless ”obtrudes its effects so convincingly that one is forced
to concede a broader notion of existence”.

and unashamedly propose that perhaps Galois fields associated with infinite primes might provide
this broader notion of existence! In equally unashamed tone I ask whether there exists also hierarchy
of conscious entities at q = 1 levels in real sense and whether we might identify ourselves as this kind
of entities? Note that if cognition corresponds to p-adic space-time sheets, our cognitive bodies have
literally infinite geometric size in real sense.

One-element field realized in terms of real units with number theoretic anatomy

One-element field looks rather self-contradictory notion since 1 and 0 should be represented by same
element. The real units expressible as ratios of infinite rationals could however provide a well-defined
realization of this notion.

1. The condition that same element represents the neutral element of both sum and product gives
strong constraint on one-element field. Consider an algebra formed by reals with sum and
product defined in the following manner. Sum, call it ⊕, corresponds to the ordinary product
x×y for reals whereas product, call it ⊗, is identified as the non-commutative product x⊗y = xy.
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x = 1 represents both the neutral element (0) of ⊕ and the unit of ⊗. The sub-algebras generated
by 1 and multiple powers Pn(x) = Pn−1(x) ⊗ x = x ⊗ ... ⊗ x form commutative sub-algebras
of this algebra. When one restricts the consideration to x = 1 one obtains one-element field as
sub-field which is however trivial since ⊕ and ⊗ are identical operations in this subset.

2. One can get over this difficulty by keeping the operations ⊕ and ⊗, by assuming one-element
property only with respect to the real and various p-adic norms, and by replacing ordinary real
unit 1 with the algebra of real units formed from infinite primes by requiring that the real and
various p-adic norms of the resulting numbers are equal to one. As far as real and various p-adic
norms are considered, one has commutative one-element field. When number theoretic anatomy
is taken into account, the algebra contains infinite number of elements and is non-commutative
with respect to the product since the number theoretic anatomies of xy and yx are different.

4.10.3 A little crazy speculation about knots and infinite primes

D-dimensional knots correspond to the isotopy equivalence classes of the imbeddings of spheres Sd to
Sd+2. One can consider also the isotopy equivalence classes of more general manifolds Md ⊂ Md+2.
Knots [A55] are very algebraic objects. The product (or sum, I prefer to talk about product) of knots
is defined in terms of connected sum. Connected sum quite generally defines a commutative and
associative product, and one can decompose any knot into prime knots.

Knots can be mapped to Jones polynomials J(K) (for instance - there are many other polynomials
and there are very general mathematical results about them [A55] ) and the product of knots is
mapped to a product of corresponding polynomials. The polynomials assignable to prime knots should
be prime in a well-defined sense, and one can indeed define the notion of primeness for polynomials
J(K): prime polynomial does not factor to a product of polynomials of lower degree in the extension
of rationals considered.

This raises the idea that one could define the notion of zeta function for knots. It would be simply
the product of factors 1/(1 − J(K)−s) where K runs over prime knots. The new (to me) but very
natural element in the definition would be that ordinary prime is replaced with a polynomial prime.
This observation led to the idea that the hierarchy of infinite primes could correspond to the hierarchy
of knots in various dimensions and this in turn stimulated quite fascinating speculations.

Do knots correspond to the hierarchy of infinite primes?

A very natural question is whether one could define the counterpart of zeta function for infinite primes.
The idea of replacing primes with prime polynomials would resolve the problem since infinite primes
can be mapped to polynomials. For some reason this idea however had not occurred to me earlier.

The correspondence of both knots and infinite primes with polynomials inspires the question
whether d = 1-dimensional prime knots might be in correspondence (not necessarily 1-1) with infinite
primes. Rational or Gaussian rational infinite primes would be naturally selectedthese are also selected
by physical considerations as representatives of physical states although quaternionic and octonionic
variants of infinite primes can be considered.

If so, knots could correspond to the subset of states of a super-symmetric arithmetic quantum field
theory with bosonic single particle states and fermionic states labeled by quaternionic primes.

1. The free Fock states of this QFT are mapped to first order polynomials and irreducible polyno-
mials of higher degree have interpretation as bound states so that the non-decomposability to a
product in a given extension of rationals would correspond physically to the non-decomposability
into many-particle state. What is fascinating that apparently free arithmetic QFT allows huge
number of bound states.

2. Infinite primes form an infinite hierarchy, which corresponds to an infinite hierarchy of second
quantizations for infinite primes meaning that n-particle states of the previous level define single
particle states of the next level. At space-time level this hierarchy corresponds to a hierarchy
defined by space-time sheets of the topological condensate: space-time sheet containing a galaxy
can behave like an elementary particle at the next level of hierarchy.

3. Could this hierarchy have some counterpart for knots?In one realization as polynomials, the
polynomials corresponding to infinite prime hierarchy have increasing number of variables. Hence
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the first thing that comes into my uneducated mind is as the hierarchy defined by the increasing
dimension d of knot. All knots of dimension d would in some sense serve as building bricks for
prime knots of dimension d + 1 or possibly d + 2 (the latter option turns out to be the more
plausible one). A canonical construction recipe for knots of higher dimensions should exist.

4. One could also wonder whether the replacement of spherical topologies for d-dimensional knot
and d+ 2-dimensional imbedding space with more general topologies could correspond to alge-
braic extensions at various levels of the hierarchy bringing into the game more general infinite
primes. The units of these extensions would correspond to knots which involve in an essen-
tial manner the global topology (say knotted non-contractible circles in 3-torus). Since the
knots defining the product would in general have topology different from spherical topology the
product of knots should be replaced with its category theoretical generalization making higher-
dimensional knots a groupoid in which spherical knots would act diagonally leaving the topology
of knot invariant. The assignment of d-knots with the notion of n-category, n-groupoid, etc..
by putting d=n is a highly suggestive idea. This is indeed natural since are an outcome of a
repeated abstraction process: statements about statements about .....

5. The lowest (d = 1, D = 3) level would be the fundamental one and the rest would be somewhat
boring repeated second quantization;-). This is why the dimension D = 3 (number theoretic
braids at light-like 3-surfaces!) would be fundamental for physics.

Further speculations

Some further speculations about the proposed structure of all structures are natural.

1. The possibility that algebraic extensions of infinite primes could allow to describe the refinements
related to the varying topologies of knot and imbedding space would mean a deep connection
between number theory, manifold topology, sub-manifold topology, and n-category theory.

2. Category theory appears already now in fundamental role in the construction of the generaliza-
tion of M-matrix unifying the notions of density matrix and S-matrix. Generalization of category
to n-category theory and various n-structures would have very direct correspondence with the
physics of TGD Universe if one assumes that repeated second quantization makes sense and cor-
responds to the hierarchical structure of many-sheeted space-time where even galaxy corresponds
to elementary fermion or boson at some level of hierarchy.

This however requires that the unions of light-like 3-surfaces and of their sub-manifolds at
different levels of topological condensate are able to represent higher-dimensional manifolds
physically albeit not in the standard geometric sense since imbedding space dimension is just 8.
This might be possible.

3. As far as physics is considered, the disjoint union of sub-manifolds of dimensions d1 and d2

behaves like a d1 + d2-dimensional Cartesian product of the corresponding manifolds. This is of
course used in standard manner in wave mechanics (the configuration space of n-particle system
is identified as E3n/Sn with division coming from statistics).

4. If the surfaces have intersection points, one has a union of Cartesian product with punctures
(intersection points) and of lower-dimensional manifold corresponding to the intersection points.

5. Note also that by posing symmetries on classical fields one can effectively obtain from a given
n-manifold manifolds (and orbifolds) with quotient topologies.

The megalomanic conjecture is that this kind of physical representation of d-knots and their imbedding
spaces is possible using many-sheeted space-time. Perhaps even the entire magnificent mathematics
of n-manifolds and their sub-manifolds might have a physical representation in terms of sub-manifolds
of 8-D M4 × CP2 with dimension not higher than space-time dimension d = 4.
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The idea survives the most obvious killer test

All this looks nice and the question is how to give a death blow to all this reckless speculation. Torus
knots are an excellent candidate for performing this unpleasant task but the hypothesis survives!

1. Torus knots [A101] are labeled by a pair integers (m,n), which are relatively prime. These are
prime knots. Torus knots for which one has m/n = r/s are isotopic so that any torus knot is
isotopic with a knot for which m and n have no common prime power factors.

2. The simplest infinite primes correspond to free Fock states of the supersymmetric arithmetic
QFT and are labeled by pairs (m,n) of integers such that m and n do not have any common
prime factors. Thus torus knots would correspond to free Fock states! Note that the prime
power pk(p) appearing in m corresponds to k(p)-boson state with boson ”momentum” p and the
corresponding power in n corresponds to fermion state plus k(p)− 1 bosons.

3. A further property of torus knots is that (m,n) and (n,m) are isotopic: this would correspond
at the level of infinite primes to the symmetry mX + n → nX + m, X product of all finite
primes. Thus infinite primes are in 2 → 1 correspondence with torus knots and the hypothesis
survives also this murder attempt. Probably the assignment of orientation to the knot makes
the correspondence 1-1 correspondence.

How to realize the representation of the braid hierarchy in many-sheeted space-time?

One can consider a concrete construction of higher-dimensional knots and braids in terms of the
many-sheeted space-time concept.

1. The basic observation is that ordinary knots can be constructed as closed braids so that ev-
erything reduces to the construction of braids. In particular, any torus knot labeled by (m,n)
can be made from a braid with m strands: the braid word in question is (σ1....σm−1)n or by
(m,n) = (n,m) equivalence from n strands. The construction of infinite primes suggests that
also the notion of d-braid makes sense as a collection of d-braids in d+ 2-space, which move and
and define d+1-braid in d+3 space (the additional dimension being defined by time coordinate).

2. The notion of topological condensate should allow a concrete construction of the pairs of d- and
d + 2-dimensional manifolds. The 2-D character of the fundamental objects (partons) might
indeed make this possible. Also the notion of length scale cutoff fundamental for the notion of
topological condensate is a crucial element of the proposed construction.

3. Infinite primes have also interpretation as physical states and the representation in terms of
knots would mean a realization of quantum classical correspondence.

The concrete construction would proceed as follows.

1. Consider first the lowest non-trivial level in the hierarchy. One has a collection of 3-D light-like
3-surfaces X3

i representing ordinary braids. The challenge is to assign to them a 5-D imbedding
space in a natural manner. Where do the additional two dimensions come from? The obvious
answer is that the new dimensions correspond to the partonic 2-surface X2 assignable to the
3−D lightlike surface X3 at which these surfaces have suffered topological condensation. The
geometric picture is that X3

i grow like plants from ground defined by X2 at 7-dimensional
δM4

+ × CP2.

2. The degrees of freedom of X2 should be combined with the degrees of freedom of X3
i to form

a 5-dimensional space X5. The natural idea is that one first forms the Cartesian products
X5
i = X3

i ×X2 and then the desired 5-manifold X5 as their union by posing suitable additional
conditions. Braiding means a translational motion of X3

i inside X2 defining braid as the orbit
in X5. It can happen that X3

i and X3
j intersect in this process. At these points of the union

one must obviously pose some additional conditions. Same applies to intersection of more than
two X3

i .

Finite (p-adic) length scale resolution suggests that all points of the union at which an intersec-
tion between two or more light-like 3-surfaces occurs must be regarded as identical. In general
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the intersections would occur in a 2-d region of X2 so that the gluing would take place along
5-D regions of X5

i and there are therefore good hopes that the resulting 5-D space is indeed a
manifold. The imbedding of the surfaces X3

i to X5 would define the braiding.

3. At the next level one would consider the 5-d structures obtained in this manner and allow them
to topologically condense at larger 2-D partonic surfaces in the similar manner. The outcome
would be a hierarchy consisting of 2n+ 1-knots in 2n+ 3 spaces. A similar construction applied
to partonic surfaces gives a hierarchy of 2n-knots in 2n+ 2-spaces.

4. The notion of length scale cutoff is an essential element of the many-sheeted space-time concept.
In the recent context it suggests that d-knots represented as space-time sheets topologically
condensed at the larger space-time sheet representing d+ 2-dimensional imbedding space could
be also regarded effectively point-like objects (0-knots) and that their d-knottiness and internal
topology could be characterized in terms of additional quantum numbers. If so then d-knots
could be also regarded as ordinary colored braids and the construction at higher levels would
indeed be very much analogous to that for infinite primes.
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Chapter 5

Non-Standard Numbers and TGD

5.1 Introduction

This chapter represents some comments on articles of Elemer E. Rosinger as a physicist from the
point of view of Topological Geometrodynamics. To a large extent a comparison of two possible
generalizations of reals is in question: the surreal numbers introduced originally by Robinson [A200]
and infinite primes and corresponding generalization of reals inspired by TGD approach [K76] , [L17]
. The articles which have inspired the comments below are following:

• How Far Should the Principle of Relativity Go?

• Quantum Foundations: Is Probability Ontological?

• Group Invariant Entanglements in Generalized Tensor Products

• Heisenberg Uncertainty in Reduced Power Algebras

• Surprising Properties of Non-Archimedean Field Extensions of the Real Numbers

• No-Cloning in Reduced Power Algebras

I have a rather rudimentary knowledge about non-standard numbers and my comments are very
subjective and TGD centered. I however hope that they might tell also something about Rosinger’s
work [A201, A202, A203, A204, A205] . My interpretation of the message of articles relies on asso-
ciations with my own physics inspired ideas related to the notion of number. I divide the articles to
physics related and purely mathematical ones. About the latter aspects I am not able to say much.

The construction of ultrapower fields (generalized scalars) is explained using concepts familar to
physicist using the close analogies with gauge theories, gauge invariance, and with the singularities
of classical fields. Some questions related to the physical applications of non-standard numbers are
discussed including interpretational problems and the problems related to the notion of definite inte-
gral. The non-Archimedean character of generalized scalars is discussed and compared with that of
p-adic numbers. Rosinger considers several physical ideas inspired by ultrapower fields including the
generalization of general covariance to include the independence of the formulation of physics on the
choice of generalized scalars, the question whether generalized scalars might allow to understand the
infinities of quantum field theories, and the question whether the notion of measurement precision
could realized in terms of scale hierarchy with levels related by infinite scalings. These ideas are
commented in the article by comparison to p-adic variants of these ideas.

Non-standard numbers are compared with the numbers generated by infinite primes. It is found
that the construction of infinite primes, integers, and rationals has a close similarity with construction
of the generalized scalars. The construction replaces at the lowest level the index set Λ = N of natural
numbers with algebraic numbers A, Frechet filter of N with that of A, and R with unit circle S1

represented as complex numbers of unit magnitude. At higher levels of the hierarchy generalized
-possibly infinite and infinitesimal- algebraic numbers emerge. This correspondence maps a given set
in the dual of Frechet filter of A to a phase factor characterizing infinite rational algebraically so
that correspondence is like representation of algebra. The basic difference between two approaches to
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infinite numbers is that the counterpart of infinitesimals is infinitude of real units with complex number
theoretic anatomy: one might loosely say that these real units are exponentials of infinitesimals.

With motivations coming from quantum computation, Rosinger discusses also a possible general-
ization of the notion of entanglement [A203] allowing to define it also for what could be regarded as
classical systems. Entanglement is also number theoretically very interesting notion. For instance, for
infinite primes and integers the notion of number theoretical entanglement emerges and relates to the
physical interpretation of infinite primes as many particles states of second quantized super-symmetry
arithmetic QFT. What is intriguing that the algebraic extension of rationals induces de-entanglement.
The de-entanglement corresponds directly to the replacement of a polynomial with rational coefficients
with a product of the monomials with algebraic roots in general.

5.2 Brief summary of basic concepts from the points of view
of physics

Many of Rosinger’s ideas relate to generalized scalars as he calls the number fields and division
algebras obtained as reduced power algebras. Generalized scalars include as a special case non-
standard numbers. The definition is comprehensible also for a physicist since heavy technicalities are
avoided. The conceptual problems are mentioned in passing. For instance, the question whether the
transfer principle stating that all that can be expressed using first order logics for reals should have
similar expression for nonstandard numbers is central question.

Non-standard numbers (at least generalized scalars, hyperreals, surreals, and long line are alterna-
tive nicknames for them) probably induce feelings of awe and fear in physicist. The construction used
is however structurally very familiar to a physicist who has understood the notion of gauge invariance.
The correspondences are following.

• Gauge transformations and gauge potentials defined in space-time ↔ real valued functions de-
fined in a discrete set such as natural numbers.

• Gauge potentials which differ by a mere gauge transformation are physically equivalent↔ func-
tions which are same in the set of subsets of Λ called filter are identified in quotient construction.

• Fields vanishing in a complement of lower-dimensional manifolds is physically equivalent with
everywhere vanishing field ↔ function vanishing in the complement of finite set is equivalent to
vanishing everywhere. Filter itself can correspond to complements of lower-dimensional mani-
folds in the physical situation.

• Functions vanishing for set the filter and equivalent with zero element of the resulting algebra↔
gauge potentials, which are pure gauge correspond to vanishing gauge fields except in some lower-
dimensional sub-manifold. Vacuum extremals would be TGD counterpart for these regions.

A more precise construction recipe [A204] should be easy to understand on basis of these corre-
spondence rules.

1. One considers real valued functions in a discrete set Λ - typically natural numbers N . For
everywhere non-vanishing functions f the local algebraic inverse 1/f is well-defined but if the
function has zeros 1/f is infinite at zeros. This need not be regarded as a problem if the set
of zeros is finite. This motivates the construction of fields or division algebras by mapping to
zero those functions which are non-vanishing at finite number of points only. Field or division
algebra would be obtained as the quotient space of the function algebra with respect to ideal
defined by functions which are non-vanishing in a set whose complement is finite.

2. The notion of filter defined as a set of subsets of Λ, which are equivalent with Λ itself ”for
practical purposes” is essential for the construction (see the appendix of [A204] ).

• The sets of filter F are ordered by inclusion; if set belongs to F also sets containing it
belong to F ; the intersections and unions of subsets of F belong to F ; empty set does not
belong to F .

http://en.wikipedia.org/wiki/Filter_(mathematics)
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• Ultrafilter U has the additional property that for any subset of Λ either the subset or its
complement belongs to U . Frechet filter UF consisting of sets whose complements are finite
sets defines ultrafilter and any ultrafilter by definition contains UF . The existence of the
ultrafilters is guaranteed by the axiom of choice (which could be challenged in physics:
for instance, one could argue that only rational points can be pinpointed by a physical
procedure).

3. One assigns to the filter F an ideal IF of function algebra F as the set of functions f : Λ → R
which vanish for some set of filter and thus ”almost everywhere”. Reduced power algebras are
defined as quotients F/IF of the function algebra F with respect to IF which means that two
functions are equivalent if they coincide in some set of the filter. Functions vanishing in some
set of F correspond to zero.

Ultrafilters give ultrapower fields and Frechet filter consisting of sets with finite complement
defines one particular ultrafilter. Functions equivalent with zero vanish in some set with a finite
complement which indeed is rather natural. The algebraic inverses of functions vanishing in a
finite subset of Λ have a finite number of infinite values and define infinitely large generalized
scalars. Reals can be imbedded to these algebras as constant functions and one can order
the elements of the resulting number field and define the analog of real line by using natural
definition.

One can order the elements of ultrapower: f ≤ g iff g(λ) ≤ g(λ) in some set of U and thus
”almost everywhere”. This allows to classify the elements of field infinitesimals, finite numbers,
and infinite numbers. One has infinite number of infinitesimals identified as functions whose
values are in the range (−r, r) for any r > 0 in some set of U . These functions do not vanish
in any set of U as physicist might first think: only the infimum of |f | over sets of U vanishes
Infinite numbers correspond to algebraic inverses of functions having finite number of zeros.

4. The resulting generalized scalars are much more structured than reals and have complex self-
similar structure. The notion of walkable world illustrates these properties. Non-Archimedean
number fields can be defined as fields for which the numbers x + nv for given x and v and
arbitrary n have element y such x+nv < y for all values of n. v defines the step of the walk and
n the number of steps. The shifts of x generate ”walkable worlds” reached by making arbitrary
number of unit steps and they do not span the entire number field in non-Archimedean case.
One can say that y is infinite relative to x.

Already in the case of p-adic numbers [K77] , [L16] walkable worlds define only subsets of p-adic
numbers: the reason is that the p-adic norm of x + nv, n p-adic integer cannot be larger than
the norm of x is larger than one or one. Hence one cannot walk out from the ball defined by the
numbers x with norm smaller than pk. Now y has finite p-adic norm whereas for generalized
scalars y would have infinite real norm.

One interesting implication is that p-adic variants of translations as continuous transformations
are well-defined inside p-adically finite ball so that plane waves representing eigenstates of trans-
lations can be restricted to a finite p-adic volume. Already in p-adic case the walkable worlds
define a fractal structure with many basic properties possessed also by surreal walkable worlds.
It is however clear that infinitesimals and infinite numbers are not realized in the p-adic context.

One can turn around the analogy with gauge theories and ask whether the notion of filter defined
as the set of complements for lower-dimensional manifolds of space-time could be useful. In this case
fields vanishing in open sets of space-time would be equivalent with vanishing fields and fields singular
in lower-dimensional sub-manifold would be analogous to infinite numbers. If the infimum of field in
the set of filters vanishes it would be analogous to infinitesimal. The singularities could be associated
with Higgs fields and gauge fields. Interestingly, in quantum physics inspired theories for knots, knot-
cobordisms and 2-knots essential role is played by 2-dimensional singularities of gauge fields in 4-D
space-time [K37] and having physical interpretation as analogs of string world sheets.

5.3 Could the generalized scalars be useful in physics?

The basic question is whether the generalized scalars could replace reals in theoretical physics. It is
best to proceed by making questions.

http://en.wikipedia.org/wiki/Non-archimedean_field
http://en.wikipedia.org/wiki/Non-archimedean_field
http://en.wikipedia.org/wiki/P-adic_numbers
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5.3.1 Are reals somehow special and where to stop?

The following questions relate to the interpretation of generalized scalars.

1. Why reals should be so special? The possible answer is that reals, complex numbers and quater-
nions form associative continua. Classical number fields are indeed in central role in TGD [K78]
, [L12] . Already p-adic number fields consist of disconnected pieces in the sense that one
cannot connect two arbitrary points by a continuous curve (p-adic norm of point must change
discontinuously at some point of curve is the norms of end points are different).

2. What -if anything physical- it means to replace temperature at space-time point with a function
of a natural number? Doesn’t this mean the replacement of real numbers with R × N and
replacement of Minkowski space with M4 ×N4?

3. What is the physical meaning of generalized scalar understood as an equivalence class of real
functions of natural number modulo functions vanishing in some set belonging to a filter (possibly
ultrafilter)? What could be the physical meaning of filter? Could the quotient construction be
interpreted as some sort of gauge invariance or could it just realize the idea ”almost-everywhere
is everywhere physically”?

4. Can one stop if the step replacing reals with generalized scalars is taken? Recall that quantization
means replacement of the configuration space with the function space associated with it. Second
quantization brings in function space associated with this space and so on. This hierarchy
of quantizations is involved with the construction of infinite primes (and rationals) in TGD
framework [K76] , [L17] and in this case one has a concrete physical interpretation in terms of
many-sheeted space-time.

Should one replace natural numbers with the power set of natural numbers consisting of finite
subsets of natural numbers (dual of the Frechet filter for N) at the next step and perform similar
construction. This could be continued ad infinitum. Does one obtain an infinite hierarchy of
increasingly surreal numbers in this manner? One can imagine also other kinds of constructions
but it is this construction with would be analogous to that for the hierarchy of infinite primes.

5.3.2 Can one generalize calculus?

The obvious question of physicist is whether one can generalize differential and integral calculus
- necessary for physics as we know it. Surreals were actually introduced to justify the notion of
infinitesimal so that differential calculus should not be a problem. The notion of integral function is
neither a problem but definite integral might be due to the loss of Archimedean property. One could
try to define the notion of integral in terms of the imbedding of real numbers as constant functions and
define definite integral algebraically as a substitution of the integral function between real limits. For
arbitrarily limits one cannot order the limits and it seems that one should restrict the considerations
to real limits.

What might also pose a problem is the definition of numerical integration - in terms of Riemann sum
in its simplest form. One should divide the integration range to short ordered pieces and approximate
the integral with sum. But there exists infinite number of paths connecting two functions to each
other and one cannot order the pieces in general. Should one generalize complex analyticity so that
functions of surreals would be expressible as power series of function and the integrals would not
depend on integration path unless the surreal analytic function has singularities such as poles? Does
this mean that one can choose one particular path which corresponds a path restricted to real axis so
that the integral would reduce to the ordinary real integral.

In p-adic context non-Archimedean property implies that the notion of definite integral is indeed
problematic [K53] . The basic problem is that one cannot in general tell which one of the two p-adic
numbers with the same norm is the larger one and therefore one cannot define the notion boundary
essential in variational calculus. One could use algebraic definition of definite integral as a substitution
of integral function and in complex case residue calculus could help. One could use the ordering of
rational numbers imbedded to p-adic numbers fields to induce the ordering of p-adic rationals. The p-
adic existence of the integral function poses additional conditions encountered already for the integrals
of rational functions which can give logarithms of rationals leading out from the realm of rationals.

http://en.wikipedia.org/wiki/Hyperreal_number
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These difficulties have served as a key guiding principle in the attempts to fuse real and p-adic physics
to a larger structure.

5.3.3 Generalizing general covariance

What happens to the notion general covariance (or Principle of Relativity in the terminology used by
Rosinger, see the article How Far Should the Principle of Relativity Go? [A201] )? Here I would like to
do some nitpicking by distinguishing between Principle of Relativity which refers to the isometries of
Minkowski space and General Coordinate Invariance analogous to gauge symmetry. Various symmetry
groups make sense also in the surreal context since they are defined algebraically. A generalization
of General Coordinate Invariance meaning that the formulation of physics becomes independent of
the choice of generalized scalars is proposed by Rosinger. This notion could be interpreted as a form
invariance or as the condition that the physics is indeed the same irrespective of what number field is
used in which case the introduction of generalize scalars would not bring in anything new.

Rosinger chooses the non-trivial option which means that the formulation of the laws of physics
should make sense irrespective of the number field chosen and considers various examples as applica-
tions of the generalized view. He shows that no-cloning theorem of quantum computation holds true
also for generalized scalars because the theorem depends on the linearity of quantum theory alone
(cloning would map state to two of its copies, something essentially nonlinear).

In TGD framework the notion Number Theoretical Universality interpreted as number field inde-
pendent formulation of physics seems to relate closely to this principle.

1. All constructions making sense in real context should makes sense also in the p-adic context [K77]
, [L16] . Real and p-adic physics meet in the intersection of real and p-adic worlds and result
from each other by a kind of algebraic continuation. Simplifying somewhat, at the level of space-
time surfaces the intersection would correspond to rational points in some preferred coordinates
shared by real and p-adic surfaces and at the level of ”world of classical worlds” (WCW) to
surfaces expressible in terms of rational functions expressible using polynomials with rational
coefficients so that real and p-adic variants of this kind of surfaces are can be identified.

2. Number Theoretic Universality leads to extremely powerful conditions on the geometry of WCW
since both its real and p-adic sectors should exist and integrate to a larger structure [K27] .
Rationals defining the intersection of reals and various p-adics play a key role and one ends up
with a generalization of number concept obtained by gluing reals and p-adics as well as their
algebraic extensions to single book like structure [K77] , [L16] .

3. One is also forced to adopt a more refined view about General Coordinate Invariance since the
coordinate transformations must respect the algebraic extensions of p-adic numbers used. This
brings also non-uniqueness: there are several choices of coordinate frames not transformable
to each other. The interpretation would be that that they serve as correlates of cognition.
Mathematician is not an outsider and the choice of coordinate system affects the reality albeit
in very delicate manner.

This allows to see a relationship between TGD inspired fusion of real and p-adic physics and
Rosingers’s proposal as roughly following correspondence.

Reals and p-adic number fields resp. rationals defining the intersection of reals and p-adic worlds
↔ various generalized scalars resp. reals defining the intersection of various surreals worlds.

The independence on the choice of generalized scalars might give powerful constraints on the formu-
lation of the theory.

If surreal number fields are important for theoretical physics, physical systems must be character-
ized by the generalized scalars. What determines this number field or algebra? Can one speak about
some kind of quantal evolution in which physical systems evolve more and more complex number
theoretically. Could the field of generalized scalars be replaced with a new one in quantum jump
taking place via reals common to different generalized scalars?

The attempt to fuse real physics as physics of matter and p-adic physics as physics of cognition
one ends up with this kind of picture and one can say that the prime characterizing p-adic number
field and the algebraic numbers defining its extension (say roots of unity) characterize its evolutionary
level. During evolution the algebraic complexity of the systems steadily increases.

http://arxiv.org/abs/0710.0226
http://arxiv.org/abs/0902.0264
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5.3.4 The notion of precision and generalized scalars

Rosinger proposes [A204] that the notion of precision of experiment could be assigned to the self-
similar structure of the generalized scalars meaning a hierarchy of scales which differ from each other
by infinite scale factors if real norm is used as a measure for the scale. There would be infinite hierarchy
of precisions and what looks infinitesimal, finite, or infinite would depend on the precision used and
characterized by what generalized scalars are used. Thus one can speak about relative precision.

That one could have units of (say length) differing by infinite scaling in real sense looks rather
weird idea. In TGD framework one interpretation for the hierarchy of infinite primes would be that
there is infinite hierarchy of variants of Minkowski space such that at the given level of the hierarchy
lower levels represent infinitesimals. This would mean fractal cosmology in which the conscious entities
above us in the hierarchy would be literally God like as compared to us. No hopes about testing this
at LHC!

In p-adic context similar notion emerges but the infinities at different levels are not related by
infinite scalings with respect to the p-adic measure for size. Given walkable world correspond in
p-adic context to p-adic numbers with fixed norm and in this operational sense p-adic primes with
larger norm are infinite. p-Adic prime p indeed characterizes length scale resolution and the roots of
unitary used in algebraic extension of p-adics characterize the angle resolution.

Even more, if one accepts that p-adic space-time surfaces serve as correlates for cognition one is
forced to conclude that cognition cannot be localized in a finite space-time volume and that ”thought
bubbles” have actually the size of the entire Universe. Only cognitive representations defined by
rational intersections of real and p-adic space-time surfaces would be localized to a finite real volume.
Maybe the infinite hierarchy of Rosinger could be assigned to the levels of existence that we are used
to assign with cognition and matter corresponds to the lowest level.

5.3.5 Further questions about physical interpretation

Rosinger raises further interesting questions about physical interpretation.

1. In the article Does Heisenberg Uncertainty Principle make sense in reduced power algebras?
[A204] Rosenberg shows that the answer to the question of the title is affirmative. Rosinger
asks in the same article whether the values of fundamental constants like c and ~ depend on the
choice of generalized scalars. For instance, could ~ be infinitesimal for some generalized scalars?
Could c have a well-defined infinite value for some generalized scalars.

In the case of c one could argue that it is just a conversion factor so that one can put c = 1
always by a suitable choice of units. Most physicists would argue that the same is true for ~. I
have however proposed a different vision explaining some strange findings in both astrophysics
and biology.

2. Could the fact that infinitesimal and infinite numbers have precise meaning for generalized
scalars allow to resolve the problems caused by the infinities of local quantum field theories?
Rosinger argues that this might be the case [A204] . The notion of infinity is relative one for
generalized scalars and one could replace reals with some other generalized scalars and this could
make infinite finite. As a matter fact, in p-adic context for a given p-adic number all p-adic
numbers with larger norm represent an operational infinity in the sense that they cannot be
reached by walks consisting of integer valued steps. As p-adic numbers they are however finite.
It seems that one must be very careful how one defines the infinite: does one use norm or does
on use reachability by integer valued steps as the criterion.

One can counter argue that reals can be distinguished uniquely by their topological properties
just like rationals can be distinguished by their number theoretic properties uniquely. Skeptic
might say that the situation would become even worse since one would had infinite number of
different kind of infinities. The infinities would be completely well-defined functions with finite
number of poles but what it means to replaces temperature at space-time point with a function
of natural number? Doesn’t this mean that space-time point is replaced with natural numbers.

I have myself considered the possibility that p-adic mathematics for which integers infinite in
real sense can make sense p-adically and have norm not larger than unity could allow to resolve
the problem of infinities. In particular ultrametric topology implies that the sum of n numbers

http://arxiv.org/abs/0901.4825
http://arxiv.org/abs/0901.4825
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is never larger than the maximum of the largest number involved -this is just what walkable
universe expresses- raises optimism. It turned however that these ideas did not work in my
hands.

5.4 How generalized scalars and infinite primes relate?

The comparison of Rosinger’s ideas with the number theoretic ideas of TGD inspires further questions.

1. Classical number fields play a key role in the formulation of quantum TGD. Do the notions of
sur-complex, sur-quaternion and and sur-octonion make sense as one might expect?

2. What happens if one replaces real functions define in Λ (say natural numbers) with p-adic valued
functions. One obtains algebra also now and one can define ideals and use quotient construction
using ultrafilter. Does the notion of sur-p-adic make sense?

3. In TGD framework one ends up with the notion of infinite prime having direct connection with
repeated second quantization of super-symmetric arithmetic quantum field theory with fermions
and bosons labelled by primes- finite primes at the lowest level of hierarchy. This notion of
infinity is essentially number theoretical and implies that the number theoretic anatomy of
numbers and space-time points becomes an essential aspect of physics. Can one assign number
theoretic anatomy also to non-standard numbers or does the real topology wipe it out?

4. How does the hierarchy of infinite primes relate to the possibly existing hierarchy of reals,
surreals, sursurreals,... obtained by replacing real number valued function with surreal number
valued functions replaced in turn with ....?

The last question deserves a more detailed consideration since it could provide an improved un-
derstanding of infinite primes. Consider first the construction of infinite primes [K76] , [L17] .

1. Infinite primes at the lowest level of hierarchy can be generated from two fermionic vacuum
states P± = X ± 1 , where X is defined as a product of all finite primes having p-adic norm
less than one for all finite primes p. X is analogous to Dirac sea with all negative energy states
filled. Simple infinite primes are of form mX/n+ rn, where m and n have no common divisors
and r consists of same primes as n. m =

∏
pkii corresponds to many boson state with ki bosons

with ”momentum” pi. In fermionic sector the square free integer n has interpretation as many-
fermion state with single fermion in the modes involved. r corresponds to many-boson states
in these modes. Simple infinite primes are clearly analogous to many particle states obtained
by kicking fermions from sea to get positive energy holes and adding bosons whose number is
arbitrary in a given mode labelled by finite prime. Simple infinite primes have unit p-adic norm
so that ”infinite” is a relative notion.

2. More complex infinite primes are infinite integers obtained as sums of products of infinite primes.
The interpretation is in terms of bound many-particle states.

3. In zero energy ontology (ZEO) an attractive interpretation for infinite rationals is as zero energy
states with numerator and denominator representing positive and negative energy parts of the
state.

4. One can continue the construction indefinitely. At the next level X is replaced with the product
of all infinite primes at the first level of the hierarchy and the process is repeated. The physical
interpretation would be that at the next level many particle states of previous level take the
role of single particle states and one constructs free and bound many particle states of these.
The many-sheeted space-time of TGD suggests a concrete realization of this process and I have
indeed proposed a concrete physical interpretation of standard model quantum numbers in terms
of what I call (hyper-)octonionic primes, which would generate a structure analogous to infinite
primes.

Generalized scalars define a function algebra and this inspires the question is whether one could
somehow assign a function algebra also to infinite primes and in this manner to see what is common
features these very different looking notions might have. Infinite primes can be indeed mapped to
polynomial primes as the following argument shows.
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1. Simple infinite primes are characterized by two integers which have no common divisors and can
be thus mapped in a natural manner to rationals q = rn2/m. They can can be also mapped
to monomials x − q, q = rn2/m, where X could be seen as a particular value of x. Complex
infinite primes constructed as products of simple infinite primes can be mapped to products of
these monomials and sums of their products to sums of these so that on obtains a mapping to
polynomial primes at the lowest level of the hierarchy. Vacua are mapped to rationals 1 and -1.
One can decompose the polynomials to products of monomials x−r, where r is a finite algebraic
number, and the interpretation would be that one considers primes in an algebraic extension of
rationals and this representation applies to infinite prime when x is substituted with X.

2. This mapping makes sense also at the next level of hierarchy at least formally. Call the product
of finite and infinite primes at the first level X1 and corresponding formal variable x1. Infinite
rationals correspond now to rational functions of x1 and x defined as ratios of polynomials
Pk(x1, x) for which the highest power of x1 is by definition xk1 . The roots in the product
representation of polynomials are obtained by the substitution x→ X in the expressions of the
roots as functions of x. The roots are generalized algebraic numbers which can be infinite or
vanish as real numbers. This kind of mapping makes also sense at the higher levels of hierarchy.
The roots of polynomial at the n:th level of the hierarchy are obtained by substituting to their
expressions as algebraic functions xm = Xm, m < n.

3. What one obtains is a map to polynomials so that one can indeed map infinite primes and also
integers and rationals to a function algebra consisting of polynomials. Ideals correspond now to
polynomial ideals consisting of polynomials proportional to some polynomial prime. There are
no divisors of zero so that quotient construction is not needed now.

This construction leads to intriguing observations relating the construction of infinite primes to
the construction of generalized scalars and suggesting that infinite primes represent a generalization of
the concept of sur-complex numbers by identifying ultrafilter in terms of complements of finite subsets
of algebraic numbers (Frechet filter actually). The heuristic argument goes as follows.

1. The hierarchy of subsets of algebraic numbers defined by the infinite primes at the lowest level
of hierarchy defines complement of Frechet filter CF with the following defining properties. CF
contains empty set and all finite subsets of Λ, unions of sets of CF belong to CF , and subsets
of a set belonging to CF belong to CF .

Note that powers of infinite primes define the same set in CF as infinite prime itself so that the
correspondence does not seem to be many-to-one. It is not clear whether fermionic statistics
could be used as a physical excuse to exclude these powers and more generally products of
infinite primes for which same finite prime appears in more than one different infinite primes.
Also subsets of genuinely algebraic numbers could correspond to several infinite integers and
rationals.

If one restricts the consideration to square free integers defined by the fermionic parts of infinite
primes then the sets of natural numbers assignable to infinite primes correspond to finite subsets
of square free natural numbers defining a Frechet filter for them.

2. Λ = N is replaced with algebraic numbers A so that the function space defining generalized
scalars would consist of functions f : A→ C. It is not however clear what kind of functions one
should consider.

(a) The first guess is that the quantum states of supersymmetric arithmetic QFT (SAQFT)
correspond to functions non-vanishing only in some finite set belonging to CF . They would
map to zero in the quotient construction of ultrapower field. The functions which do not
map to zero would correspond to non-vanishing elements of the ultrapower field and would
have no physical interpretation. This does not sound sensible physically.

(b) The many-particle states of arithmetic QFT could more naturally correspond to functions
having values on circle S1 -rather than C- identified as complex numbers with unit magni-
tude. The value of this kind of functions would be constant - most naturally 1 - for given
infinite set of U and root of unity in the complement of U defined by infinite integer or
rational.
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These functions would be analogous to plane waves having modulus equal to 1 and if
they correspond to roots of unity they would make sense also for algebraic extensions of
p-adic numbers. This conforms with the fact that p-adic norms of infinite primes and
rationals are equal to unity. This would lead to a rather astonishing conclusion: there are
no infinite numbers nor infinitesimals in the field generated by infinite primes in the sense
of generalized scalars!

Note that functions which reduce to phases in the set of algebraic numbers are also natural
in the sense that there are hopes of defining for them inner product as sum over algebraic
numbers. The inner product should be consistent with the inner product induced by that
for Fock states and it might be better to start directly from this inner product.

(c) It is important to realize that the complements of infinite rationals do not define support for
functions but the functions themselves so that the analogy with the ultrapower construction
fails.

3. The higher levels in the hierarchy of infinite primes are also present and require a further
generalization of the construction. At the second level of the hierarchy algebraic numbers are
replaced with the power set consisting of all finite subsets of algebraic numbers and dual of
Frechet filter with that consisting of all finite subsets of this power set. Higher levels of the
hierarchy would correspond a repeated replacement of the set with its power set.

4. Mathematical skeptic reader might wonder why this infinite hierarchy of constructions? Does
it even lead outside the realm of algebraic numbers? What is however remarkable is that it
generalizes the physics by replacing the first two quantizations with an infinite hierarchy of
quantizations.

5.4.1 Explicit realization for the function algebra associated with infinite
rationals

Consider now an explicit realizations of this algebra as a function algebra. The idea is to assigns
to a given infinite rational a unique phase representing and that the algebraic structure defined by
multiplication is preserved. This is like mapping rationals q = m/n to phases exp(i2πq) so that
products are mapped to products. One can start from the observation that simple infinite primes
can be mapped to rationals. More complex infinite primes, integers, and rationals can be mapped to
collections of algebraic numbers representing the roots of corresponding polynomial primes.

1. The simplest option is that the value of the complex valued function of algebraic numbers
assigned to simple infinite prime characterized by rational q is equal to exp(i2πq) for rational q
and to 1 for other algebraic numbers. The product of simple infinite integers os mapped to the
product of these functions assigned to the factors. The ratio of two simple infinite integers is
mapped to the ratio of corresponding functions.

2. By utilizing the decomposition the map to polynomial or rational function and its decomposition
into monomials with possibly algebraic roots one could map the polynomials of rational function
to factors

∏
i exp(2πri) for a given infinite rational in its polynomial representation decompose

to a product of monomials. This representation would map products (ratios) of infinite integers
to products (ratios) but sums would not be mapped to sums but products in algebraic extension
of rationals. That the images would be always non-vanishing functions would conform with the
basic properties of infinite primes and with non-existence of infinitesimals and infinite numbers
in the sense of the usual ultrapower construction.

3. One would have functions in the set of algebraic numbers at the first level of hierarchy. At
the next level of hierarchy one would have complex complex defined in the set of generalized
rationals constructed from infinite integers. These phases are actually well defined since the
infinite rational appearing in the exponent can be decomposed to a sum of terms. Only those
terms which are finite contribute to the phase so that one obtains a well-defined outcome. This
hierarchy would continue ad infinitum. Similar hierarchy can be associated with generalized
scalars.
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4. Primes are replaced with prime ideals in a more abstract approach to number theory. One
could also assign to the rationals assigned to simple infinite primes the prime ideal of real or
complex valued functions with value equal to one for all rationals except the selected rational.
The product of simple infinite primes would correspond to the ideal consisting of functions which
differ from unity for the rationals appearing in the product. The sum of simple infinite primes
would in turn correspond to similar functions but differing from unity also for algebraic numbers.
This would give a hierarchy of ideals with particular ideal defined in terms of functions whose
value is larger than integer n for most rationals and algebraic numbers.

5.4.2 Generalization of the notion of real by bringing in infinite number
of real units

Infinite rationals lead also to a generalization of the real numbers in the sense that given real number is
replaced with infinitude of numbers having the same magnitude by multiplying it by real units which
differ number theoretically [K76] , [L17] . There exists infinite number of rationals constructed as
ratios of infinite integers at various levels of the hierarchy which as real numbers are equal to real unit
but have arbitrarily complex number theoretical anatomy. Single point of real line is replaced with
infinitely complex infinite-dimensional structure defined by the space of real units. This generalization
applies also to other classical number fields. The role of infinitesimals would be taken by the infinitude
of real units and this would extend real numbers.

This has inspired the ontological proposal that the quantum states of Universe (and even the
world of classical worlds (or its sub-world defined associated with 4-surfaces inside CD ×CP2) could
be imbedded to this space. A less wild statement is that at least the quantum states and sub-WCW
assignable to the so called causal diamond identified as the intersection of future and past directed
light-cones and defining the basic structural unit in zero energy ontology can be realized in terms of
the number theoretic anatomy of single space-time point.

Real units (and their generalizations to octonionic context) are analogous to quantum states. Their
sum is analogous to a quantum superposition and gives a real unit by using a simple normalization.
Real units are also analogous to zero energy states. By writing each infinite prime Pi at a given level
of hierarchy in the form Pi = Qi(Xn − 1) (note that Pi is infinitesimal as compared to Xn), one finds
that real unit condition implies that the total numbers of Xn:s in the numerator and denominator of
a real unit must be same. One can apply the same procedure for the factor∏

numQi∏
denQi

(”num” and ”den” denote numerator and denominator of infinite prime)

to conclude that it must contain same number of Xn−1:s in its numerator and denominator. At the
lowest level one finds that one obtains ratio of integers expressed as products of powers of finite primes
pi which must be equal to unity. The interpretation in positive energy ontology is that the total number
theoretic momentum coming as integer multiple of log(pi) is same for the positive and negative energy
parts of the state and therefore conserved for each finite prime pi separately (the numbers log(pi) are
algebraically independent). Conservation is indeed what one expects in arithmetic QFT.

M4×CP2 with structured space-time points could be able to represent all the structures of quantum
theory having otherwise somewhat questionable ontological status. A given mathematical structure
would ”really” exist if it allows imbedding to generalized M4×CP2, which itself has interpretation in
terms of classical number fields. Accordingly, one could talk about number theoretic Brahman=Atman
identity or algebraic holography.

The above considerations suggest that the hierarchy of infinite primes and hierarchy of generalized
scalars cannot be identified. It is not clear clear whether could consider the fusion of these notions.
Also the fusion of real and p-adic number fields to a book like structure and of generalized scalars
could be considered.

5.4.3 Finding the roots of polynomials defined by infinite primes

Infinite primes identifiable as analogs of bound states correspond at n:th level of the hierarchy to irre-
ducible polynomials in the variable Xn which corresponds to the product of all primes at the previous
level of hierarchy. At the first level of hierarchy the roots of this polynomial are ordinary algebraic
numbers but at higher levels they correspond to infinite algebraic numbers which are somewhat weird



5.4. How generalized scalars and infinite primes relate? 285

looking creatures. These numbers however exist p-adically for all primes at the previous levels because
one one can develop the roots of the polynomial in question as powers series in Xn−1 and this series
converges p-adically. This of course requires that infinite-p p-adicity makes sense. Note that all higher
terms in series are p-adically infinitesimal at higher levels of the hierarchy. Roots are also infinitesimal
in the scale defined Xn. Power series expansion allows to construct the roots explicitly at given level
of the hierarchy as the following induction argument demonstrates.

1. At the first level of the hierarchy the roots of the polynomial of X1 are ordinary algebraic
numbers and irreducible polynomials correspond to infinite primes. Induction hypothesis states
that the roots can be solved at n:th level of the hierarchy.

2. At n+ 1:th level of the hierarchy infinite primes correspond to irreducible polynomials

Pm(Xn+1) =
∑

s=0,...,m

psX
s
n+1 .

The roots R are given by the condition

Pm(R) = 0 .

The ansatz for a given root R of the polynomial is as a Taylor series in Xn:

R =
∑

rkX
k
n ,

which indeed converges p-adically for all primes of the previous level. Note that R is infinitesimal
at n+ 1:th level. This gives

Pm(R) =
∑

s=0,...,m

ps(
∑

rkX
k
n)s = 0 .

(a) The polynomial contains constant term (zeroth power of Xn+1 given by

Pm(r0) =
∑

s=0,...,m

prr
s
0 .

The vanishing of this term determines the value of r0. Although r0 is infinite number the
condition makes sense by induction hypothesis.

One can indeed interpret the vanishing condition

Pm×m1
(r0) = 0

as a vanishing of a polynomial at the n:th level of hierarchy having coefficients at n− 1:th
level. Here m1 is determined by the dependence on infinite primes of lower level expressible
in terms of rational functions. One can continue the process down to the lowest level of
hierarchy obtaining m ×m1... ×mk:th order polynomial at k:th step. At the lowest level
of the hierarchy one obtains just ordinary polynomial equation having ordinary algebraic
numbers as roots.

One can expand the infinite primes as a Taylor expansion in variables Xi and the resulting
number differs from an ordinary algebraic number by an infinitesimal in the multi-P infinite-
P p-adic topology defined by any choice of n-plet of infinite-P p-adic primes (P1, ..., Pn) from
subsequent levels of the hierarchy appearing in the expansion. In this sense the resulting
number is infinitely near to an ordinary algebraic number and the structure is analogous to
a completion of algebraic numbers to reals. Could one regard this structure as a possible
alternative view about reals remains an open question. If so, then also reals could be said
to have number theoretic anatomy.

(b) If one has found the values of r0 one can solve the coefficients rs, s > 0 as linear expressions
of the coefficients rt, t < s and thus in terms of r0.
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(c) The naive expectation is that the fundamental theorem of algebra generalizes so that that
the number of different roots r0 would be equal to m in the irreducible case. This seems to
be the case. Suppose that one has constructed a root R of Pm. One can write Pm(Xn+1)
in the form

Pm(Xn+1) = (Xn+1 −R)× Pm−1(Xn+1) ,

and solve Pm−1 by expanding Pm as Taylor polynomial with respect to Xn+1 −R. This is
achieved by calculating the derivatives of both sides with respect to Xm+1. The derivatives
are completely well-defined since purely algebraic operations are in question. For instance,
at the first step one obtains Pm−1(R) = (dPm/dXn+1)(R). The process stops at m:th step
so that m roots are obtained.

What is remarkable that the construction of the roots at the first level of the hierarchy forces
the introduction of p-adic number fields and that at higher levels also infinite-p p-adic number fields
must be introduced. Therefore infinite primes provide a higher level concept implying real and p-adic
number fields. If one allows all levels of the hierarchy, a new number Xn must be introduced at each
level of the hierarchy. About this number one knows all of its lower level p-adic norms and infinite real
norm but cannot say anything more about them. The conjectured correspondence of real units built
as ratios of infinite integers and zero energy states however means that these infinite primes would be
represented as building blocks of quantum states and that the points of imbedding space would have
infinitely complex number theoretical anatomy able to represent zero energy states and perhaps even
the world of classical worlds associated with a given causal diamond.

5.5 Further comments about physics related articles

In the following I represent comments on the physics related articles of Rosinger not directly related
to generalized scalars. I have not commented the purely mathematics related more technical articles
since I do not have the competence to say anything interesting about them.

5.5.1 Quantum Foundations: Is Probability Ontological

In this highly interesting article [A202] Rosinger poses the question whether the notion of probability
is ontological or only epistemic. Are probabilities basic aspect of existence or are they are ”a useful
construct of mind only”. My own very first reaction is a counter question. Can one speak about
”mere construct of mind”? ”Mind” is a part of existence and the future physics must include it to its
world order. If mind is able to construct a notion like probability this notion could have some quantal
correlate.

Rosinger introduces the notions of deterministic (classical typically) and non-deterministic systems
and distinguishes probabilistic, fuzzy and chaotic systems as special cases of non-deterministic systems.
For fuzzy and chaotic systems probability is clearly a fictive but useful notion. For probabilistic
systems, in particular quantum systems the situation is not clear at all.

As a mathematician Rosinger raises purely mathematical objections against the ontological status
of probability. Rosinger mentions the technical difficulties with the description of stochastic processes
with continuous time and objections against axiomatizations -say in terms of Kolmogorov axioms.
Rosinger mentions also frequency interpretation and somewhat fuzzy propensity interpretation of
probabilities and that the notion of infinity is unavoidable also now. I cannot say much about these
technical aspects and can only represent the comments based on my own physics inspired belief system.

To my very subjective view the situation is far from settled from the point of view of theoretical
physics and one can consider several deformations of the notion of probability.

1. Khrennikov [A187] has formulated the notion of p-adic valued probability and also I have consid-
ered p-adic thermodynamics based model for particle masses (see the first part of [K52] ) whose
predictions, which are basically due to number theoretic existence constraints- are mapped to
real numbers by a canonical correspondence between reals and p-adics.

http://arxiv.org/abs/physics/0703019
http://en.wikipedia.org/wiki/Kolmogorov_axioms
http://en.wikipedia.org/wiki/Propensity
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2. Also the notion of quantum spinors related in TGD framework to the description of finite
measurement resolution [K87] raises the possibility that the probability itself becomes observable
instead of spin (by the finite precision associated with the determination of quantization axes)
and has a universal spectrum.

3. The findings of Russian biologist Shnoll [K5] , [E1] , [E1] suggesting that the expected single
peaked distributions for fluctuations of various process described by probability distributions for
integer valued observable are replaced by many-peaked distributions encourage to think that the
time scale of experiment is essential and the usual idea about smooth approach to probabilities
as the duration of experiment increases is not correct. I have proposed an explanation of these
findings in terms of the deformations of probability distributions depending on rational valued
parameters so that they make sense also p-adically. This predicts precise and universal deviations
which can be tested.

Rosinger relates [A202] the famous Bohr-Einstein debate to the ontological status of probability
concept. The divisor line between Bohr and Einstein was the attitude towards non-determinism. Nei-
ther of them could accept the idea that the determinism of Schrödinger equation could fail temporarily.
Bohr was ready to give up the notion of objective reality altogether whereas Einstein refused to accept
state function reduction since it would have meant giving up also the deterministic dynamics of the
space-time geometry. According to Rosinger, Copenhagenist would regard probability and probability
amplitudes as a fundamental aspect of existence whereas Einstein would have given for probability
only episthemic role.

To my opinion both Einstein and Bohr were both right and wrong. If one accepts the view that
quantum states actually correspond to superpositions of deterministic histories (generalized Bohr or-
bits) -as suggested also by holography principle- the problem disappears. Quantum jump recreates the
quantum state as quantum superposition of entire deterministic time evolution rather than tinkering
with a particular time evolution. There is no contradiction between the determinism of field equation
and non-determinism of quantum jump and genuine evolution emerges as a by-product.

In this framework one also ends up with the identification of theory as a mathematical objects
with the reality itself. There is no need to assume reality behind the quantum states as mathematical
objects. Reality is its mathematical description as quantum state and therefore nothing but this
”construct of mind”. Probability amplitudes receive a firm ontological status and in TGD framework
correspond to what I call spinors fields of WCE having purely geometric interpretation. Whether
probabilities defined in terms of density matrix have independent ontological status is not quite clear.
In quantum theory continuous stochastic process would not really occur and could be seen as a mere
idealization of a process which takes as discrete quantum jumps. The technical difficulties in their
description would not represent argument against the ontological status of probability amplitudes.

Thermodynamical probability is usually regarded as having only episthemic status but in zero
energy ontology - one characteristic aspect of TGD quantum - positive energy quantum states are
replaced with zero energy states which can be regarded mathematically as complex square roots of
density matrices -which I call M -matrices- decomposable to diagonal matrix representing square roots
of probabilities and unitary S-matrix. M -matrices can be organized to orthogonal rows of unitary
U -matrix defining the theory. Does this mean thermodynamical holography in the sense that single
particle states are able to represent the mathematics of thermodynamical ensembles in terms of their
quantum states?

5.5.2 Group Invariant Entanglements in Generalized Tensor Products

Rosinger proposes [A203] a generalization of the notion of entanglement from Hilbert space context
to much more general context. The motivation is that it might allow quantum computation like
operations even in classical physics context so that the problems caused by the fragility of quantum
entanglement could be circumvented.

Recall that ordinary quantization leads from Cartesian product to tensor product as one replaces
the points of Cartesian factors with quantum states localized at these points and forms all possible
tensor products and also their superpositions. In quantum theory entanglement would emerge at the
level of the function space associated with Cartesian space. Already ordinary functions of several
variables allow entanglement in this sense. Un-entangled functions of several variables correspond to

http://arxiv.org/abs/0808.0095
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products of functions of single variable and the sums of these products are in general entangled. Quite
generally the special functions of mathematical physics emerges as separable/un-entangled solutions
of linear partial differential equations and non-linearity typically implies entanglement in this sense.

The goal of Rosinger is to generalize this framework that is to find spaces - which he calls non-
Cartesian spaces- containing Cartesian product as a sub-space with the points in the complement
of Cartesian product identified entangled states. Rosinger defines what he calls group invariant en-
tanglement for a Cartesian product and shows that group operations respect the property of being
entangled. As an example sequences of point pairs of Cartesian product with algebraic operation
analogous to tensor product defined by convolution are considered.

The notion of entanglement has turned out to be highly interesting and non-trivial also in TGD
framework.

1. A rather abstract view about entanglement is in terms of correlations. In TGD framework
quantum classical correspondence realized as holography defines a very abstract form of en-
tanglement. In this case, the quantum states assignable to the partonic 2-surfaces plus 4-D
tangent space-data correspond to classical physics in the interior of space-time surface so that
one obtains entanglement through this correlation. This kind of entanglement would give rise
to quantum classical correspondence.

2. For infinite primes [K76] , [L17] the notion of entanglement emerges naturally from number
theory. This is not so surprising because they can be interpreted in terms of Fock state basis for
second quantized arithmetic quantum field theory. The point is that the sum of infinite integers
cannot be done by using fingers since we do not possess infinite number of fingers. Therefore the
sum of infinite integers is just as it is written: one cannot in general eliminate the plus from the
expression unless one leaves the realm of rationals in which case one can decompose the infinite
integer to a product of infinite primes. The sums of infinite integers are like superpositions of
quantum states and one cannot indeed use reals as field multiplying the infinite primes. Since the
products of infinite primes at the lowest level of hierarchy involve parts which can be organized
to a polynomial in powers of the variable X defined by the product of finite primes identifiable
formally as a variable of polynomial , one can find the expansion of infinite integer as sums
over products of infinite primes and this representation is very much like the representation of
entangled state.

What is interesting is that a decomposition into unentangled state product state is obtained if
one allows algebraic extension of rationals and the question is whether something like this could
be achieved also for quantum states quite generally by some extension of state space concept.

Entanglement has also other number theoretic aspects.

1. One could speak about irreducible entanglement in a given extension of rationals or p-adic
numbers in the sense that entanglement is reducible only if the diagonalization of the density
matrix is possible in the number field considered.

2. Shannon entropy has also infinite number of number theoretic variants of entanglement proba-
bilities are rational and even algebraic numbers [K47] . The number theoretic Shannon entropy
is obtained by replacing the probabilities pi in the argument of log(pi) with their p-adic norms
and changing the overall sign in the definition of Shannon entropy. The resulting entanglement
negentropy can be negative and achieves negative minimum for a unique prime. This means
a possibility of information carrying entanglement conjecture to characterize the difference be-
tween living and inanimate matter identified as something residing in the intersection of real and
p-adic worlds. Negentropy Maximization Principle [K47] stating that state function reduction
reduces entanglement entropy would indeed make this kind of entanglement stable under state
function reduction.

3. The stability of entanglement could also follow from the hypothesis that physical systems are
ordered with respect to the hierarchy of algebraic extensions of rationals assigned with them
if one believes on number theoretically irreducib le entanglement. The hierarchy of Planck
constants with arbitrarily large values of Planck constants [K26] would provide a further sta-
bilization mechanism since quantum time scales typically scale like ~. The implications for
quantum computation for which the fragility of entanglement is the basic obstacle are obvious.
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4. A further aspect is related to finite measurement resolution which I have suggested to be realized
in terms of inclusions of hyper-finite factors [K87] . The basic idea is that complex rays of state
space are replaced with the orbits of included algebra characterizing measurement resolution.
This leads to the replacement of complex numbers with non-commutative algebra as generalized
scalars and generalizes the proposal of Rosinger in another direction. In this framework quantum
spinors appear as finite-dimensional non-commutative spinors characterized by fractal dimension
and probability becomes the observable instead of spin. One can speak also about quantum
entanglement in given measurement resolution defined by the included algebra.
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Chapter 6

p-Adic Numbers and
Generalization of Number Concept

6.1 Introduction

In this chapter basic facts about p-adic numbers and the question about their relation to real numbers
are discussed. Also the basic technicalities related to the notion of p-adic physics are discussed.

6.1.1 Problems

It is far from obvious what the p-adic counterpart of real physics could mean and how one could fuse
together real and p-adic physics. Therefore it is good to list the basic problems and proposals for
their solution.

The first problem concerns the correspondence between real and p-adic numbers.

1. The success of p-adic mass calculations involves the notions of p-adic probability, thermodynam-
ics, and the mapping of p-adic propababilities to the real ones by a continuous correspondence
x =

∑
xnp

n → Id(x) =
∑
xnp

−n that I have christened canonical identification. The problem
is that I n does not respect symmetries defined by isometries and also general coordinate invari-
ance is possible only if one can identify preferred imbedding space coordinates. The reason is
that I does not commute with the basic arithmetic operations. I allows several variants and it
is possible to have correspondence which respects symmetries in arbitrary accuracy in preferred
coordinates. Thus I can play a role at space-time level only if one defines symmetries modulo
measurement resolution. I would make sense only in the interval defining the measurement
resolution for a given coordinate variable and the p-adic effective topology would make sense
just because the finite measurement resolution does not allow to well-order the points.

2. The identification of real and p-adic numbers via rationals common to all number fields - or
more generally along algebraic extension of rationals- respects symmetries and algebra but is
not continuous. At the imbedding space level preferred coordinates are required also now. The
maximal symmetries of the imbedding space allow identification of this kind of coordinates. They
are not unique. For instance, M4 linear coordinates look very natural but for CP2 trigonometric
functions of angle like coordinates look more suitablel and Fourier analysis suggests strongly the
introduction of algebraic extensions involving roots of unity. Partly the non-uniqueness has an
interpretation as an imbedding space correlate for the selection of the quantization axes. The
symmetric space property of WCW gives hopes that general coordinate invariance in quantal
sense can be realized. The existence of p-adic harmonic analysis suggests a discretization of the
p-adic variant of imbedding space and WCW based on roots of unity.

3. One can consider a compromise between the two correspondences. Discretization via common
algebraic points can be completed to a p-adic continuum by assigning to each real discretizaton
interval (say angle increment 2π/N) p-adic numbers with norm smaller than one.

293
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Second problem relates to integration and Fourier analysis. Both these procedures are fundamental
for physics -be it classical or quantum. The p-adic variant of definite integral does not exist in the sense
required by the action principles of physics although classical partial differental equations assigned to
a particular variational principle make perfect sense. Fourier analysis is also possible only if one allows
algebraic extension of p-adic numbers allowing a sufficient number of roots of unity correlating with
the measurement resolution of angle. The finite number of them has interpretation in terms of finite
angle resolution. Fourier analysis provides also an algebraic realization of definite integral when one
integrates over the entire manifold as one indeed does in the case of WCW. If the space in question
allows maximal symmetries as WCW and imbedding space do, there are excellent hopes of having
p-adic variants of both integration and harmonic analysis and the above described procedure allows
a precise completion of the discretized variant of real manifold to its continuous p-adic variant.

The third problem relates to the definitions of the p-adic variants of Riemannian, symplectic, and
Kähler geometries. It is possible to generalize formally the notion of Riemann metric although non-
local quanties like areas and total curvatures do not make sense if defined in terms of integrals. If
all relevant quantities assignable to the geometry (family of Hamiltonians defining isometries, Killing
vector fields, components of metric and Kähler form, Kähler function, etc...) are expressible in terms
of rational functions involving only rational numbers as coefficients of polynomials, they allow an
algebraic continuation to the p-adic context and the p-adic variant of the geometry makes sense.

The fourth problem relates to the question what one means with p-adic quantum mechanics. In
TGD framework p-adic quantum theory utilizes p-adic Hilbert space. The motivation is that the
notions of p-adic probability and unitarity are well defined. From the beginnning it was clear that the
straightforward generalization of Schrödinger equation is not very interesting physically and gradually
the conviction has developed that the most realistic approach must rely on the attempt to find the
p-adic variant of the TGD inspired quantum physics in all its complexity. The recent approach starts
from a rather concrete view about generalized Feynman diagrams defining the points of WCW and
leads to a rather detailed view about what the p-adic variants of QM could be and how they could
be fused with real QM to a larger structure. Even more, just the requirement that this p-adicization
exists, gives very powerful constraints on the real variant of the quantum TGD.

The fifth problem relates to the notion of information in p-adic context. p-Adic thermodynamics
leads naturally to the question what p-adic entropy might mean and this in turn leads to the realization
that for rational or even algebraic probabilities p-adic variant of Shannon entropy can be negative
and has minimum for a unique prime. One can say that the entanglement in the intersection of
real and p-adic worlds is negentropic. This leads to rather fascinating vision about how negentropic
entanglement makes it possible for living systems to overcome the second law of thermodynamics.
The formulation of quantum theory in the intersection of real and living worlds becomes the basic
challenge.

The proposed solutions to the technical problems could be rephrased in terms of the notion of
algebraic universality. Various p-adic physics are obtained as algebraic continuation of real physics
through the common algebraic points of real and p-adic worlds and by performing completion in
the sense that the interval corresponding to finite measurement resolution are replaced with their
p-adic counterpart via canonical identification. This allows to have exact symmetries as their discrete
variants and also a continuous correspondence if desired. Particular p-adicization is characterized by
a choice fo preferred imbedding space coordinates, which has interpretation in terms of a particular
cognitive representation. Hence one is forced to refine the view about general coordinate invariance.
Different coordinate choices correspond to different cognitive representations having delicate effects
on physics if it is assumed to include also the effects of cognition.

6.1.2 Program

These ideas lead to a reasonably well defined p-adicization program. Try to define precisely the con-
cepts of the p-adic space-time and configuration space (WCW), formulate the finite-p p-adic versions
of quantum TGD. Try to fuse together real and various p-adic quantum TGDs are to form a full
theory of physics and cognition.

The construction of the p-adic TGD necessitates the generalization of the basic tools of standard
physics such as differential and integral calculus, the concept of Hilbert space, Riemannian geometry,
group theory, action principles, and the notions of probability and unitarity to the p-adic context.
Also new physical thinking and philosophy is needed. The notions of zero energy ontology, hierarchy
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of Planck constants and the generalization of the notion of imbedding space required by it are essential
but not discussed in detail in this chapter.

6.1.3 Topics of the chapter

The topics of the chapter are the following:

1. p-Adic numbers, their extensions (also those involving transcendentals) are described. The
existence of a square root of an ordinary p-adic number is necessary in many applications of the
p-adic numbers (p-adic group theory, p-adic unitarity, Riemannian geometry) and its existence
implies a unique algebraic extension, which is 4-dimensional for p > 2 and 8-dimensional for
p = 2. Contrary to the first expectations, all possible algebraic extensions are possible and one
cannot interpret the algebraic dimension of the algebraic extension as a physical dimension.

2. The concepts of the p-adic differentiability and analyticity are discussed. The notion of p-adic
fractal is introduced the properties of the fractals defined by p-adically differentiable functions
are discussed.

3. Various approaches to the problem of defining p-adic valued definite integral are discussed. The
only reasonable generalizations rely on algebraic continuation and correspondence via common
rationals. p-Adic field equations do not necessitate p-adic definite integral but algebraic con-
tinuation allows to assign to a given real space-time sheets a p-adic space-time sheets if the
definition of space-time sheet involves algebraic relations between imbedding space coordinates.
There are also hopes that one can algebraically continue the value of Kähler action to p-adic
context if finite-dimensional extensions are allowed.

4. Symmetries are discussed from p-adic point of view starting from the identification via com-
mon rationals. Also possible p-adic generalizations of Fourier analysis are considered. Besides
a number theoretical approach, group theoretical approach providing a direct generalization of
the ordinary Fourier analysis based on the utilization of exponent functions existing in alge-
braic extensions containing some root of e and its powers up to ep−1 is discussed. Also the
generalization of Fourier analysis based on the Pythagorean phases is considered.

6.2 Summary of the basic physical ideas

In the following various manners to end up with p-adic physics and with the idea about p-adic topology
as an effective topology of space-time surface are described.

6.2.1 p-Adic mass calculations briefly

p-Adic mass calculations based on p-adic thermodynamics with energy replaced with the generator
L0 = zd/dz of infinitesimal scaling are described in the first part of [K52] .

1. p-Adic thermodynamics is justified by the randomness of the motion of partonic 2-surfaces
restricted only by the light-likeness of the orbit.

2. It is essential that the conformal symmetries associated with the light-like coordinates of parton
and light-cone boundary are not gauge symmetries but dynamical symmetries. The point is
that there are two kinds of conformal symmetries: the super-symplectic conformal symmetries
assignable to the light-like boundaries of CD×CP2 and super Kac-Moody symmetries assignable
to light-like 3-surfaces defining fundamental dynamical objects. In so called coset construction
the differences of super-conformal generators of these algebras annihilate the physical states.
This leads to a generalization of equivalence principle since one can assign four-momentum to
the generators of both algebras identifiable as inertial resp. gravitational four-momentum. A
second important consequence is that the generators of either algebra do not act like gauge
transformations so that it makes sense to construct p-adic thermodynamics for them.
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3. In p-adic thermodynamics scaling generator L0 having conformal weights as its eigen values
replaces energy and Boltzmann weight exp(H/T ) is replaced by pL0/Tp . The quantization Tp =
1/n of conformal temperature and thus quantization of mass squared scale is implied by number
theoretical existence of Boltzmann weights. p-Adic length scale hypothesis states that primes
p ' 2k, k integer. A stronger hypothesis is that k is prime (in particular Mersenne prime or
Gaussian Mersenne) makes the model very predictive and fine tuning is not possible.

The basic mystery number of elementary particle physics defined by the ratio of Planck mass and
proton mass follows thus from number theory once CP2 radius is fixed to about 104 Planck lengths.
Mass scale becomes additional discrete variable of particle physics so that there is not more need
to force top quark and neutrinos with mass scales differing by 12 orders of magnitude to the same
multiplet of gauge group. Electron, muon, and τ correspond to Mersenne prime k = 127 (the largest
non-super-astrophysical Mersenne), and Mersenne primes k = 113, 107. Intermediate gauge bosons
and photon correspond to Mersenne M89, and graviton to M127.

Mersenne primes are very special also number theoretically because bit as the unit of information
unit corresponds to log(2) and can be said to exists for Mn-adic topology. The reason is that log(1+p)
existing always p-adically corresponds for Mn = 2n − 1 to log(2n) ≡ nlog(2) so that one has log(2 ≡
log(1+Mn)/n. Since the powers of 2 modulo p give all integers n ∈ {1, p−1} by Fermat’s theorem, one
can say that the logarithms of all integers modulo Mn exist in this sense and therefore the logarithsm
of all p-adic integers not divisible by p exist. For other primes one must introduce a transcendental
extension containing log(a) where are is so called primitive root. One could criticize the identification
since log(1 + Mn) corresponding in the real sense to n bits corresponds in p-adic sense to to a very
small information content since the p-adic norm of the p-adic bit is 1/Mn.

The value of k for quark can depend on hadronic environment [K55] and this would produce
precise mass formulas for low energy hadrons. This kind of dependence conforms also with the
indications that neutrino mass scale depends on environment [C1]. Amazingly, the biologically most
relevant length scale range between 10 nm and 4 µm contains four Gaussian Mersennes (1 + i)n − 1,
n = 151, 157, 163, 167 and scaled copies of standard model physics in cell length scale could be an
essential aspect of macroscopic quantum coherence prevailing in cell length scale.

p-Adic mass thermodynamics is not quite enough: also Higgs boson is needed and wormhole
contact carrying fermion and anti-fermion quantum numbers at the light-like wormhole throats is
excellent candidate for Higgs [K44] . The coupling of Higgs to fermions can be small and induce only
a small shift of fermion mass: this could explain why Higgs has not been observed. Also the Higgs
contribution to mass squared can be understood thermodynamically if identified as absolute value for
the thermal expectation value of the eigenvalues of the modified Dirac operator having interpretation
as complex square root of conformal weight.

The original belief was that only Higgs corresponds to wormhole contact. The assumption that
fermion fields are free in the conformal field theory applying at parton level forces to identify all
gauge bosons as wormhole contacts connecting positive and negative energy space-time sheets [K44]
. Fermions correspond to topologically condensed CP2 type extremals with single light-like wormhole
throat. Gravitons are identified as string like structures involving pair of fermions or gauge bosons
connected by a flux tube. Partonic 2-surfaces are characterized by genus which explains family repli-
cation phenomenon and an explanation for why their number is three emerges [K18] . Gauge bosons
are labeled by pairs (g1, g2) of handle numbers and can be arranged to octet and singlet represen-
tations of the resulting dynamical SU(3) symmetry. Ordinary gauge bosons are SU(3) singlets and
the heaviness of octet bosons explains why higher boson families are effectively absent. The different
character of bosons could also explain why the p-adic temperature for bosons is Tp = 1/n < 1 so that
Higgs contribution to the mass dominates.

6.2.2 p-Adic length scale hypothesis, zero energy ontology, and hierarchy
of Planck constants

Zero energy ontology and the hierarchy of Planck constants realized in terms of the generalization of
the imbedding space lead to a deeper understanding of the origin of the p-adic length scale hypothesis.
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Zero energy ontology

In zero energy ontology one replaces positive energy states with zero energy states with positive and
negative energy parts of the state at the light-like boundaries of CD. All conserved quantum numbers
of the positive and negative energy states are of opposite sign so that these states can be created from
vacuum. ”Any physical state is creatable from vacuum” becomes thus a basic principle of quantum
TGD and together with the notion of quantum jump resolves several philosophical problems (What
was the initial state of universe?, What are the values of conserved quantities for Universe?, Is theory
building completely useless if only single solution of field equations is realized?). At the level of
elementary particle physics positive and negative energy parts of zero energy state are interpreted as
initial and final states of a particle reaction so that quantum states become physical events.

Does the finiteness of measurement resolution dictate the laws of physics?

The hypothesis that the mere finiteness of measurement resolution could determine the laws of quan-
tum physics [K19] completely belongs to the category of not at all obvious first principles. The
basic observation is that the Clifford algebra spanned by the gamma matrices of the ”world of
classical worlds” represents a von Neumann algebra [A140] known as hyperfinite factor of type II1

(HFF) [K19, K87, K26] . HFF [A135, A177] is an algebraic fractal having infinite hierarchy of in-
cluded subalgebras isomorphic to the algebra itself [A10] . The structure of HFF is closely related to
several notions of modern theoretical physics such as integrable statistical physical systems [A220] ,
anyons [D5] , quantum groups and conformal field theories [A178] , and knots and topological quantum
field theories [A208, A225] .

Zero energy ontology is second key element. In zero energy ontology these inclusions allow an
interpretation in terms of a finite measurement resolution: in the standard positive energy ontology this
interpretation is not possible. Inclusion hierarchy defines in a natural manner the notion of coupling
constant evolution and p-adic length scale hypothesis follows as a prediction. In this framework
the extremely heavy machinery of renormalized quantum field theory involving the elimination of
infinities is replaced by a precisely defined mathematical framework. More concretely, the included
algebra creates states which are equivalent in the measurement resolution used. Zero energy state can
be modified in a time scale shorter than the time scale of the zero energy state itself.

One can imagine two kinds of measurement resolutions. The element of the included algebra can
leave the quantum numbers of the positive and negative energy parts of the state invariant, which
means that the action of subalgebra leaves M-matrix invariant. The action of the included algebra
can also modify the quantum numbers of the positive and negative energy parts of the state such that
the zero energy property is respected. In this case the Hermitian operators subalgebra must commute
with M -matrix.

The temporal distance between the tips of CD corresponds to the secondary p-adic time scale
Tp,2 =

√
pTp by a simple argument based on the observation that light-like randomness of light-like

3-surface is analogous to Brownian motion. This gives the relationship Tp = L2
p/Rc, where R is

CP2 size. The action of the included algebra corresponds to an addition of zero energy parts to either
positive or negative energy part of the state and is like addition of quantum fluctuation below the time
scale of the measurement resolution. The natural hierarchy of time scales is obtained as Tn = 2−nT
since these insertions must belong to either upper or lower half of the causal diamond. This implies
that preferred p-adic primes are near powers of 2. For electron the time scale in question is .1 seconds
defining the fundamental biorhythm of 10 Hz.

M-matrix representing a generalization of S-matrix and expressible as a product of a positive square
root of the density matrix and unitary S-matrix would define the dynamics of quantum theory [K19] .
The notion of thermodynamical state would cease to be a theoretical fiction and in a well-defined sense
quantum theory could be regarded as a square root of thermodynamics. Connes tensor product [A135]
provides a mathematical description of the finite measurement resolution but does not fix the M -
matrix as was the original hope. The remaining challenge is the calculation of M-matrix and the
progress induced by zero energy ontology during last years has led to rather concrete proposal for the
construction of M -matrix.
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How do p-adic coupling constant evolution and p-adic length scale hypothesis emerge?

Zero energy ontology in which zero energy states have as imbedding space correlates CDs for which
the distance between the tips of future and past directed light-cones are power of 2 multiples of
fundamental time scale (Tn = 2nT0) implies in a natural manner coupling constant evolution. A
weaker condition would be Tp = pT0, p prime, and would assign all p-adic time scales to the size scale
hierarchy of CDs.

Could the coupling constant evolution in powers of 2 implying time scale hierarchy Tn = 2nT0 (or
Tp = pT0) induce p-adic coupling constant evolution and explain why p-adic length scales correspond
to Lp ∝

√
pR, p ' 2k, R CP2 length scale? This looks attractive but there is a problem. p-Adic

length scales come as powers of
√

2 rather than 2 and the strongly favored values of k are primes and
thus odd so that n = k/2 would be half odd integer. This problem can be solved.

1. The observation that the distance traveled by a Brownian particle during time t satisfies r2 = Dt
suggests a solution to the problem. p-Adic thermodynamics applies because the partonic 3-
surfaces X2 are as 2-D dynamical systems random apart from light-likeness of their orbit. For
CP2 type vacuum extremals the situation reduces to that for a one-dimensional random light-like
curve in M4. The orbits of Brownian particle would now correspond to light-like geodesics γ3 at
X3. The projection of γ3 to a time=constant section X2 ⊂ X3 would define the 2-D path γ2 of
the Brownian particle. The M4 distance r between the end points of γ2 would be given r2 = Dt.
The favored values of t would correspond to Tn = 2nT0 (the full light-like geodesic). p-Adic
length scales would result as L2(k) = DT (k) = D2kT0 for D = R2/T0. Since only CP2 scale is
available as a fundamental scale, one would have T0 = R and D = R and L2(k) = T (k)R.

2. p-Adic primes near powers of 2 would be in preferred position. p-Adic time scale would not relate
to the p-adic length scale via Tp = Lp/c as assumed implicitly earlier but via Tp = L2

p/R0 =√
pLp, which corresponds to secondary p-adic length scale. For instance, in the case of electron

with p = M127 one would have T127 = .1 second which defines a fundamental biological rhythm.
Neutrinos with mass around .1 eV would correspond to L(169) ' 5 µm (size of a small cell) and
T (169) ' 1. × 104 years. A deep connection between elementary particle physics and biology
becomes highly suggestive.

3. In the proposed picture the p-adic prime p ' 2k would characterize the thermodynamics of
the random motion of light-like geodesics of X3 so that p-adic prime p would indeed be an
inherent property of X3. For Tp = pT0 the above argument is not enough for p-adic length
scale hypothesis and p-adic length scale hypothesis might be seen as an outcome of a process
analogous to natural selection. Resonance like effect favoring octaves of a fundamental frequency
might be in question. In this case, p would a property of CD and all light-like 3-surfaces inside
it and also that corresponding sector of configuration space.

Mersenne primes and Gaussian Mersennes

The generalization of the imbedding space required by the postulated hierarchy of Planck constants
[K26] means a book like structure for which the pages are products of singular coverings or factor
spaces of CD (causal diamond defined as intersection of future and past directed light-cones) and
of CP2 [K26] . This predicts that Planck constants are rationals and that a given value of Planck
constant corresponds to an infinite number of different pages of the Big Book, which might be seen as
a drawback. If only singular covering spaces are allowed the values of Planck constant are products
of integers and given value of Planck constant corresponds to a finite number of pages given by the
number of decompositions of the integer to two different integers. The definition of the book like
structure assigns to a given CD preferred quantization axes and so that quantum measurement has
direct correlate at the level of moduli space of CDs.

TGD inspired quantum biology and number theoretical considerations suggest preferred values for
r = ~/~0. For the most general option the values of ~ are products and ratios of two integers na and
nb. Ruler and compass integers defined by the products of distinct Fermat primes and power of two are
number theoretically favored values for these integers because the phases exp(i2π/ni), i ∈ {a, b}, in
this case are number theoretically very simple and should have emerged first in the number theoretical
evolution via algebraic extensions of p-adics and of rationals. p-Adic length scale hypothesis favors
powers of two as values of r.
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One can however ask whether a more precise characterization of preferred Mersennes could exist
and whether there could exists a stronger correlation betweeen hierarchies of p-adic length scales
and Planck constants. Mersenne primes Mk = 2k − 1, k ∈ {89, 107, 127}, and Gaussian Mersennes
MG,k = (1 + i)k − 1, k ∈ {113, 151, 157, 163, 167, 239, 241..} are expected to be physically highly
interesting and up to k = 127 indeed correspond to elementary particles. The number theoretical
miracle is that all the four p-adic length scales with k ∈ {151, 157, 163, 167} are in the biologically
highly interesting range 10 nm-2.5 µm). The question has been whether these define scaled up copies
of electro-weak and QCD type physics with ordinary value of ~. The proposal that this is the case and
that these physics are in a well-defined sense induced by the dark scaled up variants of corresponding
lower level physics leads to a prediction for the preferred values of r = 2kd , kd = ki − kj .

What induction means is that dark variant of exotic nuclear physics induces exotic physics with
ordinary value of Planck constant in the new scale in a resonant manner: dark gauge bosons transform
to their ordinary variants with the same Compton length. This transformation is natural since in
length scales below the Compton length the gauge bosons behave as massless and free particles. As a
consequence, lighter variants of weak bosons emerge and QCD confinement scale becomes longer.

This proposal will be referred to as Mersenne hypothesis. It leads to strong predictions about EEG
[K23] since it predicts a spectrum of preferred Josephson frequencies for a given value of membrane
potential and also assigns to a given value of ~ a fixed size scale having interpretation as the size scale
of the body part or magnetic body. Also a vision about evolution of life emerges. Mersenne hypothesis
is especially interesting as far as new physics in condensed matter length scales is considered: this
includes exotic scaled up variants of the ordinary nuclear physics and their dark variants. Even
dark nucleons are possible and this gives justification for the model of dark nucleons predicting the
counterparts of DNA,RNA, tRNa, and aminoacids as well as realization of vertebrate genetic code
[K81] .

These exotic nuclear physics with ordinary value of Planck constant could correspond to ground
states that are almost vacuum extremals corresponding to homologically trivial geodesic sphere of
CP2 near criticality to a phase transition changing Planck constant. Ordinary nuclear physics would
correspond to homologically non-trivial geodesic sphere and far from vacuum extremal property. For
vacuum extremals of this kind classical Z0 field proportional to electromagnetic field is present and
this modifies dramatically the view about cell membrane as Josephson junction. The model for cell
membrane as almost vacuum extremal indeed led to a quantitative breakthrough in TGD inspired
model of EEG and is therefore something to be taken seriously. The safest option concerning empirical
facts is that the copies of electro-weak and color physics with ordinary value of Planck constant are
possible only for almost vacuum extremals - that is at criticality against phase transition changing
Planck constant.

6.2.3 p-Adic physics and the notion of finite measurement resolution

Canonical identification mapping p-adic numbers to reals in a continuous manner plays a key role in
some applications of TGD and together with the discretization necessary to define the p-adic variants
of integration and harmonic analysis suggests that p-adic topology identified as an effective topology
could provide an elegant manner to characterize finite measurement resolution.

1. Finite measurement resolution can be characterized as an interval of minimum length. Below
this length scale one cannot distinguish points from each other. A natural definition for this
inability could be as an inability to well-order the points. The real topology is too strong in the
modelling in kind of situation since it brings in large amount of processing of pseudo information
whereas p-adic topology which lacks the notion of well-ordering could be more appropriate as
effective topology and together with a pinary cutoff could allow to get rid of the irrelevant
information.

2. This suggest that canonical identication applies only inside the intervals defining finite mea-
surement resolution in a given discretization of the space considered by say small cubes. The
canonical identification is unique only modulo diffeomorphism applied on both real and p-adic
side but this is not a problem since this would only reflect the absence of the well-ordering lost
by finite measurement resolution. Also the fact that the map makes sense only at positive real
axis would be natural if one accepts this identification.
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This interpretation would suggest that there is an infinite hierarchy of measurement resolutions
characterized by the value of the p-adic prime. This would mean quite interesting refinement of the
notion of finite measurement resolution. At the level of quantum theory it could be interpreted as a
maximization of p-adic entanglement negentropy as a function of the p-adic prime. Perhaps one might
say that there is a unique p-adic effective topology allowing to maximize the information content of
the theory relying on finite measurement resolution.

6.2.4 p-Adic numbers and the analogy of TGD with spin-glass

The vacuum degeneracy of the Kähler action leads to a precise spin glass analogy at the level of the
configuration space geometry and the generalization of the energy landscape concept to TGD context
leads to the hypothesis about how p-adicity could be realized at the level of the configuration space.
Also the concept of p-adic space-time surface emerges rather naturally.

Spin glass briefly

The basic characteristic of the spin glass phase [B16] is that the direction of the magnetization varies
spatially, being constant inside a given spatial region, but does not depend on time. In the real context
this usually leads to large surface energies on the surfaces at which the magnetization direction changes.
Regions with different direction of magnetization clearly correspond non-vacuum regions separated by
almost vacuum regions. Amusingly, if 3-space is effectively p-adic and if magnetization direction is
p-adic pseudo constant, no surface energies are generated so that p-adics might be useful even in the
context of the ordinary spin glasses.

Spin glass phase allows a great number of different ground states minimizing the free energy. For
the ordinary spin glass, the partition function is the average over a probability distribution of the
coupling constants for the partition function with Hamiltonian depending on the coupling constants.
Free energy as a function of the coupling constants defines ’energy landscape’ and the set of free energy
minima can be endowed with an ultra-metric distance function using a standard construction [A214]
.

Vacuum degeneracy of Kähler action

The Kähler action defining configuration space geometry allows enormous vacuum degeneracy: any
four-surface for which the induced Kähler form vanishes, is an extremal of the Kähler action. Induced
Kähler form vanishes if the CP2 projection of the space-time surface is Lagrange manifold of CP2:
these manifolds are at most two-dimensional and any canonical transformation of CP2 creates a new
Lagrange manifold. An explicit representation for Lagrange manifolds is obtained using some canonical
coordinates Pi, Qi for CP2: by assuming

Pi = ∂if(Q1, Q2) , i = 1, 2 ,

where f arbitrary function of its arguments. One obtains a 2-dimensional sub-manifold of CP2 for
which the induced Kähler form proportional to dPi ∧ dQi vanishes. The roles of Pi and Qi can
obviously be interchanged. A familiar example of Lagrange manifolds are pi = constant surfaces of
the ordinary (pi, qi) phase space.

Since vacuum degeneracy is removed only by the classical gravitational interaction there are good
reasons to expect large ground state degeneracy, when the system corresponds to a small deformation
of a vacuum extremal. This degeneracy is very much analogous to the ground state degeneracy of
spin glass but is 4-dimensional.

Vacuum degeneracy of the Kähler action and physical spin glass analogy

Quite generally, the dynamical reason for the physical spin glass degeneracy is the fact that Kähler
action has a huge vacuum degeneracy. Any 4-surface with CP2 projection, which is a Lagrangian sub-
manifold (generically two-dimensional), is vacuum extremal. This implies that space-time decomposes
into non-vacuum regions characterized by non-vanishing Kähler magnetic and electric fields such that
the (presumably thin) regions between the the non-vacuum regions are vacuum extremals. Therefore
no surface energies are generated. Also the fact that various charges and momentum and energy can
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flow to larger space-time sheets via wormholes is an important factor making possible strong field
gradients without introducing large surfaces energies. From a given preferred extremal of Kähler
action one obtains a new one by adding arbitrary space-time surfaces which is vacuum extremal and
deforming them.

The symplectic invariance of the Kähler action for vacuum extremals allows a further understanding
of the vacuum degeneracy. The presence of the classical gravitational interaction spoils the canonical
group Can(CP2) as gauge symmetries of the action and transforms it to the isometry group of CH.
As a consequence, the U(1) gauge degeneracy is transformed to a spin glass type degeneracy and
several, perhaps even infinite number of maxima of Kähler function become possible. Given sheet
has naturally as its boundary the 3-surfaces for which two maxima of the Kähler function coalesce
or are created from single maximum by a cusp catastrophe [?] . In catastrophe regions there are
several sheets and the value of the maximum Kähler function determines which give a measure for
the importance of various sheets. The quantum jumps selecting one of these sheets can be regarded
as phase transitions.

In TGD framework classical non-determinism forces to generalize the notion of the 3-surface by
replacing it with a sequence of space like 3-surfaces having time like separations such that the se-
quence characterizes uniquely one branch of multifurcation. This characterization works when non-
determinism has discrete nature. For CP2 type extremals which are bosonic vacua, basic objects are
essentially four-dimensional since M4

+ projection of CP2 type extremal is random light like curve.
This effective four-dimensionality of the basic objects makes it possible to topologize Feynman di-
agrammatics of quantum field theories by replacing the lines of Feynman diagrams with CP2 type
extremals.

In TGD framework spin glass analogy holds true also in the time direction, which reflects the
fact that the vacuum extremals are non-deterministic. For instance, by gluing vacuum extremals
with a finite space-time extension (also in time direction!) to a non-vacuum extremal and deforming
slightly, one obtains good candidates for the degenerate preferred extremals. This non-determinism is
expected to make the preferred extremals of the Kähler action highly degenerate. The construction of
S-matrix at the high energy limit suggests that since a localization selecting one degenerate maximum
occurs, one must accept as a fact that each choice of the parameters corresponds to a particular S-
matrix and one must average over these choices to get scattering rates. This averaging for scattering
rates corresponds to the averaging over the thermodynamical partition functions for spin glass. A
more general is that one allows final state wave functions to depend on the zero modes which affect
S-matrix elements: in the limit that wave functions are completely localized, one ends up with the
simpler scenario.

p-Adic non-determinism and spin glass analogy

One must carefully distinguish between cognitive and physical spin-glass analogy. Cognitive spin-glass
analogy is due to the p-adic non-determinism. p-Adic pseudo constants induce a non-determinism
which essentially means that p-adic extrema depend on the p-adic pseudo constants which depend
on a finite number of positive pinary digits of their arguments only. Thus p-adic extremals are glued
from pieces for which the values of the integration constants are genuine constants. Obviously, an
optimal cognitive representation is achieved if pseudo constants reduce to ordinary constants.

More precisely, any function

f(x) = f(xN ) ,

xN =
∑
k≤N

xkp
k , (6.2.1)

which does not depend on the pinary digits xn, n > N has a vanishing p-adic derivative and is thus a
pseudo constant. These functions are piecewise constant below some length scale, which in principle
can be arbitrary small but finite. The result means that the constants appearing in the solutions the
p-adic field equations are constants functions only below some length scale. For instance, for linear
differential equations integration constants are arbitrary pseudo constants. In particular, the p-adic
counterparts of the preferred extremals are highly degenerate because of the presence of the pseudo
constants. This in turn means a characteristic randomness of the spin glass also in the time direction
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since the surfaces at which the pseudo constants change their values do not give rise to infinite surface
energy densities as they would do in the real context.

The basic character of cognition would be spin glass like nature making possible ’engineering’ at
the level of thoughts (planning) whereas classical non-determinism of the Kähler action would make
possible ’engineering’ at the level of the real world.

6.2.5 Life as islands of rational/algebraic numbers in the seas of real and
p-adic continua?

The possibility to define entropy differently for rational/algebraic entanglement and the fact that
number theoretic entanglement entropy can be negative raises the question about which kind of
systems can possess this kind of entanglement. I have considered several identifications but the most
elegant interpretation is based on the idea that living matter resides in the intersection of real and
p-adic worlds, somewhat like rational numbers live in the intersection of real and p-adic number fields.

The observation that Shannon entropy allows an infinite number of number theoretic variants for
which the entropy can be negative in the case that probabilities are algebraic numbers leads to the
idea that living matter in a well-defined sense corresponds to the intersection of real and p-adic worlds.
This would mean that the mathematical expressions for the space-time surfaces (or at least 3-surfaces
or partonic 2-surfaces and their 4-D tangent planes) make sense in both real and p-adic sense for some
primes p. Same would apply to the expressions defining quantum states. In particular, entanglement
probabilities would be rationals or algebraic numbers so that entanglement can be negentropic and
the formation of bound states in the intersection of real and p-adic worlds generates information and
is thus favored by NMP.

This picture has also a direct connection with consciousness.

1. Algebraic entanglement is a prerequisite for the realization of intentions as transformations
of p-adic space-time sheets to real space-time sheets representing actions. Essentially a leakage
between p-adic and real worlds is in question and makes sense only in zero energy ontology. since
various quantum numbers in real and p-adic sectors are not in general comparable in positive
energy ontology so that conservation laws would be broken. Algebraic entanglement could
be also called cognitive. The transformation can occur if the partonic 2-surfaces and their 4-D
tangent space-distributions are representable using rational functions with rational coefficients in
preferred coordinates for the imbedding space dictated by symmetry considerations. Intentional
systems must live in the intersection of real and p-adic worlds. For the minimal option life would
be also effectively 2-dimensional phenomenon and essentially a boundary phenomenon as also
number theoretical criticality suggests.

2. The generation of non-rational (non-algebraic) bound state entanglement between the system
and external world means that the system loses consciousness during the state function reduction
process following the U -process generating the entanglement. What happens that the Universe
corresponding to given CD decomposes to two un-entangled subsystems, which in turn decom-
pose, and the process continues until all subsystems have only entropic bound state entanglement
or negentropic algebraic entanglement with the external world.

3. If the sub-system generates entropic bound state entanglement in the the process, it loses con-
sciousness. Note that the entanglement entropy of the sub-system is a sum over entanglement
entropies over all subsystems involved. This hierarchy of subsystems corresponds to the hierar-
chy if sub-CDs so that the survival without a loss of consciousness depends on what happens
at all levels below the highest level for a given self. In more concrete terms, ability to stay
conscious depends on what happens at cellular level too. The stable evolution of systems having
algebraic entanglement is expected to be a process proceeding from short to long length scales
as the evolution of life indeed is.

4. U -process generates a superposition of states in which any sub-system can have both real and
algebraic entanglement with the external world. This would suggest that the choice of the type
of entanglement is a volitional selection. A possible interpretation is as a choice between good
and evil. The hedonistic complete freedom resulting as the entanglement entropy is reduced to
zero on one hand, and the algebraic bound state entanglement implying correlations with the
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external world and meaning giving up the maximal freedom on the other hand. The hedonistic
option is risky since it can lead to non-algebraic bound state entanglement implying a loss of
consciousness. The second option means expansion of consciousness - a fusion to the ocean of
consciousness as described by spiritual practices.

5. This formulation means a sharpening of the earlier statement ”Everything is conscious and
consciousness can be only lost” with the additional statement ”This happens when non-algebraic
bound state entanglement is generated and the system does not remain in the intersection of
real and p-adic worlds anymore”. Clearly, the quantum criticality of TGD Universe seems has
very many aspects and life as a critical phenomenon in the number theoretical sense is only
one of them besides the criticality of the space-time dynamics and the criticality with respect
to phase transitions changing the value of Planck constant and other more familiar criticalities.
How closely these criticalities relate remains an open question.

A good guess is that algebraic entanglement is essential for quantum computation, which therefore
might correspond to a conscious process. Hence cognition could be seen as a quantum computation
like process, a more approriate term being quantum problem solving. Living-dead dichotomy could
correspond to rational-irrational or to algebraic-transcendental dichotomy: this at least when life is
interpreted as intelligent life. Life would in a well defined sense correspond to islands of rational-
ity/algebraicity in the seas of real and p-adic continua.

The view about the crucial role of rational and algebraic numbers as far as intelligent life is
considered, could have been guessed on very general grounds from the analogy with the orbits of a
dynamical system. Rational numbers allow a predictable periodic decimal/pinary expansion and are
analogous to one-dimensional periodic orbits. Algebraic numbers are related to rationals by a finite
number of algebraic operations and are intermediate between periodic and chaotic orbits allowing an
interpretation as an element in an algebraic extension of any p-adic number field. The projections of
the orbit to various coordinate directions of the algebraic extension represent now periodic orbits. The
decimal/pinary expansions of transcendentals are un-predictable being analogous to chaotic orbits.
The special role of rational and algebraic numbers was realized already by Pythagoras, and the fact
that the ratios for the frequencies of the musical scale are rationals supports the special nature of
rational and algebraic numbers. The special nature of the Golden Mean, which involves

√
5, conforms

the view that algebraic numbers rather than only rationals are essential for life.

6.2.6 p-Adic physics as physics of cognition and intention

The vision about p-adic physics as physics of cognition has gradually established itself as one of the
key idea of TGD inspired theory of consciousness. There are several motivations for this idea.

The strongest motivation is the vision about living matter as something residing in the intersection
of real and p-adic worlds. One of the earliest motivations was p-adic non-determinism identified
tentatively as a space-time correlqte for the non-determinism of imagination. p-Adic non-determinism
follows from the fact that functions with vanishing derivatives are piecewise constant functions in the
p-adic context. More precisely, p-adic pseudo constants depend on the pinary cutoff of their arguments
and replace integration constants in p-adic differential equations. In the case of field equations this
means roughly that the initial data are replaced with initial data given for a discrete set of time values
chosen in such a manner that unique solution of field equations results. Solution can be fixed also in
a discrete subset of rational points of the imbedding space. Presumably the uniqueness requirement
implies some unique pinary cutoff. Thus the space-time surfaces representing solutions of p-adic
field equations are analogous to space-time surfaces consisting of pieces of solutions of the real field
equations. p-Adic reality is much like the dream reality consisting of rational fragments glued together
in illogical manner or pieces of child’s drawing of body containing body parts in more or less chaotic
order.

The obvious looking interpretation for the solutions of the p-adic field equations is as a geometric
correlate of imagination. Plans, intentions, expectations, dreams, and cognition in general are expected
to have p-adic space-time sheets as their geometric correlates. This in the sense that p-adic spacetime
sheets somehow initiate the real neural processes providing symbolic counterparts for the cognitive
representations provided by p-adic spacetime sheets and p-adic fermions. A deep principle seems to
be involved: incompleteness is characteristic feature of p-adic physics but the flexibility made possible
by this incompleteness is absolutely essential for imagination and cognitive consciousness in general.
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p-Adic space-time regions can suffer topological phase transitions to real topology and vice versa
in quantum jumps replacing space-time surface with a new one. This process has interpretation as
a topological correlate for the mind-matter interaction in the sense of transformation of intention
to action and symbolic representation to cognitive representation. p-Adic cognitive representations
could provide the physical correlates for the notions of memes [J2] and morphic fields [I1] . p-
Adic real entanglement makes possible makes possible cognitive measurements and cognitive quantum
computation like processes, and provides correlates for the experiences of understanding and confusion.

At the level of brain the fundamental sensory-motor loop could be seen as a loop in which real-
to-p-adic phase transition occurs at the sensory step and its reverse at the motor step. Nerve pulse
patterns would correspond to temporal sequences of quark like sub-CDs of duration 1 millisecond
inside electronic sub-CD of duration .1 s with the states of sub-CDs allowing interpretation as a bit
(this would give rise to memetic code). The real space-time sheets assignable to these sub-CDs are
transformed to p-adic ones as sensory input transforms to thought. Intention in transforms to action
in the reverse process in motor action. One can speak about creation of matter from vacuum in these
time scales.

Although p-adic space-time sheets as such are not conscious, p-adic physics would provide beautiful
mathematical realization for the intuitions of Descartes. The formidable challenge is to develop
experimental tests for p-adic physics. The basic problem is that we can perceive p-adic reality only as
’thoughts’ unlike the ’real’ reality which represents itself to us as sensory experiences. Thus it would
seem that we should be able generalize the physics of sensory experiences to physics of cognitive
experiences.

6.3 p-Adic numbers

6.3.1 Basic properties of p-adic numbers

p-Adic numbers (p is prime: 2,3,5,... ) can be regarded as a completion of the rational numbers
using a norm, which is different from the ordinary norm of real numbers [A126] . p-Adic numbers are
representable as power expansion of the prime number p of form:

x =
∑
k≥k0

x(k)pk, x(k) = 0, ...., p− 1 . (6.3.1)

The norm of a p-adic number is given by

|x| = p−k0(x) . (6.3.2)

Here k0(x) is the lowest power in the expansion of the p-adic number. The norm differs drastically
from the norm of the ordinary real numbers since it depends on the lowest pinary digit of the p-adic
number only. Arbitrarily high powers in the expansion are possible since the norm of the p-adic
number is finite also for numbers, which are infinite with respect to the ordinary norm. A convenient
representation for p-adic numbers is in the form

x = pk0ε(x) , (6.3.3)

where ε(x) = k + .... with 0 < k < p, is p-adic number with unit norm and analogous to the phase
factor exp(iφ) of a complex number.

The distance function d(x, y) = |x − y|p defined by the p-adic norm possesses a very general
property called ultra-metricity:

d(x, z) ≤ max{d(x, y), d(y, z)} . (6.3.4)
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The properties of the distance function make it possible to decompose Rp into a union of disjoint sets
using the criterion that x and y belong to same class if the distance between x and y satisfies the
condition

d(x, y) ≤ D . (6.3.5)

This division of the metric space into classes has following properties:

1. Distances between the members of two different classes X and Y do not depend on the choice of
points x and y inside classes. One can therefore speak about distance function between classes.

2. Distances of points x and y inside single class are smaller than distances between different classes.

3. Classes form a hierarchical tree.

Notice that the concept of the ultra-metricity emerged in physics from the models for spin glasses
and is believed to have also applications in biology [B38] . The emergence of p-adic topology as the
topology of the effective space-time would make ultra-metricity property basic feature of physics.

6.3.2 Algebraic extensions of p-adic numbers

Algebraic democracy suggests that all possible real algebraic extensions of the p-adic numbers are
possible. This conclusion is also suggested by various physical requirements, say the fact that the
eigenvalues of a Hamiltonian representable as a rational or p-adic N ×N -matrix, being roots of N:th
order polynomial equation, in general belong to an algebraic extension of rationals or p-adics. The
dimension of the algebraic extension cannot be interpreted as physical dimension. Algebraic extensions
are characteristic for cognitive physics and provide a new manner to code information. A possible
interpretation for the algebraic dimension is as a dimension for a cognitive representation of space
and would explain how it is possible to mathematically imagine spaces with all possible dimensions
although physical space-time dimension is four (TGD as a number theory vision suggest that also
space-time dimensions which are multiples of four are possible). The idea of algebraic hologram and
other ideas related to the physical interpretation of the algebraic extensions of p-adics are discussed
in the chapter ”TGD as a generalized number theory”.

It seems however that algebraic democracy must be extended to include also transcendentals in
the sense that finite-dimensional extensions involving also transcendental numbers are possible: for
instance, Neper number e defines a p-dimensional extension. It has become clear that these extensions
fundamental for understanding how p-adic physics as physics of cognition is able to mimick real physics.
The evolution of mathematical cognition can be seen as a process in which p-adic space-time sheets
involving increasing value of p-adic prime p and increasing dimension of algebraic extension appear
in quantum jumps.

Recipe for constructing algebraic extensions

Real numbers allow only complex numbers as an algebraic extension. For p-adic numbers algebraic
extensions of arbitrary dimension are possible
[A126] . The simplest manner to construct (n+1)-dimensional extensions is to consider irreducible
polynomials Pn(t) in Rp assumed to have rational coefficients: irreducibility means that the polynomial
does not possess roots in Rp so that one cannot decompose it into a product of lower order Rp valued
polynomials. This condition is equivalent with the condition with irreducibility in the finite field
G(p, 1), that is modulo p in Rp.

Denoting one of the roots of Pn(t) by θ and defining θ0 = 1 the general form of the extension is
given by

Z =
∑

k=0,..,n−1

xkθ
k . (6.3.6)

Since θ is root of the polynomial in Rp it follows that θn is expressible as a sum of lower powers of θ
so that these numbers indeed form an n-dimensional linear space with respect to the p-adic topology.
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Especially simple odd-dimensional extensions are cyclic extensions obtained by considering the
roots of the polynomial

Pn(t) = tn + εd ,

ε = ±1 . (6.3.7)

For n = 2m + 1 and (n = 2m, ε = +1) the irreducibility of Pn(t) is guaranteed if d does not possess
n:th root in Rp. For (n = 2m, ε = −1) one must assume that d1/2 does not exist p-adically. In this
case θ is one of the roots of the equation

tn = ±d , (6.3.8)

where d is a p-adic integer with a finite number of pinary digits. It is possible although not necessary
to identify the roots as complex numbers. There exists n complex roots of d and θ can be chosen to
be one of the real or complex roots satisfying the condition θn = ±d. The roots can be written in the
general form

θ = d1/nexp(iφ(m)), m = 0, 1, ...., n− 1 ,

φ(m) =
m2π

n
or

mπ

n
. (6.3.9)

Here d1/n denotes the real root of the equation θn = d. Each of the phase factors φ(m) gives rise to
an algebraically equivalent extension: only the representation is different. Physically these extensions
need not be equivalent since the identification of the algebraically extended p-adic numbers with the
complex numbers plays a fundamental role in the applications. The cases θn = ±d are physically and
mathematically quite different.

p-Adic valued norm for numbers in algebraic extension

The p-adic valued norm of an algebraically extended p-adic number x can be defined as some power
of the ordinary p-adic norm of the determinant of the linear map x :e Rnp →e Rnp defined by the
multiplication with x: y → xy

N(x) = det(x)α , α > 0 .

(6.3.10)

Real valued norm can be defined as the p-adic norm of N(x). The requirement that the norm is
homogenous function of degree one in the components of the algebraically extended 2-adic number
(like also the standard norm of Rn ) implies the condition α = 1/n, where n is the dimension of the
algebraic extension.

The canonical correspondence between the points of R+ and Rp generalizes in obvious manner:
the point

∑
k xkθ

k of algebraic extension is identified as the point (x0
R, x

1
R, ..., x

k
R, .., ) of Rn using the

pinary expansions of the components of p-adic number. The p-adic linear structure of the algebraic
extension induces a linear structure in Rn+ and p-adic multiplication induces a multiplication for the
vectors of Rn+.

Algebraic extension allowing square root of ordinary p-adic numbers

The existence of a square root of an ordinary p-adic number is a common theme in various applications
of the p-adic numbers and for long time I erratically believed that only this extension is involved with
p-adic physics. Despite this square root allowing extension is of central importance and deserves a
more detailed discussion.
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1. The p-adic generalization of the representation theory of the ordinary groups and Super Kac
Moody and Super Virasoro algebras exists provided an extension of the p-adic numbers allowing
square roots of the ’real’ p-adic numbers is used. The reason is that the matrix elements of the
raising and lowering operators in Lie-algebras as well as of oscillator operators typically involve
square roots. The existence of square root might play a key role in various p-adic considerations.

2. The existence of a square root of a real p-adic number is also a necessary ingredient in the
definition of the p-adic unitarity and probability concepts since the solution of the requirement
that pmn = SmnS̄mn is ordinary p-adic number leads to expressions involving square roots.

3. p-Adic length scales hypothesis states that the p-adic length scale is proportional to the square
root of p-adic prime.

4. Simple metric geometry of polygons involves square roots basically via the theorem of Pythago-
ras. p-Adic Riemannian geometry necessitates the existence of square root since the definition of
the infinitesimal length ds involves square root. Note however that p-adic Riemannian geometry
can be formulated as a mere differential geometry without any reference to global concepts like
lengths, areas, or volumes.

The original belief that square root allowing extensions of p-adic numbers are exceptional seems
to be wrong in light of TGD as a generalized number theory vision. All algebraic extensions of p-
adic numbers a possible and the interpretation of algebraic dimension of the extension as a physical
dimension is not the correct thing to do. Rather, the possibility of arbitrarily high algebraic dimension
reflects the ability of mathematical cognition to imagine higher-dimensional spaces. Square root
allowing extension of the p-adic numbers is the simplest one imaginable, and it is fascinating that it
indeed is the dimension of space-time surface for p > 2 and dimension of imbedding space for p = 2.
Thus the square root allowing extensions deserve to be discussed.

The results can be summarized as follows.

1. In p > 2 case the general form of extension is

Z = (x+ θy) +
√
p(u+ θv) , (6.3.11)

where the condition θ2 = x for some p-adic number x not allowing square root as a p-adic
number. For p mod 4 = 3 θ can be taken to be imaginary unit. This extension is natural for
p-adication of space-time surface so that space-time can be regarded as a number field locally.
Imbedding space can be regarded as a cartesian product of two 4-dimensional extensions locally.

2. In p = 2 case 8-dimensional extension is needed to define square roots. The extension is defined
by adding θ1 =

√
−1 ≡ i, θ2 =

√
2, θ3 =

√
3 and the products of these so that the extension can

be written in the form

Z = x0 +
∑
k

xkθk +
∑
k<l

xklθkl + x123θ1θ2θ3 . (6.3.12)

Clearly, p = 2 case is exceptional as far as the construction of the conformal field theory limit is
considered since the structure of the representations of Virasoro algebra and groups in general
changes drastically in p = 2 case. The result suggest that in p = 2 limit space-time surface and
H are in same relation as real numbers and complex numbers: space-time surfaces defined as
the absolute minima of 2-adiced Kähler action are perhaps identifiable as surfaces for which the
imaginary part of 2-adically analytic function in H vanishes.

The physically interesting feature of p-adic group representations is that if one doesn’t use
√
p in the

extension the number of allowed spins for representations of SU(2) is finite: only spins j < p are
allowed. In p = 3 case just the spins j ≤ 2 are possible. If 4-dimensional extension is used for p = 2
rather than 8-dimensional then one gets the same restriction for allowed spins.
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6.3.3 Is e an exceptional transcendental?

One can consider also the possibility of transcental extensions of p-adic numbers and an open problem
is whether the infinite-dimensional extensions involving powers of π and logarithms of primes make
sense and whether they should be allowed. For instance, it is not clear whether the allowance of
powers of π is consistent with the extensions based on roots of unity. This question is not academic
since Feynman amplitudes in real context involve powers of π and algebraic universality forces the
consider that also they p-adic variants might involve powers of π.

Neper number obviously defines the simplest trancendental extension isince only the powers ek,
k = 1, ..., p − 1 of e are needed to define p-adic counterpart of ex for x = n so that the extension
is finite-dimensional. In the case of trigonometric functions deriving from eix, also ei and its p − 1
powers must belong to the extension.

An interesting question is whether e is a number theoretically exceptional transcendental or
whether it could be easy to find also other transcendentals defining finite-dimensional extensions
of p-adic numbers.

1. Consider functions f(x), which are analytic functions with rational Taylor coefficients, when
expanded around origin for x > 0. The values of f(n), n = 1, ..., p − 1 should belong to an
extension, which should be finite-dimensional.

2. The expansion of these functions to Taylor series generalizes to the p-adic context if also the
higher derivatives of f at x = n belong to the extension. This is achieved if the higher derivatives
are expressible in terms of the lower derivatives using rational coefficients and rational functions
or functions, which are defined at integer points (such as exponential and logarithm) by con-
struction. A differential equation of some finite order involving only rational functions with
rational coefficients must therefore be satisfied (ex satisfying the differential equation df/dx = f
is the optimal case in this sense). The higher derivatives could also reduce to rational functions
at some step (log(x) satisfying the differential equation df/dx = 1/x).

3. The differential equation allows to develop f(x) in power series, say in origin

f(x) =
∑

fn
xn

n!

such that fn+m is expressible as a rational function of the m lower derivatives and is therefore
a rational number.

The series converges when the p-adic norm of x satisfies |x|p ≤ pk for some k. For definiteness
one can assume k = 1. For x = 1, ..., p− 1 the series does not converge in this case, and one can
introduce and extension containing the values f(k) and hope that a finite-dimensional extension
results.

Finite-dimensionality requires that the values are related to each other algebraically although they
need not be algebraic numbers. This means symmetry. In the case of exponent function this re-
lationship is exceptionally simple. The algebraic relationship reflects the fact that exponential map
represents translation and exponent function is an eigen function of a translation operator. The neces-
sary presence of symmetry might mean that the situation reduces always to either exponential action.
Also the phase factors exp(iqπ) could be interpreted in terms of exponential symmetry. Hence the
reason for the exceptional role of exponent function reduces to group theory.

Also other extensions than those defined by roots of e are possible. Any polynomial has n roots
and for transcendental coefficients the roots define a finite-dimensional extension of rationals. It
would seem that one could allow the coefficients of the polynomial to be functions in an extension of
rationals by powers of a root of e and algebraic numbers so that one would obtain infinite hierarchy
of transcendental extensions.

6.4 What is the correspondence between p-adic and real num-
bers?

There must be some kind of correspondence between reals and p-adic numbers. This correspondence
can depend on context. In p-adic mass calculations one must map p-adic mass squared values to
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real numbers in a continuous manner and canonical identification is a natural guess. Presumably
also p-adic probabilities should be mapped to their real counterparts. One can wonder whether p-adic
valued S-matrix has any physical meaning or whether one should assume that the elements of S-matrix
are algebraic numbers allowing interpretation as real or p-adic numbers: this would pose extremely
strong constraints on S-matrix. If one wants to introduce p-adic physics at space-time level one must
be able to relate p-adic and real space-time regions to each other and the identification along common
rational points of real and various p-adic variants of the imbedding space suggests itself here.

6.4.1 Generalization of the number concept

The recent view about the unification of real and p-adic physics is based on the generalization of
number concept obtained by fusing together real and p-adic number fields along common rationals.

Rational numbers as numbers common to all number fields

The unification of real physics of material work and p-adic physics of cognition and intentionality
leads to the generalization of the notion of number field. Reals and various p-adic number fields are
glued along their common rationals (and common algebraic numbers appearing in the extension of
p-adic numbers too) to form a fractal book like structure. Allowing all possible finite-dimensional
algebraic and perhaps even transcendental extensions of p-adic numbers adds additional pages to this
”Big Book”.

This leads to a generalization of the notion of manifold as a collection of a real manifold and its
p-adic variants glued together along common points. The outcome of experimentation is that this
generalization makes sense under very high symmetries and that it is safest to lean strongly on the
physical picture provided by quantum TGD.

1. The most natural guess is that the coordinates of common points are rational or in some algebraic
extension of rational numbers. General coordinate invariance and preservation of symmetries
require preferred coordinates existing when the manifold has maximal number of isometries.
This approach is especially natural in the case of linear spaces- in particular Minkowski space
M4. The natural coordinates are in this case linear Minkowski coordinates. The choice of
coordinates is not completely unique and has interpretation as a geometric correlate for the
choice of quantization axes for a given CD.

2. As will be found, the need to have a well-defined integration based on Fourier analysis (or
its generalization to harmonic analysis in symmetric spaces) poses very strong constraints and
allows p-adicization only if the space has maximal symmetries. Fourier analysis requires the
introduction of an algebraic extension of p-adic numbers containing sufficiently many roots of
unity.

(a) This approach is especially natural in the case of compact symmetric spaces such as CP2.

(b) Also symmetric spaces such the 3-D proper time a = constant hyperboloid of M4-call it
H(a) -allowing Lorentz group as isometries allows a p-adic variant utilizing the hyperbolic
counterparts for the roots of unity. M4 × H(a = 2na0) appears as a part of the moduli
space of CDs.

(c) For light-cone boundaries associated with CDs SO(3) invariant radial coordinate rM defin-
ing the radius of sphere S2 defines the hyperbolic coordinate and angle coordinates of S2

would correspond to phase angles and M4
± projections for the common points of real and

p-adic variants of partonic 2-surfaces would be this kind of points. Same applies to CP2 pro-
jections. In the ”intersection of real and p-adic worlds” real and p-adic partonic 2-surfaces
would obey same algebraic equations and would be obtained by an algebraic continuation
from the corresponding equations making sense in the discrete variant of M4

± ×CP2. This
connection with discrete sub-manifolds geometries means very powerful constraints on the
partonic 2-surfaces in the intersection.

3. The common algebraic points of real and p-adic variant of the manifold form a discrete space but
one could identify the p-adic counterpart of the real discretization intervals (0, 2π/N) for angle
like variables as p-adic numbers of norm smaller than 1 using canonical identification or some
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variant of it. Same applies to the the hyperbolic counterpart of this interval. The non-uniqueness
of this map could be interpreted in terms of a finite measurement resolution. In particular, the
condition that WCW allows Kähler geometry requires a decomposition to a union of symmetric
spaces so that there are good hopes that p-adic counterpart is analogous to that assigned to
CP2.

The idea about astrophysical size of the p-adic cognitive space-time sheets providing representation
of body and brain is consistent with TGD inspired theory of consciousness, which forces to take very
seriously the idea that even human consciousness involves astrophysical length scales.

Generalizing complex analysis by replacing complex numbers by generalized numbers

One general idea which results as an outcome of the generalized notion of number is the idea of a
universal function continuable from a function mapping rationals to rationals or to a finite extension of
rationals to a function in any number field. This algebraic continuation is analogous to the analytical
continuation of a real analytic function to the complex plane. Rational functions for which polynomials
have rational coefficients are obviously functions satisfying this constraint. Algebraic functions for
which polynomials have rational coefficients satisfy this requirement if appropriate finite-dimensional
algebraic extensions of p-adic numbers are allowed.

For instance, one can ask whether residue calculus might be generalized so that the value of an
integral along the real axis could be calculated by continuing it instead of the complex plane to any
number field via its values in the subset of rational numbers forming the back of the book like structure
(in very metaphoral sense) having number fields as its pages. If the poles of the continued function
in the finitely extended number field allow interpretation as real numbers it might be possible to
generalize the residue formula. One can also imagine of extending residue calculus to any algebraic
extension. An interesting situation arises when the poles correspond to extended p-adic rationals
common to different pages of the ”Big Book”. Could this mean that the integral could be calculated
at any page having the pole common. In particular, could a p-adic residue integral be calculated in
the ordinary complex plane by utilizing the fact that in this case numerical approach makes sense.
Contrary to the first expectations the algebraically continued residue calculus does not seem to have
obvious applications in quantum TGD.

6.4.2 Canonical identification

Canonical There exists a natural continuous map Id : Rp → R+ from p-adic numbers to non-negative
real numbers given by the ”pinary” expansion of the real number for x ∈ R and y ∈ Rp this corre-
spondence reads

y =
∑
k>N

ykp
k → x =

∑
k<N

ykp
−k ,

yk ∈ {0, 1, .., p− 1} . (6.4.1)

This map is continuous as one easily finds out. There is however a little difficulty associated with
the definition of the inverse map since the pinary expansion like also desimal expansion is not unique
(1 = 0.999...) for the real numbers x, which allow pinary expansion with finite number of pinary digits

x =

N∑
k=N0

xkp
−k ,

x =

N−1∑
k=N0

xkp
−k + (xN − 1)p−N + (p− 1)p−N−1

∑
k=0,..

p−k .

(6.4.2)

The p-adic images associated with these expansions are different
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Figure 6.1: The real norm induced by canonical identification from 2-adic norm.

y1 =

N∑
k=N0

xkp
k ,

y2 =

N−1∑
k=N0

xkp
k + (xN − 1)pN + (p− 1)pN+1

∑
k=0,..

pk

= y1 + (xN − 1)pN − pN+1 , (6.4.3)

so that the inverse map is either two-valued for p-adic numbers having expansion with finite number
of pinary digits or single valued and discontinuous and non-surjective if one makes pinary expansion
unique by choosing the one with finite number of pinary digits. The finite number of pinary digits
expansion is a natural choice since in the numerical work one always must use a pinary cutoff on the
real axis.

Canonical identification is a continuous map of non-negative reals to p-adics

The topology induced by the inverse of the canonical identification map in the set of positive real
numbers differs from the ordinary topology. The difference is easily understood by interpreting the
p-adic norm as a norm in the set of the real numbers. The norm is constant in each interval [pk, pk+1)
(see Fig. A-4.2) and is equal to the usual real norm at the points x = pk: the usual linear norm is
replaced with a piecewise constant norm. This means that p-adic topology is coarser than the usual
real topology and the higher the value of p is, the coarser the resulting topology is above a given
length scale. This hierarchical ordering of the p-adic topologies will be a central feature as far as the
proposed applications of the p-adic numbers are considered.

Ordinary continuity implies p-adic continuity since the norm induced from the p-adic topology is
rougher than the ordinary norm. This allows two alternative interpretations. Either p-adic image of a
physical systems provides a good representation of the system above some pinary cutoff or the physical
system can be genuinely p-adic below certain length scale Lp and become in good approximation
real, when a length scale resolution Lp is used in its description. The first interpretation is correct if
canonical identification is interpreted as a cognitive map. p-Adic continuity implies ordinary continuity
from right as is clear already from the properties of the p-adic norm (the graph of the norm is indeed
continuous from right). This feature is one clear signature of the p-adic topology.

If one considers seriously the application of canonical identification to basic quantum TGD one
cannot avoid the question about the p-adic counterparts of the negative real numbers. There is no
satisfactory manner to circumvent the fact that canonical images of p-adic numbers are naturally
non-negative. This is not a problem if canonical identification applies only to the coordinate interval
(0, 2π/N) or its hyperbolic variant defining the finite measurement resolution. That p-adicization
program works only for highly symmetric spaces is not a problem from the point of view of TGD.
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The interpretation of canonical identification in terms of finite measurement resolution

The question what the canonical identification really means could be a key to the understanding of
the special aspects of this map. The notion of finite measurement resolution is a good candidate for
the needed principle.

1. Finite measurement resolution can be characterized as an interval of minimum length. Below this
length scale one cannot distinguish points from each other. A natural definition for this inability
could be as an inability to well-order the points. The real topology is too strong in the modelling
in kind of situation since it brings in large amount of processing of pseudo information whereas
p-adic topology which lacks the notion of well-ordering could be more appropriate as effective
topology and together with pinary cutoff could allow to get rid of the irrelevant information.

2. This suggest that canonical identication applies only inside the intervals defining finite mea-
surement resolution in a given discretization of the space considered by say small cubes. The
canonical identification is unique only modulo diffeomorphism applied on both real and p-adic
side but this is not a problem since this would only reflect the absence of the well-ordering lost
by finite measurement resolution. Also the fact that the map makes sense only at positive real
axis would be natural if one accepts this identification.

The notion of p-adic linearity

The linear structure of the p-adic numbers induces a corresponding structure in the set of the non-
negative real numbers and p-adic linearity in general differs from the ordinary concept of linearity.
For example, p-adic sum is equal to real sum only provided the summands have no common pinary
digits. Furthermore, the condition x +p y < max{x, y} holds in general for the p-adic sum of the
real numbers. p-Adic multiplication is equivalent with the ordinary multiplication only provided that
either of the members of the product is power of p. Moreover one has x ×p y < x × y in general.
An interesting possibility is that p-adic linearity might replace the ordinary linearity in some strongly
nonlinear systems so these systems would look simple in the p-adic topology.

Does canonical identification define a generalized norm?

Canonical correspondence is quite essential in TGD applications. Canonical identification makes it
possible to define a p-adic valued definite integral. Canonical identification is in a key role in the suc-
cessful predictions of the elementary particle masses. Canonical identification makes also possible to
understand the connection between p-adic and real probabilities. These and many other successful ap-
plications suggests that canonical identification is involved with some deeper mathematical structure.
The following inequalities hold true:

(x+ y)R ≤ xR + yR ,

|x|p|y|R ≤ (xy)R ≤ xRyR , (6.4.4)

where |x|p denotes p-adic norm. These inequalities can be generalized to the case of (Rp)
n (a linear

vector space over the p-adic numbers).

(x+ y)R ≤ xR + yR ,

|λ|p|y|R ≤ (λy)R ≤ λRyR , (6.4.5)

where the norm of the vector x ∈ Tnp is defined in some manner. The case of Euclidian space suggests
the definition

(xR)2 = (
∑
n

x2
n)R . (6.4.6)

These inequalities resemble those satisfied by the vector norm. The only difference is the failure of
linearity in the sense that the norm of a scaled vector is not obtained by scaling the norm of the
original vector. Ordinary situation prevails only if the scaling corresponds to a power of p.
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These observations suggests that the concept of a normed space or Banach space might have a
generalization and physically the generalization might apply to the description of some nonlinear
systems. The nonlinearity would be concentrated in the nonlinear behavior of the norm under scaling.

6.4.3 The interpretation of canonical identification

During the development of p-adic TGD two seemingly mutually inconsistent competing identifications
of reals and p-adics have caused a lot of painful tension. Canonical identification provides one possible
identification map respecting continuity whereas the identification of rationals as points common to
p-adics and reals respects algebra of rationals. The resolution of the tension came from the real-
ization that canonical identification naturally maps the predictions of p-adic probability theory and
thermodynamics to real numbers. Canonical identification also maps p-adic cognitive representations
to symbolic ones in the real world world or vice versa. The identification by common rationals is in
turn the correspondence implied by the generalized notion of number and natural in the construction
of quantum TGD proper.

Canonical identification maps the predictions of the p-adic probability calculus and sta-
tistical physics to real numbers

p-Adic mass calculations based on p-adic thermodynamics were the first and rather successful appli-
cation of the p-adic physics (see the four chapters in [K52] . The essential element of the approach
was the replacement of the Boltzmann weight e−E/T with its p-adic generalization pL0/Tp , where L0

is the Virasoro generator corresponding to scaling and representing essentially mass squared opera-
tor instead of energy. Tp is inverse integer valued p-adic temperature. The predicted mass squared
averages were mapped to real numbers by canonical identification.

One could also construct a real variant of this approach by considering instead of the ordinary
Boltzman weights the weights p−L0/Tp . The quantization of temperature to Tp = log(p)/n would be
a completely ad hoc assumption. In the case of real thermodynamics all particles are predicted to be
light whereas in case of p-adic thermodynamics particle is light only if the ratio for the degeneracy of
the lowest massive state to the degeneracy of the ground state is integer. Immense number of particles
disappear from the spectrum of light particles by this criterion. For light particles the predictions are
same as of p-adic thermodynamics in the lowest non-trivial order but in the next order deviations are
possible.

Also p-adic probabilities and the p-adic entropy can be mapped to real numbers by canonical
identification. The general idea is that a faithful enough cognitive representation of the real physics can
by the number theoretical constraints involved make predictions, which would be extremely difficult
to deduce from real physics.

The variant of canonical identification commuting with division of integers

The basic problems of canonical identification is that it does not respect unitarity. For this reason it is
not well suited for relating p-adic and real scattering amplitudes. The problem of the correspondence
via direct rationals is that it does not respect continuity.

A compromise between algebra and topology is achieved by using a modification of canonical
identification IRp→R defined as I1(r/s) = I(r)/I(s). If the conditions r � p and s � p hold true,
the map respects algebraic operations and also unitarity and various symmetries. It seems that this
option must be used to relate p-adic transition amplitudes to real ones and vice versa [K48] . In
particular, real and p-adic coupling constants are related by this map. Also some problems related to
p-adic mass calculations find a nice resolution when I1 is used.

This variant of canonical identification is not equivalent with the original one using the infinite
expansion of q in powers of p since canonical identification does not commute with product and
division. The variant is however unique in the recent context when r and s in q = r/s have no
common factors. For integers n < p it reduces to direct correspondence.

Generalized numbers would be regarded in this picture as a generalized manifold obtained by gluing
different number fields together along rationals. Instead of a direct identification of real and p-adic
rationals, the p-adic rationals in Rp are mapped to real rationals (or vice versa) using a variant of the
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canonical identification IR→Rp in which the expansion of rational number q = r/s =
∑
rnp

n/
∑
snp

n

is replaced with the rational number q1 = r1/s1 =
∑
rnp
−n/

∑
snp
−n interpreted as a p-adic number:

q =
r

s
=

∑
n rnp

n∑
m snp

n
→ q1 =

∑
n rnp

−n∑
m snp

−n . (6.4.7)

Rp1 and Rp2 are glued together along common rationals by an the composite map IR→Rp2 IRp1→R.
This variant of canonical identification seems to be excellent candidate for mapping the predictions

of p-adic mass calculations to real numbers and also for relating p-adic and real scattering amplitudes
to each other [K48] .

p-Adic fractality, canonical identification, and symmetries

The original motivation for the canonical identification and its variants- in particular the variant
mapping real rationals with the defining integers below a pinary cutoff to p-adic rationals- was that it
defines a continuous map from p-adics to reals and produces beautiful p-adic fractals as a map from
reals to p-adics by canonical identification followed by a p-adically smooth map in turn followed by
the inverse of the canonical identification.

The first drawback was that the map does not commute with symmetries. Second drawback was
that the standard canonical identification from reals to p-adics with finite pinary cutoff is two-valued
for finite integers. The canonical real images of these transcendentals are also transcendentals. These
are however countable whereas p-adic algebraics and transcendentals having by definition a non-
periodic pinary expansion are uncountable. Therefore the map from reals to p-adics is single valued
for almost all p-adic numbers.

On the other hand, p-adic rationals form a dense set of p-adic numbers and define ”almost all” for
the purposes of numerics! Which argument is heavier? The direct identification of reals and p-adics
via common rationals commutes with symmetries in an approximation defined by the pinary cutoff
an is used in the canonical identification with pinary cutoff mapping rationals to rationals.

Symmetries are of extreme importance in physics. Is it possible to imagine the action of say
Poincare transformations commuting with the canonical identification in the sets of p-adic and real
transcendentals? This might be the case.

1. Wick rotation is routinely used in quantum field theory to define Minkowskian momentum
integrals. One Wick rotates Minkowski space to Euclidian space, performs the integrals, and
returns to Minkowskian regime by using the inverse of Wick rotation. The generalization to
the p-adic context is highly suggestive. One could map the real Minkowski space to its p-adic
counterpart, perform Poincare transformation there, and return back to the real Minkowski
space using the inverse of the rational canonical identification.

2. For p-adic transdendentals one would a formal automorph of Poincare group as IPI−1 and these
Poincare group would be the fractal counterpart of the ordinary Poincare group. Mathematician
would regardl I as the analog of intertwining operator, which is linear map between Hilbert
spaces. This variant of Poincare symmetry would be exact in the transcendental realm since
canonical identification is continuous. For rationals this symmetry would fail.

3. For rationals which are constructed as ratios of small enough integers, the rational Poincare
symmetry with group elements involving rationals constructed from small enough integers would
be an exact symmetry. For both options the use of preferred coordinates, most naturally linear
Minkowski coordinates would be essential since canonical identification does not commute with
general coordinate transformations.

4. Which of these Poincare symmetries corresponds to the physical Poincare symmetry? The above
argument does not make it easy to answer the question. One can however circumvent it. Maybe
one could distinguish between rational and transcendental regime in the sense that Poincare
group and other symmetries would be realized in different manner in these regimes?

Note that the analog of Wick rotation could be used also to define p-adic integrals by mapping
the p-adic integration region to real one by some variant of canonical identification continuously,

http://en.wikipedia.org/wiki/Wick_rotation
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performing the integral in the real context, and mapping the outcome of the integral to p-adic number
by canonical identification. Again preferred coordinates are essential and in TGD framework such
coordinates are provided by symmetries. This would allow a numerical treatment of the p-adic integral
but the map of the resulting rational to p-adic number would be two valued. The difference between the
images would be determined by the numerical accuracy when p-adic expansions are used. This method
would be a numerical analog of the analytic definition of p-adic integrals by analytic continuation from
the intersection of real and p-adic worlds defined by rational values of parameters appearing in the
expressions of integrals.

6.5 p-Adic differential and integral calculus

p-Adic differential calculus differs from its real counterpart in that piecewise constant functions de-
pending on a finite number of pinary digits have vanishing derivative. This property implies p-adic
nondeterminism, which has natural interpretation as making possible imagination if one identifies
p-adic regions of space-time as cognitive regions of space-time.

One of the stumbling blocks in the attempts to construct p-adic physics have been the difficulties
involved with the definition of the p-adic version of a definite integral. There are several alternative
options as how to define p-adic definite integral and it is quite possible that there is simply not a
single correct version since p-adic physics itself is a cognitive model.

1. The first definition of the p-adic integration is based on three ideas. The ordering for the limits
of integration is defined using canonical correspondence. x < y holds true if xR < yR holds true.
The integral functions can be defined for Taylor series expansion by defining indefinite integral
as the inverse of the differentiation. If p-adic pseudoconstants are present in the integrand one
must divide the integration range into pieces such that p-adic integration constant changes its
value in the points where new piece begins.

2. Second definition is based on p-adic Fourier analysis based on the use of p-adic planewaves
constructed in terms of Pythagorean phases. This definition is especially attractive in the
definition of p-adic QFT limit and is discussed in detail later in the section ’p-Adic Fourier
analysis’. In this case the integral is defined in the set of rationals and the ordering of the limits
of integral is therefore not a problem.

3. For p-adic functions which are direct canonical images of real functions, p-adic integral can be
defined also as a limit of Riemann sum and this in principle makes the numerical evaluation of
p-adic integrals possible. As found in the chapter ’Mathematical Ideas’, Riemann sum represen-
tation leads to an educated guess for an exact formula for the definite integral holding true for
functions which are p-adic counterparts of real-continuous functions and for p-adically analytic
functions. The formula provides a calculational recipe of p-adic integrals, which converges ex-
tremely rapidly in powers of p. Ultrametricity guarantees the absence of divergences in arbitrary
dimensions provided that integrand is a bounded function. It however seems that this definition
of integral cannot hold true for the p-adically differentiable function whose real images are not
continuous.

6.5.1 p-Adic differential calculus

The rules of the p-adic differential calculus are formally identical to those of the ordinary differential
calculus and generalize in a trivial manner for the algebraic extensions.

The class of the functions having vanishing p-adic derivatives is larger than in the real case: any
function depending on a finite number of positive pinary digits of p-adic number and of arbitrary
number of negative pinary digits has a vanishing p-adic derivative. This becomes obvious, when one
notices that the p-adic derivative must be calculated by comparing the values of the function at nearby
points having the same p-adic norm (here is the crucial difference with respect to real case!). Hence,
when the increment of the p-adic coordinate becomes sufficiently small, p-adic constant doesn’t detect
the variation of x since it depends on finite number of positive p-adic pinary digits only. p-Adic
constants correspond to real functions, which are constant below some length scale ∆x = 2−n. As
a consequence p-adic differential equations are non-deterministic: integration constants are arbitrary
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functions depending on a finite number of the positive p-adic pinary digits. This feature is central as
far applications are considered and leads to the interpretation of p-adic physics as physics of cognition
which involves imagination in essential manner. The classical non-determinism of the Kähler action,
which is the key feature of quantum TGD, corresponds in a natural manner to the non-determinism
of volition in macroscopic length scales.

p-analytic maps g : Rp → Rp satisfy the usual criterion of differentiability and are representable
as power series

g(x) =
∑
k

gkx
k . (6.5.1)

Also negative powers are in principle allowed.

6.5.2 p-Adic fractals

p-Adically analytic functions induce maps R+ → R+ via the canonical identification map. The
simplest manner to get some grasp on their properties is to plot graphs of some simple functions (see
Fig. 6.5.2 for the graph of p-adic x2 and Fig. 6.5.2 for the graph of p-adic 1/x). These functions
have quite characteristic features resulting from the special properties of the p-adic topology. These
features should be universal characteristics of cognitive representations and should allow to deduce
the value of the p-adic prime p associated with a given cognitive system.

1. p-Analytic functions are continuous and differentiable from right: this peculiar asymmetry is a
completely general signature of the p-adicity. As far as time dependence is considered, the inter-
pretation of this property as a mathematical counterpart of the irreversibility looks attractive.
This suggests that the transition from the reversible microscopic dynamics to irreversible macro-
scopic dynamics could correspond to the transition from the ordinary topology to an effective
p-adic topology.

2. There are large discontinuities associated with the points x = pn. This implies characteristic
threshold phenomena. Consider a system whose output f(n) is a function of input, which is
integer n. For n < p nothing peculiar happens but for n = p the real counterpart of the output
becomes very small for large values of p. In the bio-systems threshold phenomena are typical
and p-adicity might be the key to their understanding. The discontinuities associated with the
powers of p = 2 are indeed encountered in many physical situations. Auditory experience has
the property that a given frequency ω0 and its multiples 2kω0, octaves, are experienced as the
same frequency, this suggests that the auditory response function for a given frequency ω0 is a
2-adicallly analytic function. Titius-Bode law states that the mutual distances of planets come
in powers of 2, when suitable unit of distance is used. In turbulent systems period doubling
spectrum has peaks at frequencies ω = 2kω0.

3. A second signature of the p-adicity is ”p-plicity” appearing in the graph of simple p-analytic
functions. As an example, consider the graph of the p-adic x2 demonstrating clearly the decom-
position into p steps at each interval [pk, pk+1).

4. The graphs of the p-analytic functions are in general ordered fractals as the examples demon-
strate. For example, power functions xn are self-similar (the values of the function at some
any interval (pk, pk+1) determines the function completely) and in general p-adic xn with non-
negative (negative) n is smaller (larger) than real xn expect at points x = pn as the graphs
of p-adic x2 and 1/x show (see Fig. 6.5.2 and 6.5.2) These properties are easily understood
from the properties of the p-adic multiplication. Therefore the first guess for the behavior of a
p-adically analytic function is obtained by replacing x and the coefficients gk with their p-adic
norms: at points x = pn this approximation is exact if the coefficients of the power series are
powers of p. This step function approximation is rather reasonable for simple functions such
as xn as the figures demonstrate. Since p-adically analytic function can be approximated with
f(x) ∼ f(x0)+b(x−x0)n or as a(x−x0)n (allowing non-analyticity at x0) around any point the
fractal associated with p-adically analytic function has universal geometrical form in sufficiently
small length scales.
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p-Adic analyticity is well defined for the algebraic extensions of Rp, too. The figures 6.5.2 and 6.5.2
visualize the behavior of the real and imaginary parts of the 2-adic z2 function as a function of the
real x and y coordinates in the parallelpiped I2,I = [1+2−7, 2−2−7]. An interesting possibility is that
the order parameters describing various phases of some physical systems are p-adically differentiable
functions. The p-analyticity would therefore provide a means for coding the information about ordered
fractal structures.

The order parameter could be one coordinate component of a p-adically analytic map Rn → Rn,
n = 3, 4. This is analogous to the possibility to regard the solution of the Laplace equation in two
dimensions as a real or imaginary part of an analytic function. A given region V of the order pa-
rameter space corresponds to a given phase and the volume of the ordinary space occupied by this
phase corresponds to the inverse image g−1(V ) of V . Very beautiful images are obtained if the order
parameter is the the real or imaginary part of a p-analytic function f(z). A good example is p-adic
z2 function in the parallelpiped [a, b] × [a, b], a = 1 + 2−9, b = 2 − 29 of C-plane. The value range
of the order parameter can be divided into, say, 16 intervals of the same length so that each interval
corresponds to a unique color. The resulting fractals possess features, which probably generalize to
higher-dimensional extensions.

1. The inverse image is an ordered fractal and possesses lattice/cell like structure, with the sizes of
cells appearing in powers of p. Cells are however not identical in analogy with the differentiation
of the biological cells.

2. p-Analyticity implies the existence of a local vector valued order parameter given by the p-
analytic derivative of g(z): the geometric structure of the phase portrait indeed exhibits the
local orientation clearly.

A second representation of the fractals is obtained by dividing the value range of z into a finite
number of intervals and associating different color to each interval. In a given resolution this represen-
tation makes obvious the presence of 0, 1- and 2-dimensional structures not obvious from the graph
representation used in the figures of this book.

These observations suggests that p-analyticity might provide a means to code the information
about ordered fractal structures in the spatial behavior of order parameters (such as enzyme concen-
trations in bio-systems). An elegant manner to achieve this is to use purely real algebraic extension for
3-space coordinates and for the order parameter: the image of the order parameter Φ = φ1+φ2θ+φ3θ

2

under the canonical identification is real and positive number automatically and might be regarded
as concentration type quantity.
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Figure 6.2: p-Adic x2 function for some values of p

Figure 6.3: p-Adic 1/x function for some values of p
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Figure 6.4: The graph of the real part of 2-adically analytic z2 = function.

Figure 6.5: The graph of 2-adically analytic Im(z2) = 2xy function.
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6.5.3 p-Adic integral calculus

The basic problems of the integration with p-adic values of integral are caused by the facts that p-adic
numbers are not well-ordered and by the properties of p-adic norm. The general idea that p-adic
physics can mimic real physics only at the algebraic level, leads to the idea that p-adic integration
could be algebraized whereas numerical approaches analogous to Riemann sum are not possible. In
the following three examples are discussed.

1. Definite integral can be defined using integral function and by defining integration limits via
canonical identification: the drawback is the loss of general coordinate invariance. A more ele-
gant general coordinate invariant approach is based on the identification of rationals as common
to both reals and p-adics. This works for rational valued integration limits.

2. residue calculus allows to realize integrals of analytic functions over closed curves of complex
plane. The generalization of the residue calculus makes possible to realize conformal invariance at
elementary particle horizons which are metrically 2-dimensional and allow conformal invariance
and has also p-adic counterpart.

3. The perturbative series using Gaussian integration is the only to perform in practice infinite-
dimensional functional integrals and being purely algebraic procedure, allows a straightforward
p-adic generalization. This is the only option for p-adicizing configuration space integral.

Definition of the definite integral using integral function concept and canonical identifi-
cation or identification by common rationals

The concept of the p-adic definite integral can be defined for functions Rp → C [A129] using transla-
tionally invariant Haar measure for Rp. In present context one is however interested in definining a
p-adic valued definite integral for functions f : Rp → Rp: target and source spaces could of course be
also some some algebraic extensions of the p-adic numbers.

What makes the definition nontrivial is that the ordinary definition as the limit of a Riemann
sum doesn’t seem to work: it seems that Riemann sum approaches to zero in the p-adic topology
since, by ultra-metricity, the p-adic norm of a sum is never larger than the maximum p-adic norm
for the summands. The second difficulty is related to the absence of a well-ordering for the p-adic
numbers. The problems might be avoided by defining the integration essentially as the inverse of the
differentiation and using the canonical correspondence to define ordering for the p-adic numbers. More
generally, the concepts of the form, cohomology and homology are crucially based on the concept of
the boundary. The concept of boundary reduces to the concept of an ordered interval and canonical
identification makes it indeed possible to define this concept.

The definition of the p-adic integral functions defining integration as inverse of the differentiation
is straightforward and one obtains just the generalization of the standard calculus. For instance, one

has
∫
zn = zn+1

(n+1) + C and integral of the Taylor series is obtained by generalizing this. One must

however notice that the concept of integration constant generalizes: any function Rp → Rp depending
on a finite number of pinary digits only, has a vanishing derivative.

Consider next the definite integral. The absence of the well ordering implies that the concept of
the integration range (a, b) is not well defined as a purely p-adic concept. As already mentioned there
are two solutions of the problem.

1. The identification of rational numbers as common to both reals and p-adics allows to order the
integration limits when the end points of the integral are rational numbers. This is perhaps the
most elegant solution of the problem since it is consistent with the restricted general coordinate
invariance allowing rational function based coordinate changes. This approach works for rational
functions with rational coefficients and more general functions if algebraic extension or extension
containing transcendentals like e and logarithms of primes are allowed. The extension containing
e, π, and log(p) is finite-dimensional if e/π and π/log(p) are rational numbers for all primes p.
Essentially algebraic continuation of real integral to p-adic context is in question.

2. An alternative resolution of the problem is based on the canonical identification. Consider p-adic
numbers a and b. It is natural to define a to be smaller than b if the canonical images of a and
b satisfy aR < bR. One must notice that aR = bR does not imply a = b, since the inverse of the
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canonical identification map is two-valued for the real numbers having a finite number of pinary
digits. For two p-adic numbers a, b with a < b, one can define the integration range (a, b) as the
set of the p-adic numbers x satisfying a ≤ x ≤ b or equivalently aR ≤ xR ≤ bR. For a given
value of xR with a finite number of pinary digits, one has two values of x and x can be made
unique by requiring it to have a finite number of pinary digits.

One can define definite integral
∫ b
a
f(x)dx formally as

∫ b

a

f(x)dx = F (b)− F (a) , (6.5.2)

where F (x) is integral function obtained by allowing only ordinary integration constants and bR > aR
holds true. One encounters however a problem, when aR = bR and a and b are different. Problem is
avoided if the integration limits are assumed to correspond to p-adic numbers with a finite number of
pinary digits.

One could perhaps relate the possibility of the p-adic integration constants depending on finite
number of pinary digits to the possibility to decompose integration range [aR, bR] as a = x0 < x1 <
....xn = b and to select in each subrange [xk, xk+1] the inverse images of xk ≤ x ≤ xk+1, with x
having finite number of pinary digits in two different manners. These different choices correspond to
different integration paths and the value of the integral for different paths could correspond to the
different choices of the p-adic integration constant in integral function. The difference between a given
integration path and ’standard’ path is simply the sum of differences F (xk)− F (yk), (xk)R = (yk)R.

This definition has several nice features.

1. The definition generalizes in an obvious manner to the higher dimensional case. The stan-
dard connection between integral function and definite integral holds true and in the higher-
dimensional case the integral of a total divergence reduces to integral over the boundaries of the
integration volume. This property guarantees that p-adic action principle leads to same field
equations as its real counterpart. It this in fact this property, which drops other alternatives
from the consideration.

2. The basic results of the real integral calculus generalize as such to the p-adic case. For instance,
integral is a linear operation and additive as a set function.

The ugly feature is the loss of the general coordinate invariance due to the fact that canonical
identification does not commute with coordinate changes (except scalings by powers of p) and it seems
that one cannot use canonical identification at the fundamental level to define definite integrals.

Definite integrals in p-adic complex plane using residue calculus

residue calculus allows to calculate the integrals
∮
C
f(z)dz around complex curves as sums over poles

of the function inside the curve:

∮
f(z)dz = i2π

∑
k

Res(f(zk)) , (6.5.3)

where Res(f(zk)) at pole z = zk is defined as Res(f(zk)) = limz→zk(z − zk)f(z). This definition
applies in case of 2-dimensional

√
−1-containing algebraic extension of p-adic numbers (p mod 4 = 3)

but its seems that this is not relevant for quantum TGD.
Quaternion conformal invariance corresponds to the conformal invariance associated with topologi-

cally 3-dimensional elementary particle horizons surrounding wormhole contacts which have Euclidian
signature of induced metric. The induced metric is degenerate at the elementary particle horizon so
that these surfaces are metrically two-dimensional. This implies a generalization of conformal invari-
ance analogous to that at light cone cone boundary. In particular, a subfield of quaternions isomorphic
with complex numbers is selected. One expects that residue calculus generalizes.

Elementary particle horizons are defined by a purely algebraic condition stating that the deter-
minant of the induced metric vanishes, and thus the notion makes sense for p-adic space-time sheets
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too. Also residue calculus should make sense for all algebraic extensions of p-adic numbers and the
algebra of quaternion conformal invariance would generalize to the p-adic context too. Note however
that the notion of p-adic quaternions does not make sense: the reason is that p-adic Euclidian length
squared for a non-vanishing p-adic quaternion can vanish so that the inverse of quaternion is not well
defined always. In the set of rational numbers this failure does not however occur and this might be
enough for p-adicization to work.

Definite integrals using Gaussian perturbation theory

In quantum field theories functional integrals are defined by Gaussian perturbation theory. For real
infinite-dimensional Gaussians the procedure has a rigorous mathematical basis deriving from measure
theory. For the imaginary infinite-dimensional Gaussians defining the Feynman path integrals of
quantum field theory the rigorous mathematical justification is lacking.

In TGD framework the integral over the configuration space of three surface can be reduced to
a real Gaussian perturbation theory around the maxima of Kähler function. The integration is over
quantum fluctuating degrees of freedom defining infinite-dimensional symmetric space for given values
of zero modes. According to the more detailed arguments about how to construct p-adic counterpart
of real configuration space physics described in the chapter ”Construction of Quantum Theory”, the
following conjectures are trued.

1. The symmetric space property implies that there is only one maximum of Kähler function for
given values of zero modes.

2. The generalization of Duistermaat-Heecke theorem holding true in finite-dimensional case sug-
gests that by symmetric space property the integral of the exponent of Kähler gives just the
exponent of Kähler function at the maximum and Gaussian determinant and metric determinant
cancel each other.

3. The fact that free Gaussian field theory corresponds to a flat symmetric space inspires the hy-
pothesis that S-matrix elements involving configuration space spinor fields in the representations
of the isometry group reduce to those given by free field theory with propagator defined by the
inverse of the configuration space covariant Kähler metric evaluated in the tangent space basis
defined by the isometry currents at the maximum of Kähler function. This implies that there
is no perturbation series which would spoil any hopes about proving the rationality. The re-
duction to a free field theory does not make quantum TGD non-interacting since interactions
are described as topologically (as decays and fusions of 3-surfaces) rather than algbraically as
non-linearities of local action.

4. If the exponent function is a rational function with rational coefficients in the sense that for
the points of configuration space having finite number of rational valued coordinates (also zero
modes), then the exponent eKmax is a rational number for rational values of zero modes. From
the rationality of the exponent of the Kähler function follows the rational valuedness of the
matrix elements of the metric. The undeniably very optimistic conclusion is that for rational
values of the zero modes the S-matrix elements would be rational valued or have values if finite
extension of rationals, so that they could be continued to the p-adic sectors of the configuration
space. The S-matrix would have the same form in all number fields.

5. One could also interpret the outcome as an algebraic continuation of the rational quantum
physics to real and p-adic physics. Configuration space-integrals can be thought of as being
performed in the rational configuration space. Of course, one can define also ordinary integrals
over Rn numerically using Riemann sums by considering the division of the integration region
to very small n-cubes for which the sides have rational-number valued lengths and such that the
value of the function is taken at rational valued point inside each cube.

The finite-dimensional real one-dimensional Gaussian exp(−ax2/2) provides a natural testing
ground for this rather speculative picture. The integral of the Gaussian is (2π)1/2/

√
a: in n-dimensional

case where a is replaced by a quadratic form defined by a matrix A one obtains (2π)n/2/
√
det(A) in

n-dimensional case. The integral of a function exp(−ax2 + kxn)xk reduces to a perturbation series as
sum of graphs containing single vertex containing k lines and arbitrary number of vertices containing
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n lines and endowed with a factor k, and assigning with the lines the propagator factor 1/a. For
n-dimensional case the propagator factor would be inverse of the matrix A.

The result makes sense in the p-adic context if a and k are rational numbers. In the n-dimensional
case matrix A and the coefficients defining the polynomial defining the interaction term must be
rational numbers. The only problematic factor is the power of 2π, which seems to require algebraic
extension containing π. Of course, one could define the normalization of the functional integral by
dividing it by (2π)n/2 to get rid of this fact. In the definition of S-matrix elements this normalization
factor always disappears so that this problem has no physical significance.

In the case of free scalar quantum field theory n-point functions the perturbation theory are simply
products of 2-point functions defined by the inverse of the infinite-dimensional Gaussian matrix. For
plane wave basis for scalar field labelled by 4-momentum k the inverse of the Gaussian matrix reduces
to the propagator (i/(k2 + iε) for scalar field), which is rational function of the square of 4-momentum
vector. In case of interacting quantum field the infinite summation over graphs spoils the hopes
of obtaining end result which could be proven to be rational valued for rational values of incoming
and outgoing four-momenta. The loop integrals are source of divergence problems and also number-
theoretically problematic.

6.6 p-Adic symmetries and Fourier analysis

6.6.1 p-Adic symmetries and generalization of the notion of group

The most basic questions physicist can ask about the p-adic numbers are related to symmetries. It
seems obvious that the concept of a Lie-group generalizes: nothing prevents from replacing the real
or complex representation spaces associated with the definitions of the classical Lie-groups with the
linear space associated with some algebraic extension of the p-adic numbers: the defining algebraic
conditions, such as unitarity or orthogonality properties, make sense for the algebraically extended
p-adic numbers, too.

For orthogonal groups one must replace the ordinary real inner product with the inner product∑
kX

2
k with a Cartesian power of a purely real extension of p-adic numbers. In the unitary case one

must consider the complexification of a Cartesian power of a purely real extension with the inner
product

∑
Z̄kZk. Here p mod 4 = 3 is required. It should be emphasized however that the p-adic

inner product differs from the ordinary one so that the action of, say, p-adic counterpart of a rotation
group in R3

p induces in R3 an action, which need not have much to do with ordinary rotations so that
the generalization is physically highly nontrivial. Extensions of p-adic numbers also mean extreme
richness of structure.

The exponentiation t → exp(tJ) of the Lie-algebra element J is a central element of Lie group
theory and allows to coordinatize that elements of Lie group by mapping tangent space points the
points representing group elements. Without algebraic extensions involving e or its roots one can
exponentiate only the group parameters t satisfying |t|p < 1. Thus the values of the exponentiation
parameter which are too small/large in real/p-adic sense are not possible and one can say that the
standard p-adic Lie algebra is a ball with radius |t|p = 1/p.

The study of ordinary one-dimensional translations gives an idea about what it is involved. For
finite values of the p-adic integer t the exponentiated group element corresponds in the case of transla-
tion group to a power of e so that the points reached by exponentiation cannot correspond to rational
points. Since logarithm function exist as an inverse of p-adic exponent and since rationals correspond
to infinite but periodic pinary expansions, rational points having the same p-adic norm can be reached
by p-adic exponentials using t which is infinite as ordinary integer. This result is expected to generalize
to the case of groups represented using rational-valued matrices.

One can define a hierarchy of p-adic Lie-groups by allowing extensions allowing e and even its
roots such that the algebras have p-adic radii pk. Hence the fact that the powers e, ..., ep−1 define
a finite-dimensional extensions of p-adic numbers seems to have a deep group theoretical meaning.
One can define a hierarchy of increasingly refined extensions by taking the generator of extension to
be e1/n. For instance, in the case of translation group this makes possible p-adic variant of Fourier
analysis by using discrete plane wave basis.

One can generalize also the notion of group by using the generalized notion of number. This means
that one starts from the restriction of the group in question to a group acting in say rational and
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complex rational linear space and requires that real and p-adic groups have rational group transfor-
mations as common. By performing various completions one obtains a generalized group having the
characteristic book like structure. In this kind of situation the relationship between various groups is
clear and also the role of extensions of p-adic numbers can be understood. The notion of Lie-algebra
generalizes also to form a book like structure. Coefficients of the pages of the Lie-algebra belong to
various number fields and rational valued coefficients correspond to a part partially (because of the
restriction |t|p < pk) common to all Lie-algebras.

SO(2) as example

A simple example is provided by the generalization of the rotation group SO(2). The rows of a
rotation matrix are in general n orthonormalized vectors with the property that the components of
these vectors have p-adic norm not larger than one. In case of SO(2) this means the the matrix
elements a11 = a22 = a, a12 = −a21 = b satisfy the conditions

a2 + b2 = 1 ,

|a|p ≤ 1 ,

|b|p ≤ 1 . (6.6.1)

One can formally solve a as a =
√

1− b2 but the solution doesn’t exists always. There are various
possibilities to define the orthogonal group.

1. One possibility is to allow only those values of a for which square root exists as p-adic number.
In case of orthogonal group this requires that both b = sin(Φ) and a = cos(Φ) exist as p-adic
numbers. If one requires further that a and b make sense also as ordinary rational numbers, they
define a Pythagorean triangle (orthogonal triangle with integer sides) and the group becomes
discrete and cannot be regarded as a Lie-group. Pythagorean triangles emerge for rational
counterpart of any Lie-group.

2. Other possibility is to allow an extension of the p-adic numbers allowing a square root of any
ordinary p-adic number. The minimal extensions has dimension 4 (8) for p > 2 (p = 2).
Therefore space-time dimension and imbedding space dimension emerge naturally as minimal
dimensions for spaces, where p-adic SO(2) acts ’stably’. The requirement that a and b are real
is necessary unless one wants the complexification of so(2) and gives constraints on the values
of the group parameters and again Lie-group property is expected to be lost.

3. The Lie-group property is guaranteed if the allowed group elements are expressible as exponents
of a Lie-algebra generator Q. g(t) = exp(iQt). This exponents exists only provided the p-adic
norm of t is smaller than one. If one uses square root allowing extension, one can require that
t satisfies |t| ≤ p−n/2, n > 0 and one obtains a decreasing hierarchy of groups G1, G2, ... For
the physically interesting values of p (typically of order p = 2127 − 1 ) the real counterparts
of the transformations of these groups are extremely near to the unit element of the group.
These conclusions hold true for any group. An especially interesting example physically is the
group of ’small’ Lorentz transformations with t = O(

√
p). If the rest energy of the particle

is of order O(
√
p): E0 = m = m0

√
p (as it turns out) then the Lorentz boost with velocity

β = β0
√
p gives particle with energy E = m/

√
1− β2

0p = m(1 +
β2
0p
2 + ..) so that O(p1/2)

term in energy is Lorentz invariant. This suggests that non-relativistic regime corresponds to
small Lorentz transformations whereas in genuinely relativistic regime one must include also the
discrete group of ’large’ Lorentz transformations with rational transformations matrices.

4. One can extend the group to contain products G1G2, such that G1 is a rational matrix belong-
ing to the restriction of the Lie-group to rational matrices not obtainable from a unit matrix
p-adically by exponentiation, and G2 is a group element obtainable from unit element by ex-
ponentiation. For instance, rational CP2 is obtained from the group of rational 3 × 3 unitary
matrices as by dividing it by the U(2) subgroup of rational unitary matrices.
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Even the construction of the representations of the translation group raises nontrivial issues since
the construction of p-adic Fourier analysis is by no means a nontrivial task. One can however define
the concept of p-adic plane wave group theoretically and p-adic plane waves are orthogonal with
respect to the inner product defined by the proposed p-adic integral.

The representations of 3-dimensional rotation group SO(3) can be constructed as homogenous
functions of Cartesian coordinates of E3 and in this case the phase factors exp(imφ) typically ap-
pearing in the expressions of spherical harmonics do not pose any problems. The construction of
p-adic spherical harmonics is possible if one assumes that allowed spherical angles (θ, φ) correspond
to Pythagorean triangles.

A similar situation is encountered also in the case of CP2 spherical harmonics in in fact, quite
generally. This number theoretic quantization of angles could be perhaps interpreted as a kind of
cognitive quantum effect consistent with the fact that only rationals can be visualized concretely
and relate directly to the sensory experience. More generally, the possibility to realize only rationals
numerically might reflect the facts that only rationals are common to reals and p-adics and that
cognition is basically p-adic.

Fractal structure of the p-adic Poincare group

p-Adic Poincare group, just as any other p-adic Lie group, contains entire fractal hierarchy of sub-
groups with the same Lie-algebra. For instance, translations mk → mk + pNak, where ak has p-adic
norm not larger than one form subgroup for all values of N . The larger the value of N is, the smaller
this subgroup is. Quite generally this implies orbits within orbits and representations within represen-
tations like structure so that p-adic symmetry concept contains hologram like aspect. This property of
the p-adic symmetries conforms nicely with the interpretation of p-adic symmetries as cognitive repre-
sentations of real symmetries since the symmetries can be realized in a p-adically finite spatiotemporal
volume of the cognitive space-time sheet. Even more, this volume can be p-adically arbitrarily small.
If one identifies both p-adics and reals as a completion of rationals, the corresponding real volumes
are however strictly speaking infinite in absence of a pinary cutoff.

The hierarchy of subgroups implies that M4
+ decomposes in a natural manner to 4-cubes with

side L0 = Np(L)Lp, where Np(L) = p−N denotes the p-adic norm of L such that these 4-cubes are
invariant under the group of sufficiently small Poincare transformations. In real context these cubes
define a hierarchy of exteriors of cubes with decreasing sizes. One can have full p-adic Poincare
invariance in p-adically arbitrarily small volume. Only those Poincare transformations, which leave
the minimal p-adic cube invariant are symmetries. Also this picture suggest that the p-adic space-time
sheets providing cognitive representations about finite space-time regions by canonical identification
can have very large size.

The construction of the p-adic Fourier analysis is a nontrivial problem. The usual exponent
functions fP (x) = exp(iPx), providing a representation of the p-adic translations do not make sense
as a Fourier basis: fP is not a periodic function; fP does not converge if the norm of Px is not smaller
than one and the natural orthogonalization of the different momentum eigenstates does not seem to
be possible using the proposed definition of the definite integral.

This state of affairs suggests that p-adic Fourier analysis involves number theory. It turns out that
one can construct what might be called number theoretical plane waves and that p-adic momentum
space has a natural fractal structure in this case. The basic idea is to reduce p-adic Fourier analysis
to a Fourier analysis in a finite field G(p, 1) plus fractality in the sense that all pm-scaled versions of
the G(p, 1) plane waves are used. This means that p-adic plane waves in a given interval [n, n+ 1)pm

are piecewise constant plane waves in a finite field G(p, 1). Number theoretical p-adic plane waves are
pseudo constants so that the construction does not work for p-adically differentiable functions. The
pseudo-constancy however turns out to be a highly desirable feature in the construction of the p-adic
QFT limit of TGD based on the mapping of the real H-quantum fields to p-adic quantum fields using
the canonical identification.

The unsatisfactory feature of this approach is that number theoretic p-adic plane waves do not
behave in the desired manner under translations. It would be nice to have a p-adic generalization
of the plane wave concept allowing a generalization of the standard Fourier analysis and a direct
connection with the theory of the representations of the translation group. A natural idea is to to
define exponential function as a solution of a p-adic differential equation representing the action of
a translation generator and to introduce multiplicative pseudo constant making possible to define
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exponential function for all values of its argument. One can develop an argument suggesting that the
plane waves obtained in this manner are indeed orthogonal.

Infinitesimal form of translational symmetry might be argued to be too strong requirement since p-
adically infinitesimal translations typically correspond to real translations which are arbitrarily large:
this is not consistent with the idea that cognitive representations with a finite spatial resolution are
in question. This motivates a third approach to the p-adic Fourier analysis. The basic requirement is
that discrete subgroup of translations commutes with the map of the real plane waves to their p-adic
counterparts. This means that the products of the real phase factors are mapped to the products
of the corresponding p-adic phase factors. This is possible if the phase factor is a rational complex
number so that the phase angle corresponds to a Pythagorean triangle. The p-adic images of the real
plane waves are defined for the momenta k = nkG, kG = φG/∆x, where φG ∈ [0, 2π] is a Pythagorean
phase angle and where the points xn = n∆x define a discretization of x-space, ∆x being a rational
number. These plane waves form a complete and orthogonalized set.

6.6.2 p-Adic Fourier analysis: number theoretical approach

Contrary to the original expectations, number theoretical Fourier analysis is probably not basic math-
ematical tools of p-adic QFT since it fails to provide irreducible representation for the translational
symmetries. Despite this it deserves documentation.

Fourier analysis in a finite field G(p, 1)

The p-adic numbers of unit norm modulo p reduce to a finite field G(p, 1) consisting of the integers
0, 1, ..., p − 1 with arithmetic operations defined by those of the ordinary integers taken modulo p.
Since the elements 1, ..., p − 1 form a multiplicative group there must exists an element a of G(p, 1)
(actually several) such that ap−1 = 1 holds true in G(p, 1). This kind of element is called primitive
root. If n is a factor of p − 1: (p − 1) = nm, then also am = 1 holds true. This reflects the fact
that Zp−1 decomposes into a product Zn1

m1
Zn2
m2
...Znsms of commuting factors Zmi , such that mni

i divides
p− 1.

A Fourier basis in G(p, 1) can be defined using p functions fk(n), k = 0, .., p−1. For k = 0, 1, ..., p−2
these functions are defined as

fk(n) = ank , n = 0 , ..., p− 1 , (6.6.2)

and satisfy the periodicity property

fk(0) = fk(p− 1) .

The problem is to identify the lacking p:th function. Since fk(n) transforms irreducibly under trans-
lations n→ n+m it is natural to require that also the p:th function transforms in a similar manner
and satisfies the periodicity property. This is achieved by defining

fp−1(n) = (−1)n . (6.6.3)

The counterpart of the complex conjugation for fk for k 6= p − 1 is defined as fk → fp−1−k. fp−1 is
invariant under the conjugation. The inner product is defined as

〈fk, fl〉 =

p−2∑
n=0

fp−1−k(n)fl(n) = δ(k, l)(p− 1) . (6.6.4)

The dual basis f̂k clearly differs only by the normalization factor 1/(p− 1) from the basis fp−k. The
counterpart of Fourier expansion for any real function in G(p, 1) can be obviously constructed using
this function basis and Fourier components are obtained as the inner products of the dual Fourier
basis with the function in question.

A natural interpretation for the integer k is as a p-adic momentum since in the translations
n→ n+m the plane wave with k 6= p− 1 changes by a phase factor akm. For k = p− 1 it transforms
by (−1)m so that also now an eigen state of finite field translations is in question.
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p-Adic Fourier analysis based on p-adic plane waves

The basic idea is to reduce p-adic Fourier analysis to the Fourier analysis in G(p, 1) by using fractality.

1. Let the function f(x) be such that the maximum p-adic norm of f(x) is p−m. One can uniquely
decompose f(x) to a sum of functions fn(x) such that |fn(x)|p = pn or vanishes in the entire
range of definition for f :

f(x) =
∑
n≥m

fn(x) ,

fn(x) = gn(x)pn ,

|gn(x)| = 1 for g(x) 6= 0 . (6.6.3)

The higher the value of n, the smaller the contribution of fn. The expansion converges extremely
rapidly for the physically interesting large values of p.

2. Assume that f(x) is such that for each value of n one can find some resolution pm(n) below
which gn(x) is constant in the sense that for all intervals [r, r+ 1)pm(n) (defined in terms of the
canonical identification) the function fn(x) is constant. For p-adically differentiable functions
this cannot be the case since they would be pseudo constants if this were true. In the physical
situation CP2 size provides a natural p-adic cutoff so that only a finite number of fn:s are needed
and the resolution in question corresponds to CP2 length scale. Hence ordinary plane waves
(possibly with a natural UV cutoff) should have an expansion in terms of the p-adic plane waves.

3. The assumption implies that in each interval (r, r+ 1)pm(n)−1, gn can be regarded as a function
in G(p, 1) identified as the set x = (r + sp)pm(n)−1, s = 0, 1, ..., p − 1. Hence one can Fourier
expand fn(x) using G(p, 1) plane waves fks. In this manner one obtains a rapidly converging
expansion using p-adic plane waves.

Periodicity properties of the number theoretic p-adic plane waves

The periodicity properties of the p-adic plane waves make it possible to associate a definite wavelength
with a given p-adic plane wave. For the p-adic momenta k not dividing p − 1, the wavelength
corresponds to the entire range (n, n+ 1)pm and its real counterpart is

λ = p−m−1/2l ,

where l ∼ 104
√
~G is the fundamental p-adic length scale. If k divides p− 1 =

∏
im

ni
i , the period is

mi and the real wavelength is

λ(mi) = mip
−m−1−1/2l .

One might wonder whether this selection of preferred wavelengths has some physical consequences.
The first thing to notice is that p-adic plane waves do not replace ordinary plane waves in the con-
struction of the p-adic QFT limit of TGD. Rather, ordinary plane waves are expanded using the p-adic
plane waves so that the selection of the preferred wavelengths, if it occurs at all, must be a dynamical
process. The average value of the prime divisors, and hence the number of different wavelengths for
a given value of p, counted with the degeneracy of the divisor is given by [A211]

Ω(n) = ln(ln(n)) + 1.0346 ,

and is surprisingly small, or order 6 for numbers of order M127! If one can apply probabilistic argu-
ments or [A211] to the numbers of form p− 1, too then one must conclude that very few wavelengths
are possible for general prime p! This in turn means that to each p there are associated only very few
characteristic length scales, which are predictable. Furthermore, all the pk-multiples of these scales
are also possible if p-adic fractality holds true in macroscopic length scales.

Mersenne primes Mn can be considered as an illustrative example of the phenomenon. From [A149]
one finds that M127−1 has 11 distinct prime factors and 3 and 7 occurs three and 2 times respectively.
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The number of distinct length scales is 3 · 211 − 1 ∼ 212. M107 − 1 and M89 − 1 have 7 and 11 singly
occurring factors so that the numbers of length scales are 27−1 = 127 = M7 and 211−1. Note that for
hadrons (M107) the number of possible wavelengths is especially small: does this have something to do
with the collective behavior of color confined quarks and gluons? An interesting possibility is that this
length scale generation mechanism works even macroscopically (for p-adic length scale hypothesis at
macroscopic length scales see the third part of the book). One cannot exclude the possibility that long
wavelength photons, gravitons and neutrinos might therefore provide a completely new mechanism
for generating periodic structures with preferred sizes of period.

6.6.3 p-Adic Fourier analysis: group theoretical approach

The problem with the straightforward generalization of the Fourier analysis is that the standard Taylor
expansion of the plane wave exp(ikx) converges only provided x has p-adic norm smaller than one
and that the p-adic exponential function does not have the periodicity properties of the ordinary
exponential function guaranteing orthogonality of the functions of the Fourier basis. Besides this one
must assume p mod 4 = 3 to guarantee that

√
−1 does not exist as ordinary p-adic number.

The approach based on algebraic extensions allowing trigonometry

In an attempt to construct Fourier analysis the safest approach is to start from the ordinary Fourier
analysis at circle or that for a particle in a one-dimensional box. The function basis uses as the basic
building blocks the functions einφ in the case of circle and functions einπx/L in the case of a particle
in a box of side L.

The view about rationals as common to both reals and p-adics, and the possibility of finite-

dimensional extensions of p-adics generated by the roots ei2π/p
k

suggest how to realize this idea.

1. Consider first the case of the circle. Fix some value of N and select a set of points φn = in2π/pk

at which the phases are defined meaning pk+1-dimensional algebraic extension. That powers
of p appear is consistent with p-adic fractality. If so spin 1/2 resp. spin 1 particles would be
inherently 2-adic resp. 3-adic. The plane wave basis corresponds exp(ikφn), k = 0, ..., N − 1. In
the case of particle in the one-dimensional box such that L corresponds to a rational number,
the box is decomposed into N intervals of length L/N .

2. One can assign to the phases a well defined angular momentum as integer n = 0, ..., N − 1
whereas the momentum spectrum for a particle in a box are given by nπ/L. It is possible to
continue the phase factor to the neighborhood of each point by requiring that the differential
equation

d

dx
exp(ikx) = ikexp(ikx)

defining the exponential function is satisfied.

3. The inner product of the plane waves fk1) and fk2 can be defined as the sum

〈k1〉 ≡
∑
n

fk1(xn)fk2(xn) , (6.6.4)

and orthogonality and completeness differ by no means from those of ordinary Fourier analysis.

p-Adic Fourier analysis, Pythagorean phases, and Gaussian primes

An alternative approach is based on Pythagorean phases and discretization in x-space, which might
be a natural thing to do if p-adic field theory is taken as a cognitive model rather than ’real’ physics.
This is also natural because rational Minkowski space is in the algebraic approach the fundamental
object and reals and p-adics emerge as its completions.
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Rational phase factors are common to the complexified p-adics (p mod 4 = 3) and reals and this
suggests that one should define p-adic plane waves so that their values are in the set of the Pythagorean
phases. Pythagorean phases are in one-one correspondence with the phases of the squares of Gaussian
integers NG and thus generated as products of squares of Gaussian primes πG, which are complex
integers with modulus squared equal to prime p mod 4 = 1. Thus the set of phases φ(πG) for the
phases for π2

G form an algebraically infinite-dimensional linear space in the sense that the phases
representable as superpositions

2φG =
∑
πG

nπG2φ(πG)

of these phases with integer coefficients belong to the set.
Consider now the definition of the plane wave basis based on Pythagorean phases and the identi-

fication of the p-adics and reals via common rationals.

1. Let x0 = q = m/n denote a value of x-coordinate and let k denote some value of momentum. If
exp(ikx0) is a Pythagorean phase then also the multiples nk correspond to Pythagorean phases.
k itself cannot be a rational number so that k is not defined as an ordinary p-adic number: this
could be seen as a defect of the approach since one cannot speak of a well-defined momentum.
Neither can k be a rational multiple of π so that Pythagorean phases have nothing to do with
the phases defined by algebraic extensions containing the phase exp(iπ/n) already discussed.

For a given value of x0 = q the momenta k for which exp(ikq) is a Pythagorean phase are
in one-one correspondence with Pythagorean phases. Moreover, Pythagorean phases result in
the lattice defined by the multiples of the x0. Thus a natural definition of the p-adic plane
waves emerges predicting a maximal momentum spectrum with one-one correspondence with
Pythagorean phases, and selecting a preferred lattice of points at the real axis. This defini-
tion is also in accordance with the idea that p-adic plane waves are related with a cognitive
representation for real physics.

2. Pythagorean phases are in one-one correspondence with the phase factors associated with the
squares of the Gaussian integers and generating phases correspond to the phases φ(πG) associated
with the squares of Gaussian primes πG. The moduli squared for the Gaussian primes correspond
to squares of rational primes p mod 4 = 1. Thus set of allowed momenta kG for given spatial
resolution m/n is the set

{kG(q)} = { 2φG/
q + 2πn

q |n ∈ Z} ,

{φG} = {
∑
πG
nπGφ(πG)} .

When the spatial resolution x0 = q is replaced with q1 = r/s, the spectrum is scaled by a
rational factor q/q1. The set of momenta is a dense subset of the real axis. There is no
observable difference between the real momenta differing by a multiple of 2π/q and one must
drop them from consideration. This conclusion is forced also by the fact that p-adically the
momenta k = nk0 do not exist, it is only the phase factors which exist.

3. It is easy to see that the p-adic plane waves with different momenta are orthogonal to each other
as complex rational numbers:

∑
n

exp [in(kG(1)− kG(2))] = 0 .

4. Also completeness relations are satisfied in the sense that the condition

∑
kG

exp [i(n1 − n2)kG] = 0

is satisfied for n1 6= n2. This is due to the fact that all integer multiples of kG define Pythagorean
phases. This means that the Fourier series of a function with respect to Pythagorean phases
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makes sense and one can expand p-adic-valued functions of space-time coordinates as Fourier
series using Pythagorean phases. In particle expansion of the the imbedding space coordinates
as functions of p-adic space-time coordinates might be carried out in this manner.

5. One can criticize this approach for the fact that there is no unique continuation of the phase
factors from the set of the rationals xn = nx0 to p-adic numbers neighborhoods of these points.
Although eigen states of finite translations are in question one cannot regard the states as eigen
states of infinitesimal translations since the momenta are not well defined as p-adic numbers. One
could of course arbitrarily assign momentum eigenstate einπ(x−xk) the point xk to the eigenstate
characterized by the dimensionless momentum n but the momentum spectrum associated with
different Pythagorean phases would be same.

6.6.4 How to define integration and p-adic Fourier analysis, integral cal-
culus, and p-adic counterparts of geometric objects?

p-Adic differential calculus exists and obeys essentially the same rules as ordinary differental calcu-
lus. The only difference from real context is the existence of p-adic pseudoconstants: any function
which depends on finite number of pinary digits has vanishing p-adic derivative. This implies non-
determinism of p-adic differerential equations. One can defined p-adic integral functions using the fact
that indefinite integral is the inverse of differentiation. The basis problem with the definite integrals
is that p-adic numbers are not well-ordered so that the crucial ordering of the points of real axis in
definite integral is not unique. Also p-adic Fourier analysis is problematic since direct counterparts of
ep(ix) and trigonometric functions are not periodic. Also exp(-x) fails to converse exponentially since
it has p-adic norm equal to 1. Note also that these functions exists only when the p-adic norm of x
is smaller than 1.

The following considerations support the view that the p-adic variant of a geometric objects,
integration and p-adic Fourier analysis exists but only when one considers highly symmetric geometric
objects such as symmetric spaces. This is wellcome news from the point of view of physics. At the
level of space-time surfaces this is problematic. The field equations associated with Kähler action
and modified Dirac equation make sense. Kähler action defined as integral over p-adic space-time
surface fails to exist. If however the Kähler function identified as Kähler for a preferred extremal of
Kähler action is rational or algebraic function of preferred complex coordinates of WCW with ratonal
coefficients, its p-adic continuation is expected to exist.

Circle with rotational symmetries and its hyperbolic counterparts

Consider first circle with emphasis on symmetries and Fourier analysis.

1. In this case angle coordinate φ is the natural coordinate. It however does not make sense as such
p-adically and one must consider either trigonometric functions or the phase exp(iφ) instead.
If one wants to do Fourier analysis on circle one must introduce roots Un,N = exp(in2π/N) of
unity. This means discretization of the circle. Introducing all roots Un,p = exp(i2πn/p), such
that p divides N , one can represent all Uk,n up to n = N . Integration is naturally replaced with
sum by using discrete Fourier analysis on circle. Note that the roots of unity can be expressed
as products of powers of roots of unity exp(in2π/pk), where pk divides N .

2. There is a number theoretical delicacy involved. By Fermat’s theorem ap−1 mod p = 1 for
a = 1, ...p−1 for a given p-adic prime so that for any integer M divisible by a factor of p−1 the
M :th roots of unity exist as ordinary p-adic numbers. The problem disappears if these values
of M are excluded from the discretization for a given value of the p-adic prime. The manner to
achieve this is to assume that N contains no divisors of p−1 and is consistent with the notion of
finite measurement resolution. For instance, N = pn is an especially natural choice guaranteing
this.

3. The p-adic integral defined as a Fourier sum does not reduce to a mere discretization of the
real integral. In the real case the Fourier coefficients must approach to zero as the wave vector
k = n2π/N increases. In the p-adic case the condition consistent with the notion of finite
measurement resolution for angles is that the p-adic valued Fourier coefficients approach to zero
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as n increases. This guarantees the p-adic convergence of the discrete approximation of the
integral for large values of N as n increases. The map of p-adic Fourier coefficients to real ones
by canonical identification could be used to relate p-adic and real variants of the function to
each other.

This finding would suggests that p-adic geometries -in particular the p-adic counterpart of CP2,
are discrete. Variables which have the character of a radial coordinate are in natural manner p-
adically continuous whereas phase angles are naturally discrete and described in terms of algebraic
extensions. The conclusion is disappoing since one can quite well argue that the discrete structures
can be regarded as real. Is there any manner to escape this conclusion?

1. Exponential function exp(ix) exists p-adically for |x|p ≤ 1/p but is not periodic. It provides rep-
resentation of p-adic variant of circle as group U(1). One obtains actually a hierarchy of groups
U(1)p,n corresponding to |x|p ≤ 1/pn. One could consider a generalization of phases as products
Expp(N,n2π/N + x) = exp(in2πn/N)exp(ix) of roots of unity and exponent functions with
an imaginary exponent. This would assign to each root of unity p-adic continuum interpreted
as the analog of the interval between two subsequent roots of unity at circle. The hierarchies
of measurement resolutions coming as 2π/pn would be naturally accompanied by increasingly
smaller p-adic groups U(1)p,n.

2. p-Adic integration would involve summation plus possibly also an integration over each p-adic
variant of discretization interval. The summation over the roots of unity implies that the integral
of
∫
exp(inx)dx would appear for n = 0. Whatever the value of this integral is, it is compensated

by a normalization factor guaranteing orthonormality.

3. If one interprets the p-adic coordinate as p-adic integer without the identification of points
differing by a multiple of n as different points the question whether one should require p-adic
continuity arises. Continuity is obtained if Un(x + mpm) = Un(x) for large values of m. This
is obtained if one has n = pk. In the spherical geometry this condition is not needed and
would mean quantization of angular momentum as L = pk, which does not look natural. If
representations of translation group are considered the condition is natural and conforms with
the spirit of the p-adic length scale hypothesis.

The hyperbolic counterpart of circle corresponds to the orbit of point under Lorentz group in
two 2-D Minkowski space. Plane waves are replaced with exponentially decaying functions of the
coordinate η replacing phase angle. Ordinary exponent function exp(x) has unit p-adic norm when it
exists so that it is not a suitable choice. The powers pn existing for p-adic integers however approach
to zero for large values of x = n. This forces discretization of η or rather the hyperbolic phase as
powers of px, x = n. Also now one could introduce products of Expp(nlog(p) + z) = pnexp(x) to
achieve a p-adic continuum. Also now the integral over the discretization interval is compensated
by orthonormalization and can be forgotten. The integral of exponential function would reduce to
a sum

∫
Exppdx =

∑
k p

k = 1/(1 − p). One can also introduce finite-dimensional but non-algebraic
extensions of p-adic numbers allowing e and its roots e1/n since ep exists p-adically.

Plane with translational and rotational symmetries

Consider first the situation by taking translational symmetries as a starting point. In this case
Cartesian coordinates are natural and Fourier analysis based on plane waves is what one wants to
define. As in the previous case, this can be done using roots of unity and one can also introduce
p-adic continuum by using the p-adic variant of the exponent function. This would effectively reduce
the plane to a box. As already noticed, in this case the quantization of wave vectors as multiples of
1/pk is required by continuity.

One can take also rotational symmetries as a starting point. In this case cylindrical coordinates
(ρ, φ) are natural.

1. Radial coordinate can have arbitrary values. If one wants to keep the connection ρ =
√
x2 + y2

with the Cartesian picture square root allowing extension is natural. Also the values of radial
coordinate proportional to odd power of p are problematic since one should introduce

√
p: is

this extension internally consistent? Does this mean that the points ρ ∝ p2n+1 are excluded so
that the plane decomposes to annuli?
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2. As already found, angular momentum eigen states can be described in terms of roots of unity
and one could obtain continuum by allowing also phases defined by p-adic exponent functions.

3. In radial direction one should define the p-adic variants for the integrals of Bessel functions and
they indeed might make sense by algebraic continuation if one consistently defines all functions
as Fourier expansions. Delta-function renormalization causes technical problems for a continuum
of radial wave vectors. One could avoid the problem by using expontentially decaying variants
of Bessel function in the regions far from origin, and here the already proposed description of
the hyperbolic counterparts of plane waves is suggestive.

4. One could try to understand the situation also using Cartesian coordinates. In the case of sphere
this is achieved by introducing two coordinate patches with Cartesian coordinates. Pythagorean
phases are rational phases (orthogonal triangles for which all sides are integer valued) and form
a dense set on circle. Complex rationals (orthogonal triangles with integer valued short sides)
define a more general dense subset of circle. In both cases it is difficult to imagine a discretized
version of integration over angles since discretization with constant angle increrement is not
possible.

The case of sphere and more general symmetric space

In the case of sphere spherical coordinates are favored by symmetry considerations. For spherical
coordinates sin(θ) is analogous to the radial coordinate of plane. Legedre polynomials expressible
as polynomials of sin(θ) and cos(θ) are expressible in terms of phases and the integration measure
sin2(θ)dθdφ reduces the integral of S2 to summation. As before one can introduce also p-adic contin-
uum. Algebraic cutoffs in both angular momentum l and m appear naturally. Similar cutoffs appear
in the representations of quantum groups and there are good reasons to expect that these phenomena
are correlated.

Exponent of Kähler function appears in the integration over configuration space. From the ex-
pression of Kähler gauge potential given by Aα = J θ

α ∂θK one obtains using Aα = cos(θ)δα,φ and
Jθφ = sin(θ) the expression exp(K) = sin(θ). Hence the exponent of Kähler function is expressible
in terms of spherical harmonics.

The completion of the discretized sphere to a p-adic continuum- and in fact any symmetric space-
could be performed purely group theoretically.

1. Exponential map maps the elements of the Lie-algebra to elements of Lie-group. This recipe
generalizes to arbitrary symmetric space G/H by using the Cartan decomposition g = t + h,
[h, h] ⊂ h,[h, t] ⊂ t,[t, t] ⊂ h. The exponentiation of t maps t to G/H in this case. The
exponential map has a p-adic generalization obtained by considering Lie algebra with coefficients
with p-adic norm smaller than one so that the p-adic exponent function exists. As a matter fact,
one obtains a hierarchy of Lie-algebras corresponding to the upper bounds of the p-adic norm
coming as p−k and this hierarchy naturally corresponds to the hierarchy of angle resolutions
coming as 2π/pk. By introducing finite-dimensional transcendental extensions containing roots
of e one obtains also a hierarchy of p-adic Lie-algebras associated with transcendental extensions.

2. In particular, one can exponentiate the complement of the SO(2) sub-algebra of SO(3) Lie-
algebra in p-adic sense to obtain a p-adic completion of the discrete sphere. Each point of the
discretized sphere would correspond to a p-adic continuous variant of sphere as a symmetric
space. Similar construction applies in the case of CP2. Quite generally, a kind of fractal or
holographic symmetric space is obtained from a discrete variant of the symmetric space by
replacing its points with the p-adic symmetric space.

3. In the N-fold discretization of the coordinates of M-dimensional space t one (N−1)M discretiza-
tion volumes which is the number of points with non-vanishing t-coordinates. It would be nice
if one could map the p-adic discretization volumes with non-vanishing t-coordinates to their
positive valued real counterparts by applying canonical identification. By group invariance it is
enough to show that this works for a discretization volume assignable to the origin. Since the
p-adic numbers with norm smaller than one are mapped to the real unit interval, the p-adic Lie
algebra is mapped to the unit cell of the discretization lattice of the real variant of t. Hence by
a proper normalization this mapping is possible.



6.6. p-Adic symmetries and Fourier analysis 333

The above considerations suggest that the hierarchies of measurement resolutions coming as ∆φ =
2π/pn are in a preferred role. One must be however cautious in order to avoid too strong assumptions.
The following arguments however support this identification.

1. The vision about p-adicization characterizes finite measurement resolution for angle measure-
ment in the most general case as ∆φ = 2πM/N , where M and N are positive integers having
no common factors. The powers of the phases exp(i2πM/N) define identical Fourier basis irre-
spective of the value of M unless one allows only the powers exp(i2πkM/N) for which kM < N
holds true: in the latter case the measurement resolutions with different values of M corre-
spond to different numbers of Fourier components. Otherwise themeasurement ersolution is just
∆φ = 2π/pn. If one regards N as an ordinary integer, one must have N = pn by the p-adic
continuity requirement.

2. One can also interpret N as a p-adic integer and assume that state function reduction selects one
particular prime (no superposition of quantum states with different p-adic topologies). For N =
pnM , where M is not divisible by p, one can express 1/M as a p-adic integer 1/M =

∑
k≥0Mkp

k,

which is infinite as a real integer but effectively reduces to a finite integer K(p) =
∑N−1
k=0 Mkp

k.
As a root of unity the entire phase exp(i2πM/N) is equivalent with exp(i2πR/pn), R = K(p)M
mod pn. The phase would non-trivial only for p-adic primes appearing as factors in N . The
corresponding measurement resolution would be ∆φ = R2π/N . One could assign to a given
measurement resolution all the p-adic primes appearing as factors in N so that the notion of
multi-p p-adicity would make sense. One can also consider the identification of the measurement
resolution as ∆φ = |N/M |p = 2π/pk. This interpretation is supported by the approach based
on infinite primes [K76] .

What about integrals over partonic 2-surfaces and space-time surface?

One can of course ask whether also the integrals over partonic 2-surfaces and space-time surface could
be p-adicized by using the proposed method of discretization. Consider first the p-adic counterparts
of the integrals over the partonic 2-surface X2.

1. WCW Hamiltonians and Kähler form are expressible using flux Hamiltonians defined in terms
of X2 integrals of JHA, where HA is δCD × CP2 Hamiltonian, which is a rational function of
the preferred coordinates defined by the exponentials of the coordinates of the sub-space t in
the appropriate Cartan algebra decomposition. The flux factor J = εαβJαβ

√
g2 is scalar and

does not actually depend on the induced metric.

2. The notion of finite measurement resolution would suggest that the discretization of X2 is
somehow induced by the discretization of δCD × CP2. The coordinates of X2 could be taken
to be the coordinates of the projection of X2 to the sphere S2 associated with δM4

± or to the
homologically non-trivial geodesic sphere of CP2 so that the discretization of the integral would
reduce to that for S2 and to a sum over points of S2.

3. To obtain an algebraic number as an outcome of the summation, one must pose additional
conditions guaranteing that both HA and J are algebraic numbers at the points of discretization
(recall that roots of unity are involved). Assume for definiteness that S2 is rM = constant sphere.
If the remaining preferred coordinates are functions of the preferred S2 coordinates mapping
phases to phases at discretization points, one obtains the desired outcome. These conditions are
rather strong and mean that the various angles defining CP2 coordinates -at least the two cyclic
angle coordinates- are integer multiples of those assignable to S2 at the points of discretization.
This would be achieved if the preferred complex coordinates of CP2 are powers of the preferred
complex coordinate of S2 at these points. One could say that X2 is algebraically continued from
a rational surface in the discretized variant of δCD × CP2. Furthermore, if the measurement
resolutions come as 2π/pn as p-adic continuity actually requires and if they correspond to the
p-adic group Gp,n for which group parameters satisfy |t|p ≤ p−n, one can precisely characterize
how a p-adic prime characterizes the real partonic 2-surface. This would be a fulfilment of one
of the oldest dreams related to the p-adic vision.
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A even more ambitious dream would be that even the integral of the Kähler action for preferred
extremals could be defined using a similar procedure. The conjectured slicing of Minkowskian space-
time sheets by string world sheets and partonic 2-surfaces encourages these hopes.

1. One could introduce local coordinates of H at both ends of CD by introducing a continuous
slicing of M4×CP2 by the translates of δM4

±×CP2 in the direction of the time-like vector con-
necting the tips of CD. As space-time coordinates one could select four of the eight coordinates
defining this slicing. For instance, for the regions of the space-time sheet representable as maps
M4 → CP2 one could use the preferred M4 time coordinate, the radial coordinate of δM4

+, and
the angle coordinates of rM = constant sphere.

2. Kähler action density should have algebraic values and this would require the strengthening
of the proposed conditions for X2 to apply to the entire slicing meaning that the discretized
space-time surface is a rational surface in the discretized CD×CP2. If this condition applies to
the entire space-time surface it would effectively mean the discretization of the classical physics
to the level of finite geometries. This seems quite strong implication but is consistent with
the preferred extremal property implying the generalized Bohr rules. The reduction of Kähler
action to 3-dimensional boundary terms is implied by rather general arguments. In this case
only the effective algebraization of the 3-surfaces at the ends of CD and of wormhole throats is
needed [K36] . By effective 2-dimensionality these surfaces cannot be chosen freely.

3. If Kähler function and WCW Hamiltonians are rational functions, this kind of additional condi-
tions are not necessary. It could be that the integrals of defining Kähler action flux Hamiltonians
make sense only in the intersection of real and p-adic worlds assumed to be relevant for the
physics of living systems.

Tentative conclusions

These findings suggest following conclusions.

1. Exponent functions play a key role in the proposed p-adicization. This is not an accident since
exponent functions play a fundamental role in group theory and p-adic variants of real geometries
exist only under symmetries- possibly maximal possible symmetries- since otherwise the notion
of Fourier analysis making possible integration does not exist. The inner product defined in
terms of integration reduce for functions representable in Fourier basis to sums and can be
carried out by using orthogonality conditions. Convolution involving integration reduces to a
product for Fourier components. In the case of imbedding space and WCW these conditions are
satisfied but for space-time surfaces this is not possible.

2. There are several manners to choose the Cartan algebra already in the case of sphere. In the
case of plane one can consider either translations or rotations and this leads to different p-adic
variants of plane. Also the realization of the hierarchy of Planck constants leads to the conclusion
that the extended imbedding space and therefore also WCW contains sectors corresponding to
different choices of quantization axes meaning that quantum measurement has a direct geometric
correlate.

3. The above described 2-D examples represent symplectic geometries for which one has natural
decomposition of coordinates to canonical pairs of cyclic coordinate (phase angle) and cor-
responding canonical conjugate coordinate. p-Adicization depends on whether the conjugate
corresponds to an angle or noncompact coordinate. In both cases it is however possible to define
integration. For instance, in the case of CP2 one would have two canonically conjugate pairs
and one can define the p-adic counterparts of CP2 partial waves by generalizing the procedure
applied to spherical harmonics. Products of functions expressible using partial waves can be
decomposed by tensor product decomposition to spherical harmonics and can be integrated.
In particular inner products can be defined as integrals. The Hamiltonians generating isome-
tries are rational functions of phases: this inspires the hope that also WCW Hamiltonians also
rational functions of preferred WCW coordinates and thus allow p-adic variants.
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4. Discretization by introducing algebraic extensions is unavoidable in the p-adicization of geomet-
rical objects but one can have p-adic continuum as the analog of the discretization interval and
in the function basis expressible in terms of phase factors and p-adic counterparts of exponent
functions. This would give a precise meaning for the p-adic counterparts of the imbedding space
and WCW if the latter is a symmetric space allowing coordinatization in terms of phase angles
and conjugate coordinates.

5. The intersection of p-adic and real worlds would be unique and correspond to the points defining
the discretization.

6.7 Generalization of Riemann geometry

Geometrization of physics program requires Riemann geometry and its variants such as Kähler geom-
etry in the p-adic context. The notion of the p-adic space-time surface and its relationship to its real
counterpart should be also understood. In this section the basic problems and ideas related to these
challenges are discussed.

6.7.1 p-Adic Riemannian geometry depends on cognitive representation

p-Adic Riemann geometry is a direct formal generalization of the ordinary Riemann geometry. In
the minimal purely algebraic generalization one does not try to define concepts like arch length and
volume involving definite integrals but simply defines the p-adic geometry via the metric identified as
a quadratic form in the tangent space of the p-adic manifold. Canonical identification would make
it possible to define p-adic variant of Riemann integral formally allowing to calculate arc lengths and
similar quantities but looks like a trick. The realization that the p-adic variant of harmonic analysis
makes it possible to define definite integrals in the case of symmetric space became possible only after
a detailed vision about what quantum TGD is [K27] had emerged.

Symmetry considerations dictate the p-adic counterpart of the Riemann geometry for M4
+×CP2 to

a high degree but not uniquely. This non-uniqueness might relate to the distinction between different
cognitive representations. For instance, in the case of Euclidian plane one can introduce linear or
cylindrical coordinates and the manifest symmetries dictating the preferred coordinates correspond to
translational and rotational symmetries in these two cases and give rise to different p-adic variants of
the plane. Both linear and cylindrical coordinates are fixed only modulo the action of group consisting
of translations and rotations and the degeneracy of choices can be interpreted in terms of a choice of
quantization axies of angular momentum and momenta.

The most natural looking manner to define the p-adic counterpart of M4 is by using a p-adic com-
pletion for a subset of rational points in coordinates which are preferred on physical basis. In case of
M4 linear Minkowski coordinates are an obvious choice but also the counterparts of Robertson-Walker
coordinates for M4

+ defined as [t, (z, x, y)] = a× [cosh(η), sinh(η)(cos(θ), sin(θ)cos(φ), sin(θ)sin(φ))]
expressible in terms of phases and their hyperbolic counterparts and transforming nicely under the
Cartan algebra of Lorentz group are possible. p-Adic variant is obtained by introducing finite mea-
surement resolution for angle and replacing angle range by finite number of roots of unity. Same
applies to hyperbolic angles.

Rational CP2 could be defined as a coset space SU(3, Q)/U(2, Q) associated with complex rational
unitary 3× 3-matrices. CP2 could be defined as coset space of complex rational matrices by choosing
one point in each coset SU(3, Q)/U(2, Q) as a complex rational 3×3-matrix representable in terms of
Pythagorean phases [A75] and performing a completion for the elements of this matrix by multiplying
the elements with the p-adic exponentials exp(iu), |u|p < 1 such that one obtains p-adically unitary
matrix.

This option is not very natural as far as integration is considered. CP2 however allows the analog
of spherical coordinates for S2 expressible in terms of angle variables alone and this suggests the
introduction of the variant of CP2 for which the coordinate values correspond to roots of unity.
Completion would be performed in the same manner as for rational CP2. This non-uniqueness need
not be a drawback but could reflect the fact that the p-adic cognitive representation of real geometry
are geometrically non-equivalent. This means a refinement of the principle of General Coordinate
Invariance taking into account the fact that the cognitive representation of the real world affects the
world with cognition included in a delicate manner.
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6.7.2 p-Adic imbedding space

The construction of both quantum TGD and p-adic QFT limit requires p-adicization of the imbedding
space geometry. Also the fact that p-adic Poincare invariance throws considerable light to the p-adic
length scale hypothesis suggests that p-adic geometry is really needed. The construction of the p-adic
version of the imbedding space geometry and spinor structure relies on the symmetry arguments and
to the generalization of the analytic formulas of the real case almost. The essential element is the
notion of finite measurement resolution leading to discretization in large and to p-adicization below the
resolution scale. This approach leads to a highly nontrivial generalization of the symmetry concept
and p-adic Poincare invariance throws light to the p-adic length scale hypothesis. An important
delicacy is related to the identification of the fundamental p-adic length scale, which corresponds to
the unit element of the p-adic number field and is mapped to the unit element of the real number field
in the canonical identification mapping p-adic mass squared to its real counterpart.

The identification of the fundamental p-adic length scale

The fundamental p-adic length scale correponds to the p-adic unit e = 1 and is mapped to the unit of
the real numbers in the canonical identification. The correct physical identification of the fundamental
p-adic length scale is of crucial importance since the predictions of the theory for p-adic masses depend
on the choice of this scale.

In TGD the ’radius’ R of CP2 is the fundamental length scale (2πR is by definition the length of
the CP2 geodesics). In accordance with the idea that p-adic QFT limit makes sense only above length
scales larger than the radius of CP2 R is of same order of magnitude as the p-adic length scale defined
as l = π/m0, where m0 is the fundamental mass scale and related to the ’cosmological constant’ Λ
(Rij = Λsij) of CP2 by

m2
0 = 2Λ . (6.7.1)

The relationship between R and l is uniquely fixed:

R2 =
3

m3
0

=
3

2Λ
=

3l2

π2
. (6.7.2)

Consider now the identification of the fundamental length scale.

1. One must use R2 or its integer multiple, rather than l2, as the fundamental p-adic length scale
squared in order to avoid the appearance of the p-adically ill defined π:s in various formulas of
CP2 geometry.

2. The identification for the fundamental length scale as 1/m0 leads to difficulties.

(a) The p-adic length for the CP2 geodesic is proportional to
√

3/m0. For the physically most
interesting p-adic primes satisfying p mod 4 = 3 so that

√
−1 does not exist as an ordinary

p-adic number,
√

3 = i
√
−3 belongs to the complex extension of the p-adic numbers. Hence

one has troubles in getting real length for the CP2 geodesic.

(b) If m2
0 is the fundamental mass squared scale then general quark states have mass squared,

which is integer multiple of 1/3 rather than integer valued as in string models.

3. These arguments suggest that the correct choice for the fundamental length scale is as 1/R so
that M2 = 3/R2 appearing in the mass squared formulas is p-adically real and all values of
the mass squared are integer multiples of 1/R2. This does not affect the real counterparts of
the thermal expectation values of the mass squared in the lowest p-adic order but the effects,
which are due to the modulo arithmetics, are seen in the higher order contributions to the mass
squared. As a consequence, one must identify the p-adic length scale l as

l ≡ πR ,



6.7. Generalization of Riemann geometry 337

rather than l = π/m0. This is indeed a very natural identification. What is especially nice is
that this identification also leads to a solution of some longstanding problems related to the p-
adic mass calculations. It would be highly desirable to have the same p-adic temperature Tp = 1
for both the bosons and fermions rather than Tp = 1/2 for bosons and Tp = 1 for fermions. For
instance, black hole elementary particle analogy as well as the need to get rid of light boson
exotics suggests this strongly. It indeed turns out possible to achieve this with the proposed
identification of the fundamental mass squared scale.

p-Adic counterpart of M4
+

The construction of the p-adic counterpart of M4
+ seems a relatively straightforward task and should

reduce to the construction of the p-adic counter part of the real axis with the standard metric. As
already noticed, linear Minkowksi coordinates are physically and mathematically preferred coordinates
and it is natural to construct the metric in these coordinates.

There are some quite interesting delicacies related to the p-adic version of the Poincare invariance.
Consider first translations. In order to have imaginary unit needed in the construction of the ordinary
representations of the Poincare group one must have p mod 4 = 3 to guarantee that

√
−1 does not

exist as an ordinary p-adic number. It however seems that the construction of the representations
is at least formally possible by replacing imaginary unit with the square root of some other p-adic
number not existing as a p-adic number.

It seems that only the discrete group of translations allows representations consisting of orthogonal
planewaves. p-Adic planewaves can be defined in the lattice consisting of the multiples of x0 = m/n
consisting of points with p-adic norm not larger that |x0|p and the points pnx0 define fractally scaled-
down versions of this set. In canonical identification these sets corresponds to volumes scaled by
factors p−n.

A physically interesting question is whether the Lorentz group should contain only the elements
obtained by exponentiating the Lie-algebra generators of the Lorentz group or whether also large
Lorentz transformations, containing as a subgroup the group of the rational Lorentz transformations,
should be allowed. If the group contains only small Lorentz transformations, the quantization volume
of M4

+ (say the points with coordinates mk having p-adic norm not larger than one) is also invariant
under Lorentz transformations. This means that the quantization of the theory in the p-adic cube
|mk| < pn is a Poincare invariant procedure unlike in the real case.

The appearance of the square root of p, rather than the naively expected p, in the expression of
the p-adic length scale can be undertood if the p-adic version of M4 metric contains p as a scaling
factor:

ds2 = pR2mkldm
kdml ,

R ↔ 1 , (6.7.2)

where mkl is the standard M4 metric (1,−1,−1,−1). The p-adic distance function is obtained by
integrating the line element using p-adic integral calculus and this gives for the distance along the
k:th coordinate axis the expression

s = R
√
pmk . (6.7.3)

The map from p-adic M4 to real M4 is canonical identification plus a scaling determined from the
requirement that the real counterpart of an infinitesimal p-adic geodesic segment is same as the length
of the corresponding real geodesic segment:

mk → π(mk)R . (6.7.4)

The p-adic distance along the k:th coordinate axis from the origin to the point mk = (p − 1)(1 +
p + p2 + ...) = −1 on the boundary of the set of the p-adic numbers with norm not larger than one,
corresponds to the fundamental p-adic length scale Lp =

√
pl =

√
pπR:



338 Chapter 6. p-Adic Numbers and Generalization of Number Concept

√
p((p− 1)(1 + p+ ...))R → πR

(p− 1)(1 + p−1 + p−2 + ...)
√
p

= Lp .

(6.7.4)

What is remarkable is that the shortest distance in the range mk = 1, ..m− 1 is actually L/
√
p rather

than l so that p-adic numbers in range span the entire R+ at the limit p→∞. Hence p-adic topology
approaches real topology in the limit p → ∞ in the sense that the length of the discretization step
approaches to zero.

The two variants of CP2

As noticed, CP2 allows two variants based on rational discretization and on the discretiation based
on roots of unity. The root of unity option corresponds to the phases associated with 1/(1 + r2) =
tan2(u/2) = (1−cos(u))/(1+cos(u)) and implies that integrals of spherical harmonics can be reduced
to summations when angular resolution ∆u = 2π/N is introduced. In the p-adic context, one can
replace distances with trigonometric functions of distances along zig zag curves connecting the points
of the discretization. Physically this notion of distance is quite reasonable since distances are often
measured using interferometer.

In the case of rtional variant of CP2 one can proceed by defining the p-adic counterparts of SU(3)
and U(2) and using the identification CP2 = SU(3)/U(2). The p-adic counterpart of SU(3) consists of
all 3×3 unitary matrices satisfying p-adic unitarity conditions (rows/colums are mutually orthogonal
unit vectors) or its suitable subgroup: the minimal subgroup corresponds to the exponentials of the
Lie-algebra generators. If one allows algebraic extensions of the p-adic numbers, one obtains several
extensions of the group. The extension allowing the square root of a p-adically real number is the most
interesting one in this respect since the general solution of the unitarity conditions involves square
roots.

The subgroup of SU(3) obtained by exponentiating the Lie-algebra generators of SU(3) normalized
so that their nonvanishing elements have unit p-adic norm, is of the form

SU(3)0 = {x = exp(
∑
k

itkXk) ; |tk|p < 1} = {x = 1 + iy ; |y|p < 1} . (6.7.5)

The diagonal elements of the matrices in this group are of the form 1 + O(p). In order O(p) these
matrices reduce to unit matrices.

Rational SU(3) matrices do not in general allow a representation as an exponential. In the real
case all SU(3) matrices can be obtained from diagonalized matrices of the form

h = diag{exp(iφ1), exp(iφ2), exp(exp(−i(φ1 + φ2)} . (6.7.6)

The exponentials are well defined provided that one has |φi|p < 1 and in this case the diagonal
elements are of form 1+O(p). For p mod 4 = 3 one can however consider much more general diagonal
matrices

h = diag{z1, z2, z3} ,

for which the diagonal elements are rational complex numbers

zi =
(mi + ini)√
m2
i + n2

i

,

satisfying z1z2z3 = 1 such that the components of zi are integers in the range (0, p−1) and the square
roots appearing in the denominators exist as ordinary p-adic numbers. These matrices indeed form
a group as is easy to see. By acting with SU(3)0 to each element of this group and by applying
all possible automorphisms h → ghg−1 using rational SU(3) matrices one obtains entire SU(3) as a
union of an infinite number of disjoint components.
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The simplest (unfortunately not physical) possibility is that the ’physical’ SU(3) corresponds to
the connected component of SU(3) represented by the matrices, which are unit matrices in order
O(p). In this case the construction of CP2 is relatively straightforward and the real formalism should
generalize as such. In particular, for p mod 4 = 3 it is possible to introduce complex coordinates ξ1, ξ2
using the complexification for the Lie-algebra complement of su(2) × u(1). The real counterparts
of these coordinates vary in the range [0, 1) and the end points correspond to the values of ti equal
to ti = 0 and ti = −p. The p-adic sphere S2 appearing in the definition of the p-adic light cone is
obtained as a geodesic submanifold of CP2 (ξ1 = ξ2 is one possibility). From the requirement that real
CP2 can be mapped to its p-adic counterpart it is clear that one must allow all connected components
of CP2 obtained by applying discrete unitary matrices having no exponential representation to the
basic connected component. In practice this corresponds to the allowance of all possible values of the
p-adic norm for the components of the complex coordinates ξi of CP2.

The simplest approach to the definition of the CP2 metric is to replace the expression of the Kähler
function in the real context with its p-adic counterpart. In standard complex coordinates for which
the action of U(2) subgroup is linear, the expression of the Kähler function reads as

K = log(1 + r2) ,

r2 =
∑
i

ξ̄iξi . (6.7.6)

p-Adic logarithm exists provided r2 is of order O(p). This is the case when ξi is of order O(p). The
definition of the Kähler function in a more general case, when all possible values of the p-adic norm
are allowed for r, is based on the introduction of a p-adic pseudo constant C to the argument of the
Kähler function

K = log(
1 + r2

C
) .

C guarantees that the argument is of the form 1+r2

C = 1+O(p) allowing a well-defined p-adic logarithm.
This modification of the Kähler function leaves the definition of Kähler metric, Kähler form and spinor
connection invariant.

A more elegant manner to avoid the difficulty is to use the exponent Ω = exp(K) = 1 + r2 of the
Kähler function instead of Kähler function, which indeed well defined for all coordinate values. In
terms of Ω one can express the Kähler metric as

gkl̄ =
∂k∂l̄Ω

Ω
− ∂kΩ∂l̄Ω

Ω2
. (6.7.7)

The p-adic metric can be defined as

sij̄ = R2∂i∂j̄K = R2 (δij̄r
2 − ξ̄iξj)

(1 + r2)2
.

(6.7.7)

The expression for the Kähler form is the same as in the real case and the components of the Kähler
form in the complex coordinates are numerically equal to those of the metric apart from the factor of i.
The components in arbitrary coordinates can be deduced from these by the standard transformation
formulas.

6.7.3 Topological condensate as a generalized manifold

The ideas about how p-adic topology emerges from quantum TGD have varied. The first belief was
that p-adic topology is only an effective topology of real space-time sheets. This belief turned out to
be not quite correct. p-Adic topology emerges also as a genuine topology of the space-time and p-adic
regions could be identified as correlates for cognition and intentionality. The vision about quantum
TGD as a generalized number theory provides possible solutions to the basic problems associated with
the precise definition of topological condensate.
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Generalization of number concept and fusion of real and p-adic physics

The unification of real physics of material work and p-adic physics of cognition and intentionality
leads to the generalization of the notion of number field. Reals and various p-adic number fields
are glued along their common rationals (and common algebraic numbers too) to form a fractal book
like structure. Allowing all possible finite-dimensional extensions of p-adic numbers brings additional
pages to this ”Big Book”.

This generalization leads to a generalization of the notion of manifold as a collection of a real
manifold and its p-adic variants glued together along common rationals. The precise formulation
involves of course several technical problems. For instance, should one glue along common algebraic
numbers and Should one glue along common transcendentals such as ep? Are algebraic extensions of
p-adic number fields glued together along the algebraics too?

This notion of manifold implies a generalization of the notion of imbedding space. p-Adic tran-
scendentals can be regarded as infinite numbers in the real sense and thus most points of the p-adic
space-time sheets would be at infinite distance and real and p-adic space-time sheets would intersect
in a discrete set consisting of rational points. This view in which cognition and intentionality would
be literally cosmic phenomena is in a sharp contrast with the often held belief that p-adic topology
emerges below Planck length scale.

It took some time to end up with this vision. The first picture was based on the notion of real and
p-adic space-time sheets glued together by using canonical identification or some of its variants but
led to insurmountable difficulties since p-adic topology is so different from real topology. One can of
course ask whether one can speak about p-adic counterparts of notions like boundary of 3-surface or
genus of 2-surface crucial for TGD based model of family replication phenomenon. It seems that these
notions generalize as purely algebraically defined concepts which supports the view that p-adicization
of real physics must be a purely algebraic procedure.

How large p-adic space-time sheets can be?

Space-time region having finite size in the real sense can have arbitrarily large size in p-adic sense and
vice versa. This raises a rather thought provoking questions. Could the p-adic space-time sheets have
cosmological or even infinite size with respect to the real metric but have be p-adically finite? How
large space-time surface is responsible for the p-adic representation of my body? Could the large or
even infinite size of the cognitive space-time sheets explain why creatures of a finite physical size can
invent the notion of infinity and construct cosmological theories? Could it be that pinary cutoff O(pn)
defining the resolution of a p-adic cognitive representation would define the size of the space-time
region needed to realize the cognitive representation?

In fact, the mere requirement that the neighborhood of a point of the p-adic space-time sheet
contains points, which are p-adically infinitesimally near to it can mean that points infinitely distant
from this point in the real sense are involved. A good example is provided by an integer valued point
x = n < p and the point y = x+pm, m > 0: the p-adic distance of these points is p−m whereas at the
limit m → ∞ the real distance goes as pm and becomes infinite for infinitesimally near points. The
points n+ y, y =

∑
k>0 xkp

k, 0 < n < p, form a p-adically continuous set around x = n. In the real
topology this point set is discrete set with a minimum distance ∆x = p between neighboring points
whereas in the p-adic topology every point has arbitrary nearby points. There are also rationals, which
are arbitrarily near to each other both p-adically and in the real sense. Consider points x = m/n,
m and n not divisible by p, and y = (m/n) × (1 + pkr)/(1 + pks), s = r + 1 such that neither r
or s is divisible by p and k >> 1 and r >> p. The p-adic and real distances are |x − y|p = p−k

and |x− y| ' (m/n)/(r + 1) respectively. By choosing k and r large enough the points can be made
arbitrarily close to each other both in the real and p-adic senses.

The idea about infinite size of the p-adic cognitive space-time sheets providing representation of
body and brain is consistent with TGD inspired theory of consciousness, which forces to take very
seriously the idea that even human consciousness involves cosmic length scales.

What determines the p-adic primes assignable to a given real space-time sheet?

The p-adic realization of the Slaving Principle suggests that various levels of the topological condensate
correspond to real matter like regions and p-adic mind like regions labelled by p-adic primes p. The
larger the length scale, the larger the value of p and the course the induced real topology. If the most
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interesting values of p indeed correspond Mersenne primes, the number of most interesting levels is
finite: at most 12 levels below electron length scale: actually also primes near prime powers of two
seem to be physically important.

The intuitive expectation is that the p-adic prime associated with a given real space-time sheet
characterizes its effective p-adic topology. As a matter fact, several p-adic effective topologies can
be considered and the attractive hypothesis is that elementary particles are characterized by integers
defined by the product of these p-adic primes and the integers for particles which can have direct
interactions possess common prime factors.

The intuitive view is that those primes are favored for with the p-adic space-time sheet obtained by
an algebraic continuation has as many rational or algebraic space-time points as possible in common
with the real space-time sheet. The rationale is that if the real space-time sheet is generated in a
quantum jump in which p-adic space-time sheet is transformed to a real one, it must have a large
number of points in common with the real space-time sheet if the probability amplitude for this
process involves a sum over the values of an n-point function of a conformal field theory over all
common n-tuples and vanishes when the number of common points is smaller than n.

6.8 Appendix: p-Adic square root function and square root
allowing extension of p-adic numbers

The following arguments demonstrate that the extension allowing square roots of ordinary p-adic
numbers is 4-dimensional for p < 2 and 8-dimensional for p = 2.

6.8.1 p > 2 resp. p = 2 corresponds to D = 4 resp. D = 8 dimensional
extension

What is important is that only the square root of ordinary p-adic numbers is needed: the square
root need not exist outside the real axis. It is indeed impossible to find a finite-dimensional extension
allowing square root for all ordinary p-adic numbers numbers. For p > 2 the minimal dimension for
algebraic extension allowing square roots near real axis is D = 4. For p = 2 the dimension of the
extension is D = 8.

For p > 2 the form of the extension can be derived by the following arguments.

1. For p > 2 a p-adic number y in the range (0, p − 1) allows square root only provided there
exists a p-adic number x ∈ {0, p − 1} satisfying the condition y = x2 mod p. Let x0 be the
smallest integer, which does not possess a p-adic square root and add the square root θ of x0 to
the number field. The numbers in the extension are of the form x + θy. The extension allows
square root for every x ∈ {0, p − 1} as is easy to see. p-adic numbers mod p form a finite field
G(p, 1) [A126] so that any p-adic number y, which does not possess square root can be written
in the form y = x0u, where u possesses square root. Since θ is by definition the square root of
x0 then also y possesses square root. The extension does not depend on the choice of x0.

The square root of −1 does not exist for p mod 4 = 3 [A118] and p = 2 but the addition of θ
gurantees its existence automatically. The existence of

√
−1 follows from the existence of

√
p− 1

implied by the extension by θ.
√

(−1 + p)− p can be developed in power in powers of p and
series converges since the p-adic norm of coefficients in Taylor series is not larger than 1. If p−1
does not possess a square root, one can take θ to be equal to

√
−1.

2. The next step is to add the square root of p so that the extension becomes 4-dimensional and
an arbitrary number in the extension can be written as

Z = (x+ θy) +
√
p(u+ θv) . (6.8.1)

In p = 2 case 8-dimensional extension is needed to define square roots. The addition of
√

2 implies
that one can restrict the consideration to the square roots of odd 2-adic numbers. One must be careful
in defining square roots by the Taylor expansion of square root

√
x0 + x1 since n:th Taylor coefficient
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is proportional to 2−n and possesses 2-adic norm 2n. If x0 possesses norm 1 then x1 must possess
norm smaller than 1/8 for the series to converge. By adding square roots θ1 =

√
−1, θ2 =

√
2 and

θ3 =
√

3 and their products one obtains 8-dimensional extension.
The emergence of the dimensions D = 4 and D = 8 for the algebraic extensions allowing the square

root of an ordinary p-adic number stimulates an obvious question: could one regard space-time as
this kind of an algebraic extension for p > 2 and the imbedding space H = M4

+ × CP2 as a similar
8-dimensional extension of the 2-adic numbers? Contrary to the first expectations, it seems that
algebraic dimension cannot be regarded as a physical dimension, and that quaternions and octonions
provide the correct framework for understanding space-time and imbedding space dimensions. One
could perhaps say that algebraic dimensions are additional dimensions of the world of cognitive physics
rather than those of the real physics and there presence could perhaps explain why we can imagine
all possible dimensions mathematically.

By construction, any ordinary p-adic number in the extension allows square root. The square root
for an arbitrary number sufficiently near to p-adic axis can be defined through Taylor series expansion
of the square root function

√
Z at a point of p-adic axis. The subsequent considerations show that the

p-adic square root function does not allow analytic continuation to R4 and the points of the extension
allowing a square root consist of disjoint converge cubes forming a structure resembling future light
cone in certain respects.

6.8.2 p-Adic square root function for p > 2

The study of the properties of the series representation of a square root function shows that the
definition of the square root function is possible in certain region around the real p-adic axis. What is
nice that this region can be regarded as the p-adic analog (not the only one) of the future light cone
defined by the condition

Np(Im(Z)) < Np(t = Re(Z)) = pk , (6.8.2)

where the real p-adic coordinate t = Re(Z) is identified as a time coordinate and the imaginary part
of the p-adic coordinate is identified as a spatial coordinate. The p-adic norm for the four-dimensional
extension is analogous to ordinary Euclidian distance. p-Adic light cone consists of cylinders parallel
to time axis having radius Np(t) = pk and length pk−1(p − 1). As a real space (recall the canonical
correspondence) the cross section of the cylinder corresponds to a parallelpiped rather than ball.

The result can be understood heuristically as follows.

1. For the four-dimensional extension allowing square root (p > 2) one can construct square root
at each point x(k, s) = spk represented by ordinary p-adic number, s = 1, ..., p − 1, k ∈ Z.
The task is to show that by using Taylor expansion one can define square root also in some
neighbourhood of each of these points and find the form of this neighbourhood.

2. Using the general series expansion of the square root function one finds that the convergence
region is p-adic ball defined by the condition

Np(Z − spk) ≤ R(k) , (6.8.3)

and having radius R(k) = pd, d ∈ Z around the expansion point.

3. A purely p-adic feature is that the convergence spheres associated with two points are either
disjoint or identical! In particular, the convergence sphere B(y) associated with any point inside
convergence sphere B(x) is identical with B(x): B(y) = B(x). The result follows directly from
the ultra-metricity of the p-adic norm. The result means that stepwise analytic continuation is
not possible and one can construct square root function only in the union of p-adic convergence
spheres associated with the points x(k, s) = spk which correspond to ordinary p-adic numbers.
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4. By the scaling properties of the square root function the convergence radius R(x(k, s)) ≡ R(k)
is related to R(x(0, s)) ≡ R(0) by the scaling factor p−k:

R(k) = p−kR(0) , (6.8.4)

so that the convergence sphere expands as a function of the p-adic time coordinate. The study
of the convergence reduces to the study of the series at points x = s = 1, ..., k − 1 with a unit
p-adic norm.

5. Two neighboring points x = s and x = s + 1 cannot belong to the same convergence sphere:
this would lead to a contradiction with the basic results of about square root function at integer
points. Therefore the convergence radius satisfies the condition

R(0) < 1 . (6.8.5)

The requirement that the convergence is achieved at all points of the real axis implies

R(0) =
1

p
,

R(pks) =
1

pk+1
. (6.8.5)

If the convergence radius is indeed this, then the region, where the square root is defined, corre-
sponds to a connected light cone like region defined by the condition Np(Im(Z)) = Np(Re(Z))
and p > 2-adic space time is the p-adic analog of the M4 lightcone. If the convergence radius
is smaller, the convergence region reduces to a union of disjoint p-adic spheres with increasing
radii.

How the p-adic light cone differs from the ordinary light cone can be seen by studying the explicit
form of the p-adic norm for p > 2 square root allowing extension Z = x+ iy +

√
p(u+ iv)

Np(Z) = (Np(det(Z)))
1
4 ,

= (Np((x
2 + y2)2 + 2p2((xv − yu)2 + (xu− yv)2) + p4(u2 + v2)2))

1
4 ,

(6.8.4)

where det(Z) is the determinant of the linear map defined by a multiplication with Z. The definition
of the convergence sphere for x = s reduces to

Np(det(Z3)) = Np(y
4 + 2p2y2(u2 + v2) + p4(u2 + v2)2)) < 1 . (6.8.5)

For physically interesting case p mod 4 = 3 the points (y, u, v) satisfying the conditions

Np(y) ≤ 1

p
,

Np(u) ≤ 1 ,

Np(v) ≤ 1 , (6.8.4)

belong to the sphere of convergence: it is essential that for all u and v satisfying the conditions one
has also Np(u

2 + v2) ≤ 1. By the canonical correspondence between p-adic and real numbers, the
real counterpart of the sphere r = t is now the parallelpiped 0 ≤ y < 1, 0 ≤ u < p, 0 ≤ v < p, which
expands with an average velocity of light in discrete steps at times t = pk.
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6.8.3 Convergence radius for square root function

In the following it will be shown that the convergence radius of
√
t+ Z is indeed non-vanishing for

p > 2. The expression for the Taylor series of
√
t+ Z reads as

√
t+ Z = =

√
x
∑
n

an ,

an = (−1)n
(2n− 3)!!

2nn!
xn ,

x =
Z

t
. (6.8.3)

The necessary criterion for the convergence is that the terms of the power series approach to zero at
the limit n→∞. The p-adic norm of the n:th term is for p > 2 given by

Np(an) = Np(
(2n− 3)!!

n!
)Np(x

n) < Np(x
n)Np(

1

n!
) . (6.8.4)

The dangerous term is clearly the n! in the denominator. In the following it will be shown that the
condition

U ≡ Np(x
n)

Np(n!)
< 1 for Np(x) < 1 , (6.8.5)

holds true. The strategy is as follows:
a) The norm of xn can be calculated trivially: Np(x

n) = p−Kn,K ≥ 1.
b) Np(n!) is calculated and an upper bound for U is derived at the limit of large n.

p-Adic norm of n! for p > 2

Lemma 1: Let n =
∑k
i=0 n(i)pi, 0 ≤ n(i) < p be the p-adic expansion of n. Then Np(n!) can be

expressed in the form

Np(n!) =

k∏
i=1

N(i)n(i) ,

N(1) =
1

p
,

N(i+ 1) = N(i)p−1p−i . (6.8.4)

An explicit expression for N(i) reads as

N(i) = p−
∑i
m=0m(p−1)i−m . (6.8.5)

Proof: n! can be written as a product

Np(n!) =

k∏
i=1

X(i, n(i)) ,

X(k, n(k)) = Np((n(k)pk)!) ,

X(k − 1, n(k − 1)) = Np(

n(k−1)pk−1∏
i=1

(n(k)pk + i)) = Np((n(k − 1)pk−1)!) ,

X(k − 2, n(k − 2)) = Np(

n(k−2)pk−2∏
i=1

(n(k)pk + n(k − 1)pk−1 + i) , )

= Np((n(k − 2)pk−2)!) ,

X(k − i, n(k − i)) = Np((n(k − i)pk−i)!) . (6.8.1)
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The factors X(k, n(k)) reduce in turn to the form

X(k, n(k)) =

n(k)∏
i=1

Y (i, k) ,

Y (i, k) =

pk∏
m=1

Np(ip
k +m) . (6.8.1)

The factors Y (i, k) in turn are indentical and one has

X(k, n(k)) = X(k)n(k) ,

X(k) = Np(p
k!) . (6.8.1)

The recursion formula for the factors X(k) can be derived by writing explicitely the expression of
Np(p

k!) for a few lowest values of k:
1) X(1) = Np(p!) = p−1.
2) X(2) = Np(p

2!) = X(1)p−1p−2 ( p2! decomposes to p−1 products having same norm as p! plus the
last term equal to p2.
i) X(i) = X(i− 1)p−1p−i

Using the recursion formula repeatedly the explicit form of X(i) can be derived easily. Combining
the results one obtains for Np(n!) the expression

Np(n!) = p−
∑k
i=0 n(i)A(i) ,

A(i) =

i∑
m=1

m(p− 1)i−m . (6.8.1)

The sum A(i) appearing in the exponent as the coefficient of n(i) can be calculated by using geometric
series

A(i) = (
p− 1

p− 2
)2(p− 1)i−1(1 +

i

(p− 1)i+1
− (i+ 1)

(p− 1)i
) ,

≤ (
p− 1

p− 2
)2(p− 1)i−1 . (6.8.1)

Upper bound for Np(
xn

n! ) for p > 2

By using the expressions n =
∑
i n(i)pi, Np(x

n) = p−Kn and the expression of Npn! as well as the
upper bound

A(i) ≤ (
p− 1

p− 2
)2(p− 1)i−1 . (6.8.2)

For A(i) one obtains the upper bound

Np(
xn

n!
) ≤ p−

∑k
i=0 n(i)pi(K−(

(p−1)
(p−2)

)2(
(p−1)
p )i−1) .

(6.8.2)

It is clear that for Np(x) < 1 that is K ≥ 1 the upper bound goes to zero. For p > 3 exponents are
negative for all values of i: for p = 3 some lowest exponents have wrong sign but this does not spoil
the convergence. The convergence of the series is also obvious since the real valued series 1

1−
√
Np(x)

serves as a majorant.
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6.8.4 p = 2 case

In p = 2 case the norm of a general term in the series of the square root function can be calculated
easily using the previous result for the norm of n!:

Np(an) = Np(
(2n− 3)!!

2nn!
)Np(x

n) = 2−(K−1)n+
∑k
i=1 n(i)

i(i+1)

2i+1 . (6.8.3)

At the limit n → ∞ the sum term appearing in the exponent approaches zero and convergence
condition gives K > 1, so that one has

Np(Z) ≡ (Np(det(Z)))
1
8 ≤ 1

4
. (6.8.4)

The result does not imply disconnected set of convergence for square root function since the square
root for half odd integers exists:

√
s+

1

2
=

√
2s+ 1√

2
, (6.8.5)

so that one can develop square as a series in all half odd integer points of the p-adic axis (points
which are ordinary p-adic numbers). As a consequence, the structure for the set of convergence is
just the 8-dimensional counterpart of the p-adic light cone. Space-time has natural binary structure
in the sense that each Np(t) = 2k cylinder consists of two identical p-adic 8-balls (parallelpipeds as
real spaces).



Chapter 7

p-Adic Physics: Physical Ideas

7.1 Introduction

The basic implication of ’TGD as a generalized number theory’ philosophy is that p-adic regions of
the space-time surface result dynamically. Space-time surface is defined by the vanishing condition of
a rational function of two quaternion-valued variables q1 and p1. This condition gives p1 as a function
of q1. It can however happen that some components of the quaternion p1 fail to be real numbers and
become complex. It might be however possible to perform the completion of the rational space-time
surface to a p-adic space-time surface and for some values of the p-adic prime the series defining
the power series representing p1 = f(q1) can converge to a number in some algebraic extension of
the ordinary p-adic numbers. It is also quite possible that p-adic and real power roots p1 = f(q1)
converge simultaneously. Even more general rational-adic topologies in which norm is a power of a
rational number are possible: rational-adic numbers do not however form a ring. p-Adic numbers are
thus very closely related with quaternion-conformal invariance and criticality.

p-Adic topologies form an infinite hierarchy and p-adic physics leads to a vision about many-sheeted
space-time as a hierarchical structure consisting of p-adic and real space-time sheets of increasing size
and increasing value of prime p. These surfaces are glued together using topological sum or join along
boundaries bonds. Contrary to the original expectations, p-adic space-time regions represent ’mind-
stuff’ rather than ’matter’ which is also present and represented by real and infinite-p p-adic regions.
Thus p-adic provide ’cognitive representations’ for matter like regions and this is why their physics
provides a manner to understand real physics. If p-adic-to-real phase transitions are possible, one can
understand why it is possible to assign p-adic prime even to real regions. In fact, the hypothesis that
p-adic regions provide a cognitive model for real physics, poses very strong constraints on real physics.

There is a ”holy trinity” of non-determinisms in TGD in the sense that there is the non-determinism
associated with the quantum jumps, the classical non-determinism of the Kähler action and p-adic
non-determinism. The non-determinism of quantum jumps can involve also a selection between var-
ious multifurcations for various absolute minima of the Kähler action in which case it represents a
genuine volitional act. p-Adic non-determinism in turn corresponds to the non-determinism of pure
imagination with no material consequences. Also real space-time sheets with finite time duration are
also possible and they might represent what might be called ’sensory space-time sheets’ as opposed
to cognitive space-time sheets. Cognitive space-time sheets can be transformed to real ones in quan-
tum jumps inducing change of control parameters of the polynomial defining space-time surface: if the
change is such that the p-adic root is replaced with a real root, one can say that thought is transformed
into action. The reverse of this process is the transformation of sensory input into cognition.

”Holy trinity” implies that it should be possible to determine the p-adic prime characterizing
a given space-time region (or space-time sheet) by observing a large number of quantum time de-
velopments of this system. The characteristic p-adic fractality, that is the presence of time scales
T (p, k) = pkTp, should become manifest in the statistical properties of the cognitive time develop-
ments which in should turn reflect the properties of the real physics since cognitive representations
are in question. For instance, quantum jumps with especially large amplitude would tend to occur
at time scales T (p, k) = pkTp. T (p, k) could also provide series of characteristic correlation times.
Needless to say, this prediction means definite departure from the non-determinism of ordinary quan-
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tum mechanics and only at the limit of infinite p the predictions should be identical. An interesting
possibility is that 1/f noise [D1] is a direct manifestation of the classical non-determinism: if this is
the case, it should be possible to associate a definite value of p to 1/f noise. Also transformations
of the p-adic cognitive space-time sheets to real space-time sheets of a finite time duration and vice
versa might be involved with the 1/f noise so that 1/f noise would be a direct signature of cognitive
consciousness.

The ’physical’ building blocks of p-adic TGD, as opposed to the philosophical mathematical ones
briefly summarized above, and in more detail in previous chapters, are spin glass analogy leading
to the general picture about how finite-p p-adicity emerges from quantum TGD, the identification
of elementary particles as CP2 type extremals, and elementary particle black hole analogy. These
building blocks have been present as stable pieces of theory from beginning whereas philosophical
ideas and interpretations have undergone rather wild fluctuations during an almost last decade of
p-adic TGD.

7.2 p-Adic numbers and spin glass analogy

Spin glass phase decomposes into regions in which the direction of the magnetization varies randomly
with respect to spatial coordinates but remains constant in time. What makes spin glass special is
that the boundary regions between regions of different magnetization do not give rise to large surface
energies. Spin glass structure emerges in two manners in TGD framework.

1. Spin glass behavior at the level of real physics is encountered in TGD framework because of
the classical non-determinism of the Kähler action. The classical non-determinism of CP2 type
extremals represents the manifestation of the spin glass analogy at the level of elementary particle
physics. In macroscopic length scales real physics spin glass analogy makes possible ’real world
engineering’.

2. Spin glass behavior at the level of cognition is encountered because of the p-adic non-determinism
and makes possible what might be called imagination or ’cognitive engineering’. The point is
that any piecewise constant function has a vanishing p-adic derivative. Therefore any function
of the spatial coordinates depending on a finite number of the pinary digits is a pseudo constant.
The discontinuities of this kind in the field variables do not lead to infinite surface energies in
the p-adic context as they would in the real context.

Spin glass energy landscape is characterized by an ultra-metric distance function. The reduced
configuration space CHred consisting of the maxima of the Kähler function with respect to quantum
fluctuating degrees of freedom and zero modes defines the TGD counter part of the spin glass energy
landscape. This notion makes sense only in real context since p-adic space-time regions do not
contribute to the Kähler function and all p-adic configurations are equally probable. The original
vision was that if the ultra-metric distance function in CHred is induced from a p-adic norm, a
connection between p-adic physics and real physics also at the level of space-time might emerge
somehow. It seems however that the ultra-metricity of CHred need not directly relate to the p-adicity
at the space-time level which can be understood if p-adic space-time regions give rise to cognitive
representations of the real regions.

Of course, it might be that the p-adic prime characterizing cognitive representation of a real region
characterizes also the reduced configuration space associated with the region in question (one must
of course assume that the reduced configuration space approximately decomposes into a Cartesian
product of the reduced configuration spaces associated with real regions).

7.2.1 General view about how p-adicity emerges

In TGD classical theory is exact part of the quantum theory and in a well defined sense appears already
at the level of the configuration space geometry: the definition of the configuration space Kähler
metric [K36] associates a unique space-time surface to a given 3-surface. The vacuum functional of
the theory (exponent of the Kähler function) is analogous to the exponent exp(H/Tc) appearing in
the definition of the partition function of a critical system so that the Universe described by TGD is
quantum critical system. Critical system is characterized by the presence of two phases, which can
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be present in arbitrary large volumes. The TGD counter part of this seems to be the presence of
two kinds of 3-surfaces for which either Kähler electric or Kähler magnetic field energy dominates.
These 3-surfaces have outer boundaries for purely topological reasons and these boundaries can be
of a macroscopic size. Therefore it seems that 3-space should be regarded as what could be called
topological condensate with a hierarchical, fractal like structure: there are 3-surfaces (with boundaries)
condensed on 3-surfaces condensed on...... .

This leads to a radically new manner to see the world around us. The outer surfaces of the
macroscopic bodies correspond to the boundaries of 3-surfaces in the condensate so that one can
see the 3-topology in all its complexity just by opening one’s eyes! A rather compelling evidence
for the basic ideas of TGD if one is willing to give up the nebulous concept of ”material object in
topologically trivial 3-space” and to allow nontrivial 3-topology in macroscopic length scales. A second
rather radical departure from the conventional picture of the 3-space is that 3-space is not connected
in TGD Universe but contains arbitrary many disjoint components. In fact the actual Universe should
consist of infinitely many 3-surfaces condensed on each other.

In two-dimensional critical systems conformal transformations act as symmetries and conformal
invariance implies the Universality of critical systems. This suggests that one should try to find the
generalization of the conformal invariance to higher dimensional, in particular, 4-dimensional case.
If finally turned out that quaternion-conformal invariance realizes quantum criticality four 4-surfaces
imbedded to 8-dimensional space. As a by product an explanation for space-time and imbedding space
dimensions results.

In this approach the p-adic regions of the space-time surface result dynamically. Space-time
surface is defined by the vanishing condition of a polynomial of two quaternion-valued variables q
and p. This condition gives p as a function of q. It can however occur that some components of p
become complex numbers. They must be however real so that the solution fails to exist in the real
sense. It might be however possible to perform the completion of the rational space-time surface to a
p-adic space-time surface and for some values of the p-adic prime the series defining the power series
representing p = f(q) might converge to a number in some algebraic extension of the ordinary p-adic
numbers. Even more general rational-adic topologies in which norm is power of a rational number
are possible. p-Adic numbers would thus be very closely related with quaternion-conformal invariance
and criticality.

p-Adic topologies form an infinite hierarchy and p-adic physics leads to a vision about many-sheeted
space-time as a hierarchical structure consisting of p-adic 4-surfaces of increasing size and increasing
value of prime p. These surfaces are glued together using topological sum operation. Contrary to the
original expectations, this hierachy is the hierarchy for the regions of space-time representing ’mind-
stuff’ rather than ’matter’ which is also present and represented by real and infinite-p p-adic regions.
p-Adic provide ’cognitive representations’ for matterlike regions and this is why their physics provides
a manner to understand real physics.

7.2.2 p-Adic numbers and the analogy of TGD with spin-glass

The vacuum degeneracy of the Kähler action leads to precise spin glass analogy at the level of the
configuration space geometry and the generalization of the energy landscape concept to TGD context
leads to the hypothesis about how p-adicity is realized at the level of the configuration space. Also
the concept of p-adic space-time surface emerges rather naturally.

Spin glass briefly

The basic characteristic of the spin glass phase [B16] is that the direction of the magnetization varies
spatially, being constant inside a given spatial region, but does not depend on time. In the real context
this usually leads to large surface energies on the surfaces at which the magnetization direction changes.
Regions with different direction of magnetization clearly correspond non-vacuum regions separated by
almost vacuum regions. Amusingly, if 3-space is effectively p-adic and if magnetization direction is
p-adic pseudo constant, no surface energies are generated so that p-adics might be useful even in the
context of the ordinary spin glasses.

Spin glass phase allows a great number of different ground states minimizing the free energy. For
the ordinary spin glass, the partition function is the average over a probability distribution of the
coupling constants for the partition function with Hamiltonian depending on the coupling constants.
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Free energy as a function of the coupling constants defines ’energy landscape’ and the set of free energy
minima can be endowed with an ultra-metric distance function using a standard construction [A214]
.

Vacuum degeneracy of Kähler action

The Kähler action defining configuration space geometry allows enormous vacuum degeneracy: any
four-surface for which the induced Kähler form vanishes, is an extremal of the Kähler action. Induced
Kähler form vanishes if the CP2 projection of the space-time surface is Lagrange manifold of CP2:
these manifolds are at most two-dimensional and any canonical transformation of CP2 creates a new
Lagrange manifold. An explicit representation for Lagrange manifolds is obtained using some canonical
coordinates Pi, Qi for CP2: by assuming

Pi = ∂if(Q1, Q2) ,

where f arbitrary function of its arguments. One obtains a 2-dimensional sub-manifold of CP2 for
which the induced Kähler form proportional to dPi ∧ dQi vanishes. The roles of Pi and Qi can
obviously be interchanged. A familiar example of Lagrange manifolds are pi = constant surfaces of
the ordinary (pi, qi) phase space.

Since vacuum degeneracy is removed only by classical gravitational interaction there are good
reasons to expect large ground state degeneracy, when system corresponds to a small deformation of
a vacuum extremal. This degeneracy is very much analogous to the ground state degeneracy of spin
glass.

Vacuum degeneracy of the Kähler action and physical spin glass analogy

Quite generally, the dynamical reason for the physical spin glass degeneracy is the fact that Kähler
action has a huge vacuum degeneracy. Any 4-surface with CP2 projection, which is a Legendre sub-
manifold (generically two-dimensional), is vacuum extremal. This implies that space-time decomposes
into non-vacuum regions characterized by non-vanishing Kähler magnetic and electric fields such that
the (presumably thin) regions between the the non-vacuum regions are vacuum extremals. Therefore
no surface energies are generated. Also the fact that various charges and momentum and energy
can flow to larger space-time sheets via wormholes is an important factor making possible strong
field gradients without introducing large surfaces energies. From a given absolute minimum or more
general preferred extremal of Kähler action one obtains a new one by adding arbitrary space-time
surfaces which is vacuum extremal. Uniqueness of the absolute minima in the sense that real regions
of space-time X4(X3) are unique could be achieved by requiring that vacuum regions are p-adic and
represent thus cognitive regions whereas real regions carry non-vanishing induced Kähler field.

The symplectic invariance of the Kähler action for vacuum extremals allows a further understanding
of the vacuum degeneracy. The presence of the classical gravitational interaction spoils the canonical
group Can(CP2) as gauge symmetries of the action and transforms it to the isometry group of CH. As
a consequence, the U(1) gauge degeneracy is transformed to a spin glass type degeneracy and several,
perhaps even infinite number of maxima of Kähler function for given values of the zero modes, become
possible. Thus locally, the space maxima of Kähler function should look like a union of copies of the
space of zero modes. Given sheet has naturally as its boundary the 3-surfaces for which two maxima of
the Kähler function coalesce or are created from single maximum by a cusp catastrophe. In catastrophe
regions there are several sheets and the value of the maximum Kähler function determines which give
a measure for the importance of various sheets. The quantum jumps selecting one of these sheets can
be regarded as phase transitions.

In TGD framework classical non-determinism forces to generalize the notion of the 3-surface by
replacing it with a sequence of space like 3-surfaces having time like separations such that the se-
quence characterizes uniquely one branch of multifurcation. This characterization works when non-
determinism has discrete nature. For CP2 type extremals which are bosonic vacua, basic objects are
essentially four-dimensional since M4

+ projection of CP2 type extremal is random light like curve.
This effective four-dimensionality of the basic objects makes it possible to topologize Feynman di-
agrammatics of quantum field theories by replacing the lines of Feynman diagrams with CP2 type
extremals.
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In TGD framework spin glass analogy holds true also in the time direction, which reflects the fact
that the vacuum extremals are non-deterministic. For instance, by gluing vacuum extremals with a
finite space-time extension (also in time direction!) to a non-vacuum extremal and deforming slightly,
one obtains good candidates for the degenerate absolute minima. This non-determinism is expected
to make the absolute minima of the Kähler action highly degenerate. The construction of S-matrix at
the high energy limit suggests that since a localization selecting one degenerate maximum occurs, one
must accept as a fact that each choice of the parameters corresponds to a particular S-matrix and one
must average over these choices to get scattering rates. This averaging for scattering rates corresponds
to the averaging over the thermodynamical partition functions for spin glass. A more general is that
one allows final state wave functions to depend on the zero modes which affect S-matrix elements: in
the limit that wave functions are completely localized, one ends up with the simpler scenario.

The real effective action is expected to be Einstein-Yang-Mills action for the induced gauge fields.
This action does not possess any vacuum degeneracy. The space-time surfaces are certainly absolute
minima of the Kähler action and EYM-action could take a dynamical role only in the sense that
extremality with respect to classical part of EYM action selects one of the degenerate absolute minima
of the Kähler action. On the other hand, the construction of S-matrix suggests that the choice
of particular parameter values characterizing zero modes affects only the coupling constants and
propagators of the effective Einstein-Yang-Mills theory, and that one must perform averaging over the
predictions of these theories. Thus EYM action could at most fix a gauge.

p-Adic non-determinism and spin glass analogy

One must carefully distinguish between cognitive and physical spin-glass analogy. Cognitive spin-glass
analogy is due to the p-adic non-determinism. p-Adic pseudo constants induce a non-determinism
which essentially means that p-adic extrema depend on the p-adic pseudo constants which depend
on a finite number of positive pinary digits of their arguments only. Thus p-adic extremals are glued
from pieces for which the values of the integration constants are genuine constants. Obviously, an
optimal cognitive representation is achieved if pseudo constants reduce to ordinary constants.

More precisely, any function

f(x) = f(xN ) ,

xN =
∑
k≤N

xkp
k , (7.2.0)

which does not depend on the pinary digits xn, n > N has a vanishing p-adic derivative and is thus a
pseudo constant. These functions are piecewise constant below some length scale, which in principle
can be arbitrary small but finite. The result means that the constants appearing in the solutions
the p-adic field equations are constants functions only below some length scale. For instance, for
linear differential equations integration constants are arbitrary pseudo constants. In particular, the
p-adic counterparts of the absolute minima (defined by the correspondence with infinite primes) are
highly degenerate because of the presence of the pseudo constants. This in turn means a characteristic
randomness of the spin glass also in the time direction since the surfaces at which the pseudo constants
change their values do not give rise to infinite surface energy densities as they would do in the real
context.

The basic character of cognition would be spin glass like nature making possible ’engineering’ at
the level of thoughts (planning) whereas classical non-determinism of the Kähler action would make
possible ’engineering’ at the level of the real world.

Localization in zero modes

The Kähler function defining configuration space metric possesses infinite number of zero modes which
represent non-quantum-fluctuating degrees of freedom. The requirement that physics is local at the
level of zero modes implies that each quantum jump involves a localization in zero modes. This
localization could be complete or in a region whose size is determined by the p-adic length scale
hypothesis.

Localization would mean an enormous calculational simplification: functional integral reduces into
ordinary functional integral over the quantum-fluctuating degrees of freedom and there is no need to
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integrate over the zero modes. The complete or partial localization in zero modes would explain why
the world of conscious experience looks classical. Perhaps the complete localization is however too
much to wish for: it could however be that one must use wave functionals in the zero modes only in
the case that one is interested in a comparison of the transition rates associated with different values
of zero modes rather than in transition rates with the condition that a localization has occurred to
definite values of zero modes.

The functional integral over the fiber degrees of freedom can be approximated by a Gaussian
integrals around maxima. Classical non-determinism would suggest the possibility of several maxima
in fiber degrees of freedom but the symmetric space property of the fiber suggests that there is only
single maximum of Kähler function. The existence of single maximum gives good hopes that the
configuration space integration reduces effectively to Gaussian integration of free field theory.

7.2.3 The notion of the reduced configuration space

Quantum jumps occur with highest probability to those values of zero modes which correspond to the
maxima of the Kähler function and a simplified description of the situation is obtained by considering
the reduced configuration space CHred consisting of the maxima of Kähler function with respect to
both zero modes and and quantum fluctuating degrees of freedom.

The hypothesis that the space CHred is an enumerable set is a natural first guess. In macroscopic
length scales, one might indeed hope that the generation of Kähler electric fields reducing the vacuum
degeneracy could imply a discrete degeneracy for the maxima of the Kähler action.

In elementary particle length scales this hypothesis fails and it is good to analyze the situation in
more detail since it gives some about how complex the situation can be. For the so called CP2 type
extremals the classical non-determinism gives rise to a functional continuum of degenerate maxima
of the Kähler function. The degenerate maxima correspond to random zitterbewegung orbits for
which the ’time parameter’ u is an arbitrary function of CP2 coordinates. In this case however zero
modes characterizing light like random curve representing the zitterbewegung orbit behave exactly like
conformal gauge degrees of freedom. The choice of the ’time parameter’ u however affects S-matrix
elements: dependence is very weak and only through the volumes of the propagator lines determined
by the selection of u (Kähler action for CP2 type extremal is proportional to its volume) occurring
in quantum jump. Effectively the functional continuum is replaced with the real continuum of the
volume of the propagator line varying from zero to the volume of CP2.

A localization for the positions of the vertices of the Feynman diagrams defined by CP2 type
extremals cannot however be assumed. Neither can one assume that only single Feynman diagram
is selected if one wants that a generalization of ordinary Feynman diagrammatics results. There are
several alternative identifications.

1. The degrees represented by Feynman diagrams with varying positions of vertices represent fiber
degrees of freedom so that there would be slight dependence of the Kähler function on the
positions of the vertices. Certainly the Feynman diagrams with different topologies have different
value of Kähler action and must correspond to fiber degrees of freedom. The reason is that vertex
regions of the Feynman diagrams must involve deformations of CP2 extremals since otherwise
Feynman diagrams are singular as 4-manifolds. Note that the idea about localization in fiber
degrees of freedom is not favored by this example.

2. The positions for the vertices of the Feynman diagram are excellent candidates for zero modes
and localization is not possible now. The fact that these degrees of freedom correspond to center
of mass degrees of freedom related to the isometries of the theory might distinguish between
them and other zero modes. One can consider also a refinement for localization in the zero modes
hypothesis: localization occurs only in length scale resolution defined by the p-adic length scale.
In fact, the assumption that CP2 type extremals have suffered topological condensation on
space-time sheets with size of order p-adic length scale characterizing the elementary particle
implies this.

Whether the notion of CHred makes sense for the p-adic space-time regions is not at all obvious.
For the proposed construction of the configuration space metric p-adic regions do not contribute to the
Kähler function which is real-valued. Only in case that the p-adic contribution is rational number, it
could be interpreted as a real valued contribution to the Kähler function. In case of CP2 type extremals



7.2. p-Adic numbers and spin glass analogy 353

this is not the case although the exponent of the Kähler function for a full CP2 type extremal is a
rational number if the proposed model for the p-adic evolution of Kähler coupling strength is correct.
If it does not make sense to distinguish between the maxima of the Kähler function in the p-adic
context, one cannot define CHred on basis of this criterion. From the point of view of cognition this
means maximal freedom of imagination.

An interesting question is whether one must count the cognitive degeneracy as a degeneracy of
physical states. If localization occurs in each quantum jump with respect to both real and p-adic zero
mode degeneracy, and if all cognitive options are equally probable, then the only conclusion seems to
be that space-time surfaces for which the cognitive degeneracy is highest, represent the most probable
final states. This would mean that the systems with the highest cognitive resources would be winners
in the struggle for survival. An alternative manner to see the same thing is that systems with a high
cognitive degeneracy are able to undergo a rich repertoire of p-adic-to-real phase transitions and thus
to adapt with the environment.

Explicit definition of the ultra-metric distance function for energy landscape

The points of CHred are completely analogous to the minima of the free energy and the precise analogy
with spin glass suggests that CHred must possess naturally an ultra-metric topology. One can quite
generally construct an explicit ultra-metric distance function for the set of energy minima in a given
energy landscape describing energy as a function of the coordinates of some configuration space using
existing recipes [B34] . The concept is useful when the energy landscape has fractal like structure.
An attractive metaphor is to regard energy as a height function for a landscape with mountains.

The distance function between two energy minima should describe the difficulty of getting from a
given minimum to another one. A concrete measure for this difficulty is obtained by considering all
possible paths from x to y. The height for the highest point on this path, absolute maximum hmax(γ)
of the height function on this path gives the measure for the difficulty for reaching y along the path
γ. There exists some easiest path from x to y. The difficulty to reach y from x can be defined as the
height of the highest point associated with the easiest path and hence the minimum of hmax(γ) in the
set of all possible paths from x to y:

d(x, y) = Min(hmax(γ(x, y)) .

It is easy check that this distance function is ultra-metric:

d(x, z) ≤Max{d(x, y), d(y, z)} .

All what is needed is to notice that for any path x → z going through y highest point of the path
is either the highest point associated with the path from x → y or y → z: from this the inequality
follows trivially since one can in principle find also easier paths.

Identification of the height function in the case of the reduced configuration space?

Obviously the negative for the maximum of Kähler function as function of zero modes is the counter-
part of free energy. This function could well be many valued but this is an unessential complication.
It is not clear whether K is negative definite (there are strong reasons to believe that this is the
case). One can however consider any positive definite function of K as a height function defining an
ultra-metric norm in the manner suggested. The requirement that p-adic norm results should fix the
definition uniquely.

The exponential exp(−Kmax) of the maximum of Kähler function as function of the zero modes,
which is the inverse for the vacuum functional of the theory, is the first guess for the height function
defining the ultra-metric norm (the wandering from 3-surface X3 to Y 3 corresponds to quantum
tunnelling physically.). The justification for this identification is that the integration over the fiber
degrees of freedom gives Gaussian determinant cancelling the metric determinant and leaves on the
exponent of Kähler function to the functional integral over zero modes. The intuitive expectation is
that ultra-metric norm is p-adic for some p and that the space of zero modes decomposes into regions
Dp In order to get a power of p as required by p-adicity, one can expand h as powers of p and identify
p-adic norm as pn for the highest pinary digit n with non-vanishing coefficient.

The height function can have a normalization factor and this factor could be chosen so that the
ultra-metric norm is a power of p for CP2 type extremals, which are certainly very important building
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blocks of absolute minimum space-time surfaces. The argument relating the gravitational coupling
constant to the Kähler coupling strength and fixing the dependence of the Kähler coupling strength
on the prime p, suggests that one must define the height function as

hp =
exp(−K(p))

exp(−K(p = 1))
,

where the Kähler function at p = 1 is formally obtained by regarding the value of the Kähler coupling
strength as a function in the set of all natural numbers.

Does the proposed height function hp define p-adic topology?

The great question is whether one can obtain p-adic ultra-metricity in this manner. There is some
evidence for this.

1. Criticality and spin glass analogy suggests that exp(K) as a function of zero modes is fractal.
If it is p-adic fractal then p-adic topology is expected to be a natural consequence: in this case
the map of CHred to its p-adic counterpart could make it possible to replaced CHred with a
smooth function.

2. CP2 type extremals, the counterparts of black holes and a model of elementary particle in TGD,
have finite negative Kähler action. One can glue CP2 type extremals to any space-time surface
to lower the Kähler action. 3-surfaces Z3 on path from X3 to Y 3 containing CP2 extremals on
X4(Z3) are excellent candidates for ’mountains’ in the landscape metaphor. The height of Z3

is roughly described by the number of CP2 type extremals glued on X4(Z3).

3. The argument leading to a correct prediction of gravitational constant in terms of assuming that
Kähler coupling strength αK depends on zero modes only through the p-adic prime assumed to
characterize a given region Dp of the configuration space for which the set of maxima of Kähler
function as function of zero modes should obey has p-adic topology. The crucial input is the
relationship

exp(Kp(CP2))
R2

G
=

1

p
,

which is equivalent with G = exp(Kp(CP2)L2
p , where Lp '

√
p×R is the p-adic length scale and

R ' 104
√
G is CP2 size and the fundamental p-adic length scale. This formula is a dimensional

estimate for gravitational coupling strength in terms of the p-adic length scale squared and
the exponential of Kähler function for CP2 type extremal describing graviton. The exponent
gives the probability for the appearance of one virtual graviton in a given quantum state. The
probability is very small since the exponent is negative for CP2type extremal and gravitation is
consequently a very weak interaction.

4. If one makes the identification

R2

G
(∼ 108) = exp(−Kp=1),

then the function

hp =
exp(−Kp)

exp(−Kp=1)
/

is the n:th power of p for a vacuum extremal to which n CP2 type extremals are glued. This is
just the p-adic norm pn! If hp were pn-valued in the general case it would be a p-adic pseudo
constant and rather tame as a fractal. Very probably, this is not true in the general case and
the p-adic norm of the p-adic counterpart of hp in the canonical identification

Np ≡ |Id(hp)|p ,
Id(
∑
xnp

n) =
∑
n xnp

−n .
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depending on the most significant pinary digit of hp only, is a good candidate for a p-adically
ultra-metric height function having also a correct normalization. In any case, it seems that the
number of virtual CP2 type extremals (gravitons!) glued to an absolute minimum space-time
surface X4(X3) could define the height function. p-Adicity would emerge naturally and would
have a direct physical meaning. Of course, this identification works for n ≥ 0 only: the physical
interpretation of the p-adic norm in n < 0 case is open.

A possible interpretation in terms of virtual graviton emission suggests the interpretation of the

factor R2

G = exp(−Kp=1) as a Gaussian determinant
√
detG associated with the integration over the

zero modes around the maximum. The definition of Gaussian determinant in the real context is
problematic and p-adicization plus adelic decomposition of the functional integral might provide a
precise definition of

√
detG. The divergence of the Gaussian determinant in the real context would

lead to the vanishing of the gravitational constant. This picture is in accordance with the assumption
that gravitational constant does not appear in quantum TGD as a fundamental constant and that the
curvature scalar term in the low energy effective action essentially results from radiative corrections
and hence derives from the logarithm of detG.

7.3 p-Adic numbers and quantum criticality

TGD Universe is quantum critical in the sense that the value of Kähler coupling constant is completely
analogous to critical temperature. Therefore the obvious question is how p-adicity might relate to
quantum criticality.

7.3.1 Connection with quantum criticality

p-Adicization of the reduced configuration space relates in an interesting manner to quantum criti-
cality. At quantum criticality the number of the absolute minima of Kähler action for a surface Y 3

belonging to light cone boundary measures the cognitive resources of this surface and of its diffeo-
morphs. Nd is assumed to behave as Nd ∼ exp(−Kcr), where Kähler function is evaluated for the
critical value αcr of the Kähler coupling strength. αcr is like Hagedorn temperature appearing in the
thermodynamics of strings. Above αcr the theory might not be mathematically well defined since
(at least real) the sum over the configuration space integrals associated with the maxima of Kähler
function would diverge exponentially at the limit when the value of Kähler function increases. In
string thermodynamics this corresponds to the growth of number g(E) of the states of given energy
more rapidly than the inverse of the Boltzmann factor exp(−E/TH). Below αcr the theory is certainly
well defined but in TGD framework the cognitive resources of the Universe would not be maximal
since vacuum functional would differ significantly from zero for very few space-time surfaces only.
At quantum criticality the situation is optimal but it is not clear whether the real theory makes
sense at quantum criticality: at least in string thermodynamics the partition function diverges also at
Hagedorn temperature.

The cognitive resources of p-adic space-time sheet are measured by the entropy type quantity
log(Nd)/log(2) having lower bound log(p)/log(2) bits for the 3-surfaces allowed by the vacuum func-
tional. For instance, the maximal cognitive resources of electronic space-time sheet (M127 = 2127− 1)
would be 127 bits. In TGD one must allow even infinite primes and for these cognitive resources can
be literally infinite.

7.3.2 Geometric description of the critical phenomena?

The idea that critical systems might have a geometric description is not new. There is a lot of
evidence that simple, purely geometric lattice models based on the bond concept reproduce same
critical exponents as the thermal models [B40] . The probability for a bond to exist corresponds to
temperature in these models. For example, in a bond percolation model it is possible to relate the
critical exponents to various fractal dimensions. This provides a nice manner to reduce the problem of
predicting critical temperature to that of predicting the critical probability for the bond. This problem
is local and once the temperature dependence of the bond probability and critical bond probability
are known one can calculate the critical temperature.
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What is new that in TGD approach the concept of bond ceases to be a phenomenological concept
related to the simple modelling of the critical systems. TGD predicts that the boundaries of 3-
surfaces can have arbitrarily large sizes. Furthermore, the formation of the join along boundaries
bonds connecting the boundaries of two disjoint 3-surfaces seems to provide the basic mechanism for
the formation of macroscopic quantum systems with long range correlations. This means that phase
transitions should basically correspond to changes in the connectedness of the boundary of the 3-space.
The description of the super fluidity, super conductivity and Quantum Hall effect based on the join
along boundaries bond concept is suggested in [K41, K85] and also other phase transitions might be
describable in the same manner. In hadronic length scale join along boundaries bonds correspond to
color flux tubes connecting valence quarks. In nuclear length scale the short range part of the nuclear
force corresponds to the formation of join along boundaries bonds between nucleons.

p-Adic approach suggests a concrete description for the phase transition changing the connected-
ness of the 3-surface. Disjoint 3-surfaces are labelled by p-adic numbers, whose p-adic expansion does
not contain powers pn with n > N , where N is some finite integer: the larger the value of N the
larger the degree of disjointness. This means that phase transitions (say evaporation or condensation)
changing the connectedness of the 3-surface should correspond to transitions changing the value of
N . In evaporation process N increases and in condensation process N decreases. Also catastrophic
processes like the breaking of a solid object to pieces might correspond to increase in N . Typical self
organization processes such as biological growth and healing might correspond to a gradual decrease
of N .

Fractal like configurations with a discrete scale invariance are known to play important role in
the description of the critical phenomena: they are the most probable configurations at the critical
point. The idea that fractal corresponds to a fixed point of a discrete scaling transformation, is in
accordance with the definition of the fractals as fixed points for a set of affine transformations acting
on subsets of some metric space [A123] . A natural candidate for the discrete scaling transformation
is the transformation of the 4-surface induced by the multiplication of the p-adic argument Z of
H-coordinate h(Z) by a power of p: Z → pnZ. A tempting idea is that most probable 3-spaces
indeed are invariant under these scalings. This even suggests that something, which might be called
”Mandelbrot cosmology”, might provide a description of the Universe in all length scales as a 4-
dimensional analog of Mandelbrot set. The breaking of the discrete scaling invariance is bound to
occur, when one considers finite subsystem instead of the whole Universe. p-Adic cutoff might provide
an elegant description for the breaking of the exact scaling invariance: 3-surface in question depends
on finite number of the pinary digits of Z only.

7.3.3 Initial value sensitivity and p-adic differentiability

Initial value sensitivity is one of the basic properties of the critical systems and implies unpredictability
in practice. p-Adic differentiability seems to be related to this property in a very general manner.
Consider a configuration of an initial value sensitive system, which can possess very high dimension.
For definiteness, assume that the dynamics is described by some differential equations, which can be
reduced to equations of first order for the configuration space coordinates X (we do not bother to
write indices):

dX

dt
= J(X) . (7.3.1)

Space-time coordinate is a p-adic number one can assume that time coordinate is a p-adic number,
too.

The purely p-adic feature of this differential equation follows from the fact that any function
depending on a finite number of pinary digits of a p-adic number possesses a vanishing p-adic deriva-
tive! This implies that the integration constants are not just ordinary constants but functions of the
p-adic number t depending on finite number of pinary digits of t! Obviously this implies classical
non-determinism in long time scales! One can construct solutions of the differential equation in the
form X(t) = X0(t) + X1(t), where X0(t) depends on a finite number of pinary digits of the p-adic
time t and equations reduce to

dX1

dt
= J(X0 +X1) . (7.3.2)
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Of course, one must be careful in defining what ”finite number of pinary digits” means, when p-adic
cutoff is actually present. The simplest integration constants depend on the p-adic norm of t (or on
the lowest pinary digit of t) only.

The result is in accordance with the so called Slaving Principle [B27] . One can think that
the dynamics in long time scales (low pinary digits of p-adic number t) is given by the integration
constants having arbitrary dependence on these pinary digits and the dynamics in short length scales is
determined by the differential equations in the ”background” given by these time dependent integration
constants.

Initial value sensitivity implies effectively non-deterministic behavior and p-adic numbers perhaps
provide a possibility to describe it properly. The properties of the Kähler function suggests that
the classical non-determinism might be in fact actual. The point is that the classical space time
surface associated with a given 3-surface need not be unique. This surface is determined as an
absolute minimum of the so called Kähler action and Kähler action possesses enormous vacuum
degeneracy [K10] : the most general vacuum extremal has 2- dimensional CP2 projection, which is
so called Lagrange manifold possessing a vanishing induced Kähler form. Symplectic transformations
and Diff(M4) act as exact dynamical symmetries of the vacuum extremals and Diff(M4) contains
p-adically analytic transformations of M4 as subgroup. It might well happen that those absolute
minima, which are obtainable as small deformations of the vacuum extremals inherit the characteristic
degeneracy of the vacuum extremals.

The classical macroscopic non-determinism might be essential to the possibility of the quantum
measurements. In TGD the state function reduction is described as ’jump between histories’ that is
two deterministic time developments [K46] . In quantum measurement microscopic and macroscopic
system are strongly correlated and microscopic transition induces a phase transition like phenomenon
in a macroscopic critical system. The general belief is that quantum effects become unimportant
in macroscopic systems. The situation need not be this if macroscopic system is critical, or even
non-deterministic.

In the TGD inspired theory of ’thinking systems’, conscious thoughts correspond to quantum jumps
selecting one of the possible time developments in the quantum superposition of several quantum
average effective space-time times allowed by the non-determinism. p-Adic pseudo constants could
provide a mathematical description for this non-determinism. These ’cognitive’ quantum jumps are
certainly involved with a realistic description of a quantum measurement modelling also the presence
of the observer quantum mechanically.

In turns out that quantum non-determinism, classical non-determinism of Kähler action and p-adic
non-determinism are very closely related in quantum TGD: one could even speak of a holy trinity of
non-determinisms. Quantum non-determinism corresponds closely to the classical non-determinism
of Kähler action: quantum jumps select between various branches of the branches of multifurcations
of classical space-time surface. The p-adic counterparts of these branches are in turn obtained by
varying pseudo constants in the solution of the p-adic Euler-Lagrange equations for the Kähler action:
this requirement in fact makes it possible to assign unique p-adic prime to a given, sufficiently small
space-time region.

7.3.4 There are very many p-adic critical orbits

An interesting connection between the p-adicity and initial value sensitive systems is related to the
possibility to replace also the configuration space (possibly infinite dimensional) with an algebraic
extension of the p-adic numbers. The underlying motivation is the need to get a proper mathematical
description of the finite accuracy for the observables and p-adic cutoff provides this description.

This in turn suggests Universality in some aspects of the dynamical behavior. The dynamical
equations dX/dt = J(X) define a flow that is a diffeomorphism X → F (X, t) of configuration space.
This flow contains as integration constants arbitrary functions of the p-adic time coordinate t depend-
ing on a finite number of pinary digits of t so that classical non-determinism is present. By p-adic
conformal invariance this diffeomorphism ought to be p-adically analytic map that is representable as
a power series of the algebraically extended p-adic numbers x and t.

The p-adic analyticity of the dynamic diffeomorphism gives strong constraints on the properties
of the dynamic map. A particularly interesting map is in this respect Poincare map. One can ask
several interesting questions. How does the Universal behavior of one- dimensional and 2-dimensional
analytic iterated maps generalize to the p-adic case? What do attractors look like? What are the
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counterparts of Julia set and Mandelbrot set? What about routes to chaos? Could p-adic hypothesis
provide deeper explanation for the fact that period doubling seems to be a rather general mechanism
for the transition to turbulence. It might be possible to answer these questions since p-adic analyticity
is very strong constraint on the behavior of the maps.

Already the study of the simplest p-adic complex maps reveal some surprises. The simplest map to
study is the map Z → Zn for any extension of p-adic numbers (dimension is arbitrary!). The repeller
consists of the points p-adic norm equal to one. Due to the roughness of the p-adic topology, the real
counterpart of the repeller is of same dimension as the configuration space itself so that the critical
orbits form a set with a non-vanishing measure! For example, in the 2-dimensional case and for the
2-adic extension, the set of the critical orbits corresponds in the real plane to a square (1/2, 1]×(1/2, 1]
.

How do the small deformations of Z → Zn of form Z → Zn + εZm affect the set of the critical
orbits? If the norm of the parameter ε is sufficiently small, the previous repeller belongs to the
repeller also now. Also new points can appear in repeller. These considerations suggest that the
repellers/attractors of the p-adically analytic maps have rather simple structure as compared to their
real and complex counter parts. An interesting possibility is that in general case these sets are fractal
like objects resembling the fractals associated with p-adic order parameters.

The fact that set of critical orbits is n-dimensional rather than (n− 1) or lower-dimensional in the
p-adic case suggests an interesting physical interpretation in accordance with the general idea that
p-adic topology corresponds to criticality. In ordinary situation these orbits are not very interesting
because a small deformation spoils their criticality. In p-adic case the situation is different since the
critical orbits are meta-stable and their are very many of them. In TGD one can even identify good
candidates for the set of of these meta-stable critical orbits as small deformations of the vacuum
extremals of the Kähler action. Needless to emphasize, this vacuum degeneracy is a phenomenon not
encountered in the standard field theories.

7.4 p-Adic Slaving Principle and elementary particle mass
scales

The understanding of the elementary particle mass scales is a fundamental problem in the unified field
theories. The attempts to understand the generation of the mass scales dynamically have not been
successful. The basic problem is the fine tuning difficulty: the predicted mass scale hierarchy is not
stable under the small changes of the model parameters. A possible explanation for the failure is that
the fundamental mass scales are really fundamental and therefore cannot depend on the details of the
dynamical model.

Criticality is known to imply Universality and criticality indeed is the fundamental property of
Kähler action. Therefore the derivation of the elementary particle length scale(s) should be based
on a proper formulation of the criticality concept. p-Adic numbers indeed provide a promising tool
in this respect and the following arguments show that it is possible not only to understand some
general elementary particle length scale but leptonic, hadronic and intermediate gauge boson length
scales plus a small number of shorter length scales in terms of primes near prime powers of two. The
most important length scales correspond to Mersenne primes: there are only sixteen Mersenne primes
below electron length scale and the remaining Mersenne primes correspond to super astronomical
length scales.

What is nice that the p-adic hypothesis makes possible to express these length scales as square roots
of Mersenne primes and possibly Fermat primes, that is prime numbers of type p = 2m ± 1. What is
amusing is that Mersenne primes are closely related to the so called Perfect Numbers n = 2m−1(2m−1)
representable not only as a product of their prime factors but also as a sum of their proper divisors.
The ancient number mystics believed that this property makes these numbers very exceptional in the
World Order!

7.4.1 p-Adic length scale hypothesis

p-Adic length scale hypothesis has served as a basic hypothesis of p-adic TGD for several years. This
hypothesis states that the scales Lp =

√
pl, l = 1.376 · 104

√
G are fundamental length scale at p-adic

condensate level p. The original interpretation of the hypothesis was following:
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1. Above the length scale Lp p-adicity sets on and effective course grained space-time topology is
p-adic rather than ordinary real topology.

2. The length scale Lp serves as a p-adic length scale cutoff for the field theory description of
particles. This means that space-time begins to look like Minkowski space so that quantum field
theory M4 → CP2 becomes a realistic approximation. Below this length scale string like objects
and other particle like 3-surfaces dominate.

3. It is un-natural to assume that just single p-adic field would be chosen from the infinite number
of possibilities. Rather, there is an infinite number of cutoff length scales. To each prime p
there corresponds a cutoff length scale Lp above which p-adic quantum field theory M4 → CP2

makes sense and one has a hierarchy of p-adic quantum field theories. These different p-adic
field theories correspond to different hierarchically levels possibly present in the topological
condensate. Hierarchical ordering < p1 < p2 < ... means that only the surface p1 < p2 can
condense on the surface p2. The condensed surface can in practice be regarded as a point like
particle at level p2 described by the p-adic conformal field theory below length scale Lp2 .

The work with p-adic QFT has however demonstrated that the hypothesis a) and b) are probably
wrong and the following interpretation is closer to the truth.

1. The length scale Lp =
√
pl defines an infrared cutoff rather than ultraviolet cutoff for a p-adic

quantum field theory formulated in terms of quarks and leptons and gauge bosons. For instance,
for hadrons this length scale is of order hadron size and Lp defines UV cutoff for possibly existing
field theory describing hadrons as basic objects. Above Lp real topology effectively replaces the
p-adic one (real continuity implies p-adic continuity) and if length scale resolution Lp is used
real physics is excellent approximation.

2. p-Adic QFT is free of UV divergences with any UV cutoff and there is no need to assume that
p-adicity fails below some length scale. Rather, p-adicity is completely general property of the
effective quantum average space-time defined by the Quantum TGD, which is based on the
real number field. The concept of the effective space-time, or topological condensate, is in turn
necessary for the formulation of field theory limit of TGD. The analogy of Quantum TGD with
spin glass phase gives strong support for the p-adic topological condensate consisting of p-adic
regions with different p glued together along their boundaries.

p-Adic topologies form a hierarchy of increasingly coarser topologies. The p-adic norm N(xp)
defines a function of a real argument via the canonical identification of the nonnegative real numbers
and p-adic numbers. The p-adic norm is same as ordinary real norm for x = pk and is constant at
each interval [pk, pk+1). This means that

1. p-adic topologies are coarser than real topologies so that the functions, which are continuous in
the p-adic topology need not be continuous in the real topology.

2. p-adic topologies are ordered: the larger the value of p, the coarser the topology in the long
lenght scales. In short length scales the situation is just the opposite.

7.4.2 Slaving Principle and p-adic length scale hypothesis

Slaving Principle states that there exists a hierarchy of dynamics with increasing characteristic length
(time) scales and the dynamical variables of a given length scale obey dynamics, where the dynamical
variables of the longer length (time) scale serve as ”masters” that is effectively as external parameters
or integration constants. The dynamics of the ”slave” corresponds to a rapid adaptation to the
conditions posed by the ”master”.

p-Adic length scale hierarchy suggests a quantitive realization of this philosophy.

1. By the previous considerations there is an infinite hierarchy of length scales Lp such that the
space-time surfaces below the length scale Lp look like Minkowski space and p-adic quantum field
theory M4 → CP2 makes sense below the length scale Lp. These length scales are associated
with the different condensation levels present in the topological condensate and define the typical
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size of the p-adic surface in absence of the collective quantum effects, which should correspond
to the formation of the join along boundaries bonds between objects with size of order Lp. The
reason why the typical size is just this is that the imbedding of the p-adic coordinate space into
space H has strongest discontinuities in the real topology, when coordinate values correspond
to powers of p so that a typical imbedding decomposes into separate pieces with size of order
Lp. Of course, this kind of discontinuity is possible for all powers of p but is not observable in
shorter length scales for the physically most interesting values of p due to the extreme smallness
of the corresponding length scales.

2. The lowest level of the hierarchy corresponds to 2-adic dynamics and this field theory makes sense
below the cutoff length scale L2 =

√
2l defining the typical size for a 2-adic surface. Solutions of

the 2-adic field equations are non-deterministic due to the possibility of the integration constants
depending on finite number of binary digits. The dependence on a finite number of positive bits
of the real coordinates only means that they are genuine constants below some length scale
L2(lower) < L2, which in principle depends on the state of the system.

3. 2-adic pseudo-constants are analogous to external parameters and should be determined by the
dynamics associated with the longer length and time scales. The properties of the p-adic num-
bers suggest that these constants in turn are p-adically differentiable functions of their argument
with some value of p1 > 2 determined by the p1-adic dynamics describing the interaction be-
tween p = 2 surface condensed on p = p1 level and p = p1 background surface. The p1-adic
integration constants associated with these functions are actual constants above the length scale
Lp1(lower) ≥ L2(lower) but also these in principle depend on a finite number of pinary dig-
its and their values are determined by the interaction of p1 level with the next level in the
condensation hierarchy.

4. At the next level p1 one encounters p1-adic dynamics and new p-adic integration constants. The
net effect is that one obtains a hierarchy of p-adic numbers 2 < p1 < p2 < ... in correspondence
with the length and time scales L2 < Lp1 < Lp2 < ...: the higher the boss the larger the p. In
TGD it is very tempting to interpret the various levels of the slaving hierarchy as the levels of
the topological condensate so that the surfaces at level p are condensed on the surfaces of level
p1 > p (see Fig. 7.4.2). Not all values of p need be present in the hierarchy and it might well
happen that certain values of p are in an exceptional position physically.

Figure 7.1: Two-dimensional visualization of topological condensate concept

7.4.3 Primes near powers of two and Slaving Hierarchy: Mersenne primes

All values of p are in principle present in the Slaving Hierarchy but the assumption that all values
of p are equally important physically is not realistic. The point is that the number N(n) of primes
smaller than n behaves as N(n) ∼ n/ln(n) and there are just too many prime numbers. For example,
for n = 1038 there are about one prime number per 87 natural numbers!
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A natural looking assumption is that a new physically important length scale emerges, when a
fixed number of powers of 2 combine to form a new length scale. The reason is that a given interval
[2k, 2k+1) forms an independent fractal unit (for the simplest fractals these intervals are related by a
similarity, see figures in [K53] and it is therefore unnatural to cut this unit into pieces as would happen
if p were far from a power of two. This breaking would indeed happen since p-adically differentiable
functions have sharp gradients at points pk. This non-breaking or ”synergy” is reached provided the
allowed primes are as close as possible to powers of 2: p ' 2m. It should be noticed that this condition
also guarantees that the frequency peaks associated with various powers of p in good approximation
correspond to period doubling frequencies characteristic to fractal and chaotic systems.

The best approximation achievable corresponds to Fermat and Mersenne primes

p = 2m ± 1 . (7.4.1)

It can be shown that for Fermat primes (+) the condition m = 2k must be satisfied and for Mersenne
primes (-) m must be itself prime.

How abundant are the prime numbers of type p = 2m ± 1? The great surprise was that there are
very few numbers of this kind!

1. The primes of type 2m + 1, Fermat primes, are very rare: only 5 numbers in the range 1 < n <
2221 ' 10106

(!) [A118] and there are good arguments suggesting that the number of the Fermat
primes is finite! The known Fermat primes correspond to m = 2k, with k = 0, 1, 2, 3, 4. The
corresponding primes are p = 3, 5, 17, 257, 65537. Note that the lowest Fermat prime 3 is also
a Mersenne prime. It will be later found that p-adic conformal invariance is in TGD possible
for primes p satisfying the condition p mod 4 = 3 and this condition is not satisfied by Fermat
primes F > 3.

2. The primes of form 2m − 1, Mersenne primes, are also there as follows from the requirement
that m is prime. The list of allowed exponents of m consists of the following numbers:

2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, ....

.

One can make two observations about these numbers:

1. m = 127 corresponds to the number 1038 fundamental to Physics. The square root of this
number gives the ratio of the proton length scale to Planck length scale. This suggests the
possibility that fundamental physical length scales are given by square roots of Mersenne and
possibly Fermat primes using some length scale of order Planck scale as a unit.

2. m = 61 corresponds to the number of order 1019: this in turn allows the possibility that
fundamental physical length scales are linearly related to Fermat and Mersenne primes. This
alternative however turns out to be not the correct one.

These observations lead to following scenario for the fundamental length scales:

1. The p-adic length scale Lp, below which p-adic quantum field theory approximation makes sense,
is proportional to the square root of p and these length scales are p-adically the most interesting
length scales:

Lp =
√
pl ,

l ∼ k · 104
√
G ,

k ' 1.376 . (7.4.0)

Only quite recently the physical interpretation of the length scale l was found. Contrary to
the original expectations, CP2 is not of order Planck length but of order l. At this length
scale Euclidian regions of space-time, in particular CP2 type extremals representing elementary
particles, become important. Above this length scale a field theory in Minkowski space is
expected to be a good approximation to quantum physics.
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2. Physically the most interesting length scales correspond to the p-adic cutoff length scales Lp
associated with the Mersenne primes Mn.

3. The fact that l is of the same order of magnitude as the length scale at which the coupling
constants of the standard model become approximately equal, is not probably an accident. Below
l it is not anymore sensible to speak about the topological condensation of CP2 type extremals
since CP2 type extremals themselves have size of order l. Hence the symmetry breaking effects
caused by the topological condensation cannot be present in the string model type desciption
applying below l.

The predictions are as follows:

1. m = 127 corresponds to electron Compton length.

2. m = 107 corresponds to proton Compton length LP .

3. m = 89 corresponds to length scale of order 1/256 times proton Compton length and is identifi-
able approximately as LW /2

√
2, where LW is intermediate boson length scale of about LP /100.

4. m = 61 corresponds to length scale of the order of 10−6LP is not reachable by the present day
accelerators.

5. m = 521 corresponds to a completely super-astronomical length scale of order 1027 light years!

It seems that the proposed scenario might have catched something essential in the problem of
the elementary particle mass scales: it predicts correctly 3 fundamental length scales associated with
leptons, hadrons and intermediate gauge bosons from number theory; there is extremely large gap
in the length scale hierarchy after electron Compton length and new shorter length scales exist but
unfortunately they are outside the reach of the present day experiments. The calculations of the third
part of the book show that not only the mass scales can be understood but also particle masses can be
predicted with errors below one per cent using the length scale hypothesis combined with the p-adic
Super Virasoro invariance and p-adic thermodynamics.

7.4.4 Length scales defined by prime powers of two and Finite Fields

Above M127 there is an extremely large gap for Mersenne primes and this suggests that there must
be also other physically important primes. Certainly all primes near powers of two define physically
interesting length scales by 2-adic fractality but there are two many of them. The first thing, which
comes into mind is to consider the set of primes near prime powers of two containing as special case
Mersenne primes. The following argument is one of the many arguments in favor of these length scales
developed during last years.

TGD Universe is critical at quantum level and criticality is related closely to the scaling invariance.
This suggests that unitary irreducible representations of p-adic scalings x→ pmx, m ∈ Z should play
central role in quantum theory. Unitarity requires that scalings are represented by a multiplication
with phase factor and the reduction to a representation of a finite cyclic group Zm requires that
scalings x → pmx, m some integer, act trivially. In ordinary complex case the representations in

question correspond to the phase factors Ψk(x) = |x|(
ik2π
ln(p)

) = exp(iln(|x|) k2π
ln(p) ), k ∈ Z and the

reduction to a representation of Zm is also possible but there is no good reason for restricting the
consideration to discrete scalings.

1. The Schrödinger amplitudes in question are p-adic counterparts of the ordinary complex func-
tions Ψk(x) = exp(iln(|x|)k ik2π

ln(p) ), k ∈ Z. They have a unit p-adic norm, they are analogous to

plane waves, they depend on p-adic norm only and satisfy the scaling invariance condition

Ψk(pmx|p→ p1) = Ψk(x|p→ p1) ,

Ψk(x|p→ p1) = Ψk(|x|p|p→ p1) ,

|Ψk(x|p→ p1)|p = 1 , (7.4.-1)
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which guarantees that these functions are effectively functions on the set of the p-adic numbers
with cutoff performed in m:th power.

2. The solution to the conditions is suggested by the analogy with the real case:

Ψk(x|p→ p1) = exp(i
kn(x)2π

m
) ,

n(x) = lnp(N(x)) ∈ N , (7.4.-1)

where n(x) is integer (the exponent of the lowest power of the p-adic number) and k = 0, 1, ...,m−
1 is integer. The existence of the functions is however not obvious. It will be shortly found that
the functions in question exist in p > 2-adic for all m relatively prime with respect to p but exist
for all odd m and m = 2 in the 2-adic case.

3. If m is prime (!) the functions K = Ψk form a finite field G(m, 1) = Zm with respect to the
p-adic sum defined as the p-adic product of the Schrödinger amplitudes

K + L = Ψk+l = ΨkΨl , (7.4.0)

and multiplication defined as

KL = Ψkl . (7.4.1)

Hence, if the proposed Schödinger amplitudes possessing definite scaling invariance properties
are physically important, then the length scales defined by the prime powers of two must be
physically special since Schrödinger amplitudes or equivalently, the p-adic scaling momenta k
labeling them, have a natural finite field structure. By the Slaving Hierarchy Hypothesis, also the
p-adic length scales near prime powers of two (and perhaps of prime p > 2, too) are therefore
physically interesting. p-Adic scalings correspond to p-adic translations if p-adic coordinates
correspond to exponentials of the ordinary linear coordinates so that translations are represented
by scalings.

The generalized plane waves exist p-adically if nontrivial N = p:th root of the quantity exp(i2π) =
1 exists.

1. N = 2:th roots of 1 exist trivially for all values of p.

2. In 2-adic case the roots exist always for odd values of N and especially so for prime values of
N : the trick is to write 11/N = −(−1)1/N = −(1− 2)1/N and use the Taylor series

(1 + x)1/N =
∑
n

An
n!
xn ,

An =

n−1∏
k=0

(
1

N
− k)(−1)n ,

x = −2 . (7.4.0)

to show the existence of one root different from the trivial root. In 2-adic case the powers of x = 2
converge to zero rapidly and compensate the powers of 2 coming from n! in the denominator.
The coefficients An possess 2-adic norm not larger than 1.
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3. For p > 2 nontrivial N = p:th roots do not allow representation as plane waves for the simple
reason that only the trivial p:th root of 1 exists p-adically. Roots of unity must have p-adic
norm equal to one and by writing the condition modulo p one obtains a condition aN mod p = 1
in G(p, 1). The roots of unity in G(p, 1) satisfy always ap−1 = 1 and the possible orders N are
factors of p − 1. In particular, prime roots with p1 > p − 1 are not possible. The number of
prime factors is typically quite small. For instance, for primes of order p = 2127 the number of
prime roots is of order 6.

The conclusion is that for p > 2 only those finite fields G(p1, 1) for which p1 is factor of p− 1 are
realizable as representation of phase factors whereas for p = 2 all fields G(p1, 1) allow this kind of
representation. Therefore p = 2-adic numbers are clearly exceptional. In the p-adic case the functions
Ψp(x, |p→ p1) give irreducible representations for the group of p-adic scalings x→ pmx, m ∈ Z and
the integers k can be regarded as scaling momenta. This suggests that these functions should play the
role of the ordinary momentum eigenstates in the quantum theory of fractal structures. The result
motivates the hypothesis that prime powers of two and also of p define physically especially interesting
p-adic length scales: this hypothesis will be of utmost importance in future applications of TGD.

The ordinary (number theoretic) p-adic plane waves associated with the translations can be con-
structed as functions fk(x) = akx, k = 0, ..., n, an = 1. For p > 2 these plane waves are periodic with
period n, which is factor of p−1 so that wavelengths correspond to factors of p−1 and generate a finite
number of physically favored length scales. The p-adic plane waves with the momenta k = 0, ..., p− 2
form finite field G(p, 1), when p-adic arithmetics is replaced with the modulo p arithmetics, that is to
accuracy O(p) (note that the definition of the arithmetic operations is not the same as in the previous
case). The square roots of the p-adic plane waves are also well defined

The important property of the p-adic plane waves is that they are pseudo constants: this property
played profound role in the earlier formulations of the p-adic QFT limit. It took a considerable
time to discover that the counterparts of the ordinary real plane waves providing representations
for translation group exists and satisfy the appropriate orthogonality relations. Therefore number
theoretic plane waves do not play so essential role in p-adic QFT as was originally believed.

7.5 CP2 type extremals

CP2 type extremals are perhaps the most important vacuum extremals of the Kähler action. The rea-
son is that they are vacuum extremals with a negative and finite Kähler action and hence favored both
by the absolute minimization of the Kähler action and criticality (randomness of light-like projection
to M4 implies criticality) On the other hand, maximization of Kähler function does not favor CP2 type
extremals because the virtual CP2 type extremals are exponentially suppressed. CP2 type extremals
seem to play the same role as black holes possess in General Relativity. p-Adic thermodynamics,
leading to excellent predictions for the masses of the elementary particles, predicts that elementary
particles should possess p-adic entropy and Hawking-Bekenstein law for the entropy generalizes.

In GRT based cosmology black holes populate the most probable Universe, which is of course a
problem: in TGD black holes are replaced by elementary particles. The second law of thermodynamics
requires that the very early Universe should have a low entropy and hence that black holes should
populate the recent day Universe: in TGD the very early cosmology is dominated by cosmic strings,
which is a low entropy state. The absolute minimization of the Kähler action would imply that most
cosmic strings would decay to elementary particles and produce p-adic entropy. It is not clear whether
also criticality implies this. To get a grasp of the orders of magnitude, it is good to notice that electron,
which corresponds to p = M127 = 2127 − 1, has entropy equal to 127 bits.

The basic observation is that the M4
+ projection of the CP2 type extremal corresponds to a light like

random curve and the quantization of this motion leads to Virasoro algebra and Kac Moody algebra
characterizing quantized transversal motion superposed with the cm motion. CP2 type extremals
allow covariantly constant right handed neutrino spinors as solutions of the Dirac equation for the
induced spinors in the interior and this leads to N = 1 super symmetry and a generalization of the
Virasoro invariance to Super Virasoro invariance.

The previous p-adic mass calculations were based on this picture but it turned out that the Super
Virasoro invariance and related Kac Moody symmetries generalize to the level of the configuration
space geometry and in an extended form provide the basic symmetries of the quantum TGD. Although
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the quantization of the zitterbewegung motion of the CP2 type extremals is a phenomenological
procedure only, and is not needed in the fundamental theory, it deserves to be described because of
its key role in the development of quantum TGD. There were however some strange features involved:
for instance, N = 1 super-symmetry generated by righthanded neutrino was exact only for minimal
surfaces.

The realization that super-symmetry requires modified Dirac action led to the final breakthrough.
CP2 type extremals allow quaternion-conformal symmetries and the super-generators associated with
quark and lepton numbers are non-vanishing despite the fact that vacuum extremals are in question.
Even Super-Kac-Moody generators are non-vanishing. Even more, CP2 type extremals cease to be
vacua for Dirac action. Especially beautiful feature of CP2 type extremals is that they can describe
also massive states and zitterbewegung is the geometric correlate of massivation.

7.5.1 Zitterbewegung motion classically

The M4
+ projection of a CP2 type extremal is a random light like curve. Also Dirac equation, which

gives also classically rise to a motion with light velocity and this motivates the term ’zitterbewebung’.
Zitterbewegung occurs at the light of velocity and any given 3-velocity gives rise to the solution of
light likeness condition if one fixes the time component of velocity to be

dm0

dτ
=

√
mij

dmi

dτ

dmj

dτ
.

(7.5.0)

The vanishing of CP2 part of the second fundamental form requires that velocity and acceleration are
orthogonal:

mkl
dmk

dτ

d2ml

dτ2
= 0 . (7.5.1)

This condition is identically satisfied.
A very general solution to the conditions is provided by the equations

d2mk

dτ2
= F kl

dml

dτ
, (7.5.2)

describing the motion the of massless charged particle in external Maxwell field.

7.5.2 Basic properties of CP2 type extremals

CP2 type extremal has the following explicit representation

mk = fk(u(sk)) , mkl
dfk

du
df l

du = 0 . (7.5.3)

The function u(sk) is an arbitrary function of CP2 coordinates and serves effectively as a time param-
eter in CP2 defining a slicing of CP2 to time=constant sections. The functions fk are arbitrary apart
from the restriction coming from the light likeness. When one expands the functions fk to Fourier
series with respect to the parameter u, light likeness conditions reduce to classical Virasoro conditions
Ln = 0.

It is possible to write the expression for mk in a physically more transparent form by separating
the center of mass motion and by introducing p-adic length scale Lp as a normalization factor.

mk

Lp
= mk

0 + pk0u+
∑
n

1√
n
aknexp(i2πnu) + c.c. . (7.5.4)

The first term corresponds to the center of mass term responsible for rectilinear motion along geodesic
line and second term corresponds to the zitterbewegung motion. pk serves as an effective classical
momentum which can be normalized as pkp

k = ε, ε = ±1 or ε = 0. What has significance is whether
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pk is time like, light like, or space like. Conformal invariance corresponds to the freedom to replace u
with a new ’time parameter’ f(u).

The physically most natural representation of u is as a function f(U) of the fractional volume U
for a 4-dimensional sub-manifold of CP2 spanned by the 3-surfaces X3(U = 0) and X3(U):

u = f(U) , U = V (sk)
V (CP2) = SK(u)

SK(CP2) . (7.5.5)

The range of the values for U is bounded from above: U ≤ Vmax/V (CP2) and the value U = 1 is
possible only if CP2 type extremal begins and ends as a point. U represents also Kähler action using
the value of the Kähler action for CP2 as a unit.

The requirement that CP2 type extremal extends over an infinite time and spatial scale implies
the requirement

f(Umax) =∞ . (7.5.6)

For f(Umax) <∞ CP2 type extremal can exist only in a finite temporal and spatial interval for finite
values of ’momentum ’ components pk. This suggest a precise geometric distinction between real
and virtual particles: virtual particles correspond to the functions f(Umax) < ∞ in contrast to the
incoming and outgoing particles for which one has f(Umax) =∞. This hypothesis, although it looks
like an ad hoc assumption, is at least worth of studying.

The mere requirement that virtual CP2 type extremal extends over a temporal or spatial distance
of order L > Lp implies that for L < Lp the value of U is smaller than one. Kähler action, which is
given by

SK(X4) = U × SK(CP2) , (7.5.7)

remains small for distances much smaller than L. For f(Umax) =∞ this is even more true. This has
an important implication: below a certain length scale the exponential of the Kähler action associated
with the internal line of a Feynman diagram does not give rise to a suppression factor whereas above
some characteristic length L and time scale there is an exponential suppression of the propagator
by the factor exp(−SK(CP2)) practically hindering the propagation over distances larger than this
length scale.

The presence of the exponential obviously introduces an effective infrared cutoff: this cutoff is
prediction of the fundamental theory rather than ad hoc input as in quantum field theories. Of
course, infrared cutoff results also from the condition f(Umax) < ∞. Physically the infrared cutoff
results from the topological condensation of the CP2 type extremals to larger space-time sheets. These
could correspond to massless extremals (MEs). p-Adic length scale Lp is an excellent candidate for
the cutoff length scale in the directions transversal to ME.

The suppression factor coming from the exponent of the Kähler action implies a distance dependent
renormalization of the propagators. In the long length scale limit the suppression factor approaches
to a constant value

exp

[
− Vmax
V (CP2)

SK(CP2)

]
,

and can be absorbed to the coupling constant so that the dependence on the maximal length of
the internal lines can be interpreted as an effective coupling constant evolution. For instance, the
smallness of the gravitational constant could be understood as follows. Since gravitons propagate
over macroscopic distances, the virtual CP2 type extremals develops a full Kähler action and there
is huge suppression factor reducing the value of the gravitational coupling to its observed value: at
short length scales the values of the gravitational coupling approaches to Gshort = L2

p which means
strong gravitation for momentum transfers Q2 > 1/L2

p. The values of Vmax and thus those of the
suppression factor can vary: only at the limit when CP2 extremal has point like contact with the lines
it joins together, one has Vmax = V (CP2). If the boundary component characterizing elementary
particle family belongs to CP2 type extremal (it could be associated with a larger space-time sheet),
CP2 type extremal contains a hole: also this reduces the maximal volume of the CP2 extremal.
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7.5.3 Quantized zitterbewegung and Super Virasoro algebra

Calculating various Fourier components of right left hand side of the light likeness condition mklp
kpl =

0 for pk = dmk/du explicitly using the general expansion for mk separating center of mass motion
from zitterbewegung, one obtains classical Virasoro conditions

p2
0 = L0 ,

Ln|phys〉 = 0 , . (7.5.7)

where Ln are defined by by their classical expressions as bi-linears of the Fourier coefficients. Therefore
interior degrees of freedom give Virasoro algebra and zitterbewegung is more or less equivalent with
the classical string dynamics.

It is not however not obvious whether a quantization of this dynamics is needed. If quantization
is needed (perhaps to formulate the unitarity conditions in zero modes properly), it corresponds to
the construction of the bosonic wave functionals in zero modes defined by the zitterbewegung degrees
of freedom. Quantization could be carried out in the same manner as in string models.

The simplest assumption motivated by the Euclidian metric of CP2 type extremal is that the
commutator of pk and mk is proportional to a delta function as in ordinary quantization. One can
Fourier expand mk and pk in the form

mk = mk
0 + pk0s+

1

K

∑ 1

n
ak,†n exp(inKs) +

∑ 1

n
aknexp(−inKs) ,

pk = pk0 + i
∑

ak,†n exp(inKs)− i
∑

aknexp(−inKs) . (7.5.7)

Here cm motion has been extracted and the formula is identical with the formula expressing the
motion for a fixed point of string. The parameter K is Kac Moody central charge. Note that the
exponents exp(iKns) exist provided that Ks is p-adically of order O(p) or, if algebraic extension by
introducing

√
p is allowed, of order O(

√
p).

The commutator of pi and mj is of the standard form if the oscillator operators obey Kac-Moody
algebra

[
pi,0,m

j
0

]
= m j

i ,

Comm(a†i,m, a
j
n) = Kmδ(m,n)m j

i . (7.5.7)

Here K appears Kac-Moody central charge, which must be integer in the real context at least.
Expressing the light likeness condition as quantum condition, one obtains an infinite series of

conditions, which give the quantum counterparts of the Virasoro conditions

p2
0 = kL0 ,

Ln|phys〉 = 0 , n < 0 . (7.5.7)

k is some proportionality constant. One can solve these conditions by going to the transverse gauge in
which physical states are created by oscillator operators orthogonal to an arbitrarily chosen light like
vector. What quantization means physically is that zitterbewegung amplitudes are constrained by a
Gaussian vacuum functional. A good guess motivated by the p-adic considerations is that the width
of the ground state Gaussian is given by a p-adic length scale Lp: this is achieved if mk is replaced
with mk/Lp in the general expression for mk(u). The experience with string models would suggests
that vacuum functionals might be crucial for the understanding of graviton emission.

7.5.4 Zitterbewegung at the level of the modified Dirac action

At the level of the modified Dirac action zitterbewegung motion implies that the conserved momentum
associated with CP2 type extremal, besides being conserved and non-vanishing, is also time like. This
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means that zitterbewegung creates massive particles besides massless particles as well as off-mass-shell
versions of both and Super Virasoro conditions imply the quantization of the mass squared spectrum.

This means that in quantum TGD Feynman diagrammatics is topologized in the sense that the lines
of Feynman diagram correspond to CP2 type extremals which in general performing zitterbewegung.
The non-determinism of the CP2 type extremals means that one obtains a sum over over all possible
diagrams with vertices at arbitrary space-time locations just as in quantum field theory approach.
What is so nice that the time-development operator associated with an individual line of the diagram
is the exponent of the Hamiltonian operator identified as the Poincare energy associated with the
modified Dirac action. This operator is that associated with a free theory and contains no nonlinear
terms. Interactions result from criticality property of the extremals of Kähler action. In particular,
one gets rid of the divergences of the interacting quantum field theories by the topologization of the
Feynman diagrammatics.

7.6 Black-hole-elementary particle analogy

String models have provided considerable insights into black hole thermodynamics by reducing it
to ordinary thermodynamics for stringy black holes [B25] although one still does not understand,
which is the mechanism of the thermalization. In TGD context elementary particles are regarded as
thermodynamical systems in p-adic sense. This is something new since the standard theories of particle
physics describe elementary particles as pure quantum states. The resulting thermal description of the
the particle massivation is extremely successful. The fact that one can associate a well defined entropy
to an elementary particle, suggests an analogy between black holes and elementary particles and this
analogy indeed exists in a quite precise form as will be found. It also leads to a partial explanation
for the p-adic length scale hypothesis serving as the corner stone of the p-adic mass calculations. The
identification of the CP2 type extremal as a cognitive representation of elementary particle suggests
that p-adic entropy characterizes information associated with a cognitive representation provided by
CP2 type extremal.

7.6.1 Generalization of the Hawking-Bekenstein law briefly

In TGD elementary particles are modelled as so called CP2 type extremals, which are surfaces with
a size of order Planck length having metric with Euclidian signature. These vacuum surfaces are
isometric with CP2 itself and have a one-dimensional, random light like curve as the M4

+ projection.
A natural candidate for the TGD counterpart of the black hole horizon is the surface at which the
Euclidian signature of the metric associated with the CP2 type extremal is changed to the Minkowskian
signature of the background space-time. The radius r of this surface is the crucial length scale for the
topological condensation and the simplest guess is that it is of the order of the size of the CP2 radius
and hence of the fundamental p-adic length scale. The hope is that the generalization of the black hole
thermodynamics, with r replacing the radius of the black hole horizon, could give this information.

p-Adic mass calculations indeed give the p-adic counterpart of the Hawking-Bekenstein formula
S ∝ GM2 as an identity at p-adic level:

Sp = − 1

Tp
(M2

p/m
2
0) ,

where 1/Tp = n is the the integer valued inverse of the p-adic temperature and the mass scale
m2

0/3 corresponds to unit p-adic number in the unit used. The peculiar looking sign of Sp does not
have in the p-adic context the same significance as in real context since the real counterpart of Sp
is positive. Although p-adic entropy and mass squared are linearly related, the real counterparts
are not in such a simple relation. In case of massive particles the real counterpart of the entropy
is in excellent approximation equal to S = log(p) whereas the mass is of order 1/p (p is of order
1038 for electron!). For massless (or nearly massless) particles one has S ≤ log(p)/p. The large
difference between fermionic and photonic entropies does not favor pair annihilation and this suggests
that matter antimatter asymmetry is generated thermodynamically. For instance, via the topological
condensation of fermions and anti-fermions on different space-time sheets during the early cosmology.
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The generalization of the Hawking-Bekenstein formula in the form of the area law S = A/4G reads
as

S =
xA

4l2
,

where the fundamental p-adic length scale l ' 1.376 · 104
√
G replaces Planck length

√
G and x is

a numerical constant near unity. The radius of the elementary particle horizon is in an excellent

approximation given by r(p) =
√

log(p)
πx l. Particles are thus surrounded by an Euclidian region of the

space-time with radius r. Thus the fundamental p-adic length scale l of order CP2 size has a direct
geometric meaning. For instance, in the energy scales below 1/l the induced metric of the space-time
becomes Euclidian and it might be possible to describe particle physics using Euclidian field theory:
essentially QFT in a small deformation of CP2 would be in question. It is encouraging, that l is
also the length scale at which the standard model couplings become identical and super symmetry is
expected to become manifest.

The p-adic length scale hypothesis stating that the primes p near prime powers of two are the
physically most interesting p-adic primes, is the cornerstone of p-adic mass calculations but there is
no really convincing argument for why should it be so. The proportionality of r to

√
log(p) suggests

an explanation for the p-adic length scale hypothesis. The point is that for p ' 2k, k prime, one

has r ∝ L(k) and if the numerical constant x is chosen to be x = log(2)
π , the radius of elementary

particle horizon is in excellent approximation r(p ' 2k) = L(k). Note also that the area of the
elementary particle horizon becomes quantized in multiples of prime. This suggests that the precise
value of p ' 2k is such that this condition is satisfied optimally and that physics is k-adic below r and
p ' 2k-adic above r.

M4
+ × CP2 allows the imbedding of Schwartshild metric in the region below Schwartchild radius

but the imbedding fails for too small values of the radial variable [K80] . An interesting possibility is
that black hole entropy is just the sum of the elementary particle entropies topologically condensed
below the horizon. This would give STGD ∝

∑
m2
i < SGRT ∝ (

∑
mi)

2. An interesting problem is
related to the detailed definition of p-adic entropy: are the entropies of particles with same value of
p additive as p-adic numbers or does the additivity hold true for the real counterparts of the p-adic
entropies. A related question is whether it might be that also in case of black holes additivity holds
true, not for the mass as it is usually assumed, but for the p-adic mass squared for a given p (in TGD
inspired model of hadron this is true for quark masses). This could be understood as a result of strong
gravitational interactions. The additivity with respect to mass squared would give an upper bound of
order 10−4/

√
G for the contribution of a given p-adic prime to the total mass. For instance, the total

contribution of electrons to the mass would be always below this mass irrespective of the number of
electrons!

7.6.2 In what sense CP2 type extremals behave like black holes?

CP2 type extremals are in some respects classically black hole like objects since their metric is Euclid-
ian. When this kind of surface is glued to Minkowskian background there must exist a two-dimensional
surface, where the signature of the induced metric changes from the Minkowskian (1,−1,−1,−1) to
the Euclidian (−1,−1,−1,−1). On this surface, which could be called elementary particle horizon,
the metric is degenerate and has the signature (0,−1,−1,−1). Physically elementary particle horizon
can be visualized as the throat of the wormhole feeding the elementary particle gauge fluxes to the
background space-time. Of course, one cannot exclude the presence of several wormholes for a given
space-time sheet.

This surface indeed behaves in certain respects like horizon. Time like geodesic lines cannot go
through this surface. The reason is that the square of the four velocity associated with the geodesic
is conserved:

vµv
µ = 1 , 0 or − 1 ,

depending on whether the geodesic is time like, light like or space like. Clearly, a time like geodesic
cannot enter from the external world to the interior of the CP2 type extremal. If a space like geodesic
starts from the interior of the CP2 type extremal it can in principle continue as a space like geodesic
into the exterior. These analogies should not be taken too seriously: it does not make sense to identify
particles orbits as geodesics in these length scales shorter than the actual sizes of particle.
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These analogies suggest that Hawking-Bekenstein formula S = A/4G relating black hole entropy
to the area of the black hole horizon, might have a generalization to the elementary particle context
with the radius of the elementary particle horizon replacing the black hole horizon. The unit of the
area need not be determined by Planck length

√
G, it could be replaced by the fundamental p-adic

length scale l ∼ 104
√
G: this length scale indeed replaces Planck length as a fundamental length scale

in TGD.

7.6.3 Elementary particles as p-adically thermal objects?

In the p-adic mass calculations elementary particles were assumed to be thermal objects in the p-adic
sense. What is new that energy is replaced with mass squared and the thermalization is believed
to result from the interactions of a topologically condensed CP2 type extremal with the background
space-time surface of a much larger size. The thermalization mixes massless states with Planck mass
states and gives rise to particle massivation. Super Virasoro invariance − abstracted from the Virasoro
invariance of the CP2 type extremals − together with the general symmetry considerations based on
the symmetries of M4

+ ×CP2, leads to the realization of the mass squared operator essentially as the
Virasoro generator L0 in certain representations of the Super Virasoro algebra constructed using the
representations of various Kac Moody algebras associated with Lorentz group, electro-weak group and
color group.
−L0 takes thus the role of a Hamiltonian in the partition function:

exp(−H/T )→ pL0/Tp ,

where Tp is the p-adic temperature, which by number theoretic reasons is quantized to 1/Tp = n, n
a positive integer. Mass squared is essentially the thermal expectation of L0. The real mass squared
is the real counterpart of the p-adic mass squared in the canonical identification x =

∑
xnp

n →∑
xnp

−n ≡ xR mapping p-adics to reals. Assuming that elementary particles correspond to p-adic
primes near prime powers of two, one obtains excellent predictions, not only for the mass scales of
elementary particles but also for the particle mass ratios. For instance, electron corresponds to the
Mersenne prime M127 = 2127 − 1.

It should be noticed that the real counterpart of the p-adic inverse temperature 1/Tp is naturally
defined as

(
1

Tp
)r = (

1

Tp
)Rlog(p) ,

where log(p) factor results from the definition of Boltzmann weights as powers of p rather than power
of e. The real counterpart Tr of Tp can be identified as

Tr =
1

nlog(p)
. (7.6.1)

One might wonder about whether the sign of Tp should be taken as negative since positive exponent
of L0 appears in the Boltzman weights. The sign is correct; for the opposite sign Tr would be in good
approximation equal to 1

(p−n)log(p) , which is not consistent with the fact that physically temperature

decreases when n increases.
As already explained, the new vision about p-adics and cognition forces to modify this early vision

by interpreting CP2 type extremals as cognitive representations of elementary particles rather than
genuine elementary particles.

p-Adic mass squared

The thermal expectation of the p-adic mass squared operator is proportional to the thermal expecta-
tion of the Virasoro generator L0:

M2
p = k〈L0〉 ,
k = 1 . (7.6.1)
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The correct choice for the value of the rational number k is k = 1 as became clear in the recent
reconstruction of the quantum TGD [K44] .

The real mass squared M2 is identified as

M2 =
M2
Rπ

2

l2
,

l ' 1.376 · 104
√
G , (7.6.1)

where l is the fundamental p-adic length scale and M2
R is the real counterpart of M2

p in the canonical

identification.
√
G is Planck length scale.

p-Adic entropy is proportional to p-adic mass squared

The definition of the p-adic entropy involves some number theory. The general definition

S = −pnlog(pn) ,

in terms of the probabilities pn of various states does not work as such since the e-based logarithm
log(pn) does not exist p-adically. Since p-adic Boltzmann weights are integer powers of p it is natural
to modify somehow the p-based logarithm logp(x) so that the resulting logarithm Logp(x) exists for
any p-adic number and has the basic property

Logp(xy) = Logp(x) + Logp(y) ,

guaranteing the additivity of the p-adic entropy for non-interacting systems. The definition satisfying
these constraints is

Logp(x =
∑
n≥n0

xnp
n) ≡ n0 . (7.6.2)

The lowest power in the expansion of x in powers of p fixes the value of the logarithm in the same way
as it determines also the norm of the p-adic number. This leads to the definition of p-adic entropy as

Sp = −
∑
p

pnLogp(pn) . (7.6.3)

In p-adic thermodynamics the p-adic probabilities have the general form

pn =
pL0(n)/Tp

Z
.

Here L0(n) denotes the eigenvalue of the Virasoro generator L0, which is integer. The partition
function Z = trace(pL0/Tp) has unit p-adic norm if the ground state is massless, so that its p-adic
logarithm vanishes in this case: Logp(Z) = 0. This implies Logp(pn) = Logp(p

L0(n)/Tp) = L0(n)/Tp
so that the p-adic entropy reduces to

Sp =
1

Tp
〈L0〉 , (7.6.4)

ane hence that the p-adic mass squared and p-adic entropy are proportional to each other

Sp = − 1

kTp
M2
p . (7.6.5)

By noticing that the entropy for Schwartschild black hole is given by
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S = 4πGM2 , (7.6.6)

one finds that in the p-adic context the analog of the Hawking-Bekenstein formula indeed holds as an
identity.

The proposed identification of the entropy is in accordance with the formula dE = TdS. In the
p-adic context E should clearly be replaced by 〈−L0〉 and T by Tp. The differentials do not however
make sense since the thermodynamical quantities are now discrete. Since only 〈−L0〉 and Tp appear
as variables one could define

〈−L0〉 = TpSp .

This definition gives Sp = − 1
kTp

M2
p and is in accordance with the standard definition of the Shannon

entropy. The definition for the real counterpart of the p-adic entropy is

S = log(p)SR .

The inclusion of log(p)-factor maximizes the resemblance with the usual Shannon entropy defined in
terms of the e-based logarithm and makes it possible to compare the real counterpart of entropy with
other kind of entropies.

The real counterparts of entropy and mass squared are not linearly related

Due to the delicacies related to the canonical identification, the real counterparts of entropy and
mass squared differ drastically from each other and there is no simple relationship between the two
quantities. The reason is that the vacuum expectation of −L0 is of order −np for particles having Tp =
1 and, essentially due to the presence of minus sign, one has SR(p) = 1 in an excellent approximation,
whereas the real counterpart of M2

p is of order n/p. For photon and other (nearly) massless bosons
the entropy vanishes or is very small.

The fundamental difference in the thermal properties of fermions and massless bosons should
have observable consequences. For instance, the annihilation of fermion-anti-fermion pair to massless
particles means a considerable reduction of the p-adic entropy and would not be a favorable process
thermodynamically. Thus the second law of thermodynamics would favor the presence of net fermion
and anti-fermion number densities. For instance, fermions and anti-fermions could suffer a topological
condensation on different space-time sheets to avoid annihilation during early cosmology or anti-
fermions could even suffer topological evaporation as suggested in [K31, K31] . This in turn would
lead to the generation of matter-antimatter asymmetry. It should be noticed that lare entropies are
in accordance with the second law of thermodynamics.

Hawking-Bekenstein area formula in elementary particle context

Hawking-Bekenstein formula in the p-adic form Sp ∝ M2
p holds true on basis of the previous consid-

erations although ther are no hopes of deriving the area law from the first principles at this stage.
Hawking-Bekenstein formula can be also written in the form

S =
A

4G
,

relating black hole entropy to the area of the black hole horizon. One might hope that in the real
context a generalization of the area law to the form

S = x
A

4L2
,

where L is some fundamental length scale analogous to the gravitational constant G and x is some
numerical constant near unity, would hold true. Since the size of CP2 defines the fundamental p-adic
length scale and replaces

√
G as a fundamental length scale in TGD, it is conceivable that L is of

the order of the CP2 size l ∼ 104
√
G. The area in question would be most naturally the area of the

elementary particle horizon, where the signature of the induced metric for the topologically condensed
CP2 type extremal changes from Euclidian to Minkowskian. It is well known that l is also the length
scale at which the couplings of the standard model become identical and super-symmetry is expected
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to become manifest. This is what is expected since above cm energy 1/l one would have an Euclidian
quantum field theory in CP2.

The radius r of the elementary particle horizon is of order

r '
√
log(p)L . (7.6.7)

This means that the # contacts connecting the CP2 type extremal to the background space-time are
surrounded by an Euclidian region with a size of order L.

It is interesting to look for the detailed form of the Hawking-Bekenstein law for elementary particles.
One obtains the following general relationship

S ≡ log(p)SR = log(p)(〈−L0

Tp
〉)R == Xlog(p)M2

R = X × log(p)
l2

π2
M2 ,

X ≡ M2
R

SR
. (7.6.7)

For massive particles X ∼ p holds true. Hence the entropy is related by a factor p · 108 to the
corresponding black hole entropy:

S = a2SBH ,

SBH = 4πGM2

a =

√
log(p)X

4π3

l√
G
∼ 104 ,

l ' 1.376 · 104
√
G . (7.6.5)

7.6.4 p-Adic length scale hypothesis and p-adic thermodynamics

The basic assumption of p-adic mass calculations is that physically interesting p-adic primes corre-
spond to prime powers of two:

p ' 2k , k prime .

There are several arguments in favor of this hypothesis but no really convincing argument. The area
law however leads to a very attractive, if not even convincing, explanation of the p-adic length scale
hypothesis.

The proportionality of the elementary particle horizon radius to
√
log(p) suggests quite attractive

partial explanation for the p-adic length scale hypothesis. The point is that for p ' 2k, k prime
one has r ∝ L(k). Thus, if the numerical constant x is chosen suitably, it is possible to obtain very
precisely

r(p ' 2k) = L(k) .

The reason is that the p-adic entropy is in thermal equilibrium very near to its maximum value. The
required value of the coefficient x is

x =
log(2)

π
. (7.6.6)

The requirement that rF (rB) is as near as possible to the appropriate p-adic length scale L(k)
(L(k)

√
p) fixes also the precise value of the p-adic prime p ' 2k.

This hypothesis means that the area of the elementary particle horizon is quantized in the multiples
of prime k:

A = kA1 . (7.6.7)

The quantization law for the area has been proposed also in the context of the non-perturbative
quantum gravity. A suggestive possibility is that physics is k-adic below the elementary particle
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horizon and p ' 2k-adic above it. The appearance of an additional k-adic length scale suggests that
for p ' 2k the degeneracy of the effective space-time surfaces is especially large due to the additional
k-adic degeneracy and that the p-adic scattering amplitudes are be especially large for this reason.
Hence the favored p-adic primes would emerge purely dynamically.

It must be noticed that k-adic fractality allows also more general primes of type p ' 2k
n

, where k
is prime and n is integer. For these primes the radius of the elementary particle horizon is

√
kn−1L(k)

and hence also a natural k-adic length scale. There are very few physically interesting length scales of
this type. As the p-adic mass calculations show, the best fit to the neutrino mass squared differences is
obtained for pν ' 2132=169 rather than p ' 2167. The length scale L(pν) is also the natural length scale
associated with the double cell layers appearing very frequently in bio-systems (k = 167 corresponds
to the typical size of a cell)!

7.6.5 Black hole entropy as elementary particle entropy?

In TGD Schwartshild metric does not allow a global imbedding as a surface in M4
+ × CP2. One

can however find imbeddings, which extend also below the Schwartshild radius. This suggests that
particles in the interior of the black hole are topologically condensed below the radius rs. The problem
is whether the single particle entropies are additive as real numbers or as p-adic numbers.

Additivity of real entropies?

Consider first the additivity as real numbers. With this assumption the sum for the real counterparts
of the p-adic entropies of various particles gives a lower bound for the black hole entropy:

S =
∑
i

S(i) =
∑
i

km2
i .

This entropy is by a factor is 108 · p larger than the corresponding black hole entropy so that black
hole-elementary particle analogy does not work at quantitative level. For sufficiently large particle
numbers elementary particle entropy becomes smaller than the black hole entropy, which behaves as
(
∑
mi)

2. In case of protons p = M107 = 2107 − 1 the critical value of N would be roughly N ∼ 1032,
which would mean black hole with a mass of order 100 kilograms.

Additivity of the p-adic entropies?

One can consider also a different definition of the black hole entropy. In p-adic thermodynamics
the natural additive quantity for many particle systems is the Virasoro generator L0 (mass squared
essentially) rather than energy. The additivity works quite nicely for the TGD based model of a
hadron as a bound state of quarks. Therefore one could consider the possibility that also for black
holes the mass squared of elementary particles with same value of p-adic prime p is p-adically additive

(m2
p)R = (

∑
i

m2
p(i))R rather than m =

∑
mi .

Therefore for a black hole containing only particles with single value of the p-adic prime p, the
Hawking-Bekenstein formula in the form

Sp ∝M2
p

would hold true. For the real counterparts this proportionality does not hold.
When the particle number N exceeds p/n, the mass squared of the system reduces from its upper

bound 10−4/
√
G by a factor of order 1/

√
p. Thus the mass of, say, the electrons inside black hole, is

always below this upper bound irrespective of the number of the electrons!
If particles with several p-adic primes are present inside the black hole then the formula for the

black hole entropy reads as

S =
∑
p

S(p) =
∑
p

k(p)M2(p) ,

so that the proportionality to the total mass squared does not hold true except approximately (in the
case that the mass is in good approximation given by the total mass of a particular particle species).
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7.6.6 Why primes near prime powers of two?

The great challenge of TGD is to predict the p-adic prime associated with a given elementary particle.
The problem decomposes into the following subproblems.

1. One must understand why there is a definite value of the p-adic prime associated with a given
real region of space-time surface (in particular, the space-time time surface describing elementary
particle) and how this prime is determined. The new view about p-adicity allows to understand
the possibility to label elementary particles by p-adic primes if p-adic–real phase transitions
occur already at elementary particle level or if real elementary particle regions are accompanied
by p-adic space-time sheets possible providing some kind of a cognitive model of particle. The
great question mark is the correlation of the p-adic prime characterizing the particle with the
quantum numbers of the particle: is this correlation due to the intrinsic properties of the particle
or perhaps a result of some kind of adaptation at elementary particle length scales. In the latter
case sub-cosmologies with quite different elementary particle mass spectra are possible. On
the other and, quantum self-organization does not allow too many final state patterns, so that
elementary particle mass spectrum could be more or less a constant of Nature.

2. One must understand why quantum evolution by quantum jumps has led to a situation in which
elementary particle like surfaces correspond to some preferred primes. It indeed seems that an
evolution at elementary particle level is in question (how p-adic evolution follows from simple
number theoretic consistency conditions is discussed in the [K30] . It seems that the degeneracy
due to the p-adic space-time regions associated with the system must be counted as giving rise
to different final states in a quantum jump between quantum histories. If the number Nd(X

3)
of the physically equivalent cognitive variants of the space-time surface is especially high, this
particular physical state dominates over the other final states of the quantum jump. Highly
cognitive systems are winners in the fight for survival. Thus in TGD framework evolution is
also, and perhaps basically, evolution of cognition.

3. One should also understand why the primes p ' 2k near prime powers of two are favored
physically and to predict the value of k for an elementary particle with given quantum numbers.
The analogy between elementary particles and black holes suggests only a partial explanation
for the prime powers of 2 and the real explanation should probably involve enhanced cognitive
resources for these primes.

In order to formulate the argument supporting p-adic length scale hypothesis one must first describe
the general conceptual background.

1. Configuration space of the 3-surfaces decomposes into regions DP labelled by infinite p-adic
primes. In each quantum jump localization of CH spinor field to single sector DP must occur
if localization in zero modes occurs. Quantum time development corresponds to a sequence of
quantum jumps between quantum histories and the value of the infinite-p p-adic prime P char-
acterizing the 3-surface associated with the entire universe increases in a statistical sense. This
has natural interpretation as evolution. In a well defined sense the infinite prime characterizing
infinitely large universe is a composite of finite p-adic primes characterizing various real regions
(space-time sheets) of the space-time. The effective infinite-p p-adic topology associated with
this infinite prime is very much like real topology since canonical identification mapping infinite
number to its real counterpart just drops the infinitesimals of infinite-p p-adic number. There-
fore real physics is an excellent approximation at this level. If the S-matrix is complex rational,
the approximation is in fact exact. Note that real topology is quite possible also at the level
of configuration space and configuration space might consist of both real and infinite-P p-adic
regions.

2. The requirement that quantum jumps correspond to quantum measurements in the sense of
QFT, implies that also localization in zero modes occurs in each quantum jump: localization
could occur also in the length scale resolution defined by the p-adic length scale Lp. The strongest
hypothesis suggested by the properties of thermodynamical spin glasses is that quantum jump
occurs to a state localized around single maximum of the Kähler function.
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3. This picture suggests that evolution has occurred already at the elementary particle level and
selected preferred p-adic primes characterizing the space-time regions associated with the ele-
mentary particles. A crucial question is whether this evolution could have occurred for isolated
elementary particles or whether the interaction of the elementary like space-time regions with
the surrounding space-time has served as a selective pressure. It might well be that the latter
option is the correct one. If this is the case, one can say that the winners in the fight for survival
correspond to infinite primes, which are composites of preferred finite primes, perhaps the finite
primes given by the p-adic length scale hypothesis.

4. In TGD framework evolution is also evolution of cognition and the most plausible guess is
that p-adic non-determinism is what makes cognition possible. Of course, also the classical
non-determinism of Kähler action is also present and also important. Perhaps one should call
the space-time sheets of finite time duration made possible by this non-determinism as ’sensory
space-time sheets’ as opposed to p-adic space-time sheets. Certainly this non-determinism should
be responsible for volition. In any case, the degenerate space-time sheets are not physically
equivalent in this case as they are in case of the p-adic non-determinism. The number Nd(X

3)
of the p-adically degenerate and physically equivalent absolute minima X4(X3) of Kähler action
is the measure for the cognitive resources of the 3-surface. The basic idea is simple: if Nd(X

3)
is very large then quantum jumps lead with high probability to some degenerate physically
equivalent maximum of the Kähler function associated with given value of p. One can see this
also from the point of view of an elementary particle: the high cognitive degeneracy plus the
possibility of p-adic–real phase transitions mean that the particle can adapt to the environment:
the surviving elementary particles would be the most intelligent ones! What one should be
able to show is that cognitive degeneracy is especially large for some preferred primes so that
evolution selects these primes as the most intelligent ones.

In this conceptual framework one can develop more precise variants for arguments supporting the
p-adic length scales hypothesis.

1. The simplest possibility is that single maximum of Kähler function is selected in the quantum
jump. In this case the relative rate for quantum jumps to a given physical final state with
fixed physical configuration is proportional to the p-adic cognitive degeneracy Nd(N), where
N denotes the infinite primes characterizing the interacting space-time surface associated with
the final state. N decomposes into a product of infinite primes p and Nd(N) decomposes
decomposes into a product N =

∏
P Nd(P ) Nd(N) is maximized if Nd(P ) is maximzes. The

elementary systems for which Nd(P ) is especially large are winners.

2. The situation reduces to the level of finite p-adic primes if takes seriously the argument allowing
to estimate the value of the gravitational constant. The argument was based on the assumption
that P decomposes in a well defined sense into passive primes pi and active prime p characterizing
elementary particle: thus there would be the correspondence P ↔ p. This suggests that it is
possible to understand the finite p-adic prime p associated with the elementary particle by
restricting the consideration to the 3-surfaces describing topologically condensed elementary
particles: that is, CP2 type extremals glued to a space-time sheet with size of order Compton
length. p-Adic cognitive degeneracy Nd(p) should be especially high for p-adic primes predicted
by the p-adic length scale hypothesis.

3. The interpretation of p-adic regions as cognitive regions suggests a more concrete explanation
for the p-adic length scale hypothesis. The degeneracy due to p-adic non-determinism for the
p-adic CP2 type extremals presumably depends on the value of the p-adic prime characterizing
the cognitive version of elementary particle. If p-adic–real phase transitions representing trans-
formation of thought-to-action and viceversa are possible for CP2 type extremals, one could
understand the origin of the p-adic length scale hypothesis. p-Adic primes near prime pow-
ers of two are winners because the the degeneracy due to p-adic non-determinism is especially
larger for them. The observed elementary particles would thus dominate in the Universe simply
because the thoughts about them are winners in the fight for survival.

4. The black hole-elementary particle analogy suggests that the primes p ' 2k, k prime, are
especially interesting since the radius of the elementary particle horizon is the p-adic length
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scale L(k). This could be understood since k-adicity provides an additional cognitive degeneracy
for the absolute minima of Kähler function coming from the region of size L(k) surrounding a
topologically condensed elementary particle and any # contact. This enhances the value of
Nd(p) further by a multiplicative factor Nd(k) so that Nd(P ) becomes especially large.

5. These arguments do not yet tell how to deduce the prime k associated with a given elementary
particle. Cognitive resources are measured by a negative on an negentropy type quantity pro-
portional to Nc = log(Nd(p)). A natural guess is that Nc is dominated by a term proportional
to log(p): Nc = A(p) + log(p). For p ' 2k one has an additional source of cognitive degeneracy
which gives Nc = log(k) + log(p) instead of Nc = log(p) and these primes thus correspond to
the local maxima of cognitive resources as a function of p. Quite generally, the larger the p,
the more probable is its appearance as elementary particle prime (neglecting the constraints
coming from, say, the cosmic temperature). Hence it seems that the p-adic evolution of a given
elementary particle is frozen to some local maximum of Nd(p(k)), with p(k) given by the p-adic
length scale hypothesis.

6. Freezing can be understood if the transition probabilities P (k → k1) are so small that further
evolution by quantum jumps is impossible. A possible interpretation of the transition ki → kj is
a p-adic phase transition changing the elementary particle horizon from radius Lki to Lkj so that
P (ki → kj) would describe the probability of this phase transition. For neutrinos the transition
probabilities P (ki → kj) between different sectors allowed by the p-adic length scale hypothesis
seem to be largest whereas for higher quark generations they seem to be smallest. Furthermore,
k is smaller for higher generations. In particular, P (ki → kj) seems to be largest for spherical
boundary topology. This suggests that the (phase) transition probabilities P (ki → kj) decrease
as a function of the strength of the dominating particle interaction and of the genus of the particle
(reflecting itself via the modular contribution to the particle mass increasing as a function of
genus).

7.7 General vision about coupling constant evolution

Zero energy ontology, the construction of M -matrix as time like entanglement coefficients defining
Connes tensor product characterizing finite measurement resolution in terms of inclusion of hyper-finite
factors of type II1, the realization that symplectic invariance of N-point functions provides a detailed
mechanism eliminating UV divergences, and the understanding of the relationship between super-
symplectic and super Kac-Moody symmetries: these are the pieces of the puzzle whose combination
making possible a rather concrete vision about coupling constant evolution in TGD Universe and even
a rudimentary form of generalized Feynman rules.

p-adic coupling constant evolution is discrete by p-adic length scale hypothesis justified by zero
energy ontology. Discreteness means that continuous mass scale is replaced by mass scales coming
as half octaves of CP2 mass. One key question has been whether it is Kähler coupling strength αK
or gravitational coupling constant, which remains invariant under p-adic coupling constant evolution.
Second problem relates to the value of αK .

The realization that modified Dirac action could be the fundamental variational principle initiated
the process, which led to an answer to these and many other questions. The idea that some kind
of Dirac determinant gives the vacuum functional identifiable as exponent of Kähler function in turn
identifiable as Kähler action SK for a preferred extremal came first. The basic challenges are to un-
derstand the conditions fixing the preferred extremal of Kähler action and how to define the Dirac
determinant. After experimentation with several alternatives it became clear that the modified Dirac
action contains besides the term defined by Kähler action also a measurement interaction term guar-
anteing quantum classical correspondence. An alternative idea inspired by TGD as almost topological
QFT vision and quantum holography was that 3-D Chern-Simons action for light-like 3-surfaces at
which the induced metric of the space-time surface changes its signature could be enough. This turned
out be to not the case.

The most important outcome is a formula for Kähler coupling strength in terms of a calculable and
manifestly finite Dirac determinant without any need for zeta function regularization. The formula
fixes completely the number theoretic anatomy of Kähler coupling strength and of other gauge coupling
strengths. When the formula for the gravitational constant involving Kähler coupling strength and
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the exponent of Kähler action for CP2 type vacuum extremal - which remains still a conjecture -
is combined with the number theoretical results and with the constraints from the predictions of p-
adic mass calculations, one ends up to an identification of Kähler coupling strength as fine structure
constant at electron length scale characterized by p-adic prime M127. Also the number theoretic
anatomy of the ratio R2/~G, where R is CP2 size, can be understood to high degree and a relationship
between the p-adic evolutions of electromagnetic and color coupling strengths emerges.

7.7.1 General ideas about coupling constant evolution

Zero energy ontology

In zero energy ontology one replaces positive energy states with zero energy states with positive and
negative energy parts of the state at the boundaries of future and past direct light-cones forming a
causal diamond. All conserved quantum numbers of the positive and negative energy states are of
opposite sign so that these states can be created from vacuum. ”Any physical state is creatable from
vacuum” becomes thus a basic principle of quantum TGD and together with the notion of quantum
jump resolves several philosophical problems (What was the initial state of universe?, What are the
values of conserved quantities for Universe, Is theory building completely useless if only single solution
of field equations is realized?).

At the level of elementary particle physics positive and negative energy parts of zero energy state
are interpreted as initial and final states of a particle reaction so that quantum states become physical
events. Equivalence Principle would hold true in the sense that the classical gravitational four-
momentum of the vacuum extremal whose small deformations appear as the argument of configuration
space spinor field is equal to the positive energy of the positive energy part of the zero energy quantum
state. Equivalence Principle is expected to hold true for elementary particles and their composites
but not for the quantum states defined around non-vacuum extremals.

Does the finiteness of measurement resolution dictate the laws of physics?

The hypothesis that the mere finiteness of measurement resolution could determine the laws of quan-
tum physics [K19] completely belongs to the category of not at all obvious first principles. The
basic observation is that the Clifford algebra spanned by the gamma matrices of the ”world of
classical worlds” represents a von Neumann algebra [A140] known as hyperfinite factor of type II1

(HFF) [K19, K87, K26] . HFF [A135, A177] is an algebraic fractal having infinite hierarchy of in-
cluded subalgebras isomorphic to the algebra itself [A10] . The structure of HFF is closely related to
several notions of modern theoretical physics such as integrable statistical physical systems [A220] ,
anyons [D5] , quantum groups and conformal field theories [A178] , and knots and topological quantum
field theories [A208, A225] .

Zero energy ontology is second key element. In zero energy ontology these inclusions allow an
interpretation in terms of a finite measurement resolution: in the standard positive energy ontology this
interpretation is not possible. Inclusion hierarchy defines in a natural manner the notion of coupling
constant evolution and p-adic length scale hypothesis follows as a prediction. In this framework
the extremely heavy machinery of renormalized quantum field theory involving the elimination of
infinities is replaced by a precisely defined mathematical framework. More concretely, the included
algebra creates states which are equivalent in the measurement resolution used. Zero energy states
are associated with causal diamond formed by a pair of future and past directed light-cones having
positive and negative energy parts of state at their boundaries. Zero energy state can be modified in
a time scale shorter than the time scale of the zero energy state itself.

On can imagine two kinds of measurement resolutions. The element of the included algebra can
leave the quantum numbers of the positive and negative energy parts of the state invariant, which
means that the action of subalgebra leaves M-matrix invariant. The action of the included algebra
can also modify the quantum numbers of the positive and negative energy parts of the state such that
the zero energy property is respected. In this case the Hermitian operators subalgebra must commute
with M-matrix.

The temporal distance between the tips of light-cones corresponds to the secondary p-adic time
scale Tp,2 =

√
pTp by a simple argument based on the observation that light-like randomness of light-

like 3-surface is analogous to Brownian motion. This gives the relationship Tp = L2
p/Rc, where R is

CP2 size. The action of the included algebra corresponds to an addition of zero energy parts to either
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positive or negative energy part of the state and is like addition of quantum fluctuation below the time
scale of the measurement resolution. The natural hierarchy of time scales is obtained as Tn = 2−nT
since these insertions must belong to either upper or lower half of the causal diamond. This implies
that preferred p-adic primes are near powers of 2. For electron the time scale in question is .1 seconds
defining the fundamental biorhythm of 10 Hz.

M-matrix representing a generalization of S-matrix and expressible as a product of a positive square
root of the density matrix and unitary S-matrix would define the dynamics of quantum theory [K19]
. The notion of thermodynamical state would cease to be a theoretical fiction and in a well-defined
sense quantum theory could be regarded as a square root of thermodynamics.

How do p-adic coupling constant evolution and p-adic length scale hypothesis emerge?

Zero energy ontology in which zero energy states have as imbedding space correlates causal diamonds
for which the distance between the tips of future and past directed light-cones are power of 2 multiples
of fundamental time scale (Tn = 2nT0) implies in a natural manner coupling constant evolution. A
weaker condition would be Tp = pT0, p prime, and would assign all p-adic time scales to the size scale
hierarchy of CDs.

Could the coupling constant evolution in powers of 2 implying time scale hierarchy Tn = 2nT0

induce p-adic coupling constant evolution and explain why p-adic length scales correspond to Lp ∝√
pR, p ' 2k, R CP2 length scale? This looks attractive but there is a problem. p-Adic length scales

come as powers of
√

2 rather than 2 and the strongly favored values of k are primes and thus odd so
that n = k/2 would be half odd integer. This problem can be solved.

1. The observation that the distance traveled by a Brownian particle during time t satisfies r2 = Dt
suggests a solution to the problem. p-Adic thermodynamics applies because the partonic 3-
surfaces X2 are as 2-D dynamical systems random apart from light-likeness of their orbit. For
CP2 type vacuum extremals the situation reduces to that for a one-dimensional random light-like
curve in M4. The orbits of Brownian particle would now correspond to light-like geodesics γ3 at
X3. The projection of γ3 to a time=constant section X2 ⊂ X3 would define the 2-D path γ2 of
the Brownian particle. The M4 distance r between the end points of γ2 would be given r2 = Dt.
The favored values of t would correspond to Tn = 2nT0 (the full light-like geodesic). p-Adic
length scales would result as L2(k) = DT (k) = D2kT0 for D = R2/T0. Since only CP2 scale is
available as a fundamental scale, one would have T0 = R and D = R and L2(k) = T (k)R.

2. p-Adic primes near powers of 2 would be in preferred position. p-Adic time scale would not relate
to the p-adic length scale via Tp = Lp/c as assumed implicitly earlier but via Tp = L2

p/R0 =√
pLp, which corresponds to secondary p-adic length scale. For instance, in the case of electron

with p = M127 one would have T127 = .1 second which defines a fundamental biological rhythm.
Neutrinos with mass around .1 eV would correspond to L(169) ' 5 µm (size of a small cell) and
T (169) ' 1. × 104 years. A deep connection between elementary particle physics and biology
becomes highly suggestive.

3. In the proposed picture the p-adic prime p ' 2k would characterize the thermodynamics of
the random motion of light-like geodesics of X3 so that p-adic prime p would indeed be an
inherent property of X3. For Tp = pT0 the above argument is not enough for p-adic length
scale hypothesis and p-adic length scale hypothesis might be seen as an outcome of a process
analogous to natural selection. Resonance like effect favoring octaves of a fundamental frequency
might be in question. In this case, p would a property of CD and all light-like 3-surfaces inside
it and also that corresponding sector of configuration space.

7.7.2 The bosonic action defining Kähler function as the effective action
associated with the induced spinor fields

One could define the classical action defining Kähler function as the bosonic action giving rise to the
divergences of the isometry currents. In this manner bosonic action, especially the value of the Kähler
coupling strength, would come out as prediction of the theory containing no free parameters.
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Thus the Kähler action SB of preferred extremal of Käction defining Kähler function could be
defined by the functional integral over the Grassmann variables for the exponent of the massless Dirac
action. Formally the functional integral is defined as

exp(SB(X4)) =

∫
exp(SF )DΨDΨ̄ ,

SF = Ψ̄
[
Γ̂αD→α −D←α Γ̂α

]
Ψ
√
g .

(7.7.-1)

Formally the bosonic effective action is expressible as a logarithm of the fermionic functional deter-
minant resulting from the functional integral over the Grassmann variables

SB(X4) = log(det(D)) ,

D = Γ̂αD→α . (7.7.-1)

Can one do without zeta function regularization?

The rigorous definition of the fermionic determinant has been already discussed in [K15] . The best one
hope that the formal definition of the determinant as the the product of the generalized eigenvalues
of DC−S works as such. This is the case if the number of eigenvalues is finite; if the eigenvalues
approach to constant which can be chosen to be equal to unity; or if the eigenvalues have approximate
symmetry λ→ 1/λ.

1. Somewhat surprisingly the detailed construction of the eigenvalue spectrum discussed in [K15]
shows that the number of eigenvalues is indeed finite and that eigenvalues are bounded from
above. The basic idea of the construction is following. The eigenvalues correspond to the
generalized eigenvalues of the modified Dirac operator DC−S for Chern-Simons action at X3

l .
The modified Dirac equation for DC−S does not however fix the eigenvalues but allows them to
be arbitrary functions of the transversal coordinates of X3

l . Therefore the data about preferred
extremal of Kähler action can be feeded to the eigenvalue spectrum by assuming that spinor
modes at X3

l can be also regarded as spinorial shock waves in the sense that they correspond to
singular solutions of 4-D modified Dirac operator DK assignable to Kähler action.

2. Since modified Dirac equation for DK is equivalent with the conservation of super current, the
shock wave property means that the super current is restricted to X3

l and thus has a vanish-
ing normal component. In the case of wormhole throats the construction requires boundary
conditions stating that there exist coordinates in which Jni = 0 and gni = 0 at X3

l [K15] .
Therefore classical gravitational field is effectively static at X3

l and the Maxwell field defined by
the induced Kähler form has only the magnetic part in these coordinates.

3. The generalized eigenvalues of DC−S appearing in Dirac determinant can be identified as eigen-
values of the transversal part of 3-D Dirac operator defined by the restriction of DK to X3

l

describing fermions in the electro-weak magnetic field associated with X3
l . The physical analog

is energy spectrum for Dirac operator in external magnetic field. The effective metric appearing
in the modified Dirac operator corresponds to

ĝαβ =
∂LK
∂hkα

∂LK
∂hlβ

hkl ,

and vanishes at the boundaries of regions carrying non-vanishing Kähler magnetic field. Hence
the shock waves must be localized to regions X3

l,i containing a non-vanishing Kähler magnetic
field. Cyclotron states in constant magnetic field serve as a good analog for the situation and
only a finite number of cyclotron states are possible since for higher cyclotron states the wave
function -essentially harmonic oscillator wave function- would concentrate outside X3

l,i.
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4. A more precise argument goes as follows. Assume that it is induced Kähler magnetic field
BK that matters. The vanishing of the effective contravariant metric near the boundary of
X3
l,i corresponds to an infinite effective mass for massive particle in constant magnetic field so

that the counterpart for the cyclotron frequency scale eB/m reduces to zero. The radius of
the cyclotron orbit is proportional to 1/

√
eB and approaches to infinity. Hence the required

localization is not possible only for cyclotron states for which the cyclotron radius is below that
the transversal size scale of X3

l,i.

5. The eigenvalues of the modified Dirac operator vanish for the vacuum extremals but the Dirac
determinant equals to one in this case since zero eigenvalues do not correspond to localized
solutions and by definition do not contribute to it.

Formula for the Kähler coupling strength

The identification of exponent of Kähler function as Dirac determinant leads to a formula relating
Kähler action for the preferred extremal to the Dirac determinant. The eigenvalues are proportional
to 1/αK since the matrices Γ̂α have this proportionality. This gives the formula

exp(
SK(X4(X3))

8παK
) =

∏
i

λi =

∏
i λ0,i

αNK
. (7.7.0)

Here λ0,i corresponds to αK = 1. SK =
∫
J∗J is the reduced Kähler action.

For SK = 0, which might correspond to so called massless extremals [K10] one obtains the formula

αK = (
∏
i

λ0,i)
1/N . (7.7.1)

Thus for SK = 0 extremals one has an explicit formula for αK having interpretation as the geometric
mean of the eigenvalues λ0,i. Several values of αK are in principle possible.

p-Adicization suggests that λ0,i are rational or at most algebraic numbers. This would mean that
αK is N :th root of this kind of number. SK in turn would be

SK = 8παK log(

∏
i λ0,i

αNK
) . (7.7.2)

so that SK would be expressible as a product of the transcendental π, N :th root of rational, and
logarithm of rational. This result would provide a general answer to the question about number
theoretical anatomy of Kähler coupling strength and SK . Note that SK makes sense p-adically only
if one adds π and its all powers to the extension of p-adic numbers. The exponent of Kähler function
however makes sense also p-adically.

7.7.3 A revised view about coupling constant evolution

The development of the ideas related to number theoretic aspects has been rather tortuous and based
on guess work since basic theory has been lacking.

1. The original hypothesis was that Kähler coupling strength is invariant under p-adic coupling
constant evolution. Later I gave up this hypothesis and replaced it with the invariance of grav-
itational coupling since otherwise the prediction would have been that gravitational coupling
strength is proportional to p-adic length scale squared. Second first guess was that Kähler
coupling strength equals to the value of fine structure constant at electron length scale corre-
sponding to Mersenne prime M127. Later I replaced fine structure constant with electro-weak
U(1) coupling strength at this length scale. The recent discussion returns back to the roots in
both aspects.
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2. The recent discussion relies on the progress made in the understanding of quantum TGD at
partonic level [K15] . What comes out is an explicit formula for Kähler couplings strength in
terms of Dirac determinant involving only a finite number of eigenvalues of the modified Dirac
operator. This formula dictates the number theoretical anatomy of g2

K and also of other coupling
constants: the most general option is that αK is a root of rational. The requirement that the
rationals involved are simple combined with simple experimental inputs leads to very powerful
predictions for the coupling parameters.

3. A further simplification is due to the discreteness of p-adic coupling constant evolution allowing
to consider only length scales coming as powers of

√
2. This kind of discretization is necessary

also number theoretically since logarithms can be replaced with 2-adic logarithms for powers
of 2 giving integers. This raises the question whether p ' 2k should be replaced with 2k in all
formulas as the recent view about quantum TGD suggests.

4. The prediction is that Kähler coupling strength αK is invariant under p-adic coupling constant
evolution and from the constraint coming from electron and top quark masses very near to fine
structure constant so that the identification as fine structure constant is natural. Gravitational
constant is predicted to be proportional to p-adic length scale squared and corresponds to the
largest Mersenne prime (M127), which does not correspond to a completely super-astronomical p-
adic length scale. For the parameter R2/G p-adicization program allows to consider two options:
either this constant is of form eq or 2q: in both cases q is rational number. R2/G = exp(q) allows
only M127 gravitons if number theory is taken completely seriously. R2/G = 2q allows all p-adic
length scales for gravitons and thus both strong and weak variants of ordinary gravitation.

5. A relationship between electromagnetic and color coupling constant evolutions based on the
formula 1/αem+1/αs = 1/αK is suggested by the induced gauge field concept, and would mean
that the otherwise hard-to-calculate evolution of color coupling strength is fixed completely. The
predicted value of αs at intermediate boson length scale is correct.

It seems fair to conclude that the attempts to understand the implications of p-adicization for
coupling constant evolution have begun to bear fruits.

Identifications of Kähler coupling strength and gravitational coupling strength

To construct an expression for gravitational constant one can use the following ingredients.

1. The exponent exp(2SK(CP2)) defining the value of Kähler function in terms of the Kähler action
SK(CP2) of CP2 type extremal representing elementary particle expressible as

SK(CP2) =
SK,R(CP2)

8παK
=

π

8αK
. (7.7.3)

Since CP2 type extremals suffer topological condensation, one expects that the action is modified:

SK(CP2) → a× SK(CP2) . (7.7.4)

a < 1 conforms with the idea that a piece of CP2 type extremal defining a wormhole contact is
in question. One must however keep mind open in this respect.

2. The p-adic length scale Lp assignable to the space-time sheet along which gravitational inter-
actions are mediated. Since Mersenne primes seem to characterized elementary bosons and
since the Mersenne prime M127 = 2127 − 1 defining electron length scale is the largest non-
super-astronomical length scale it is natural to guess that M127 characterizes these space-time
sheets.
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1. The formula for the gravitational constant

A long standing basic conjecture has been that gravitational constant satisfies the following formula

~G ≡ r~0G = L2
p × exp(−2aSK(CP2)) ,

Lp =
√
pR . (7.7.4)

Here R is CP2 radius defined by the length 2πR of the geodesic circle. What was noticed before is
that this relationship allows even constant value of G if a has appropriate dependence on p.

This formula seems to be correct but the argument leading to it was based on two erratic assump-
tions compensating each other.

1. I assumed that modulus squared for vacuum functional is in question: hence the factor 2a in the
exponent. The interpretation of zero energy state as a generalized Feynman diagram requires
the use of vacuum functional so that the replacement 2a→ a is necessary.

2. Second wrong assumption was that graviton corresponds to CP2 type vacuum extremal- that is
wormhole contact in the recent picture. This does allow graviton to have spin 2. Rather, two
wormhole contacts represented by CP2 vacuum extremals and connected by fluxes associated
with various charges at their throats are needed so that graviton is string like object. This saves
the factor 2a in the exponent.

The highly non-trivial implication to be discussed later is that ordinary coupling constant strengths
should be proportional to exp(−aSK(CP2)).

The basic constraint to the coupling constant evolution comes for the invariance of g2
K in p-adic

coupling constant evolution:

g2
K =

a(p, r)π2

log(pK)
,

K =
R2

~G(p)
=

1

r

R2

~0G(p)
≡ K0(p)

r
. (7.7.4)

2. How to guarantee that g2
K is RG invariant and N :th root of rational?

Suppose that g2
K is N :th root of rational number and invariant under p-adic coupling constant

evolution.

1. The most general manner to guarantee the expressibility of g2
K as N :th root of rational is

guaranteed for both options by the condition

a(p, r) =
g2
K

π2
log(

pK0

r
) . (7.7.5)

That a would depend logarithmically on p and r = ~/~0 looks rather natural. Even the invariance
of G under p-adic coupling constant evolution can be considered.

2. The condition

r

p
< K0(p) . (7.7.6)

must hold true to guarantee the condition a > 0. Since the value of gravitational Planck
constant is very large, also the value of corresponding p-adic prime must very large to guarantee
this condition. The condition a < 1 is guaranteed by the condition
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r

p
> exp(− π

2

g2
K

)×K0(p) . (7.7.7)

The condition implies that for very large values of p the value of Planck constant must be larger
than ~0.

3. The two conditions are summarized by the formula

K0(p)× exp(− π
2

g2
K

) <
r

p
< K0(p) (7.7.8)

characterizing the allowed interval for r/p. If G does not depend on p, the minimum value for

r/p is constant. The factor exp(− π2

g2K
) equals to 1.8 × 10−47 for αK = αem so that r > 1 is

required for p ≥ 4.2 × 10−40. M127 ∼ 1038 is near the upper bound for p allowing r = 1. The
constraint on r would be roughly r ≥ 2k−131 and p ' 2131 is the first p-adic prime for which
~ > 1 is necessarily. The corresponding p-adic length scale is .1 Angstroms.

This conclusion need not apply to elementary particles such as neutrinos but only to the space-
time sheets mediating gravitational interaction so that in the minimal scenario it would be
gravitons which must become dark above this scale. This would bring a new aspect to vision
about the role of gravitation in quantum biology and consciousness.

The upper bound for r behaves roughly as r < 2.3× 107p. This condition becomes relevant for
gravitational Planck constant GM1M2/v0 having gigantic values. For Earth-Sun system and for
v0 = 2−11 the condition gives the rough estimate p > 6× 1063. The corresponding p-adic length
scale would be of around L(215) ∼ 40 meters.

4. p-Adic mass calculations predict the mass of electron as m2
e = (5+Ye)2

−127/R2 where Ye ∈ [0, 1)
parameterizes the not completely known second order contribution. Top quark mass favors a
small value of Ye (the original experimental estimates for mt were above the range allowed by
TGD but the recent estimates are consistent with small value Ye [K55] ). The range [0, 1) for
Ye restricts K0 = R2/~0G to the range [2.3683, 2.5262]× 107.

5. The best value for the inverse of the fine structure constant is 1/αem = 137.035999070(98) and
would correspond to 1/g2

K = 10.9050 and to the range (0.9757, 0.9763) for a for ~ = ~0 and
p = M127. Hence one can seriously consider the possibility that αK = αem(M127 holds true. As
a matter fact, this was the original hypothesis but was replaced later with the hypothesis that
αK corresponds to electro-weak U(1) coupling strength in this length scale. The fact that M127

defines the largest Mersenne prime, which does not correspond to super-astrophysical length
scale might relate to this co-incidence.

To sum up, the recent view about coupling constant evolution differs strongly from previous much
more speculative scenarios. It implies that g2

K is root of rational number, possibly even rational, and
can be assumed to be equal to e2. Also R2/~G could be rational. The new element is that G need
not be proportional to p and can be even invariant under coupling constant evolution since the the
parameter a can depend on both p and r. An unexpected constraint relating p and r for space-time
sheets mediating gravitation emerges.

Are the color and electromagnetic coupling constant evolutions related?

Classical theory should be also able to say something non-trivial about color coupling strength αs too
at the general level. The basic observations are following.

1. Both classical color YM action and electro-weak U(1) action reduce to Kähler action.
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2. Classical color holonomy is Abelian which is consistent also with the fact that the only signature
of color that induced spinor fields carry is anomalous color hyper charge identifiable as an electro-
weak hyper charge.

Suppose that αK is a strict RG invariant. One can consider two options.

1. The original idea was that the sum of classical color action and electro-weak U(1) action is RG
invariant and thus equals to its asymptotic value obtained for αU(1) = αs = 2αK . Asymptot-
ically the couplings would approach to a fixed point defined by 2αK rather than to zero as in
asymptotically free gauge theories.

Thus one would have

1

αU(1)
+

1

αs
=

1

αK
. (7.7.9)

The relationship between U(1) and em coupling strengths is

αU(1) =
αem

cos2(θW )
' 1

104.1867
,

sin2(θW )|10 MeV ' 0.2397(13) ,

αem(M127) = 0.00729735253327 . (7.7.8)

Here Weinberg angle corresponds to 10 MeV energy is reasonably near to the value at electron
mass scale. The value sin2(θW ) = 0.2397(13) corresponding to 10 MeV mass scale [E10] is used.
Note however that the previous argument implying αK = αem(M127) excludes α = αU(1)(M127)
option.

2. Second option is obtained by replacing U(1) with electromagnetic gauge U(1)em.

1

αem
+

1

αs
=

1

αK
. (7.7.9)

Possible justifications for this assumption are following. The notion of induced gauge field
makes it possible to characterize the dynamics of classical electro-weak gauge fields using only
the Kähler part of electro-weak action, and the induced Kähler form appears only in the elec-
tromagnetic part of the induced classical gauge field. A further justification is that em and color
interactions correspond to unbroken gauge symmetries.

The following arguments are consistent with this conclusion.

1. In TGD framework coupling constant is discrete and comes as powers of
√

2 corresponding to
p-adic primes p ' 2k. Number theoretic considerations suggest that coupling constants g2

i are
algebraic or perhaps even rational numbers, and that the logarithm of mass scale appearing as
argument of the renormalized coupling constant is replaced with 2-based logarithm of the p-adic
length scale so that one would have g2

i = g2
i (k). g2

K is predicted to be N :th root of rational but
could also reduce to a rational. This would allow rational values for other coupling strengths too.
This is possible if sin(θW ) and cos(θW ) are rational numbers which would mean that Weinberg
angle corresponds to a Pythagorean triangle as proposed already earlier. This would mean the
formulas sin(θW ) = (r2 − s2)/(r2 + s2) and cos(θW ) = 2rs(r2 + s2).

2. A very strong prediction is that the beta functions for color and U(1) degrees of freedom are
apart from sign identical and the increase of U(1) coupling compensates the decrease of the
color coupling. This allows to predict the hard-to-calculate evolution of QCD coupling constant
strength completely.
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3. α(M127) = αK implies that M127 defines the confinement length scale in which the sign of
αs becomes negative. TGD predicts that also M127 copy of QCD should exist and that M127

quarks should play a key role in nuclear physics [K74, L5] , [L5] . Hence one can argue that
color coupling strength indeed diverges at M127 (the largest not completely super-astrophysical
Mersenne prime) so that one would have αK = α(M127). Therefore the precise knowledge of
α(M127) in principle fixes the value of parameter K = R2/G and thus also the second order
contribution to the mass of electron.

4. αs(M89) is predicted to be 1/αs(M89) = 1/αK − 1/α(M89). sin2(θW ) = .23120, αem(M89) '
1/127, and αU(1) = αem/cos

2(θW ) give 1/αU(1)(M89) = 97.6374. α = αem option gives
1/αs(M89) ' 10, which is consistent with experimental facts. α = αU(1) option gives αs(M89) =
0.1572, which is larger than QCD value. Hence α = αem option is favored.

Can one deduce formulae for gauge couplings?

The improved physical picture behind gravitational constant allows also to consider a general formula
for gauge couplings.

1. The natural guess for the general formula would be as

g2(p, r) = kg2
K × exp[−ag(p, r)× SK(CP2)] . (7.7.10)

here k is a numerical constant.

2. The condition

g2
K = e2(M127) fixes the value of k if it’s value does not depend on the character of gauge

interaction:

k = exp[agr(M127, r = 1)× SK(CP2)] . (7.7.11)

Hence the general formula reads as

g2(p, r) = g2
K × exp[(−ag(p, r) + agr(M127), r = 1))× SK(CP2)] .

(7.7.11)

The value of a(M127, r = 1) is near to its maximum value so that the exponential factor tends
to increase the value of g2 from e2. The formula can reproduce αs and various electro-weak
couplings although it is quite possibile that Weinberg angle corresponds to a group theoretic
factor not representable in terms of ag(p, r). The volume of the CP2 type vacuum extremal
would characterize gauge bosons. Analogous formula should apply also in the case of Higgs.

3. αem in very long length scales would correspond to

e2(p→∞, r = 1) = e2 × exp[(−1 + a(M127), r = 1))× SK(CP2)] = e2x ,

(7.7.11)

where x is in the range [0.6549, 0.6609].

To sum up, the proposed formula would dictate the evolution of αs from the evolution of the electro-
weak parameters without any need for perturbative computations. Although the formula of proposed
kind is encouraged by the strong constraints between classical gauge fields in TGD framework, it
should be deduced in a rigorous manner from the basic assumptions of TGD before it can be taken
seriously.



Chapter 8

Fusion of p-Adic and Real Variants
of Quantum TGD to a More
General Theory

8.1 Introduction

The notion of p-adicization has for a long time been a somewhat obscure attempt to provide a
theoretical justification for the successes of the p-adic mass calculations. The reduction of quantum
TGD to a generalized number theory and the developments in TGD inspired theory of consciousness
have however led to a better understanding what the p-adicization possibly means.

8.1.1 What p-adic physics means?

Contrary to the original expectations finite-p p-adic physics means the physics of the p-adic cognitive
representations about real physics rather than ’real physics’. This forces to update the prejudices
about what p-adicization means. The original hypothesis was that p-adicization is a strict one-to-one
map from real to p-adic physics and this led to technical problems with symmetries.

The new vision about quantum TGD the notion of the p-adic space-time emerges dynamically and
p-adic space-time regions are absolutely ’real’ and certainly not ’p-adicized’ in any sense. Furthermore,
the new view also encourages the hypothesis that p-adic regions provide cognitive models for the real
matter like regions becoming more and more refined in the evolutionary self-organization process by
quantum jumps. p-Adic region can serve as a cognitive model for particle itself or for the external
world. The model is defined by some cognitive map of real region to its p-adic counterpart. This
cognitive map need not be unique. At the level of TGD inspired theory of consciousness the p-
adicization becomes modelling of how cognition works.

In this conceptual framework the successes of the p-adic mass calculations can be understood only
if p-adic mass calculations provide a model a ’cognitive model’ of an elementary particle. The successes
of the p-adic mass calculations, and also the fact that they rely on the fundamental symmetries of
quantum TGD, encourages the idea that one could try to mimic Nature. Thus p-adic physics could be
seen as an abstract mimicry for what Nature already does by constructing explicitly p-adic cognitive
representations. This new view about p-adic physics allows much more flexibility since p-adicization
can be interpreted as a cognitive map mapping real world physics to p-adic physics. In this view
p-adicization need not and cannot be a unique procedure.

8.1.2 Number theoretic vision briefly

The number theoretic vision [K77, K78, K76] about the classical dynamics of space-time surfaces is
now relatively detailed although it involves unproven conjectures inspired by physical intuition.

1. Hyper-quaternions and octonions

387
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The original idea was that space-time surfaces could be regarded as four-surfaces in 8-D imbedding
space with the property that the tangent spaces of these spaces can be locally regarded as 4- resp.
8-dimensional number fields of quaternions and octonions.

The difficulties caused by the Euclidian metric signature of the number theoretical norm have
however forced to give up the original idea as such, and to introduce complexified octonions and
quaternions resulting by extending quaternionic and octonionic algebra by adding imaginary units
multiplied with

√
−1. This spoils the number field property but the notion of prime is not lost. The

sub-space of hyper-quaternions resp. -octonions is obtained from the algebra of ordinary quaternions
and octonions by multiplying the imaginary part with

√
−1. The transition is the number theoretical

counterpart of the transition from Riemannian to pseudo-Riemannin geometry performed already in
Special Relativity.

The problem is that H = M4×CP2 cannot be endowed with a hyper-octonionic manifold structure.
Indeed, space-time surfaces are assumed to be hyper-quaternionic or co-hyper-quaternionic 4-surfaces
of 8-dimensional Minkowski space M8 identifiable as the hyper-octonionic space HO. Since the
hyper-quaternionic sub-spaces of HO with fixed complex structure are labelled by CP2, each (co)-
hyper-quaternionic four-surface of HO defines a 4-surface of M4×CP2. One can say that the number-
theoretic analog of spontaneous compactification occurs.

2. Space-time-surface as a hyper-quaternionic sub-manifold of hyper-octonionic imbedding space?

Space-time identified as a hyper-quaternionic sub-manifold of the hyper-octonionic space in the
sense that the tangent space of the space-time surface defines a hyper-quaternionic sub-algebra of
the hyper-octonionic tangent space of H at each space-time point, looks an attractive idea. Second
possibility is that the tangent space-algebra of the space-time surface is either associative or co-
associative at each point. One can also consider possibility that the dynamics of the space-time
surface is determined from the requirement that space-time surface is algebraically closed in the sense
that tangent space at each point has this property. Also the possibility that the property in question
is associated with the normal space at each point of X4 can be considered. Some delicacies are caused
by the question whether the induced algebra at X4 is just the hyper-octonionic product or whether
the algebra product is projected to the space-time surface. If normal part of the product is projected
out the space-time algebra closes automatically.

The first guess would be that space-time surfaces are hyper-quaternionic sub-manifolds of hyper-
octonionic space HO = M8 with the property that complex structure is fixed and same at all points
of space-time surface. This corresponds to a global selection of a preferred octonionic imaginary unit.
The automorphisms leaving this selection invariant form group SU(3) identifiable as color group. The
selections of hyper-quaternionic sub-space under this condition are parameterized by CP2. This means
that each 4-surface in HO defines a 4-surface in M4×CP2 and one can speak about number-theoretic
analog of spontaneous compactification having of course nothing to do with dynamics. It would be
possible to make physics in two radically different geometric pictures: HO picture and H = M4×CP2

picture.
For a theoretical physicists of my generation it is easy to guess that the next step is to realize that

it is possible to fix the preferred octonionic imaginary at each point of HO separately so that local
S6 = G2/SU(3), or equivalently the local group G2 subject to SU(3) gauge invariance, characterizes
the possible choices of hyper-quaternionic structure with a preferred imaginary unit. G2 ⊂ SO(7) is the
automorphism group of octonions, and appears also in M-theory. This local choice has interpretation
as a fixing of the plane of non-physical polarizations and rise to degeneracy which is a good candidate
for the ground state degeneracy caused by the vacuum extremals.

OH − −M4 × CP2 duality allows to construct a foliation of HO by hyper-quaternionic space-
time surfaces in terms of maps HO → SU(3) satisfying certain integrability conditions guaranteing
that the distribution of hyper-quaternionic planes integrates to a foliation by 4-surfaces. In fact, the
freedom to fix the preferred imaginary unit locally extends the maps to HO → G2 reducing to maps
HO → SU(3)× S6 in the local trivialization of G2. This foliation defines a four-parameter family of
4-surfaces in M4×CP2 for each local choice of the preferred imaginary unit. The dual of this foliation
defines a 4-parameter famility co-hyper-quaternionic space-time surfaces.

Hyper-octonion analytic functions HO → HO with real Taylor coefficients provide a physically
motivated ansatz satisfying the integrability conditions. The basic reason is that hyper-octonion ana-
lyticity is not plagued by the complications due to non-commutativity and non-associativity. Indeed,
this notion results also if the product is Abelianized by assuming that different octonionic imaginary
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units multiply to zero. A good candidate for the HO dynamics is free massless Dirac action with
Weyl condition for an octonion valued spinor field using octonionic representation of gamma matrices
and coupled to the G2 gauge potential defined by the tensor 7 × 7 tensor product of the imaginary
parts of spinor fields.

The basic conjecture is that the absolute minima of Kähler action correspond to the hyper-
quaternion analytic surfaces. This conjecture has several variants. It could be that only asymptotic
behavior corresponds to hyper-quaternion analytic function but that that hyper-quaternionicity is
general property of absolute minima. It could also be that maxima of Kähler function correspond
to this kind of 4-surfaces. The encouraging hint is the fact that Hamilton-Jacobi coordinates appear
naturally also in the construction of general solutions of field equations.

3. The representation of infinite hyper-octonionic primes as 4-surfaces

The discovery of infinite primes suggested strongly the possibility to reduce physics to number
theory. The construction of infinite primes can be regarded as a repeated second quantization of a
super-symmetric arithmetic quantum field theory. This hierarchy of second quantizations means an
enormous generalization of physics to what might be regarded a physical counterpart for a hierarchy of
abstractions about abstractions about.... The ordinary second quantized quantum physics corresponds
only to the lowest level infinite primes. This hierarchy can be identified with the corresponding
hierarchy of space-time sheets of the many-sheeted space-time.

One can even try to understand the quantum numbers of physical particles in terms of infinite
primes. In particular, the hyper-quaternionic primes correspond four-momenta and mass squared is
prime valued for them. The properties of 8-D hyper-octonionic primes motivate the attempt to identify
the quantum numbers associated with CP2 degrees of freedom in terms of these primes. Infinite primes
can be mapped to polynomial primes and this observation allows to identify completely generally the
spectrum of infinite primes.

This in turn led to the idea that it might be possible represent infinite primes (integers) geomet-
rically as surfaces defined by the polynomials associated with infinite primes (integers). Obviously,
infinite primes would serve as a bridge between Fock-space descriptions and geometric descriptions
of physics: quantum and classical. Geometric objects could be seen as concrete representations of
infinite numbers providing amplification of infinitesimals to macroscopic deformations of space-time
surface. We see the infinitesimals as concrete geometric shapes!

Since the notion of prime makes sense for the complexified octonions, it makes sense also for
the hyper-octonions. It is possible to assign to infinite prime of this kind a hyper-octonion analytic
polynomial P : OH → OH and hence also a foliation of OH and H = M4×CP2 by hyper-quaternionic
4-surfaces and notion of Kähler calibration. Therefore space-time surface could be seen as a geometric
counterpart of a Fock state. The assignment is not unique but determined only up to an element of
the local octonionic automorphism group G2 acting in HO and fixing the local choices of the preferred
imaginary unit of the hyper-octonionic tangent plane. In fact, a map HO → S6 characterizes the
choice since SO(6) acts effectively as a local gauge group.

The construction generalizes to all levels of the hierarchy of infinite primes and produces also repre-
sentations for integers and rationals associated with hyper-octonionic numbers as space-time surfaces.
A close relationship with algebraic geometry results and the polynomials define a natural hierarchical
structure in the space of 3-surfaces. By the effective 2-dimensionality naturally associated with infinite
primes represented by real polynomials 4-surfaces are determined by data given at partonic 2-surfaces
defined by the intersections of 3-D and 7-D light-like causal determinants. In particular, the notions
of genus and degree serve as classifiers of the algebraic geometry of the 4-surfaces. The great dream
is to prove that this construction yields the preferred extremals of Kähler action.

8.1.3 p-Adic space-time sheets as solutions of real field equations contin-
ued algebraically to p-adic number field

The ideas about how p-adic topology emerges from quantum TGD have varied. The first belief was
that p-adic topology is only an effective topology of real space-time sheets. This belief turned out
to be not quite correct. p-Adic topology emerges also as a genuine topology of the space-time and
p-adic regions could be identified as correlations for cognition and intentionality. This requires a
generalization of the notion of number by gluing reals and various p-adic number fields together along
common rationals. This in turn implies generalization of the notion of imbedding space. p-Adic
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transcendentals can be regarded as infinite numbers in the real sense and thus most points of the
p-adic space-time sheets would be at infinite distance and real and p-adic space-time sheets would
intersect in discrete set consisting of rational points. This view in which cognition and intentionality
would be literally cosmic phenomena is in a sharp contrast with the often held belief that p-adic
topology emerges below Planck length scale.

8.1.4 The notion of pinary cutoff

The notion of pinary cutoff is central for p-adic TGD and it should have some natural definition
and interpretation in the new approach. The presence of p-adic pseudo constants implies that there
is large number of cognitive representations with varying degrees of faithfulness. Pinary cutoff must
serve as a measure for how faithful the p-adic cognitive representation is. Since the cognitive maps are
not unique, one cannot even require any universal criterion for the faithfullness of the cognitive map.
One can indeed imagine two basic criteria corresponding to self-representations and representations
for external world.

1. The subset of rationals common to the real and p-adic space-time surface could define the
resolution. In this case, the average distance between common rational points of these two
surfaces would serve as a measure for the resolution. Pinary cutoff could be defined as the
smallest number of pinary digits in expansions of functions involved above which the resolution
does not improve. Physically the optimal resolution would mean that p-adic space-time surface,
’cognitive space-time sheet’, has a maximal number of intersections with the real space-time
surface for which it provides a self-representation. This purely algebraic notion of faithfullness
does not respect continuity: two rational points very near in real sense could be arbitrary far
from each other with respect to the p-adic norm.

2. One could base the notion of faithfulness on the idea that p-adic space-time sheet provides
almost continuous map of the real space-time sheet belonging to the external world by the basic
properties of the canonical identification. The real canonical image of the p-adic space-time sheet
and real space-time sheet could be compared and some geometric measure for the nearness of
these surfaces could define the resolution of the cognitive map and pinary cutoff could be defined
in the same manner as above.

8.1.5 Program

These ideas lead to a rather well defined p-adicization program. Define precisely the concepts of the
p-adic space-time and reduced configuration space, formulate the finite-p p-adic versions of quantum
TGD and construct the p-adic variants of TGD. Of course, the aim is not to just construct p-adic
version of the real quantum TGD but to understand how real and p-adic quantum TGD:s fuse together
to form the full theory of physics and cognition.

The construction of the p-adic TGD necessitates the generalization of the basic tools of standard
physics such as differential and integral calculus, the concept of Hilbert space, Riemannian geometry,
group theory, action principles, probability and unitary concepts to p-adic context. Also new physical
thinking and philosophy is needed and this long chapter is devoted to the description of the new
elements. Before going to the detailed exposition it is appropriate to give a brief overall view of the
basic mathematical tools.

8.2 p-Adic numbers and consciousness

The idea that p-adic physics provides the physics of cognition and intentionality has become more
and more attractive during the 12 years or so that I have spent with p-adic numbers and I feel that
it is good to add a summary about these ideas here.

8.2.1 p-Adic physics as physics of cognition

p-Adic physics began from p-adic mass calculations. The next step in the progress was the idea that
p-adic physics serves as a correlate for cognition and this thread gradually led to the recent view
requiring the generalization of the number concept.
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Decomposition of space-time surface into p-adic and real regions as representation for
matter-mind duality

Space-time surfaces contain genuinely p-adic and possibly even rational-adic regions so that no p-
adicization is performed by Nature itself at at this level and it is enough to mimic the Nature. One
manner to end up with the idea about p-adic space-time sheets is following.

Number theoretic vision leads to the idea that space-time surfaces can be associated with a hi-
erarchy of polynomials to which infinite primes are mapped. It can happen that the components of
quaternion are not always in algebraic extension of rationals but become complex. In this case the
equations might however allow smooth solutions in some algebraic extension of p-adics for some values
of prime p. It could also happen that real and p-adic roots exist simultaneously. In both cases the
interpretation would be that the p-adic space-time sheets resulting as roots of the rational function
provide self-representations for the real space-time sheets represented by real roots. This p-adicization
would occur in the regions where some roots of the rational polynomial is complex or real roots exist
also in the p-adic sense.

The dynamically generated p-adic space-time sheets could have a common boundary with the
real surface in the following sense. At this surface a real root is transformed to a p-adic root and
this surface corresponds to a boundary of catastrophe region in catastrophe theory. This boundary
provides information about external real world very much in accordance with how nervous system
receives information about the external world and makes possible cognitive representations about
external world. Since the conditions defining the space-time surface expresses the vanishing of a
derivative, the solution involves p-adic pseudo constants so that the cognitive representations are not
unique and system can have more or less faithful cognitive representations about itself and about
external world.

Rational points of the imbedding space and thus also of space-time surfaces are common to p-adics
and reals and p-adic and real space-time surfaces differ only in that completion is different. This fixes
the geometric interpretation of the cognitive maps involved with the p-adicization.

Different kinds of cognitive representations

At the level of the space-time surfaces and imbedding space p-adicization boils down to the task of
finding a map mapping real space-time region to a p-adic space-time region. These regions correspond
to definite regions of the rational imbedding space so that the map has a clear geometric interpretation
at the level of rational physics.

The basic constraint on the map is that both real and p-adic space-time regions satisfy field
equations: p-adic field equations make sense even if the integral defining the Kähler action does not
exist p-adically. p-Adic nondeterminism makes possible this map when one allows finite pinary cutoff
characterizing the resolution of the cognitive representation.

There are three basic types of cognitive representations which might be called self-representations
and representations of the external world and the the map mediating p-adicization is different for
these two maps.

1. The correspondence induced by the common rational points respects algebraic structures and
defines self-representation. Real and p-adic space-time surfaces have a subset of rational points
(defined by the resolution of the cognitive map) as common. The quality of the representation is
defined by the resolution of the map and pinary cutoff for the rationals in pinary expansion is a
natural measure for the resolution just as decimal cutoff is a natural measure for the resolution
of a numerical model.

2. Canonical identification maps rationals to rationals since the periodic pinary expansion of a
rational is mapped to a periodic expansion in the canonical identification. The rationals q = m/n
for which n is not divisible by p are mapped to rationals with p-adic norm not larger than unity.
Canonical identification respects continuity. Real numbers with real norm larger than p are
mapped to real numbers with norm smaller than one in canonical identification whereas reals
with real norm in the interval [1, p) are mapped to p-adics with p-adic norm equal to one.
Obviously the generalization of the canonical identification can map the world external to a
given space-time region into the interior of this region and provides an example of an abstract
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cognitive representation of the external world. Also now pinary cutoff serves as a natural measure
for the quality of the cognitive map.

3. The basic problems of canonical identification is that it does not respect unitarity. For this
reason it is not well suited for relating p-adic and real scattering amplitudes. The problem of
the correspondence via direct rationals is that it does not respect continuity. A compromise
between algebra and topology is achieved by using a modification of canonical identification
IRp→R defined as I1(r/s) = I(r)/I(s). If the conditions r � p and s � p hold true, the map
respects algebraic operations and also unitarity and various symmetries.

This variant of canonical identification is not equivalent with the original one using the infinite
expansion of q in powers of p since canonical identification does not commute with product and
division. The variant is however unique in the recent context when r and s in q = r/s have no
common factors. For integers n < p it reduces to direct correspondence.

It seems that this option, the discovery of which took almost a decade, must be used to relate
p-adic transition amplitudes to real ones and vice versa [K48] . In particular, real and p-
adic coupling constants are related by this map. Also some problems related to p-adic mass
calculations find a nice resolution when I1 is used.

A fascinating possibility is that cognitive self-maps and maps of the external world at the level of
human brain are basically realized by using these two basic types of mappings. Obviously canonical
identification performed separately for all coordinates is the only possibility if this map is required to
be maximally continuous.

p-Adic physics as a mimicry of p-adic cognitive representations

The success of the p-adic mass calculations suggests that one could apply the idea of p-adic cognitive
representation even at the level of quantum TGD to build models which have maximal simplicity
and calculational effectiveness. p-Adic mass calculations represent this kind of model: now canonical
identification is performed for the p-adic mass squared values and can be interpreted as a map from
cognitive representation back to real world.

The basic task is the construction of the cognitive self-map or a cognitive map of external world:
the laws of p-adic physics define the cognitive model itself automatically. For the cognitive represen-
tations of external world involving some variant of canonical identification mapping the exterior of
the imbedding space region inside this region. For self-representations situation is much more simpler.
In practice, the direct modelling of p-adic physics without explicit construction of the cognitive map
could give valuable information about real physics.

In the earlier approach based on phase preserving canonical identification to the mapping of real
space-time surface to its p-adic counterpart led to the requirement about existence of unique (almost)
imbedding space coordinates. In present case the selection of the quaternionic coordinates for the
imbedding space is unique only apart from quaternion-analytic change of coordinates. This does not
seem however pose any problems now. One must also remember that only cognitive representations
are in question. These representations are not unique and selection of quaternionic coordinates might
be even differentiate between different cognitive representations.

Since infinite primes serve as a bridge between classical and quantum, this map also assigns to
a real Fock state associated with infinite prime its p-adic version identifiable as the ground state of
a superconformal representation. Thus the map respects quantum symmetries automatically. If the
construction of the states of the representation is a completely algebraic process, there are hopes of
constructing the p-adic counterpart of S-matrix. If S-matrix is complex rational it can be mapped to
its real counterpart. If the localization in zero modes occurs in each quantum jump the predictions
of the theory could reduce to the integration in fiber degrees of freedom of CH reducible in turn to
purely algebraic expressions making sense also p-adically.

8.2.2 Zero energy ontology, cognition, and intentionality

One could argue that conservation laws forbid p-adic-real phase transitions in practice so that cog-
nitions (intentions) realized as real-to-padic (p-adic-to-real) transitions would not be possible. The
situation changes if one accepts what might be called zero energy ontology [K20, K19] .
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Zero energy ontology classically

In TGD inspired cosmology [K71] the imbeddings of Robertson-Walker cosmologies are vacuum ex-
tremals. Same applies to the imbeddings of Reissner-Nordström solution [K80] and in practice to all
solutions of Einstein’s equations imbeddable as extremals of Kähler action. Since four-momentum
currents define a collection of vector fields rather than a tensor in TGD, both positive and negative
signs for energy corresponding to two possible assignments of the arrow of the geometric time to a
given space-time surface are possible. This leads to the view that all physical states have vanishing
net energy classically and that physically acceptable universes are creatable from vacuum.

The result is highly desirable since one can avoid unpleasant questions such as ”What are the net
values of conserved quantities like rest mass, baryon number, lepton number, and electric charge for
the entire universe?”, ”What were the initial conditions in the big bang?”, ”If only single solution of
field equations is selected, isn’t the notion of physical theory meaningless since in principle it is not
possible to compare solutions of the theory?”. This picture fits also nicely with the view that entire
universe understood as quantum counterpart 4-D space-time is recreated in each quantum jump and
allows to understand evolution as a process of continual re-creation.

Zero energy ontology at quantum level

Also the construction of S-matrix [K19] leads to the conclusion that all physical states possess van-
ishing conserved quantum numbers. Furthermore, the entanglement coefficients between positive and
negative energy components of the state define a unitary S-matrix. S-matrix thus becomes a prop-
erty of the zero energy state and physical states code by their structure what is usually identified as
quantum dynamics.

Also the transitions between zero energy states are possible but general arguments lead to the
conclusion that the corresponding S-matrix is almost trivial. This finding, which actually forced the
new view about S-matrix, is highly desirable since it explains why positive energy ontology works so
well if one forgets effects related to intentional action.

At space-time level this would mean that positive energy component and negative energy com-
ponent are at a temporal distance characterized by an appropriate p-adic time scale and the integer
characterizing the value of Planck constant for the state in question. The scale in question would
also characterize the geometric duration of quantum jump and the size scale of space-time region con-
tributing to the contents of conscious experience. The interpretation in terms of a mini bang followed
by a mini crunch suggests itself also.

Hyper-finite factors of type II1 and new view about S-matrix

The representation of S-matrix as unitary entanglement coefficients would not make sense in ordinary
quantum theory but in TGD the von Neumann algebra in question is not a type I factor as for quantum
mechanics or a type III factor as for quantum field theories, but what is called hyper-finite factor of
type II1 [K87] . This algebra is an infinite-dimensional algebra with the almost defining, and at the
first look very strange, property that the infinite-dimensional unit matrix has unit trace. The infinite
dimensional Clifford algebra spanned by the configuration space gamma matrices (configuration space
understood as the space of 3-surfaces, the ”world of classical worlds”) is indeed very naturally algebra
of this kind since infinite-dimensional Clifford algebras provide a canonical representations for hyper-
finite factors of type II1.

The new view about quantum measurement theory

This mathematical framework leads to a new kind of quantum measurement theory. The basic as-
sumption is that only a finite number of degrees of freedom can be quantum measured in a given
measurement and the rest remain untouched. What is known as Jones inclusions N ⊂ M of von
Neumann algebras allow to realize mathematically this idea [K87] . N characterizes measurement
resolution and quantum measurement reduces the entanglement in the non-commutative quantum
space M/N . The outcome of the quantum measurement is still represented by a unitary S-matrix
but in the space characterized by N . It is not possible to end up with a pure state with a finite
sequence of quantum measurements.
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The obvious objection is that the replacement of a universal S-matrix coding entire physics with a
state dependent unitary entanglement matrix is too heavy a price to be paid for the resolution of the
above mentioned paradoxes. Situation could be saved if the S-matrices have fractal structure. The
quantum criticality of TGD Universe indeed implies fractality. The possibility of an infinite sequence
of Jones inclusions for hyperfinite type II1 factors isomorphic as von Neumann algebras expresses
this fractal character algebraically. Thus one can hope that the S-matrix appearing as entanglement
coefficients is more or less universal in the same manner as Mandelbrot fractal looks more or less the
same in all length scales and for all resolutions. Whether this kind of universality must be posed as
an additional condition on entanglement coefficients or is an automatic consequence of unitarity in
type II1 sense is an open question.

The S-matrix for p-adic-real transitions makes sense

In zero energy ontology conservation laws do not forbid p-adic-real transitions and one can develop a
relatively concrete vision about what happens in these kind of transitions. The starting point is the
generalization of the number concept obtained by gluing p-adic number fields and real numbers along
common rationals (expressing it very roughly). At the level of the imbedding space this means that
p-adic and real space-time sheets intersect only along common rational points of the imbedding space
and transcendental p-adic space-time points are infinite as real numbers so that they can be said to
be infinite distant points so that intentionality and cognition become cosmic phenomena.

In this framework the long range correlations characterizing p-adic fractality can be interpreted
as being due to a large number of common rational points of imbedding space for real space-time
sheet and p-adic space-time sheet from which it resulted in the realization of intention in quantum
jump. Thus real physics would carry direct signatures about the presence of intentionality. Intentional
behavior is indeed characterized by short range randomness and long range correlations.

One can even develop a general vision about how to construct the S-matrix elements characterizing
the process [K19] . The basic guideline is the vision that real and various p-adic physics as well as
their hybrids are continuable from the rational physics. This means that these S-matrix elements
must be characterizable using data at rational points of the imbedding space shared by p-adic and
real space-time sheets so that more or less same formulas describe all these S-matrix elements. Note
that also p1 → p2 p-adic transitions are possible.

8.3 An overall view about p-adicization of TGD

In this section the basic problems and ideas related to the p-adicization of quantum TGD are discussed.
One should define the notions of Riemann geometry and its variants such as Kähler geometry in the
p-adic context. The notion of the p-adic space-time surface and its relationship to its real counterpart
should be understood. Also the construction of Kähler geometry of ”world of classical worlds” (WCW)
in p-adic context should be carried out and the notion of WCW spinor fields should be defined in the
p-adic context. The crucial technical problems relate to the notion of integral and Fourier analysis,
which are the central elements of any physical theory. The basic challenge is to overcome the fact
that although the field equations assignable to a given variational principle make sense p-adically, the
action defined as an integral over arbitrary space-time surface has no natural p-adic counterpart as
such in the generic case. What raises hopes that these challenges could be overcome is the symmetric
space property of WCW and the idea of algebraic continuation. If WCW geometry is expressible in
terms of rational functions with rational coefficients it allows a generalization to the p-adic context.
Also integration can be reduced to Fourier analysis in the case of symmetric spaces.

8.3.1 p-Adic imbedding space

The construction of both quantum TGD and p-adic QFT limit requires p-adicization of the imbedding
space geometry. Also the fact that p-adic Poincare invariance throws considerable light to the p-adic
length scale hypothesis suggests that p-adic geometry is really needed. The construction of the p-adic
version of the imbedding space geometry and spinor structure relies on the symmetry arguments and
to the generalization of the analytic formulas of the real case almost. The essential element is the
notion of finite measurement resolution leading to discretization in large and to p-adicization below the
resolution scale. This approach leads to a highly nontrivial generalization of the symmetry concept
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and p-adic Poincare invariance throws light to the p-adic length scale hypothesis. An important
delicacy is related to the identification of the fundamental p-adic length scale, which corresponds to
the unit element of the p-adic number field and is mapped to the unit element of the real number field
in the canonical identification mapping p-adic mass squared to its real counterpart.

The identification of the fundamental p-adic length scale

The fundamental p-adic length scale correponds to the p-adic unit e = 1 and is mapped to the unit of
the real numbers in the canonical identification. The correct physical identification of the fundamental
p-adic length scale is of crucial importance since the predictions of the theory for p-adic masses depend
on the choice of this scale.

In TGD the ’radius’ R of CP2 is the fundamental length scale (2πR is by definition the length of
the CP2 geodesics). In accordance with the idea that p-adic QFT limit makes sense only above length
scales larger than the radius of CP2 R is of same order of magnitude as the p-adic length scale defined
as l = π/m0, where m0 is the fundamental mass scale and related to the ’cosmological constant’ Λ
(Rij = Λsij) of CP2 by

m2
0 = 2Λ . (8.3.1)

The relationship between R and l is uniquely fixed:

R2 =
3

m3
0

=
3

2Λ
=

3l2

π2
. (8.3.2)

Consider now the identification of the fundamental length scale.

1. One must use R2 or its integer multiple, rather than l2, as the fundamental p-adic length scale
squared in order to avoid the appearance of the p-adically ill defined π:s in various formulas of
CP2 geometry.

2. The identification for the fundamental length scale as 1/m0 leads to difficulties.

(a) The p-adic length for the CP2 geodesic is proportional to
√

3/m0. For the physically most
interesting p-adic primes satisfying p mod 4 = 3 so that

√
−1 does not exist as an ordinary

p-adic number,
√

3 = i
√
−3 belongs to the complex extension of the p-adic numbers. Hence

one has troubles in getting real length for the CP2 geodesic.

(b) If m2
0 is the fundamental mass squared scale then general quark states have mass squared,

which is integer multiple of 1/3 rather than integer valued as in string models.

3. These arguments suggest that the correct choice for the fundamental length scale is as 1/R so
that M2 = 3/R2 appearing in the mass squared formulas is p-adically real and all values of
the mass squared are integer multiples of 1/R2. This does not affect the real counterparts of
the thermal expectation values of the mass squared in the lowest p-adic order but the effects,
which are due to the modulo arithmetics, are seen in the higher order contributions to the mass
squared. As a consequence, one must identify the p-adic length scale l as

l ≡ πR ,

rather than l = π/m0. This is indeed a very natural identification. What is especially nice is
that this identification also leads to a solution of some longstanding problems related to the p-
adic mass calculations. It would be highly desirable to have the same p-adic temperature Tp = 1
for both the bosons and fermions rather than Tp = 1/2 for bosons and Tp = 1 for fermions. For
instance, black hole elementary particle analogy as well as the need to get rid of light boson
exotics suggests this strongly. It indeed turns out possible to achieve this with the proposed
identification of the fundamental mass squared scale.
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p-Adic counterpart of M4
+

The construction of the p-adic counterpart of M4
+ seems a relatively straightforward task and should

reduce to the construction of the p-adic counter part of the real axis with the standard metric. As
already noticed, linear Minkowksi coordinates are physically and mathematically preferred coordinates
and it is natural to construct the metric in these coordinates.

There are some quite interesting delicacies related to the p-adic version of the Poincare invariance.
Consider first translations. In order to have imaginary unit needed in the construction of the ordinary
representations of the Poincare group one must have p mod 4 = 3 to guarantee that

√
−1 does not

exist as an ordinary p-adic number. It however seems that the construction of the representations
is at least formally possible by replacing imaginary unit with the square root of some other p-adic
number not existing as a p-adic number.

It seems that only the discrete group of translations allows representations consisting of orthogonal
planewaves. p-Adic planewaves can be defined in the lattice consisting of the multiples of x0 = m/n
consisting of points with p-adic norm not larger that |x0|p and the points pnx0 define fractally scaled-
down versions of this set. In canonical identification these sets corresponds to volumes scaled by
factors p−n.

A physically interesting question is whether the Lorentz group should contain only the elements
obtained by exponentiating the Lie-algebra generators of the Lorentz group or whether also large
Lorentz transformations, containing as a subgroup the group of the rational Lorentz transformations,
should be allowed. If the group contains only small Lorentz transformations, the quantization volume
of M4

+ (say the points with coordinates mk having p-adic norm not larger than one) is also invariant
under Lorentz transformations. This means that the quantization of the theory in the p-adic cube
|mk| < pn is a Poincare invariant procedure unlike in the real case.

The appearance of the square root of p, rather than the naively expected p, in the expression of
the p-adic length scale can be undertood if the p-adic version of M4 metric contains p as a scaling
factor:

ds2 = pR2mkldm
kdml ,

R ↔ 1 , (8.3.2)

where mkl is the standard M4 metric (1,−1,−1,−1). The p-adic distance function is obtained by
integrating the line element using p-adic integral calculus and this gives for the distance along the
k:th coordinate axis the expression

s = R
√
pmk . (8.3.3)

The map from p-adic M4 to real M4 is canonical identification plus a scaling determined from the
requirement that the real counterpart of an infinitesimal p-adic geodesic segment is same as the length
of the corresponding real geodesic segment:

mk → π(mk)R . (8.3.4)

The p-adic distance along the k:th coordinate axis from the origin to the point mk = (p − 1)(1 +
p + p2 + ...) = −1 on the boundary of the set of the p-adic numbers with norm not larger than one,
corresponds to the fundamental p-adic length scale Lp =

√
pl =

√
pπR:

√
p((p− 1)(1 + p+ ...))R → πR

(p− 1)(1 + p−1 + p−2 + ...)
√
p

= Lp .

(8.3.4)

What is remarkable is that the shortest distance in the range mk = 1, ..m− 1 is actually L/
√
p rather

than l so that p-adic numbers in range span the entire R+ at the limit p→∞. Hence p-adic topology
approaches real topology in the limit p → ∞ in the sense that the length of the discretization step
approaches to zero.
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The two variants of CP2

As noticed, CP2 allows two variants based on rational discretization and on the discretiation based
on roots of unity. The root of unity option corresponds to the phases associated with 1/(1 + r2) =
tan2(u/2) = (1−cos(u))/(1+cos(u)) and implies that integrals of spherical harmonics can be reduced
to summations when angular resolution ∆u = 2π/N is introduced. In the p-adic context, one can
replace distances with trigonometric functions of distances along zig zag curves connecting the points
of the discretization. Physically this notion of distance is quite reasonable since distances are often
measured using interferometer.

In the case of rtional variant of CP2 one can proceed by defining the p-adic counterparts of SU(3)
and U(2) and using the identification CP2 = SU(3)/U(2). The p-adic counterpart of SU(3) consists of
all 3×3 unitary matrices satisfying p-adic unitarity conditions (rows/colums are mutually orthogonal
unit vectors) or its suitable subgroup: the minimal subgroup corresponds to the exponentials of the
Lie-algebra generators. If one allows algebraic extensions of the p-adic numbers, one obtains several
extensions of the group. The extension allowing the square root of a p-adically real number is the most
interesting one in this respect since the general solution of the unitarity conditions involves square
roots.

The subgroup of SU(3) obtained by exponentiating the Lie-algebra generators of SU(3) normalized
so that their nonvanishing elements have unit p-adic norm, is of the form

SU(3)0 = {x = exp(
∑
k

itkXk) ; |tk|p < 1} = {x = 1 + iy ; |y|p < 1} . (8.3.5)

The diagonal elements of the matrices in this group are of the form 1 + O(p). In order O(p) these
matrices reduce to unit matrices.

Rational SU(3) matrices do not in general allow a representation as an exponential. In the real
case all SU(3) matrices can be obtained from diagonalized matrices of the form

h = diag{exp(iφ1), exp(iφ2), exp(exp(−i(φ1 + φ2)} . (8.3.6)

The exponentials are well defined provided that one has |φi|p < 1 and in this case the diagonal
elements are of form 1+O(p). For p mod 4 = 3 one can however consider much more general diagonal
matrices

h = diag{z1, z2, z3} ,

for which the diagonal elements are rational complex numbers

zi =
(mi + ini)√
m2
i + n2

i

,

satisfying z1z2z3 = 1 such that the components of zi are integers in the range (0, p−1) and the square
roots appearing in the denominators exist as ordinary p-adic numbers. These matrices indeed form
a group as is easy to see. By acting with SU(3)0 to each element of this group and by applying
all possible automorphisms h → ghg−1 using rational SU(3) matrices one obtains entire SU(3) as a
union of an infinite number of disjoint components.

The simplest (unfortunately not physical) possibility is that the ’physical’ SU(3) corresponds to
the connected component of SU(3) represented by the matrices, which are unit matrices in order
O(p). In this case the construction of CP2 is relatively straightforward and the real formalism should
generalize as such. In particular, for p mod 4 = 3 it is possible to introduce complex coordinates ξ1, ξ2
using the complexification for the Lie-algebra complement of su(2) × u(1). The real counterparts
of these coordinates vary in the range [0, 1) and the end points correspond to the values of ti equal
to ti = 0 and ti = −p. The p-adic sphere S2 appearing in the definition of the p-adic light cone is
obtained as a geodesic submanifold of CP2 (ξ1 = ξ2 is one possibility). From the requirement that real
CP2 can be mapped to its p-adic counterpart it is clear that one must allow all connected components
of CP2 obtained by applying discrete unitary matrices having no exponential representation to the
basic connected component. In practice this corresponds to the allowance of all possible values of the
p-adic norm for the components of the complex coordinates ξi of CP2.
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The simplest approach to the definition of the CP2 metric is to replace the expression of the Kähler
function in the real context with its p-adic counterpart. In standard complex coordinates for which
the action of U(2) subgroup is linear, the expression of the Kähler function reads as

K = log(1 + r2) ,

r2 =
∑
i

ξ̄iξi . (8.3.6)

p-Adic logarithm exists provided r2 is of order O(p). This is the case when ξi is of order O(p). The
definition of the Kähler function in a more general case, when all possible values of the p-adic norm
are allowed for r, is based on the introduction of a p-adic pseudo constant C to the argument of the
Kähler function

K = log(
1 + r2

C
) .

C guarantees that the argument is of the form 1+r2

C = 1+O(p) allowing a well-defined p-adic logarithm.
This modification of the Kähler function leaves the definition of Kähler metric, Kähler form and spinor
connection invariant.

A more elegant manner to avoid the difficulty is to use the exponent Ω = exp(K) = 1 + r2 of the
Kähler function instead of Kähler function, which indeed well defined for all coordinate values. In
terms of Ω one can express the Kähler metric as

gkl̄ =
∂k∂l̄Ω

Ω
− ∂kΩ∂l̄Ω

Ω2
. (8.3.7)

The p-adic metric can be defined as

sij̄ = R2∂i∂j̄K = R2 (δij̄r
2 − ξ̄iξj)

(1 + r2)2
.

(8.3.7)

The expression for the Kähler form is the same as in the real case and the components of the Kähler
form in the complex coordinates are numerically equal to those of the metric apart from the factor of i.
The components in arbitrary coordinates can be deduced from these by the standard transformation
formulas.

8.3.2 Infinite primes, cognition and intentionality

Somehow it is obvious that infinite primes must have some very deep role to play in quantum TGD and
TGD inspired theory of consciousness. What this role precisely is has remained an enigma although
I have considered several detailed interpretations, one of them above.

In the following an interpretation allowing to unify the views about fermionic Fock states as a rep-
resentation of Boolean cognition and p-adic space-time sheets as correlates of cognition is discussed.
Very briefly, real and p-adic partonic 3-surfaces serve as space-time correlates for the bosonic super
algebra generators, and pairs of real partonic 3-surfaces and their algebraically continued p-adic vari-
ants as space-time correlates for the fermionic super generators. Intentions/actions are represented
by p-adic/real bosonic partons and cognitions by pairs of real partons and their p-adic variants and
the geometric form of Fermi statistics guarantees the stability of cognitions against intentional action.
It must be emphasized that this interpretation is not identical with the one discussed above since it
introduces different identification of the space-time correlates of infinite primes.
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Infinite primes very briefly

Infinite primes have a decomposition to infinite and finite parts allowing an interpretation as a many-
particle state of a super-symmetric arithmetic quantum field theory for which fermions and bosons
are labelled by primes. There is actually an infinite hierarchy for which infinite primes of a given
level define the building blocks of the infinite primes of the next level. One can map infinite primes
to polynomials and these polynomials in turn could define space-time surfaces or at least light-like
partonic 3-surfaces appearing as solutions of Chern-Simons action so that the classical dynamics would
not pose too strong constraints.

The simplest infinite primes at the lowest level are of form mBX/sF + nBsF , X =
∏
i pi (product

of all finite primes). The simplest interpretation is that X represents Dirac sea with all states filled
and X/sF + sF represents a state obtained by creating holes in the Dirac sea. mB , nB , and sF are
defined as mB =

∏
i p
mi
i , nB =

∏
i q
ni
i , and sF =

∏
i qi, mB and nB have no common prime factors.

The integers mB and nB characterize the occupation numbers of bosons in modes labelled by pi and
qi and sF =

∏
i qi characterizes the non-vanishing occupation numbers of fermions.

The simplest infinite primes at all levels of the hierarchy have this form. The notion of infinite
prime generalizes to hyper-quaternionic and even hyper-octonionic context and one can consider the
possibility that the quaternionic components represent some quantum numbers at least in the sense
that one can map these quantum numbers to the quaternionic primes.

The obvious question is whether configuration space degrees of freedom and configuration space
spinor (Fock state) of the quantum state could somehow correspond to the bosonic and fermionic parts
of the hyper-quaternionic generalization of the infinite prime. That hyper-quaternionic (or possibly
hyper-octonionic) primes would define as such the quantum numbers of fermionic super generators
does not make sense. It is however possible to have a map from the quantum numbers labelling
super-generators to the finite primes. One must also remember that the infinite primes considered are
only the simplest ones at the given level of the hierarchy and that the number of levels is infinite.

Precise space-time correlates of cognition and intention

The best manner to end up with the proposal about how p-adic cognitive representations relate
bosonic representations of intentions and actions and to fermionic cognitive representations is through
the following arguments.

1. In TGD inspired theory of consciousness Boolean cognition is assigned with fermionic states.
Cognition is also assigned with p-adic space-time sheets. Hence quantum classical correspon-
dence suggets that the decomposition of the space-time into p-adic and real space-time sheets
should relate to the decomposition of the infinite prime to bosonic and fermionic parts in turn
relating to the above mention decomposition of physical states to bosonic and fermionic parts.

If infinite prime defines an association of real and p-adic space-time sheets this association
could serve as a space-time correlate for the Fock state defined by configuration space spinor for
given 3-surface. Also spinor field as a map from real partonic 3-surface would have as a space-
time correlate a cognitive representation mapping real partonic 3-surfaces to p-adic 3-surfaces
obtained by algebraic continuation.

2. Consider first the concrete interpretation of integers mB and nB . The most natural guess is
that the primes dividing mB =

∏
i p
mi characterize the effective p-adicities possible for the real

3-surface. mi could define the numbers of disjoint partonic 3-surfaces with effective pi-adic topol-
ogy and associated with with the same real space-time sheet. These boundary conditions would
force the corresponding real 4-surface to have all these effective p-adicities implying multi-p-adic
fractality so that particle and wave pictures about multi-p-adic fractality would be mutually con-
sistent. It seems natural to assume that also the integer ni appearing in mB =

∏
i q
ni
i code for

the number of real partonic 3-surfaces with effective qi-adic topology.

3. Fermionic statistics allows only single genuinely qi-adic 3-surface possibly forming a pair with
its real counterpart from which it is obtained by algebraic continuation. Pairing would conform
with the fact that nF appears both in the finite and infinite parts of the infinite prime (something
absolutely essential concerning the consistency of interpretation!).

The interpretation could be as follows.
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(a) Cognitive representations must be stable against intentional action and fermionic statistics
guarantees this. At space-time level this means that fermionic generators correspond to
pairs of real effectively qi-adic 3-surface and its algebraically continued qi-adic counterpart.
The quantum jump in which qi-adic 3-surface is transformed to a real 3-surface is impossible
since one would obtain two identical real 3-surfaces lying on top of each other, something
very singular and not allowed by geometric exclusion principle for surfaces. The pairs
of boson and fermion surfaces would thus form cognitive representations stable against
intentional action.

(b) Physical states are created by products of super algebra generators Bosonic generators can
have both real or p-adic partonic 3-surfaces as space-time correlates depending on whether
they correspond to intention or action. More precisely, mB and nB code for collections
of real and p-adic partonic 3-surfaces. What remains to be interpreted is why mB and
nB cannot have common prime factors (this is possible if one allows also infinite integers
obtained as products of finite integer and infinite primes).

(c) Fermionic generators to the pairs of a real partonic 3-surface and its p-adic counterpart
obtained by algebraic continuation and the pictorial interpretation is as fermion hole pair.

(d) This picture makes sense if the partonic 3-surfaces containing a state created by a product
of super algebra generators are unstable against decay to this kind of 3-surfaces so that one
could regard partonic 3-surfaces as a space-time representations for a configuration space
spinor field.

4. Are alternative interpretations possible? For instance, could q = mB/mB code for the effective
q-adic topology assignable to the space-time sheet. That q-adic numbers form a ring but not
a number field casts however doubts on this interpretation as does also the general physical
picture.

Number theoretical universality of S-matrix

The discreteness of the intersection of the real space-time sheet and its p-adic variant obtained by
algebraic continuation would be a completely universal phenomenon associated with all fermionic
states. This suggests that also real-to-real S-matrix elements involve instead of an integral a sum
with the arguments of an n-point function running over all possible combinations of the points in the
intersection. S-matrix elements would have a universal form which does not depend on the number
field at all and the algebraic continuation of the real S-matrix to its p-adic counterpart would trivialize.
Note that also fermionic statistics favors strongly discretization unless one allows Dirac delta functions.

8.3.3 p-Adicization of second quantized induced spinor fields

Induction procedure makes it possible to geometrize the concept of a classical gauge field and also of
the spinor field with internal quantum numbers. In the case of the electro-weak gauge fields induction
means the projection of the H-spinor connection to a spinor connection on the space-time surface.

In the most recent formulation induced spinor fields appear only at the 3-dimensional light-like
partonic 3-surfaces and the solutions of the modified Dirac equation can be written explicitly [K20,
K19] as simple algebraic functions involving powers of the preferred coordinate variables very much
like various operators in conformal field theory can be expressed as Laurent series in powers of a
complex variable z with operator valued coefficients. This means that the continuation of the second
quantized induced spinor fields to various p-adic number fields is a straightforward procedure. The
second quantization of these induced spinor fields as free fields is needed to construct configuration
space geometry and anti-commutation relation between spinor fields are fixed from the requirement
that configuration space gamma matrices correspond to super-symplectic generators.

The idea about rational physics as the intersection of the physics associated with various number
fields inspires the hypothesis that induced spinor fields have only modes labelled by rational valued
quantum numbers. Quaternion conformal invariance indeed implies that zero modes are characterized
by integers. This means that same oscillator operators can define oscillator operators are universal.
Powers of the quaternionic coordinate are indeed well-define in any number field provided the com-
ponents of quaternion are rational numbers since p-adic quaternions have in this case always inverse.
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8.3.4 Should one p-adicize at the level of configuration space?

If Duistermaat-Heckman theorem [A141] holds true in TGD context, one could express configuration
space functional integral in terms of exactly calculable Gaussian integrals around the maxima of the
Kähler function defining what might be called reduced configuration space CHred. The huge super-
conformal symmetries raise the hope that the rest of S-matrix elements could be deduced using group
theoretical considerations so that everything would become algebraic. If this optimistic scenario is
realized, the p-adicization of CHred might be enough to p-adicize all operations needed to construct
the p-adic variant of S-matrix.

The optimal situation would be that S-matrix elements reduce to algebraic numbers for rational
valued incoming momenta and that p-adicization trivializes in the sense that it corresponds only to
different interpretations for the imbedding space coordinates (interpretation as real or p-adic num-
bers) appearing in the equations defining the 4-surfaces. For instance, space-time coordinates would
correspond to preferred imbedding space coordinates and the remaining imbedding space coordinates
could be rational functions of the latter with algebraic coefficients. Algebraic points in a given exten-
sion of rationals would thus be common to real and p-adic surfaces. It could also happen that there
are no or very few common algebraic points. For instance, Fermat’s theorem says that the surface
xn + yn = zn has no rational points for n > 2.

This picture is probably too simple. The intuitive expectation is that ordinary S-matrix elements
are proportional to a factor which in the real case involves an integration over the arguments of an
n-point function of a conformal field theory defined at a partonic 2-surface. For p-adic-real transitions
the integration should reduce to a sum over the common rational or algebraic points of the p-adic and
real surface. Same applies to p1 → p2 type transitions.

If this picture is correct, the p-adicization of the configuration space would mean p-adicization of
CHred consisting of the maxima of the Kähler function with respect to both fiber degrees of freedom
and zero modes acting effectively as control parameters of the quantum dynamics. If CHred is a
discrete subset of CH ultrametric topology induced from finite-p p-adic norm is indeed natural for it.
’Discrete set in CH’ need not mean a discrete set in the usual sense and the reduced configuration
space could be even finite-dimensional continuum. Finite-p p-adicization as a cognitive model would
suggest that p-adicization in given point of CHred is possible for all p-adic primes associated with the
corresponding space-time surface (maximum of Kähler function) and represents a particular cognitive
representation about CHred.

A basic technical problem is, whether the integral defining the Kähler action appearing in the
exponent of Kähler function exists p-adically. Here the hypothesis that the exponent of the Kähler
function is identifiable as a Dirac determinant of the modified Dirac operator defined at the light-like
partonic 3-surfaces [K15] suggests a solution to the problem. By restricting the generalized eigen
values of the modified Dirac operator to an appropriate algebraic extension of rationals one could
obtain an algebraic number existing both in the real and p-adic sense if the number of the contributing
eigenvalues is finite. The resulting hierarchy of algebraic extensions of Rp would have interpretation
as a cognitive hierarchy. If the maxima of Kähler function assignable to the functional integral are
such that the number of eigenvalues in a given algebraic extension is finite this hypothesis works.

If Duistermaat-Heckman theorem generalizes, the p-adicization of the entire configuration space
would be un-necessary and it certainly does not look a good idea in the light of preceding considera-
tions.

1. For a generic 3-surface the number of the eigenvalues in a given algebraic extension of rationals
need not be finite so that their product can fail to be an algebraic number.

2. The algebraic continuation of the exponent of the Kähler function from CHred to the entire CH
would be analogous to a continuation of a rational valued function from a discrete set to a real
or p-adic valued function in a continuous set. It is difficult to see how the continuation could be
unique in the p-adic case.

8.4 p-Adic probabilities

p-Adic Super Virasoro representations necessitate p-adic QM based on the p-adic unitarity and p-adic
probability concepts. The concept of a p-adic probability indeed makes sense as shown by [A188] .
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p-Adic probabilities can be defined as relative frequencies Ni/N in a long series consisting of total
number N of observations and Ni outcomes of type i. Probability conservation corresponds to

∑
i

Ni = N , (8.4.1)

and the only difference as compared to the usual probability is that the frequencies are interpreted as
p-adic numbers.

The interpretation as p-adic numbers means that the relative frequencies converge to probabilities
in a p-adic rather than real sense in the limit of a large number N of observations. If one requires that
probabilities are limiting values of the frequency ratios in p-adic sense one must pose restrictions on
the possible numbers of the observations N if N is larger than p. For N smaller than p, the situation
is similar to the real case. This means that for p = M127 ' 1038, appropriate for the particle physics
experiments, p-adic probability differs in no observable manner from the ordinary probability.

If the number of observations is larger than p, the situation changes. If N1 and N2 are two numbers
of observations they are near to each other in the p-adic sense if they differ by a large power of p.
A possible interpretation of this restriction is that the observer at the p:th level of the condensate
cannot choose the number of the observations freely. The restrictions to this freedom come from the
requirement that the sensible statistical questions in a p-adically conformally invariant world must
respect p-adic conformal invariance.

8.4.1 p-Adic probabilities and p-adic fractals

p-Adic probalities are natural in the statistical description of the fractal structures, which can contain
same structural detail with all possible sizes.

1. The concept of a structural detail in a fractal seems to be reasonably well defined concept. The
structural detail is clearly fixed by its topology and p-adic conformal invariants associated with
it. Clearly, a finite resolution defined by some power of p of the p-adic cutoff scale must be
present in the definition. For example, p-adic angles are conformal invariants in the p-adic case,
too. The overall size of the detail doesn’t matter. Let us therefore assume that it is possible to
make a list, possibly infinite, of the structural details appearing in the p-adic fractal.

2. What kind of questions related to the structural details of the p-adic fractal one can ask? The
first thing one can ask is how many times i:th structural detail appears in a finite region of
the fractal structure: although this number is infinite as a real number it might possess (and
probably does so!) finite norm as a p-adic number and provides a useful p-adic invariant of the
fractal. If a complete list about the structural details of the fractal is at use one can calculate
also the total number of structural details defined as N =

∑
iNi. This means that one can

also define p-adic probability for the appearance of i:th structural detail as a relative frequency
pi = Ni/N .

3. One can consider conditional probabilities, too. It is natural to ask what is the probability
for the occurrence of the structural detail subject to the condition that part of the structural
detail is fixed (apart from the p-adic conformal transformations). In order to evaluate these
probalities as relative frequencies one needs to look only for those structural details containing
the substructure in question.

4. The evaluation of the p-adic probalities of occurrence can be done by evaluating the required
numbers Ni and N in a given resolution. A better estimate is obtained by increasing the
resolution and counting the numbers of the hitherto unobserved structural details. The increase
in the resolution greatly increases the number of the observations in case of p-adic fractal and
the fluctuations in the values of Ni and N increase with the resolution so that Ni/N has no
well defined limit as a real number although one can define the probabilities of occurrence as a
resolution dependent concept. In the p-adic sense the increase in the values ofNi and fluctuations
are small and the procedure should converge rapidly so that reliable estimates should result with
quite a reasonable resolution. Notice that the increase of the fluctuations in the real sense, when
resolution is increased is in accordance with the criticality of the system.



8.4. p-Adic probabilities 403

5. p-Adic frequencies and probabilities define via the canonical correspondence real valued invari-
ants of the fractal structure.

It must be emphasized that this picture can have practical applications only for small values of p,
which could also be important in the macroscopic length scales. In elementary particle physics Lp
is of the order of the Compton length associated with the particle and already in the first step CP2

length scale is achieved and it is questionable whether it makes sense to continue the procedure below
the length scale l. In particle physics context the renormalization is related to the the change of the
reduction of the p-adic length scale Lp in the length scale hierarchy rather than p-adic fractality for
a fixed value of p.

The most important application of the p-adic probability in this book is the description of the
particle massivation based on p-adic thermodynamics. Instead of energy, Virasoro generator l is ther-
malized and in the low temperature phase temperature is quantized in the sense that the counterpart
of the Boltzmann weight exp(H/T ) is pL0/T , where T = 1/n from the requirement that Boltzmann
weight exists (L0 has integer spectrum). The surprising success of the mass calculations shows that
p-adic probability theory is much more than a formal possibility.

8.4.2 Relationship between p-adic and real probabilities

There are uniqueness problems related to the mapping of p-adic probabilities to real ones. These
problems find a nice resolution from the requirement that the map respects probability conservation.
The implied modification of the original mapping does not change measurably the predictions for the
masses of light particles.

How unique the map of p-adic probabilities and mass squared values are mapped to real
numbers is?

The mapping of p-adic thermodynamical probabilities and mass squared values to real numbers is not
completely unique.

1. Symplectic identification I :
∑
xnp

n →
∑
xnp

−n takes care of this mapping but does not respect
the sum of probabilities so that the real images I(pn) of the probabilities must be normalized.
This is a somewhat alarming feature.

2. The modification of the canonical identification mapping rationals by the formula I(r/s) =
I(r)/I(s) has appeared naturally in various applications, in particular because it respects uni-
tarity of unitary matrices with rational elements with r < p, s < p. In the case of p-adic
thermodynamic the formula I(g(n)pn/Z)→ I(g(n)pn)/I(Z) would be very natural although Z
need not be rational anymore. For g(n) < p the real counterparts of the p-adic probabilities
would sum up to one automatically for this option. One cannot deny that this option is more
convincing than the original one. The generalization of this formula to map p-adic mass squared
to a real one is obvious.

3. Options 1) and 2) differ dramatically when the n = 0 massless ground state has ground state
degeneracy D > 1. For option 1) the real mass is predicted to be of order CP2 mass whereas
for option 2) it would be by a factor 1/D smaller than the minimum mass predicted by the
option 1). Thus option 2) would predict a large number of additional exotic states. For those
states which are light for option 1), the two options make identical predictions as far as the
significant two lowest order terms are considered. Hence this interpretation would not change
the predictions of the p-adic mass calculations in this respect. Option 2) is definitely more in
accord with the real physics based intuitions and the main role of p-adic thermodynamics would
be to guarantee the quantization of the temperature and fix practically uniquely the spectrum
of the ”Hamiltonian”.

Under what conditions the mapping of p-adic ensemble probabilities to real probabilities
respects probability conservation?

One can consider also a more general situation. Assume that one has an ensemble consisting of
independent elementary events such that the number of events of type i is Ni. The probabilities are



404
Chapter 8. Fusion of p-Adic and Real Variants of Quantum TGD to a More General

Theory

given by pi = Ni/N and N =
∑
Ni is the total number of elementary events. Even in the case that

N is infinite as a real number it is natural to map the p-adic probabilities to their real counterparts
using the rational canonical identification I(pi) = I(Ni)/I(N). Of course, Ni and N exist as well
defined p-adic numbers under very stringent conditions only.

The question is under what conditions this map respects probability conservation. The answer
becomes obvious by looking at the pinary expansions of Ni and N . If the integers Ni (possibly infinite
as real integers) have pinary expansions having no common pinary digits, the sum of probabilities is
conserved in the map. Note that this condition can assign also to a finite ensemble with finite number
of a unique value of p.

This means that the selection of a basis for independent events corresponds to a decomposition of
the set of integers labelling pinary digits to disjoint sets and brings in mind the selection of orthonor-
malized basis of quantum states in quantum theory. What is physically highly non-trivial that this
”orthogonalization” alone puts strong constraints on probabilities of the allowed elementary events.
One can say that the probabilities define distributions of pinary digits analogous to non-negative prob-
ability amplitudes in the space of integers labelling pinary digits, and the probabilities of independent
events must be orthogonal with respect to the inner product defined by point-wise multiplication in
the space of pinary digits.

p-Adic thermodynamics for which Boltzman weights g(E)exp(−E/T ) are replaced by g(E)pE/T

such that one has g(E) < p and E/T is integer valued, satisfies this constraint. The quantization
of E/T to integer values implies quantization of both T and ”energy” spectrum and forces so called
super conformal invariance in TGD applications, which is indeed a basic symmetry of the theory.

There are infinitely many ways to choose the elementary events and each choice corresponds to
a decomposition of the infinite set of integers n labelling the powers of p to disjoint subsets. These
subsets can be also infinite. One can assign to this kind of decomposition a resolution which is the
poorer the larger the subsets involved are. p-Adic thermodynamics would represent the situation in
which the resolution is maximal since each set contains only single pinary digit. Note the analogy
with the basis of completely localized wave functions in a lattice.

How to map p-adic transition probabilities to real ones?

p-Adic variants of TGD, if they exist, give rise to S-matrices and transition probabilities Pij , which
are p-adic numbers.

1. The p-adic probabilities defined by rows of S-matrix mapped to real numbers using canoni-
cal identification respecting the q = r/s decomposition of rational number or its appropriate
generalization should define real probabilities.

2. The simplest example would simple renormalization for the real counterparts of the p-adic
probabilities (Pij)R obtained by canonical identification (or more probably its appropriate mod-
ification).

Pij =
∑
k≥0

P kijp
k ,

Pij →
∑
k≥0

P kijp
−k ≡ (Pij)R ,

(Pij)R → (Pij)R∑
j(Pij)R

≡ PRij .

(8.4.-1)

The procedure converges rapidly in powers of p and resembles renormalization procedure of
quantum field theories. The procedure automatically divides away one four-momentum delta
function from the square of S-matrix element containing the square of delta function with no
well defined mathematical meaning. Usually one gets rid of the delta function interpreting it
as the inverse of the four-dimensional measurement volume so that transition rate instead of
transition probability is obtained. Of course, also now same procedure should work either as a
discrete or a continuous version.
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3. Probability interpretation would suggest that the real counterparts of p-adic probabilities sum
up to unity. This condition is rather strong since it would hold separately for each row and
column of the S-matrix.

4. A further condition would be that the real counterparts of the p-adic probabilities for a given
prime p are identical with the transition probabilities defined by the real S-matrix for real
space-time sheets with effective p-adic topology characterized by p. This condition might allow
to deduce all relevant phase information about real and corresponding p-adic S-matrices using
as an input only the observable transition probabilities.

What it means that p-adically independent events are not independent in real sense?

A further condition would be that p-adic quantum transitions represent also in the real sense indepen-
dent elementary events so that the real counterpart for a sum of the p-adic probabilities for a finite
number of transitions equals to the sum of corresponding real probabilities. This condition is defi-
nitely too strong since only a single transition could correspond to a given p-adic norm of transition
probability Pij with i fixed.

The crucial question concerns the physical difference between the real counterpart for the sum
of the p-adic transition probabilities and for the sum of the real counterparts of these probabilities,
which are in general different:

(
∑
j

Pij)R 6=
∑
j

(Pij)R . (8.4.0)

The suggestion is that p-adic sum of the transition probabilities corresponds to the experimental
situation, when one does not monitor individual transitions but using some common experimental
signature only looks whether the transition leads to this set of the final states or not. When one
looks each transition separately or effectively performs different experiment by considering only one
transition channel in each experiment one must use the sum of the real probabilities. More precisely,
the choice of the experimental signatures divides the set U of the final states to a disjoint union
U = ∪iUi and one must define the real counterparts for the transition probabilities PiUk as

PiUk =
∑
j∈Uk

Pij ,

PiUk → (PiUk)R ,

(PiUk)R → (PiUk)R∑
l(PiUl)R

≡ PRiUk .

(8.4.-2)

The assumption means deep a departure from the ordinary probability theory. If p-adic physics
is the physics of cognitive systems, there need not be anything mysterious in the dependence of the
behavior of system on how it is monitored. At least half-jokingly one might argue that the behavior
of an intelligent system indeed depends strongly on whether the boss is nearby or not. The precise
definition for the monitoring could be based on the decomposition of the density matrix representing
the entangled subsystem into a direct sum over the subspaces associated with the degenerate eigen-
values of the density matrix. This decomposition provides a natural definition for the notions of the
monitoring and resolution.

The renormalization procedure is in fact familiar from standard physics. Assume that the labels
j correspond to momenta. The division of momentum space to cells of a given size so that the
individual momenta inside cells are not monitored separately means that momentum resolution is
finite. Therefore one must perform p-adic summation over the cells and define the real probabilities in
the proposed manner. p-Adic effects resulting from the difference between p-adic and real summations
could be the counterpart of the renormalization effects in QFT. It should be added that similar
resolution can be defined also for the initial states by decomposing them into a union of disjoint
subsets.
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8.4.3 p-Adic thermodynamics

The p-adic field theory limit as such is not expected to give a realistic theory at elementary particle
physics level. The point is that particles are expected to be either massless or possess mass of order
10−4 Planck mass. The p-adic description of particle massivation described in the third part of the
book shows that p-adic thermodynamics provides the proper formulation of the problem. What is
thermalized is Virasoro generator L0 (mass squared contribution is not included to L0 so that states
do not have fixed conformal weight). Temperature is quantized purely number theoretically in low
temperature limit (exp(H/kT )→ pL0/T , T = 1/n): in fact, partition function does not even exist in
high temperature phase. The extremely small mixing of massless states with Planck mass states implies
massivation and predictions of the p-adic thermodynamics for the fermionic masses are in excellent
agreement with experimental masses. Thermodynamic approach also explains the emergence of the
length scale Lp for a given p-adic condensation level and one can develop arguments explaining why
primes near prime powers of two are favored.

It should be noticed that rational p-adic temperatures 1/T = k/n are possible, if one poses the
restriction that thermal probabilities are non-vanishing only for some subalgebra of the Super Virasoro
algebra isomorphic to the Super Virasoro algebra itself. The generators Lkn,Gkn, where k is a positive
integer, indeed span this kind of a subalgebra by the fractality of the Super Virasoro algebra and pL0/T

is integer valued with this restriction.

One might apply thermodynamics approach should also in the calculation of S-matrix. What is
is needed is thermodynamical expectation value for the transition amplitudes squared over incoming
and outgoing states. In this expectation value 3-momenta are fixed and only mass squared varies.

8.4.4 Generalization of the notion of information

TGD inspired theory of consciousness, in particular the formulation of Negentropy Maximization
Principle (NMP) in p-adic context, has forced to rethink the notion of the information concept. In
TGD state preparation process is realized as a sequence of self measurements. Each self measurement
means a decomposition of the sub-system involved to two unentangled parts. The decomposition is
fixed highly uniquely from the requirement that the reduction of the entanglement entropy is maximal.

The additional assumption is that bound state entanglement is stable against self measurement.
This assumption is somewhat ad hoc and it would be nice to get rid of it. The only manner to achieve
this seems to be a generalized definition of entanglement entropy allowing to assign a negative value
of entanglement entropy to the bound state entanglement, so that bound state entanglement would
actually carry information, in fact conscious information (experience of understanding). This would
be very natural since macro-temporal quantum coherence corresponds to a generation of bound state
entanglement, and is indeed crucial for ability to have long lasting non-entropic mental images.

The generalization of the notion of number concept leads immediately to the basic problem. How to
generalize the notion of entanglement entropy that it makes sense for a genuinely p-adic entanglement?
What about the number-theoretically universal entanglement with entanglement probabilities, which
correspond to finite extension of rational numbers? One can also ask whether the generalized notion
of information could make sense at the level of the space-time as suggested by quantum-classical
correspondence.

In the real context Shannon entropy is defined for an ensemble with probabilities pn as

S = −
∑
n

pnlog(pn) . (8.4.-1)

As far as theory of consciousness is considered, the basic problem is that Shannon entropy is always
non-negative so that as such it does not define a genuine information measure. One could define
information as a change of Shannon entropy and this definition is indeed attractive in the sense that
quantum jump is the basic element of conscious experience and involves a change. One can however
argue that the mere ability to transfer entropy to environment (say by aggressive behavior) is not all
that is involved with conscious information, and even less so with the experience of understanding
or moment of heureka. One should somehow generalize the Shannon entropy without losing the
fundamental additivity property.
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p-Adic entropies

The key observation is that in the p-adic context the logarithm function log(x) appearing in the
Shannon entropy is not defined if the argument of logarithm has p-adic norm different from 1. Situation
changes if one uses an extension of p-adic numbers containing log(p): the conjecture is that this
extension is finite-dimensional. One might however argue that Shannon entropy should be well defined
even without the extension.

p-Adic thermodynamics inspires a manner to achieve this. One can replace log(x) with the log-
arithm logp(|x|p) of the p-adic norm of x, where logp denotes p-based logarithm. This logarithm is
integer valued (logp(p

n) = n), and is interpreted as a p-adic integer. The resulting p-adic entropy

Sp =
∑
n

pnk(pn) ,

k(pn) = −logp(|pn|) . (8.4.-1)

is additive: that is the entropy for two non-interacting systems is the sum of the entropies of com-
posites. Note that this definition differs from Shannon’s entropy by the factor log(p). This entropy
vanishes identically in the case that the p-adic norms of the probabilities are equal to one. This means
that it is possible to have non-entropic entanglement for this entropy.

One can consider a modification of Sp using p-adic logarithm if the extension of the p-adic numbers
contains log(p). In this case the entropy is formally identical with the Shannon entropy:

Sp = −
∑
n

pnlog(pn) = −
∑
n

pn
[
−k(pn)log(p) + pkn log(pn/p

kn
]
. (8.4.0)

It seems that this entropy cannot vanish.
One must map the p-adic value entropy to a real number and here canonical identification can be

used:

Sp,R = (Sp)R × log(p)) ,

(
∑
n

xnp
n)R =

∑
n

xnp
−n . (8.4.0)

The real counterpart of the p-adic entropy is non-negative.

Number theoretic entropies and bound states

In the case that the probabilities are rational or belong to a finite-dimensional extension of rationals,
it is possible to regard them as real numbers or p-adic numbers in some extension of p-adic numbers
for any p. The visions that rationals and their finite extensions correspond to islands of order in the
seas of chaos of real and p-adic transcendentals suggests that states having entanglement coefficients
in finite-dimensional extensions of rational numbers are somehow very special. This is indeed the
case. The p-adic entropy entropy Sp = −

∑
n pnlogp(|pn|)log(p) can be interpreted in this case as an

ordinary rational number in an extension containing log(p).
What makes this entropy so interesting is that it can have also negative values in which case the

interpretation as an information measure is natural. In the real context one can fix the value of the
value of the prime p by requiring that Sp is maximally negative, so that the information content of
the ensemble could be defined as

I ≡ Max{−Sp, p prime} . (8.4.1)

This information measure is positive when the entanglement probabilities belong to a finite-dimensional
extension of rational numbers. Thus kind of entanglement is stable against NMP, and has a natural
interpretation as bound state entanglement. The prediction would be that the bound states of real
systems form a number theoretical hierarchy according to the prime p and and dimension of algebraic
extension characterizing the entanglement.
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Number theoretically state function reduction and state preparation could be seen as information
generating processes projecting the physical states from either real or p-adic sectors of the state
space to their intersection. Later an argument that these processes have a purely number theoretical
interpretation will be developed based on the generalized notion of unitarity allowing the U -matrix to
have matrix elements between the sectors of the state space corresponding to different number fields.

Number theoretic information measures at the space-time level

Quantum classical correspondence suggests that the notion of entropy should have also space-time
counterpart. Entropy requires ensemble and both the p-adic non-determinism and the non-determinism
of Kähler action allow to define the required ensemble as the ensemble of strictly deterministic regions
of the space-time sheet. One can measure various observables at these space-time regions, and the
frequencies for the outcomes are rational numbers of form pk = n(k)/N , where N is the number of
strictly deterministic regions of the space-time sheet. The number theoretic entropies are well defined
and negative if p divides the integer N . Maximum is expected to result for the largest prime power
factor of N . This would mean the possibility to assign a unique prime to a given real space-time sheet.

The classical non-determinism resembles p-adic non-determinism in the sense that the space-time
sheet obeys effective p-adic topology in some length and time scale range is consistent with this idea
since p-adic fractality suggests that N is power of p.

8.5 p-Adic Quantum Mechanics

An interesting question is whether p-adic quantum mechanics might exist in some sense. The purely
formal generalizations of the ordinary QM need not be very interesting physically and the following
considerations describe p-adic QM as a limiting case of the p-adic field theory limit of TGD to be
constructed later. This particular p-adic QM is based on the p-adic Hilbert-space, p-adic unitarity and
p-adic probability concepts whereas the physical interpretation is based on the correspondence between
the p-adic and real probabilities given by the canonical correspondence. p-Adic QM is expected to
apply -if it applies at all- below the p-adic length scale Lp =

√
pl and above Lp ordinary QM should

work, when length scale resolution Lp is used.
Although one can define p-adic Schrödinger equation formally without any difficulty it is not at all

obvious whethet it emerges from the p-adic QFT limit of TGD. Therefore the following considerations
- my first reaction to the question what p-adic quantum theory look like- should be taken as mere
warming up exercises perhaps helping to get some familiarity with new concepts. In the next chapter
”Negentropy Maximization Principle” a more serious approach starting directly from the condition
that real and p-adic approaches must allow fusion to larger coherence whole will be discussed.

8.5.1 p-Adic modifications of ordinary Quantum Mechanics

One can consider several modifications of the ordinary quantum mechanics depending on what kind
of p-adicizations one is willing to make.

p-Adicization in dynamical degrees of freedom

The minimal alternative is to replace time- and spatial coordinates with their p-adic counterparts
so that the space time is a Cartesian power of Rp. A more radical possibility is to replace the 3-
space with a 3-dimensional algebraic extension of the p-adic numbers. This means that space time is
replaced with a Cartesian product of Rp and its 3-dimensional extension. The most radical possibility,
suggested by the relativistic considerations, is a four-dimensional algebraic extension treating space
and time degrees of freedom in an equal position: this alternative is encountered in the formulation
of the p-adic field theory limit of TGD.

In practice the formulation of the quantum theory involves an action principle defining the so
called classical theory and this is defined by using the integral of the the action density. These
integrals certainly exists as real quantities and are defined by the Haar measure for the p-adic numbers.
Algebraic continuation of real integrals seems to be the only reasonable manner to defined these
integrals.
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p-Adicization at Hilbert space level

One can imagine essentially two different manners to p-adicize Hilbert space.

1. The first approach, followed in [H1] , is to keep Schrö-dinger amplitudes complex. In this case it
is better to consider a Cartesian power of Rp instead of an algebraic extension as a coordinate
space. The canonical identification allows to replace the expressions of the coordinate and
momentum operators via their p-adic counterparts. For example, x×Ψ is replaced with x×pΨ,
where p-adic multiplication rule is used. Derivative corresponds to a p-adic derivative. It was
the lack of the canonical identification replacement, which forced to give up the straightforward
generalization of standard QM in the approach followed in [A129] , [H1] . What this approach
effects, is the replacement of the ordinary continuity and differentiability and concepts with the
p-adic differentiability and the approach looks rather reasonable manner to construct a fractal
quantum mechanics. This approach however is not applicable in the present context.

2. A more radical approach uses Schrödinger amplitude with values in some complex extension,
say a square root allowing extension of the p-adic numbers. p-Adic inner product implies that
the ordinary unitarity and probability concepts are replaced with there p-adic counterparts.
This approach looks natural for various reasons. The representation theory for the Lie-groups
generalizes to p-adic case and the replacement implies certain mathematical elegance since p-
analyticity and the realization of the p-adic conformal invariance becomes possible. It will be
found that p-adic valued inner product is the natural inner product for the quantized harmonic
oscillator and for Super Virasoro representations. The concept of the p-adic probability makes
sense as first shown by [A188] . The physical interpretation of the theory is however always in
terms of the real numbers and the canonical identification provides the needed tool to map the
predictions of the theory to real numbers. That physical observables are always real numbers is
suggested by the success of the p-adic mass calculations. p-Adic probabilities can be mapped
to real probabilities and in the last chapter of the third part of the book it is shown that this
correspondence predicts genuinely novel physical effects.

The p-adic representations of the Super Virasoro algebra to be used are defined in the p-adic Hilbert
space and everything is well defined at algebraic level if 4- (p > 2 ) or 8- (p = 2 ) dimensional algebraic
extension allowing square roots is used. Unitarity concept generalizes in a straightforward manner to
the p-adic context and the elements of the S-matrix should have values in the same extension of the
p-adic numbers. The requirement that the squares of S-matrix elements are p-adically real numbers
gives strong constraints on the S-matrix elements since the quantities S(m,n)S̄(m,n) in general belong
to the 4- (2-) dimensional real subspace x + θy +

√
pz +

√
pθu of the 8- (4-) dimensional extension

and p-adic reality implies the conditions:y = z = .. = u = 0. Reality conditions can be solved always
since the solution involves only square roots of rational functions. What is exciting is that space time
and imbedding space dimensions for the extension allowing square roots are forced by the quantum
mechanical probability concept, by p-adic group theory and by the p-adic Riemannian Geometry.

The existence of the p-adic valued definite integral is crucial concerning the practical construction
of the p-adic Quantum Mechanics.

1. In the ordinary wave mechanics the inner product involves an integration over the configuration
space degrees of freedom. This inner product can be generalized to the p-adic integral of Ψ̄1Φ2

over the 3-space using p-adic valued integration defined in the first chapter, which works for all
analytic functions and also for p-adic counterparts of the plane waves (nonanalytic functions).

2. The perturbative formulation QM in terms of the time development operator

U(t) = P (exp(i

∫
exp(

∫
dt V )) , (8.5.1)

generalizes to the p-adic context. In particular, the concept of the time ordered product P (...)
appearing in the definition of the time development operator generalizes since the canonical
identification induces ordering for the values of the p-adic time coordinate: t1 < t2 if (t1)R <
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(t2)R holds true. Non-trivialities are related to the p-adic existence of the time development
operator: for sufficiently larger values of the time coordinate, the exponent appearing in the
time development operator does not exist p-adically and this implies infrared cutoff time and
length scale in the p-adic QM.

One can define the action of the time development operator for longer time intervals only if one
makes some restrictions on the physical states appearing in the matrix elements. This could explain
color confinement number theoretically. For sufficiently long time intervals the color interaction part
of the interaction Hamiltonian is so large for colored states that p-adic time development operator
fails to exist number theoretically and one must restrict the physical states to be color singlets.

The generalization of the p-adic formula for Riemann integral [K53] suggests an exact formula for
the time ordered product. The first guess is that one simply forms the product

Pexp(i

∫ t

0

Hdt) ≡ P
∏
n

exp [iV (t(n))∆t(n)] ,

∆t(n) = t+(n)− t−(n) = (1 + p)pm(n) , (8.5.1)

to obtain the value of the time ordered product for time values t having finite number of pinary digits.
The product is over all points t(n) having finite number of pinary digits and m(n) is the highest pinary
digit in the expansion of t(n) and t±(n) denote the two p-adic images of the real coordinate t(n)R
under canonical identification. ∆t(n) corresponds to the difference of the p-adic time coordinates,
which are mapped to the same value of the real time coordinate in canonical identification so that one
can regard the time ordered product as a limiting case in which real time coordinate differences are
exactly zero in the time ordered product.

The time ordering of the product is induced by canonical identification from real time ordering.
This time development operator is defined for time values with finite number of pinary digits only
and defines p-adic pseudoconstant. The hope is that the inherent non-determinism of the p-adic
differential equations, implied by the existence of the p-adic pseudo constants, makes it possible to
continue this function to a p-adically differentiable function of the p-adic time coordinate satisfying
the counterpart of the Schrödinger equation for the time development operator.

Not surprisingly, number theoretical problems are encountered also now: the exponential exp [iV (t(n))∆t(n)]
need not exist p-adically. The possibility of p-adic pseudo constants suggests that one could simply
drop off the troublesome exponentials: this has far reaching physical consequences [K48] .

8.5.2 p-Adic inner product and Hilbert spaces

Concerning the physical applications of algebraically extended p-adic numbers the problem is that
p-adic norm is not in general bilinear in its arguments and therefore it does not define inner product
and angle. One can however consider a generalization of the ordinary complex inner product z̄z to a
p-adic valued inner product. It turns out that p-adic quantum mechanics in the sense as it is used in
p-adic TGD can be based on this inner product.

The algebraic generalization of the ordinary Hilbert space inner product is bilinear and symmetric,
defines p-adic valued norm. The norm can however for non-vanishing states. This inner product leads
to p-adic generalization of unitarity and probability concept. The solution of the unitarity condition∑
k SmkS̄nk = δ(m,n) involves square root operations and therefore the minimal extension for the

Hilbert space is 4-dimensional in p > 2 case and 8-dimensional in p = 2 case. Of course, extensions of
arbitrary dimension are allowed.

The inner product associated with a minimal extension allowing square root near real axis pro-
vides a natural generalization of the real and complex Hilbert spaces respectively. Instead of real
or complex numbers, a square root allowing algebraic extension extension appears as the multiplier
field of the Hilbert space and one can understand the points of Hilbert space as infinite sequences
(Z1, Z2, ..., Zn, ....), where Zi belongs to the extension. The inner product

∑
k〈Z1

k , Z
k
2 〉 is completely

analogous to the ordinary Hilbert space inner product.
The generalization of the the Hilbert space of square integrable functions to a p-adic context is

far from trivial since definite integral in in general ill defined procedure. Second problem is posed by
the fact that p-adic counterparts of say oscillator operator wave functions do not exist in the entire
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p-adic variant of the configuration space. Algebraic definition of the inner product by using the rules
of Gaussian integration provides a possible solution to the problem.

For Fock space generated by anti-commuting fermionic and commuting bosonic oscillator operators
the p-adic counterpart exists naturally and it seems that Fock spaces can be seen as universal Hilbert
spaces with rational coefficients identifiable as subspaces of both real Fock space and of all p-adic Fock
spaces.

8.5.3 p-Adic unitarity and p-adic cohomology

p-Adic unitarity and probability concepts lead to highly nontrivial conclusions concerning the general
structure of the p-adic S-matrix. The most general S-matrix is a product of a complex rational
(extended rationals are also possible) unitary S-matrix SQ and a genuinely p-adic S-matrix Sp which
deviates only slightly from unity

S = 1 + i
√
pT ,

T = O(p0) . (8.5.1)

for p mod 4 = 3 allowing imaginary unit in its four-dimensional algebraic extension. In perturbative
context one expects that the p-adic S-matrix differs only slightly from unity. Using the form S = 1+iT ,
T = O(p0) one would obtain in general transition rates of order inverse of Planck mass and theory
would have nothing to do with reality. Unitarity requirement implies iterative expansion of T in powers
of p and the few lowest powers of p give excellent approximation for the physically most interesting
values of p.

The unitarity condition implies that the moduli squared of the matrix T in S = 1+ iT are of order
O(p1/2) if one assumes a four-dimensional p-adic extension allowing square root for the ordinary p-adic
numbers and one can write

S = 1 + i
√
pT ,

i(T − T †) +
√
pTT † = 0 . (8.5.1)

This expression is completely analogous to the ordinary one since i
√
p is one of the units of the four-

dimensional algebraic extension. Unitarity condition in turn implies a recursive solution of the unitary
condition in powers of p:

T =
∑
n≥0

Tnp
n/2 ,

Tn − T †n =
1

i

∑
k=0,..,n−1

Tn−1−kT
†
k . (8.5.1)

If algebraic extension is not allowed then the expansion is in powers of p instead of
√
p. Note that

the real counterpart of the series converges extremely rapidly for physically interesting primes (such
as M127 = 2127 − 1).

In the p-adic context S-matrix S = 1 + T satisfies the unitarity conditions

T + T † = −TT † (8.5.2)

if the conditions

T = T † ,

T 2 = 0 . (8.5.2)

defining what might be called p-adic cohomology, are satisfied [K2] . In the real context these con-
ditions are not possible to satisfy as is clear from the fact that the total scattering rate from a given
state, which is proportional to T 2

mm vanishes.
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p-Adic cohomology defines a symmetry analogous to BRST symmetry: if T satisfies unitarity
conditions and T0 satisfies the conditions

T0 = T †0 , T 2
0 = 0 ,

{T0, T} = T0T + TT0 = 0 ,
(8.5.3)

unitary conditions are satisfies also by the matrix T1 = T + T0. The total scattering rates are same
for T and T1.

8.5.4 The concept of monitoring

The relationship between p-adic and real probabilities involves the hypothesis that real transition
probabilities depend on the cognitive resolution. Cognitive resolution is defined by the decomposition
of the state space H into direct sum H = ⊕Hi so that the experimental situation cannot differentiate
between different states inside Hi. Each resolution defines different real transition probabilities unlike
in ordinary quantum mechanics. Physically this means that the arrangement, where each state in Hi

is monitored separately differs from the situation, when one only looks whether the state belongs to
Hi. One can say that monitoring affects the behavior of a p-adic subsystem. Of course, these exotic
effects relate to the physics of cognition rather than real physics.

Standard probability theory, which also lies at the root of the standard quantum theory, predicts
that the probability for a certain outcome of experiment does not depend on how the system is
monitored. For instance, if system has N outcomes o1, o2, ...oN with probabilities p1, ..., pN then the
probability that o1 or o2 occurs does not depend on whether common signature is used for o1 and
o2 or whether observer also detects which of these outcomes occurs. The crucial signature of p-adic
probability theory is that monitoring affects the behavior of the system.

Physically monitoring is represented by quantum entanglement [K47] , and differentiates between
two eigen states of the density matrix only provided the eigenvalues of the density matrix are different.
If there are several degenerate eigenvalues, quantum jump occurs to any state in the eigen space and
one can predict only the total probability for the quantum jump into this eigen space: the real
probabilities for jumps into individual states are obtained by dividing total real probability by the
degeneracy factor. Hence the p-adic probability for a quantum jump to a given eigenspace of density
matrix is p-adic sum of probabilities over the eigen states belonging to this eigenspace:

Pi =
(n(i)P (i))R∑
j(n(j)P (j))R

.

Here ni are dimensions of various eigenspaces.
If the degeneracy of the eigenvalues is removed by an arbitrary small perturbation, the total

probability for the transition to the same subspace of states becomes the sum for the real counterparts
of probabilities and one has in good approximation:

PR =
n(i)P (i)R

[
∑
j 6=i
∑
j(n(j)P (j))R + n(i)P (i)R]

.

Rather dramatic effects could occur. Suppose that that the entanglement probability P (i) is of
form P (i) = np, n ∈ {0, p − 1} and that n is large so that (np)R = n/p is a considerable fraction of
unity. Suppose that this state becomes degenerate with a degeneracy m and mn > p as integer. In this
kind of situation modular arithmetics comes into play and (mnp)R appearing in the real probability
P (1 or 2) can become very small. The simplest example is n = (p+1)/2: if two states i and j have very
nearly equal but not identical entanglement probabilities P (i) = (p+ 1)p/2 + ε, P (j) = (p+ 1)p/2− ε,
monitoring distinguishes between them for arbitrary small values of ε and the total probability for the
quantum jump to this subspace is in a good approximation given by

P (1 or 2) ' x[∑
k 6=i,j(Pk)R + x

] ,

x = 2 [(p+ 1)p/2]R . (8.5.3)
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and is rather large. For instance, for Mersenne primes x ' 1/2 holds true. If the two states become
degenerate then one has for the total probability

P (1 or 2) ' x[∑
k 6=i,j(Pk)R + x

] ,

x =
1

p
. (8.5.3)

The order of magnitude for P (1 or 2) is reduced by a factor of order 1/p!
Since p-adicity is essential for the exotic effects related to monitoring, the exotic phenomena of

monitoring should be related to the quantum physics of cognition rather than real quantum physics.
A test for quantum TGD would be provided by the study of the dependence of the transition rates
of quantum systems on the resolution of monitoring defined by the dimensions of the degenerate
eigenspaces of the subsystem density matrix. One could even consider the possibility of measuring
the value of the p-adic prime in this manner. The behavior of living systems is known to be sensitive
to monitoring and an exciting possibility is that this sensitivity, if it really can be shown to have
statistical nature, could be regarded as a direct evidence for TGD inspired theory of consciousness.
Note that the mapping of the physical quantities to entanglement probabilities could provide an ideal
manner to compare physical quantities with huge accuracy! Perhaps bio-systems have invented this
possibility before physicists and this could explain the miraculous accuracy of biochemistry in realizing
genetic code. The measurement of the monitoring effect could provide a manner to determine the
value of pi for each p-adic region of space-time.

8.5.5 p-Adic Schrödinger equation

The emergence of the p-adic infrared cutoff

The experience with the construction of the p-adic counterpart of the standard model shows that p-adic
quantum theory involves in practice infrared cutoff length scale in both time and spatial directions.
The cutoff length scale comes out purely number theoretically. In the time like direction the cutoff
length scale comes out from the exponent of the time ordered integral: p-adic exponent function exp(x)
does not exist unless the p-adic norm of the argument is smaller than one and this in turn means that
P (exp(i

∫ t
0
V dt)) does not exist for too larger values of time argument. A more concrete manner to see

this is to consider time dependence for the eigenstates of Hamiltonian: the exponent exp(iEt) exists
only for |Et|p < 1. The necessity of the spatial cutoff length scale is seen by considering concrete
examples. For instance, the p-adic counterparts of the harmonic oscillator Gaussian wavefunctions
are defined only in a finite range of the argument. As far as the definition of exponent function
is considered one must keep in mind that the formal exponent function does not have the usual
periodicity properties. The definition as a p-adic plane wave gives the needed periodicity properties
but also in this case the infrared cutoff is necessary.

One should be able to construct also global solutions of the p-adic Schrödinger equation. The
concept of p-adic integration constant might make this possible: by multiplying the solution of thhe
Schrödinger equation with a constant depending on a finite number of the pinary digits, one can
extend the solution to an arbitrary large region of the space time. What one cannot however avoid is
the decomposition of the space time into disjoint quantization volumes.

One of the original motivation to introduce p-adic numbers was to introduce ultraviolet cutoff as a
p-adic cutoff but, as the considerations of the second part of the book show, UV divergences are absent
in the p-adic case and short distance contributions to the loops are negligibly small so that the mere p-
adicization eliminates automatically UV divergences. Rather, it seems that the length scale Lp serves
as an infrared cutoff and, if a length scale resolution rougher than Lp is used, ordinary real theory
should work. Only in the length scales L ≤ Lp should the p-adic field theory and Quantum Mechanics
be useful. The applicability of the real QM for length scale resolution L ≥ Lp is in accordance with
the fact that the real continuity implies p-adic contintuity.

Formal p-adicization of the Schrödinger equation

The formal p-adic generalization of the Schrödinger equation is of the following general form
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θ
dΨ

dt
= HΨ , (8.5.4)

where H is in some sense Hermitian operator. If Schödinger amplitudes are complex values θ can be
taken to be imaginary unit i. The same identification is possible if Ψ possesses values in the extension
of p-adic allowing square root and the condition p mod 4 = 3 or p = 2 guaranteing that

√
−1 does not

exist as an ordinary p-adic number, is satisfied. For p mod 4 = 1 the situation is more complicated
since imaginary unit i does not in general belong to the generators of the minimal extension allowing
a square root. An open problem is whether one could replace θ appearing in the quadratic extension
and define complex conjugation as the operation θ → −θ. The analogy with the ordinary quantum
mechanics suggests the form

H = −∇
2

2m
+ V ,

(8.5.4)

for the Hamiltonian in p mod 4 = 3 case. In the complex case ∇2 is obtained by replacing the ordinary
derivatives with the p-adic derivatives and V is a p-adically differentiable function of the coordinates
typically obtained from a p-analytic function via the canonical identication.

Although the formal p-adicization is possible, it is not at all obvious whether one can get anything
physically interesting from the straightforward p-adicization of the Schrödinger equation. The study
of the the p-adic hydrogen atom shows that formal p-adicization need not have anything to do with
physics. For instance, Coulomb potential contains a factor 1/4π not existing p-adically, the energy
eigenvalues depend on π and the straightforward p-adic counterparts of the exponentially decreasing
wave functions are not exponentially decreasing functions p-adically and do not even exist for suf-
ficiently large values of the argument r. It seems that a more realistic manner to define the p-adic
Schrödinger equation is as limiting case of the p-adic field theory. Of course, it might also be that
p-adic Schrödinger equation does not make sense. A more radical solution of the problems is the
allowance of finite-dimensional extensions of p-adic numbers allowing also transcendental numbers.

p-Adic harmonic oscillator

The formal treatment of the p-adic oscillator using oscillator operator formalism is completely analo-
gous to that of the ordinary harmonic oscillator. The only natural inner product is the p-adic valued
one. That the treatment is correct is suggested by the fact that it is purely algebraic involving only the
p-adic counter part of the oscillator algebra. The matrix elements of the oscillator operators a† and a
involve square roots and they exist provided the minimal extension allowing square roots appears as a
coefficient ring of the Hilbert space. If two-dimensional quadratic extension not containing

√
p is used

occupation number must be restricted to the range [0, p− 1]. If the Hilbert space inner product based
on non-degenerate p-adic inner product ZcZ + ẐcẐ the extension implies a characteristic degeneracy
of states with complex amplitudes related to the conjugation

√
p → −√p. 2-adic and p-adic cases

differ in radical manner since the dimensions of the extension are 4 for p > 2 and 8 for p = 2. Since
the representations of the Kac Moody and Super Virasoro algebras are based on oscillator operators
this means that there is deep difference between p = 2 and p > 2 p-adic conformal field theories.

The p-adic energy eigen values are En = (n + 1/2)ω0 and their real counterparts form a quasi-
continuous spectrum in the interval (2, 4) for p = 2 and (1, p) for p > 2! If p is very large (of order 1038

in TGD applications) the small quantum number limit n < p gives the quantum number spectrum
of the ordinary quantum mechanics. The occupation numbers n > p have no counterpart in the
conventional quantum theory and it seems that the classical theory with a quasi-continuous spectrum
but with energy cutoff pω0 is obtained at the limit of the arbitrarily large occupation numbers. The
limit p→∞ gives essentially the classical theory with no upper bound for the energy.

The results suggests the idea that p-adic QM might be somewhere halfway between ordinary QM
and classical mechanics. This need not however be the case as the study of the p-adic thermodynam-
ics suggests. p-Adic thermodynamics allows a low temperature phase exp(En/T ) ≡ pn/Tk , Tk = 1/k,
with quantized value of temperature. In this phase the probabilities for the energy eigenstates En,
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n =
∑
k nkp

k are extremely small except for the smallest values of n so that low temperature ther-
modynamics does not allow the effective energy continuum. One might argue that situation changes
in the high temperature phase. The problem is that p-adic thermodynamics for the harmonic oscil-
lator allows only formally high temperature phase T = t0ω0/p

k, k = 1, 2, ..., |t0| = 1. The reason is
that Boltzmann weights exp(−En/T ) = exp(npk/t0) have p-adic norm equal to 1 so that the sum of
probabilities giving free energy converges only formally. If one accepts the formal definition of the
free energy as exp(F ) ≡ 1/(1− exp(−E0/T )) then the real counterpart of the energy spectrum indeed
becomes continuum also in the thermodynamic sense.

Consider next what a more concrete treatment using Schrödinger equation gives. The p-adic
counterpart of the Schrödinger equation is formally the same as the ordinary Schrödinger equation.
Ψ is assumed to have values in a minimal extension of p-adic numbers allowing square root and
possessing imaginary unit so that the condition p mod 4 = 3 or p = 2, 3 must hold true. For the
energy momentum eigenstates the equation reduces to

(− d2

dy2
+ y2)Ψ = 2eΨ , (8.5.5)

where the dimensionless variables y =
√
ωx and e = E

ω have been introduced. This transformation
makes sense provided ω possesses p-adic square root.

The solution ansatz to this equation can be written in the general form Ψ = exp(−y2/2)He−1/2(y),
where H is the p-adic counter part of a Hermite polynomial. The first thing to notice is that vacuum
wave function does not converge in a p-adic sense for all values of y. A typical term in series is

of the form Xn = y2n

2nn! . In ordinary situation the factors, in particular n!, in the numerator imply
convergence but in present case the situation is exactly the opposite.

In 2-adic case both the factor 2n and the factor n! in the denominator cause troubles whereas for
p > 2 the p-adic norm of 2n is equal to one. n! gives at worst the power 2n−1 to the 2-adic norm.
Therefore the 2-adic norm of Xn behaves as N(Xn) ' |y2|2n2n2n−1 . The convergence is therefore
achieved for |y|2 ≤ 1/4 only. For p > 2 the convergence is achieved for |y|p ≤ 1/p. One can continue
the oscillator Gaussian to a globally defined function of y by observing that the scaling y → y/

√
2

corresponds to taking a square root of the oscillator Gaussian and this square root exists if minimal
quadratic extension allowing square root is used. In the usual situation the function He(y) must be
polynomial since otherwise it behaves as exp(y2) and does not converge: this implies the quantization
of energy also now.

The inner product, which should orthogonalize the states is the p-adic valued inner product based
on the p-adic generalization of the definite integral. The generalizations of the analytic formulas
encountered in the real case should hold true also now. The guess motivated by the formal treatment
is that p-adic energies are quantized according to the usual formula and classical energies form a
continuum below the upper bound eR ≤ 4 in 2-adic case and eR =≤ p in p-adic case. In fact, the
mere requirement |e|p ≤ 1 implies that energy is quantized according to the formula e = n + 1/2 in
p-adic case.

p-Adic fractality in the temporal domain

The assumption that p-adic physics gives faithful cognitive representation of the real physics leads to
highly nontrivial predictions, the most important prediction being p-adic fractality with long range
temporal correlations and microtemporal chaos.

In p-adic context the diagonalization of the Hamiltonian for N-dimensional state space in general
requires N-dimensional algebraic extension of p-adic numbers even when the matrix elements of the
Hamiltonian are complex rational numbers. TGD as a generalized number theory vision allows all
algebraic extensions of p-adic numbers so that this is not a problem. The necessity to decompose
p-adic Hamiltonian to a complex rational free part and p-adically small interaction part could provide
the fundamental reason for why Hamiltonians have the characteristic decomposition into free and
interaction parts. Of course, it might be that Hamiltonian formalism does not make sense in the
p-adic context and should be replaced with the approach based on Lagrangian formalism: at least in
case of p-adic QFT limit of TGD this approach seems to be more promising. One could also argue
that the very fact that p-adic physics provides a cognitive representations of TGD based physics gives
a valuable guide to the real physics itself, and that one should try to identify the constraints on real
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physics from the requirement that its p-adic counterpart exists. The following discussion is motivated
by this kind of attitude.

The emergence of various dynamical time scales is a very general phenomenon. For instance, it
seems that strong and weak interactions correspond to different time scales in well defined sense and
that it is a good approximation to neglect strong interaction in weak time scales and vice versa. p-Adic
framework gives hopes of finding a more precise formulation for this heuristics using number theoretical
ideas. The basic observation is that the time ordered exponential of a given interaction Hamiltonian
exists only over a finite time interval of length Tp(n) = pnLp. This suggests that one should distinguish
between the time developments associated with various p-adic time scales Tn = pnLp/c: obviously
temporal fractality would be in question.

More concretely, the p-adic exponential exp(iH∆t) of the free Hamiltonian exists p-adically only if
one assumes that ∆t is a small rational proportional to a positive power of p: ∆t ∝ pn. Of course, this
restriction to the allowed values of ∆t might be interpreted as a failure of the cognitive representation
rather than a real physical effect. Alternatively, one might argue that the emergence of the p-adic
time scales is a real physical effect and that one must define a separate S-matrix for each p-adic time
scale ∆t ∝ pn. Thus p-adic S-matrices for time intervals that differ from each other by arbitrarily
long real time interval could be essentially identical. This would mean extremely precise fractal long
range correlations and chaos in short time scales also at the level of real physics. This is certainly
a testable and rather dramatic prediction in sharp contrast with standard physics views. 1/f noise
could be seen as one manifestation of these long range correlations.

What would distinguish between different times scales would be different decomposition of the
Hamiltonian to free and interaction parts to achieve interaction part which is p-adically small in the
time scale involved. For instance, it could be possible to understand color confinement in this manner:
in quark gluon plasma phase below the length scale Lp many quark states without any constraints
on color are the natural state basis whereas above the length scale Lp physical states must be color
singlets since otherwise time evolution operator does not exist.

In case of the cognitive representations of the external world canonical identification maps long
external time and length scales to short internal time and length scales and vice versa. Thus p-adic
fractality of the cognitive dynamics induces at the level of cognitive representation order in short
length and time scales and chaos in long length and time scales: this is of course natural since
sensory information comes mainly from the nearby spatiotemporal regions of the system. For self-
representations there is chaos in short time scales and fractal long range correlations (so that our
temptation to see our life as a coherent temporal pattern would not be self deception!). This kind of
fractality is of course absolutely essential in order to understand bio-systems as intentional systems
able to plan their future behavior. This prediction is about behaviorial patterns of cognitive systems
and also testable.

One can get a more quantitative grasp on this idea by studying the time development operator
associated with a diagonalizable Hamiltonian. If the eigenvalues En of the diagonalized Hamiltonian
have p-adic norms |En|p ≤ p−m, the time evolution determined by this Hamiltonian is defined at
most over a time interval of length norm Tp(m) = pm−1Lp since for time intervals longer than this
the eigenvalues exp(iEnt) of exp(iHt) do not exists as a p-adic numbers for all energy eigenstates.
Thus one must restrict the time evolution to time scale t ≤ pm−1Lp: this is consistent with a p-adic
hierarchy of interaction time scales.

An alternative approach is based on the requirement that the complex phase factors exp(iET )
for the eigenstates of the diagonal part of the Hamiltonian are complex rational phases forming a
multiplicative group. This means that one can map the phase factors exp(iET ) directly to their
p-adic counterparts as complex rational numbers. With suitable constraints on the energy spectrum
this makes sense if the interaction time T is quantized so that it is proportional to a power of p. The
decomposition of the Hamiltonian to free and interacting parts could be done in such a manner that
the exponential of Hamiltonian decomposes to a product of diagonal part representable as complex
rational phases and interaction part which is of higher order in p so that ordinary exponential exists
for sufficiently small values of interaction time. This decomposition depends on the p-adic time scale.

How to define time ordered products?

In perturbation theory one must deal with the p-adic counterpart of the time ordered exponential∏
n Pexp

[∫ t
0
Hint(n)dt

]
appearing in the definition of the time development operator. In the case of
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a nondiagonal, time dependent interaction Hamiltonian the very definition of the p-adic counterpart
of the time ordered integral is far from obvious since p-adic numbers do not allow natural ordering.
Perhaps the simplest possibility is based on Fourier analysis based on the use of Pythagorean phases.
This automically involves the introduction of a time resolution ∆t = q = m/n and discretization
of the time coordinate. Depending on the p-adic norm of ∆t one obtains a hierarchy of S-matrices
corresponding to different p-adic fractalities. Time ordering would be naturally induced from the
ordering of ordinary integers since only the integer multiples of ∆t are involved in the discretized
version of integral defined by the inner product for the Pythagorean plane waves. The requirement
that all time values have same p-adic norm implies T = n∆t, n = 0, ..., p − 1. If one assumes that
long range fractal temporal order is present one can also allow time intervals T = nδt + mpk which
correspond to arbitrarily long real time intervals.

p-Adic particle stability is not equivalent with real stability

It is natural to require that single hadron states are eigenstates for that part of the total Hamiltonian,
which consists of the kinetic part of the Hamiltonian. If this the case, one can require that the effect
of exp(iH0t) is just a multiplication by the factor exp(iEt). The fact that particles are not stable
against decay to many-particle states suggests that E must be complex. Generalizing the construction
of the p-adic planewaves one could define this prefactor for all values of time even in this case. One
can however criticize this approach: the introduction of the decay width as imaginary part of E is is
category error since decay width characterizes the statistical aspects of the dynamics associated with
quantum jumps rather than the dynamics of the Schrödinger equation.

p-Adic unitarity concept suggests a more elegant description. The truncated S-matrix describing
the transitions Hp → Hp is unitary despite the fact that the transitions between different sectors are
possible. This makes sense because the total p-adic transition probability from Hp to Hq, q 6= p,
vanishes by generalized unitarity conditions. Generalizing, the p-adic representations of elementary
particles and even hadrons would p-adically stable in the sense that the total p-adic decay probability
would vanishes for them. One could also say that in absence of monitoring p-adic cognitive represen-
tation of particle would be stable. This picture is consistent with the notion of p-adic cohomology
reducing unitarity conditions for S-matrix S = 1 + iT to the conditions T = T † and T 2 = 0. Of
course, it would apply only at the level of cognitive physics.

8.5.6 Number theoretical Quantum Mechanics

The vision about life as something in the intersection of the p-adic and real worlds requires a gener-
alization of quantum theory to describe the U -process properly. One must answer several questions.
What it means mathematically to be in this intersection? What the leakage between different sectors
does mean? Is it really possible to formally extend quantum theory so that direct sums of Hilbert
spaces in different number fields make sense? Or should one consider the possibility of using only
complex, algebraic, or rational Hilbert spaces also in p-adic sectors so that p-adicization would take
place only at the level of geometry?

What it means to be in the intersection of real and p-adic worlds?

The first question is what one really means when one speaks about a partonic 2-surface in the inter-
section of real and p-adic worlds or in the intersection of two p-adic worlds.

1. Many algebraic numbers can be regarded also as ordinary p-adic numbers: square roots of
roughly one half of integers provide a simple example about this. Should one assume that all
algebraic numbers representable as ordinary p-adic numbers belong to the intersection of the real
and p-adic variants of partonic 2-surface (or to the intersection of two different p-adic number
fields)? Is there any hope that the listing of the points in the intersection is possible without
a complete knowledge of the number theoretic anatomy of p-adic number fields in this kind of
situation? And is the set of common algebraic points for real and p-adic variants of the partonic
2-surface X2 quite too large- say a dense sub-set of X2?

This hopeless looking complexity is simplified considerably if one reduces the considerations to
algebraic extensions of rationals since these induce the algebraic extensions of p-adic numbers.
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For instance, if the p-adic number field contains some n:th roots of integers in the range (1, p−1)
as ordinary p-adic numbers they are identified with their real counterparts. In principle one
should be able to characterize the -probably infinite-dimensional- algebraic extension of rationals
which is representable by a given p-adic number field as p-adic numbers of unit norm. This does
not look very practical.

2. At the level WCW one must direct the attention to the function spaces used to define partonic
2-surfaces. That is the spaces of rational functions or even algebraic functions with coefficients
of polynomials in algebraic extensions of rational numbers making sense with arguments in all
number fields so that algebraic extensions of rationals provide a neat hierarchy defining also the
points of partonic 2-surfaces to be considered. If one considers only the algebraic points of X2

belonging to the extension appearing in the definition the function space as common to various
number fields one has good hopes that the number of common points is finite.

3. Already the ratios of polynomials with rational coefficients lead to algebraic extensions of ratio-
nals via their roots. One can replace the coefficients of polynomials with numbers in algebraic
extensions of rationals. Also algebraic functions involving roots of rational functions can be
considered and force to introduce the algebraic extensions of p-adic numbers. For instance, an
n:th root of a polynomial with rational coefficients is well defined if n:th roots of p-adic integers
in the range (1, p− 1) are well well-defined. One clearly obtains an infinite hierarchy of function
spaces. This would give rise to a natural hierarchy in which one introduces n:th roots for a
minimum number of p-adic integers in the range (1, p − 1) in the range 1 ≤ n ≤ N . Note that
also the roots of unity would be introduced in a natural manner.

The situation is made more complex because the partonic 2-surface is in general defined by
the vanishing of six rational functions so that algebraic extensions are needed. An exception
occurs when six preferred imbedding space coordinates are expressible as rational functions of
the remaining two preferred coordinates. In this case the number of common rational points
consists of all rational points associated with the remaining two coordinates. This situation is
clearly non-generic. Usually the number of common points is much smaller (the set of rational
points satisfying xn + yn = zn for n > 2 is a good example). This however suggests that
these surfaces are of special importance since the naive expectation is that the amplitude for
transformation of intention to action or its reversal is especially large in this case. This might
also explain why these surfaces are easy to understand mathematically.

4. These considerations suggest that the numbers common to reals and p-adics must be defined
as rationals and algebraic numbers appearing explicitly in the algebraic extension or rationals
associated with the function spaces used to define partonic 2-surfaces. This would make the
deduction of the common points of partonic 2-surface a task possible at least in principle. Alge-
braic extensions of rationals rather than those of p-adic numbers would be in the fundamental
role and induce the extensions of p-adic numbers.

Let us next try to summarize the geometrical picture at the level of WCW and WCW spinor
fields.

1. WCW decomposes into WCWs associated with CDs and there unions. For the unions one has
Cartesian product of WCWs associated with CDs. At the level of WCW spinor fields one has
tensor product.

2. The WCW for a given CD decomposes into a union of sectors corresponding to various number
fields and their algebraic extensions. The sub-WCW corresponding to the intersection consists
of partonic 2-surfaces X2 (plus distribution of 4-D tangent spaces T (X4) at X2 - a complication
which will not be considered in the sequel), whose mathematical representation makes sense in
real number field and in some algebraic extensions of p-adic number fields. The extension of
p-adic number fields needed for algebraic extension of rationals depends on p and is in general
sub-extension of the extension of rationals. This sub-WCW is a sub-manifold of WCW itself. It
has also a filtering by sub-manifolds of QCW. For instance, partonic 2-surfaces representabable
using ratios of polynomials with degree below fixed number N defines an inclusion hierarchy
with levels labelled by N .
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3. The spaces of WCW spinors associated with these sectors are dictated by the second quanti-
zation of induced spinor fields with dynamics dictated by the modified Dirac action in more or
less one-one correspondence. The dimension for the modes of induced spinor field (solutions of
the modified Dirac equation at the space-time surface holographically assigned with X2 plus
the 4-D tangent space-space distribution) in general depends on the partonic 2-surface and the
classical criticality of space-time surface suggests an inclusion hierarchy of super-conformal al-
gebras corresponding to a hierarchy of criticalities. For instance, the partonic 2-surfaces X2

having polynomial representations in referred coordinates could correspond to simplest possible
surfaces nearest to the vacuum extremals and having in a well define sense smallest (but possibly
infinite) dimension for the space of spinor modes.

4. For each CD one can decompose the Hilbert space to a formal direct sum of orthogonal state
spaces associated with various number fields

H = ⊕FHF . (8.5.6)

Here F serves as a label for number fields. For the sake of simplicity and to get idea about what
is involved, all complications due to algebraic extensions are neglected in the sequel so that only
rational surfaces are regarded as being common to various sectors of WCW.

5. The states in the direct sum make sense only formally since the formal inner product of these
states would be a sum of numbers in different number fields unless one assigns complex Hilbert
space with each sector or restricts the coefficients to be rational which is of course also possible.
This problem is avoided if the state function reduction process induces inside each CD a choice
of the number field. One could say that state function is a number theoretical necessity at least
in this sense.

(a) Should the state function reduction in this sense involve a reduction of entanglement be-
tween distinct CDs is not clear. One could indeed consider the possibility of a purely
number theoretical reduction not induced by NMP and taking place in the absence of
entanglement with reduction probabilities determined by the probabilities assignable to
various number fields which should be rational or at most algebraic. Hard experience
however suggests that one should not make exceptions from principles.

(b) The alternative is to allow the Hilbert spaces in question to have rational or at most
algebraic coefficients in the intersection of real and various p-adic worlds. This means that
the entanglement is algebraic and NMP need not lead to a pure state: the superposition of
pairs of entangled states is however mathematically well defined since inner products give
algebraic numbers. Cognitive entanglement stable under NMP would become possible. The
experience of understanding could be a correlate for it. The pairs in the sum defining the
entangled state defined the instances of a concept as a mapping of real world state to its
symbol structurally analogous to a Boolean rule. The entangled states between different
p-adic number fields would define maps between symbolic representations.

6. Assume that each HF allows a decomposition to a direct sum of two orthogonal parts correspond-
ing to WCW spinor fields localized to the intersection of number fields and to the complements
of the intersection:

H = Hnm ⊕Hm ,

Hnm = ⊕FHnm,F , Hm = ⊕FHm,F . (8.5.6)

Here nm stands for ’no mixing’ (no mixing between different number fields and localization to the
complement of the intersection) and m for ’mixing’ (mixing between different number fields in the
intersection). F labels the number fields. Orthogonal direct sum might be mathematically rather
singular and un-necessarily strong assumption but the notion of number theoretical criticality
favors it.
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The general structure of U-matrix neglecting the complexities due to algebraic extensions

M -matrix is diagonal with respect to the number field for obvious reasons. U -matrix can however
induce a leakage between different number fields as well as entanglement between different number
fields when unions of CDs are considered. The simplest assumption is that this entanglement is
induced by the leakage between different number fields for single CD but not directly. For instance,
the members of entangled pair of real states associated with two CDs leak to various p-adic sectors
and induce in this manner entanglement beween different number fields. One must however notice
that the part of U-matrix acting in the tensor product of Hilbert spaces assignable to separate CDs
must be considered separately: it seems that the entanglement inducing part of U is diagonal with
respect to number field except in the intersection.

To simplify the rather complex situation consider first the U matrix for a given CD by neglecting
the possibility of algebraic extensions of the p-adic number fields. Restrict also the consideration to
single CD.

1. The unitarity conditions do not make sense in a completely general sense since one cannot add
numbers belonging to different number fields. The problem can be circumvented if the U -matrix
decomposes into a product of U -matrices, which both are such that unitarity conditions make
sense for them. Here an essential assumption is that unit matrix and projection operators are
number theoretically universal. In this spirit assume that for a given CD U decomposes to a
product of two U -matrices Unm inducing no mixing between different number fields and Um
inducing the mixing in the intersection:

U = UnmUm . (8.5.7)

Here the subscript ’nm’ (no mixing) having nothing to do with the induces of U as a matrix
means that the action is restricted to a dispersion in a sector ofWCW characterized by particular
number field. The subscript ’m’ (mixing) in turn means that the action corresponds to a leakage
between different number fields possible in the intersection of worlds corresponding to different
number fields and that Um acts non-trivially in this intersection.

2. Assume that Unm decomposes into a formal direct sum of U -matrices associated with various
number fields F :

Unm = ⊕FUnm,F . (8.5.8)

Unm,F acts inside HF in both WCW and spin degrees of freedom, does not mix states belonging
to different number fields, and creates a state which is always mathematically completely well
defined in particular number field although the direct sum over number fields is only formally
defined. Unitarity condition gives a direct sum of projection operators to Hilbert spaces as-
sociated with various number fields. One can assume that this object is number theoretically
universal.

3. Um acts in the intersection of the real and p-adic worlds identified in the simplied picture
in terms of surfaces representable using ratios of polynomials with rational coefficients. The
resulting superposition of configuration space spinor fields in different number fields is as such
not mathematical sensible although the expression of Um is mathematically well-defined. If the
leakage takes place with same probability amplitude irrespective of the quantum state, Um is
a unitary operator, not affecting at all the spinor indices of WCW spinor fields characterizing
quantum numbers of the state and whose action is analogous to unitary mixing of the identical
copies of the state in various number fields.

The probability with which the intention is realized as action would not therefore depend at all
on the quantum number fields, but only on the data at points common to the variants of the
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partonic 2-surface in various number fields. Intention would reduce completely to the algebraic
geometry of partonic 2-surfaces. This assumption allows to write U in the form

U = UnmUm , (8.5.9)

where Um acts as an identity operator in Hnm.

The general structure of U-matrix when algebraic extensions of rationals are allowed

Consider now the generalization of the previous argument allowing also algebraic extensions.

1. For each algebraic extension of rationals one can express WCW as a union of two parts. The
first one corresponds to to 2-surfaces, which belong to the intersection of real and p-adic worlds.
The second one corresponds to 2-surfaces in the algebraic extension of genuine p-adic numbers
and having necessarily infinite size in real sense. Thefore the decomposition of U to a product
U = UnmUm makes sense also now.

2. It is natural to assume that Um decomposes to a product of two operators: Um = UHUQ. The
strictly horizontal operator UH connects only same algebraic extensions of rationals assigned
to different number fields. Here one must think that p-adic number fields represent a large
number of algebraic extensions of rationals without need for an algebraic extension in the p-
adic sense. The second unitary operator UQ describes the leakage between different algebraic
extensions of rationals. Number theoretical universality encourages the assumption that this
unitary operator reduces to an operator UQ acting on algebraic extensions of rationals regarded
effectively as quantum states so that it would be same for all number fields. One can even
consider the possibility that UQ depends on the extensions of rationals only and not at all on
partonic 2-surfaces. One cannot assume that UQ corresponds just to an inclusion to a larger state
space since this would give an infinite number of identical copies of same state and imply a non-
normalizable state. Physically UQ would define dispersion in the space of algebraic extension
of rationals defining the rational function space giving rise to the sub-WCW. The simplest
possibility is that UQ between different algebraic extensions is just the projection operator to
their intersection multiplied by a numerical constant determined number theoretical in terms of
ratios of dimensions of the algebraic extensions so that the diffusion between extensions products
unit norm states.

One must take into account the consistency conditions from the web of inclusions for the algebraic
extensions of rationals inducing extensions of p-adic numbers.

1. There is an infinite inverted pyramide-like web of natural inclusions of WCW s associated with
algebraic extensions of ratonal numbers and one can assign a copy of this web to all number fields
if a given p-adic number field is characterized by a web defined by algebraic extensions of rationals
numbers, which it is able to represent without explicit introduction of the algebraic extension,
so that the pyramide is same for all number fields. For instance, the WCW corresponding to
p-adic numbers proper is included to the WCW s associated with any of its genuine algebraic
extensions and defines the lower tip of the inverted pyramide. From this tip an arrow emerges
connecting it to every algebraic extension defining a node of this web. Besides these arrows
there are arrows from a given extension to all extensions containing it.

2. These geometric inclusions induce inclusions of the corresponding Hilbert spaces defined by
rational functions and possibly by algebraic functions in which case sub-web must be considered
(all n:th roots of integers in the range (1, p − 1) must be introduced simultaneously). Leakage
can occur between different extensions only through WCW spinor fields located in the common
intersection of these spaces containing always the rational surfaces. The intersections of WCW s
associated with various extensions of p-adic number fields correspond to WCW s assignable to
rational functions with coeffficients in various algebraic extensions of rationals using preferred
coordinates of CD and CP2.
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Together with unitarity conditions this web poses strong constraints on the unitary matrices Um
and UQ expressible conveniently in terms of commuting diagrams. There are two kinds of webs. The
vertical webs are defined by the algebraic extensions of rationals. These form a larger web in which
lines connect the nodes of identical webs associated with various p-adic number fields and represent
algebraic extensions of rationals.

1. One has the general product decomposition U = UnmUQUm, where Unm does not induce mixing
between number fields, and Um does it purely horizontally but without affecting quantum states
in WCW spin degreees of freedom, and P (Hnm) projects to the complement of the intersection
of number fields holds true also now.

2. Each algebraic extension of rationals gives unitary conditions for the corresponding Unm,F for
each p-adic number field with extensions included. These conditions are relatively simple and
no commuting diagrams are needed.

3. In the horizontal web Um mixes the states in the intersections of two number fields but connects
only same algebraic extensions so that the lines are strictly horizontal. UQ acts strictly verti-
cally in the web formed by algebraic extension of rationals and its action is unitary. One has
infinite number of commuting diagrams involving Um and UQ since the actions along all routes
connecting given points between p1 and p2 must be identical.

4. If algebraic universality holds in the sense that Um is expressible using only the data about
the common points of 2-surfaces in the intersection defined by particular extensions using some
universal functions, and UQ is purely number theoretical unitary matrix having no dependence
on partonic 2-surfaces, one can hope that the constraints due to commuting diagrams in the web
of horizontal inclusions can be satisfied automatically and only the unitarity constraints remain.
This web of inclusions brings strongly in mind the web of inclusions of hyper-finite factors.

8.6 Generalization of the notion of configuration space

The number theoretic variants of Shannon entropy make sense for rational and even algebraic en-
tanglement probabilities in finite-dimensional algebraic extensions of rationals and can have negative
values so that negentropic entanglement becomes possible. This leads to the vision that life resides in
the intersection of real and p-adic worlds for which partonic 2-surfaces- the basic geometric objects-
allow a mathematical definition making sense both in real and p-adic sense in preferred coordinates
dictated to a high degree by imbedding space symmetries. Rational functions with rational or algebraic
coefficients provide a basic example of this kind of functions as also algebraic functions. This vision
together with Negentropy Maximization Principle leads to an overall view about how the standard
physics picture must be modified in TGD framework (see the next chapter [K47] ).

The identification of life as something in the intersection means that there should be also physics
outside it. In the real context this poses no problems of principle. But should one allow the contin-
uation of the coefficients of rational functions to p-adic integers infinite as real integers? This seems
to raise formidable looking challenges.

1. One should be able to formulate the geometry of the world of classical worlds (WCW ) in p-adic
sense and also construct p-adic counterparts for the integration over WCW . Since no physically
acceptable p-adic variant of definite integral does exists, algebraic continuation seems to be the
only possible manner to meet this challenge.

2. One must construct the p-adic counterparts of Kähler function or of its exponent (or both),
Kähler metric and Kähler form at the level of WCW.

3. Kähler function identified as Kähler action for preferred extremal and defined as integral does
not make sense as such in p-adic context and the only manner to define the p-adic variant of
Kähler function is by algebraic continuation from the real sector through the intersection of real
and p-adic worlds.



8.6. Generalization of the notion of configuration space 423

8.6.1 Is algebraic continuation between real and p-adic worlds possible?

It seems that algebraic continuation is the only reasonable manner to tackle these challenges. The
following considerations suggests that there are some hopes.

1. Recall that the basic geometric objects can be identified either as light-like 3-surfaces connect-
ing the boundaries of causal diamond (intersection of future and past directed light-cones) or
as space-like 3-surfaces at the boundaries of CD. The condition that the identifications are
equivalent implies effective 2-dimensionality: the partonic 2-surfaces at the boundaries of causal
diamonds (CDs) together with the distribution of four-dimensional tangent planes of space-time
surface at the points of the partonic surface, are the basic geometric objects. The tangent space
distribution codes for various quantum numbers such as four-momentum so that also these
must be rational valued in the common sector. In the following I will just speak about par-
tonic 2-surfaces. It is this space-time 2-surfaces for a given CD, which should be geometrized.
2-dimensionality obviously suggests a connection with algebraic geometry.

2. Number theoretic vision [K78] leads to the conclusion that the space-time sheets are quaternionic
in the sense that the modified gamma matrices assignable to the Kähler action in their octo-
nionic representations span quaternionic (co-quaternionic) and thus associative (co-associative)
subspace of complexified octonions at each point of the space-time surface. Quaternionicity
would be realized in Minkowskian regions and co-quaternionicity in the space-like regions defin-
ing geometrization of Feynman diagrams. This notion is independent of the number field so that
the notion of p-adic space-time sheet seems to make sense. Note that also the field equations and
criticality condition for the preferred extremals [K27] make sense p-adically as purely algebraic
conditions.

3. The representability of the configuration space as a union of symmetric spaces means an enor-
mous simplification since everything reduces to a single point, most naturally the maximum of
Kähler function for given values of zero modes. If this maximum is always an algebraic surface
and if the Kähler function or its exponent for it is algebraic number (there is infinity of tunings
of zero modes guaranteing this), the maxima make sense also in suitable algebraic extensions of
p-adic numbers. The maxima would obviously define the intersection of real and p-adic worlds.

One might in fact argue that this is as it must be. What is cognitively representable is in the
intersection of realities and p-adicities and mathematician can cognitively represent only these
maxima and do perturbation theory around them and hope for a complete integrability.

4. What comes naturally in mind is that only p-adically small deformations of the partonic 2-
surfaces in the intersections of the p-adic and real worlds are allowed at the p-adic side. If
the exponent of Kähler function exists in some algebraic extension at the common point, its
small perturbations can be expanded in powers of p as a functional of the coefficients of rational
functions extended to p-adic numbers. Symmetric space structure of WCW raises the hope
that TGD is a completely integrable theory in the sense that the functional integral reduces to
the exponent of Kähler action due to the cancellation of metric and Gaussian determinants the
n-point functions. One would have effectively free field theory. If this is the case the functional
integral would make sense also in p-adic context as algebraic continuation.

Consider now in more detail what the algebraic continuation could mean.

1. Kähler function is not uniquely defined since one can add to it a real part of a holomorphic func-
tion of WCW complex coordinates (associated with quantum fluctuating degrees of freedom)
without affecting Kähler metric. By a suitable choice of this function algebraicity could be guar-
anteed for any partonic 2-surface. This symmetry is however much like gauge invariance, which
suggests that functional integral expressions for n-point functions involving also normalization
factors do not depend on the exponent of Kähler function at maximum. In the perturbative
approach to quantum field theory the exponents indeed cancel from n-point functions. This
would suggest that the algebraicity of Kähler function is only needed. One should be however
be very cautious. The Kähler action for CP2 type vacuum extremals has a deep meaning in
TGD and would have interpretation in terms of a non-perturbative effect. If one allows the
introduction of a finite-dimensional non-algebraic extension involving powers of some root of e
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(ep exists p-adically) both the exponent of Kähler function and Kähler function exist p-adically
if Kähler function is a rational number.

2. WCW Kähler metric can be defined in terms of second partial derivatives of the exponent of
Kähler function and is algebraic if Kähler function or its exponent are algebraic functions of
the preferred WCW coordinates defined by WCW symmetries. The tangent space distribution
at X2 codes information about quantum numbers - in particular four-momenta- which define
a measurement interaction terms in Kähler action [K27] . By holography Kähler function or
its exponent is expressible in terms of the data associated with X2 and its tangent space and
should be algebraic function of these data.

3. If Kähler function or its exponent is rational function of the parameters charactering partonic
2-surfaces, the continuation to the p-adic sectors at rational points is in principle possible. If
Kähler function is proportional to a positive power of p its exponent exists automatically in p-adic
context. For Kähler function this would mean that given partonic 2-surface would correspond
to a finite number of primes only. The continuation of the exponent of Kähler function is not
however very useful since WCW integral cannot be defined except by algebraic continuation.
Exponent function behaves also completely differently in p-adic context than in real context (its
p-adic norm equals always to one for instance). p-Adic thermodynamics would in turn suggest
that the exponent function should be replaced by a power of p since it has desired convergence
properties so that Kähler function divided by log(p) should be rational (allowing roots of p in
the algebraic extension).

4. The perturbative approach relies on n-point functions involving WCW Hamiltonians and their
super-counterparts at the intersection. One would obtain algebraic expressions for the n-point
functions involving also contravariant metric of WCW of as a propagator. If one always works in
effectively finite-dimensional space (coefficients of polynomials with finite degree in the definition
of partonic 2-surfaces involved and rational valued momenta) one has finite-dimensional space
of partonic 2-surraces, and the propagator is an algebraic object as the inverse of the Kähler
metric defined by the second derivatives of the Kähler function if K or is exponent is algebraic
function. p-Adicization also means the continuation of the momenta to the p-adic sector.

5. WCW Hamiltonians and their super-counterparts are defined as integrals over partonic 2-surface
and it is not at all obvious that the result is algebraic number even if these quantities themselves
are rational functions even in the partonic 2-surfaces themselves are rational surfaces. The
condition for being in the intersection should therefore include also the condition about the
algebraic character of these objects.

6. One could of course wonder whether coupling constant renormalization involving logarithmic
functions of mass scales and powers of π in QFT context could spoil this nice picture and force
to introduce infinite-dimensional transcendental extensions of p-adic numbers. There is indeed
the danger that symmetric space property is not enough to avoid infinite perturbation series
coming from the expansions of WCW Hamiltonians and their super counterparts. This kind of
series would obviously spoil the algebraic character. There are however hopes. First of all, tinite
measurement resolution is one of the key aspects of quantum TGD and could boild down to a
cutoff for the perturbation series. Secondly, the key idea of quantum criticality is that for the
maxima of Kähler function the perturbative corrections sum up to zero since they are coded to
the Kähler action itself since the scale of induced metric is proportional to the square of ~.

If this optimistic picture is correct, the algebraic continuation to p-adic sector would reduce to
an algebraic continuation of the expressions for n-point functions and the U -matrix in real sector
to the p-adic sector, and would be almost trivial since only continuation in momenta and WCW
coordinates parametrizing partonic 2-surfaces representing maxima of Kähler function would be in
question. Everything could be computed in the real sector. A practically oriented theoretician might
of course have suggested this from the beginning. It must be added that this vision is the latest one
and need not completely consistent with all what is represented in the sequel.
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8.6.2 p-Adic counterparts of configuration space Hamiltonians

One must continue the δM4
+ local CP2 Hamiltonians appearing in the integrals defining configuration

space Hamiltonians to various p-adic sectors. CP2 harmonics are homogeneous polynomials with
rational coefficients and do not therefore produce any trouble since normalization factors involve only
square roots. The p-adicization of δM4

+ function basis defining representations of Lorentz group
involves more interesting aspects.

p-Adicization of representations of Lorentz group

In the light cone geometry Poincare invariance is strictly speaking broken to Lorentz invariance with
respect to the dip of the light cone and at least cosmologically a more natural basis is characterized by
the eigenvalues of angular momentum and boost operator in a given direction. The eigenvalue spec-
trum of the boost operator is continuous without further conditions. One can study these conditions
in the realization of the unitary representations of Lorenz group as left translations in the Lorentz
group itself by utilizing homogenous functions of four complex variables z1, z2, z3, z4 satisfying the
constraint z1z4− z2z3 = 1 expressing the fact that they correspond to the homogenous coordinates of
the Lorentz group defined by that matrix elements of the SL(2,C) matrix(

z1 z3

z2 z4

)
.

The function basis consists of

fa1,a2,a3,a4(z1, z2, z3, z4) = za11 za22 za33 za44 ,

a1 = m1 + iα, a2 = m2 − iα ,
a3 = m3 − iα, a4 = m4 + iα ,
m1 +m2 = M , m3 +m4 = M .

The action of Lorentz transformation is given by

(
z1 z3

z2 z4

)
→
(
a b
c d

)(
z1 z3

z2 z4

)
. (8.6.1)

and unimodular (ad − bc = 1). Lorentz transformation preserves the imaginary parts iα of the
complex degrees di = m± iα of z±iα+mk

k (as can be seen by using binomial series representations for
the transformed coordinates). Also the sums m1 +m2 = M and m3 +m4 = M are Lorentz invariants.
Hence the representation is characterized by the the pair (α,M). M corresponds to the minimum
angular momentum for the SU(2) decomposition of the representation.

The imaginary parts iα of the complex degrees correspond to the eigen values of Lorentz boost in
the direction of the quantization axis of angular momentum. The eigen functions are proportional to
the factor

ρi2α1 ρ−i2α2 ρ−i2α3 ρi2α4 ,
ρi =

√
zizi .

Since one can write ρi2α = ei2log(ρ)α, these are nothing but the logarithmic plane waves. The value
set of α ≥ 0 is continuous in the real context.

The requirement that the logarithmic plane waves are continuable to p-adic number fields and
exist p-adically for rational values of ρi = m/n, quantizes the values of α. This condition is satisfied
if the quantities pi2αi = ei2log(p)αi exist p-adically for any prime. As shown in [K68] , there seems to
be no number theoretical obstructions for the simplest hypothesis log(p) = q1(p)exp [q2(p)] /π, with
q2(p1) 6= q2(p2) for all pairs of primes. The existence of piy in a finite-dimensional extension would
require that αi is proportional to π by a coefficient which for a given prime p1 has sufficiently small
p-adic norm so that the exponent can be expanded in powers series.

Obviously p-adicization gives strong quantization conditions. There is also a second possibility. As
discussed in the same chapter, the allowance of infinite primes changes the situation. Let X =

∏
pi be

the product of all finite primes. 1+X is the simplest infinite prime and the ratio Y = X/(1+X) equals
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to 1 in real sense and has p-adic norm 1/p for all finite primes. If one allows α to be proportional
to a power Y , then the p-adic norm of α can be so small for all primes that the expansion converges
without further conditions. Infinite primes will be discussed later in more detail.

Exactly similar exponents (piy) appear in the partition function decomposition of the Riemann
Zeta, and the requirement that these quantities exist in a finite algebraic extension of p-adic numbers
for the zeros z = 1/2 + iy of ζ requires that eilog(p)y is in a finite-dimensional extension involving
algebraic numbers and e. One could argue that for the extensions of p-adics the zeros of Zeta define a
universal spectrum of the eigen values of the Lorentz boost generator. This might have implications
in hadron physics, where the so called rapidity distribution correspond to the distributions of the
particles with respect to the variable characterizing finite Lorentz boosts.

Although the realization of the using the functions in Lorentz group differs from the discussed one,
the conclusion is same also for them, in particular for the representation realized at the boundary of
the light cone which is one of the homogenous spaces associated with Lorentz group.

Function basis of δM4
+

One can consider two function basis for δM4
+ and both function basis allow continuation to p-adic

values under similar conditions.

1. Spherical harmonic basis

The first basis consists of functions Y lm × (rM/r0)n/2+iρ, n = −2,−1, 0, .... For n = −2 these
functions define a unitary representation of Lorentz group. The spherical harmonics Y lm require a
finite-dimensional algebraic extension of p-adic numbers. Radial part defines a logarithmic wave
exp[iρlog(rM/r0)] and the existence of this for finite-dimensional extension of p-adic numbers for
rational values ρ and rM is guaranteed by log(p) = q1exp(q2)/π ansatz under the conditions already
discussed.

2. Basis consisting of eigen functions of angular momentum and boost

Another function basis of δM4
+ defining a non-unitary representation of Lorentz group and of

conformal algebra consists of eigen states of rotation generator and Lorentz boost and is given by

fm,n,k = eimφ
ρn−k

(1 + ρ2)k
× (

rM
r0

)k . (8.6.2)

n = n1 + in2 and k = k1 + ik2 are in general complex numbers. The condition

n1 − k1 ≥ 0

is required by regularity at the origin of S2. The requirement that the integral over S2 defining norm
exists (the expression for the differential solid angle is dΩ = ρ

1+ρ2)2 dρdφ) implies

n1 < 3k1 + 2 .

From the relationship (cos(θ), sin(θ)) = (ρ2−1)/(ρ2 + 1), 2ρ/(ρ2 + 1)) one can conclude that for n2 =
k2 = 0 the representation functions are proportional to f sin(θ)n−k(cos(θ) − 1)n−k. Therefore they
have in their decomposition to spherical harmonics only spherical harmonics with angular momentum
l < 2(n− k). This suggests that the condition

|m| ≤ 2(n− k) (8.6.3)

is satisfied quite generally.
The emergence of the three quantum numbers (m,n, k) can be understood. Light cone boundary

can be regarded as a coset space SO(3, 1)/E2 × SO(2), where E2 × SO(2) is the group leaving the
light like vector defined by a particular point of the light cone invariant. The natural choice of the
Cartan group is therefore E2 × SO(2). The three quantum numbers (m,n, k) have interpretation as
quantum numbers associated with this Cartan algebra. The representations of the Lorentz group are
characterized by half-integer valued parameter l0 = m/2 and complex parameter l1. Thus k2 and



8.6. Generalization of the notion of configuration space 427

n2, which are Lorentz invariants, might not be independent parameters, and the simplest option is
k2 = n2.

It is interesting to compare the representations in question to the unitary representations of Lorentz
group discussed in [A174] .

1. The unitary representations discussed in [A174] are characterized by are constructed by deducing
the explicit representations for matrix elements of the rotation generators Jx, Jy, Jz and boost
generators Lx, Ly, Lz by decomposing the representation into series of representations of SU(2)
defining the isotropy subgroup of a time like momentum. Therefore the states are labelled by
eigenvalues of Jz. In the recent case the isotropy group is E2 × SO(2) leaving light like point
invariant. States are therefore labelled by three different quantum numbers.

2. The representations of [A174] are realized the space of complex valued functions of complex
coordinates ξ and ξ labelling points of complex plane. These functions have complex degrees
n+ = m/2− 1 + l1 with respect to ξ and n− = −m/2− 1 + l1 with respect to ξ. l0 is complex
number in the general case but for unitary representations of main series it is given by l1 = iρ
and for the representations of supplementary series l1 is real and satisfies 0 < |l1| < 1. The main
series representation is derived from a representation space consisting of homogenous functions
of variables z0, z1 of degree n+ and of z0 and z1 of degrees n±. One can separate express these

functions as product of (z1)n
+

(z1)n− and a polynomial of ξ = z1/z2 and ξ with degrees n+

and n−. Unitarity reduces to the requirement that the integration measure of complex plane is
invariant under the Lorentz transformations acting as Moebius transformations of the complex
plane. Unitarity implies l1 = −1 + iρ.

3. For the representations at δM4
+ unitarity reduces to the requirement that the integration mea-

sure of r2
MdΩdrM/rM of δM4

+ remains invariant under Lorentz transformations. The action of
Lorentz transformation on the complex coordinates of S2 induces a conformal scaling which can
be compensated by an S2 local radial scaling. At least formally the function space of δM4

+ thus
defines a unitary representation. For the function basis fmnk k = −1 + iρ defines a candidate
for a unitary representation since the logarithmic waves in the radial coordinate are completely
analogous to plane waves. This condition would be completely analogous to the vanishing of
conformal weight for the physical states of super conformal representations. The problem is that
for k1 = −1 guaranteing square integrability in S2 implies −2 < n1 < −2 so that unitarity in
this sense is not possible.

There is no deep reason against non-unitary representations and symmetric space structure
indeed requires that k1 is half-integer valued. First of all, configuration space spinor fields
are analogous to ordinary spinor fields in M4, which also define non-unitary representations of
Lorentz group. Secondly, if 3-surfaces at the light cone boundary are finite-sized, the integrals
defined by fmnk over 3-surfaces Y 3 are always well-defined. Thirdly, the continuous spectrum
of k2 could be transformed to a discrete spectrum when k1 becomes half-integer valued.

Logarithmic waves and possible connections with number theory and fundamental physics

Logarithmic plane waves labelled by eigenvalues of the scaling momenta appear also in the definition
of the Riemann Zeta defined as ζ(z) =

∑
n n
−z, n positive integer [K68] . Riemann Zeta is expressible

as a product of partition function factors 1/(1 + p−x−iy), p prime and the powers n−x−iy appear as
summands in Riemann Zeta. Riemann hypothesis states that the non-trivial zeros of Zeta reside at the
line x = 1/2. There are indeed intriguing connections. Log(p) corresponds now to the log(rM/rmin)
and -x-iy corresponds to the scaling momentum k1 + ik2 so that the special physical role of the
conformal weights k1 = 1/2 + iy corresponds to Riemann hypothesis. The appearance of powers of p
in the definition of the Riemann Zeta corresponds to p-adic length scale hypothesis, (rM/r0 = p in ζ
and corresponds to a secondary p-adic length scale).

The assumption that the logarithmic plane waves are algebraically continuable from the rational
points rM/rmin = m/n to p-adic plane waves using a finite-dimensional extension of p-adic numbers
leads to the log(p) = q1exp(q2)/π ansatz. Similar hypothesis is inspired by the hypothesis that
Riemann Zeta is a universal function existing simultaneously in all number fields. This inspires
several interesting observations.
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1. p-adic length scale hypothesis stating that rmax/rmin = pn is consistent with the number the-
oretical universality of the logarithmic waves. The universality of Riemann Zeta inspires the
hypothesis that the zeros of Riemann Zeta correspond to rational numbers and to preferred
values k1 + ik2 of the scaling momenta appearing in the logarithmic plane waves. In the recent
context the most general hypothesis would be that the allowed momenta k2 correspond to the
linear combinations of the zeros of Riemann Zeta with integer coefficients.

2. Hardmuth Mueller [B4] claims on basis of his observations that gravitational interaction involves
logarithmic radial waves for which the nodes come as r/rmin = en. This is true if the the scaling
momenta k2 satisfy the condition k2/π ∈ Z. Perhaps Mueller’s logarithmic waves really could
be seen as a direct signature of the fundamental symmetries of the configuration space. In
particular, this would require rmax/rmin = em.

3. The special role of Golden Mean Φ = (1+
√

5)/2 in Nature could be understood if also log(Φ) =
q1exp(q2)/π or more general ansatz holds true. This would imply that the nodes of logarithmic
waves can correspond also to the powers of Φ.

One could of course argue that the number theory at the moment of Big Bang cannot have
strong effects on what is observed in laboratory. This might be the case. On the other hand,
the non-determinism of the Kähler action however strongly suggests that the construction of the
configuration space geometry involves all possible light like 3-surfaces of the future light cone
so that logarithmic waves would appear in all length scales. Be as it may, it would be amazing
if such an abstract mathematical structure as configuration space geometry would have direct
implications to cosmology and to the physics of living systems.

8.6.3 Configuration space integration

Assuming that U -matrix exists simultaneously in all number fields (allowing finite-dimensional ex-
tensions of p-adics), the immediate question is whether also the construction procedure of the real
S-matrix could have a p-adic counterpart for each p, and whether the mere requirement that this
is the case could provide non-trivial intuitions about the general structure of the theory. Not only
the configuration space but also Kähler function and its exponent, Kähler metric, and configuration
space functional integral should have p-adic variants. In the following this challenge is discussed in
a rather optimistic number theoretic mood using the ideas stimulated by the connections between
number theory and cognition.

Does symmetric space structure allow algebraization of configuration space integration?

The basic structure is the rational configuration space whose points have rational valued coordinates.
This space is common to both real and p-adic variants of the configuration space. Therefore the
construction of the generalized configuration space as such is not a problem.

The assumption that configuration space decomposes into a union of symmetric spaces labeled by
zero modes means that the left invariant metric for each space in the union is dictated by isometries.
It should be possible to interpret the matrix elements of the configuration space metric in the basis of
properly normalized isometry currents as p-adic numbers in some finite extension of p-adic numbers
allowing perhaps also some transcendentals. Note that the Kähler function is proportional to the
inverse of Kähler coupling strength αK which depends on p-adic prime p, and does seem to be a
rational number if one takes seriously various arguments leading to the hypothesis 1/αK = klog(K2),
K2 = p × 2 × 3 × 5.. × 23, and k = π/4 or k = 137/107 for the two alternative options discussed
in [K68] . If so then the most general transcendentals required and allowed in the extensions used
correspond to roots of polynomials with coefficients in an extension of rationals by e and algebraic
numbers. As already discussed, infinite primes might provide the ultimate solution to the problem of
continuation.

The continuation of the exponent of Kähler function and of configuration space spinor fields to
p-adic sectors would require some selection of a subset of points of the rational configuration space.
On the other hand, the minimum requirement is that it is possible to define configuration space
integration in the p-adic context. The only manner to achieve this is by defining configuration space
integration purely algebraically by perturbative expansion. For free field theory Gaussian integrals are
in question and one can calculate them trivially. The Gaussian can be regarded as a Kähler function
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of a flat Kähler manifold having maximal translational and rotational symmetries. Physically infinite
number of harmonic oscillators are in question. The origin of the symmetric space is preferred point
as far as Kähler function is considered: metric itself is invariant under isometries.

Algebraization of the configuration space functional integral

Configuration space is a union of infinite-dimensional symmetric spaces labelled by zero modes. One
can hope that the functional integral could be performed perturbatively around the maxima of the
Kähler function. In the case of CP2 Kähler function has only single maximum and is a monotonically
decreasing function of the radial variable r of CP2 and thus defines a Morse function. This suggests
that a similar situation is true for all symmetric spaces and this might indeed be the case. The point
is that the presence of several maxima implies also saddle points at which the matrix defined by the
second derivatives of the Kähler function is not positive definite. If the derivatives of type ∂K∂LK
and ∂K∂LK vanish at the saddle point (this is the crucial assumption) in some complex coordinates
holomorphically related to those in which the same holds true at maximum, the Kähler metric is not
positive definite at this point. On the other hand, by symmetric space property the metric should be
isometric with the positive define metric at maxima so that a contradiction results.

If this argument holds true, for given values of zero modes Kähler function has only one maximum,
whose value depends on the values zero modes. Staying in the optimistic mood, one could go on to
guess that the Duistermaat-Heckman theorem [A141] generalizes and the functional integral is simply
the exponent of the Kähler function at the maximum (due to the compensation of Gaussian and metric
determinants). Even more, one could bravely guess that for configuration space spinor fields belonging
to the representations of symmetries the inner products reduces to the generalization of correlation
functions of Gaussian free field theory. Each configuration space spinor field would define a vertex
from which lines representing the propagators defined by the contravariant configuration space metric
in isometry basis emanate.

If this optimistic line of reasoning makes sense, the definition of the p-adic configuration space
integral reduces to a purely algebraic one. What is needed is that the contravariant Kähler metric
fixed by the symmetric space-property exists and that the exponent of the maximum of the Kähler
function exists for rational values of zero modes or subset of them if finite-dimensional algebraic
extension is allowed. This would give could hopes that the U -matrix elements resulting from the
configuration space integrals would exist also in the p-adic sense.

Is the exponential of the Kähler function rational function?

The simplest possibility that one can imagine are that the exponent e2K of Kähler function appearing
in the configuration space inner products is a rational or at most a simple algebraic function existing
in a finite-dimensional algebraic extension of p-adic numbers.

The exponent of the CP2 Kähler function is a rational function of the standard complex coordinates
and thus rational-valued for all rational values of complex CP2 coordinates. Therefore one is lead to
ask whether this property holds true quite generally for symmetric spaces and even in the infinite-
dimensional context. If so, then the continuation of the vacuum functional to the p-adic sectors of the
configuration space would be possible in the entire configuration space. Also the spherical harmonics of
CP2 are rational functions containing square roots in normalization constants. That also configuration
space spinor fields could use rational functions containing square roots as normalization constant as
basic building blocks would conform with general number theoretical ideas as well as with the general
features of harmonic oscillator wave functions.

The most obvious manner to realize this idea relies on the restriction of light-like 3-surfaces X3
l to

those representable in terms of polynomials or rational functions with rational or at most algebraic
coefficients serving as natural preferred coordinates of the configuration space. This of course requires
identification of preferred coordinates also for H. This would lead to a hierarchy of inclusions for
sub-configuration spaces induced by algebraic extensions of rationals.

The presence of cutoffs for the degrees of polynomials involved makes the situation finite-dimensional
and give rise to a hierarchy of inclusions also now. These inclusion hierarchies would relate naturally
also to hierarchies of inclusions for hyperfinite factors of type II1 since the spinor spaces associated
with these finite-D versions of WCW would be finite-dimensional. Hyper-finiteness means that this
kind of cutoff can give arbitrarily precise approximate representation of the infinite-D situation.
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This vision is supported by the recent understanding related to the definition of exponent of Kähler
function as Dirac determinant [K15] . The number of eigenvalues involved is necessarily finite, and
if the eigenvalues of DC−S are algebraic numbers for 3-surfaces X3

l for which the coefficients charac-
terizing the rational functions defining X3

l are algebraic numbers, the exponent of Kähler function is
algebraic number.

The general number theoretical conjectures implied by p-adic physics and physics of cognition and
intention support also this conjecture. Although one must take these arguments with a big grain of
salt, the general idea might be correct. Also the elements of the configuration space metric would be
rational functions as is clear from the fact that one can express the second derivatives of the Kähler
function in terms of F = exp(K) as

∂K∂LK =
∂K∂LF

F
−
∂KF∂LF

F 2
.

Coupling constant evolution and number theory

The coupling constant evolution associated with the Kähler action might be at least partially under-
stood number-theoretically.

A given space-time sheet is connected by wormhole contacts to the larger space-time sheets. The
induced metric within the wormhole contact has an Euclidian signature so that the wormhole contact
is surrounded by elementary particle horizons at which the metric is degenerate so that the horizons
are metrically effectively 2-dimensional giving rise to quaternion conformal invariance. Because of the
causal horizon it would seem that Kähler coupling strength can depend on the space-time sheet via
the p-adic prime characterizing it. If so the exponent of the Kähler function would be simply the
product of the exponents for the space-time sheets and one would have finite-dimensional extension
as required.

If the exponent of the Kähler function is rational function, also the components of the contravariant
Kähler metric are rational functions. This would suggest that one function of the coupling constant
evolution is to keep the exponent rational.

From the point of view of p-adicization the ideal situation results if Kähler coupling strength is
invariant under the p-adic coupling constant evolution as I believed originally. For a long time it
however seemed that this option cannot be realized since the prediction G = L2

pexp(−2SK(CP2)) for
the gravitational coupling constant following from dimensional considerations alone implies that G
increases without limit as a function of p-adic length scale if αK is RG invariant. If one however
assumes that bosonic space-time sheets correspond to Mersenne primes, situation changes since M127

defining electron length scale is the largest Mersenne prime for which p-adic length scale is not super-
astronomical and thus excellent candidate for characterizing gravitonic space-time sheets. There is
much stronger motivation for this hypothesis coming from the fact that a nice picture about evolution
of electro-weak and color coupling strengths emerges just from the physical interpretation of the fact
that classical color action and electro-weak U(1) action are proportional to Kähler action [K87] .

The recent progress in the understanding of the definition of the exponent of Kähler function as
Dirac determinant [K15] leads to rather detailed picture about the number theoretic anatomy of αK
and other coupling constant strengths as well as the number theoretic anatomy of R2/~G [K4] . By
combining these results with the constraints coming from p-adic mass calculations one ends up to
rather strong predictions for αK and R2/~G.

Consistency check in the case of CP2

It is interesting to look whether this vision works or fails in a simple finite-dimensional case. For CP2

the Kähler function is given by K = −log(1 + r2). This function exists if an extension containing the
logarithms of primes is used. log(1+x), x = O(p) exists as an ordinary p-adic number and a logarithm
of log(m), m < p such that the powers of m span the numbers 1, ..., p − 1 besides log(p) should be
introduced to the extension in order that logarithm of any integer and in fact of any rational number
exists p-adically. Also logarithms of roots of integers and their products would exist. The problem is
however that the powers of log(m) and log(p) would generate an infinite-dimensional extension since
finite-dimensional extension leads to a contradiction as shown in [K68] .

The exponent of Kähler function as well as Kähler metric and Kähler form have rational-valued
elements for rational values of the standard complex coordinates for CP2. The exponent of the Kähler
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function is 1/(1 + r2) and exists as a rational number at 3-spheres of rational valued radius. The
negative of the Kähler function has a single maximum at r = 0 and vanishes at the coordinate
singularity r →∞, which corresponds to the geodesic sphere S2.

If one wants to cognize about geodesic length, areas of geodesic spheres, and about volume of
CP2, π must be introduced to the extension of p-adics and means infinite-dimensional extension by
the arguments of [K68] . The introduction of π is not however necessary for introducing of spherical
coordinates if one expresses everything in terms of trigonometric functions. For ordinary spherical
coordinates this means effectively replacing θ and φ by u = θ/π and v = φ/2π as coordinates. By
allowing u and v to have a finite number of rational values requires only the introduction of a finite-
dimensional algebraic extension in order to define cosines and sines of the angle variables at these
values. What seems clear is that the evolution of cognition as the emergence of higher-dimensional
extensions corresponds quite concretely to the emergence of finer discretizations.

8.7 How to define generalized Feynman diagrams?

S-matrix codes to a high degree the predictions of quantum theories. The longstanding challenge of
TGD has been to construct or at least demonstrate the mathematical existence of S-matrix- or actually
M-matrix which generalizes this notion in zero energy ontology (ZEO) [K66] . This work has led to the
notion of generalized Feynman diagram and the challenge is to give a precise mathematical meaning
for this object. The attempt to understand the counterpart of twistors in TGD framework [K86]
has inspired several key ideas in this respect but it turned out that twistors themselves need not be
absolutely necessary in TGD framework.

1. The notion of generalized Feyman diagram defined by replacing lines of ordinary Feynman dia-
gram with light-like 3-surfaces (elementary particle sized wormhole contacts with throats carry-
ing quantum numbers) and vertices identified as their 2-D ends - I call them partonic 2-surfaces
is central. Speaking somewhat loosely, generalized Feynman diagrams (plus background space-
time sheets) define the ”world of classical worlds” (WCW). These diagrams involve the analogs
of stringy diagrams but the interpretation is different: the analogs of stringy loop diagrams have
interpretation in terms of particle propagating via two different routes simultaneously (as in the
classical double slit experiment) rather than as a decay of particle to two particles. For stringy
diagrams the counterparts of vertices are singular as manifolds whereas the entire diagrams
are smooth. For generalized Feynman diagrams vertices are smooth but entire diagrams rep-
resent singular manifolds just like ordinary Feynman diagrams do. String like objects however
emerge in TGD and even ordinary elementary particles are predicted to be magnetic flux tubes
of length of order weak gauge boson Compton length with monopoles at their ends as shown in
accompanying article. This stringy character should become visible at LHC energies.

2. Zero energy ontology (ZEO) and causal diamonds (intersections of future and past directed
lightcones) is second key ingredient. The crucial observation is that in ZEO it is possible to
identify off mass shell particles as pairs of on mass shell particles at throats of wormhole contact
since both positive and negative signs of energy are possible. The propagator defined by modified
Dirac action does not diverge (except for incoming lines) although the fermions at throats are on
mass shell. In other words, the generalized eigenvalue of the modified Dirac operator containing
a term linear in momentum is non-vanishing and propagator reduces to G = i/λγ, where γ is so
called modified gamma matrix in the direction of stringy coordinate [K15] . This means opening
of the black box of the off mass shell particle-something which for some reason has not occurred
to anyone fighting with the divergences of quantum field theories.

3. A powerful constraint is number theoretic universality requiring the existence of Feynman am-
plitudes in all number fields when one allows suitable algebraic extensions: roots of unity are
certainly required in order to realize p-adic counter parts of plane waves. Also imbedding space,
partonic 2-surfaces and WCW must exist in all number fields and their extensions. These con-
straints are enormously powerful and the attempts to realize this vision have dominated quantum
TGD for last two decades.

4. Representation of 8-D gamma matrices in terms of octonionic units and 2-D sigma matrices is
a further important element as far as twistors are considered [K86] . Modified gamma matrices
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at space-time surfaces are quaternionic/associative and allow a genuine matrix representation.
As a matter fact, TGD and WCW can be formulated as study of associative local sub-algebras
of the local Clifford algebra of 8-D imbedding space parameterized by quaternionic space-time
surfaces. Central conjecture is that quaternionic 4-surfaces correspond to preferred extremals
of Kähler action [K15] identified as critical ones (second variation of Kähler action vanishes for
infinite number of deformations defining super-conformal algebra) and allow a slicing to string
worldsheets parametrized by points of partonic 2-surfaces.

5. As far as twistors are considered, the first key element is the reduction of the octonionic twistor
structure to quaternionic one at space-time surfaces and giving effectively 4-D spinor and twistor
structure for quaternionic surfaces.

Quite recently quite a dramatic progress took place in this approach [K86] .

1. The progress was stimulated by the simple observation that on mass shell property puts enor-
mously strong kinematic restrictions on the loop integrations. With mild restrictions on the
number of parallel fermion lines appearing in vertices (there can be several since fermionic
oscillator operator algebra defining SUSY algebra generates the parton states)- all loops are
manifestly finite and if particles has always mass -say small p-adic thermal mass also in case of
massless particles and due to IR cutoff due to the presence largest CD- the number of diagrams
is finite. Unitarity reduces to Cutkosky rules [B17] automatically satisfied as in the case of
ordinary Feynman diagrams.

2. Ironically, twistors which stimulated all these development do not seem to be absolutely necessary
in this approach although they are of course possible. Situation changes if one does not assume
small p-adically thermal mass due to the presence of massless particles and one must sum infinite
number of diagrams. Here a potential problem is whether the infinite sum respects the algebraic
extension in question.

This is about fermionic and momentum space aspects of Feynman diagrams but not yet about the
functional (not path-) integral over small deformations of the partonic 2-surfaces. The basic challenges
are following.

1. One should perform the functional integral over WCW degrees of freedom for fixed values of
on mass shell momenta appearing in the internal lines. After this one must perform integral or
summation over loop momenta. Note that the order is important since the space-time surface
assigned to the line carries information about the quantum numbers associated with the line by
quantum classical correspondence realized in terms of modified Dirac operator.

2. One must define the functional integral also in the p-adic context. p-Adic Fourier analysis relying
on algebraic continuation raises hopes in this respect. p-Adicity suggests strongly that the loop
momenta are discretized and ZEO predicts this kind of discretization naturally.

It indeed seems that the functional integrals over WCW could be carried out at general level
both in real and p-adic context. This is due to the symmetric space property (maximal number
of isometries) of WCW required by the mere mathematical existence of Kähler geometry [K36] in
infinite-dimensional context already in the case of much simpler loop spaces [A153] .

1. The p-adic generalization of Fourier analysis allows to algebraize integration- the horrible looking
technical challenge of p-adic physics- for symmetric spaces for functions allowing the analog
of discrete Fourier decomposion. Symmetric space property is indeed essential also for the
existence of Kähler geometry for infinite-D spaces as was learned already from the case of loop
spaces. Plane waves and exponential functions expressible as roots of unity and powers of p
multiplied by the direct analogs of corresponding exponent functions are the basic building
bricks and key functions in harmonic analysis in symmetric spaces. The physically unavoidable
finite measurement resolution corresponds to algebraically unavoidable finite algebraic dimension
of algebraic extension of p-adics (at least some roots of unity are needed). The cutoff in roots
of unity is very reminiscent to that occurring for the representations of quantum groups and
is certainly very closely related to these as also to the inclusions of hyper-finite factors of type
II¡sub¿1¡/sub¿ defining the finite measurement resolution.
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2. WCW geometrization reduces to that for a single line of the generalized Feynman diagram defin-
ing the basic building brick for WCW. Kähler function decomposes to a sum of ”kinetic” terms
associated with its ends and interaction term associated with the line itself. p-Adicization boils
down to the condition that Kähler function, matrix elements of Kähler form, WCW Hamilto-
nians and their super counterparts, are rational functions of complex WCW coordinates just as
they are for those symmetric spaces that I know of. This allows straightforward continuation to
p-adic context.

3. As far as diagrams are considered, everything is manifestly finite as the general arguments (non-
locality of Kähler function as functional of 3-surface) developed two decades ago indeed allow to
expect. General conditions on the holomorphy properties of the generalized eigenvalues λ of the
modified Dirac operator can be deduced from the conditions that propagator decomposes to a
sum of products of harmonics associated with the ends of the line and that similar decomposition
takes place for exponent of Kähler action identified as Dirac determinant. This guarantees that
the convolutions of propagators and vertices give rise to products of harmonic functions which
can be Glebsch-Gordanized to harmonics and only the singlet contributes to the WCW integral
in given vertex. The still unproven central conjecture is that Dirac determinant equals the
exponent of Kähler function.

In the following this vision about generalized Feynman diagrams is discussed in more detail.

8.7.1 Questions

The goal is a proposal for how to perform the integral over WCW for generalized Feynman digrams
and the best manner to proceed to to this goal is by making questions.

What does finite measurement resolution mean?

The first question is what finite measurement resolution means.

1. One expects that the algebraic continuation makes sense only for a finite measurement resolution
in which case one obtains only finite sums of what one might hope to be algebraic functions.
The finiteness of the algebraic extension would be in fact equivalent with the finite measurement
resolution.

2. Finite measurement resolution means a discretization in terms of number theoretic braids. p-
Adicization condition suggests that that one must allow only the number theoretic braids. For
these the ends of braid at boundary of CD are algebraic points of the imbedding space. This
would be true at least in the intersection of real and p-adic worlds.

3. The question is whether one can localize the points of the braid. The necessity to use momentum
eigenstates to achieve quantum classical correspondence in the modified Dirac action [K15]
suggests however a delocalization of braid points, that is wave function in space of braid points.
In real context one could allow all possible choices for braid points but in p-adic context only
algebraic points are possible if one wants to replace integrals with sums. This implies finite
measurement resolution analogous to that in lattice. This is also the only possibility in the
intersection of real and p-adic worlds.

A non-trivial prediction giving a strong correlation between the geometry of the partonic 2-
surface and quantum numbers is that the total number nF +nF of fermions and antifermions is
bounded above by the number nalg of algebraic points for a given partonic 2-surface: nF +nF ≤
nalg. Outside the intersection of real and p-adic worlds the problematic aspect of this definition
is that small deformations of the partonic 2-surface can radically change the number of algebraic
points unless one assumes that the finite measurement resolution means restriction of WCW to
a sub-space of algebraic partonic surfaces.

4. One has also a discretization of loop momenta if one assumes that virtual particle momentum
corresponds to ZEO defining rest frame for it and from the discretization of the relative position
of the second tip of CD at the hyperboloid isometric with mass shell. Only the number of braid
points and their momenta would matter, not their positions. The measurement interaction term
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in the modified Dirac action gives coupling to the space-time geometry and Kähler function
through generalized eigenvalues of the modified Dirac operator with measurement interaction
term linear in momentum and in the color quantum numbers assignable to fermions [K15] .

How to define integration in WCW degrees of freedom?

The basic question is how to define the integration over WCW degrees of freedom.

1. What comes mind first is Gaussian perturbation theory around the maxima of Kähler function.
Gaussian and metric determinants cancel each other and only algebraic expressions remain.
Finiteness is not a problem since the Kähler function is non-local functional of 3-surface so that
no local interaction vertices are present. One should however assume the vanishing of loops
required also by algebraic universality and this assumption look unrealistic when one considers
more general functional integrals than that of vacuum functional since free field theory is not
in question. The construction of the inverse of the WCW metric defining the propagator is also
a very difficult challenge. Duistermaat-Hecke theorem states that something like this known as
localization might be possible and one can also argue that something analogous to localization
results from a generalization of mean value theorem.

2. Symmetric space property is more promising since it might reduce the integrations to group
theory using the generalization of Fourier analysis for group representations so that there would
be no need for perturbation theory in the proposed sense. In finite measurement resolution the
symmetric spaces involved would be finite-dimensional. Symmetric space structure of WCW
could also allow to define p-adic integration in terms of p-adic Fourier analysis for symmetric
spaces. Essentially algebraic continuation of the integration from the real case would be in
question with additional constraints coming from the fact that only phase factors corresponding
to finite algebraic extensions of rationals are used. Cutoff would emerge automatically from the
cutoff for the dimension of the algebraic extension.

How to define generalized Feynman diagrams?

Integration in symmetric spaces could serve as a model at the level of WCW and allow both the
understanding of WCW integration and p-adicization as algebraic continuation. In order to get a
more realistic view about the problem one must define more precisely what the calculation of the
generalized Feynman diagrams means.

1. WCW integration must be carried out separately for all values of the momenta associated with
the internal lines. The reason is that the spectrum of eigenvalues λi of the modified Dirac
operator D depends on the momentum of line and momentum conservation in vertices translates
to a correlation of the spectra of D at internal lines.

2. For tree diagrams algebraic continuation to the p-adic context if the expression involves only
the replacement of the generalized eigenvalues of D as functions of momenta with their p-adic
counterparts besides vertices. If these functions are algebraically universal and expressible in
terms of harmonics of symmetric space , there should be no problems.

3. If loops are involved, one must integrate/sum over loop momenta. In p-adic context difficulties
are encountered if the spectrum of the momenta is continuous. The integration over on mass
shell loop momenta is analogous to the integration over sub-CDs, which suggests that internal
line corresponds to a sub − CD in which it is at rest. There are excellent reasons to believe
that the moduli space for the positions of the upper tip is a discrete subset of hyperboloid of
future light-cone. If this is the case, the loop integration indeed reduces to a sum over discrete
positions of the tip. p-Adizication would thus give a further good reason why for zero energy
ontology.

4. Propagator is expressible in terms of the inverse of generalized eigenvalue and there is a sum
over these for each propagator line. At vertices one has products of WCW harmonics assignable
to the incoming lines. The product must have vanishing quantum numbers associated with the
phase angle variables of WCW. Non-trivial quantum numbers of the WCW harmonic correspond
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to WCW quantum numbers assignable to excitations of ordinary elementary particles. WCW
harmonics are products of functions depending on the ”radial” coordinates and phase factors
and the integral over the angles leaves the product of the first ones analogous to Legendre
polynomials Pl,m, These functions are expected to be rational functions or at least algebraic
functions involving only square roots.

5. In ordinary QFT incoming and outgoing lines correspond to propagator poles. In the recent case
this would mean that the generalized eigenvalues λ = 0 characterize them. Internal lines coming
as pairs of throats of wormhole contacts would be on mass shell with respect to momentum but
off shell with respect to λ.

8.7.2 Generalized Feynman diagrams at fermionic and momentum space
level

Negative energy ontology has already led to the idea of interpreting the virtual particles as pairs of
positive and negative energy wormhole throats. Hitherto I have taken it as granted that ordinary
Feynman diagrammatics generalizes more or less as such. It is however far from clear what really
happens in the verties of the generalized Feynmann diagrams. The safest approach relies on the
requirement that unitarity realized in terms of Cutkosky rules in ordinary Feynman diagrammatics
allows a generalization. This requires loop diagrams. In particular, photon-photon scattering can
take place only via a fermionic square loop so that it seems that loops must be present at least in the
topological sense.

One must be however ready for the possibility that something unexpectedly simple might emerge.
For instance, the vision about algebraic physics allows naturally only finite sums for diagrams and
does not favor infinite perturbative expansions. Hence the true believer on algebraic physics might
dream about finite number of diagrams for a given reaction type. For simplicity generalized Feyn-
man diagrams without the complications brought by the magnetic confinement since by the previous
arguments the generalization need not bring in anything essentially new.

The basic idea of duality in early hadronic models was that the lines of the dual diagram repre-
senting particles are only re-arranged in the vertices. This however does not allow to get rid of off
mass shell momenta. Zero energy ontology encourages to consider a stronger form of this principle in
the sense that the virtual momenta of particles could correspond to pairs of on mass shell momenta
of particles. If also interacting fermions are pairs of positive and negative energy throats in the in-
teraction region the idea about reducing the construction of Feynman diagrams to some kind of lego
rules might work.

Virtual particles as pairs of on mass shell particles in ZEO

The first thing is to try to define more precisely what generalized Feynman diagrams are. The direct
generalization of Feynman diagrams implies that both wormhole throats and wormhole contacts join
at vertices.

1. A simple intuitive picture about what happens is provided by diagrams obtained by replacing
the points of Feynman diagrams (wormhole contacts) with short lines and imagining that the
throats correspond to the ends of the line. At vertices where the lines meet the incoming on
mass shell quantum numbers would sum up to zero. This approach leads to a straightforward
generalization of Feynman diagrams with virtual particles replaced with pairs of on mass shell
throat states of type ++, −−, and +−. Incoming lines correspond to ++ type lines and outgoing
ones to −− type lines. The first two line pairs allow only time like net momenta whereas +−
line pairs allow also space-like virtual momenta. The sign assigned to a given throat is dictated
by the the sign of the on mass shell momentum on the line. The condition that Cutkosky
rules generalize as such requires ++ and −− type virtual lines since the cut of the diagram in
Cutkosky rules corresponds to on mass shell outgoing or incoming states and must therefore
correspond to ++ or −− type lines.

2. The basic difference as compared to the ordinary Feynman diagrammatics is that loop integrals
are integrals over mass shell momenta and that all throats carry on mass shell momenta. In
each vertex of the loop mass incoming on mass shell momenta must sum up to on mass shell
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momentum. These constraints improve the behavior of loop integrals dramatically and give
excellent hopes about finiteness. It does not however seem that only a finite number of dia-
grams contribute to the scattering amplitude besides tree diagrams. The point is that if a the
reactions N1 → N2 and N2 → N3,, where Ni denote particle numbers, are possible in a common
kinematical region for N2-particle states then also the diagrams N1 → N2 → N2 → N3 are
possible. The virtual states N2 include all all states in the intersection of kinematically allow
regions for N1 → N2 and N2 → N3. Hence the dream about finite number possible diagrams is
not fulfilled if one allows massless particles. If all particles are massive then the particle number
N2 for given N1 is limited from above and the dream is realized.

3. For instance, loops are not possible in the massless case or are highly singular (bringing in mind
twistor diagrams) since the conservation laws at vertices imply that the momenta are parallel.
In the massive case and allowing mass spectrum the situation is not so simple. As a first example
one can consider a loop with three vertices and thus three internal lines. Three on mass shell
conditions are present so that the four-momentum can vary in 1-D subspace only. For a loop
involving four vertices there are four internal lines and four mass shell conditions so that loop
integrals would reduce to discrete sums. Loops involving more than four vertices are expected
to be impossible.

4. The proposed replacement of the elementary fermions with bound states of elementary fermions
and monopoles X± brings in the analog of stringy diagrammatics. The 2-particle wave functions
in the momentum degrees of freedom of fermiona and X± migh allow more flexibility and allow
more loops. Note however that there are excellent hopes about the finiteness of the theory also
in this case.

Loop integrals are manifestly finite

One can make also more detailed observations about loops.

1. The simplest situation is obtained if only 3-vertices are allowed. In this case conservation of
momentum however allows only collinear momenta although the signs of energy need not be
the same. Particle creation and annihilation is possible and momentum exchange is possible
but is always light-like in the massless case. The scattering matrices of supersymmetric YM
theories would suggest something less trivial and this raises the question whether something is
missing. Magnetic monopoles are an essential element of also these theories as also massivation
and symmetry breaking and this encourages to think that the formation of massive states as
fermion X± pairs is needed. Of course, in TGD framework one has also high mass excitations
of the massless states making the scattering matrix non-trivial.

2. In YM theories on mass shell lines would be singular. In TGD framework this is not the case
since the propagator is defined as the inverse of the 3-D dimensional reduction of the modified
Dirac operator D containing also coupling to four-momentum (this is required by quantum
classical correspondence and guarantees stringy propagators),

D = iΓ̂αpα + Γ̂αDα ,

pα = pk∂αh
k . (8.7.0)

The propagator does not diverge for on mass shell massless momenta and the propagator lines
are well-defined. This is of course of essential importance also in general case. Only for the
incoming lines one can consider the possibility that 3-D Dirac operator annihilates the induced
spinor fields. All lines correspond to generalized eigenstates of the propagator in the sense
that one has D3Ψ = λγΨ, where γ is modified gamma matrix in the direction of the stringy
coordinate emanating from light-like surface and D3 is the 3-dimensional dimensional reduction
of the 4-D modified Dirac operator. The eigenvalue λ is analogous to energy. Note that the
eigenvalue spectrum depends on 4-momentum as a parameter.
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3. Massless incoming momenta can decay to massless momenta with both signs of energy. The
integration measure d2k/2E reduces to dx/x where x ≥ 0 is the scaling factor of massless
momentum. Only light-like momentum exchanges are however possible and scattering matrix
is essentially trivial. The loop integrals are finite apart from the possible delicacies related to
poles since the loop integrands for given massless wormhole contact are proportional to dx/x3

for large values of x.

4. Irrrespective of whether the particles are massless or not, the divergences are obtained only if
one allows too high vertices as self energy loops for which the number of momentum degrees of
freedom is 3N − 4 for N -vertex. The construction of SUSY limit of TGD in [K28] led to the
conclusion that the parallelly propagating N fermions for given wormhole throat correspond to a
product of N fermion propagators with same four-momentum so that for fermions and ordinary
bosons one has the standard behavior but for N > 2 non-standard so that these excitations are
not seen as ordinary particles. Higher vertices are finite only if the total number NF of fermions
propagating in the loop satisfies NF > 3N−4. For instance, a 4-vertex from which N = 2 states
emanate is finite.

Taking into account magnetic confinement

What has been said above is not quite enough. The weak form of electric-magnetic duality [B8] leads
to the picture about elementary particles as pairs of magnetic monopoles inspiring the notions of
weak confinement based on magnetic monopole force. Also color confinement would have magnetic
counterpart. This means that elementary particles would behave like string like objects in weak boson
length scale. Therefore one must also consider the stringy case with wormhole throats replaced with
fermion-X± pairs (X± is electromagnetically neutral and ± refers to the sign of the weak isospin
opposite to that of fermion) and their super partners.

1. The simplest assumption in the stringy case is that fermion-X± pairs behave as coherent objects,
that is scatter elastically. In more general case only their higher excitations identifiable in terms
of stringy degrees of freedom would be created in vertices. The massivation of these states
makes possible non-collinear vertices. An open question is how the massivation fermion-X±
pairs relates to the existing TGD based description of massivation in terms of Higgs mechanism
and modified Dirac operator.

2. Mass renormalization could come from self energy loops with negative energy lines as also vertex
normalization. By very general arguments supersymmetry implies the cancellation of the self
energy loops but would allow non-trivial vertex renormalization [K28] .

3. If only 3-vertices are allowed, the loops containing only positive energy lines are possible if on
mass shell fermion-X± pair (or its superpartner) can decay to a pair of positive energy pair
particles of same kind. Whether this is possible depends on the masses involved. For ordinary
particles these decays are not kinematically possible below intermediate boson mass scale (the
decays F1 → F2 + γ are forbidden kinematically or by the absence of flavor changing neutral
currents whereas intermediate gauge bosons can decay to on mass shell fermion-antifermion
pair).

4. The introduction of IR cutoff for 3-momentum in the rest system associated with the largest
CD (causal diamond) looks natural as scale parameter of coupling constant evolution and p-adic
length scale hypothesis favors the inverse of the size scale of CD coming in powers of two. This
parameter would define the momentum resolution as a discrete parameter of the p-adic coupling
constant evolution. This scale does not have any counterpart in standard physics. For electron,
d quark, and u quark the proper time distance between the tips of CD corresponds to frequency
of 10 Hz, 1280 Hz, and 160 Hz: all these frequencies define fundamental bio-rhythms [K23] .

These considerations have left completely untouched one important aspect of generalized Feynman
diagrams: the necessity to perform a functional integral over the deformations of the partonic 2-
surfaces at the ends of the lines- that is integration over WCW. Number theoretical universality
requires that WCW and these integrals make sense also p-adically and in the following these aspects
of generalized Feynman diagrams are discussed.
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8.7.3 How to define integration and p-adic Fourier analysis, integral cal-
culus, and p-adic counterparts of geometric objects?

p-Adic differential calculus exists and obeys essentially the same rules as ordinary differental calcu-
lus. The only difference from real context is the existence of p-adic pseudoconstants: any function
which depends on finite number of pinary digits has vanishing p-adic derivative. This implies non-
determinism of p-adic differerential equations. One can defined p-adic integral functions using the fact
that indefinite integral is the inverse of differentiation. The basis problem with the definite integrals
is that p-adic numbers are not well-ordered so that the crucial ordering of the points of real axis in
definite integral is not unique. Also p-adic Fourier analysis is problematic since direct counterparts of
ep(ix) and trigonometric functions are not periodic. Also exp(-x) fails to converse exponentially since
it has p-adic norm equal to 1. Note also that these functions exists only when the p-adic norm of x
is smaller than 1.

The following considerations support the view that the p-adic variant of a geometric objects,
integration and p-adic Fourier analysis exists but only when one considers highly symmetric geometric
objects such as symmetric spaces. This is wellcome news from the point of view of physics. At the
level of space-time surfaces this is problematic. The field equations associated with Kähler action
and modified Dirac equation make sense. Kähler action defined as integral over p-adic space-time
surface fails to exist. If however the Kähler function identified as Kähler for a preferred extremal of
Kähler action is rational or algebraic function of preferred complex coordinates of WCW with ratonal
coefficients, its p-adic continuation is expected to exist.

Circle with rotational symmetries and its hyperbolic counterparts

Consider first circle with emphasis on symmetries and Fourier analysis.

1. In this case angle coordinate φ is the natural coordinate. It however does not make sense as such
p-adically and one must consider either trigonometric functions or the phase exp(iφ) instead.
If one wants to do Fourier analysis on circle one must introduce roots Un,N = exp(in2π/N) of
unity. This means discretization of the circle. Introducing all roots Un,p = exp(i2πn/p), such
that p divides N , one can represent all Uk,n up to n = N . Integration is naturally replaced with
sum by using discrete Fourier analysis on circle. Note that the roots of unity can be expressed
as products of powers of roots of unity exp(in2π/pk), where pk divides N .

2. There is a number theoretical delicacy involved. By Fermat’s theorem ap−1 mod p = 1 for
a = 1, ...p−1 for a given p-adic prime so that for any integer M divisible by a factor of p−1 the
M :th roots of unity exist as ordinary p-adic numbers. The problem disappears if these values
of M are excluded from the discretization for a given value of the p-adic prime. The manner to
achieve this is to assume that N contains no divisors of p−1 and is consistent with the notion of
finite measurement resolution. For instance, N = pn is an especially natural choice guaranteing
this.

3. The p-adic integral defined as a Fourier sum does not reduce to a mere discretization of the
real integral. In the real case the Fourier coefficients must approach to zero as the wave vector
k = n2π/N increases. In the p-adic case the condition consistent with the notion of finite
measurement resolution for angles is that the p-adic valued Fourier coefficients approach to zero
as n increases. This guarantees the p-adic convergence of the discrete approximation of the
integral for large values of N as n increases. The map of p-adic Fourier coefficients to real ones
by canonical identification could be used to relate p-adic and real variants of the function to
each other.

This finding would suggests that p-adic geometries -in particular the p-adic counterpart of CP2,
are discrete. Variables which have the character of a radial coordinate are in natural manner p-
adically continuous whereas phase angles are naturally discrete and described in terms of algebraic
extensions. The conclusion is disappoing since one can quite well argue that the discrete structures
can be regarded as real. Is there any manner to escape this conclusion?

1. Exponential function exp(ix) exists p-adically for |x|p ≤ 1/p but is not periodic. It provides rep-
resentation of p-adic variant of circle as group U(1). One obtains actually a hierarchy of groups
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U(1)p,n corresponding to |x|p ≤ 1/pn. One could consider a generalization of phases as products
Expp(N,n2π/N + x) = exp(in2πn/N)exp(ix) of roots of unity and exponent functions with
an imaginary exponent. This would assign to each root of unity p-adic continuum interpreted
as the analog of the interval between two subsequent roots of unity at circle. The hierarchies
of measurement resolutions coming as 2π/pn would be naturally accompanied by increasingly
smaller p-adic groups U(1)p,n.

2. p-Adic integration would involve summation plus possibly also an integration over each p-adic
variant of discretization interval. The summation over the roots of unity implies that the integral
of
∫
exp(inx)dx would appear for n = 0. Whatever the value of this integral is, it is compensated

by a normalization factor guaranteing orthonormality.

3. If one interprets the p-adic coordinate as p-adic integer without the identification of points
differing by a multiple of n as different points the question whether one should require p-adic
continuity arises. Continuity is obtained if Un(x + mpm) = Un(x) for large values of m. This
is obtained if one has n = pk. In the spherical geometry this condition is not needed and
would mean quantization of angular momentum as L = pk, which does not look natural. If
representations of translation group are considered the condition is natural and conforms with
the spirit of the p-adic length scale hypothesis.

The hyperbolic counterpart of circle corresponds to the orbit of point under Lorentz group in
two 2-D Minkowski space. Plane waves are replaced with exponentially decaying functions of the
coordinate η replacing phase angle. Ordinary exponent function exp(x) has unit p-adic norm when it
exists so that it is not a suitable choice. The powers pn existing for p-adic integers however approach
to zero for large values of x = n. This forces discretization of η or rather the hyperbolic phase as
powers of px, x = n. Also now one could introduce products of Expp(nlog(p) + z) = pnexp(x) to
achieve a p-adic continuum. Also now the integral over the discretization interval is compensated
by orthonormalization and can be forgotten. The integral of exponential function would reduce to
a sum

∫
Exppdx =

∑
k p

k = 1/(1 − p). One can also introduce finite-dimensional but non-algebraic
extensions of p-adic numbers allowing e and its roots e1/n since ep exists p-adically.

Plane with translational and rotational symmetries

Consider first the situation by taking translational symmetries as a starting point. In this case
Cartesian coordinates are natural and Fourier analysis based on plane waves is what one wants to
define. As in the previous case, this can be done using roots of unity and one can also introduce
p-adic continuum by using the p-adic variant of the exponent function. This would effectively reduce
the plane to a box. As already noticed, in this case the quantization of wave vectors as multiples of
1/pk is required by continuity.

One can take also rotational symmetries as a starting point. In this case cylindrical coordinates
(ρ, φ) are natural.

1. Radial coordinate can have arbitrary values. If one wants to keep the connection ρ =
√
x2 + y2

with the Cartesian picture square root allowing extension is natural. Also the values of radial
coordinate proportional to odd power of p are problematic since one should introduce

√
p: is

this extension internally consistent? Does this mean that the points ρ ∝ p2n+1 are excluded so
that the plane decomposes to annuli?

2. As already found, angular momentum eigen states can be described in terms of roots of unity
and one could obtain continuum by allowing also phases defined by p-adic exponent functions.

3. In radial direction one should define the p-adic variants for the integrals of Bessel functions and
they indeed might make sense by algebraic continuation if one consistently defines all functions
as Fourier expansions. Delta-function renormalization causes technical problems for a continuum
of radial wave vectors. One could avoid the problem by using expontentially decaying variants
of Bessel function in the regions far from origin, and here the already proposed description of
the hyperbolic counterparts of plane waves is suggestive.
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4. One could try to understand the situation also using Cartesian coordinates. In the case of sphere
this is achieved by introducing two coordinate patches with Cartesian coordinates. Pythagorean
phases are rational phases (orthogonal triangles for which all sides are integer valued) and form
a dense set on circle. Complex rationals (orthogonal triangles with integer valued short sides)
define a more general dense subset of circle. In both cases it is difficult to imagine a discretized
version of integration over angles since discretization with constant angle increrement is not
possible.

The case of sphere and more general symmetric space

In the case of sphere spherical coordinates are favored by symmetry considerations. For spherical
coordinates sin(θ) is analogous to the radial coordinate of plane. Legedre polynomials expressible
as polynomials of sin(θ) and cos(θ) are expressible in terms of phases and the integration measure
sin2(θ)dθdφ reduces the integral of S2 to summation. As before one can introduce also p-adic contin-
uum. Algebraic cutoffs in both angular momentum l and m appear naturally. Similar cutoffs appear
in the representations of quantum groups and there are good reasons to expect that these phenomena
are correlated.

Exponent of Kähler function appears in the integration over configuration space. From the ex-
pression of Kähler gauge potential given by Aα = J θ

α ∂θK one obtains using Aα = cos(θ)δα,φ and
Jθφ = sin(θ) the expression exp(K) = sin(θ). Hence the exponent of Kähler function is expressible
in terms of spherical harmonics.

The completion of the discretized sphere to a p-adic continuum- and in fact any symmetric space-
could be performed purely group theoretically.

1. Exponential map maps the elements of the Lie-algebra to elements of Lie-group. This recipe
generalizes to arbitrary symmetric space G/H by using the Cartan decomposition g = t + h,
[h, h] ⊂ h,[h, t] ⊂ t,[t, t] ⊂ h. The exponentiation of t maps t to G/H in this case. The
exponential map has a p-adic generalization obtained by considering Lie algebra with coefficients
with p-adic norm smaller than one so that the p-adic exponent function exists. As a matter fact,
one obtains a hierarchy of Lie-algebras corresponding to the upper bounds of the p-adic norm
coming as p−k and this hierarchy naturally corresponds to the hierarchy of angle resolutions
coming as 2π/pk. By introducing finite-dimensional transcendental extensions containing roots
of e one obtains also a hierarchy of p-adic Lie-algebras associated with transcendental extensions.

2. In particular, one can exponentiate the complement of the SO(2) sub-algebra of SO(3) Lie-
algebra in p-adic sense to obtain a p-adic completion of the discrete sphere. Each point of the
discretized sphere would correspond to a p-adic continuous variant of sphere as a symmetric
space. Similar construction applies in the case of CP2. Quite generally, a kind of fractal or
holographic symmetric space is obtained from a discrete variant of the symmetric space by
replacing its points with the p-adic symmetric space.

3. In the N-fold discretization of the coordinates of M-dimensional space t one (N−1)M discretiza-
tion volumes which is the number of points with non-vanishing t-coordinates. It would be nice
if one could map the p-adic discretization volumes with non-vanishing t-coordinates to their
positive valued real counterparts by applying canonical identification. By group invariance it is
enough to show that this works for a discretization volume assignable to the origin. Since the
p-adic numbers with norm smaller than one are mapped to the real unit interval, the p-adic Lie
algebra is mapped to the unit cell of the discretization lattice of the real variant of t. Hence by
a proper normalization this mapping is possible.

The above considerations suggest that the hierarchies of measurement resolutions coming as ∆φ =
2π/pn are in a preferred role. One must be however cautious in order to avoid too strong assumptions.
The following arguments however support this identification.

1. The vision about p-adicization characterizes finite measurement resolution for angle measure-
ment in the most general case as ∆φ = 2πM/N , where M and N are positive integers having
no common factors. The powers of the phases exp(i2πM/N) define identical Fourier basis irre-
spective of the value of M unless one allows only the powers exp(i2πkM/N) for which kM < N
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holds true: in the latter case the measurement resolutions with different values of M corre-
spond to different numbers of Fourier components. Otherwise themeasurement ersolution is just
∆φ = 2π/pn. If one regards N as an ordinary integer, one must have N = pn by the p-adic
continuity requirement.

2. One can also interpret N as a p-adic integer and assume that state function reduction selects one
particular prime (no superposition of quantum states with different p-adic topologies). For N =
pnM , where M is not divisible by p, one can express 1/M as a p-adic integer 1/M =

∑
k≥0Mkp

k,

which is infinite as a real integer but effectively reduces to a finite integer K(p) =
∑N−1
k=0 Mkp

k.
As a root of unity the entire phase exp(i2πM/N) is equivalent with exp(i2πR/pn), R = K(p)M
mod pn. The phase would non-trivial only for p-adic primes appearing as factors in N . The
corresponding measurement resolution would be ∆φ = R2π/N . One could assign to a given
measurement resolution all the p-adic primes appearing as factors in N so that the notion of
multi-p p-adicity would make sense. One can also consider the identification of the measurement
resolution as ∆φ = |N/M |p = 2π/pk. This interpretation is supported by the approach based
on infinite primes [K76] .

What about integrals over partonic 2-surfaces and space-time surface?

One can of course ask whether also the integrals over partonic 2-surfaces and space-time surface could
be p-adicized by using the proposed method of discretization. Consider first the p-adic counterparts
of the integrals over the partonic 2-surface X2.

1. WCW Hamiltonians and Kähler form are expressible using flux Hamiltonians defined in terms
of X2 integrals of JHA, where HA is δCD × CP2 Hamiltonian, which is a rational function of
the preferred coordinates defined by the exponentials of the coordinates of the sub-space t in
the appropriate Cartan algebra decomposition. The flux factor J = εαβJαβ

√
g2 is scalar and

does not actually depend on the induced metric.

2. The notion of finite measurement resolution would suggest that the discretization of X2 is
somehow induced by the discretization of δCD × CP2. The coordinates of X2 could be taken
to be the coordinates of the projection of X2 to the sphere S2 associated with δM4

± or to the
homologically non-trivial geodesic sphere of CP2 so that the discretization of the integral would
reduce to that for S2 and to a sum over points of S2.

3. To obtain an algebraic number as an outcome of the summation, one must pose additional
conditions guaranteing that both HA and J are algebraic numbers at the points of discretization
(recall that roots of unity are involved). Assume for definiteness that S2 is rM = constant sphere.
If the remaining preferred coordinates are functions of the preferred S2 coordinates mapping
phases to phases at discretization points, one obtains the desired outcome. These conditions are
rather strong and mean that the various angles defining CP2 coordinates -at least the two cyclic
angle coordinates- are integer multiples of those assignable to S2 at the points of discretization.
This would be achieved if the preferred complex coordinates of CP2 are powers of the preferred
complex coordinate of S2 at these points. One could say that X2 is algebraically continued from
a rational surface in the discretized variant of δCD × CP2. Furthermore, if the measurement
resolutions come as 2π/pn as p-adic continuity actually requires and if they correspond to the
p-adic group Gp,n for which group parameters satisfy |t|p ≤ p−n, one can precisely characterize
how a p-adic prime characterizes the real partonic 2-surface. This would be a fulfilment of one
of the oldest dreams related to the p-adic vision.

A even more ambitious dream would be that even the integral of the Kähler action for preferred
extremals could be defined using a similar procedure. The conjectured slicing of Minkowskian space-
time sheets by string world sheets and partonic 2-surfaces encourages these hopes.

1. One could introduce local coordinates of H at both ends of CD by introducing a continuous
slicing of M4×CP2 by the translates of δM4

±×CP2 in the direction of the time-like vector con-
necting the tips of CD. As space-time coordinates one could select four of the eight coordinates
defining this slicing. For instance, for the regions of the space-time sheet representable as maps
M4 → CP2 one could use the preferred M4 time coordinate, the radial coordinate of δM4

+, and
the angle coordinates of rM = constant sphere.
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2. Kähler action density should have algebraic values and this would require the strengthening
of the proposed conditions for X2 to apply to the entire slicing meaning that the discretized
space-time surface is a rational surface in the discretized CD×CP2. If this condition applies to
the entire space-time surface it would effectively mean the discretization of the classical physics
to the level of finite geometries. This seems quite strong implication but is consistent with
the preferred extremal property implying the generalized Bohr rules. The reduction of Kähler
action to 3-dimensional boundary terms is implied by rather general arguments. In this case
only the effective algebraization of the 3-surfaces at the ends of CD and of wormhole throats is
needed [K36] . By effective 2-dimensionality these surfaces cannot be chosen freely.

3. If Kähler function and WCW Hamiltonians are rational functions, this kind of additional condi-
tions are not necessary. It could be that the integrals of defining Kähler action flux Hamiltonians
make sense only in the intersection of real and p-adic worlds assumed to be relevant for the
physics of living systems.

Tentative conclusions

These findings suggest following conclusions.

1. Exponent functions play a key role in the proposed p-adicization. This is not an accident since
exponent functions play a fundamental role in group theory and p-adic variants of real geometries
exist only under symmetries- possibly maximal possible symmetries- since otherwise the notion
of Fourier analysis making possible integration does not exist. The inner product defined in
terms of integration reduce for functions representable in Fourier basis to sums and can be
carried out by using orthogonality conditions. Convolution involving integration reduces to a
product for Fourier components. In the case of imbedding space and WCW these conditions are
satisfied but for space-time surfaces this is not possible.

2. There are several manners to choose the Cartan algebra already in the case of sphere. In the
case of plane one can consider either translations or rotations and this leads to different p-adic
variants of plane. Also the realization of the hierarchy of Planck constants leads to the conclusion
that the extended imbedding space and therefore also WCW contains sectors corresponding to
different choices of quantization axes meaning that quantum measurement has a direct geometric
correlate.

3. The above described 2-D examples represent symplectic geometries for which one has natural
decomposition of coordinates to canonical pairs of cyclic coordinate (phase angle) and cor-
responding canonical conjugate coordinate. p-Adicization depends on whether the conjugate
corresponds to an angle or noncompact coordinate. In both cases it is however possible to define
integration. For instance, in the case of CP2 one would have two canonically conjugate pairs
and one can define the p-adic counterparts of CP2 partial waves by generalizing the procedure
applied to spherical harmonics. Products of functions expressible using partial waves can be
decomposed by tensor product decomposition to spherical harmonics and can be integrated.
In particular inner products can be defined as integrals. The Hamiltonians generating isome-
tries are rational functions of phases: this inspires the hope that also WCW Hamiltonians also
rational functions of preferred WCW coordinates and thus allow p-adic variants.

4. Discretization by introducing algebraic extensions is unavoidable in the p-adicization of geomet-
rical objects but one can have p-adic continuum as the analog of the discretization interval and
in the function basis expressible in terms of phase factors and p-adic counterparts of exponent
functions. This would give a precise meaning for the p-adic counterparts of the imbedding space
and WCW if the latter is a symmetric space allowing coordinatization in terms of phase angles
and conjugate coordinates.

5. The intersection of p-adic and real worlds would be unique and correspond to the points defining
the discretization.
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8.7.4 Harmonic analysis in WCW as a manner to calculate WCW func-
tional integrals

Previous examples suggest that symmetric space property, Kähler and symplectic structure and the
use of symplectic coordinates consisting of canonically conjugate pairs of phase angles and correspond-
ing ”radial” coordinates are essential for WCW integration and p-adicization. Kähler function, the
components of the metric, and therefore also metric determinant and Kähler function depend on the
”radial” coordinates only and the possible generalization involves the identification the counterparts
of the ”radial” coordinates in the case of WCW.

Conditions guaranteing the reduction to harmonic analysis

The basic idea is that harmonic analysis in symmetric space allows to calculate the functional integral
over WCW.

1. Each propagator line corresponds to a symmetric space defined as a coset space G/H of the
symplectic group and Kac-Moody group and one might hope that the proposed p-adicization
works for it- at least when one considers the hierarchy of measurement resolutions forced by
the finiteness of algebraic extensions. This coset space is as a manifold Cartesian product
(G/H) × (G/H) of symmetric spaces G/H associated with ends of the line. Kähler metric
contains also an interaction term between the factors of the Cartesian product so that Kähler
function can be said to reduce to a sum of ”kinetic” terms and interaction term.

2. Effective 2-dimensionality and ZEO allow to treat the ends of the propagator line independently.
This means an enormous simplification. Each line contributes besides propagator a piece to
the exponent of Kähler action identifiable as interaction term in action and depending on the
propagator momentum. This contribution should be expressible in terms of generalized spherical
harmonics. Essentially a sum over the products of pairs of harmonics associated with the ends of
the line multiplied by coefficients analogous to 1/(p2−m2) in the case of the ordinary propagator
would be in question. The optimal situation is that the pairs are harmonics and their conjugates
appear so that one has invariance under G analogous to momentum conservation for the lines
of ordinary Feynman diagrams.

3. Momentum conservation correlates the eigenvalue spectra of the modified Dirac operator D at
propagator lines [K15] . G-invariance at vertex dictates the vertex as the singlet part of the
product of WCW harmonics associated with the vertex and one sums over the harmonics for
each internal line. p-Adicization means only the algebraic continuation to real formulas to p-adic
context.

4. The exponent of Kähler function depends on both ends of the line and this means that the ge-
ometries at the ends are correlated in the sense that that Kähler form contains interaction terms
between the line ends. It is however not quite clear whether it contains separate ”kinetic” or self
interaction terms assignable to the line ends. For Kähler function the kinetic and interaction
terms should have the following general expressions as functions of complex WCW coordinates:

Kkin,i =
∑
n

fi,n(Zi)fi,n(Zi) + c.c ,

Kint =
∑
n

g1,n(Z1)g2,n(Z2) + c.c , i = 1, 2 . (8.7.0)

Here Kkin,i define ”kinetic” terms and Kint defines interaction term. One would have what
might be called holomorphic factorization suggesting a connection with conformal field theories.

Symmetric space property -that is isometry invariance- suggests that one has

fi,n = f2,n ≡ fn , g1,n = g2,n ≡ gn (8.7.1)
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such that the products are invariant under the group H appearing in G/H and therefore have
opposite H quantum numbers. The exponent of Kähler function does not factorize although the
terms in its Taylor expansion factorize to products whose factors are products of holomorphic
and antihilomorphic functions.

5. If one assumes that the exponent of Kähler function reduces to a product of eigenvalues of the
modified Dirac operator eigenvalues must have the decomposition

λk =
∏
i=1,2

exp

[∑
n

ck,ngn(Zi)gn(Zi) + c.c

]
× exp

[∑
n

dk,ngn(Z1)gn(Z2) + c.c

]
.(8.7.2)

Hence also the eigenvalues coming from the Dirac propagators have also expansion in terms
of G/H harmonics so that in principle WCW integration would reduce to Fourier analysis in
symmetric space.

Generalization of WCW Hamiltonians

This picture requires a generalization of the view about configuration space Hamiltonians since also
the interaction term between the ends of the line is present not taken into account in the previous
approach.

1. The proposed representation of WCW Hamiltonians as flux Hamiltonians [K17, K15]

Q(HA) =

∫
HA(1 +K)Jd2x ,

J = εαβJαβ , J03√g4 = KJ12 . (8.7.2)

works for the kinetic terms only since J cannot be the same at the ends of the line. The formula
defining K assumes weak form of self-duality (03 refers to the coordinates in the complement
of X2 tangent plane in the 4-D tangent plane). K is assumed to be symplectic invariant and
constant for given X2. The condition that the flux of F 03 = (~/gK)J03 defining the counterpart
of Kähler electric field equals to the Kähler charge gK gives the condition K = g2

K/~, where gK

is Kähler coupling constant. Within experimental uncertainties one has αK = g
/
K4π~0 = αem '

1/137, where αem is finite structure constant in electron length scale and ~0 is the standard
value of Planck constant.

The assumption that Poisson bracket of WCW Hamiltonians reduces to the level of imbed-
ding space - in other words {Q(HA), Q(HB} = Q({HA, HB}) - can be justified. One starts
from the representation in terms of say flux Hamiltonians Q(HA) and defines JA,B as JA,B ≡
Q({HA, HB}). One has ∂HA/∂tB = {HB , HA}, where tB is the parameter associated with the
exponentiation of HB . The inverse JAB of JA,B = ∂HB/∂tA is expressible as JA,B = ∂tA/∂HB .
From these formulas one can deduce by using chain rule that the bracket {Q(HA), Q(HB} =
∂tCQ(HA)JCD∂tDQ(HB) of flux Hamiltonians equals to the flux Hamiltonian Q({HA, HB}).

2. One should be able to assign to WCW Hamiltonians also a part corresponding to the interac-
tion term. The symplectic conjugation associated with the interaction term permutes the WCW
coordinates assignable to the ends of the line. One should reduce this apparently non-local sym-
plectic conjugation (if one thinks the ends of line as separate objects) to a non-local symplectic
conjugation for δCD × CP2 by identifying the points of lower and upper end of CD related
by time reflection and assuming that conjugation corresponds to time reflection. Formally this
gives a well defined generalization of the local Poisson brackets between time reflected points at
the boundaries of CD. The connection of Hermitian conjugation and time reflection in quantum
field theories is is in accordance with this picture.
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3. The only manner to proceed is to assign to the flux Hamiltonian also a part obtained by the
replacement of the flux integral over X2 with an integral over the projection of X2 to a sphere
S2 assignable to the light-cone boundary or to a geodesic sphere of CP2, which come as two
varieties corresponding to homologically trivial and non-trivial spheres. The projection is defined
as by the geodesic line orthogonal to S2 and going through the point of X2. The hierarchy of
Planck constants assigns to CD a preferred geodesic sphere of CP2 as well as a unique sphere
S2 as a sphere for which the radial coordinate rM or the light-cone boundary defined uniquely
is constant: this radial coordinate corresponds to spherical coordinate in the rest system defined
by the time-like vector connecting the tips of CD. Either spheres or possibly both of them could
be relevant.

Recall that also the construction of number theoretic braids and symplectic QFT [K19] led to
the proposal that braid diagrams and symplectic triangulations could be defined in terms of
projections of braid strands to one of these spheres. One could also consider a weakening for
the condition that the points of the number theoretic braid are algebraic by requiring only that
the S2 coordinates of the projection are algebraic and that these coordinates correspond to the
discretization of S2 in terms of the phase angles associated with θ and φ.

This gives for the corresponding contribution of the WCW Hamiltonian the expression

Q(HA)int =

∫
S2
±

HAXδ
2(s+, s−)d2s± =

∫
P (X2

+)∩P (X2
−)

∂(s1, s2)

∂(x1
±, x

2
±)
d2x± . (8.7.3)

Here the Poisson brackets between ends of the line using the rules involve delta function
δ2(s+, s−) at S2 and the resulting Hamiltonians can be expressed as a similar integral of H[A,B]

over the upper or lower end since the integral is over the intersection of S2 projections.

The expression must vanish when the induced Kähler form vanishes for either end. This is
achieved by identifying the scalar X in the following manner:

X = Jkl+ J
−
kl ,

Jkl± = (1 +K±)∂αs
k∂βs

lJαβ± . (8.7.3)

The tensors are lifts of the induced Kähler form of X2
± to S2 (not CP2).

4. One could of course ask why these Hamiltonians could not contribute also to the kinetic terms
and why the brackets with flux Hamiltonians should vanish. This relate to how one defines
the Kähler form. It was shown above that in case of flux Hamiltonians the definition of Kähler
form as brackets gives the basic formula {Q(HA), Q(HB)} = Q({HA, HB} and same should hold
true now. In the recent case JA,B would contain an interaction term defined in terms of flux
Hamiltonians and the previous argument should go through also now by identifying Hamiltonians
as sums of two contributions and by introducing the doubling of the coordinates tA.

5. The quantization of the modified Dirac operator must be reconsidered. It would seem that one
must add to the super-Hamiltonian completely analogous term obtained by replacing (1 +K)J
with X∂(s1, s2)/∂(x1

±, x
2
±). Besides the anticommutation relations defining correct anticom-

mutators to flux Hamiltonians, one should pose anticommutation relations consistent with the
anticommutation relations of super Hamiltonians. In these anticommutation relations (1 +
K)Jδ2(x, y) would be replaced with Xδ2(s+, s−). This would guarantee that the oscillator op-
erators at the ends of the line are not independent and that the resulting Hamiltonian reduces
to integral over either end for H[A,B].

6. In the case of CP2 the Hamiltonians generating isometries are rational functions. This should
hold true also now so that p-adic variants of Hamiltonians as functions in WCW would make
sense. This in turn would imply that the components of the WCW Kähler form are rational
functions. Also the exponentiation of Hamiltonians make sense p-adically if one allows the
exponents of group parameters to be functions Expp(t).
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Does the expansion in terms of partial harmonics converge?

The individual terms in the partial wave expansion seem to be finite but it is not at all clear whether
the expansion in powers of K actually converges.

1. In the proposed scenario one performs the expansion of the vacuum functional exp(K) in powers
of K and therefore in negative powers of αK . In principle an infinite number of terms can be
present. This is analogous to the perturbative expansion based on using magnetic monopoles
as basic objects whereas the expansion using the contravariant Kähler metric as a propagator
would be in positive powers of αK and analogous to the expansion in terms of magnetically
bound states of wormhole throats with vanishing net value of magnetic charge. At this moment
one can only suggest various approaches to how one could understand the situation.

2. Weak form of self-duality and magnetic confinement could change the sitution. Performing
the perturbation around magnetic flux tubes together with the assumed slicing of the space-
time sheet by stringy world sheets and partonic 2-surfaces could mean that the perturbation
corresponds to the action assignable to the electric part of Kähler form proportional to αK by
the weak self-duality. Hence by K = 4παK relating Kähler electric field to Kähler magnetic
field the expansion would come in powers of a term containing sum of terms proportional to α0

K

and αK . This would leave to the scattering amplitudes the exponents of Kähler function at the
maximum of Kähler function so that the non-analytic dependence on αK would not disappear.

A further reason to be worried about is that the expansion containing infinite number of terms
proportional to α0

K could fail to converge.

1. This could be also seen as a reason for why magnetic singlets are unavoidable except perhaps
for ~ < ~0. By the holomorphic factorization the powers of the interaction part of Kähler
action in powers of 1/αK would naturally correspond to increasing and opposite net values of
the quantum numbers assignable to the WCW phase coordinates at the ends of the propagator
line. The magnetic bound states could have similar expansion in powers of αK as pairs of
states with arbitrarily high but opposite values of quantum numbers. In the functional integral
these quantum numbers would compensate each other. The functional integral would leave only
an expansion containing powers of αK starting from some finite possibly negative (unless one
assumes the weak form of self-duality) power. Various gauge coupling strengths are expected to
be proportional to αK and these expansions should reduce to those in powers of αK .

2. Since the number of terms in the fermionic propagator expansion is finite, one might hope on
basis of super-symmetry that the same is true in the case of the functional integral expansion.
By the holomorpic factorization the expansion in powers of K means the appearance of terms
with increasingly higher quantum numbers. Quantum number conservation at vertices would
leave only a finite number of terms to tree diagrams. In the case of loop diagrams pairs of
particles with opposite and arbitrarily high values of quantum numbers could be generated at
the vertex and magnetic confinement might be necessary to guarantee the convergence. Also
super-symmetry could imply cancellations in loops.

Could one do without flux Hamiltonians?

The fact that the Kähler functions associated with the propagator lines can be regarded as interaction
terms inspires the question whether the Kähler function could contain only the interaction terms so
that Kähler form and Kähler metric would have components only between the ends of the lines.

1. The basic objection is that flux Hamiltonians too beautiful objects to be left without any role
in the theory. One could also argue that the WCW metric would not be positive definite if only
the non-diagonal interaction term is present. The simplest example is Hermitian 2 × 2-matrix
with vanishing diagonal for which eigenvalues are real but of opposite sign.

2. One could of course argue that the expansions of exp(K) and λk give in the general powers
(fnfn)m analogous to diverging tadpole diagrams of quantum field theories due to local in-
teraction vertices. These terms do not produce divergences now but the possibility that the
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exponential series of this kind of terms could diverge cannot be excluded. The absence of the
kinetic terms would allow to get rid of these terms and might be argued to be the symmetric
space counterpart for the vanishing of loops in WCW integral.

3. In zero energy ontology this idea does not look completely non-sensical since physical states are
pairs of positive and negative energy states. Note also that in quantum theory only creation
operators are used to create positive energy states. The manifest non-locality of the interaction
terms and absence of the counterparts of kinetic terms would provide a trivial manner to get rid
of infinities due to the presence of local interactions. The safest option is however to keep both
terms.

Summary

The discussion suggests that one must treat the entire Feynman graph as single geometric object
with Kähler geometry in which the symmetric space is defined as product of what could be regarded
as analogs of symmetric spaces with interaction terms of the metric coming from the propagator
lines. The exponent of Kähler function would be the product of exponents associated with all lines
and contributions to lines depend on quantum numbers (momentum and color quantum numbers)
propagating in line via the coupling to the modified Dirac operator. The conformal factorization
would allow the reduction of integrations to Fourier analysis in symmetric space. What is of decisive
importance is that the entire Feynman diagrammatics at WCW level would reduce to the construction
of WCW geometry for a single propagator line as a function of quantum numbers propagating on the
line.

8.8 How to realize the notion of finite measurement resolution
mathematically?

One of the basic challenges of quantum TGD is to find an elegant realization for the notion of finite
measurement resolution. The notion of resolution involves observer in an essential manner and this
suggests that cognition is involved. If p-adic physics is indeed physics of cognition, the natural guess
is that p-adic physics should provide the primary realization of this notion.

The simplest realization of finite measurement resolution would be just what one would expect it
to be except that this realization is most natural in the p-adic context. One can however define this
notion also in real context by using canonical identification to map p-adic geometric objets to real
ones.

8.8.1 Does discretization define an analog of homology theory?

Discretization in dimension D in terms of pinary cutoff means division of the manifold to cube-like
objects. What suggests itself is homology theory defined by the measurement resolution and by the
fluxes assigned to the induced Kähler form.

1. One can introduce the decomposition of n-D sub-manifold of the imbedding space to n-cubes by
n−1-planes for which one of the coordinates equals to its pinary cutoff. The construction works
in both real and p-adic context. The hyperplanes in turn can be decomposed to n− 1-cubes by
n−2-planes assuming that an additional coordinate equals to its pinary cutoff. One can continue
this decomposition until one obtains only points as those points for which all coordinates are
their own pinary cutoffs. In the case of partonic 2-surfaces these points define in a natural
manner the ends of braid strands. Braid strands themselves could correspond to the curves for
which two coordinates of a light-like 3-surface are their own pinary cutoffs.

2. The analogy of homology theory defined by the decomposition of the space-time surface to cells
of various dimensions is suggestive. In the p-adic context the identification of the boundaries of
the regions corresponding to given pinary digits is not possible in purely topological sense since
p-adic numbers do not allow well-ordering. One could however identify the boundaries sub-
manifolds for which some number of coordinates are equal to their pinary cutoffs or as inverse
images of real boundaries. This might allow to formulate homology theory to the p-adic context.
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3. The construction is especially interesting for the partonic 2-surfaces. There is hierarchy in the
sense that a square like region with given first values of pinary digits decompose to p square like
regions labelled by the value 0, ..., p−1 of the next pinary digit. The lines defining the boundaries
of the 2-D square like regions with fixed pinary digits in a given resolution correspond to the
situation in which either coordinate equals to its pinary cutoff. These lines define naturally
edges of a graph having as its nodes the points for which pinary cutoff for both coordinates
equals to the actual point.

4. I have proposed earlier [K14] what I have called symplectic QFT involving a triangulation of the
partonic 2-surface. The fluxes of the induced Kähler form over the triangles of the triangulation
and the areas of these triangles define symplectic invariants, which are zero modes in the sense
that they do not contribute to the line element of WCW although the WCW metric depends on
these zero modes as parameters. The physical interpretation is as non-quantum fluctuating clas-
sical variables. The triangulation generalizes in an obvious manner to quadrangulation defined
by the pinary digits. This quadrangulation is fixed once internal coordinates and measurement
accuracy are fixed. If one can identify physically preferred coordinates - say by requiring that
coordinates transform in simple manner under isometries - the quadrangulation is highly unique.

5. For 3-surfaces one obtains a decomposition to cube like regions bounded by regions consisting
of square like regions and Kähler magnetic fluxes over the squares define symplectic invariants.
Also Kähler Chern-Simons invariant for the 3-cube defines an interesting almost symplectic
invariant. 4-surface decomposes in a similar manner to 4-cube like regions and now instanton
density for the 4-cube reducing to Chern-Simons term at the boundaries of the 4-cube defines
symplectic invariant. For 4-surfaces symplectic invariants reduce to Chern-Simons terms over
3-cubes so that in this sense one would have holography. The resulting structure brings in mind
lattice gauge theory and effective 2-dimensionality suggests that partonic 2-surfaces are enough.

The simplest realization of this homology theory in p-adic context could be induced by canonical
identification from real homology. The homology of p-adic object would the homology of its canonical
image.

1. Ordering of the points is essential in homology theory. In p-adic context canonical identification
x =

∑
xnp

n →
∑
xnp

−n map to reals induces this ordering and also boundary operation for
p-adic homology can be induced. The points of p-adic space would be represented by n-tuples
of sequences of pinary digits for n coordinates. p-Adic numbers decompose to disconnected sets
characterized by the norm p−n of points in given set. Canonical identification allows to glue
these sets together by inducing real topology. The points pn and (p − 1)(1 + p + p2 + ...)pn+1

having p-adic norms p−n and p−n−1 are mapped to the same real point p−n under canonical
identification and therefore the points pn and (p− 1)(1 + p+ p2 + ...)pn+1 can be said to define
the endpoints of a continuous interval in the induced topology although they have different p-
adic norms. Canonical identification induces real homology to the p-adic realm. This suggests
that one should include canonical identification to the boundary operation so that boundary
operation would be map from p-adicity to reality.

2. Interior points of p-adic simplices would be p-adic points not equal to their pinary cutoffs defined
by the dropping of the pinary digits corresponding pn, n > N . At the boundaries of simplices
at least one coordinate would have vanishing pinary digits for pn, n > N . The analogs of
n − 1 simplices would be the p-adic points sets for which one of the coordinates would have
vanishing pinary digits for pn, n > N . n−k-simplices would correspond to points sets for which
k coordinates satisfy this condition. The formal sums and differences of these sets are assumed
to make sense and there is natural grading.

3. Could one identify the end points of braid strands in some natural manner in this cohomology?
Points with n ≤ N pinary digits are closed elements of the cohomology and homologically
equivalent with each other if the canonical image of the p-adic geometric object is connected
so that there is no manner to identify the ends of braid strands as some special points unless
the zeroth homology is non-trivial. In [K91] it was proposed that strand ends correspond to
singular points for a covering of sphere or more general Riemann surface. At the singular point
the branches of the covering would co-incide.
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The obvious guess is that the singular points are associated with the covering characterized by
the value of Planck constant. As a matter fact, the original assumption was that all points
of the partonic 2-surface are singular in this sense. It would be however enough to make this
assumption for the ends of braid strands only. The orbits of braid strands and string world sheet
having braid strands as its boundaries would be the singular loci of the covering.

8.8.2 Does the notion of manifold in finite measurement resolution make
sense?

A modification of the notion of manifold taking into account finite measurement resolution might be
useful for the purposes of TGD.

1. The chart pages of the manifold would be characterized by a finite measurement resolution and
effectively reduce to discrete point sets. Discretization using a finite pinary cutoff would be the
basic notion. Notions like topology, differential structure, complex structure, and metric should
be defined only modulo finite measurement resolution. The precise realization of this notion is
not quite obvious.

2. Should one assume metric and introduce geodesic coordinates as preferred local coordinates in
order to achieve general coordinate invariance? Pinary cutoff would be posed for the geodesic
coordinates. Or could one use a subset of geodesic coordinates for δCD × CP2 as preferred
coordinates for partonic 2-surfaces? Should one require that isometries leave distances invariant
only in the resolution used?

3. A rather natural approach to the notion of manifold is suggested by the p-adic variants of sym-
plectic spaces based on the discretization of angle variables by phases in an algebraic extension
of p-adic numbers containing nth root of unity and its powers. One can also assign p-adic con-
tinuum to each root of unity [K27]. This approach is natural for compact symmetric Kähler
manifolds such as S2 and CP2. For instance, CP2 allows a coordinatization in terms of two pairs

(P k, Qk) of Darboux coordinates or using two pairs (ξk, ξ
k
), k = 1, 2, of complex coordinates.

The magnitudes of complex coordinates would be treated in the manner already described and
their phases would be described as roots of unity. In the natural quadrangulation defined by
the pinary cutoff for |ξk| and by roots of unity assigned with their phases, Kähler fluxes would
be well-defined within measurement resolution. For light-cone boundary metrically equivalent
with S2 similar coordinatization using complex coordinates (z, z) is possible. Light-like radial
coordinate r would appear only as a parameter in the induced metric and pinary cutoff would
apply to it.

8.8.3 Hierachy of finite measurement resolutions and hierarchy of p-adic
normal Lie groups

The formulation of quantum TGD is almost completely in terms of various symmetry group and
it would be highly desirable to formulate the notion of finite measurement resolution in terms of
symmetries.

1. In p-adic context any Lie-algebra gG with p-adic integers as coefficients has a natural grading
based on the p-adic norm of the coefficient just like p-adic numbers have grading in terms of
their norm. The sub-algebra gN with the norm of coefficients not larger than p−N is an ideal
of the algebra since one has [gM , gN ] ⊂ gM+N : this has of course direct counterpart at the level
of p-adic integers. gN is a normal sub-algebra in the sense that one has [g, gN ] ⊂ gN . The
standard expansion of the adjoint action ggNg

−1 in terms of exponentials and commutators
gives that the p-adic Lie group GN = exp(tpgN ), where t is p-adic integer, is a normal subgroup
of G = exp(tpg). If indeed so then also G/GN is group, and could perhaps be interpreted as
a Lie group of symmetries in finite measurement resolution. GN in turn would represent the
degrees of freedom not visible in the measurement resolution used and would have the role of a
gauge group.
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2. The notion of finite measurement resolution would have rather elegant and universal repre-
sentation in terms of various symmetries such as isometries of imbedding space, Kac-Moody
symmetries assignable to light-like wormhole throats, symplectic symmetries of δCD×CP2, the
non-local Yangian symmetry, and also general coordinate transformations. This representation
would have a counterpart in real context via canonical identification I in the sense that A→ B
for p-adic geometric objects would correspond to I(A)→ I(B) for their images under canonical
identification. It is rather remarkable that in purely real context this kind of hierarchy of sym-
metries modulo finite measurement resolution does not exist. The interpretation would be that
finite measurement resolution relates to cognition and therefore to p-adic physics.

3. Matrix group G contains only elements of form g = 1 + O(pm), m ≥ 1 and does not therefore
involve matrices with elements expressible in terms roots of unity. These can be included by
writing the elements of the p-adic Lie-group as products of elements of above mentioned G with
the elements of a discrete group for which the elements are expressible in terms of roots of unity
in an algebraic extension of p-adic numbers. For p-adic prime p p:th roots of unity are natural
and suggested strongly by quantum arithmetics [K90].



Chapter 9

Negentropy Maximization Principle

9.1 Introduction

Quantum TGD involves ’holy trinity’ of time developments. There is the geometric time development
dictated by the preferred extremal of Kähler action crucial for the realization of General Coordinate
Invariance and analogous to Bohr orbit. There is the unitary ”time development” U : Ψi → UΨi → Ψf ,
associated with each quantum jump, which is the counterpart of the Schrödinger time evolution
U(−t, t → ∞). There is however no actual Schrödinger equation involved: situation is in practice
same also in quantum field theories. Quantum jump sequence itself defines what might be called
subjective time development.

Some dynamical principle governing subjective time evolution should exist and explain state func-
tion reduction with the characteristic one-one correlation between macroscopic measurement variables
and quantum degrees of freedom and state preparation process. Negentropy Maximization Principle
is the candidate for this principle, which I have been developing during last fifteen years.

The evolution of ideas related to NMP has been slow and tortuous process characterized by mis-
interpretations, overgeneralizations, and unnecessarily strong assumptions, and has been basically
evolution of ideas related to the anatomy of quantum jump and of quantum TGD itself.

9.1.1 The notion of entanglement entropy

1. The first form of NMP was rather naive. There was no idea about the anatomy of quantum
jump and NMP only stated that the allowed quantum jumps are such that the information
gain of conscious experience measured by the reduction of entanglement entropy resulting in the
reduction of entanglement between the subsystem of system and its complement is maximal.
Later it became clear that quantum jump has a complex anatomy consisting of unitary process
U followed by the TGD counterpart of state function reduction serving as a state preparation
for the next quantum jump.

2. The attempts to formulate NMP in p-adic physics led to the realization that one can distinguish
between three kinds of information measures.

(a) In real physics the negative of the entanglement entropy defined by the standard Shannon
formula defines a natural information measure, which is always non-positive.

(b) In p-adic physics one can generalize this information measure to p-adic valued information
measure by replacing the logarithms of p-adic valued probabilities with the p-based loga-
rithms logp(|P |p) which are integer valued and can be interpreted as p-adic numbers. This
p-adic valued entanglement entropy can be mapped to a non-negative real number by the
so called canonical identification x =

∑
n xnp

n →
∑
n xnp

−n. In both cases a non-positive
information measure results.

(c) When the entanglement probabilities are rational numbers or at most finitely algebraically
extended rational numbers one can still define logarithms of probabilities as p-based loga-
rithms logp(|P |p) and interpret the entropy as a rational or algebraic number. In this case
the entropy can be however negative and positive definite information measure is possible.
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Irrespective of number field one can in this case define entanglement entropy as a maximum
of number theoretic entropies Sp over the set of primes. The first proposal was that the
algebraic entanglement corresponds to bound state entanglement turned out to be wrong.

3. At some stage the importance of the almost trivial fact that bound state entanglement must
be kinematically stable against NMP became obvious. One can imagine that the state function
reduction proceeds step by step by reducing the state to two parts in such a manner that the
reduction of entanglement entropy is maximal.

(a) If a resulting subsystem corresponds to a bound state having no decomposition to free
subsystems the process stops for this subsystem. The natural assumption is that subsystems
lose their consciousness when U process leads to bound state entanglement whereas bound
state itself can be conscious.

(b) If the entanglement is negentropic (and thus rational or algebraic) a more natural inter-
pretation consistent with the teaching of spiritual practices is that subsystems experience
a fusion to a larger conscious entity. The negentropic entanglement between free states is
stabilized by NMP and negentropically entangled states need not reside at the bottom of
potential well forbidding the reduction of entanglement. This makes possible new kinds
of correlated states for which binding energy can be negative. Bound state entanglement
would be like the jail of organized marriage and negentropic entanglement like a love mar-
riage in which companions are free to leave but do not what it. The existence of this kind of
negentropic entanglement is especially interesting in living matter, where metabolism (high
energy phosphate bond in particular) and the stability of DNA and other highly charged
polymers is poorly understood physically: negentropic entanglement could be responsible
for stabilization making possible the transfer of metabolic energy [K29] .

4. For the negentropic entanglement the outcome of the state function reduction ceases to be
random as it is for the standard definition of entanglement entropy. Note however that U process
as a creative act yielding superposition of possibibilities from which state function reduction
selects leaves means non-determinism. This has far reaching consequences. Ordinary state
function reductions for an ensemble of systems lead to a generation of thermodynamical entropy
and this explains the second law of thermodynamics. In the case of negentropic entanglement
situation changes and the predicted breaking of second law of thermodynamics provides a new
view to understand self-organization [K67] , and living matter could be identified as something
residing in the intersection of real and p-adic worlds where p-adic intentions can be transformed
to real actions.

5. One particular choice involved with state function reduction process could be the choice be-
tween generic entanglement and number theoretic entanglement possible only in the intersection
of p-adic and real WCWs. If the choice is the generic entanglement, system ends up either to
an unentangled state with maximal conscious freedom or to a bound state with a loss of con-
sciousness. If the choice is algebraic entanglement, system ends up to negentropic entanglement
and correlations with external world and experiences an expansion of consciousness. Maybe
ethical choices are basically choices between these two options. Also positive emotions like
love and experience of understanding could directly relate to various aspects of the negentropic
entanglement.

9.1.2 Zero energy ontology

Zero energy ontology changes considerably the interpretation of the unitary process. In zero energy
ontology quantum states are replaced with zero energy states defined as a superpositions of pairs of
positive and negative energy states identified as counterparts of initial and final states of a physical
event such as particle scattering. The matrix defining entanglement between positive and negative
- christened as M -matrix- is the counterpart of the ordinary S-matrix but need not be unitary. It
can be identified as a ”complex square root” of density matrix expressible as a product of positive
square root of diagonal density matrix and unitary S-matrix. Quantum TGD can be seen as defining
a ”square root” of thermodynamics, which thus becomes an essential part of quantum theory.
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U -matrix is defined between zero energy states and cannnot therefore be equated with the S-
matrix used to describe particle scattering events. Unitary conditions however imply that U -matrix
can be seen as a collection of M -matrices labelled by zero energy states so that the knowledge of
U -matrix implies the knowledge of M -matrices. The unitarity conditions will be discussed later. A
natural guess is that U is directly related to consciousness and the description of intentional actions.
For positive energy ontology state function reduction would serve as a state preparation for the next
quantum jump. In zero energy ontology state function preparation and reduction can be assigned
to the positive and negative energy states defining the initial and final states of the physical event.
The reduction of the time-like entanglement during the state function reduction process corresponds
to the measurement of the scattering matrix. In the case of negentropic time-like entanglement the
reduction process is not random anymore and the resulting dynamics is analogous to that of cellular
automata providing a natural description of the dynamics of self-organization in living matter.

Zero energy ontology leads to a precise identification of the subsystem at space-time level. General
coordinate invariance in 4-D sense means that 3-surfaces related by 4-D diffeomorphisms are physically
equivalent. It is conventient to perform a gauge fixing by a introducing a natural choice for the
representatives of the equivalence classes formed by diffeo-related 3-surfaces.

1. Light-like 3-surfaces identified as surfaces at which the Minkowskian signature of the induced
space-time metric changes to Euclidian one - wormhole contacts- are excellent candidates in this
respect. The intersections of these surfaces with the light-like boundaries of CD defined 2-D
partonic surfaces. Also the 3-D space-like ends of space-time sheets at the light-like boundaries
of CDs are very natural candidates for preferred 3-surfaces.

2. The condition that the choices are mutually consistent implies effective 2-dimensionality. The
intersections of these surfaces defining partonic 2-surface plus the distribution of 4-D tangent
spaces at its points define the basic dynamical objects with 4-D general coordinate invariance
reduced to 2-dimensional one. This effective 2-dimensionality was clear from the very beginning
but is only apparent since also the data about 4-D tangent space distribution is necessary to
characterize the geometry of WCW and quantum states. The descriptions in terms of 3-D
light-like or space-like surfaces and even in terms of 4-D surfaces are equivalent but redundant
descriptions.

As far as consciousness is considered effective 2-dimensionality means holography and could relate to
the fact that at least our visual experience is at least effectively 2-dimensional.

9.1.3 Connection with standard quantum measurement theory

TGD allows to deduce the standard quantum measurement theory involving the notion of classical
variables and their correlation with quantum numbers in an essential manner. Configuration space (or
”world of classical worlds”, briefly WCW ) is a union over zero modes labelling infinite-dimensional
symmetric spaces having interpretation as classical non-quantum fluctuating classical variables such as
the pointer of a measurement apparatus essential for the standard quantum measurement theory [K17]
. Quantum holography states that partonic 2-surfaces at the light-like boundaries of CDs plus the
corresponding distributions of 4-D tangent spaces of space-time surfaces at carry the information
about quantum state and space-time sheet. The distribution of values of induced Kähler form of
CP2 at these surfaces defines zero modes whereas quantum fluctuating degrees of freedom correspond
to the deformations of space-time surface by the flows induced by Hamiltonians associated with the
degenerate symplectic structure of δM4

± × CP2.
There exists no well-defined metric integration measure in the infinite-dimensional space of zero

modes, which by definition do not contribute to the line element of WCW . This does not lead to
difficulties if one assumes that a complete localization in zero modes occurs in each quantum jump.
A weaker condition is that wave functions are localized to discrete subsets in the space of zero modes.
An even weaker and perhaps the most realistic condition is that a localization to a finite-dimensional
2n-dimensional manifold with induced symplectic form defining a positive definite integration volume
takes place.

The fundamental formulation of quantum TGD in terms of the modified Dirac action [K15, K27]
containing a measurement interaction term guarantees quantum classical correspondence in the sense
that the geometry of the space-time surface correlates with the values of conserved quantum numbers.
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The resulting correlation of zero modes with the values of quantum numbers can be interpreted as an
abstract form of quantum entanglement reduced in quantum jump for the standard definition of the
entanglement entropy. This reproduces standard quantum measurement theory.

9.1.4 Quantum classical correspondence

Quantum classical correspondence has served as a guideline in the evolution of the ideas and the
identification of the geometric correlates of various quantum notions at the level of imbedding space
and space-time surfaces has been an important driving force in the progress of ideas.

1. In zero energy ontology causal diamonds (CDs) identified roughly as intersections of future and
past directed light-cones are in key role. At imbedding space level CD is a natural correlate for
self and sub-CDs serve as correlates of sub-selves identified as mental images. At space-time level
the space-time sheets having their ends at the light-like boundaries of CD serve as correlates
for self. For a system characterized by a primary p-adic length scale Lp ∝ 2k/2 the size scale of
CD is secondary p-adic scale Lp,2 =

√
pLp ∝ 2k. p-Adic length scale hypothesis follows if the

proper time distance between the tips of CDs is quantized in powers of 2. This quantization
should relate directly to almost equivalence of octaves associated with music experience.

2. At the level of space-time the identification of join along boundaries bonds between space-time
sheets (more precisely, between partonic 2-surfaces) as a correlate for bound state entanglement
suggests itself. Join along boundaries bonds correspond typically to magnetic flux tubes in the
TGD inspired quantum model of living matter. The size scale of the magnetic body of system
is given by the size scale of CD and much larger than the size of the system itself.

3. The space-time sheets in the intersection of the real and p-adic WCW s characterized by the
property that the mathematical representation of the partonic 2-surfaces at the ends representing
holograpically the state allows interpretation in both real and p-adic sense would correspond
to the correlates for negentropic entanglement. Rational and algebraic 2-surfaces (in preferred
coordinates) would be the common points of realities and p-adicities.

Quantum classical correspondence allows also to generate new views about quantum theory itself.
Many-sheeted space-time and p-adic length scale hierarchy force to generalize the notion of sub-system.
The space-time correlate for the negentropic and bound state entanglement is the formation of join
along boundaries bonds connecting two space-time sheets. The basic realization is that two disjoint
space-time sheets can contain smaller space-time sheets topologically condensed at them and connected
by join along boundaries bonds. Thus systems un-entangled at a given level of p-adic hierarchy -that is
in the measurement resolution defined by the level considered - can contain entanglement subsystems
at lower level not visible in the resolution used.

In TGD inspired theory of consciousness this makes possible sharing and fusion of mental images
by entanglement. The resolution dependence for the notions of sub-system and entanglement means
that the entanglement between sub-systems is not ”seen” in the length scale resolution of unentangled
systems. This phenomenon does not result as an idealization of theoretician but is a genuine physical
phenomenon. Obviously this generalized view about sub-system poses further challenges to the de-
tailed formulation of NMP. Note that the resulting mental image should depend on whether subselves
are entangled by bound state entanglement or negentropic entanglement.

9.1.5 Fusion of real and p-adic physics

The fusion of real and p-adic physics to a larger structure has been a long standing challenge for
TGD. The motivations come both from elementary particle physics and TGD inspired theory of con-
sciousness, in particular from the attempt to model how intentions proposed to have p-adic space-time
sheets as space-time correlates are transformed to actions having real space-time sheets as correlates.
The basic idea is that various number fields are fused to a larger structure by gluing them along
rationals and common algebraic numbers. The challenge is to imagine what quantum jump and NMP
could mean in this framework. The first question is how the unitary process acts.



9.1. Introduction 455

1. U -process acts in spinorial degrees of freedom of WCW (fermionic Fock space for a given 3-
surface) and in WCW degrees of freedom (the space of partonic 2-surfaces roughly). The trans-
formation of intention to action would correspond to a leakage from p-adic to real sector of
WCW .

2. At the level of WCW one can only speak about classical spinor fields and the idea about tensor
product of states corresponding to different sectors of WCW does not look reasonable at the
first glance. Rather, a quantum superposition of WCW spinor fields localized at various sectors
would look more appropriate. Therefore the WCW spinor field would be in fixed number field
after state function reduction if it involves localization in this sense. This does not look sensible.
The tensor product for fermionic Fock spaces is indeed very natural and strongly suggested also
by the interpretation of the 3-surfaces as particles. One can indeed consider CDs and their
unions and it would seem reasonable to assign to the unions of CDs tensor products of the
corresponding WCW spinor fields. Let us assume this.

3. Let us assume that the initial zero energy state state represents an un-entangled tensor product
of states in various number fields. The simplest assumption is that U process can induce a
leakage between different sectors only in the intersection of real and p-adic worlds. This would
also hold true as far as entanglement between different number fields is considered. This would
allow to realize intentional action geometrically as a p-adic-to-real transition. The p-adic and
real variants of a state quantum entangled with a third (say real) state would define the entangled
system and state function reduction would select either p-adic or real variant of the state. The
selection would be whether to transform action to its cognitive representation or intention to
action. Also a transformation of a real zero energy state to its cognitive representation in p-adic
sense is possible as also transformations between p-adic cognitive representations characterized
by different primes.

4. For partonic 2-surfaces the quantum superposition of quantum states belonging to different
number fields in the intersection would mean a quantum superposition of real and various p-
adic variants of the surface with given mathematical representation forming tensor products
with the states of second system, which could be real for instance. U -matrix could lead to this
kind of quantum superposition. U -matrix between different number fields should be expressible
using only the geometric data from the intersection of the real and p-adic variants of the partonic
surface- that is rational points and common algebraic points, whose number is expected to be
finite. Some kind of number theoretic quantum field theory should describe the U -matrix. State
function reduction would involve the selection of whether the outcome is action or intention
(or cognitive representation). Note that if the real-real entanglement is non-algebraic the NMP
leads to a final state with algebraic entanglement between real system and p-adic cognitive
representation of the other system. If real-real entanglement is algebraic, the reduction can lead
from intention to action as a more negentropic final state.

5. It has been assumed that entanglement and matrix elements of U between different number
fields are possible only in the intersection of the real and p-adic worlds. This is natural if
entanglement coefficients between different number fields are represented in terms of the data
provided by the intersection of the real and p-adic variants of partonic 2-surfaces involved and
consisting of rational points and some algebraic points. Outside the intersection real and p-adic
worlds would evolve independently. One could criticize this picture as raising the intersection
of real and p-adic worlds to a singular position. Life is however something very special and the
interpretation in terms of number theoretical criticality justifies this singular character.

9.1.6 Dark matter hierarchy

The identification of dark matter as phases having large value of Planck constant [K70, K26, K22]
led to a vigorous evolution of ideas. Entire dark matter hierarchy with levels labelled by increasing
values of Planck constant is predicted, and in principle TGD predicts the values of Planck constant if
physics as a generalized number theory vision is accepted [K26] .

The hierarchy of Planck constants is realized in terms of a generalization of the causal diamond
CD × CP2, where CD is defined as an intersection of the future and past directed light-cones of 4-D
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Minkowski space M4. CD×CP2 is generalized by gluing singular coverings and factor spaces of both
CD and CP2 together like pages of book along common back, which is 2-D sub-manifold which is M2

for CD and homologically trivial geodesic sphere S2 for CP2 [K26] . The value of the Planck constant
characterizes partially the given page and arbitrary large values of ~ are predicted so that macroscopic
quantum phases are possible since the fundamental quantum scales scale like ~. The most general
spectrum comes in rational multiples of standard value of Planck constant which corresponds to the
unit of rationals. For CDs the scaling of Planck constants means scaling of the size of CD. This could
explain why the rational multiples of the fundamental frequency are so special for music experience.

All particles in the vertices of Feynman diagrams have the same value of Planck constant so that
particles at different pages cannot have local interactions. Thus one can speak about relative darkness
in the sense that only the interactions mediated by the exchange of particles and by classical fields
are possible between different pages. Dark matter in this sense can be observed, say through the
classical gravitational and electromagnetic interactions. It is in principle possible to photograph dark
matter by the exchange of photons which leak to another page of book, reflect, and leak back. This
leakage corresponds to ~ changing phase transition occurring at quantum criticality and living matter
is expected carry out these phase transitions routinely in bio-control. This picture leads to no obvious
contradictions with what is really known about dark matter and to my opinion the basic difficulty
in understanding of dark matter (and living matter) is the blind belief in standard quantum theory.
These observations motivate the tentative identification of the macroscopic quantum phases in terms
of dark matter and also of dark energy with gigantic ”gravitational” Planck constant.

It seems safe to conclude that the dark matter hierarchy with levels labelled by the values of
Planck constants explains the macroscopic and macro-temporal quantum coherence naturally. That
this explanation is consistent with the explanation based on spin glass degeneracy is suggested by
the following observations. First, the argument supporting spin glass degeneracy as an explanation
of the macro-temporal quantum coherence does not involve the value of ~ at all. Secondly, the
failure of the perturbation theory assumed to lead to the increase of Planck constant and formation of
macroscopic quantum phases could be precisely due to the emergence of a large number of new degrees
of freedom due to spin glass degeneracy. Thirdly, the phase transition increasing Planck constant has
concrete topological interpretation in terms of many-sheeted space-time consistent with the spin glass
degeneracy.

At least dark matter could be a key player in quantum biology.

1. Dark matter hierarchy and p-adic length scale hierarchy would provide a quantitative formulation
for the self hierarchy. To a given p-adic length scale one can assign a secondary p-adic time scale
as the temporal distance between the tips of the CD. For electron this time scale is .1 second,
the fundamental bio-rhythm. For a given p-adic length scale dark matter hierarchy gives rise to
additional time scales coming as ~/~0 multiples of this time scale.

2. The predicted breaking of second law of thermodynamics chacterizing living matter - if identified
as something in the intersection of real and p-adic words - would be always below the time scale
of CD considered but would take place in arbitrary long time scales at appropriate levels of the
hierarchy. The scaling up of ~ also scales up the time scale for the breaking of the second law.

3. The hypothesis that magnetic body is the carrier of dark matter in large ~ phase has led to
models for EEG predicting correctly the band structure and even individual resonance bands
and also generalizing the notion of [J1] [K23] . Also a generalization of the notion of genetic
code emerges resolving the paradoxes related to the standard dogma [K43, K23] . A particularly
fascinating implication is the possibility to identify great leaps in evolution as phase transitions
in which new higher level of dark matter emerges [K23] .

9.1.7 Is it possible to unify the notions of quantum jump and self?

An important step in the process was the realization that the generation of macro-temporal quantum
coherence means effective gluing of quantum jumps of quantum jump sequence of sub-system defining
mental images to single quantum jump. This means that in appropriate degrees of freedom state
function reduction and state preparation cease to occur during macro-temporal quantum coherence.
This makes sense if macro-temporal quantum coherence means generation of negentropic or bound
state entanglement stable under subsequent U -processes.
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The hierarchy of Planck constants and p-adic length scale hypothesis lead to the view that there
is an entire hierarchy of durations for effective quantum jumps and this forces to ask whether the
quantum jumps sequence decomposes into a hierarchy of effective quantum jumps of increasingly long
duration just like physical systems form a hierarchy starting from the level of elementary particles and
continuing through hadronic, nuclear, atomic and molecular physics up to level where astrophysical
objects take the role of particles.

The usually un-noticed fact that hadrons can be regarded as quantum objects in long length and
time scales whereas quark description treats hadrons as dissipative systems forces to ask whether
state function reductions and preparations associated with the hierarchy of CDs form a hierarchy and
whether the dissipative processes in short scales could occur in quantum parallel manner in longer
scales so that one would have quantum superposition of parallel dissipative Universes? Using quantum
computer language this would mean the possibility of quantum superposition of classical dissipative
quantum computations.

These hierarchies suggest that the notions of self and quantum jump could be identified. Self
would correspond to single quantum jump at the highest level and at the lowest levels to sequences
of quantum jumps in accordance with the geometric representation in terms of CDs.

9.1.8 Hyper-finite factors of type II1 and quantum measurement theory
with a finite measurement resolution

The realization that the von Neumann algebra known as hyper-finite factor of type II1 is tailor made for
quantum TGD has led to a considerable progress in the understanding of the mathematical structure
of the theory and these algebras provide a justification for several ideas introduced earlier on basis of
physical intuition.

Hyper-finite factor of type II1 has a canonical realization as an infinite-dimensional Clifford algebra
and the obvious guess is that it corresponds to the algebra spanned by the gamma matrices of WCW.
Also the local Clifford algebra of the imbedding space H = M4 × CP2 in octonionic representation
of gamma matrices of H is important and the entire quantum TGD emerges from the associativity
or co-associativity conditions for the sub-algebras of this algebra which are local algebras localized to
maximal associative or co-associate sub-manifolds of the imbedding space identifiable as space-time
surfaces.

The notion of inclusion for hyper-finite factors provides an elegant description for the notion of
measurement resolution absent from the standard quantum measurement theory.

1. The included sub-factor creates in zero energy ontology states not distinguishable from the
original one and the formally the coset space of factors defining quantum spinor space defines
the space of physical states modulo finite measument resolution.

2. The quantum measurement theory for hyperfinite factors differs from that for factors of type
I since it is not possible to localize the state into single ray of state space. Rather, the ray is
replaced with the sub-space obtained by the action of the included algebra defining the mea-
surement resolution. The role of complex numbers in standard quantum measurement theory is
taken by the non-commutative included algebra so that a non-commutative quantum theory is
the outcome.

3. This leads also to the notion of quantum group. For instance, the finite measurement resolution
means that the components of spinor do not commute anymore and it is not possible to reduce
the state to a precise eigenstate of spin. It is however perform a reduction to an eigenstate of
an observable which corresponds to the probability for either spin state.

As already explained, the topology of the many-sheeted space-time encourages the generalization
of the notion of quantum entanglement in such a manner that unentangled systems can possess
entangled sub-systems. One can say that the entanglement between subselves is not visible in the
resolution characterizing selves. This makes possible sharing and fusion of mental images central for
TGD inspired theory of consciousness. These concepts find a deeper justification from the quantum
measurement theory for hyper-finite factors of type II1 for which the finite measurement resolution is
basic notion.
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Also the notions of resolution and monitoring pop up naturally in this framework. p-Adic proba-
bilities relate very naturally to hyper-finite factors of type II1 and extend the expressive power of the
ordinary probability theory. p-Adic thermodynamics with conformal cutoff is very natural for hyper-
finite factors of type II1 and explains p-adic length scale hypothesis p ' 2k, k prime characterizing
exponentially smaller p-adic length scale.

9.2 Basic view about NMP

The following represents a brief overall view about the notions of quantum jump, self, and NMP.

9.2.1 The general structure of quantum jump

It has gradually become clear that TGD involves ’holy trinity’ of dynamics.

1. The dynamics defined by the preferred extremals of Kähler action identifiable as counterparts
of Bohr orbits corresponds to the dynamics of material existence, with matter defined as ’res
extensa’, three-surfaces.

2. The dynamics defined by the action of the unitary ”time development” operator U can be
regarded as informational ”time development” occurring at the level of objective existence. U
brings in mind the time evolution operator U(−t, t), t → ∞ associated with the scattering
solutions of Schrödinger equation. It seems however un-necessary and also impossible to assign
Schrödinger equation with U . Furthermore, U acts between zero energy states in zero energy
ontology and is more naturally assigned with intentional action rather than to the description
of particle scattering.

3. The dynamics of quantum jumps governed by U and by NMP corresponds to the dynamics of
subjective existence.

In accordance with this, quantum jump decomposes into informational time development

Ψi → UΨi ,

followed by a sequence of self measurements (generalization of state function reduction)

Ψf0 → Ψf1 .....→ Ψf

governed by NMP. At given step subsystem the decomposition to two un-entangled systems is such
that maximum reduction of entanglement entropy is achieved. This means that the reduction process
proceeds as a binary tree. If subsystem does not allow a decomposition to a pair of free subsystems
with entropic entanglement the process stops.

Zero energy ontology means that one must distinguish between M -matrix and U -matrix. M -
matrix characterizes the time like entanglement between positive and negative energy parts of zero
energy state and is measured in particle scattering experiments. M -matrix need not be unitary and
can be identified as a ”complex” square root of density matrix representable as a product of its real
and positive square root and of unitary S-matrix so that thermodynamics becomes part of quantum
theory with thermodynamical ensemble being replaced with a zero energy state. The unitary U -matrix
describes quantum transitions between zero energy states and is therefore something genuinely new.
It is natural to assign the statistical description of intentional action with U -matrix since quantum
jump occurs between zero energy states.

U process is in zero energy ontology something totally new and can be seen as representing an
act of genuine re-creation of the Universe. The following metaphors might help to understand what
is involved.

1. A good metaphor for the quantum jump is as Djinn leaving the bottle (U) fulfilling the wish
realized as a choice between various option that is state function reduction. In the case that
final state has negentropic entanglement wish is realized in different manner.



9.2. Basic view about NMP 459

2. A second useful metaphor is as generation of infinite number of quantum parallel potentialities in
which entire universe is in a totally entangled holistic state of oneness followed by state function
reduction and self measurement cascade analyzing the state into maximally unentangled sub-
systems. NMP states that the analysis produces maximum amount of conscious information.
For irreducible selves analysis process do not continue and the sequences of quantum jumps
effectively take the role of single quantum jump. A further element is the expansion of con-
sciousness when negentropic entangelment is generated. Therefore this structure characterizes
also conscious experience in macro-temporal time scales. Clearly, quantum measurement theory
has fascinating parallels with Krishnamurti’s philosophy of consciousness which underlines the
competing holistic and reductionistic aspects of consciousness.

3. A third metaphor comes from particle physics. Moment of consciousness can be seen as elemen-
tary particle of consciousness and selves as the atoms, molecules, ...galaxies,... of consciousness.
Fractality hypothesis allows to get general vision about structure of consciousness even in the
time scale of human life.

If quantum jump occurs between two different time evolutions of Schrödinger equation (understood
here in very metaphoral sense) rather than interfering with single deterministic Schrödinger evolution,
the basic problem of quantum measurement theory finds a resolution. The interpretation of quantum
jump as a moment of consciousness means that volition and conscious experience are outside space-
time and state space and that quantum states and space-time surfaces are ”zombies”.

9.2.2 NMP and the notion of self

Negentropy Maximization Principle (NMP) codes for the dynamics of standard state function reduc-
tion and states that the state function reduction process following U -process gives rise to a maximal
reduction of entanglement entropy at each step. In the generic case this implies decomposition of
the system to unique unentangled systems and the process repeats itself for these systems. The pro-
cess stops when the resulting subsystem cannot be decomposed to a pair of free systems since energy
conservation makes the reduction of entanglement kinematically impossible in the case of bound states.

Intuitively self corresponds to a sequence of quantum jumps which somehow integrates to a larger
unit much like many-particle bound state is formed from more elementary building blocks. It also
seems natural to assume that self stays conscious as long as it can avoid bound state entanglement
with the environment in which case the reduction of entanglement is energetically impossible. One
could say that everything is conscious and consciousness can be only lost when the system forms
bound state entanglement with environment.

There is an important exception to this vision based on ordinary Shannon entropy. There exists
an infinite hierarchy of number theoretical entropies making sense for rational or even algebraic entan-
glement probabilities. In this case the entanglement negentropy can be negative so that NMP favors
the generation of negentropic entanglement, which need not be bound state entanglement in standard
sense. Negentropic entanglement might serve as a correlate for emotions like love and experience of
understanding. The reduction of ordinary entanglement entropy to random final state implies second
law at the level of ensemble. For the generation of negentropic entanglement the outcome of the
reduction is not random: the prediction is that second law is not universal truth holding true in all
scales. Since number theoretic entropies are natural in the intersection of real and p-adic worlds, this
suggests that life resides in this intersection. The existence effectively bound states with no binding
energy might have important implications for the understanding the stability of basic bio-polymers
and the key aspects of metabolism [K29] . A natural assumption is that self experiences expansion of
consciousness as it entangles in this manner. Quite generally, an infinite self hierarchy with the entire
Universe at the top is predicted.

If one accepts the hierarchy of Planck constants [K26] , it might be un-necessary to distinguish
between self and quantum jump. The hierarchy of Planck constants interpreted in terms of dark matter
hierarchy predicts a hierarchy of quantum jumps such that the size of space-time region contributing
to the contents of conscious experience scales like ~. Also the hierarchy of space-time sheets labeled
by p-adic primes suggests the same. That sequence of sub-selves/sub-quantum jumps are experienced
as separate mental images explains why we can distinguish between digits of phone number. The
irreducible component of self (pure awareness) would correspond to the highest level in the ”personal”
hierarchy of quantum jumps and the sequence of lower level quantum jumps would be responsible
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for the experience of time flow. Entire life cycle would correspond to single quantum jump at the
highest(?) level of the personal self hierarchy and pure awareness would prevail during sleep: this
would make it possible to experience directly that I existed yesterday. Whether these two definitions
of self are in some sense equivalent will be discussed later.

How the contents of consciousness of self are determined

The hypothesis that the experiences of self associated with the quantum jumps occurred after the last
’wake-up’ sum up to single experience, implies that self can have memories about earlier moments of
consciousness. Therefore self becomes an extended object with respect to subjective time and has a
well defined ’personal history’. If temporal binding of experiences involves kind of averaging, quantum
statistical determinism makes the total experience defined by the heap of the experiences associated
with individual quantum jumps reliable. Subjective memory has natural identification as a short term
memory.

A given self S behaves essentially as a separate sub-Universe with respect to NMP. If one postulates
that the conscious experiences of sub-selves Si of an self S integrate with the self experience of S to
single experience, one obtains a filtered hierarchy of conscious experiences with increasingly richer
contents and at the top of the hierarchy is entire universe, God, enjoying eternal self-consciousness
since it cannot get entangled with any larger system.

An attractive hypothesis is that the experience of self is abstraction in the sense that the experiences
of sub-selves Sij of Si are abstracted to average experience 〈Sij〉. This implies that the experiences
of sub-sub-...selves of S are effectively unconcious to S. This hierarchy obviously has extremely far-
reaching consequences. Temporal binding implies that experiences of individual selves are reliable and
abstraction brings in the possibility of quantum statistical determinism at the level of ensembles.

The binding of experiencers is also possible. The binding of selves by quantum entanglement how-
ever destroys the component selves (note however the comment about situation in which the p-adic
primes are different for real entangling selves). This process could correspond to the formation as
wholes from their parts, say the formation of the mental image representing word from the mental
images representing letters, which are all represented as sub-selves. Associative learning might corre-
spond to the generation of entanglement between selves representing objects of the sensory experience
and conscious association would correspond to the reduction of this entanglement generating asso-
ciated sub-selves. The entanglement of sub-selves of two selves is possible if one accepts the length
scale dependent notion of subsystem and means sharing and fusion of mental images, binding of ex-
periences. Entanglement might make possible communication between selves belonging to different
levels of the self hierarchy and to different number fields: this entanglement would be reduced always
in state function reduction step.

Dark matter hierarchy and the notion of self

The vision about dark matter hierarchy as a hierarchy defined by quantized Planck constants leads
to a more refined view about self hierarchy and hierarchy of moments of consciousness [K22, K23] .

The hierarchy of dark matter levels is labeled by the values of Planck constant having quantized
but arbitrarily large values. For the most general option the values of ~ are products and ratios of two
integers. The products of distinct Fermat primes and power of two are number theoretically favored
values for these integers. p-Adic length scale hypothesis favors powers of two. The larger the value of
Planck constant, the longer the subjectively experienced duration and the average geometric duration
T ∝ ~ of the quantum jump.

Dark matter hierarchy suggests a modification of the notion of self, in fact a reduction of the
notion of self to that of quantum jump alone. Each self involves a hierarchy of dark matter levels,
and one is led to ask whether the highest level in this hierarchy corresponds to single quantum jump
rather than a sequence of quantum jumps. This indeed looks extremely natural and the hypothesis
that self remains un-entangled for a longer duration than single quantum jump un-necessary. It is
perhaps un-necessary to emphasize that the reduction of the notion of self to that of quantum jump
means conceptual economy and somewhat ironically, would also a return to the original hypothesis
but with a quantized Planck constant.

The averaging of conscious experience over quantum jumps would occur only for sub-selves at
lower levels of dark matter hierarchy and these mental images would be ordered, and single moment
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of consciousness would be experienced as a history of events. One can ask whether even entire life
cycle could be regarded as a single quantum jump at the highest level so that consciousness would
not be completely lost even during deep sleep. This would allow to understand why we seem to know
directly that this biological body of mine existed yesterday.

The fact that we can remember phone numbers with 5 to 9 digits supports the view that self corre-
sponds at the highest dark matter level to single moment of consciousness. Self would experience the
average over the sequence of moments of consciousness associated with each sub-self but there would
be no averaging over the separate mental images of this kind, be their parallel or serial. These mental
images correspond to sub-selves having shorter wake-up periods than self and would be experienced as
being time ordered. Hence the digits in the phone number are experienced as separate mental images
and ordered with respect to experienced time.

9.2.3 NMP, self measurements, cognition, state preparation, qualia

NMP can be seen as the variational principle governing the dynamics of self measurements giving rise
to state preparation and reduction finding a unified description as state function reduction in zero
energy ontology.

1. NMP applies to any unentangled subsystem resulting in this cascade of self measurements and
tells that self measurement is performed for the subsystem (or equivalently, its complement)
which gives rise to maximum entanglement negentropy gain in the self measurement.

2. This self measurement process continues until the system decomposes into unentangled sub-
systems consisting of subsystems for which the entanglement is bound state entanglement or
negentropic entanglement.

NMP dictates the anatomy of a single quantum so that there is actually no need to mention the
notion of self at all in the context of NMP (note however the possibility that the notions of self and
quantum are one and same). Despite this it is useful to briefly introduce the basic concepts related
to the notion of self. Self is a subsystem able to remain unentangled in sequential quantum jumps
and preserving its identity in some sense: presumably the p-adic prime characterizing self (and also
the real space-time sheet associated with self) is what characterizes the self identity. One can define
irreducible self as a self which does not decompose to further sub-selves in state preparation process. A
second reason for introducing the notion of self is that for a self in a state of macro-temporal quantum
coherence the sequence of quantum jumps effectively fuses to single quantum jump representing single
long lasting moment of consciousness. With this definition self ceases to exist as it fuses to another self
by bound state entanglement of negentropic entanglement. In the latter case self however experiences
expansion of consciousness rather than losing it.

Some further comments about NMP are in order.

1. Standard quantum measurement theory does not allow a spontaneous reduction of entanglement
between quantum fluctuating degrees of freedom of two subsystems associated with a 3-surface.
Only the entanglement between quantum fluctuating and zero mode degrees of freedom, that is
between quantum system and observer can be reduced. The question is therefore whether one
should restrict NMP to the entanglement between zero modes and quantum fluctuating degrees
of freedom or allow also the reduction of entanglement between quantum fluctuating degrees
of freedom. Self measurements affecting entanglement between quantum fluctuating degrees of
freedom are distinguishable from standard quantum measurements. The working hypothesis is
that state function reduction applies to any kind of entanglement.

2. Self measurement involves the division of unentangled subsystem (possibly self, mental image)
into two unentangled subsystems. Analytical thought creates separations and comparisons so
that this division could be identified as the basic mechanism of cognition. Also sensory experi-
ence generates separations and distinctions so that NMP should be identified as the variational
principle governing the dynamics of cognition and perception. State reduction process makes the
world of conscious experience to look completely classical since only bound state entanglement
and negentropic entanglement are stable against self measurement. One can thus say that state
function reduction leads from a maximally entangled multiverse state UΨi to a maximally ana-
lyzed state: from quantum holism to classical reductionism. At the level of standard quantum
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measurement theory this process is equivalent with state preparation process yielding totally
unentangled product state as incoming state of particle physics experiment.

3. The fact that self measurement reduces entanglement entropy allows the system to remain
conscious (unless it generates bound state entanglement) but leads to a generation of thermody-
namical entropy at the level of ensemble. Thermodynamical ensemble of sub-sub-selves means
fuzzy mental images at the level of self. Thermodynamical ensemble of sub-selves could give rise
to statistical determinism and be essential for sensory representations.

4. Irreducible self effectively obeys in quantum fluctuating degrees of freedom a unitary time de-
velopment defined by n:th power of U for a sequence of n quantum jumps, at least in reasonable
approximation. This means fractality of consciousness: one can approximate sequences of quan-
tum jumps with single quantum jump such as one can approximate molecules consisting of
elementary particles with a point like particle. This observation is of crucial importance for un-
derstanding how quantum computing is possible in TGD universe despite that single quantum
jump to an increment of psychological time equal to CP2 time. Also Penrose-Hameroff hypoth-
esis generalizes to TGD framework and one can understand the purely phenomenological notion
of quantum de-coherence at fundamental level and also how the quantum spin glass nature of
TGD Universe allows to circumvent the objections against Penrose-Hameroff hypothesis.

5. The fact that state preparation is not a deterministic process, forces a statistical modelling of
the state of self using the ensemble formed by the prepared states defined by the sequence of
quantum jumps in turn defining the contribution to the contents of consciousness of self as a
statistical average. The simplest description is in terms of thermodynamics. Thermodynamical
density matrix gives the probabilities for various states of a subsystem in the sequence of quantum
jumps occurred after the last ’wake-up’. What is of paramount importance is that the contents of
consciousness of self can be modelled using statistical thermodynamics. Non-geometric sensory
qualia indeed have a close relationship with conjugate pairs of thermodynamical variables such
as temperature-entropy, pressure-volume, chemical potential-particle number,... The sequence of
quantum jumps also defines a sequence of quantum jumps in zero modes. Statistical averaging
is not so natural for the values of zero modes characterizing the outcomes of the quantum
measurements, which suggests that they could be experienced as separate ones by self and
would correspond to geometric qualia experienced as being sharp and dynamical.

9.3 Physics as fusion of real and p-adic physics and NMP

In this section the vision about state function reduction and preparation processes as number theoretic
necessities is developed: also the chapter ”Fusion of p-Adic and Real Variants of Quantum TGD to
a More General Theory” contains related topics. The proposal raises NMP to fundamental principle
applying also to the state function reduction step.

9.3.1 Basic definitions related to density matrix and entanglement entropy

In this sequel the detailed definitions of density matrix and entropy are discussed. It has become clear
that one must distinguish between three kinds of systems systems.

1. Genuinely real systems for which entanglement probabilities are not rational numbers or finitely
extended rational numbers. In this case one can regard the probabilities as limiting values of
frequencies for outcomes of measurement defined by a time series. This is also the case when the
entanglement coefficients are rational or algebraic numbers but the number of entangled state
pairs is infinite so that the entanglement probabilities need not be algebraic numbers anymore.

2. A genuinely p-adic system is a p-adic system in which entanglement probabilities are not positive
rational numbers so that one cannot interpret the entanglement probabilities as a limit for
frequencies defined by any ensemble.

3. Finitely extended rational entanglement probabilities allow an interpretation as ordinary prob-
abilities. In this case one can regard the probabilities as belonging to an extension of rationals
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or to any p-adic number field. What is essential is that the number field is now discrete whereas
it is continuous in above mentioned cases.

One must use different definition for the real counterpart of the entanglement entropy in these
two cases. In the first case standard Shannon’s entropy works. In the second case p-adic
counterpart of the Shannon entropy mapped to a real number by the canonical identification is
the only possibility. In the third case the number theoretic entropies Sp based on p-adic norm
can be regarded as extended rational numbers as such. In this case Sp can be negative, and one
can fix the value of p used to define the entropy by requiring that entropy is maximally negative
and thus identifiable as a genuine information measure.

Density matrix

The density matrix of subsystem, call it A, can be defined using the standard formulas of QM: essen-
tially trace over the degrees of freedom associated with the complement of A, call it B, is performed.
B could effectively reduce to a sub-system of the complement. Density matrix is hermitian matrix and
can be diagonalized in the real context. Eigenvalues are real and give the weights for various eigen
states in the superposition. There is important duality present: in the basis of A in which the density
matrix for A is diagonal also the density matrix of B is diagonal.

Density matrix actually determines one-one-correspondence between certain states of the system
A and system B. The state in eigen state basis can be written as

|A,B〉 =
∑
m

cm|m〉 × |M(m)〉 , (9.3.1)

where the map m→M(m) defines identification of certain states of A with certain states of B.
Quantum measurement of density matrix means that subsystem goes to an eigen state of density

matrix. In the p-adic context the diagonalization of the density matrix requires special assumptions
about the form of the state since the p-adic number fields are not closed with respect to algebraic
operations. There is an algebraic extension obtained by requiring that each ’real’ p-adic number
has square root [K53] . The extension is 4-dimensional for p ≥ 3 and 8-dimensional for p = 2. It
can quite well happen that density matrix can be diagonalized only partially in this extension since
the eigenvalues of the density matrix are in general algebraic numbers determined as a solution of
polynomial eigenvalue equation.

One can however allow the extension of the p-adic number field to allow eigenvalues in an algebraic
extension. Unless this is allowed the concepts of density matrix and entropy are not well defined for
a generic subsystem. Physically this would mean that quantum state can have irreducible number
theoretic entanglement besides the entanglement related to the quantum statistics. The vision about
TGD as a generalized number theory encourages the allowance of the algebraic extension. This means
that quantum subsystems can be classified using as criterion the dimension of the p-adic algebraic
extension needed to define the eigen states and eigenvalues of the density matrix. In well defined sense
physical systems generate increasingly complicated number fields as algebraic extensions of the p-adic
numbers.

An interesting possibility is that hermiticity in the p-adic context must be defined so that the
eigenvalues of the density matrix are ordinary p-adic numbers: if this is the case then the algebraic
extension is needed only for the diagonalization of the density matrix but the diagonalized density
matrix itself is ’p-adically real’. This option seems however un-necessarily restrictive and will not be
considered in the sequel.

If entanglement coefficients are algebraic numbers then also entanglement probabilities are alge-
braic numbers in the case that the number of entanglement state pairs is finite. Even finite-dimensional
extensions of p-adic number numbers involving transcendentals such as e, e2, ..., ep−1) can be allowed.
If the number of entangled state pairs is infinite, entanglement probabilities need not belong to a finite
extension of rationals and it seems that entanglement cannot be regarded as bound state entanglement
in this case.

p-Adic entanglement negentropy

In the real context negentropy is defined using the standard formula for Shannon entropy:
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N =
∑
k

pk · log(pk) . (9.3.2)

In the real context one could equally well replace the e-based logarithm log(x) by a-based logarithm

(a could be any positive real) since this introduces only multiplicative factor (loga(x) = log(x)
log(a) ).

p-Adic thermodynamics has turned out to be surprisingly successful for the calculation of ele-
mentary particle masses. p-Adic thermodynamics is however naturally based on p-based logarithm
logp rather than the ordinary e-based logarithm since Boltzmann weights are powers of p rather than
exponents. This would suggest the following definition

N =
∑
k

pk · logp(pk) . (9.3.3)

There are however two problems:

1. p-based logarithm exists only for pk = pr, that is power of p. One should somehow modify the
definition of the logarithm so that it is defined for all p-adic numbers.

2. Since the probabilities pk correspond to eigenvalues of density matrix, they in general belong to
some algebraic extension of p-adic numbers. Thus the modified logarithm should also exist for
any algebraic extension of p-adic numbers.

The definition of the modified p-based logarithm Logp(x) should satisfy following constraints.

1. If argument is power of p then modified logarithm must be equal to p-based logarithm:

Logp(p
n) = logp(p

n) .

2. Modified logarithm must be additive in order to make negentropy additive for systems having
no interactions:

Logp(xy) = Logp(x) + Logp(y) .

These requirements fix the definition of logarithm uniquely. The modified logarithm can depend
on the p-adic norm of the argument only. Or in terms of canonical identification

I :
∑

xnp
n →

∑
xnp

−n ,

mapping p-adics to reals and p-adic norm Np(x) one must have

Logp(x) = logp([x]) ,

[x] = I−1(Np(x)) ,

=

∑
n≥n0

xnp
n

 = pn0 . (9.3.2)

This definition works also for the algebraic extensions, for which p-adic norm is defined as the p-adic
norm for the determinant of the linear map induced by a multiplication with z in algebraic extension:
it is easy to see that the determinant of this map is indeed a power of p always (note that this norm
is multiplicative, which implies the additivity of modified logarithm and entropy).

For the algebraic extensions of p-adic numbers one must define how the units ek of algebraic
extension z = x +

∑
k y

kek are mapped to the reals in the canonical identification map. ek are
typically roots of integers in the range −1, ..., p. The rule is following: if ek is not a root of p then it
is mapped to ek interpreted as a real number: for instance, 21/3 is mapped to 21/3 for p 6= 2 in case
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that 21/3 does not exist as p-adic number. If ek is root of p it is mapped to its inverse: for instance,√
p is mapped to 1√

p .

Note that p-adic entanglement entropy can be also expressed as a sum over the derivatives of the
p-adic entanglement probabilities with respect to p:

S =
∑
i

d

dp
pi . (9.3.3)

The real counterpart of the p-adic entanglement entropy is obtained by canonical identification
x =

∑
xnp

n →
∑
xnp

−n = xR

Sr = SR × log(p) . (9.3.4)

log(p) factor must be included in order to make possible the comparison of entropies associated with
different values of p.

The value of the p-adic entanglement entropy is always non-negative. It vanishes if the p-adic
entanglement entropies have unit p-adic norm. Thus S = 0 p-adic entanglement is possible. This
entanglement need not be stable since a direct sum of eigen spaces of density matrix with finitely
extended rational entanglement probabilities has negative entanglement entropy.

Unless some p-adic probabilities do not have p-adic norm larger than one, p-adic entanglement
entropy is of order O(p) for genuinely p-adic systems so that negentropy gain is below log(p) irrespec-
tive of the size of the system. This situation is realized in p-adic thermodynamics. There is a nice
connection with p-adic mass calculations: p-adic thermal mass squared expectation value is essen-
tially the p-adic entropy. This connection was noticed already [L15] [K57] and it was suggested that
p-adic primes associated with elementary particles could correspond to entropy maxima as function
of p. This connection suggests that the proper definition of p-adic entropy is based on the canonical
identification.

Remark: Statistics does not give rise to entanglement entropy as one might erratically conclude
by considering the symbolic representation of tensor product suggesting the identification of ’left’ and
’right’ members of the tensor product as subsystems A and B: the concrete representation of the states
using oscillator operators associated with Y 3 and its complement shows that there is no statistical
entanglement entropy between the subsystem and its complement: if this were the case the entire
universe should behave like a single conscious being and this would be a catastrophe as far as NMP
is considered.

Systems with finitely extended rational entanglement

In the case of an finitely extended rational entanglement one can map the p-adic entropy to its real
counterpart using the identification by common rationals instead of the canonical identification. This
gives the formula

SR = Splog(p) ,

Sp =
∑
n

pkLogp(pk)log(p) ,

Logp(x) = logp(|x|p) . (9.3.3)

where the p-adic entropy which can be regarded as a rational number is re-interpreted as a real
number. Note that the probabilities pk are positive numbers. What is remarkable is that in this
case entanglement entropy can be a negative rational number or a number in a finite extension of
rational numbers. This observation encourages the definition of the number theoretic entanglement
negentropy as maximum information in the set of all p-adic number fields and their extensions:

I ≡ Max{−Sp, p prime} . (9.3.4)
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Since the numbers log(p) are independent transcendentals there exists a unique prime for which the
maximum is achieved.

The original identification of negentropic entanglement as bound state entanglement is un-necessary
and the observation that negentropic entanglement is possible withing binding energy might have far
reaching consequences concerning the understanding of metabolism and stability of fundamental bio-
polymers.

The consistency with the standard quantum measurement theory requires that the process corre-
sponds to a measurement of the density matrix so that a projection must occur to an eigen space or
sub-space of eigen space of the density matrix if this maximizes negentropy gain. The density matrix
of the system would become

ρ → 1

Di
Pi . (9.3.5)

HereDi and Pi denote the dimension of the eigen space associated with pi and corresponding projection
operator. Assuming that Di has the decomposition

Di =
∏
i∈I

qnii

to a product of powers of primes, the negentropy of the final state can be written as

NR = Max{nilog(qi)|i ∈ I} . (9.3.6)

The maximization of the increment of entanglement entropy gives a criterion selecting the final eigen
space or its sub-space. Quantum classical correspondence suggests that one can assign similar inherent
negentropy to the space-time sheet consisting of D strictly deterministic regions.

For the negentropic entanglement the state function reduction process is far from being random.
It is quite possible that the reduction takes to unique final state for which the common denominator
of entanglement probabilities is power of prime. This is achieved if the reduction occurs to a sub-space
for which the denominator measuring roughly the number of states is reduced to a number having
very large p-adic norm for some prime. This suggests that the quantum behavior of negentropic states
resembles more that of cellular automata than of ordinary quantum states.

The eigen spaces of the density matrix with dimensions D = pN are of special interest. The
entanglement negentropy for D = pNn0, n0 integer not divisible by p, is NR = Nlog(p). The
reduction to a sub-space of the eigen space can yield higher negentropy gain than the reduction to
the entire eigen space and powers of prime are favored as dimensions of these sub-spaces.

The entanglement negentropy per single dimension of eigen space is NR/D = Nlog(p)p−N/n0.
For D = pN the entanglement negentropy per dimension of eigen space is NR/D = Nlog(p)/pN =
log(D)/D and maximum as a function of n0. NR/D as a function of D has a maximum NR/D = .3662
for D = 3 rather than D = 2 as one might expect. For D = 2 and D = 4 one has NR/D = .3466
(note that there are 4 DNA nucleotides). For other values of D NR/D is smaller.

For extended rational entanglement the measurement of the density matrix can occur only in
special cases. For instance, when the probabilities pk belong to a finite extension of rational numbers
and are different, the measurement of the density matrix would reduce the negentropy to zero and
NMP does not therefore allow the measurement of density matrix to occur. Degenerate eigen spaces
do not correspond to the maximum entanglement negentropy per dimension. pk = nk/p

N , nk not
divisible by p, gives NR = Nlog(p) irrespective of dimension D, and NR/D = Nlog(p)/2 for D = 2
(p1 = m/pN and p2 = (pN−m)/pN , m not divisible by p) is the best one can achieve. Since there is no
upper bound for N nor p even in the case of a 2-state system, the negentropy gain can be arbitrarily
high. One could criticize this result as counter intuitive.

9.3.2 Generalization of the notion of information

TGD inspired theory of consciousness, in particular the formulation of Negentropy Maximization
Principle (NMP) in p-adic context, has forced to rethink the notion of the information concept. In
TGD state preparation process is realized as a sequence of self measurements and state preparation



9.3. Physics as fusion of real and p-adic physics and NMP 467

for next quantum jump is state reduction for the previous quantum jump. In zero energy ontology one
can interpret the state preparation for positive and negative energy parts of the state as reduction and
preparation in the sense of standard physics. Each self measurement means a decomposition of the
sub-system involved to two unentangled parts unless the system is bound state. The decomposition is
fixed highly uniquely from the requirement that the reduction of the entanglement entropy is maximal.

Bound state entanglement is stable against self measurement simply because energy conservation
prevents the decay to a pair of free (uncorrelated) subsystems. The generalized definition of entan-
glement entropy allows to assign a negative value of entanglement entropy to rational and algebraic
entanglement, so that this kind of entanglement would actually carry information, in fact conscious
information (experience of understanding). This kind of entanglement cannot be reduced in state
function reduction. Macro-temporal quantum coherence could correspond to a generation of either
bound state entanglement or negentropic entanglement, and is indeed crucial for ability to have long
lasting non-entropic mental images. Generation of negentropic entanglement would involve experience
about expansion of consciousness and that of bound states entanglement a loss of consciousness.

The mathematical models for quantum computers typically operate with systems for which en-
tanglement probabilities are identical. Also rational numbers are involved. Does this mean that
negentropic entanglement makes possible quantum computation? This does not seem to be the case.
State function reduction with random outcomes is a central element of quantum computation which
suggests that quantum computation must be based on entropic entanglement with large enough value
of ~ to overcome the restrictions caused by the interactions with the external world. The negentropic
entanglement in turn would relate to conscious information processing involving experience of under-
standing represented by negentropic entanglement. Negentropic entanglement would make possible
conscious cellular automaton type information processing much closer to that carried out by ordinary
computers and this information processing might be equally important in living systems.

9.3.3 Number theoretic information measures at the space-time level

Quantum classical correspondence suggests that the notion of entropy should have also space-time
counterpart. Entropy requires ensemble and both the p-adic non-determinism and the non-determinism
of Kähler action allow to define the required ensemble as the ensemble of strictly deterministic regions
of the space-time sheet. One can measure various observables at these space-time regions, and the
frequencies for the outcomes are rational numbers of form pk = n(k)/N , where N is the number of
strictly deterministic regions of the space-time sheet. The number theoretic entropies are well defined
and negative if p divides the integer N . Maximum is expected to result for the largest prime power
factor of N . This would mean the possibility to assign a unique prime to a given real space-time sheet.

The classical non-determinism resembles p-adic non-determinism in the sense that the space-time
sheet obeys effective p-adic topology in some length and time scale range is consistent with this idea
since p-adic fractality suggests that N is power of p.

9.3.4 Number theoretical Quantum Mechanics

The vision about life as something in the intersection of the p-adic and real worlds requires a gener-
alization of quantum theory to describe the U -process properly. One must answer several questions.
What it means mathematically to be in this intersection? What the leakage between different sectors
does mean? Is it really possible to formally extend quantum theory so that direct sums of Hilbert
spaces in different number fields make sense? Or should one consider the possibility of using only
complex, algebraic, or rational Hilbert spaces also in p-adic sectors so that p-adicization would take
place only at the level of geometry?

What it means to be in the intersection of real and p-adic worlds?

The first question is what one really means when one speaks about a partonic 2-surface in the inter-
section of real and p-adic worlds or in the intersection of two p-adic worlds.

1. Many algebraic numbers can be regarded also as ordinary p-adic numbers: square roots of
roughly one half of integers provide a simple example about this. Should one assume that all
algebraic numbers representable as ordinary p-adic numbers belong to the intersection of the real
and p-adic variants of partonic 2-surface (or to the intersection of two different p-adic number
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fields)? Is there any hope that the listing of the points in the intersection is possible without
a complete knowledge of the number theoretic anatomy of p-adic number fields in this kind of
situation? And is the set of common algebraic points for real and p-adic variants of the partonic
2-surface X2 quite too large- say a dense sub-set of X2?

This hopeless looking complexity is simplified considerably if one reduces the considerations to
algebraic extensions of rationals since these induce the algebraic extensions of p-adic numbers.
For instance, if the p-adic number field contains some n:th roots of integers in the range (1, p−1)
as ordinary p-adic numbers they are identified with their real counterparts. In principle one
should be able to characterize the -probably infinite-dimensional- algebraic extension of rationals
which is representable by a given p-adic number field as p-adic numbers of unit norm. This does
not look very practical.

2. At the level WCW one must direct the attention to the function spaces used to define partonic
2-surfaces. That is the spaces of rational functions or even algebraic functions with coefficients
of polynomials in algebraic extensions of rational numbers making sense with arguments in all
number fields so that algebraic extensions of rationals provide a neat hierarchy defining also the
points of partonic 2-surfaces to be considered. If one considers only the algebraic points of X2

belonging to the extension appearing in the definition the function space as common to various
number fields one has good hopes that the number of common points is finite.

3. Already the ratios of polynomials with rational coefficients lead to algebraic extensions of ratio-
nals via their roots. One can replace the coefficients of polynomials with numbers in algebraic
extensions of rationals. Also algebraic functions involving roots of rational functions can be
considered and force to introduce the algebraic extensions of p-adic numbers. For instance, an
n:th root of a polynomial with rational coefficients is well defined if n:th roots of p-adic integers
in the range (1, p− 1) are well well-defined. One clearly obtains an infinite hierarchy of function
spaces. This would give rise to a natural hierarchy in which one introduces n:th roots for a
minimum number of p-adic integers in the range (1, p − 1) in the range 1 ≤ n ≤ N . Note that
also the roots of unity would be introduced in a natural manner.

The situation is made more complex because the partonic 2-surface is in general defined by
the vanishing of six rational functions so that algebraic extensions are needed. An exception
occurs when six preferred imbedding space coordinates are expressible as rational functions of
the remaining two preferred coordinates. In this case the number of common rational points
consists of all rational points associated with the remaining two coordinates. This situation is
clearly non-generic. Usually the number of common points is much smaller (the set of rational
points satisfying xn + yn = zn for n > 2 is a good example). This however suggests that
these surfaces are of special importance since the naive expectation is that the amplitude for
transformation of intention to action or its reversal is especially large in this case. This might
also explain why these surfaces are easy to understand mathematically.

4. These considerations suggest that the numbers common to reals and p-adics must be defined
as rationals and algebraic numbers appearing explicitly in the algebraic extension or rationals
associated with the function spaces used to define partonic 2-surfaces. This would make the
deduction of the common points of partonic 2-surface a task possible at least in principle. Alge-
braic extensions of rationals rather than those of p-adic numbers would be in the fundamental
role and induce the extensions of p-adic numbers.

Let us next try to summarize the geometrical picture at the level of WCW and WCW spinor
fields.

1. WCW decomposes into WCWs associated with CDs and there unions. For the unions one has
Cartesian product of WCWs associated with CDs. At the level of WCW spinor fields one has
tensor product.

2. The WCW for a given CD decomposes into a union of sectors corresponding to various number
fields and their algebraic extensions. The sub-WCW corresponding to the intersection consists
of partonic 2-surfaces X2 (plus distribution of 4-D tangent spaces T (X4) at X2 - a complication
which will not be considered in the sequel), whose mathematical representation makes sense in
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real number field and in some algebraic extensions of p-adic number fields. The extension of
p-adic number fields needed for algebraic extension of rationals depends on p and is in general
sub-extension of the extension of rationals. This sub-WCW is a sub-manifold of WCW itself. It
has also a filtering by sub-manifolds of QCW. For instance, partonic 2-surfaces representabable
using ratios of polynomials with degree below fixed number N defines an inclusion hierarchy
with levels labelled by N .

3. The spaces of WCW spinors associated with these sectors are dictated by the second quanti-
zation of induced spinor fields with dynamics dictated by the modified Dirac action in more or
less one-one correspondence. The dimension for the modes of induced spinor field (solutions of
the modified Dirac equation at the space-time surface holographically assigned with X2 plus
the 4-D tangent space-space distribution) in general depends on the partonic 2-surface and the
classical criticality of space-time surface suggests an inclusion hierarchy of super-conformal al-
gebras corresponding to a hierarchy of criticalities. For instance, the partonic 2-surfaces X2

having polynomial representations in referred coordinates could correspond to simplest possible
surfaces nearest to the vacuum extremals and having in a well define sense smallest (but possibly
infinite) dimension for the space of spinor modes.

4. For each CD one can decompose the Hilbert space to a formal direct sum of orthogonal state
spaces associated with various number fields

H = ⊕FHF . (9.3.7)

Here F serves as a label for number fields. For the sake of simplicity and to get idea about what
is involved, all complications due to algebraic extensions are neglected in the sequel so that only
rational surfaces are regarded as being common to various sectors of WCW.

5. The states in the direct sum make sense only formally since the formal inner product of these
states would be a sum of numbers in different number fields unless one assigns complex Hilbert
space with each sector or restricts the coefficients to be rational which is of course also possible.
This problem is avoided if the state function reduction process induces inside each CD a choice
of the number field. One could say that state function is a number theoretical necessity at least
in this sense.

(a) Should the state function reduction in this sense involve a reduction of entanglement be-
tween distinct CDs is not clear. One could indeed consider the possibility of a purely
number theoretical reduction not induced by NMP and taking place in the absence of
entanglement with reduction probabilities determined by the probabilities assignable to
various number fields which should be rational or at most algebraic. Hard experience
however suggests that one should not make exceptions from principles.

(b) The alternative is to allow the Hilbert spaces in question to have rational or at most
algebraic coefficients in the intersection of real and various p-adic worlds. This means that
the entanglement is algebraic and NMP need not lead to a pure state: the superposition of
pairs of entangled states is however mathematically well defined since inner products give
algebraic numbers. Cognitive entanglement stable under NMP would become possible. The
experience of understanding could be a correlate for it. The pairs in the sum defining the
entangled state defined the instances of a concept as a mapping of real world state to its
symbol structurally analogous to a Boolean rule. The entangled states between different
p-adic number fields would define maps between symbolic representations.

6. Assume that each HF allows a decomposition to a direct sum of two orthogonal parts correspond-
ing to WCW spinor fields localized to the intersection of number fields and to the complements
of the intersection:

H = Hnm ⊕Hm ,

Hnm = ⊕FHnm,F , Hm = ⊕FHm,F . (9.3.7)
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Here nm stands for ’no mixing’ (no mixing between different number fields and localization to the
complement of the intersection) and m for ’mixing’ (mixing between different number fields in the
intersection). F labels the number fields. Orthogonal direct sum might be mathematically rather
singular and un-necessarily strong assumption but the notion of number theoretical criticality
favors it.

The general structure of U-matrix neglecting the complexities due to algebraic extensions

M -matrix is diagonal with respect to the number field for obvious reasons. U -matrix can however
induce a leakage between different number fields as well as entanglement between different number
fields when unions of CDs are considered. The simplest assumption is that this entanglement is
induced by the leakage between different number fields for single CD but not directly. For instance,
the members of entangled pair of real states associated with two CDs leak to various p-adic sectors
and induce in this manner entanglement beween different number fields. One must however notice
that the part of U-matrix acting in the tensor product of Hilbert spaces assignable to separate CDs
must be considered separately: it seems that the entanglement inducing part of U is diagonal with
respect to number field except in the intersection.

To simplify the rather complex situation consider first the U matrix for a given CD by neglecting
the possibility of algebraic extensions of the p-adic number fields. Restrict also the consideration to
single CD.

1. The unitarity conditions do not make sense in a completely general sense since one cannot add
numbers belonging to different number fields. The problem can be circumvented if the U -matrix
decomposes into a product of U -matrices, which both are such that unitarity conditions make
sense for them. Here an essential assumption is that unit matrix and projection operators are
number theoretically universal. In this spirit assume that for a given CD U decomposes to a
product of two U -matrices Unm inducing no mixing between different number fields and Um
inducing the mixing in the intersection:

U = UnmUm . (9.3.8)

Here the subscript ’nm’ (no mixing) having nothing to do with the induces of U as a matrix
means that the action is restricted to a dispersion in a sector ofWCW characterized by particular
number field. The subscript ’m’ (mixing) in turn means that the action corresponds to a leakage
between different number fields possible in the intersection of worlds corresponding to different
number fields and that Um acts non-trivially in this intersection.

2. Assume that Unm decomposes into a formal direct sum of U -matrices associated with various
number fields F :

Unm = ⊕FUnm,F . (9.3.9)

Unm,F acts inside HF in both WCW and spin degrees of freedom, does not mix states belonging
to different number fields, and creates a state which is always mathematically completely well
defined in particular number field although the direct sum over number fields is only formally
defined. Unitarity condition gives a direct sum of projection operators to Hilbert spaces as-
sociated with various number fields. One can assume that this object is number theoretically
universal.

3. Um acts in the intersection of the real and p-adic worlds identified in the simplied picture
in terms of surfaces representable using ratios of polynomials with rational coefficients. The
resulting superposition of configuration space spinor fields in different number fields is as such
not mathematical sensible although the expression of Um is mathematically well-defined. If the
leakage takes place with same probability amplitude irrespective of the quantum state, Um is
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a unitary operator, not affecting at all the spinor indices of WCW spinor fields characterizing
quantum numbers of the state and whose action is analogous to unitary mixing of the identical
copies of the state in various number fields.

The probability with which the intention is realized as action would not therefore depend at all
on the quantum number fields, but only on the data at points common to the variants of the
partonic 2-surface in various number fields. Intention would reduce completely to the algebraic
geometry of partonic 2-surfaces. This assumption allows to write U in the form

U = UnmUm , (9.3.10)

where Um acts as an identity operator in Hnm.

The general structure of U-matrix when algebraic extensions of rationals are allowed

Consider now the generalization of the previous argument allowing also algebraic extensions.

1. For each algebraic extension of rationals one can express WCW as a union of two parts. The
first one corresponds to to 2-surfaces, which belong to the intersection of real and p-adic worlds.
The second one corresponds to 2-surfaces in the algebraic extension of genuine p-adic numbers
and having necessarily infinite size in real sense. Thefore the decomposition of U to a product
U = UnmUm makes sense also now.

2. It is natural to assume that Um decomposes to a product of two operators: Um = UHUQ. The
strictly horizontal operator UH connects only same algebraic extensions of rationals assigned
to different number fields. Here one must think that p-adic number fields represent a large
number of algebraic extensions of rationals without need for an algebraic extension in the p-
adic sense. The second unitary operator UQ describes the leakage between different algebraic
extensions of rationals. Number theoretical universality encourages the assumption that this
unitary operator reduces to an operator UQ acting on algebraic extensions of rationals regarded
effectively as quantum states so that it would be same for all number fields. One can even
consider the possibility that UQ depends on the extensions of rationals only and not at all on
partonic 2-surfaces. One cannot assume that UQ corresponds just to an inclusion to a larger state
space since this would give an infinite number of identical copies of same state and imply a non-
normalizable state. Physically UQ would define dispersion in the space of algebraic extension
of rationals defining the rational function space giving rise to the sub-WCW. The simplest
possibility is that UQ between different algebraic extensions is just the projection operator to
their intersection multiplied by a numerical constant determined number theoretical in terms of
ratios of dimensions of the algebraic extensions so that the diffusion between extensions products
unit norm states.

One must take into account the consistency conditions from the web of inclusions for the algebraic
extensions of rationals inducing extensions of p-adic numbers.

1. There is an infinite inverted pyramide-like web of natural inclusions of WCW s associated with
algebraic extensions of ratonal numbers and one can assign a copy of this web to all number fields
if a given p-adic number field is characterized by a web defined by algebraic extensions of rationals
numbers, which it is able to represent without explicit introduction of the algebraic extension,
so that the pyramide is same for all number fields. For instance, the WCW corresponding to
p-adic numbers proper is included to the WCW s associated with any of its genuine algebraic
extensions and defines the lower tip of the inverted pyramide. From this tip an arrow emerges
connecting it to every algebraic extension defining a node of this web. Besides these arrows
there are arrows from a given extension to all extensions containing it.

2. These geometric inclusions induce inclusions of the corresponding Hilbert spaces defined by
rational functions and possibly by algebraic functions in which case sub-web must be considered
(all n:th roots of integers in the range (1, p − 1) must be introduced simultaneously). Leakage
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can occur between different extensions only through WCW spinor fields located in the common
intersection of these spaces containing always the rational surfaces. The intersections of WCW s
associated with various extensions of p-adic number fields correspond to WCW s assignable to
rational functions with coeffficients in various algebraic extensions of rationals using preferred
coordinates of CD and CP2.

Together with unitarity conditions this web poses strong constraints on the unitary matrices Um
and UQ expressible conveniently in terms of commuting diagrams. There are two kinds of webs. The
vertical webs are defined by the algebraic extensions of rationals. These form a larger web in which
lines connect the nodes of identical webs associated with various p-adic number fields and represent
algebraic extensions of rationals.

1. One has the general product decomposition U = UnmUQUm, where Unm does not induce mixing
between number fields, and Um does it purely horizontally but without affecting quantum states
in WCW spin degreees of freedom, and P (Hnm) projects to the complement of the intersection
of number fields holds true also now.

2. Each algebraic extension of rationals gives unitary conditions for the corresponding Unm,F for
each p-adic number field with extensions included. These conditions are relatively simple and
no commuting diagrams are needed.

3. In the horizontal web Um mixes the states in the intersections of two number fields but connects
only same algebraic extensions so that the lines are strictly horizontal. UQ acts strictly verti-
cally in the web formed by algebraic extension of rationals and its action is unitary. One has
infinite number of commuting diagrams involving Um and UQ since the actions along all routes
connecting given points between p1 and p2 must be identical.

4. If algebraic universality holds in the sense that Um is expressible using only the data about
the common points of 2-surfaces in the intersection defined by particular extensions using some
universal functions, and UQ is purely number theoretical unitary matrix having no dependence
on partonic 2-surfaces, one can hope that the constraints due to commuting diagrams in the web
of horizontal inclusions can be satisfied automatically and only the unitarity constraints remain.
This web of inclusions brings strongly in mind the web of inclusions of hyper-finite factors.

9.4 Anatomy of quantum jump in zero energy ontology

Consider now the anatomy of quantum jump identified as a moment of consciousness in the framework
of ZEO [K47].

1. Quantum jump begins with unitary process U described by unitary matrix assigning to a given
zero energy state a quantum superposition of zero energy states. This would represent the
creative aspect of quantum jump - generation of superposition of alternatives.

2. The next step is a cascade of state function reductions proceeding from long to short scales. It
starts from some CD and proceeds downwards to sub-CDs to their sub-CDs to ...... At a given
step it induces a measurement of the quantum numbers of either positive or negative energy
part of the quantum state. This step would represent the measurement aspect of quantum jump
- selection among alternatives.

3. The basic variational principle is Negentropy Maximization Principle (NMP) [K47] stating that
the reduction of entanglement entropy in given quantum jump between two subsystems of CD
assigned to sub-CDs is maximal. Mathematically NMP is very similar to the second law although
states just the opposite but for individual quantum system rather than ensemble. NMP actually
implies second law at the level of ensembles as a trivial consequence of the fact that the outcome
of quantum jump is not deterministic.

For ordinary definition of entanglement entropy this leads to a pure state resulting in the mea-
surement of the density matrix assignable to the pair of CDs. For hyper-finite factors of type
II1 (HFFs) state function reduction cannot give rise to a pure state and in this case one can
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speak about quantum states defined modulo finite measurement resolution and the notion of
quantum spinor emerges naturally. One can assign a number theoretic entanglement entropy to
entanglement characterized by rational (or even algebraic) entanglement probabilities and this
entropy can be negative. Negentropic entanglement can be stable and even more negentropic
entanglement can be generated in the state function reduction cascade.

The irreversibility is realized as a property of zero energy states (for ordinary positive energy
ontology it is realized at the level of dynamics) and is necessary in order to obtain non-trivial U-
matrix. State function reduction should involve several parts. First of all it should select the density
matrix or rather its Hermitian square root. After this choice it should lead to a state which prepared
either at the upper or lower boundary of CD but not both since this would be in conflict with the
counterpart for the determinism of quantum time evolution.

9.4.1 Generalization of S-matrix

ZEO forces the generalization of S-matrix with a triplet formed by U-matrix, M-matrix, and S-
matrix. The basic vision is that quantum theory is at mathematical level a complex square roots of
thermodynamics. What happens in quantum jump was already discussed.

1. U-matrix as has its rows M-matrices , which are matrices between positive and negative energy
parts of the zero energy state and correspond to the ordinary S-matrix. M-matrix is a product
of a hermitian square root - call it H - of density matrix ρ and universal S-matrix S commuting
with H: [S,H] = 0. There is infinite number of different Hermitian square roots Hi of density
matrices which are assumed to define orthogonal matrices with respect to the inner product
defined by the trace: Tr(HiHj) = 0. Also the columns of U-matrix are orthogonal. One can
interpret square roots of the density matrices as a Lie algebra acting as symmetries of the
S-matrix.

2. One can consider generalization of M-matrices so that they would be analogous to the elements
of Kac-Moody algebra. These M-matrices would involve all powers of S.

(a) The orthogonality with respect to the inner product defined by 〈A|B〉 = Tr(AB) requires
the conditions Tr(H1H2S

n) = 0 for n 6= 0 and Hi are Hermitian matrices appearing as
square root of density matrix. H1H2 is hermitian if the commutator [H1, H2] vanishes. It
would be natural to assign n:th power of S to the CD for which the scale is n times the
CP2 scale.

(b) Trace - possibly quantum trace for hyper-finite factors of type II1) is the analog of integra-
tion and the formula would be a non-commutative analog of the identity

∫
S1 exp(inφ)dφ = 0

and pose an additional condition to the algebra of M-matrices. Since H = H1H2 commutes
with S-matrix the trace can be expressed as sum

∑
i,j hisj(i) =

∑
i,j hi(j)sj of products of

correspondence eigenvalues and the simplest condition is that one has either
∑
j sj(i) = 0

for each i or
∑
i hi(j) = 0 for each j.

(c) It might be that one must restrict M-matrices to a Cartan algebra for a given U-matrix and
also this choice would be a process analogous to state function reduction. Since density
matrix becomes an observable in TGD Universe, this choice could be seen as a direct
counterpart for the choice of a maximal number of commuting observables which would
be now hermitian square roots of density matrices. Therefore ZEO gives good hopes of
reducing basic quantum measurement theory to infinite-dimensional Lie-algebra.

9.4.2 A concise description of quantum jump

In the following a minimalistic view about quantum jump is described. Both U-process and state
preparation reduce to state function reductions to two basis for zero energy states characterized by
opposite arrows of geometric time.
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Unitary process and choice of the density matrix

The basic question concerning U process is which of the following two options U-process corresponds
to.

1. U-process occurs for zero energy states. U-matrix would be defined in the space of zero energy
states and would represent kind of higher order scattering whereas M-matrix and S-matrix as
time-like entanglement coefficients would describe what happens in a scattering experiment.
This kind of possibility can be certainly considered since one can form zero energy states using
zero energy states as building bricks. Entire hierarchy of zero energy states could be constructed
in this manner.

2. U-process can be said to occur for either positive or negative energy parts of zero energy states.
This option is definitely minimal and in this case U-process for positive (negative) energy part
of the state is dual to state function reduction for the negative (positive) energy part of the
state. Furthermore, state function reduction is dual to state preparation. For this reason this
option deserves to be called minimalistic.

During years I have considered both options without clearly distinguishing between them. The
notion of time is very difficult concept: we do not have brain for time. Below I will consider only the
minimalistic option in the hope that Nature would prefer minimalism also at this time. There is no
need to emphasize how speculative these considerations are.

Consider first unitary process followed by the choice of the density matrix for the minimalistic
option.

1. There are two natural state basis for zero energy states. The states of these state basis are
prepared at the upper or lower boundary of CD respectively and correspond to various M-
matrices M+

K and M−L . U-process is simply a change of state basis meaning a representation
of the zero energy state M±K in zero energy basis M∓K followed by a state preparation to zero
energy state M±K with the state at second end fixed in turn followed by a reduction to M∓L to
its time reverse, which is of same type as the initial zero energy state.

The state function reduction to a given M-matrix M±K produces a state for the state is super-
position of states which are prepared at either lower or upper boundary of CD. It does not yet
produce a prepared state on the ordinary sense since it only selects the density matrix.

2. The matrix elements of U-matrix are obtained by acting with the representation of identity
matrix in the space of zero energy states as

I =
∑
K

|K+〉〈K+|

on the zero energy state |K−〉 (the action on |K+〉 is trivial!) and gives

U+
KL = Tr(M+

KM
+
L ) .

In the similar manner one has

U−KL = (U+†)KL = Tr(M−LM
−
K) = U+

LK .

These matrices are Hermitian conjugates of each other as matrices between states labelled by
positive or negative energy states. The interpretation is that two unitary processes are possible
and are time reversals of each other. The unitary process produces a new state only if its time
arrow is different from that for the initial state. The probabilities for transitions |K+〉 → |K−〉
are given by pmn = |Tr(M+

KM
+
L )|2.
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State function preparation

Consider next the counterparts of the ordinary state preparation process.

1. The ordinary state function process can act either at the upper or lower boundary of CD and
its action is thus on positive or negative energy part of the zero energy state. At the lower
boundary of CD this process selects one particular prepared states. At the upper boundary it
selects one particular final state of the scattering process.

2. Restrict for definiteness the consideration to the lower boundary of CD. Denote also MK by
M . At the lower boundary of CD the selection of prepared state - that is preparation process-
means the reduction ∑

m+n−

M±m+n− |m+〉|n−〉 →
∑
n−

M±m+n− |m+〉|n−〉 .

The reduction probability is given by

pm =
∑
n−

|Mm+n− |2 = ρm+m+ .

For this state the lower boundary carries a prepared state with the quantum numbers of state
|m+〉. For density matrix which is unit matrix (this option giving pure state might not be
possible) one has pm = 1.

State function reduction process

The process which is the analog of measuring the final state of the scattering process is also needed
and would mean state function reduction at the upper end of CD - to state |n−〉 now.

1. It is impossible to reduce to arbitrary state |m+〉|n−〉 and the reduction must at the upper end
of CD must mean a loss of preparation at the lower end of CD so that one would have kind of
time flip-flop!

2. The reduction probability for the process

|m+ ≡
∑
n−

Mm+n− |m+〉|n−〉 → n− =
∑
m+

Mm+n− |m+〉|n−〉

would be

pmn = |M2
mn| .

This is just what one would expect. The final outcome would be therefore a state of type |n−〉
and - this is very important- of the same type as the state from which the process began so that
the next process is also of type U+ and one can say that a definite arrow of time prevails.

3. Both the preparation and reduction process involves also a cascade of state function reduc-
tions leading to a choice of state basis corresponding to eigenstates of density matrices between
subsystems.

9.4.3 Questions and answers

Answering to question is the best possible manner to develop ideas in more comprehensible form. In
this respect the questions of Hamed at my blog have been especially useful. Many questions below
are made by him and inspired the objections, many of them discussed also in previous discussions.

Question: The minimalistic option suggests very strongly that our sensory perception can be
identified as quantum measurement assignable to state function reductions for upper or lower bound-
aries of our personal CD. Our sensory perception does not however jump between future and past
boundaries of our personal CD (containing sub-CDS in turn containing)! Why?
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Possible answer: If our sensory perception is about CD which is much bigger than personal
CD the problem disappears. We perceive from day to day the -say- positive energy part of a state
assignable to this very big CD. The world looks rather stable. Question: Could our sensory perception

actually do this jumping so that sensory inputs are alternatively about upper and lower boundaries
of personal CD? Could sleep-awake cycle correspond to this flip flop?

Possible answer: The geometric time span for quantum jumps in question would correspond
to the geometric time scale for our personal CD. In wake-up state we are performing state function
reduction at the upper boundary of our personal CD and sensory mental images as sub-CDs are
concentrated there. When we are asleep, same happens at lower boundary of CD and sensory mental
images are there (dreams,).

Question: What is the time scale assignable to my personal CD: the typical wake-up cycle: 24
hours? Or of the order of life span. Or perhaps shorter? Why we do not remember practically anything
about sensory perceptions during sleep period? (Note that we forget actively dream experiences).
Does the return to childhood at old age relate with this time flip-flop in the scale of life span: do we
re-incarnate in biologically death at opposite end of CD with scale of life span?

Possible answer: These are interesting possibilities. The explanation would be that for some
reason we do not have many memories about dream time existence? We certainly forget very rapidly
dream experiences. Is this process active and is it purpose to avoid the mixing of two realities? Or is
it due to the fact that the required communications to geometric past are over so long time interval
that the attempts to remember fail? Could dream memories represent memories about the period
in which our sensory percepts correspond to past boundary of CD? If this boundary corresponds to
time scale of life cycle, the memories would be about childhood. Dreams are often located to the past
and childhood.

Question: How the arrow of geometric time at space-time level emerges from the arrow of geo-
metric time for zero energy states? Why do we experience that we move along space-time sheets to
geometric future or equivalently: space-time sheets move with respect to us to geometric past?

Possible answer: The proposal (one of the many, see [K6]), which can be easily ridiculed, is
that the state function reductions performed by sub-selves assignable to sub-CDs at the boundary
of personal CD and representing mental images induce small time translations of space-time sheet
tending to shift it as a whole to past: this induces the arrow of geometric time. Space-time sheet
is like film which the curious audience in the movie theatre shifts to a preferred direction. I have
described this movie theatre metaphor in more detail in [K6].

The sub-selves representing sensory mental images are tiny conscious entities and would be very
curious! News are in the geometric future assignable to the space-time sheet and they want to know
what is there and they use their volitional resources to induce a small shift to geometric past.

Why selves would be ”curious”? Could this be understood in terms of Negentropy Maximization
Principle (NMP) [K47] stating that the information gain in quantum jump is maximal or by postulat-
ing a generalization of NMP Selves would be hungry information eaters. As a matter fact, according
to TGD inspired quantum biology our endless hunting of metabolic energy would not be about getting
energy but negentropy associated with the entanglement [K40].

Question: Can the arrow of time change?

Possible answer: A highly interesting question is what happens if the first state preparation
leading to a state |k+〉 is followed by a U-process of type U− rather than by the state function
reduction process |k+〉 → |l−〉. Does this mean that the arrow of geometric time changes? Could this
change of the arrow of geometric time take place in living matter? Could processes like molecular
self assembly be entropy producing processes but with non-standard arrow of geometric time? Or
are they processes in which negentropy increases by the fusion of negentropic parts to larger ones?
Could the variability relate to sleep-awake cycle and to the fact that during dreams we are often in
our childhood and youth. Old people are often said to return to their childhood. Could this have
more than a metaphoric meaning? Could biological death mean return to childhood at the level of
conscious experience? I have explained the recent views about the arrow of time in [K6].

One can consider also other views for the generation of arrow of time. Instead of the time coordinate
for space-time surface one can also consider time coordinate for imbedding space or rather CD. For
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instance, one can ask how the arrow of cosmic time identifiable as lightcone proper time assignable to
CD could be generated. sub-CDs have localization inside bigger CD containing them and one can
quite well imagine that sub-CDs within CD drift towards geometric future of CD quantum jump
by quantum jump and this gives rise to the experience of the time flow based on clock defined by
changing environment. This drifting could occur towards or away from boundaries of CD and would
be in opposite directions at the two boundaries. Various possibilities are discussed in [K6].

One can also imagine that the experience about flow of geometric time corresponds to a state
function reduction cascae at upper boundaries of sub-CDs proceeding from the lower boundary to
upper boundary of CD containing them. The preferred direction for the cascae would be dictated by
the arrow of time assignable to the zero energy states associated with CD.

To sum up, there are several candidates for the mechanism behind the arrow of geometric time
and it would be too early to select any mechanism as the mechanism.

9.4.4 More about the anatomy of state function reduction

In a comment to previous posting Ulla gave a link to an interesting article by George Svetlichny [J9]
describing an attempt to understand free will in terms of quantum measurement. After reading of the
article I found myself explaining once again to myself what state function reduction in TGD framework
really means.

The proposal of Svetlichny

The basic objection against assigning free will to state function reduction in the sense of wave me-
chanics is that state function reduction from the point of view of outsider is like playing dice. One
can of course argue that for an outsider any form of free will looks like throwing a dice since causally
effective experience of free will is accompanied by non-determinism. We simply do cannot know what
is the experience possibly associated with the state function reduction. The lesson is that we must
carefully distinguish between two levels: the single particle level and ensemble level - subjective and
objective. When we can say that something is random, we are talking about ensembles, not about
single member of ensemble.

The author takes the objection seriously and notices that quantum measurement means a division
of system to three parts: measured system, measuring system and external world and argues that in
some cases this division might not be unique. The choice of this division would have interpretation
as an act of free will. I leave it to the reader can decide whether this proposal is plausible or not.

TGD view about state function reduction

What can one say about the situation in TGD framework? There are several differences as compared
to the standard measurement ”theory”, which is just certain ad hoc rules combined with Born rule,
which applies naturally also in TGD framework and which I do not regard as adhoc in infinite-D
context.

In the sequel I will discuss the possible anatomy of the state function reduction part of the quantum
jump.

1. TGD ontology differs from the standard one. Space-time surfaces and quantum states as such
are zombies in TGD Universe: consciousness is in the quantum jump. Conscious experience is in
the change of the state of the brain, brain state as such is not conscious. Self means integration
of quantum jumps to higher level quantum jumps and the hierarchy of quantum jumps and
hierarchy of selves can be identified in ZEO . It has the hierarchy of CDs and space-time sheets
as geometrical correlates. In TGD Universe brain and body are not conscious: rather, conscious
experience is about brain and body and this leads to the illusion caused by the assimilation with
the target of sensory input: I am what I perceive.

2. In TGD framework one does not assume the division of the system to a product of measured
system, measuring system, and external world before the measurement. Rather, this kind of
divisions are outcomes of state function reduction which is part of quantum jump involving also
the unitary process. Note that standard measurement theory is not able to say anything about
the dynamics giving rise to this kind of divisions.

http://matpitka.blogspot.com/2012/02/views-about-free-will.html
http://arxiv.org/abs/1202.2007
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3. State function reduction cascade as a part of quantum jump - this holistic view is one new element
- proceeds in zero energy ontology (ZEO) from long to short length scales CD → sub−CDs→
..., and stops when Negentropy Maximization Principle (NMP [K47] defining the variational
principle of consciousness is also something new) does not allow to reduce entanglement entropy
for any subsystem pair of subsystem un-entangled with the external world. This is the case if
the sub-system in question is such that all divisions to two parts are negentropically entangled
or form an entangled bound state.

An interesting possibility is that negentropic entanglement does not correspond to bound state
entanglement. The negentropically entangled particles would remain correlated by NMP rather
than being in the jail defined by the interaction potential. I have proposed that this analog
of love marriage could be fundamental for understanding living matter and that high energy
phosphate bond central for ADP-ATP process could involve negentropic entanglement [K40].

For a given subsystem occurring in the cascade the splitting into an unentangled pair of measured
and measuring system can take place if the entanglement between these subsystems is entropic.
The splitting takes place for a pair with largest entanglement entropy and defines measuring
and measured system.

Who measures whom? This seems to be a matter of taste and one should not talk about
measuring system as conscious entity in TGD Universe, where consciousness is in quantum
jump.

4. The factorization of integer to primes is a rather precise number theoretical analogy for what
happens, and the analogy might actually have a deeper mathematical meaning since Hilbert
spaces with prime dimension cannot be decomposed into tensor products. Any factorization of
integer to a product of primes corresponds to a cascade of state function reductions. At the
first step division takes place to two integers and several alternative divisions are possible. The
pair for which the reduction of entanglement entropy is largest, is preferred. The resulting two
integers can be further factorized to two integers, and the process continues and eventually stops
when all factors are primes and no further factorization is possible.

One could even assign to any decomposition n = rs the analogs of entanglement probabilities
as p1 = log(r)/log(n) and p2 = log(s)/log(n). NMP would favor the divisions to factors r and
s which are as near as possible to n/2.

Negentropically entangled system is like prime. Note however that these systems can still make
an analog of state function reduction which does not split them but increases the negentropy
for all splittings of system to two parts. This would be possible only in the intersection of
real and p-adic worlds, that is for living matter. My cautious proposal is that just this kind of
systems - living systems - can experience free will: either in the analog of state function reduction
process increasing their negentropy or in state function process reducing their entanglement with
environment.

5. In standard measurement theory observer chooses the measured observables and the theory says
nothing about this process. In TGD the measured observable is the density matrix for a pair
formed by any two entangled parts of sub-system division for which negentropy gain is maximal
in quantum measurement defines the pair. Therefore both the measurement axis and the pair
representing the target of measurement and measurer are selected in quantum jump.

6. Quantum measurement theory assumes that measurement correlates classical long range degrees
of freedom with quantal degrees of freedom. One could say that the direction of the pointer
of the measurement apparatus correlates faithfully with the value of the measured microscopic
observable. This requires that the entanglement is reduced between microscopic and macroscopic
systems .

I have identified the ”classical” degrees of freedom in TGD framework as zero modes which by
definition do not contribute to the line-element of WCW although the WCW metric depends
on zero modes as external parameters. The induced Kähler field represents an infinite number
of zero modes whereas the Hamiltonians of the boundaries of CD define quantum fluctuating
degrees of freedom.
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The reduction of the entanglement between zero modes and quantum fluctuating degrees of
freedom is an essential part of quantum measurement process. Also state function reductions
between microscopic degrees of freedom are predicted to occur and this kind of reductions lead
to decoherence so that one can apply quantum statistical description and derive Boltzmann
equations. Also state function reductions between different values of zero modes are possible are
possible and one could perhaps assign ”telepathic” effects with them.

The differences with respect to the standard quantum measurement theory are that several
kinds of state function reductions are possible and that the division to classical and quantum
fluctuating degrees of freedom has a purely geometric meaning in TGD framework.

7. One can even imagine quantum parallel state function reduction cascades. This would make
possible quantum parallel dissipation, which would be something new. My original proposal was
that in hadronic physics this could make possible a state function reduction cascade proceeding
in quark scales while hadronic scales would remain entangled so that one could apply statistical
description to quarks as parts of a system, which is quantum coherent in hadronic length scale.

This looks nice but...! It is a pity that eventually an objection pops up against every idea
irrespective how cute it looks like. The p-adic primes associated with light quarks are larger
than that associated with hadron so that quarks - or rather, their magnetic bodies are larger than
that hadron’s magnetic body. This looks strange at first but actually conforms with Uncertainty
Principle and the observation that the charge radius of proton is slightly smaller than predicted
(see this, [K49]), gives support for this picture. Geometrically the situation might change if
quarks are highly relativistic and color magnetic fields of quarks are dipoled fields compressed
to cigar like shape: Lorentz contraction could reduce the size scale of their magnetic bodies in
the direction of their motion. [Note that p-adic length scale hypothesis applies in the rest system
of the particle so that Lorentz contraction is in conflict with it]. Situation remains unsettled.

Further questions

There are many other interesting issues about which my understanding could be much better.

1. In ZEO the choice of the quantization axes and would fix the moduli of the causal diamond CD:
the preferred time direction defined by the line connecting the tips of CD, the spin quantization
axis, etc.. This choice certainly occurs. Does it reduce to the measurement of a density matrix
for some decomposition of some subsystem to a pair? Or should one simply assume state function
reductions also at this level meaning localization to a sector of WCW corresponding to given
CD. This would involve localization in the moduli space of CDs selecting some boost of a
CD with fixed quantized proper time distance between it tips, fixed spin directions for positive
and negative energy parts of zero energy states defined by light-like geodesics at its light-like
boundary. Preferred complex coordinates for CP2, etc...

2. Zero energy states are characterized by arrow of geometric time in the sense that either positive
or negative energy parts of states have well defined particles numbers and single particle numbers
but not both. State function reduction is possible only for positive or negative energy part of
the state but not both. This should relate very closely to the fact that our sensory percepts
defined by state function reductions are mostly about the upper or lower boundary of CD, or to
the fact that we do not remember the percepts made from the other boundary during sleeping
period.

3. In ZEO also quantum jumps can also lead to generation of new sub-Universes, sub-CDs carrying
zero energy states. Quantum jumps can also involve phase transitions changing p-adic space-
time sheets to real ones and these could serve as quantum correlates for intentional actions.
Also the reverse process changing matter to thoughts is possible. These possibilities are totally
unimaginable in the quantum measurement theory for systems describable by wave mechanics.

4. There is also the notion of finite measurement resolution described in terms of inclusions of
hyperfinite factors at quantum level and in terms of braids at space-time level.

To summarize, a lot of theory building is needed in order to fuse all new elements to a coherent
framework. In this framework standard quantum measurement theory is only a collection of ad

http://matpitka.blogspot.com/2010/07/incredibly-shrinking-proton.htm
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hoc rules and can catch only a small part of what really happens. Certainly, standard quantum
measurement theory is is far from being enough for the purposes of consciousness theorist.

9.5 Generalization of NMP to the case of hyper-finite type
II1 factors

The intuitive notions about entanglement do not generalize trivially to the context of relativistic
quantum field theories as the rigorous algebraic approach of [C2] based on von Neumann algebras
demonstrates. von Neumann algebras can be written as direct integrals of basic building blocks
referred to as factors [A140] . Factors can be classified to three basic types labelled as type I, II,
and III. Factors of type I appear in non-relativistic quantum theory whereas factors of type III1 in
relativistic QFT [C2] . Factors of type II1 [A177] , believed by von Neumann to be fundamental,
appear naturally in TGD framework [K87] .

9.5.1 Factors of type I

The von Neuman factors of type I correspond to the algebras of bounded operators in finite or
infinite-dimensional separable Hilbert spaces. In the finite-dimensional case the algebra reduces to
the ordinary matrix algebra in the finite-dimensional case and to the algebra of bounded operators
of a separable Hilbert space in the infinite-dimensional case. Trace is the ordinary matrix trace. The
algebra of projection operators has one-dimensional projectors as basic building blocks (atoms), the
notion of pure state is well-defined, and the decomposition of entangled state to a superposition of
products of pure states is unique. This case corresponds to the ordinary non-relativistic quantum
theory. Ordinary quantum measurement theory and also the theory of quantum computation has
been formulated in terms of type I factors. Also the discussion of NMP has been formulated solely in
terms of factors of type I.

9.5.2 Factors of type II1

The so called hyper-finite type II1 factors, which are especially natural in TGD framework, can be
identified in terms of the Clifford algebra of an infinite-dimensional separable Hilbert space such
that the unit operator has unit trace. Essentially the fermionic oscillator operator algebra associated
with a separable state basis is in question. The theory of hyper-finite type II1 factors is rich and has
direct connections with conformal field theories [A178] , quantum groups [A181] , knot and 3-manifold
invariants [A208, A225, A133] , and topological quantum computation [K85] , [B35] .

The origin of hyper-finite factors of type II1 in TGD

Infinite-dimensional Clifford algebra corresponds in TGD framework to the super-algebra generated by
complexified configuration space gamma matrices creating configuration space spinors from vacuum
spinor which is the counterpart of Fock vacuum [K87] . By super-conformal symmetry also configura-
tion space degrees of freedom correspond to a similar factor. For type hyper-finite II1 factors the trace
is by definition finite and normalized such that the unit operator has unit trace. As a consequence,
the traces of projection operators have interpretation as probabilities.

Finite-dimensional projectors have vanishing traces so that the notion of pure state must be gen-
eralized. The natural generalization is obvious. Generalized pure states correspond to states for
which density matrix reduces to a projector with a finite norm. The physical interpretation is that
physical measurements are never able to resolve completely the infinite state degeneracy identifiable
in TGD framework as spin glass degeneracy basically caused by the vacuum degeneracy implying
non-determinism of Kähler action. An equivalent interpretation is in terms of state space resolution,
which can never be complete.

In TGD framework the relevant algebra can also involve finite-dimensional type I factors as tensor
factors. For instance, the entanglement between different space-time sheets could be of this kind and
thus completely reducible whereas the entanglement in configuration space spin and ”vibrational”
degrees of freedom (essentially fermionic Fock space) would be of type II1. The finite state-space
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resolution seems to effectively replace hyper-finite type II1 factors with finite-dimensional factors of
type I.

The new view about quantum measurement theory

This mathematical framework leads to a new kind of quantum measurement theory. The basic as-
sumption is that only a finite number of degrees of freedom can be quantum measured in a given
measurement and the rest remain untouched. What is known as Jones inclusions N ⊂ M of von
Neumann algebras allow to realize mathematically this idea [K87] . N characterizes measurement res-
olution and quantum measurement reduces the entanglement in the non-commutative quantum space
M/N . The outcome of the quantum measurement would still represented by a unitary S-matrix but
in the space characterized by N . It is not possible to end up with a pure state with a finite sequence
of quantum measurements.

The measurement of components of quantum spinors does not make sense since it due to the non-
commutativity it is not possible to talk about quantum spinor with single non-vanishing component.
Therefore the measurements must be thought of as occurring in the state space associated with
quantum spinors. The possible consequences of non-commutativity are considered from the point of
view of cognition in [K87] by starting from the observation that the moduli squared of quantum spinor
components are commuting hermitian operators possessing a universal rational valued spectrum which
suggests interpretation in terms of quantum version of fuzzy belief.

The obvious objection is that the replacement of a universal S-matrix coding entire physics with a
state dependent unitary entanglement matrix is too heavy a price to be paid for the resolution of the
above mentioned paradoxes. Situation could be saved if the S-matrices have fractal structure. The
quantum criticality of TGD Universe indeed implies fractality. The possibility of an infinite sequence
of Jones inclusions for hyperfinite type II1 factors isomorphic as von Neumann algebras expresses
this fractal character algebraically. Thus one can hope that the S-matrix appearing as entanglement
coefficients is more or less universal in the same manner as Mandelbrot fractal looks more or less the
same in all length scales and for all resolutions. Whether this kind of universality must be posed as
an additional condition on entanglement coefficients or is an automatic consequence of unitarity in
type II1 sense is an open question.

What happens in repeated measurements?

The assumption of the standard quantum measurement theory is that the outcome of state function
reduction does not change in further measurements if the combined system consisting of measured
system and performer of measurement is isolated. This hypothesis generalizes to the case of hyper-
finite type II1 factors. Suppose that the outcome of a quantum jump represented by a projection
operator P . If the combined system is not isolated, P can replaced by an arbitrary projection operator
in the next unitary process. If the combined system is isolated, the next unitary process leads to a
state in which P is replaced by a state expressible in terms of projection operators Pi projecting to
the sub-space defined by P , and one of them is selected in the next state function reduction or state
preparation. A never-ending series of quantum jumps forcing the state to a smaller and smaller but
always infinite-dimensional corner of the state-space would result in absence of the unitary process
regenerating the entanglement. This process could be seen as a counterpart for the process in which
state function reduction and state preparation processes propagate from long to short length scales.

The notion of rational entanglement has a natural type II1 counterpart and corresponds to rational
valued traces for the projection operators involved and rational valued coefficients for these projection
operators in the expression of the density matrix. The idea about rational entanglement (or algebraic
entanglement in algebraic extension of p-adics in question) as bound state entanglement carrying
negative entanglement entropy generalizes.

Rational density matrices are in a special role since they can be thought of as being common to
the real and p-adic variants of the state space. The information measures based on p-adic norm and
allowing negative entanglement entropy make sense also now. The question whether there might be
some deeper justification for the stability of the generalized rational (algebraic) entanglement against
state function reduction/preparation reducing entanglement negentropy in the context of hyper-finite
type II1 factors, remains to be answered.
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Consider a rationally entangled state characterized by projection operators Pi such that the prob-
abilities pi are rational and remain stable in the unitary process. For factor of type I, a situation
in which Pi are replaced by 1-dimensional projectors Qi < Pi is achieved sooner or later. In the
infinite-dimensional case this situation can be approached but never reached.

p-Adic thermodynamics with conformal cutoff and hyper-finite factors of type II1

For hyper-finite factors of type II1 the unit matrix has unit trace. Hence real probabilities assignable to
finite-dimensional projectors vanish so that the eigenvalues of the density matrix are always infinitely
degenerate in the real context. p-Adic probabilities however make sense as finite p-adic numbers even
if they vanish as real numbers. This raises the idea that p-adic probabilities are more natural for hyper-
finite factors of type II1 than real ones. Indeed, in p-adic context one could have finite probabilities for
even one-dimensional sub-spaces, which would definitely mean an enhanced expressive power of the
formalism. Thus hyper-finite factors of II1 would give the reason why for p-adic thermodynamics [K52]
.

The interpretation of p-adic probabilities is of overall importance from the point of view of physics.
When probabilities are rational, the number field does not matter. If not, it seems necessary to map
the p-adic probabilities to real ones. One can ask whether this mapping should respect probability
conservation without normalization by hand. The variants of canonical identification with some
additional conditions on probabilities satisfied for instance in p-adic thermodynamics provide a possible
manner to perform this map (see [K52] ). In [K77, K53] it is found that so called canonical identification
seems to provide a tool to achieve this.

Canonical identification in its basic form is defined as I :
∞∑
k=0

αkp
k 7→

∞∑
k=0

αkp
−k.

Canonical identification for rational numbers is defined using the unique representation q = r/s as

I(
r

s
) =

I(r)

I(s)
. (9.5.1)

Canonical identification allows a further generalization to the case of p-adic thermodynamics where

Boltzmann weights bn are fundamental and their sum defines partition function as Z =
∞∑
n=0

gnbn,

where gn is the degeneracy of the state with a given “energy” (or any conserved quantity whose
thermal average is fixed). In real thermodynamics Boltzmann weights are given by

b(En) = g(En)exp(−En/T ) , (9.5.2)

where En is “energy” and g(En) the integer valued degeneracy of states with energy En. In p-Adic
thermodynamics the partition function would not converges for this form of Boltzmann weights, which
are therefore replaced by b(En) = g(En)pEn/T and En/T is integer valued to guarantee the p-adic
existence of the conformal weight. The quantization of En/T to integer values implies quantization
of both T and “energy” spectrum and forces so called super conformal invariance in applications of
topological geometrodynamics (see [K52, K78] ), which is indeed a basic symmetry of the theory [K20]
. Thus the mere number theoretical existence fixes the physics to a high degree and indeed leads to the
understanding of elementary particle mass scales. For applications to the calculations of elementary
particle masses see [K52] .

In p-adic thermodynamics the probabilities would be given by pn = bn/Z and Nmax would be
replaced by Z. When bn are integers it is natural to define the canonical identification as

I(pn) = I(
bn
Z

) ≡ I(bn)

I(Z)
. (9.5.3)

A physically very powerful additional constraint is that the additivity of probabilities for indepen-
dent events holds true also for the real counterparts of the p-adic probabilities obtained by canonical
identification so that one would obtain also a real probability theory without ad hoc normalization of
the real images of p-adic probabilities. This condition is satisfied only if the Boltzman weights bn1 and
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bn2
for any pair (n1, n2) are p-adic integers having no common pinary digits so that no ”interference”

in the sum of the p-adic probabilities occurs.

The selection of a basis for independent events would correspond to a decomposition of the set
of integers labelling pinary digits to disjoint sets and brings in mind the selection of orthonormalized
basis of quantum states in quantum theory such that quantum measurement can give only one of
these states as an outcome. One can say that the probabilities define distributions of pinary digits
analogous to non-negative probability amplitudes in the space of integers labelling pinary digits,
and the probabilities of independent events must be orthogonal with respect to the inner product∑
n αnβnp

n of integers x = αnp
n and y = βnp

n defining analogs of wave functions in the space
of pinary digits. Or putting it somewhat differently: Boltzman weights bn for orthogonal quantum
states represent them as orthogonal states in the space of binary digits with orthogonality realized as
vanishing of the overlap for non-negative “wave functions”. This map puts strong constraints on the
probabilities of elementary independent events and is therefore highly interesting from the point of
view of physics.

p-Adic thermodynamics satisfies the constraint that p-adic probabilities have no common pinary
digits provided the degeneracies satisfy the condition g(En) < p (later a somewhat more general
conditions is deduced). For p-adic mass calculations (see [K44] ) the degeneracies g(n) of states with
conformal weight L0 = n (taking the role of “energy”) however increase exponentially so that the
condition is not satisfied for very large values of n. Since g(n) increases exponentially (say as 2nx,
where x is some parameter), probability conservation requires a cutoff of order nmax ∼ log2(p) to the
number of terms in the sum defining the partition function. In practice this cutoff has no implications
since already the two lowest terms give excellent approximation to the elementary particle masses.

For instance, the value of p is M127 = 2127 − 1 ∼ 1038 in the case of electron so that higher terms
in partition function Z are extremely small. The physical interpretation for the cutoff nmax would
be in terms of p-adic length scale hypothesis (see [K77, K53] stating that the length scales Lp ∝

√
p

with primes p ' 2k, k prime, are physically favored and the exponentially smaller p-adic length scale
Lk ∝

√
k defines the size scale of the elementary particle [K44] .

For the ordinary thermodynamics of strings the exponential increase gives rise to Hagedorn tem-
perature TH as the maximal temperature possible for strings (see [B21] ). The interpretation is that
the heat capacity of system grows without bound since the number of excited degrees of freedom
increases without bound as TH is approached. Clearly Hagedorn temperature is somewhat analogous
to the pinary cutoff in p-adic thermodynamics.

The interpretation of the conformal cutoff in terms of factors of type II1 factor would be that
all conformal weights n > ncr correspond to the same p-adic probability so that it is not possible to
distinguish experimentally between these states. This interpretation fits nicely with the notions of
resolution and monitoring.

9.5.3 Factors of type III

For algebras of type III associated with non-separable Hilbert spaces all projectors have infinite trace
so that the very notion of trace becomes obsolete. The factors of type III1 are associated with
quantum field theories in Minkowski space.

The highly counter-intuitive features of entanglement for type III factors are discussed in [C2] .

1. The von Neumann algebra defined by the observables restricted to an arbitrary small region of
Minkowski space in principle generates the whole algebra. Expressed in a more technical jargon,
any field state with a bound energy is cyclic for each local algebra of observables so that the
field could be obtained in entire space-time from measurements in an arbitrary small region of
space-time. This kind of quantum holography looks too strong an idealization.

In TGD framework the replacement of Minkowski space-time with space-time sheet seems to
restrict the quantum holography to the boundaries of the space-time sheet. Furthermore, in TGD
framework the situation is nearer to the non-relativistic one since Poincare transformations are
not symmetries of space-time and because 3-surface is the fundamental unit of dynamics. Also
in TGD framework M4 cm degrees of 3-surfaces are present but it would seem that they appear
as labels of type II1 factors in direct integral decomposition rather than as arguments of field
operators.
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2. The notion of pure state does not make sense in this case since the algebra lacks atoms and
projector traces do not define probabilities. The generalization of the notion of pure state as in
II1 case does not make sense since projectors have infinite trace.

3. Entanglement makes sense but has very counter-intuitive properties. First of all, there is no
decomposition of density matrix in terms of projectors to pure states nor any obvious general-
ization of pure states. There exists no measure for the degree of entanglement, which is easy to
understand since one cannot assign probabilities to the projectors as their traces.

4. For any pair of space-like separated systems, a dense set of states violates Bell inequalities so that
correlations cannot be regarded as classical. This is in a sharp contrast with elementary quan-
tum mechanics, where ”de-coherence effects” are believed to drive the states into a classically
correlated states.

5. No local measurement can remove the entanglement between a local system and its environment.
In TGD framework local operations would correspond to operations associated with a given
space-time sheet. Irreducible type II1 entanglement between different space-time sheets, if
indeed present, might have an interpretation in terms of a finite resolution at state space level
due to spin glass degeneracy.

On basis of these findings, one might well claim that the axiomatics of relativistic quantum field
theories is not consistent with the basic physical intuitions.

9.6 Some consequences of NMP

In the sequel the most obvious consequences of self measurement and NMP are discussed from the
point of view of physics, biology, cognition, and quantum computing. The recent discussion differs
considerably from the earlier one since several new elements are involved. Zero energy ontology and the
hierarchy of CDs, the hierarchy of Planck constants and dark matter, and -perhaps most importantly-
the better understanding negentropic entanglement as something genuinely new and making sense in
the interection of real and various p-adic worlds at which living matter is assumed to reside.

9.6.1 NMP and thermodynamics

The physical status of the second law has been a longstanding open issue in physics- in particular
biophysics. In positive energy ontology the understanding of the origin of second law is simple.
Quantum jumps involve state function reduction (or more generally, self measurement) with a random
outcome and in the case of ensemble of identical system this leads to to a probability distribution for
the states of the members of the ensemble. This implies Boltzmann equations implying the second
law. In TGD framework there are many elements which force to question this simple picture: zero
energy ontology and CDs, effective four-dimensionality of the ensemble defined by states assignable
to sub-CDs, hierarchy of Planck constants, and the possibility of negentropic entanglement.

Zero energy ontology and thermodynamical ensembles

Zero energy ontology means that the thermodynamics appears both at the level of quantum states
and at the level of ensembles. At the level of quantum states this means that M -matrix can be seen
as a complex square root of the density matrix: ρ = MM†, where M is expressible as a product
of a positive and diagonal square root of density matrix and unitary S-matrix identifiable as the
S-matrix used in quantum physics. U matrix can be seen as a collection of M -matrices as will be
found later so that U -matrix fixes M -matrices contrary to what was believed originally. One can say
that thermodynamics -at least in some sense- is represented at the level of single particle states. It is
natural to assume that this density matrix is measured in particle physics experiment, and that this
measurement corresponds to a state function reduction, which in standard physics picture corresponds
to a preparation for the initial states and state function reduction for the final states.

The p-adic thermodynamics, which applies to conformal weights rather than energy, predicts
successfully elementary particle masses [K52] and should reduce to this thermodynamics. That p-adic
thermodynamics can be applied at all suggests that even elementary particles reside in the intersection
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of the real and p-adic worlds so that either p-adic thermodynamics or real thermodynamics with
additional constraints on temperature implied by number theory applies.

Thermodynamical ensembles are 4-dimensional

The hierarchy of CDs within CDs defines a hierarchy of sub-systems and sub-CDs define in a natural
manner 4-dimensional ensemble. If the state function reduction leads to unentangled states, the
outcome is an ensemble describable by the density matrix assignable to the single particle states. The
sequence of quantum jumps is expected to lead to a 4-D counterpart of thermodynamical ensemble and
thermodynamics results when one labels the states by the quantum numbers assignable to their positive
energy part. Entropy is assigned with entire 4-D CD rather than to its 3-dimensional time=constant
snapshots. The thermodynamical time is basically the subjective time and measured in terms of
quantum jumps but has a correlation with geometric time as explained in [K6] and explained briefly
below.

This picture differs from the standard views, and this might explain the paradoxical situation in
cosmology resulting from the fact that the initial state of the universe in the standard sense of the
word looks highly entropic whereas second law would suggest the opposite [K71] . The cosmological
entropy is assigned with a CD of size scale defined by the value of the age of the universe. In this
kind of situation each quantum jump replaces the zero energy state with a new one and also induces a
drift in the space of CDs to the direction of larger CDs with size defined by the proper time distance
between the tips of CD coming as power of 2. Entropy as a function of cosmic time corresponds in
TGD framework to the increase of the 4-D entropy as a function of the quantized proper time distance
between the tips of the CD.

In this framework it is possible to understand second law in cosmic time scales apart from the
possible effects related to the negentropic entanglement responsible for the evolution and breaking of
second law in arbitrarily long time scales. For instance, the number of sub-CDs increases meaning
the increase of the size of the ensemble and the emergence of new p-adic length scales as the size of
cosmic CD increases. What is fascinating is that the TGD counterpart of cosmic time is quantized
in powers of two. This might have predictable effects such as the occurrence of the cosmic expansion
in a jump-wise manner. I have discussed an explanation of the accelerated cosmic expansion in terms
of quantum jumps of this kind but starting from somewhat different picture [K71] .

How second law must be modified?

Second law as such does not certainly apply in TGD framework.

1. The hierarchy of CDs forces to introduce a fractal version of the second law taking into account
the p-adic length scale hypothesis and dark matter hierarchy. This means that the idea about
quantum parallel Universes generalizes to that of quantum parallel dissipating Universes. For
instance, the parton model of hadrons based on quarks and gluons relies on kinetic equations and
is basically thermodynamical whereas the model for hadron applied at low energies is quantum
mechanical. These two views are consistent if quantum parallel dissipation realized in terms of a
hierarchy of CDs is accepted. p-Adic length scale hierarchy with p-adic length scale hypothesis
stating that primes near powers of two are preferred corresponds to this dissipative quantum
parallellism. Dark matter hierarchy brings in a further dissipative quantum parallelism.

2. Second law should always be applied only at a given level of p-adic and dark matter hierarchy
and one must always take into account two time scales involved corresponding to the time scale
assignable to the system identifiable as the time scale characterizing corresponding CD and the
time scale in which the system is observed. Only if the latter time scale is considerably longer
than the CD time scale, second law is expected to make sense in TGD framework -this provided
one restricts the consideration to the entropic entanglement. The reason is that the Boltzmann
equations implying the second law require that the geometric time scale assignable to quantum
jump is considerably shorter than the time scale of observation: this guarantees that the random
nature of quantum jump allows to use statistical approach.

3. The possibility of negentropic entanglement in time scale of CD brings a further new element
strongly suggesting that the mechanical application of second law does to living matter does not
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make sense. The basic time scales for CDs come as powers of two and the hierarchy of Planck
constants in the most general case allows rational multiples of these. If a restriction is made
to singular covering spaces of CD and CP2 (this might well be consistent with experimental
inputs), only integer multiples of these time scales are predicted at the level of dark matter. The
increase of Planck constant allows to scale up the time scale of quantum coherence associated
with the negentropic entanglement and this provides a further good reason for why large values
of Planck constant should be favored in living matter.

4. The reduction of entanglement entropy at single particle level implies the increase of thermo-
dynamical entropy at the level of ensemble in the case of entropic non-binding entanglement.
This applies also to bound state entanglement leading to a generation of entropy at the level of
binding systems and a reduction of the contribution of the bound systems to the entropy of the
entire system. Note however the emission of binding energy -say in form of photons- could take
care of the compensation so that entropy would be never reduced for ensemble. In the case of
negentropic entanglement the situation is different.

The entropy of the negentropically entangled system is negative and the synenergic aspect of
negentropic entanglement means that the system does not contribute to thermodynamical en-
tropy. This means that second law could be broken in the geometric time scale considered. One
must of course be careful in distinguishing between geometric and subjective time. In the case
of subjective time the negentropic situation could continue forever unless the CD disappears in
some quantum jump (highly non-probable for large enough CDs). If not, then endless evolution
at the level of conscious experience is possible in the intersection of real and p-adic worlds and
heat death is not the fate of the Universe as in ordinary thermodynamics.

5. The breaking of second law must correspond to the breaking of ergodicity. Spin glasses are non-
ergodic systems and TGD Universe is analogous to a 4-D quantum spin glass by the failure of
strict non-determinism of Kähler action reflecting itself as vacuum degeneracy. Does the quan-
tum spin glass property of the TGD universe imply the breaking of the second law? Gravitation
has been seen as one possible candidate for the breaking second law because of its long range
nature. It is indeed classical gravitational energy which distinguishes between almost degenerate
spin glass states. The huge value of gravitational Planck constant associated with space-time
sheets mediating gravitational interaction and making possible perturbative quantum treatment
of gravitational interaction would indeed suggest the breaking of second law in cosmological time
scales. For instance, black hole entropy which is inversely proportional to GM2/~gr would be
for the values of gravitational Planck constant involved of the order of unity.

What do experiments say about second law?

That the status of the second law is far from settled is demonstrated by an experiment performed by
a research group in Australian National University [D3] . The group studied a system consisting of
100 small beads in water. One bead was shot by a laser beam so that it became charged and was
trapped. The container holding the beads was then moved from side to side 1000 times per second
so that the trapped bead dragged first one way and then another. The system was monitored and
for monitoring times not longer than .1 seconds second law did not hold always: entropy could also
decrease.

1. What is remarkable that .1 seconds defines the duration τ of the memetic code word and cor-
responds to the secondary p-adic time scale Tp(2) =

√
pLp/c associated with Mersenne prime

p = M127 characterizing electron. This correspondence follows solely from the model of genetic
code predicting hierarchy of codes associated with p = 3, 7, 127 (genetic code), p = M127,... τ
should be the fundamental time scale of consciousness. For instance, average alpha frequency
10 Hz corresponds to this time scale and ’features’ inside cortex representing sensory percepts
have average duration of .1 seconds.

For electrons the CDs would have spatial size L = 3×107 meters, which is slightly smaller than
the circumference of Earth (L = cT , T = .1 s, the duration of sensory moment) so that they
would have a strong overlap. One can of course ask whether this is an accident. For instance,
the lowest Schumann frequency is around 7.8 Hz and not far from 10 Hz. What is interesting
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that Bohr orbit model [K70] predicts that Universe might be populated by Earth like systems
having same distance from their Sun (stars with mass near that of Sun are very frequent). Bohr
orbitology applied to Earth itself could also lead to the quantization of the radius of Earth.

2. The first observation was made for more than 15 years ago. Even more remarkable is the recent
observation that the time scale of CD associated with electron is .1 seconds. Can one assign the
breaking of the second law with the field bodies of electrons?

3. The experiment involves also a millisecond time scale. I do not know whether it is essential that
the time scale is just this but one can play with the though that it is. Millisecond time scale is
roughly the duration of seventh bit of the genetic codeword if its bits correspond to CDs with
sizes coming as subsequence octaves of the basic time scale. Millisecond defines also the time
scale for the duration of the nerve pulse and the frequency of kHz cortical synchrony.

At the level of CDs millisecond time scale would correspond to a secondary p-adic time scale
assignable to k = 120. Only u and d quarks, which appear with several p-adic mass scales
in hadron physics and are predicted to be present as light variants also in nuclear physics as
predicted by TGD, could correspond to this p-adic length scale: the prediction for their mass
scale would be 5 MeV. Does this mean that the basic time scales of living matter correspond
directly to the basic time scales of elementary particle physics?

4. A further interesting point is that neutrinos correspond to .1 eV mass scale. This means that
the p-adic length scale is around k = 167 which means that the corresponding CD has time
scale which is roughly 240 times that for electron and corresponds to the primary p-adic length
scale of 2.5 µm (size of cellular nucleus) and tothe time scale of 104 years. I have proposed
that so called cognitive neutrino pairs consisting of neutrino and antineutrino assignable to
the opposite throats of wormhole contact could play key a role in the formation of cognitive
representations [K63] . This assumption looks now un-necessarily restrictive but one could quite
well consider the possibility that neutrinos are responsible for the longest time scales assignable
to consciousness for ordinary value of ~ (not necessarily our consciousness!). Large value of ~
could make also possible the situation in which intermediate gauge bosons are effectively massless
in cell length scale so that electro-weak symmetry breaking would be absent. This would require
~ ' 233. For this value of ~ the time scale of electronic CD is of the order of the duration of
human of human life cycle. This would scale up the Compton length of neutrino to about 10
kilometers and the temporal size of neutrino CD to a super-cosmological time scale.

9.6.2 NMP and self-organization

NMP leads to new vision about self-organization about which adetailed vision is discussed in [K67] .
Here only some key points are emphasized.

1. Dissipation selects the asymptotic self-organization patterns in the standard theory of self-
organization and the outcomes are interesting in the presence of energy feed. The feed of energy
can be generalized to feed of any kind of quantum numbers: for instance, feed of quantum num-
bers characterizing qualia. In fact, energy increment in quantum jump defines one particular
kind of quale [K32] .

2. The notion of self relates very closely to self-organization in TGD framework [K67] . Self is a
dissipative structure because it has subselves which dissipate quantum parallely with it. Self as
a perceiver maps the dissipation at the level of quantities in the external world to dissipation at
the level of qualia in the internal world.

3. Dissipation leads to self-organization patterns and in the absence of external energy feed to
thermal equilibrium. Thus thermodynamics emerges as a description for an ensemble of selves
or for the time average behavior or single self when external energy feed to system is absent. One
can also understand how the dissipative universe characterized by the presence of parameters
like diffusion constants, conductivities, viscosities, etc.. in the otherwise reversible equations of
motion, emerges. Dissipative dynamics is in a well defined sense the envelope for the sequence of
reversible dynamical evolutions modelling the sequence of final state quantum histories defined
by quantum jumps.
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4. Quantum self-organization can be seen as iteration of the unitary process followed by state
function reduction and leads to fixed point self-organization patterns analogous to the patterns
emerging in Benard flow. Since selves approach ’asymptotic selves’, dissipation can be regarded
as a Darwinian selector of both genes and memes. Thus not only surviving physical systems
but also stable conscious experiences of selves, habits, skills, behaviors, etc... are a result of
Darwinian selection.

5. In TGD one must distinguish between two kinds of self organizations corresponding to the
entropic bound state entanglement and negentropic entanglement. Biological self-organization
could be therefore fundamentally different from the non-biological one. The succes of the p-adic
mass calculations suggest that even elementary particles live in the intersection of real and p-
adic worlds so that one should be very cautious in making strong conclusions. Certainly the
intentional, goal-directed behavior of the system in some time scale is a signature of negentropic
self-organization but it is difficult to apply this criterion in time scales vastly different from
human time scales. It is the field bodies (or magnetic bodies) , which can be assigned naturally
to CDs which suggests that the negentropic self organization occurs at this level. TGD based
vision about living matter actually assumes this implicitly.

6. What is new that even quantum jump itself can be seen as a self-organization process analogous
to Darwinian selection, which eliminates all unbound entanglement and yields a state containing
only bound state state entanglement or negentropic entanglement and representing analog of the
self-organization patterns. By macro-temporal quantum coherence effectively gluing quantum
jumps sequences to single quantum jump this pattern replicates itself fractally in various time
scales. Thus self-organization patterns can be identified as bound states and states paired by
a negentropic entanglement and the development of the self-organization pattern as a fractally
scaled up version of single quantum jump. Second new element is that dissipation is not mere
destruction of order but producer of jewels. A further new element is that dissipation can occur
in quantum parallel manner in various scales.

7. The failure of the determinism in standard sense for Kähler action is consistent with the clas-
sical description of dissipation. In particular, the emergence of sub-selves inside self looks like
dissipation from outside but corresponds to self-organization from the point of view of self. 4-
dimensional spin glass degeneracy meaning breaking of ergodicity crucial for self-organization is
highly suggestive on basis of the vacuum degeneracy of Kähler action, and this alone predicts
ultrametric topology for the landscape of the maxima of Kähler function defined in terms of
Kähler action so that p-adicity emerges naturally also in this manner.

One particularly interesting concrete prediction is that the time scales assignable to CDs come
as powers of two. This predicts fundamental frequencies coming as powers of two, and the hierarchy
of Planck constants predicts rational or at least integer multiples of these frequencies. Could these
powers of two relate to frequency doubling rather generally observed in hydrodynamical self-organizing
systems?

9.6.3 NMP and p-adic length scale hypothesis

The original form of the p-adic length scale hypothesis stated that physically most interesting p-adic
primes satisfy p ' 2k , k prime or power of prime. It has however turned out that all positive integers
k are possible. Surprisingly few new length scales are predicted by this generalization in physically
interesting length scales. p-Adic length scale hypothesis leads to excellent predictions for elementary
particle masses (note that the mass prediction is exponentially sensitive to the value of k) and explains
also some interesting length scales of biology: for instance, the thicknesses of the cell membrane and
of single lipid layer of cell membrane correspond to k = 151 and k = 149 respectively.

The big problem of p-adic TGD is to derive this hypothesis from the basic structure of the theory.

1. One argument is based on black hole-elementary particle analogy [K57] leading to the general-
ization of the Hawking-Bekenstein formula: the requirement leading to the p-adic length scale
hypothesis is that the radius of the so called elementary particle horizon is itself a p-adic length
scale. This argument involves p-adic entropy essentially and it seems that information processing
is somehow involved.
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2. Zero energy ontology predicts p-adic length scale hypothesis if one accepts the assumption that
the proper time distances between the tips of CDs come as powers of 2 [K57] . A more general
highly suggestive proposal is that the relative position between tips forms a lattice at proper
time constant hyperboloid having as a symmetry group discrete subgroup of Lorentz group
(which could reduce to a subgroup of the group SO(3) acting as isotropy group for the time-like
direction defined by the relative coordinate between the tips of CD [K71] .

p-Adic length scale hypothesis could be understood as a resonance in frequency domain -most
naturally for massless particles like photons. The secondary p-adic time scale for favored p-adic
primes must be as near as possible to the proper time distance between the tips of CD. Mersenne
primes Mn = 2n − 1 (n is prime) satisfy this condition. Also log(p) is in this case as near as
possible to log(2n) and in the sense that the unit of negentropy defined as log(2n−m(n))/log(2n)
is maximized. This argument might work also for Gaussian Mersennes Gn = (1 + i)n − 1 (n is
prime also now) if one restricts the consideration to Gaussian primes.

A more general and more realistic looking hypothesis is that a given CD can have partonic light-
like 3-surfaces ending at its boundaries for all p-adic length scales up to that associated with
CD: powers of 2 would be favored by the condition of commeasurability very much analogous
to frequency doubling.

3. An exciting possibility, suggested already earlier half seriously, is that evolution is present already
at elementary particle level. This is the case if elementary particles reside in the intersection
of real and p-adic worlds. The success of p-adic mass calculations and the identification of
p-adic physics as physics of cognition indeed forces this interpretation. In particular, one can
understand p-adic length scale hypothesis as reflecting the survival of the cognitively fittest
p-adic topologies.

I have discussed also other explanations.

1. A possible physical reason for the primes near prime powers of 2 is that survival necessitates
the ability to co-operate, to act in resonance: this requirement might force commeasurability
of the length scales for p-adic space-time sheet (p1) glued to larger space-time sheet (p2 > p1).
The hierarchy would state from 2-adic level having characteristic fractal length scales coming as
powers of

√
2. When p > 2 space-time sheet is generated during cosmological evolution L(p) for

it must correspond to power of
√

2 so that one must have p ' 2n.

2. A model for learning [K16] as a transformation of the reflective level of consciousness to proto
level supports the view that evolution and learning occur already at elementary particle level
as indeed suggested by NMP: the p-adic primes near power of prime powers of two are the
fittest ones. The core of the argument is the characterization of learning as a map from 2N

many-fermion states to M association sequences. The number of association sequences should
be as near as possible equal to 2N . If M is power of prime: M = pK , association sequences
can be given formally the structure of a finite field G(p,K) and p-adic length scale hypothesis
follows as a consequence of K = 1. NMP provides the reason for why M = pK is favored: in
this case one can construct realization of quantum computer with entanglement probabilities
pk = 1/M = 1/pK and the negentropy gain in quantum jump is Klog(p) while for M not
divisible by p the negentropy gain is zero.

9.6.4 NMP and biology

The notion of self is crucial for the understanding of bio-systems and consciousness. It seems that
the negentropic entanglement is the decisive element of life and that one can say that in metaphoral
sense life resides in the intersection of real and p-adic worlds.

Life as islands of rational/algebraic numbers in the seas of real and p-adic continua?

Rational and even algebraic entanglement coefficients make sense in the intersection of real and p-adic
words, which suggests that life and conscious intelligence reside in the intersection of the real and
p-adic worlds. This would mean that the mathematical expressions for the space-time surfaces (or
at least 3-surfaces or partonic 2-surfaces and their 4-D tangent planes) make sense in both real and
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p-adic sense for some primes p. Same would apply to the expressions defining quantum states. In
particular, entanglement probabilities would be rationals or algebraic numbers so that entanglement
can be negentropic and the formation of bound states in the intersection of real and p-adic worlds
generates information and is thus favored by NMP.

The identification of intentionality as the basic aspect of life seems to be consistent with this idea.

1. The proposed realization of the intentional action has been as a transformation of p-adic space-
time sheet to a real one. Also transformations of real space-time sheets to p-adic space-time
sheets identifiable as cognitions are possible. Algebraic entanglement is a prerequisite for the
realization of intentions in this manner. Essentially a leakage between p-adic and real worlds is
in question and makes sense only in zero energy ontology. The reason is that various quantum
numbers in real and p-adic sectors are not in general comparable in positive energy ontology so
that conservation laws would be broken or even cease to make sense.

2. The transformation of intention to action can occur if the partonic 2-surfaces and their 4-D
tangent space-distributions are representable using rational functions with rational (or even
algebraic) coefficients in preferred coordinates for the imbedding space dictated by symmetry
considerations. Intentional systems must live in the intersection of real and p-adic worlds.

3. For the minimal option life would be also effectively 2-dimensional phenomenon and essentially a
boundary phenomenon as also number theoretical criticality suggests. There are good reasons to
expect that only the data from the intersection of real and p-adic partonic two-surfaces appears
in U -matrix so that only the data from rational and some algebraic points of the partonic 2-
surface dictate U -matrix. This means discretization at parton level and something which might
be called number theoretic quantum field theory should emerge as a description of intentional
action.

A good guess is that algebraic entanglement is essential for quantum computation, which therefore
might correspond to a conscious process. Hence cognition could be seen as a quantum computation
like process, a more approriate term being quantum problem solving [K25] . Living-dead dichotomy
could correspond to rational-irrational or to algebraic-transcendental dichotomy: this at least when
life is interpreted as intelligent life. Life would in a well defined sense correspond to islands of rational-
ity/algebraicity in the seas of real and p-adic continua. Life as a critical phenomenon in the number
theoretical sense would be one aspect of quantum crticality of TGD Universe besides the criticality
of the space-time dynamics and the criticality with respect to phase transitions changing the value of
Planck constant and other more familiar criticalities. How closely these criticalities relate remains an
open question [K67] .

The view about the crucial role of rational and algebraic numbers as far as intelligent life is
considered, could have been guessed on very general grounds from the analogy with the orbits of a
dynamical system. Rational numbers allow a predictable periodic decimal/pinary expansion and are
analogous to one-dimensional periodic orbits. Algebraic numbers are related to rationals by a finite
number of algebraic operations and are intermediate between periodic and chaotic orbits allowing an
interpretation as an element in an algebraic extension of any p-adic number field. The projections of
the orbit to various coordinate directions of the algebraic extension represent now periodic orbits. The
decimal/pinary expansions of transcendentals are un-predictable being analogous to chaotic orbits.
The special role of rational and algebraic numbers was realized already by Pythagoras, and the fact
that the ratios for the frequencies of the musical scale are rationals supports the special nature of
rational and algebraic numbers. The special nature of the Golden Mean, which involves

√
5, conforms

the view that algebraic numbers rather than only rationals are essential for life.
That only algebraic extensions are possible is of course only a working hypothesis. Also finite-

dimensional extensions of p-adic numbers involving transcendentals are possible and might in fact be
necessary. Consider for instance the extension containing e, e2, .., ep−1 as units (ep is ordinary p-adic
number. Infinite number of analogous finite-dimensional extensions can be constructed by taking a
function of integer variable such that f(p) exists both p-adically and as a real transcendental number.
The powers of f(p)1/n for a fixed value of n define a finite-dimensional transcendental extension of
p-adic numbers if the roots do not exist p-adically.

Numbers like log(p) and π cannot belong to a finite-dimensional extension of p-adic numbers [K30]
. One cannot of course take any strong attitude concerning the possibility of infinite-dimensional ex-
tensions of p-adic numbers but the working hypothesis has been that they are absent. The phases
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exp(i2π/n) define finite dimensional extensions allowing to replace the notion of angle in finite mea-
surement resolution with the corresponding phase factors in finite measurement. The functions
exp(i2πq/n), where q is arbitrary p-adic integers define in a natural manner the physical counter-
parts of plane waves and angular momentum eigenstates not allowing an identification as ordinary
p-adic exponential functions. They are clearly strictily periodic functions of q with a finite value set.
If n is divisible by a power of p, these functions are continuous since the values of the function for q
and q + kpn are identical for large enough values of n. This condition is essential and means in the
case of plane waves that the size scale of a system (say one-dimensional box) is multiple of a power of
p.

Evolution and second law

Evolution has many facets in TGD framework.

1. A natural characterization of evolution is in terms of p-adic topology relating naturally to cog-
nition. p-Adic primes near powers of two are favored if CDs have the proposed discrete size
spectrum. From the point of view of self this would be essentially cosmic expansion in discrete
jumps. CDs and can be characterized by powers of 2 and if partonic 2-surfaces correspond to ef-
fective p-adic p-adic topology characterized by a power of two, one obtains the commeasurability
of the secondary p-adic time scale of particle and that of CD in good approximation.

2. The notion of infinite primes motivates the hypothesis that the many-sheeted structure of space-
time can be coded by infinite primes [K76] . The number of primes larger than given infinite
prime P is infinitely larger than the number of primes than P . The infinite prime P characteriz-
ing the entire universe decomposes in a well defined manner to finite primes and p-adic evolution
at the level of entire universe is implied by local p-adic evolution at the level of selves. Therefore
maximum entanglement negentropy gain for p-adic self increases at least as log(p) with p in the
long run. This kind of relationship might hold true for real selves of p-adic physics is physics of
cognitive representations of real physics as suggested by the success of p-adic mass calculations.
Thus it should be possible to assign definite p-adic prime to each partonic 2-surface.

3. A further aspect of evolution relates to the hierarchy of Planck constants implying that at dark
matter levels rational or at least integer multiples of the favored p-adic time scales are realized.
The latter option is favored by the idea that the book like structure with pages consisting
of many-sheeted coverings of CD and CP2, and correlates with the emergence of algebraic
extensions of p-adic numbers defined by the roots exp(i2π/n) of unity. For the latter option
evolution by quantum jumps would automatically imply the drifting of the partonic 2-surfaces
to the pages of books labelled by increasing values of Planck constant. For more general option
one might argue that drifting to pages with small values of Planck constant is also possible. This
would give kind of antizooms of long length scale physics to short scales. Both kind of temporal
zooms could be crucial for conscious intelligence building scaled models about time evolution in
various scales.

4. The generation of negentropic entanglement between different number fields would of course be
the fundamental aspect of evolution. It would give rise to increasingly complex and negentropic
sensory perceptions and cognitive representations based on conscious rules coded by negentropic
entanglement. This would justify the association concept as it used in neuro-science. Negentropic
entanglement could be also crucial for the basic mechanism of metabolism and make possible
conscious co-operation even in nano-scales.

Just for fun one can play also with numbers.

1. The highest dark matter level associated with self corresponds to its geometric duration which
can be arbitrarily long: the typical duration of the memory span gives an idea about the level
of dark matter hierarchy involved if one assumes that the time scale .1 seconds assignable to
electrons is the fundamental time scale. If the time scale T of human life cycle corresponds to a
secondary p-adic time scale then T = 100 years gives the rough estimate r ≡ ~/~0 = 233 if this
time scale corresponds to that for dark electron. The corresponding primary p-adic time length
scale corresponds to k = 160 and is 2.2× 10−7 meters.
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2. If human time scale -taken to be T = 100 years- corresponds to primary p-adic time scale of
electron, one must have roughly r = 297.

I have already discussed the second law in TGD framework and it seems that its applies only when
the time scale of perception is longer than the time scale characterizing the level of the p-adic and
dark matter hierarchy. Second law as it is usually stated can be seen as an unavoidable implication
of the materialistic ontology.

Stable entanglement and quantum metabolism as different sides of the same coin

The notion of binding has two meanings. Binding as a formation of bound state and binding as a
fusion of mental images to larger ones essential for the functioning of brain and regarded as one the
big problems of consciousness theory.

Only bound state entanglement and negentropic entanglement are stable against the state reduc-
tion process. Hence the fusion of the mental images implies the formation of a bound entropic state-
in this case the two interpretations of binding are equivalent- or a negentropic state, which need not
be bound state.

1. In the case of negentropic entanglement bound state need not be formed and the interesting
possibility is that the negentropic entanglement could give rise to stable states without binding
energy. This could allow to understand the mysterious high energy phosphate bond to which
metabolic energy is assigned in ATP molecule containing three phosphates and liberated as
ATP decays to ADP and phosphate molecule. Negentropic entanglement could also explain the
stability of DNA and other highly charged biopolymers. In this framework the liberation of
metabolic (negentropic) energy would involve dropping of electrons to a larger space-time sheets
accompanying the process ATP → ADP + Pi. A detailed model of this process is discussed
in [K29] .

2. The formation of bound state entanglement is expected to involve a liberation of the binding
energy and this energy might be a usable energy. This process could perhaps be coined as
quantum metabolism and one could say that quantum metabolism and formation of bound
states are different sides of the same coin. It is known that an intense neural activity, although
it is accompanied by an enhanced blood flow to the region surrounding the neural activity,
does not involve an enhanced oxidative metabolism [J3] (that is ATP → ADP process and
its reversal). A possible explanation is that quantum metabolism accompanying the binding is
involved. Note that the bound state is sooner or later destroyed by the thermal noise so that
this mechanism would in a rather clever manner utilize thermal energy by applying what might
be called buy now–pay later principle.

If these interpretations are correct, there would be two modes of metabolism corresponding to two
different kinds of fusion of mental images.

9.6.5 NMP, consciousness, and cognition

As already found NMP dictates the subjective time development of self and is therefore the basic law
of consciousness. If p-adic physics is the physics of cognition, the most exotic implications of NMP
relate to cognition rather than standard physics.

Thermodynamics for qualia

If only entropic entanglement is assumed, second law seems to hold also at the level of conscious experi-
ence of self, which can be seen as an ensemble of its subselves assignable to sub-CDs. The randomness
of the state function reduction process implies that conscious experience involves statistical aspects in
the sense that the experienced qualia correspond to the averages of quantum number and zero mode
increments over the sub-selves assignable to sub-CDs. When the number of quantum jumps in the
ensemble defining self increases, qualia get more entropic and fuzzy unless macro-temporal quantum
coherence changes the situation.

Negentropic entanglement means departure from this picture if sub-CDs can generate negentropic
entanglement. This is expected to be true if they overlap if one believes on standard argument for the



9.6. Some consequences of NMP 493

formation of macroscopic quantum phases. In this case the flux tubes connecting space-time sheets
assignable to the sub-CDs would serve as a space-time correlate for the negentropic entanglement.

The basic questions are whether sensory qualia can really correspond to the increments of quantum
numbers in quantum jump and whether these quantum jumps are assignable to entropic or negentropic
qualia. What is clear that the sensory qualia such as colors are assigned to an object of external world
rather predictably. This is not obvious if this process is based on quantum jump.

1. Qualia are determined basically as increments of quantum numbers [K32] whereas in ordinary
statistical physics measured quantities would correspond to quantum numbers basically. The
basic function of sensory organs is to map quantum numbers to quantum number increments so
that our sensory perception is in reasonable approximation about world rather than changes of
the world.

2. In zero energy ontology the increments must correspond to increments of quantum numbers for
(say) positive energy part of the state. A sensation of (say) given color requires a continual
feed of corresponding quantum number increment to the positive energy part of the system.
Some kind of far from equilibrium thermodynamics seems to be necessary with external feed of
quantum numbers generalizing the external feed of energy. The capacitor model of a sensory
receptor [K32] realizes this idea in terms of generalized di-electric breakdown implying opposite
charging of the capacitor plates in question. Note that in zero energy ontology also the positive
and negative energy parts of the zero energy state assignable to capacitor plates would be also
analogous to a pair of oppositely charged capacitor plates and one can speak about capacitor
also in time direction.

3. If entropic entanglement is reduced to zero in quantum jump for individual sensory recepto, the
outcome involves all possible values of quale, say different fundamental colors for which I have
proposed a model in terms of QCD color [K32] . If the probability of particular value of quale
is much larger than others, one can have statistical ensemble giving rise to predictable quale as
ensemble average.

4. If negentropic entanglement is in question, similar situation is encountered but the perception is
a mixture of qualia. For large values of p-adic prime one could have almost complete dominance
of a particular instance of quale also now. One could argue that the perception represents also
the definition of the concept of a particular quale as a superposition of pairs of consisting of the
state inducing the instance of the quale and the state representing it. The fact that there are
very many negentropic superpositions however suggests that the superposition represents both
the definition of quale and average value of quale. For instance, the fusion of various colors could
rely on negentropic entanglement.

5. Both these representations of qualia could realized and one can ask whether the entropic repre-
sentation could be aesthetically less pleasing than the negentropic representation involving also
the notion of quale.

Questions about various kinds of entropies

There are three kinds of entropies and the basic question is how these entropies relate.

1. Does the entropy characterizing the experience of self relate to the thermodynamical entropy
of some system? The fact that non-geometric sensory qualia have a statistical interpretation,
suggests that the entropy associated with the qualia of the mental image corresponds to the
thermodynamical entropy for a system giving rise to the qualia via the sensory mapping. The
thermodynamics of quantities in the external world would thus be mapped to the thermody-
namics of qualia, increments of quantities, in the inner world. Selves could also represent the
fundamental thermodynamical ensembles since they define also statistical averages of quantum
numbers and zero modes although these are not directly experienced.

2. Could one interpret the entropies of the space-time sheets as entropies associated with the
symbolic representations of conscious experiences of selves? Could one see the entire classical
reality as a symbolic representation? Does the entropy of conscious experience correspond to
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the thermodynamical entropy of the perceived system, which in turn would correspond to the
classical space-time entropy of the system representing the perceived system symbolically? Does
this conclusion generalize to the case of p-adic entropy? Quantum-classical correspondence
would encourage to cautiously think that the common answer to these questions might be yes.

The arrow of psychological time and second law

The arrow of psychological time is closely related to the second law and I have considered several
alternative identifications for the arrow of psychological time. These identifications are discussed
in [K82, K6, K83] . The latest option favored by zero energy ontology is discussed in [K6] and involves
two aspects: the one related to the arrow of time coordinate assignable to the space-time sheet and
the other one to the relative proper time coordinate between the tips of CD.

A simple argument show that this distance quantized in powers of 2 should increase gradually
in statistical sense since the size of CD can also change in quantum jump. This would have have
interpretation in terms of a flow of ”cosmic time” (CD is analogous to big bang followed by big
crunch). Interestingly, CD with time scale of order 1011 years (age of the universe) corresponds
primary p-adic length scale of only only 10−4 meters, the size of a large neuron, and also the length
scale in which the blob of water has Planck mass so that the quantization of gravitational Planck
constant should become important [K70] . Could this mean that the CDs assignable to large neurons
make possible to develop the idea about the cosmology and cosmology itself? Could it really be that
that our cognitive representations about Universe quite concretely have the size of the Universe itself
as p-adic view about cognition requires?

Quantum jump and cognition

The fusion of subselves can take place in two manners: by real bound state entanglement and by
negentropic entanglement. The resulting mental images must differ somehow, and the proposal is that
the entanglement associated with the negentropic mental defines a conscious cognitive representation:
kind of rule. Schrödinger cat negentropically entangled with the bottle of poison knows that it is not a
good idea to open the bottle: open bottle-dead cat, closed bottle-living cat. Negentropic entanglement
would generate rules and counterparts of conscious associations fundamental in brain functioning. For
the mental image associated with bound state entanglement the information about bound systems
would be lost. Bound state entanglement could however give rise to stereo-consciousness essential for
(say) stereo vision.

One can imagine several kinds of negentropic entanglements of this kind. Between two real systems,
between real and p-adic systems, and between two p-adic systems possibly characterized by different
values of p: all these systems assigned with distinct but overlapping CDs. These entanglements
would correspond to different aspects of conscious experience. Maybe the real-real entanglement could
correspond to a positive emotion- perhaps love-, and the remaining to experiences of understanding
generating a connection between two different things: between real world even and its cognitive
representation or between two cognitive representations. Note that the entanglement probabilities can
vary considerably and one can obtain identical a spectrum of entanglement probabilities by permuting
them. This should relate to the character of the experiencence of understanding. Schrödinger cat which
is almost dead has strong conviction that it is better to not open the bottle. The optimal situation
concerning understanding would be identical probabilities.

Analysis and conceptualization (synthesis) - formation of rules- could be seen as the reductionistic
and holistic aspects of consciousness. The interpretation of quantum jump as a creation of a to-
tally entangled holistic state, which is then analyzed to stable entangled pieces allows to interpret self
measurement cascade as a conscious analysis. The resulting stable negentropic pieces give rise to expe-
rience of understanding and conceptualization - rules and abstractions. Perhaps the holistic character
assigned ot right brain hemisphere could be interpreted in terms of specialization to conceptualization
and reductionist character of left brain to entropic analysis to smallest possible pieces.

There are rather interesting connections with altered states of consciousness and states of macro-
temporal quantum coherence.

1. Making mind empty of mental images could perhaps be interpreted as a mechanism of achieving
irreducible self state. If self entangles negentropically with larger conscious entity this would
lead to experiences characterized as expansion of consciousness, even cosmic consciousness. One
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could also consider the possibility the sub-selves representing mental images fuse to single long-
lasting negentropic mental image. The absence of dissipation could relate to the reports of
meditators about lowered metabolic needs.

2. The ordinary wake-up consciousness is identifiable as the analytical mode in which entropic
entanglement dominates so that each U process is followed by a rather complete state function
reduction. The reason for this could be sensory input and motor activities, which would create
effective heat bath destroying holistic mental images.

3. Krishnamurti has talked a lot about states of consciousness in which no separations and discrim-
inations occur and timelessness prevails. These states could correspond to long-lived negentropic
entanglement with large ~ with larger conscious entities giving rise to very long effective mo-
ments of consciousness. In this kind of situation NMP does not force cognitive self measurements
to occur and analysis and separations can thus be avoided.

4. Sharing and fusion of mental images by entanglement of sub-selves of separate selves makes
possible quantum realization of telepathy and could be a universal element of altered states
of consciousness. Also this entanglement could be bound state entanglement or negentropic
entanglement.

Cognitive codes

p-Adic length scale hypothesis leads to the idea that each p ' 2k, k integer, defines a hierarchy of
cognitive codes with code word having duration given by the n-ary p-adic time scale T (n, k) and
number of bits given by any factor of k. Especially interesting codes are those for which the number
of bits is prime factor or power of prime factor of k. n = 2 seems to be in special position in zero
energy ontology. This is a strong quantitative prediction since the duration of both the code word
and bit correspond to definite frequencies serving as signatures for the occurrence of commutations
utilizing these codes.

If k is prime, the amount of information carried by the codon is maximal but there is no obvious
manner to detect errors. If k is not prime there are several codes with various numbers of bits:
information content is not maximal but it is possible to detect errors. For instance, k = 252 gives
rise to code words for which the number of bits is k1 = 252, 126, 63, 84, 42, 212, 9, 7, 62, 4, 32, 2: the
subscript 2 tells that there are two non-equivalent manners to get this number of bits. For instance,
126 = 42 × 3-bit codon can have 42 -bit parity codon: the bits of this codon would be products of
three subsequent bits of 126-bit codon. This allows error detection by comparing the error codon for
communicated codon and communicated error codon.

Abstraction hierarchy and genetic code

Mersenne primes Mn = 2n − 1, which seem to play fundamental role in elementary particle physics
and it has been already found that their emergence is natural consequence of NMP. This would put
primes 3, 7, 31, 127, etc. in a special position. Primes appear frequently in various bio-structures
and this might reflect the underlying p-adicity for the association sequences providing ’plan’ for the
development of bio-system. For instance, we have actually 7 (!) fingers: two of them have degenerated
during evolution but can be seen in the developing embryo. There are 31 subunits in our spinal chord,
etc...

In the model of genetic code based on a simple model of abstraction process [K35] the so called
Combinatorial Hierarchy 2, 3, 7, 127, 2127 − 1, ... of Mersenne primes emerges naturally. The construc-
tion for a model of abstraction process proceeds as follows.

1. At lowest level there are two digits. The statements Yes and No.

2. At the next level one considers all Boolean statements about these two statements which can be
regarded as maps from 2-element set to 2-element set. There are 4 of them. Throw one away
and you get 3 statements.

3. At the next level one considers all Boolean statements about these 3 statements and the total
number of them is 23. Throw one away and you get 7 statements. And so on.
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The mystery is why one statement must be thrown away at each level of the construction. The
answer might relate to a concrete model of quantum computation.

1. A possible neurolevel realization of a quantum computation is following. Entangle in the pro-
posed manner two memetic codewords represented as temporal sequences of 127 cognitive Z0

magnetized antineutrino ensembles with bit represented as the magnetization direction. The
phase transitions changing the direction of magnetization are assumed to involve classical non-
determinism.

2. Nerve pulse (or pulse like membrane oscillation) results from each flip of the direction of the Z0

magnetization. The temporal sequence for which all Z0 magnetization are in the the direction of
the external Z0 magnetic field is excluded because this state does not give rise to a nerve pulse
pattern (or membrane oscillation pattern). In this manner a quantum computer with N = 1
and p = 2127 − 1 results. Incoming nerve pulse patterns could be taken to be identical memetic
codewords and out would go a a pair of memetic codewords representing the initial memetic
codeword and the result of the quantum computation. The duration of the computation is
.1 seconds and involves 2127 − 1 quantum jumps effectively glued to single quantum jump by
macro-temporal quantum coherence.

The concepts of resolution and monitoring

The following considerations represent a rather early idea related to p-adic physics, and I am not sure
whether to take it seriously or not. The basic observation is that genuinely p-adic probabilities can
sum up to zero, and this might make possible some rather exotic looking effects in genuinely p-adic
sectors of state space.

When the fundamental observable (density matrix or entropy operator) has degenerate eigenvalues,
one can only speak about probability for quantum jump to a particular eigen space of the the observable
since there is no preferred basis in this eigen space. This leads to the concept of cognitive resolution:
one cannot distinguish between states belonging to a given eigen space of density matrix and one can
make predictions for the probabilities for quantum jumps to given eigen space only.

1. Resolution and monitoring

p-Adic probability concept allows to consider an additional exotic effect.

1. The total real probability for quantum jump to degenerate subspace is the real counterpart for
sum of p-adic probabilities rather than sum of the real counterparts of the p-adic probabilities.
This can lead to rather dramatic effects: for instance, the sum of p-adic probabilities can be
very small even when the sum of the real probabilities is large.

2. The notion of resolution is closely related to the notion of monitoring: resolution can be defined
as a decomposition of the p-adic state space to a direct sum of subspaces such that the p-adic
density matrix is degenerate inside each subspace. If p-adic probabilities are defined modulo
O(p) pinary cutoff this kind of degeneracy is bound to occur if the dimension of the state space
is larger than p.

An interesting possibility is that the notions of resolution and monitoring could be important in the
physics of cognition. Perhaps the well-known fact that the behavior of cognitive systems is sensitive
to monitoring, might have something to do with the density matrix characterizing the entanglement
between the monitoring and monitored systems. The behavior of monitored system would depend on
the resolution of the monitoring, that is on how interested monitorer is about behavior of monitored
system. In the limit that monitorer is not interested at all on the behavior, entanglement probabilities
would in general be identical and unless the number of states is power of p, S = 0 state would result.

The total probability for a set of independent events to occur depends on the resolution of mon-
itoring: not only the behavior of individual quantum system in ensemble but also the statistical
behavior of the ensemble of systems characterized by same p-adic prime depends on the resolution of
the monitoring.

Standard probability theory, which also lies at the root of the standard quantum theory, predicts
that the probability for a certain outcome of experiment does not depend on how the system is
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monitored. For instance, if system has N outcomes o1, o2, ...oN with probabilities p1, ..., pN then
the probability that o1 or o2 occurs does not depend on whether common signature is used for o1

and o2 or whether observer also detects which of these outcomes occurs. The crucial signature of
p-adic probability theory is that monitoring affects the behavior of the system. NMP provides precise
definition for the concept of monitoring. There are two forms of monitoring depending on whether
the fundamental observable, denote it by O, is density matrix or entropy operator.

Consider first the situation in which all entanglement probabilities have p-adic norm different from
unity. Physically monitoring is represented by quantum entanglement and differentiates between two
eigen states of O (density matrix or entropy operator) only provided the eigenvalues of O are different.
If there are several degenerate eigenvalues, quantum jump occurs to any state in the eigen space and
one can predict only the total probability for the quantum jump into this eigen space. Hence the p-adic
probability for a quantum jump to a given eigen space of density matrix is p-adic sum of probabilities
over the eigen states belonging to this eigen space:

Pi =
(n(i)P (i))R∑
j(n(j)P (j))R

.

Here ni are dimensions of various eigen spaces.
If the degeneracy of the eigenvalues is removed by an arbitrary small perturbation, the total

probability for the transition to the same subspace of states becomes the sum for the real counterparts
of probabilities and one has in good approximation:

PR =
n(i)P (i)R

[
∑
j 6=i
∑
j(n(j)P (j))R + n(i)P (i)R]

.

Rather dramatic effects could occur. Suppose that that the entanglement probability P (i) is of
form P (i) = np, n ∈ {0, p − 1} and that n is large so that (np)R = n/p is a considerable fraction of
unity. Suppose that this state becomes degenerate with a degeneracy m and mn > p as integer. In this
kind of situation modular arithmetics comes into play and (mnp)R appearing in the real probability
P (1 or 2) can become very small. The simplest example is n = (p+1)/2: if two states i and j have very
nearly equal but not identical entanglement probabilities P (i) = (p+ 1)p/2 + ε, P (j) = (p+ 1)p/2− ε,
monitoring distinguishes between them for arbitrary small values of ε and the total probability for the
quantum jump to this subspace is in a good approximation given by

P (1 or 2) ' x[∑
k 6=i,j(Pk)R + x

] ,

x = 2 [(p+ 1)p/2]R . (9.6.0)

and is rather large. For instance, for Mersenne primes x ' 1/2 holds true. If the two states become
degenerate then one has for the total probability

P (1 or 2) ' x[∑
k 6=i,j(Pk)R + x

] ,

x =
1

p
. (9.6.0)

The order of magnitude for P (1 or 2) is reduced by a factor of order 1/p!
A test for the notion of p-adic quantum cognition would be provided by the study of the de-

pendence of the transition rates of quantum systems on the resolution of monitoring defined by the
dimensions of the degenerate eigen spaces of the subsystem density matrix (or entropy operator).
One could even consider the possibility of measuring the value of the p-adic prime in this manner.
The behavior of living systems is known to be sensitive to monitoring and an exciting possibility is
that this sensitivity, if it really can be shown to have statistical nature, could be regarded as a direct
evidence for TGD inspired theory of consciousness. Note that the mapping of the physical quantities
to entanglement probabilities could provide an ideal manner to compare physical quantities with huge
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accuracy! Perhaps bio-systems have invented this possibility before physicists and this could explain
the miraculous accuracy of biochemistry in realizing genetic code.

If some entanglement probabilities have unit norm so that their contributions to the p-adic en-
tanglement entropy vanish, quantum jump to an entangled final state can occur: this is genuinely
p-adic effect and serves as a second test for p-adic cognition. If density matrix is the fundamental
observable, quantum jump can occur to an entangled final state, which corresponds to any S = 0
subspace of S = 0 eigen space of the entropy operator with is eigen space of the density matrix. If
entropy operator is the fundamental observable, quantum jump can occur to any S = 0 subspace of
entropy operator. Again the total probability for the transition is determined by the p-adic sum of
the probabilities and dramatic ’interference’ effects at the level of probabilities are possible.

Resolution and monitoring and hyperfinite factors of type II1

The notion of resolution emerges naturally for the hyper-finite factors of type II1. The trace of the
unit operator is unit for the infinite-dimensional space in question so that any projector with a finite
trace must project to an infinite dimensional space so that there would always an infinite-dimensional
degeneracy involved with the eigenvalues of the measured observables.

One could however consider the formulation of the theory in terms of p-adic probabilities and
for this formulation resolution and monitoring emerge naturally. One could go even further. For
instance, if one can specify the infinite number of degrees of freedom as a p-adic integer, say N =
−1 = (p − 1)

∑∞
k=0 p

k, which in a well-defined sense represents the largest p-adic integer, one can
say that the p-adic probability for a given state is 1/N and finite as a p-adic number. It is finite
also as a real number and equal to 1/p if canonical identification is used to map N to a real number.
For a given finite-dimensional density matrix with finite number of distinct eigenvalues it would be
possible to have projections to one-dimensional subspace but there would always infinitely degenerate
eigenvalue present in accordance with the notion of finite resolution.

A natural question concerns the implications of the assumption that the map of p-adic probabilities
to real ones conserves probabilities without additional normalization.

9.6.6 NMP and quantum computer type systems

TGD Universe can be regarded as an infinite quantum computer. Unitarity process U is analogous
to a quantum computation. The state function reduction process represents a stepwise halting of the
computation proceeding until the resulting states are eith bound states or negentropically entangled
states. U matrix is between zero energy states and can be regarded as a collection of M -matrices
labelled by zero energy states. The possibility of two kinds of entropic and negentropic entanglement
makes possible two kinds of quantum computations and negentropic quantum computations based on
states which are longlived by the properties of the negentropic entanglement could be the one realized
in living matter.

The relationship between U-matrix and M-matrix

Before proceeding it is a good idea to clarify the relationship between the notions of U -matrix and M -
matrix. If state function reduction associated with time-like entanglement leads always to a product
of positive and negative energy states (so that there is no counterpart of bound state entanglement
and negentropic entanglement possible for zero energy states) U -matrix and can be regarded as a
collection of M -matrices

Um+n−,r+,s− = M(m+, n−)r+,s− (9.6.1)

labeled by the pairs (m+, n−) labelling zero energy states assumed to reduced to pairs of positive
and negative energy states. M -matrix element is the counterpart of S-matrix element Sr,s in positive
energy ontology. Unitarity conditions for U -matrix read as
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(UU†)m+n−,r+s− =
∑
k+,l−

M(m+, n−)k+,l−M(r+, s−)k+,l− = δm+r+,n−s− ,

(U†U)m+n−,r+s− =
∑
k+,l−

M(k+, l−)m+,n−M(k+, l−)r+,s− = δm+r+,n−s− .

(9.6.0)

The conditions state that the zero energy states associated with different labels are orthogonal as zero
energy states and also that the zero energy states defined by the dual M-matrix

M†(m+, n−)k+,l− ≡M(k+l−)m+,n− (9.6.1)

-perhaps identifiable as phase conjugate states- define an orthonormal basis of zero energy states.
When time-like binding and negentropic entanglementare allowed also zero energy states with a

label not implying a decomposition to a product state are involved with the unitarity condition but
this does not affect the situation dramatically. As a matter fact, the situation is mathematically the
same as for ordinary S-matrix in the presence of bound states.

How quantum computation in zero energy ontology differs from ordinary quantum com-
putation

Quantum computation in zero energy ontology differs in several respects from ordinary quantum
computation.

1. The time parameter defining quantum computation as a unitary time evolution in standard
quantum physics disappears and corresponds to the U -matrix for single quantum jump. Quan-
tum computation corresponds to the U -matrix assignable to single quantum jump if one restricts
to sub-CDs with given time scale inside larger CD. The quantum jump for given sub-CD would
represent single quantum computation and the outcome of the quantum computation would be
determined statistically from the distribution of the outcomes of state function reductions for
over sub-CDs.

Quantum classical correspondence encourages to assign to the quantum computation an interval
of psychological time equal to the proper time distance between the tips of CD. For instance,
.1 seconds would the be time scale assignable to quantum computations possibly assignable to
electrons.

The hierarchies of CDs and Planck constants make possible zoomed up variants of quantum
computations. This kind of zooming might be essential for intelligent behavior since it is useful
to simulate dynamics of the external world in the time scales natural for brain and shorter than
the time scale during which it is necessary to react in order to survive. The geometric duration
of the shortest possible quantum computation with respect to the psychological time of self is
of order CP2 time about 104 Planck times, if the simplest estimate is correct.

2. The classical space-time correlates for the quantum computation are four-dimensional unlike in
the case of ordinary quantum compitation. In living matter nerve pulses and EEG frequencies
would be very natural correlates of this kind. The model for DNA as topological quantum
computer [K25] has as its space-time correlates magnetic flux tubes connecting DNA nucleotides
and lipids of nuclear and cell membranes defining the braiding coding for the topological quantum
computation. Dynamical flow of lipids defines the braiding in time direction and the memory
representation is in terms of the braiding of the flux tubes induced by this flow. A good metaphor
is in terms of dancers connected to a wall by threads. Dancing is the correlate for the running
quantum computer program and the geometric entanglement of threads the correlate for the
storage of the program to computer memory.

3. The outcome of quantum computation is described statistically in terms of a large set of quantum
computations. The statistical description of the conscious experience of ensemble of sub-selves
implies that mathematically the situation is very much analogous with that encountered in the
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standard quantum computation and it is attractive to assume that conscious experience codes for
the outcome of quantum computation via the average quantities assignable to the distribution
of zero energy quantum states assignabl to sub-CDs.

4. A further new element is macro-temporal quantum coherence involving several aspects. One of
these aspects is that the time scale of CD defines macrotemporal quantum coherence at least at
the level of the field body assignable to the physical system such as electron. It is not quite clear
whether electrons correspond to distinct overlapping CDs of size scale defined by .1 second time
scale and of the order of Earth circumference and thus satisfying the basic criterion of quantum
coherence or whether one should speak about anyonic many particle states assignable to single
CD or whether both interpretations can make sense depending on situation. In living matter
also millisecond time scale is important and would correspond naturally to the CDs assignable
to u and d quarks in nuclei and perhaps also with the ends of magnetic flux tubes in the model
of DNA as topological quantum computer. In the proposed model quarks and antiquarks at
the ends of flux tubes represent genetic codons and their entangelement is responsible for the
realization of the program at quantum level. The millisecond time scale of synchronous cortical
firing and of nerve pulse could correspond to the time scale of CDs associated with u and d
quarks at the ends of the flux tube. Note that larger value of ~ would scale up this time scale.
Quantum parallel dissipation taking place at various size scales for CD is a further new element.

5. One must generalize the standard quantum computer paradigm since ordinary quantum com-
puters represent only the lowest, 2-adic level of the p-adic intelligence. Qubits must be replaced
by qupits since for algebraic entanglement two-state systems are naturally replaced with p-state
systems. For primes of order say p ' 2167 (the size of small bacterium) this means about 167
bits, which would mean gigantic quantum computational resources. The secondary p-adic time
scale T2(127) ' .1 seconds basic bit-like unit corresponds to M127 = 2127−1 M127-qupits making
about 254 bits. The size of neuron corresponds to CD with time scale equal to the age of the
universe and in this case the maximum the number of pinary digits is 171.

The finite measurement resolution for qubits of course poses strong limitations to the actual
number of bits since the negentropic zero energy qubits must be in reasonable approximation
pure qubits distinguishable from each other and could correspond CDs with time scales coming
as powers of two from n = kmin to k so that the effective number of qubits would go like 2-based
logarithm of the p-adic prime. For instance, electron could correspond to six bits assignable to
genetic code plus parity bit corresponding to time scale range from 1 ms to 100 ms. In any case
the idea about neuron as a classical bit might be completely wrong!

6. Spin glass degeneracy also provides the needed huge number of degrees of freedom making quan-
tum computations very effective. These degrees of freedom are associated with the join along
boundaries bonds -say magnetic flux tubes- and are essentially gravitational so that a connection
with Penrose-Hameroff hypothesis suggests itself. The space-time sheets mediating gravitational
interaction are predicted to have a huge gravitational Planck constant ~gr = GMm/v0, v0/c < 1,
particles at these space-time sheets are predicted to have huge Compton wavelengths and the
plausible looking identification is in terms of dark energy [K70, K59] . This would make quantum
computation like activities possible in super-astronomical time scales.

Three kinds of quantum computations are possible in TGD Universe

In TGD Universe one must distinguish between three kinds of quantum computational modes.
Ordinary quantum computation utilizes only the part of U -matrix for which zero energy states
involved are unentangled products of positive and negative energy states. In this case quantum
coherence is extremely fragile and lasts for single quantum jump only but even in this case one
might hope that coherence time correspondences to the time scale CD. U -matrix can calso
correspond to the analogous of bound states for real time-like entanglement. If the proposed
interpretation makes sense these state pairs would not correspond to conscious rules. Negentropic
entanglement in time direction is the third option. For living quantum computers entanglement
could correspond to bound state entangelment or negentropic entanglement and NMP takes
care that the character of both these states is preserved. Thus bio-systems would be especially
attractive candidates for performers of quantum computation like processes.
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Negentropic quantum computations, fuzzy qubits, and quantum groups

1. The possibility of negentropic entanglement is certainly the basic distinction making in the
intersection of real and p-adic worlds possible conscious process at least analogous to a quantum
computation and accompanied by a conscious understanding. What makes this possible is
the fact that the negentropically entangled states of N basic states have permutation of the
basis states as a symmetry. For instance, states for which bit 1 appears with almost unit
probability gives by permutation a state for which bit 0 appears with almost unit probability.
This suggests that the outcome of quantum computation is expressed in terms of almost bits with
a small mixing implying that the outcome has interpretation both as a rule and as almost bit in
the ordinary sense. The conscious quantum computation would utilize states with negentropic
entanglement in time direction. Also the analogies of bound states for time-like engtanglement
are possible and might make possible the counterpart of ordinary quantum computation without
the higher level conscious experience about rules defined by the entangled states.

2. Negentropic entanglement for positive and negative energy parts of bits stable and pinary digits
stable under NMP means that the logic is always fuzzy. I have proposed the mathematical
description of this in terms of quantum spinors for which the components do not commute
anymore implying that only the probability for either spin state is is an observable [K87] .
This suggests that negentropic entanglement might be describable in terms of quantum spinors
and that it would be the unavoidable fuzziness which would make possible the representation
conscious rules. What is interesting that for quantum spinors the spectrum of the probabilities
for given spin is universal and depends only on the integers characterizing the quantum phase
q = exp(i2π/n). An alternative interpretation is that fuzzy logic relates to a finite measurement
resolution. These interpretation need not be in conflict with each other. Since quantum groups
are associated with anyonic systems, this suggests that negentropic quantum computations take
place in anyonic systems assignable to phases with large value of ~. This encourages to consider
the possibility that quantum phases define algebraic extensions of p-adic numbers.

3. In living systems it might be more appropriate to talk about conscious problem solving instead
of quantum computation. In this framework the periods of macro-temporal quantum coher-
ence replace the unitary time evolutions at the gates of the quantum computer as the basic
information processing units and entanglement bridges between selves act as basic quantum
communication units with the sharing of mental images providing a communication mode not
possible in standard quantum mechanics.

9.7 Some consequences of NMP

In the sequel the most obvious consequences of self measurement and NMP are discussed from the
point of view of physics, biology, cognition, and quantum computing. The recent discussion differs
considerably from the earlier one since several new elements are involved. Zero energy ontology and the
hierarchy of CDs, the hierarchy of Planck constants and dark matter, and -perhaps most importantly-
the better understanding negentropic entanglement as something genuinely new and making sense in
the interection of real and various p-adic worlds at which living matter is assumed to reside.

9.7.1 NMP and thermodynamics

The physical status of the second law has been a longstanding open issue in physics- in particular
biophysics. In positive energy ontology the understanding of the origin of second law is simple.
Quantum jumps involve state function reduction (or more generally, self measurement) with a random
outcome and in the case of ensemble of identical system this leads to to a probability distribution for
the states of the members of the ensemble. This implies Boltzmann equations implying the second
law. In TGD framework there are many elements which force to question this simple picture: zero
energy ontology and CDs, effective four-dimensionality of the ensemble defined by states assignable
to sub-CDs, hierarchy of Planck constants, and the possibility of negentropic entanglement.
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Zero energy ontology and thermodynamical ensembles

Zero energy ontology means that the thermodynamics appears both at the level of quantum states
and at the level of ensembles. At the level of quantum states this means that M -matrix can be seen
as a complex square root of the density matrix: ρ = MM†, where M is expressible as a product
of a positive and diagonal square root of density matrix and unitary S-matrix identifiable as the
S-matrix used in quantum physics. U matrix can be seen as a collection of M -matrices as will be
found later so that U -matrix fixes M -matrices contrary to what was believed originally. One can say
that thermodynamics -at least in some sense- is represented at the level of single particle states. It is
natural to assume that this density matrix is measured in particle physics experiment, and that this
measurement corresponds to a state function reduction, which in standard physics picture corresponds
to a preparation for the initial states and state function reduction for the final states.

The p-adic thermodynamics, which applies to conformal weights rather than energy, predicts
successfully elementary particle masses [K52] and should reduce to this thermodynamics. That p-adic
thermodynamics can be applied at all suggests that even elementary particles reside in the intersection
of the real and p-adic worlds so that either p-adic thermodynamics or real thermodynamics with
additional constraints on temperature implied by number theory applies.

Thermodynamical ensembles are 4-dimensional

The hierarchy of CDs within CDs defines a hierarchy of sub-systems and sub-CDs define in a natural
manner 4-dimensional ensemble. If the state function reduction leads to unentangled states, the
outcome is an ensemble describable by the density matrix assignable to the single particle states. The
sequence of quantum jumps is expected to lead to a 4-D counterpart of thermodynamical ensemble and
thermodynamics results when one labels the states by the quantum numbers assignable to their positive
energy part. Entropy is assigned with entire 4-D CD rather than to its 3-dimensional time=constant
snapshots. The thermodynamical time is basically the subjective time and measured in terms of
quantum jumps but has a correlation with geometric time as explained in [K6] and explained briefly
below.

This picture differs from the standard views, and this might explain the paradoxical situation in
cosmology resulting from the fact that the initial state of the universe in the standard sense of the
word looks highly entropic whereas second law would suggest the opposite [K71] . The cosmological
entropy is assigned with a CD of size scale defined by the value of the age of the universe. In this
kind of situation each quantum jump replaces the zero energy state with a new one and also induces a
drift in the space of CDs to the direction of larger CDs with size defined by the proper time distance
between the tips of CD coming as power of 2. Entropy as a function of cosmic time corresponds in
TGD framework to the increase of the 4-D entropy as a function of the quantized proper time distance
between the tips of the CD.

In this framework it is possible to understand second law in cosmic time scales apart from the
possible effects related to the negentropic entanglement responsible for the evolution and breaking of
second law in arbitrarily long time scales. For instance, the number of sub-CDs increases meaning
the increase of the size of the ensemble and the emergence of new p-adic length scales as the size of
cosmic CD increases. What is fascinating is that the TGD counterpart of cosmic time is quantized
in powers of two. This might have predictable effects such as the occurrence of the cosmic expansion
in a jump-wise manner. I have discussed an explanation of the accelerated cosmic expansion in terms
of quantum jumps of this kind but starting from somewhat different picture [K71] .

How second law must be modified?

Second law as such does not certainly apply in TGD framework.

1. The hierarchy of CDs forces to introduce a fractal version of the second law taking into account
the p-adic length scale hypothesis and dark matter hierarchy. This means that the idea about
quantum parallel Universes generalizes to that of quantum parallel dissipating Universes. For
instance, the parton model of hadrons based on quarks and gluons relies on kinetic equations and
is basically thermodynamical whereas the model for hadron applied at low energies is quantum
mechanical. These two views are consistent if quantum parallel dissipation realized in terms of a
hierarchy of CDs is accepted. p-Adic length scale hierarchy with p-adic length scale hypothesis
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stating that primes near powers of two are preferred corresponds to this dissipative quantum
parallellism. Dark matter hierarchy brings in a further dissipative quantum parallelism.

2. Second law should always be applied only at a given level of p-adic and dark matter hierarchy
and one must always take into account two time scales involved corresponding to the time scale
assignable to the system identifiable as the time scale characterizing corresponding CD and the
time scale in which the system is observed. Only if the latter time scale is considerably longer
than the CD time scale, second law is expected to make sense in TGD framework -this provided
one restricts the consideration to the entropic entanglement. The reason is that the Boltzmann
equations implying the second law require that the geometric time scale assignable to quantum
jump is considerably shorter than the time scale of observation: this guarantees that the random
nature of quantum jump allows to use statistical approach.

3. The possibility of negentropic entanglement in time scale of CD brings a further new element
strongly suggesting that the mechanical application of second law does to living matter does not
make sense. The basic time scales for CDs come as powers of two and the hierarchy of Planck
constants in the most general case allows rational multiples of these. If a restriction is made
to singular covering spaces of CD and CP2 (this might well be consistent with experimental
inputs), only integer multiples of these time scales are predicted at the level of dark matter. The
increase of Planck constant allows to scale up the time scale of quantum coherence associated
with the negentropic entanglement and this provides a further good reason for why large values
of Planck constant should be favored in living matter.

4. The reduction of entanglement entropy at single particle level implies the increase of thermo-
dynamical entropy at the level of ensemble in the case of entropic non-binding entanglement.
This applies also to bound state entanglement leading to a generation of entropy at the level of
binding systems and a reduction of the contribution of the bound systems to the entropy of the
entire system. Note however the emission of binding energy -say in form of photons- could take
care of the compensation so that entropy would be never reduced for ensemble. In the case of
negentropic entanglement the situation is different.

The entropy of the negentropically entangled system is negative and the synenergic aspect of
negentropic entanglement means that the system does not contribute to thermodynamical en-
tropy. This means that second law could be broken in the geometric time scale considered. One
must of course be careful in distinguishing between geometric and subjective time. In the case
of subjective time the negentropic situation could continue forever unless the CD disappears in
some quantum jump (highly non-probable for large enough CDs). If not, then endless evolution
at the level of conscious experience is possible in the intersection of real and p-adic worlds and
heat death is not the fate of the Universe as in ordinary thermodynamics.

5. The breaking of second law must correspond to the breaking of ergodicity. Spin glasses are non-
ergodic systems and TGD Universe is analogous to a 4-D quantum spin glass by the failure of
strict non-determinism of Kähler action reflecting itself as vacuum degeneracy. Does the quan-
tum spin glass property of the TGD universe imply the breaking of the second law? Gravitation
has been seen as one possible candidate for the breaking second law because of its long range
nature. It is indeed classical gravitational energy which distinguishes between almost degenerate
spin glass states. The huge value of gravitational Planck constant associated with space-time
sheets mediating gravitational interaction and making possible perturbative quantum treatment
of gravitational interaction would indeed suggest the breaking of second law in cosmological time
scales. For instance, black hole entropy which is inversely proportional to GM2/~gr would be
for the values of gravitational Planck constant involved of the order of unity.

What do experiments say about second law?

That the status of the second law is far from settled is demonstrated by an experiment performed by
a research group in Australian National University [D3] . The group studied a system consisting of
100 small beads in water. One bead was shot by a laser beam so that it became charged and was
trapped. The container holding the beads was then moved from side to side 1000 times per second
so that the trapped bead dragged first one way and then another. The system was monitored and
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for monitoring times not longer than .1 seconds second law did not hold always: entropy could also
decrease.

1. What is remarkable that .1 seconds defines the duration τ of the memetic code word and cor-
responds to the secondary p-adic time scale Tp(2) =

√
pLp/c associated with Mersenne prime

p = M127 characterizing electron. This correspondence follows solely from the model of genetic
code predicting hierarchy of codes associated with p = 3, 7, 127 (genetic code), p = M127,... τ
should be the fundamental time scale of consciousness. For instance, average alpha frequency
10 Hz corresponds to this time scale and ’features’ inside cortex representing sensory percepts
have average duration of .1 seconds.

For electrons the CDs would have spatial size L = 3×107 meters, which is slightly smaller than
the circumference of Earth (L = cT , T = .1 s, the duration of sensory moment) so that they
would have a strong overlap. One can of course ask whether this is an accident. For instance,
the lowest Schumann frequency is around 7.8 Hz and not far from 10 Hz. What is interesting
that Bohr orbit model [K70] predicts that Universe might be populated by Earth like systems
having same distance from their Sun (stars with mass near that of Sun are very frequent). Bohr
orbitology applied to Earth itself could also lead to the quantization of the radius of Earth.

2. The first observation was made for more than 15 years ago. Even more remarkable is the recent
observation that the time scale of CD associated with electron is .1 seconds. Can one assign the
breaking of the second law with the field bodies of electrons?

3. The experiment involves also a millisecond time scale. I do not know whether it is essential that
the time scale is just this but one can play with the though that it is. Millisecond time scale is
roughly the duration of seventh bit of the genetic codeword if its bits correspond to CDs with
sizes coming as subsequence octaves of the basic time scale. Millisecond defines also the time
scale for the duration of the nerve pulse and the frequency of kHz cortical synchrony.

At the level of CDs millisecond time scale would correspond to a secondary p-adic time scale
assignable to k = 120. Only u and d quarks, which appear with several p-adic mass scales
in hadron physics and are predicted to be present as light variants also in nuclear physics as
predicted by TGD, could correspond to this p-adic length scale: the prediction for their mass
scale would be 5 MeV. Does this mean that the basic time scales of living matter correspond
directly to the basic time scales of elementary particle physics?

4. A further interesting point is that neutrinos correspond to .1 eV mass scale. This means that
the p-adic length scale is around k = 167 which means that the corresponding CD has time
scale which is roughly 240 times that for electron and corresponds to the primary p-adic length
scale of 2.5 µm (size of cellular nucleus) and tothe time scale of 104 years. I have proposed
that so called cognitive neutrino pairs consisting of neutrino and antineutrino assignable to
the opposite throats of wormhole contact could play key a role in the formation of cognitive
representations [K63] . This assumption looks now un-necessarily restrictive but one could quite
well consider the possibility that neutrinos are responsible for the longest time scales assignable
to consciousness for ordinary value of ~ (not necessarily our consciousness!). Large value of ~
could make also possible the situation in which intermediate gauge bosons are effectively massless
in cell length scale so that electro-weak symmetry breaking would be absent. This would require
~ ' 233. For this value of ~ the time scale of electronic CD is of the order of the duration of
human of human life cycle. This would scale up the Compton length of neutrino to about 10
kilometers and the temporal size of neutrino CD to a super-cosmological time scale.

9.7.2 NMP and self-organization

NMP leads to new vision about self-organization about which adetailed vision is discussed in [K67] .
Here only some key points are emphasized.

1. Dissipation selects the asymptotic self-organization patterns in the standard theory of self-
organization and the outcomes are interesting in the presence of energy feed. The feed of energy
can be generalized to feed of any kind of quantum numbers: for instance, feed of quantum num-
bers characterizing qualia. In fact, energy increment in quantum jump defines one particular
kind of quale [K32] .



9.7. Some consequences of NMP 505

2. The notion of self relates very closely to self-organization in TGD framework [K67] . Self is a
dissipative structure because it has subselves which dissipate quantum parallely with it. Self as
a perceiver maps the dissipation at the level of quantities in the external world to dissipation at
the level of qualia in the internal world.

3. Dissipation leads to self-organization patterns and in the absence of external energy feed to
thermal equilibrium. Thus thermodynamics emerges as a description for an ensemble of selves
or for the time average behavior or single self when external energy feed to system is absent. One
can also understand how the dissipative universe characterized by the presence of parameters
like diffusion constants, conductivities, viscosities, etc.. in the otherwise reversible equations of
motion, emerges. Dissipative dynamics is in a well defined sense the envelope for the sequence of
reversible dynamical evolutions modelling the sequence of final state quantum histories defined
by quantum jumps.

4. Quantum self-organization can be seen as iteration of the unitary process followed by state
function reduction and leads to fixed point self-organization patterns analogous to the patterns
emerging in Benard flow. Since selves approach ’asymptotic selves’, dissipation can be regarded
as a Darwinian selector of both genes and memes. Thus not only surviving physical systems
but also stable conscious experiences of selves, habits, skills, behaviors, etc... are a result of
Darwinian selection.

5. In TGD one must distinguish between two kinds of self organizations corresponding to the
entropic bound state entanglement and negentropic entanglement. Biological self-organization
could be therefore fundamentally different from the non-biological one. The succes of the p-adic
mass calculations suggest that even elementary particles live in the intersection of real and p-
adic worlds so that one should be very cautious in making strong conclusions. Certainly the
intentional, goal-directed behavior of the system in some time scale is a signature of negentropic
self-organization but it is difficult to apply this criterion in time scales vastly different from
human time scales. It is the field bodies (or magnetic bodies) , which can be assigned naturally
to CDs which suggests that the negentropic self organization occurs at this level. TGD based
vision about living matter actually assumes this implicitly.

6. What is new that even quantum jump itself can be seen as a self-organization process analogous
to Darwinian selection, which eliminates all unbound entanglement and yields a state containing
only bound state state entanglement or negentropic entanglement and representing analog of the
self-organization patterns. By macro-temporal quantum coherence effectively gluing quantum
jumps sequences to single quantum jump this pattern replicates itself fractally in various time
scales. Thus self-organization patterns can be identified as bound states and states paired by
a negentropic entanglement and the development of the self-organization pattern as a fractally
scaled up version of single quantum jump. Second new element is that dissipation is not mere
destruction of order but producer of jewels. A further new element is that dissipation can occur
in quantum parallel manner in various scales.

7. The failure of the determinism in standard sense for Kähler action is consistent with the clas-
sical description of dissipation. In particular, the emergence of sub-selves inside self looks like
dissipation from outside but corresponds to self-organization from the point of view of self. 4-
dimensional spin glass degeneracy meaning breaking of ergodicity crucial for self-organization is
highly suggestive on basis of the vacuum degeneracy of Kähler action, and this alone predicts
ultrametric topology for the landscape of the maxima of Kähler function defined in terms of
Kähler action so that p-adicity emerges naturally also in this manner.

One particularly interesting concrete prediction is that the time scales assignable to CDs come
as powers of two. This predicts fundamental frequencies coming as powers of two, and the hierarchy
of Planck constants predicts rational or at least integer multiples of these frequencies. Could these
powers of two relate to frequency doubling rather generally observed in hydrodynamical self-organizing
systems?
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9.7.3 NMP and p-adic length scale hypothesis

The original form of the p-adic length scale hypothesis stated that physically most interesting p-adic
primes satisfy p ' 2k , k prime or power of prime. It has however turned out that all positive integers
k are possible. Surprisingly few new length scales are predicted by this generalization in physically
interesting length scales. p-Adic length scale hypothesis leads to excellent predictions for elementary
particle masses (note that the mass prediction is exponentially sensitive to the value of k) and explains
also some interesting length scales of biology: for instance, the thicknesses of the cell membrane and
of single lipid layer of cell membrane correspond to k = 151 and k = 149 respectively.

The big problem of p-adic TGD is to derive this hypothesis from the basic structure of the theory.

1. One argument is based on black hole-elementary particle analogy [K57] leading to the general-
ization of the Hawking-Bekenstein formula: the requirement leading to the p-adic length scale
hypothesis is that the radius of the so called elementary particle horizon is itself a p-adic length
scale. This argument involves p-adic entropy essentially and it seems that information processing
is somehow involved.

2. Zero energy ontology predicts p-adic length scale hypothesis if one accepts the assumption that
the proper time distances between the tips of CDs come as powers of 2 [K57] . A more general
highly suggestive proposal is that the relative position between tips forms a lattice at proper
time constant hyperboloid having as a symmetry group discrete subgroup of Lorentz group
(which could reduce to a subgroup of the group SO(3) acting as isotropy group for the time-like
direction defined by the relative coordinate between the tips of CD [K71] .

p-Adic length scale hypothesis could be understood as a resonance in frequency domain -most
naturally for massless particles like photons. The secondary p-adic time scale for favored p-adic
primes must be as near as possible to the proper time distance between the tips of CD. Mersenne
primes Mn = 2n − 1 (n is prime) satisfy this condition. Also log(p) is in this case as near as
possible to log(2n) and in the sense that the unit of negentropy defined as log(2n−m(n))/log(2n)
is maximized. This argument might work also for Gaussian Mersennes Gn = (1 + i)n − 1 (n is
prime also now) if one restricts the consideration to Gaussian primes.

A more general and more realistic looking hypothesis is that a given CD can have partonic light-
like 3-surfaces ending at its boundaries for all p-adic length scales up to that associated with
CD: powers of 2 would be favored by the condition of commeasurability very much analogous
to frequency doubling.

3. An exciting possibility, suggested already earlier half seriously, is that evolution is present already
at elementary particle level. This is the case if elementary particles reside in the intersection
of real and p-adic worlds. The success of p-adic mass calculations and the identification of
p-adic physics as physics of cognition indeed forces this interpretation. In particular, one can
understand p-adic length scale hypothesis as reflecting the survival of the cognitively fittest
p-adic topologies.

I have discussed also other explanations.

1. A possible physical reason for the primes near prime powers of 2 is that survival necessitates
the ability to co-operate, to act in resonance: this requirement might force commeasurability
of the length scales for p-adic space-time sheet (p1) glued to larger space-time sheet (p2 > p1).
The hierarchy would state from 2-adic level having characteristic fractal length scales coming as
powers of

√
2. When p > 2 space-time sheet is generated during cosmological evolution L(p) for

it must correspond to power of
√

2 so that one must have p ' 2n.

2. A model for learning [K16] as a transformation of the reflective level of consciousness to proto
level supports the view that evolution and learning occur already at elementary particle level
as indeed suggested by NMP: the p-adic primes near power of prime powers of two are the
fittest ones. The core of the argument is the characterization of learning as a map from 2N

many-fermion states to M association sequences. The number of association sequences should
be as near as possible equal to 2N . If M is power of prime: M = pK , association sequences
can be given formally the structure of a finite field G(p,K) and p-adic length scale hypothesis
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follows as a consequence of K = 1. NMP provides the reason for why M = pK is favored: in
this case one can construct realization of quantum computer with entanglement probabilities
pk = 1/M = 1/pK and the negentropy gain in quantum jump is Klog(p) while for M not
divisible by p the negentropy gain is zero.

9.7.4 NMP and biology

The notion of self is crucial for the understanding of bio-systems and consciousness. It seems that
the negentropic entanglement is the decisive element of life and that one can say that in metaphoral
sense life resides in the intersection of real and p-adic worlds.

Life as islands of rational/algebraic numbers in the seas of real and p-adic continua?

Rational and even algebraic entanglement coefficients make sense in the intersection of real and p-adic
words, which suggests that life and conscious intelligence reside in the intersection of the real and
p-adic worlds. This would mean that the mathematical expressions for the space-time surfaces (or
at least 3-surfaces or partonic 2-surfaces and their 4-D tangent planes) make sense in both real and
p-adic sense for some primes p. Same would apply to the expressions defining quantum states. In
particular, entanglement probabilities would be rationals or algebraic numbers so that entanglement
can be negentropic and the formation of bound states in the intersection of real and p-adic worlds
generates information and is thus favored by NMP.

The identification of intentionality as the basic aspect of life seems to be consistent with this idea.

1. The proposed realization of the intentional action has been as a transformation of p-adic space-
time sheet to a real one. Also transformations of real space-time sheets to p-adic space-time
sheets identifiable as cognitions are possible. Algebraic entanglement is a prerequisite for the
realization of intentions in this manner. Essentially a leakage between p-adic and real worlds is
in question and makes sense only in zero energy ontology. The reason is that various quantum
numbers in real and p-adic sectors are not in general comparable in positive energy ontology so
that conservation laws would be broken or even cease to make sense.

2. The transformation of intention to action can occur if the partonic 2-surfaces and their 4-D
tangent space-distributions are representable using rational functions with rational (or even
algebraic) coefficients in preferred coordinates for the imbedding space dictated by symmetry
considerations. Intentional systems must live in the intersection of real and p-adic worlds.

3. For the minimal option life would be also effectively 2-dimensional phenomenon and essentially a
boundary phenomenon as also number theoretical criticality suggests. There are good reasons to
expect that only the data from the intersection of real and p-adic partonic two-surfaces appears
in U -matrix so that only the data from rational and some algebraic points of the partonic 2-
surface dictate U -matrix. This means discretization at parton level and something which might
be called number theoretic quantum field theory should emerge as a description of intentional
action.

A good guess is that algebraic entanglement is essential for quantum computation, which therefore
might correspond to a conscious process. Hence cognition could be seen as a quantum computation
like process, a more approriate term being quantum problem solving [K25] . Living-dead dichotomy
could correspond to rational-irrational or to algebraic-transcendental dichotomy: this at least when
life is interpreted as intelligent life. Life would in a well defined sense correspond to islands of rational-
ity/algebraicity in the seas of real and p-adic continua. Life as a critical phenomenon in the number
theoretical sense would be one aspect of quantum crticality of TGD Universe besides the criticality
of the space-time dynamics and the criticality with respect to phase transitions changing the value of
Planck constant and other more familiar criticalities. How closely these criticalities relate remains an
open question [K67] .

The view about the crucial role of rational and algebraic numbers as far as intelligent life is
considered, could have been guessed on very general grounds from the analogy with the orbits of a
dynamical system. Rational numbers allow a predictable periodic decimal/pinary expansion and are
analogous to one-dimensional periodic orbits. Algebraic numbers are related to rationals by a finite
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number of algebraic operations and are intermediate between periodic and chaotic orbits allowing an
interpretation as an element in an algebraic extension of any p-adic number field. The projections of
the orbit to various coordinate directions of the algebraic extension represent now periodic orbits. The
decimal/pinary expansions of transcendentals are un-predictable being analogous to chaotic orbits.
The special role of rational and algebraic numbers was realized already by Pythagoras, and the fact
that the ratios for the frequencies of the musical scale are rationals supports the special nature of
rational and algebraic numbers. The special nature of the Golden Mean, which involves

√
5, conforms

the view that algebraic numbers rather than only rationals are essential for life.
That only algebraic extensions are possible is of course only a working hypothesis. Also finite-

dimensional extensions of p-adic numbers involving transcendentals are possible and might in fact be
necessary. Consider for instance the extension containing e, e2, .., ep−1 as units (ep is ordinary p-adic
number. Infinite number of analogous finite-dimensional extensions can be constructed by taking a
function of integer variable such that f(p) exists both p-adically and as a real transcendental number.
The powers of f(p)1/n for a fixed value of n define a finite-dimensional transcendental extension of
p-adic numbers if the roots do not exist p-adically.

Numbers like log(p) and π cannot belong to a finite-dimensional extension of p-adic numbers [K30]
. One cannot of course take any strong attitude concerning the possibility of infinite-dimensional ex-
tensions of p-adic numbers but the working hypothesis has been that they are absent. The phases
exp(i2π/n) define finite dimensional extensions allowing to replace the notion of angle in finite mea-
surement resolution with the corresponding phase factors in finite measurement. The functions
exp(i2πq/n), where q is arbitrary p-adic integers define in a natural manner the physical counter-
parts of plane waves and angular momentum eigenstates not allowing an identification as ordinary
p-adic exponential functions. They are clearly strictily periodic functions of q with a finite value set.
If n is divisible by a power of p, these functions are continuous since the values of the function for q
and q + kpn are identical for large enough values of n. This condition is essential and means in the
case of plane waves that the size scale of a system (say one-dimensional box) is multiple of a power of
p.

Evolution and second law

Evolution has many facets in TGD framework.

1. A natural characterization of evolution is in terms of p-adic topology relating naturally to cog-
nition. p-Adic primes near powers of two are favored if CDs have the proposed discrete size
spectrum. From the point of view of self this would be essentially cosmic expansion in discrete
jumps. CDs and can be characterized by powers of 2 and if partonic 2-surfaces correspond to ef-
fective p-adic p-adic topology characterized by a power of two, one obtains the commeasurability
of the secondary p-adic time scale of particle and that of CD in good approximation.

2. The notion of infinite primes motivates the hypothesis that the many-sheeted structure of space-
time can be coded by infinite primes [K76] . The number of primes larger than given infinite
prime P is infinitely larger than the number of primes than P . The infinite prime P characteriz-
ing the entire universe decomposes in a well defined manner to finite primes and p-adic evolution
at the level of entire universe is implied by local p-adic evolution at the level of selves. Therefore
maximum entanglement negentropy gain for p-adic self increases at least as log(p) with p in the
long run. This kind of relationship might hold true for real selves of p-adic physics is physics of
cognitive representations of real physics as suggested by the success of p-adic mass calculations.
Thus it should be possible to assign definite p-adic prime to each partonic 2-surface.

3. A further aspect of evolution relates to the hierarchy of Planck constants implying that at dark
matter levels rational or at least integer multiples of the favored p-adic time scales are realized.
The latter option is favored by the idea that the book like structure with pages consisting
of many-sheeted coverings of CD and CP2, and correlates with the emergence of algebraic
extensions of p-adic numbers defined by the roots exp(i2π/n) of unity. For the latter option
evolution by quantum jumps would automatically imply the drifting of the partonic 2-surfaces
to the pages of books labelled by increasing values of Planck constant. For more general option
one might argue that drifting to pages with small values of Planck constant is also possible. This
would give kind of antizooms of long length scale physics to short scales. Both kind of temporal
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zooms could be crucial for conscious intelligence building scaled models about time evolution in
various scales.

4. The generation of negentropic entanglement between different number fields would of course be
the fundamental aspect of evolution. It would give rise to increasingly complex and negentropic
sensory perceptions and cognitive representations based on conscious rules coded by negentropic
entanglement. This would justify the association concept as it used in neuro-science. Negentropic
entanglement could be also crucial for the basic mechanism of metabolism and make possible
conscious co-operation even in nano-scales.

Just for fun one can play also with numbers.

1. The highest dark matter level associated with self corresponds to its geometric duration which
can be arbitrarily long: the typical duration of the memory span gives an idea about the level
of dark matter hierarchy involved if one assumes that the time scale .1 seconds assignable to
electrons is the fundamental time scale. If the time scale T of human life cycle corresponds to a
secondary p-adic time scale then T = 100 years gives the rough estimate r ≡ ~/~0 = 233 if this
time scale corresponds to that for dark electron. The corresponding primary p-adic time length
scale corresponds to k = 160 and is 2.2× 10−7 meters.

2. If human time scale -taken to be T = 100 years- corresponds to primary p-adic time scale of
electron, one must have roughly r = 297.

I have already discussed the second law in TGD framework and it seems that its applies only when
the time scale of perception is longer than the time scale characterizing the level of the p-adic and
dark matter hierarchy. Second law as it is usually stated can be seen as an unavoidable implication
of the materialistic ontology.

Stable entanglement and quantum metabolism as different sides of the same coin

The notion of binding has two meanings. Binding as a formation of bound state and binding as a
fusion of mental images to larger ones essential for the functioning of brain and regarded as one the
big problems of consciousness theory.

Only bound state entanglement and negentropic entanglement are stable against the state reduc-
tion process. Hence the fusion of the mental images implies the formation of a bound entropic state-
in this case the two interpretations of binding are equivalent- or a negentropic state, which need not
be bound state.

1. In the case of negentropic entanglement bound state need not be formed and the interesting
possibility is that the negentropic entanglement could give rise to stable states without binding
energy. This could allow to understand the mysterious high energy phosphate bond to which
metabolic energy is assigned in ATP molecule containing three phosphates and liberated as
ATP decays to ADP and phosphate molecule. Negentropic entanglement could also explain the
stability of DNA and other highly charged biopolymers. In this framework the liberation of
metabolic (negentropic) energy would involve dropping of electrons to a larger space-time sheets
accompanying the process ATP → ADP + Pi. A detailed model of this process is discussed
in [K29] .

2. The formation of bound state entanglement is expected to involve a liberation of the binding
energy and this energy might be a usable energy. This process could perhaps be coined as
quantum metabolism and one could say that quantum metabolism and formation of bound
states are different sides of the same coin. It is known that an intense neural activity, although
it is accompanied by an enhanced blood flow to the region surrounding the neural activity,
does not involve an enhanced oxidative metabolism [J3] (that is ATP → ADP process and
its reversal). A possible explanation is that quantum metabolism accompanying the binding is
involved. Note that the bound state is sooner or later destroyed by the thermal noise so that
this mechanism would in a rather clever manner utilize thermal energy by applying what might
be called buy now–pay later principle.

If these interpretations are correct, there would be two modes of metabolism corresponding to two
different kinds of fusion of mental images.
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9.7.5 NMP, consciousness, and cognition

As already found NMP dictates the subjective time development of self and is therefore the basic law
of consciousness. If p-adic physics is the physics of cognition, the most exotic implications of NMP
relate to cognition rather than standard physics.

Thermodynamics for qualia

If only entropic entanglement is assumed, second law seems to hold also at the level of conscious experi-
ence of self, which can be seen as an ensemble of its subselves assignable to sub-CDs. The randomness
of the state function reduction process implies that conscious experience involves statistical aspects in
the sense that the experienced qualia correspond to the averages of quantum number and zero mode
increments over the sub-selves assignable to sub-CDs. When the number of quantum jumps in the
ensemble defining self increases, qualia get more entropic and fuzzy unless macro-temporal quantum
coherence changes the situation.

Negentropic entanglement means departure from this picture if sub-CDs can generate negentropic
entanglement. This is expected to be true if they overlap if one believes on standard argument for the
formation of macroscopic quantum phases. In this case the flux tubes connecting space-time sheets
assignable to the sub-CDs would serve as a space-time correlate for the negentropic entanglement.

The basic questions are whether sensory qualia can really correspond to the increments of quantum
numbers in quantum jump and whether these quantum jumps are assignable to entropic or negentropic
qualia. What is clear that the sensory qualia such as colors are assigned to an object of external world
rather predictably. This is not obvious if this process is based on quantum jump.

1. Qualia are determined basically as increments of quantum numbers [K32] whereas in ordinary
statistical physics measured quantities would correspond to quantum numbers basically. The
basic function of sensory organs is to map quantum numbers to quantum number increments so
that our sensory perception is in reasonable approximation about world rather than changes of
the world.

2. In zero energy ontology the increments must correspond to increments of quantum numbers for
(say) positive energy part of the state. A sensation of (say) given color requires a continual
feed of corresponding quantum number increment to the positive energy part of the system.
Some kind of far from equilibrium thermodynamics seems to be necessary with external feed of
quantum numbers generalizing the external feed of energy. The capacitor model of a sensory
receptor [K32] realizes this idea in terms of generalized di-electric breakdown implying opposite
charging of the capacitor plates in question. Note that in zero energy ontology also the positive
and negative energy parts of the zero energy state assignable to capacitor plates would be also
analogous to a pair of oppositely charged capacitor plates and one can speak about capacitor
also in time direction.

3. If entropic entanglement is reduced to zero in quantum jump for individual sensory recepto, the
outcome involves all possible values of quale, say different fundamental colors for which I have
proposed a model in terms of QCD color [K32] . If the probability of particular value of quale
is much larger than others, one can have statistical ensemble giving rise to predictable quale as
ensemble average.

4. If negentropic entanglement is in question, similar situation is encountered but the perception is
a mixture of qualia. For large values of p-adic prime one could have almost complete dominance
of a particular instance of quale also now. One could argue that the perception represents also
the definition of the concept of a particular quale as a superposition of pairs of consisting of the
state inducing the instance of the quale and the state representing it. The fact that there are
very many negentropic superpositions however suggests that the superposition represents both
the definition of quale and average value of quale. For instance, the fusion of various colors could
rely on negentropic entanglement.

5. Both these representations of qualia could realized and one can ask whether the entropic repre-
sentation could be aesthetically less pleasing than the negentropic representation involving also
the notion of quale.
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Questions about various kinds of entropies

There are three kinds of entropies and the basic question is how these entropies relate.

1. Does the entropy characterizing the experience of self relate to the thermodynamical entropy
of some system? The fact that non-geometric sensory qualia have a statistical interpretation,
suggests that the entropy associated with the qualia of the mental image corresponds to the
thermodynamical entropy for a system giving rise to the qualia via the sensory mapping. The
thermodynamics of quantities in the external world would thus be mapped to the thermody-
namics of qualia, increments of quantities, in the inner world. Selves could also represent the
fundamental thermodynamical ensembles since they define also statistical averages of quantum
numbers and zero modes although these are not directly experienced.

2. Could one interpret the entropies of the space-time sheets as entropies associated with the
symbolic representations of conscious experiences of selves? Could one see the entire classical
reality as a symbolic representation? Does the entropy of conscious experience correspond to
the thermodynamical entropy of the perceived system, which in turn would correspond to the
classical space-time entropy of the system representing the perceived system symbolically? Does
this conclusion generalize to the case of p-adic entropy? Quantum-classical correspondence
would encourage to cautiously think that the common answer to these questions might be yes.

The arrow of psychological time and second law

The arrow of psychological time is closely related to the second law and I have considered several
alternative identifications for the arrow of psychological time. These identifications are discussed
in [K82, K6, K83] . The latest option favored by zero energy ontology is discussed in [K6] and involves
two aspects: the one related to the arrow of time coordinate assignable to the space-time sheet and
the other one to the relative proper time coordinate between the tips of CD.

A simple argument show that this distance quantized in powers of 2 should increase gradually
in statistical sense since the size of CD can also change in quantum jump. This would have have
interpretation in terms of a flow of ”cosmic time” (CD is analogous to big bang followed by big
crunch). Interestingly, CD with time scale of order 1011 years (age of the universe) corresponds
primary p-adic length scale of only only 10−4 meters, the size of a large neuron, and also the length
scale in which the blob of water has Planck mass so that the quantization of gravitational Planck
constant should become important [K70] . Could this mean that the CDs assignable to large neurons
make possible to develop the idea about the cosmology and cosmology itself? Could it really be that
that our cognitive representations about Universe quite concretely have the size of the Universe itself
as p-adic view about cognition requires?

Quantum jump and cognition

The fusion of subselves can take place in two manners: by real bound state entanglement and by
negentropic entanglement. The resulting mental images must differ somehow, and the proposal is that
the entanglement associated with the negentropic mental defines a conscious cognitive representation:
kind of rule. Schrödinger cat negentropically entangled with the bottle of poison knows that it is not a
good idea to open the bottle: open bottle-dead cat, closed bottle-living cat. Negentropic entanglement
would generate rules and counterparts of conscious associations fundamental in brain functioning. For
the mental image associated with bound state entanglement the information about bound systems
would be lost. Bound state entanglement could however give rise to stereo-consciousness essential for
(say) stereo vision.

One can imagine several kinds of negentropic entanglements of this kind. Between two real systems,
between real and p-adic systems, and between two p-adic systems possibly characterized by different
values of p: all these systems assigned with distinct but overlapping CDs. These entanglements
would correspond to different aspects of conscious experience. Maybe the real-real entanglement could
correspond to a positive emotion- perhaps love-, and the remaining to experiences of understanding
generating a connection between two different things: between real world even and its cognitive
representation or between two cognitive representations. Note that the entanglement probabilities can
vary considerably and one can obtain identical a spectrum of entanglement probabilities by permuting
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them. This should relate to the character of the experiencence of understanding. Schrödinger cat which
is almost dead has strong conviction that it is better to not open the bottle. The optimal situation
concerning understanding would be identical probabilities.

Analysis and conceptualization (synthesis) - formation of rules- could be seen as the reductionistic
and holistic aspects of consciousness. The interpretation of quantum jump as a creation of a to-
tally entangled holistic state, which is then analyzed to stable entangled pieces allows to interpret self
measurement cascade as a conscious analysis. The resulting stable negentropic pieces give rise to expe-
rience of understanding and conceptualization - rules and abstractions. Perhaps the holistic character
assigned ot right brain hemisphere could be interpreted in terms of specialization to conceptualization
and reductionist character of left brain to entropic analysis to smallest possible pieces.

There are rather interesting connections with altered states of consciousness and states of macro-
temporal quantum coherence.

1. Making mind empty of mental images could perhaps be interpreted as a mechanism of achieving
irreducible self state. If self entangles negentropically with larger conscious entity this would
lead to experiences characterized as expansion of consciousness, even cosmic consciousness. One
could also consider the possibility the sub-selves representing mental images fuse to single long-
lasting negentropic mental image. The absence of dissipation could relate to the reports of
meditators about lowered metabolic needs.

2. The ordinary wake-up consciousness is identifiable as the analytical mode in which entropic
entanglement dominates so that each U process is followed by a rather complete state function
reduction. The reason for this could be sensory input and motor activities, which would create
effective heat bath destroying holistic mental images.

3. Krishnamurti has talked a lot about states of consciousness in which no separations and discrim-
inations occur and timelessness prevails. These states could correspond to long-lived negentropic
entanglement with large ~ with larger conscious entities giving rise to very long effective mo-
ments of consciousness. In this kind of situation NMP does not force cognitive self measurements
to occur and analysis and separations can thus be avoided.

4. Sharing and fusion of mental images by entanglement of sub-selves of separate selves makes
possible quantum realization of telepathy and could be a universal element of altered states
of consciousness. Also this entanglement could be bound state entanglement or negentropic
entanglement.

Cognitive codes

p-Adic length scale hypothesis leads to the idea that each p ' 2k, k integer, defines a hierarchy of
cognitive codes with code word having duration given by the n-ary p-adic time scale T (n, k) and
number of bits given by any factor of k. Especially interesting codes are those for which the number
of bits is prime factor or power of prime factor of k. n = 2 seems to be in special position in zero
energy ontology. This is a strong quantitative prediction since the duration of both the code word
and bit correspond to definite frequencies serving as signatures for the occurrence of commutations
utilizing these codes.

If k is prime, the amount of information carried by the codon is maximal but there is no obvious
manner to detect errors. If k is not prime there are several codes with various numbers of bits:
information content is not maximal but it is possible to detect errors. For instance, k = 252 gives
rise to code words for which the number of bits is k1 = 252, 126, 63, 84, 42, 212, 9, 7, 62, 4, 32, 2: the
subscript 2 tells that there are two non-equivalent manners to get this number of bits. For instance,
126 = 42 × 3-bit codon can have 42 -bit parity codon: the bits of this codon would be products of
three subsequent bits of 126-bit codon. This allows error detection by comparing the error codon for
communicated codon and communicated error codon.

Abstraction hierarchy and genetic code

Mersenne primes Mn = 2n − 1, which seem to play fundamental role in elementary particle physics
and it has been already found that their emergence is natural consequence of NMP. This would put
primes 3, 7, 31, 127, etc. in a special position. Primes appear frequently in various bio-structures
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and this might reflect the underlying p-adicity for the association sequences providing ’plan’ for the
development of bio-system. For instance, we have actually 7 (!) fingers: two of them have degenerated
during evolution but can be seen in the developing embryo. There are 31 subunits in our spinal chord,
etc...

In the model of genetic code based on a simple model of abstraction process [K35] the so called
Combinatorial Hierarchy 2, 3, 7, 127, 2127 − 1, ... of Mersenne primes emerges naturally. The construc-
tion for a model of abstraction process proceeds as follows.

1. At lowest level there are two digits. The statements Yes and No.

2. At the next level one considers all Boolean statements about these two statements which can be
regarded as maps from 2-element set to 2-element set. There are 4 of them. Throw one away
and you get 3 statements.

3. At the next level one considers all Boolean statements about these 3 statements and the total
number of them is 23. Throw one away and you get 7 statements. And so on.

The mystery is why one statement must be thrown away at each level of the construction. The
answer might relate to a concrete model of quantum computation.

1. A possible neurolevel realization of a quantum computation is following. Entangle in the pro-
posed manner two memetic codewords represented as temporal sequences of 127 cognitive Z0

magnetized antineutrino ensembles with bit represented as the magnetization direction. The
phase transitions changing the direction of magnetization are assumed to involve classical non-
determinism.

2. Nerve pulse (or pulse like membrane oscillation) results from each flip of the direction of the Z0

magnetization. The temporal sequence for which all Z0 magnetization are in the the direction of
the external Z0 magnetic field is excluded because this state does not give rise to a nerve pulse
pattern (or membrane oscillation pattern). In this manner a quantum computer with N = 1
and p = 2127 − 1 results. Incoming nerve pulse patterns could be taken to be identical memetic
codewords and out would go a a pair of memetic codewords representing the initial memetic
codeword and the result of the quantum computation. The duration of the computation is
.1 seconds and involves 2127 − 1 quantum jumps effectively glued to single quantum jump by
macro-temporal quantum coherence.

The concepts of resolution and monitoring

The following considerations represent a rather early idea related to p-adic physics, and I am not sure
whether to take it seriously or not. The basic observation is that genuinely p-adic probabilities can
sum up to zero, and this might make possible some rather exotic looking effects in genuinely p-adic
sectors of state space.

When the fundamental observable (density matrix or entropy operator) has degenerate eigenvalues,
one can only speak about probability for quantum jump to a particular eigen space of the the observable
since there is no preferred basis in this eigen space. This leads to the concept of cognitive resolution:
one cannot distinguish between states belonging to a given eigen space of density matrix and one can
make predictions for the probabilities for quantum jumps to given eigen space only.

1. Resolution and monitoring

p-Adic probability concept allows to consider an additional exotic effect.

1. The total real probability for quantum jump to degenerate subspace is the real counterpart for
sum of p-adic probabilities rather than sum of the real counterparts of the p-adic probabilities.
This can lead to rather dramatic effects: for instance, the sum of p-adic probabilities can be
very small even when the sum of the real probabilities is large.

2. The notion of resolution is closely related to the notion of monitoring: resolution can be defined
as a decomposition of the p-adic state space to a direct sum of subspaces such that the p-adic
density matrix is degenerate inside each subspace. If p-adic probabilities are defined modulo
O(p) pinary cutoff this kind of degeneracy is bound to occur if the dimension of the state space
is larger than p.
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An interesting possibility is that the notions of resolution and monitoring could be important in the
physics of cognition. Perhaps the well-known fact that the behavior of cognitive systems is sensitive
to monitoring, might have something to do with the density matrix characterizing the entanglement
between the monitoring and monitored systems. The behavior of monitored system would depend on
the resolution of the monitoring, that is on how interested monitorer is about behavior of monitored
system. In the limit that monitorer is not interested at all on the behavior, entanglement probabilities
would in general be identical and unless the number of states is power of p, S = 0 state would result.

The total probability for a set of independent events to occur depends on the resolution of mon-
itoring: not only the behavior of individual quantum system in ensemble but also the statistical
behavior of the ensemble of systems characterized by same p-adic prime depends on the resolution of
the monitoring.

Standard probability theory, which also lies at the root of the standard quantum theory, predicts
that the probability for a certain outcome of experiment does not depend on how the system is
monitored. For instance, if system has N outcomes o1, o2, ...oN with probabilities p1, ..., pN then
the probability that o1 or o2 occurs does not depend on whether common signature is used for o1

and o2 or whether observer also detects which of these outcomes occurs. The crucial signature of
p-adic probability theory is that monitoring affects the behavior of the system. NMP provides precise
definition for the concept of monitoring. There are two forms of monitoring depending on whether
the fundamental observable, denote it by O, is density matrix or entropy operator.

Consider first the situation in which all entanglement probabilities have p-adic norm different from
unity. Physically monitoring is represented by quantum entanglement and differentiates between two
eigen states of O (density matrix or entropy operator) only provided the eigenvalues of O are different.
If there are several degenerate eigenvalues, quantum jump occurs to any state in the eigen space and
one can predict only the total probability for the quantum jump into this eigen space. Hence the p-adic
probability for a quantum jump to a given eigen space of density matrix is p-adic sum of probabilities
over the eigen states belonging to this eigen space:

Pi =
(n(i)P (i))R∑
j(n(j)P (j))R

.

Here ni are dimensions of various eigen spaces.
If the degeneracy of the eigenvalues is removed by an arbitrary small perturbation, the total

probability for the transition to the same subspace of states becomes the sum for the real counterparts
of probabilities and one has in good approximation:

PR =
n(i)P (i)R

[
∑
j 6=i
∑
j(n(j)P (j))R + n(i)P (i)R]

.

Rather dramatic effects could occur. Suppose that that the entanglement probability P (i) is of
form P (i) = np, n ∈ {0, p − 1} and that n is large so that (np)R = n/p is a considerable fraction of
unity. Suppose that this state becomes degenerate with a degeneracy m and mn > p as integer. In this
kind of situation modular arithmetics comes into play and (mnp)R appearing in the real probability
P (1 or 2) can become very small. The simplest example is n = (p+1)/2: if two states i and j have very
nearly equal but not identical entanglement probabilities P (i) = (p+ 1)p/2 + ε, P (j) = (p+ 1)p/2− ε,
monitoring distinguishes between them for arbitrary small values of ε and the total probability for the
quantum jump to this subspace is in a good approximation given by

P (1 or 2) ' x[∑
k 6=i,j(Pk)R + x

] ,

x = 2 [(p+ 1)p/2]R . (9.7.0)

and is rather large. For instance, for Mersenne primes x ' 1/2 holds true. If the two states become
degenerate then one has for the total probability

P (1 or 2) ' x[∑
k 6=i,j(Pk)R + x

] ,

x =
1

p
. (9.7.0)
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The order of magnitude for P (1 or 2) is reduced by a factor of order 1/p!

A test for the notion of p-adic quantum cognition would be provided by the study of the de-
pendence of the transition rates of quantum systems on the resolution of monitoring defined by the
dimensions of the degenerate eigen spaces of the subsystem density matrix (or entropy operator).
One could even consider the possibility of measuring the value of the p-adic prime in this manner.
The behavior of living systems is known to be sensitive to monitoring and an exciting possibility is
that this sensitivity, if it really can be shown to have statistical nature, could be regarded as a direct
evidence for TGD inspired theory of consciousness. Note that the mapping of the physical quantities
to entanglement probabilities could provide an ideal manner to compare physical quantities with huge
accuracy! Perhaps bio-systems have invented this possibility before physicists and this could explain
the miraculous accuracy of biochemistry in realizing genetic code.

If some entanglement probabilities have unit norm so that their contributions to the p-adic en-
tanglement entropy vanish, quantum jump to an entangled final state can occur: this is genuinely
p-adic effect and serves as a second test for p-adic cognition. If density matrix is the fundamental
observable, quantum jump can occur to an entangled final state, which corresponds to any S = 0
subspace of S = 0 eigen space of the entropy operator with is eigen space of the density matrix. If
entropy operator is the fundamental observable, quantum jump can occur to any S = 0 subspace of
entropy operator. Again the total probability for the transition is determined by the p-adic sum of
the probabilities and dramatic ’interference’ effects at the level of probabilities are possible.

Resolution and monitoring and hyperfinite factors of type II1

The notion of resolution emerges naturally for the hyper-finite factors of type II1. The trace of the
unit operator is unit for the infinite-dimensional space in question so that any projector with a finite
trace must project to an infinite dimensional space so that there would always an infinite-dimensional
degeneracy involved with the eigenvalues of the measured observables.

One could however consider the formulation of the theory in terms of p-adic probabilities and
for this formulation resolution and monitoring emerge naturally. One could go even further. For
instance, if one can specify the infinite number of degrees of freedom as a p-adic integer, say N =
−1 = (p − 1)

∑∞
k=0 p

k, which in a well-defined sense represents the largest p-adic integer, one can
say that the p-adic probability for a given state is 1/N and finite as a p-adic number. It is finite
also as a real number and equal to 1/p if canonical identification is used to map N to a real number.
For a given finite-dimensional density matrix with finite number of distinct eigenvalues it would be
possible to have projections to one-dimensional subspace but there would always infinitely degenerate
eigenvalue present in accordance with the notion of finite resolution.

A natural question concerns the implications of the assumption that the map of p-adic probabilities
to real ones conserves probabilities without additional normalization.

9.7.6 NMP and quantum computer type systems

TGD Universe can be regarded as an infinite quantum computer. Unitarity process U is analogous
to a quantum computation. The state function reduction process represents a stepwise halting of the
computation proceeding until the resulting states are eith bound states or negentropically entangled
states. U matrix is between zero energy states and can be regarded as a collection of M -matrices
labelled by zero energy states. The possibility of two kinds of entropic and negentropic entanglement
makes possible two kinds of quantum computations and negentropic quantum computations based on
states which are longlived by the properties of the negentropic entanglement could be the one realized
in living matter.

The relationship between U-matrix and M-matrix

Before proceeding it is a good idea to clarify the relationship between the notions of U -matrix and M -
matrix. If state function reduction associated with time-like entanglement leads always to a product
of positive and negative energy states (so that there is no counterpart of bound state entanglement
and negentropic entanglement possible for zero energy states) U -matrix and can be regarded as a
collection of M -matrices
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Um+n−,r+,s− = M(m+, n−)r+,s− (9.7.1)

labeled by the pairs (m+, n−) labelling zero energy states assumed to reduced to pairs of positive
and negative energy states. M -matrix element is the counterpart of S-matrix element Sr,s in positive
energy ontology. Unitarity conditions for U -matrix read as

(UU†)m+n−,r+s− =
∑
k+,l−

M(m+, n−)k+,l−M(r+, s−)k+,l− = δm+r+,n−s− ,

(U†U)m+n−,r+s− =
∑
k+,l−

M(k+, l−)m+,n−M(k+, l−)r+,s− = δm+r+,n−s− .

(9.7.0)

The conditions state that the zero energy states associated with different labels are orthogonal as zero
energy states and also that the zero energy states defined by the dual M-matrix

M†(m+, n−)k+,l− ≡M(k+l−)m+,n− (9.7.1)

-perhaps identifiable as phase conjugate states- define an orthonormal basis of zero energy states.
When time-like binding and negentropic entanglementare allowed also zero energy states with a

label not implying a decomposition to a product state are involved with the unitarity condition but
this does not affect the situation dramatically. As a matter fact, the situation is mathematically the
same as for ordinary S-matrix in the presence of bound states.

How quantum computation in zero energy ontology differs from ordinary quantum com-
putation

Quantum computation in zero energy ontology differs in several respects from ordinary quantum
computation.

1. The time parameter defining quantum computation as a unitary time evolution in standard
quantum physics disappears and corresponds to the U -matrix for single quantum jump. Quan-
tum computation corresponds to the U -matrix assignable to single quantum jump if one restricts
to sub-CDs with given time scale inside larger CD. The quantum jump for given sub-CD would
represent single quantum computation and the outcome of the quantum computation would be
determined statistically from the distribution of the outcomes of state function reductions for
over sub-CDs.

Quantum classical correspondence encourages to assign to the quantum computation an interval
of psychological time equal to the proper time distance between the tips of CD. For instance,
.1 seconds would the be time scale assignable to quantum computations possibly assignable to
electrons.

The hierarchies of CDs and Planck constants make possible zoomed up variants of quantum
computations. This kind of zooming might be essential for intelligent behavior since it is useful
to simulate dynamics of the external world in the time scales natural for brain and shorter than
the time scale during which it is necessary to react in order to survive. The geometric duration
of the shortest possible quantum computation with respect to the psychological time of self is
of order CP2 time about 104 Planck times, if the simplest estimate is correct.

2. The classical space-time correlates for the quantum computation are four-dimensional unlike in
the case of ordinary quantum compitation. In living matter nerve pulses and EEG frequencies
would be very natural correlates of this kind. The model for DNA as topological quantum
computer [K25] has as its space-time correlates magnetic flux tubes connecting DNA nucleotides
and lipids of nuclear and cell membranes defining the braiding coding for the topological quantum
computation. Dynamical flow of lipids defines the braiding in time direction and the memory
representation is in terms of the braiding of the flux tubes induced by this flow. A good metaphor
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is in terms of dancers connected to a wall by threads. Dancing is the correlate for the running
quantum computer program and the geometric entanglement of threads the correlate for the
storage of the program to computer memory.

3. The outcome of quantum computation is described statistically in terms of a large set of quantum
computations. The statistical description of the conscious experience of ensemble of sub-selves
implies that mathematically the situation is very much analogous with that encountered in the
standard quantum computation and it is attractive to assume that conscious experience codes for
the outcome of quantum computation via the average quantities assignable to the distribution
of zero energy quantum states assignabl to sub-CDs.

4. A further new element is macro-temporal quantum coherence involving several aspects. One of
these aspects is that the time scale of CD defines macrotemporal quantum coherence at least at
the level of the field body assignable to the physical system such as electron. It is not quite clear
whether electrons correspond to distinct overlapping CDs of size scale defined by .1 second time
scale and of the order of Earth circumference and thus satisfying the basic criterion of quantum
coherence or whether one should speak about anyonic many particle states assignable to single
CD or whether both interpretations can make sense depending on situation. In living matter
also millisecond time scale is important and would correspond naturally to the CDs assignable
to u and d quarks in nuclei and perhaps also with the ends of magnetic flux tubes in the model
of DNA as topological quantum computer. In the proposed model quarks and antiquarks at
the ends of flux tubes represent genetic codons and their entangelement is responsible for the
realization of the program at quantum level. The millisecond time scale of synchronous cortical
firing and of nerve pulse could correspond to the time scale of CDs associated with u and d
quarks at the ends of the flux tube. Note that larger value of ~ would scale up this time scale.
Quantum parallel dissipation taking place at various size scales for CD is a further new element.

5. One must generalize the standard quantum computer paradigm since ordinary quantum com-
puters represent only the lowest, 2-adic level of the p-adic intelligence. Qubits must be replaced
by qupits since for algebraic entanglement two-state systems are naturally replaced with p-state
systems. For primes of order say p ' 2167 (the size of small bacterium) this means about 167
bits, which would mean gigantic quantum computational resources. The secondary p-adic time
scale T2(127) ' .1 seconds basic bit-like unit corresponds to M127 = 2127−1 M127-qupits making
about 254 bits. The size of neuron corresponds to CD with time scale equal to the age of the
universe and in this case the maximum the number of pinary digits is 171.

The finite measurement resolution for qubits of course poses strong limitations to the actual
number of bits since the negentropic zero energy qubits must be in reasonable approximation
pure qubits distinguishable from each other and could correspond CDs with time scales coming
as powers of two from n = kmin to k so that the effective number of qubits would go like 2-based
logarithm of the p-adic prime. For instance, electron could correspond to six bits assignable to
genetic code plus parity bit corresponding to time scale range from 1 ms to 100 ms. In any case
the idea about neuron as a classical bit might be completely wrong!

6. Spin glass degeneracy also provides the needed huge number of degrees of freedom making quan-
tum computations very effective. These degrees of freedom are associated with the join along
boundaries bonds -say magnetic flux tubes- and are essentially gravitational so that a connection
with Penrose-Hameroff hypothesis suggests itself. The space-time sheets mediating gravitational
interaction are predicted to have a huge gravitational Planck constant ~gr = GMm/v0, v0/c < 1,
particles at these space-time sheets are predicted to have huge Compton wavelengths and the
plausible looking identification is in terms of dark energy [K70, K59] . This would make quantum
computation like activities possible in super-astronomical time scales.

Three kinds of quantum computations are possible in TGD Universe

In TGD Universe one must distinguish between three kinds of quantum computational modes.
Ordinary quantum computation utilizes only the part of U -matrix for which zero energy states
involved are unentangled products of positive and negative energy states. In this case quantum
coherence is extremely fragile and lasts for single quantum jump only but even in this case one
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might hope that coherence time correspondences to the time scale CD. U -matrix can calso
correspond to the analogous of bound states for real time-like entanglement. If the proposed
interpretation makes sense these state pairs would not correspond to conscious rules. Negentropic
entanglement in time direction is the third option. For living quantum computers entanglement
could correspond to bound state entangelment or negentropic entanglement and NMP takes
care that the character of both these states is preserved. Thus bio-systems would be especially
attractive candidates for performers of quantum computation like processes.

Negentropic quantum computations, fuzzy qubits, and quantum groups

1. The possibility of negentropic entanglement is certainly the basic distinction making in the
intersection of real and p-adic worlds possible conscious process at least analogous to a quantum
computation and accompanied by a conscious understanding. What makes this possible is
the fact that the negentropically entangled states of N basic states have permutation of the
basis states as a symmetry. For instance, states for which bit 1 appears with almost unit
probability gives by permutation a state for which bit 0 appears with almost unit probability.
This suggests that the outcome of quantum computation is expressed in terms of almost bits with
a small mixing implying that the outcome has interpretation both as a rule and as almost bit in
the ordinary sense. The conscious quantum computation would utilize states with negentropic
entanglement in time direction. Also the analogies of bound states for time-like engtanglement
are possible and might make possible the counterpart of ordinary quantum computation without
the higher level conscious experience about rules defined by the entangled states.

2. Negentropic entanglement for positive and negative energy parts of bits stable and pinary digits
stable under NMP means that the logic is always fuzzy. I have proposed the mathematical
description of this in terms of quantum spinors for which the components do not commute
anymore implying that only the probability for either spin state is is an observable [K87] .
This suggests that negentropic entanglement might be describable in terms of quantum spinors
and that it would be the unavoidable fuzziness which would make possible the representation
conscious rules. What is interesting that for quantum spinors the spectrum of the probabilities
for given spin is universal and depends only on the integers characterizing the quantum phase
q = exp(i2π/n). An alternative interpretation is that fuzzy logic relates to a finite measurement
resolution. These interpretation need not be in conflict with each other. Since quantum groups
are associated with anyonic systems, this suggests that negentropic quantum computations take
place in anyonic systems assignable to phases with large value of ~. This encourages to consider
the possibility that quantum phases define algebraic extensions of p-adic numbers.

3. In living systems it might be more appropriate to talk about conscious problem solving instead
of quantum computation. In this framework the periods of macro-temporal quantum coher-
ence replace the unitary time evolutions at the gates of the quantum computer as the basic
information processing units and entanglement bridges between selves act as basic quantum
communication units with the sharing of mental images providing a communication mode not
possible in standard quantum mechanics.

9.8 Generalization of thermodynamics allowing negentropic
entanglement and a model for conscious information pro-
cessing

Costa de Beauregard considers a model for information processing by a computer based on an analogy
with Carnot’s heat engine [J4] , [J4] . I am grateful for Stephen Paul King for bringing this article to
my attention in Time discussion group and also for inspiring discussions which also led to the birth
of this section. As such the model Beauregard for computer does not look convincing as a model for
what happens in biological information processing.

Combined with TGD based vision about living matter, the model however inspires a model for
how conscious information is generated and how the second law of thermodynamics must be modified
in TGD framework. The basic formulas of thermodynamics remain as such since the modification
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means only the replacement S → S −N , where S is thermodynamical entropy and N the negentropy
associated with negentropic entanglement. This allows to circumvent the basic objections against the
application of Beauregard’s model to living systems. One can also understand why living matter is so
effective entropy producer as compared to inanimate matter and also the characteristic decomposition
of living systems to highly negentropic and entropic parts as a consequence of generalized second law.

9.8.1 Beauregard’s model for computer

Beauregard’s model describes computer as information processor analogous to heat engine. The work
done by a heat engine is replaced with information generated by the computer and printing makes
this information manifest.

1. In Carnot cycle thermal energy is transformed to work and one gets the well known upper bound
for the efficiency from second law as η = W/Qin ≤ ∆T/Tin.

2. Beauregard a model for an ideal computer is as a system which performs no work but prints
instead. One studies information flow instead of energy flow. Negentropy is identified as a nega-
tive of thermodynamical entropy. Incoming negative negentropy flow means coding of program
metaphorically at least and outgoing negentropy flow to what results, when this coding is erased
in computer memory. The printed text carries the negentropy which in the optimal situation is
the difference between incoming and outgoing negentropies. This negentropy is sucked from the
incoming negative negentropy flow so that second law holds true.

3. In terms of formulas one has dW = dQout − dQin = 0 and dS = dQout/Tout − dQin/Tin =
dQin(1/Tout − 1/Tin) ≥ 0. In the ideal case that the total entropy does not increase, this
entropy growth must be compensated by the reduction of the entropy of the printer by amount
dS interpreted as negentropy of the output.

4. This vision about computing is based on second law and identifies information gain as difference
between two entropies. System can gain information by feeding disorder to the environment.
The best possible situation is that one has no information at all.

Ciriticism of the model

This model seems consistent with thermodynamics and skeptic would argue that what we see around
us could be seen as a support for this view about information processing in living systems. One can
however argue that the view about information as absence of entropy does not really make sense in
living matter.

1. p-Adic physics encourages the belief in genuine information. If living matter is identified as
something in the intersection of real and p-adic worlds it is possible to have a genuine information
represented as a negentropic entanglement. The number theoretic variant of Shannon entropy
gives a natural measure for this information since it can be negative and there is a unique p-adic
prime minimizing it. Conscious information is a rule A ↔ B in which the pairs a ⊗ b in the
quantum superposition represent the instances of the rule. Schrödinger cat knows that it should
not open the bottle by being a little bit dead but negentropically so.

2. Second point is that Boltzmann’s kinetic theory leading to the second law is based on the as-
sumption that quantum coherence is not present in the time scales considered. If this assumption
fails one cannot treat the system as a thermodynamical system (atoms represent standard ex-
ample of this). In zero energy ontology and accepting the hierarchy of Planck constants, there
are always levels of hierarchy for which second law does not make sense in a given time scale.

3. There is also a direct experimental evidence for the reversal of thermodynamical time and
therefore breaking of second law in time scales below .1 seconds, which happens to correspond
to the time scale assignable to the CD of electron and to a fundamental biorhythm. The evidence
comes from a system consisting of beads on necklace [D3] .
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(a) Standard physics explanation would be in terms of fluctuation in the value of entropy.
Fluctuation theorem [B3] allows to deduce a precise expression for the ratio of probabilities
of entropy fluctuations of same magnitude but opposite sign as exp(A) where A represents
the magnitude of the fluctuation. The appearance of .1 second time scale however forces
to challenge this interpretation.

(b) In TGD framework one possibility is that the spontaneous local reversal of the arrow
of geometric time induced from that of experienced time implies that second law with
reversed arrow of geometric time is operating. Second possibility is that genuine increase
of negentropy is in question.

Problems of Beauregard’s model if interpreted as a model for information processing in
living systems

Beauregard’s model for what he calls ”printer” looks problematic for several reasons.

1. Living matter and computers are in good approximation at the same temperature as environment
and temperature T and volume V are not changed during the process so that free energy F is
minimized rather than thermodynamical negentropy. This kind of systems are not analogous
to steam engines for which one has has incoming steam at higher temperature. Beauregard’s
analog of Carnot engine satisfies dW = dQout − dQin = 0 and indeed gives for Tin = Tout the
trivial result dN = 0. No information is generated. Even worse, living systems are typically at
higher temperature than environment so that the heat engine analogy does not seem to work
well.

2. In the analog of steam engine one actually assumes that the entropy difference for outgoing
and incoming beams corresponds to a positive negentropy assignable to the printing. One can
however treat the printer and computer as a single system in which case one can draw only one
conclusion from standard thermodynamics: this negentropy corresponds to work done by the
combined system and one has just the ideal steam engine but the work interpreted as printout.
Something however distinguishes between printer and steam engine.

9.8.2 TGD based variant of Beauregard’s model and generalization of ther-
modynamics

The TGD inspired variant of Beauregard’s model leads naturally to a generalization of the second law
of thermodynamics taking into account the possibility of negentropic entanglement.

Questions

Something distinguishes between printer and steam engine and standard thermodynamics is not able
to express this difference. What this something is? The proposal to be discussed is that the positive
entanglement negentropy assignable to rational (or even algebraic) entanglement generated in the
process in which conscious information is created. It is best to proceed by making questions.

1. The work done by steam engine is ”useful” work. What does this mean? Something which does
not have meaning for us but is a prerequisite for having meaning. Perhaps metabolic energy at
the basic level. This work can be eventually transformed to metabolic energy needed to build
mental images generated by the text.

2. What metabolic energy is? In TGD Universe there are two kinds of entanglements: the entropic
bound state entanglement and negentropic entanglement which is rational or even algebraic
and possible in the intersection of real and p-adic worlds. Bound state entanglement is stable
under NMP by binding energy. This kind of entanglement is like a marriage based on social
conventions, a jail.

Negentropic entanglement does not involve binding energy and can be compared to a marriage
based on freedom and love. The positive energy associated with the negentropic entanglement
has wrong sign to be interpreted as binding energy and is identifiable as metabolic energy.
This identification could explain the long standing mystery of the high energy phosphate bond
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central for the functioning of ATP and ADP. ATP-ADP process would be basically a transfer
of negentropic entanglement and thus information to the living system and at work at all levels
in living matter.

3. What is the process giving meaning to the text? This process must generate negentropic en-
tanglement. The corresponding entanglement negentropy is something independent of thermo-
dynamic entropy and the safest assumption is that the generation of negentropic entanglement
is accompanied by the generation of thermodynamical entropy at least compensating it so that
second law in a generalized form continues to hold true.

What happens in quantum jump?

Quantum jump involves U process and state function reduction cascade. Negentropy Maximization
Principle implies second law for the standard view about state function reduction: second law states
that the ensemble entropy increases by the randomness of the outcome of the state function reduction
process. When negentropic entanglement is present the situation is not so clear. Before proceeding
to consider the modification of the second law one must define more precisely what U process is.

The simplest view about quantum jump is as a unitary U -process followed by as a cascade of state
function reductions proceeding from top to bottom. But what is the top?

1. In positive energy ontology it would be entire Universe. Quantum classical correspondence
suggests that one should be able to assign to quantum jump a duration of geometric time. For
this proposal this time is most naturally infinite.

2. The vision about fractal hierarchy of selves and quantum jumps together with ZEO suggests
a more refined view about quantum jump in which. U -process and subsequence state function
reduction cascade could occur independently for disjoint CDs. For a given CD the new sub-CDs
(representing mental images of the corresponding self) can be created and old destroyed so that
the only constraint would be that only disjoint CDs can perform quantum jumps independently.
For this option the duration of geometric time assignable to the quantum jump would naturally
correspond to the temporal distance between the tips of CD: p-adic length scale hypothesis and
number theoretical vision suggest that this distance comes as an octave of CP2 time scale (prime
or integer multiple is the more general option). For infinitely large CD this would mean infinite
duration. This picture is consistent with the TGD view about how the arrow of subjective time
induces the arrow of geometric time [K6] .

Modification of thermodynamics to take into account negentropic entanglement

What does the presence of this negentropic entanglement mean from the point of view of thermo-
dynamics? There are two obvious options to consider. The optimistic option is just the standard
thermodynamics saying nothing about negentropy generation. The pessimistic option is that the gen-
eration of negentropy must be accompanied by a generation of at least the same amount of entropy:
the good news is that this entropy can be carried by different system and it is possible to have gen-
uinely negentropic systems. The following consideration is restricted to the pessimistic option which
seems to be more realistic view about the world we live in.

1. One must generalize the basic expression for energy differential

dE = TdS − dW → T (dS − dN)− dW . (9.8.1)

This means that there are two kinds of energies given out by the system. The useful work dW
and negentropic energy TdN . For steam engine only dW is present. For ideal system only
negentropic energy would be present.

2. What happens to the second law? The pessimistic guess is that generation of negentropy requires
a generation of at least same amount of entropy so that one would have
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∆S −∆N ≥ 0 . (9.8.2)

Here S can be interpreted as a sum of two terms. The first part corresponds to the ensemble
entropy generated by the randomness of ordinary quantum jumps, and second part to the entropy
assignable as maximal entanglement entropy assignable to the decompositions of bound state
to two parts. N corresponds to maximal negentropy for the decompositions of negentropic sub-
system to pairs. One can criticize these definitions and a possible modification of could be as as
the average for the entanglement entropies over this kind of decompositions.

3. Quite generally, Clausius inequality allowing to deduce extremization conditions for various
thermodynamical potentials generalizes to

T0(∆S −∆N)−∆E − P0∆V ≥ 0 . (9.8.3)

where T0 and P0 and temperature and pressure of heat bath. Living systems would be entropy
producers and this seems to conform with what we see around us.

For instance, for a system in constant volume one would have

∆S −∆N − ∆E

T
≥ 0 . (9.8.4)

so that systems developing negentropy would also generate thermodynamics entropy. For a
system in heat bath one has T = T0 and Clausius inequality gives

∆F = −∆W (9.8.5)

stating that increase of free energy at constant temperature requires work done on the system
(dW < 0): otherwise ∆F ≤ 0 holds true.

By using the variable S−N instead of S all formulas reduce formally to standard thermodynamics
except that S can be negative. This is absolutely crucial for distinguishing TGD counterpart of
Beauregard’s printer -identifiable as conscious reader rather than printer - from Carnot engine.

The analog of Carnot cycle for information processing in living matter

Consider now Carnot heat engine and its information theoretic analog in this framework.

1. The basic equation for Carnot engine is

dW = dQin − dQout ≥ 0 . (9.8.6)

Optimal efficiency corresponds to dSout = dSin.
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2. For the information theoretic analog one would have

dW = 0 , (9.8.7)

and

dN = dSout − dSin ≥ 0 . (9.8.8)

The interpretation would be that incoming entropy flow leaves the computer in a state of higher
entropy and the difference corresponds to information dN feeded to say printer. The increase
of entropy would have interpretation in terms of erasing of data from computer memory.

The problematic aspect of the model is that it requires Tin > Tout in order to have dN > 0.
For living systems one has however typically Tin < Tout. Already for Tin = Tout the situation
trivializes since one has

dN = 0 (9.8.9)

by dW = 0 and dS = dQ/T .

3. Now however a more general condition

Tind(Sin −Nin)− Toutd(Sout −Nout) ≥ 0 (9.8.10)

holds true and allows to generate conscious information provided it is compensated by thermo-
dynamical entropy. Note that the temperature of the environment can be even lower than the
temperatures of the system.

It is also possible to transform information to work as the expression for the differential dF =
−SdT − TdN − dW of the generalized free energy E = E − TS shows. The increase of dW
for the work done by the system is compensated by the reduction of information dN so that
system loses negentropy in the process keeping dF constant. The loss of negentropy couild be
interpreted in terms of a loss of metabolic energy which corresponds to negentropic entanglement
for AMP, ADP, and ATP molecules.

4. Beauregard calls the information engine printer. What does this ”printing” correspond from
the point of view of negentropic entanglement? Is the negentropic entanglement is generated
during physical printing or during the reading? If the negentropic entanglement is generated
before reading, there must be some other conscious entity for which the text has meaning. This
seems un-necessary assumption so that ordinary computers would not generate negentropic
entanglement. For the second and much more reasonable looking option the above process takes
place during the reading and the ”printing” as a name for the above process is misleading:
conscious reading is in question.

Some clarifying comments

Some clarifying comments about biological implications are in order. Many of them are inspired by
the questions of Stephen Paul King in Time discussion group.

1. There is no need to restrict the consideration to equilibrium systems. First of all, the environment
and living system are in general at different temperatures and temperature difference is typically
of wrong sign for the model of Beauregard to work in this context. Beauregard’s model is of
course a model for computation, not for the generation of negentropic mental images. Maybe
cognitive machine might be proper term for what the modified model could describe.
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2. Quite generally, self-organization requires a feed of energy to the system so that one has flow equi-
librium. In the case of living system this feed of energy is metabolic energy associated with the
negentropic entanglement transferred to the system in the ATP-ADP process. Self-organization
driven by negentropic entanglement leads to standardized negentropic mental images automat-
ically as asymptotic self-organization patterns in 4-D sense (CDs within CDs within ...).

3. No explicit assumptions about computational aspects of the process has been made. Just a
generation of conscious information identified in terms of negentropic entanglement is assumed.
The basic character quantum jump as U -process followed by the cascade of state function re-
ductions represents a fractal hierarchy of what can be seen as quantum computations and are
distinguished from classical computations in that the process proceeds from top to bottom rather
than being a local process. The result of computation is represented using statistical ensembles
defined by sub-CDs at various levels of the hierarchy and is in principle communicable by clas-
sical fields (say EEG patterns in the case of brain) to higher levels of self hierarchy which in
turn can induces the same distributions so that communication of the objective aspects of the
experience with the mediation of ”medium” is possible. The presence of the ”medium” seems
unavoidable. Magnetic body would be this medium in TGD inspired biology.

9.8.3 About implications of generalized second law

Generalized second law allows to sharpen the basic picture about implications of the second law.

Biological implications

Living matter involves also another aspect made possible by the generalized second law obtained
by the replacement S → S − N . Subsystem can have also negative net entropy and split to two
highly negentropic and entropic pieces. In the extreme situation this is nothing but excretion, which
is absolutely essential element of being alive but sometimes forgotten from the lists of properties
distinguishing living matter from inanimate matter. It is not at all clear whether this is possible for
standard non-equilibrium systems defining information as a reduction of disorder. At all levels of the
fractal hierarchy division into negentropic and entropic subsystems is expected.

This picture seems to be in accordance with basic chemistry of energy metabolism.

1. The process creating both negentropy and entropy would be standardized in living matter and
mean a generation of high energy phosphate bonds assignable to AMP, ADP, and ATP containing
1, 2, and 3 phosphates respectively besides the sugar residue. Sugar residue is basic nutrient
and would provide the stored metabolic energy transformed to the negentropic energy of the
high energy phosphate bonds if the proposed view is correct. Also other DNA nucleotides such
as G can appear besides A but in metabolism A has a preferred role.

2. The basic metabolic cycle provides ADP with an additional phosphate energizing it to ATP
and the reverse process transfers the metabolic energy and also negentropic entanglement to
the acceptor molecule. Also ADP can provide metabolic energy by transforming to AMP when
ATP is not available in sufficient amounts. That the catabolism of AMP creates urea excreted
out of the system fits with the general picture. The catabolism for nutrients would create the
entropy compensating for the negentropy of the high energy phosphate bonds.

3. The backbone of DNA is made of sugar and phosphate residues and corresponds to a sequence
of XMP , X = A, T,C,G with each XMP presumably containing single high energy phosphate
bond serving as a storage or potential source of negentropy. This conforms with the view that
DNA carries conscious information.

Negentropic and entropic entanglement are assumed to generate mental images with opposite
emotional colors. This connects information processing with emotions. From neuroscience point of
view this is not a news: peptides are molecules of emotions on one hand and molecules of information
on the other hand [J6] . The well-known specialization of the left and right hand sides of the amygdala
to experience positive and negatively colored emotions could be seen as one instance of this connection
and representing also an example about fractal negentropic-entropic differentiation.
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The interpretation of generalized second law in a wider context

Leaving the narrow confines of thermodynamics one could try to interpret the generalized second law
in a wider context.

1. The generalized second law unavoidably brings in mind the Good-Evil dichotomy. Good deeds
seem to induce evil deeds. Maybe this kind of polarization effect is indeed unavoidable in the
situations for which thermodynamics applies. The crucification of a man whose sole crime
was to suggest that we should love also our enemies expresses this paradoxical truth in very
deep manner. Thermodynamical approximation can however fail and the hierarchy of Planck
constants and zero energy ontology predict that this occurs. Maybe the Eastern teachings
promising a way out from the cycle of endless suffering are inspired by experiences in which no
Good-Evil polarization takes place. The ATP-ADP cycle generating negentropy and at least
same amount of entropy has more than obvious analogy with the Karma’s cycle.

2. One cannot avoid associations with the basic teachings of Christianity. U process would cor-
respond to Genesis creating the paradise. Eating the fruits from the tree of Good and Bad
Knowledge would correspond to the emergence of cognition producing islands of negentropy and
entropy and meaning a banishment from paradise. ”With hard work of you hands must you will
get your bread” would correspond to endless fight for getting metabolic energy transformed to
energy associated with the negentropic entanglement.

Heaven and hell would be the islands of negentropy and entropy resulting during the state
function reduction process. The next U-process re-creating the heaven and and Earth would be
the new Genesis and the moment of mercy meaning a new possibility to be used or lost for both
saints and sinners. If U -process is local in the sense that it can occur independently for disjoint
CDs, the situation is rather comforting since salvation possibly brought by the next moment of
recreation requires only a finite time of waiting.

9.9 Updates since 2012

I have collected in this section the updates motivated by the progress in TGD and TGD inspired
theory of consciousness since 2012. NMP [K47] implies that negentropic entanglement is approxi-
mately invariant under quantum jumps. This allows to build a direct connection with the basic idea
of quantum biology about the braiding of magnetic flux tubes as a correlate for the negentropic en-
tanglement and identify braidings as kind of ”Akashic records” giving rise to various representations
(sensory - , memory - , cognitive - ) defining reflective level of consciousness as opposed to phenomenal
consciousness defined by sensory qualia. NMP in the rational intersection of realities and p-adicities in
turn fixes the p-adic prime associated with the criticality at the intersection. Also a close connection
between quantum criticality, life as something in the intersection of realities and p-adicities, hierar-
chy of effective vales of Planck constant, negentropic entanglement, and p-adic view about cognition
emerges. The reader interested in details can consult a more detailed representation about the recent
vision about TGD inspired theory of consciousness [K95].

9.9.1 The anatomy of quantum jump in zero energy ontology (ZEO)

Zero energy ontology emerged around 2005 and has had profound consequences for the understand-
ing of quantum TGD. The basic implication is that state function reductions occur at the opposite
light-like boundaries of causal diamonds (CDs) forming a hierarchy, and produce zero energy states
with opposite arrows of imbedding space time. Also concerning the identification of quantum jump
as moment of consciousness ZEO encourages rather far reaching conclusions. In ZEO the only dif-
ference between motor action and sensory representations on one hand, and intention and cognitive
representation on the other hand , is that the arrows of imbedding space time are opposite for them.
Furthermore, sensory perception followed by motor action corresponds to a basic structure in the
sequence of state function reductions and it seems that these processes occur fractally for CDs of
various size scales.

1. State function reduction can be performed to either boundary of CD but not both simultaneously.
State function reduction at either boundary is equivalent to state preparation giving rise to a

http://tgdtheory.com/public_html/tgdconsc/tgdconsc.html#nmpc
http://tgdtheory.com/public_html/tgdlian/tgdlian.html#consccomparison
http://tgdtheory.com/public_html/tgdlian/tgdlian.html#consccomparison
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state with well defined quantum numbers (particle numbers, charges, four-momentum, etc...)
at this boundary of CD. At the other boundary single particle quantum numbers are not well
defined although total conserved quantum numbers at boundaries are opposite by the zero energy
property for every pair of positive and negative energy states in the superposition. State pairs
with different total energy, fermion number, etc.. for other boundary are possible: for instance,
t coherent states of super-conductor for which fermion number is ill defined are possible in zero
energy ontology and do not break the super-selection rules.

2. The basic objects coding for physics are U-matrix, M-matrices and S-matrix. M-matrices corre-
spond to a orthogonal rows of unitary U-matrix between zero energy states, and are expressible
as products of a hermitian square root of density matrix and of unitary S-matrix which more or
less corresponds to ordinary S-matrix. One can say that quantum theory is formally a square
root of thermodynamics. The thermodynamics in question would however relate more naturally
to NMP rather than second law, which at ensemble level and for ordinary entanglement can be
seen as a consequence of NMP.

The non-triviality of M-matrix requires that for given state reduced at say the ”lower” boundary
of CD there is entire distribution of statesat ”upper boundary” (given initial state can lead to
a continuum of final states). Even more, all size scales of CDs are possible since the position of
only the ”lower” boundary of CD is localized in quantum jump whereas the location of upper
boundary of CD can vary so that one has distribution over CDs with different size scales and
over their Lorentz boots and translates.

3. The quantum arrow of time follows from the asymmetry between positive and negative energy
parts of the state: the other is prepared and the other corresponds to the superposition of the
final states resulting when interactions are turned on. What is remarkable that the arrow of
time at imbedding space level at least changes direction when quantum jump occurs to opposite
boundary.

This brings strongly in mind the old proposal of Fantappie [J5] that in living matter the arrow
of time is not fixed and that entropy and its diametric opposite syntropy apply to the two
arrows of the imbedding space time. The arrow of subjective time assignable to second law
would hold true but the increase of syntropy would be basically a reflection of second law since
only the arrow of the geometric time at imbedding space level has changed sign. The arrow
of geometric at space-time level which conscious observer experiences directly could be always
the same if quantum classical correspondence holds true in the sense that the arrow of time for
zero energy states corresponds to arrow of time for preferred extremals. The failure of strict
non-determinism making possible phenomena analogous to multifurcations makes this possible.

4. This picture differs radically from the standard view and if quantum jump represents a funda-
mental algorith, this variation of the arrow of geometric time from quantum jump to quantum
jump should manifest itself in the functioning of brain and living organisms. The basic building
brick in the functioning of brain is the formation of sensory representation followed by motor
action. These processes look very much like temporal mirror images of each other such as the
state function reductions to opposite boundaries of CD look like. The fundamental process could
correspond to a sequences of these two kinds of state function reductions for opposite bound-
aries of CDs and maybe independently for CDs of different size scales in a ”many-particle” state
defined by a union of CDs.

How the formation of cognitive and sensory representations could relate to quantum jump?

1. ZEO allows quantum jumps between different number fields so that p-adic cognitive represen-
tations can be formed and intentional actions realized. How these quantum jumps are realized
at the level of generalized Feynman diagrams is non-trivial question: one possibility suggested
by the notion of adele combining reals and various p-adic number fields to a larger structure is
that the lines and vertices of generalized Feynman diagrams can correspond to different number
fields [K93].

The formation of cognitive representation could correspond to a quantum jump in which real
space-time sheet identified as a preferred extremal is mapped to its p-adic counterpart or su-
perposition of them with the property that the discretized versions of all p-adic counterparts
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are identical. In the latter case the chart map of real preferred extremal would be quantal and
correspond to delocalized state in WCW. The p-adic chart mappings are not expected to take
place but with some probabilities determined by the number theoretically universal U-matrix.

2. Similar consideration applies to intentional actions realized as real chart maps for p-adically
realized intention. The natural interpretation of the process is as a time reversal of cognitive
map. Cognitive map would be generated from real sensory represention and intentional action
would transform time reversed cognitive map to real ”motor” action identifiable as time reversal
of sensory perception. This would occur in various length scales in fractal manner.

3. The formation of superpositions of preferred extremals associated with discrete p-adic chart
maps from real preferred extremals could be interpretated as an abstraction process. Similar
abstraction could take place also in the mapping of p-adic space-time surface to a superposition of
real preferred extrmals representing intentional action. U-matrix should give also the probability
amplitudes for these processes, and the intuitive idea is that the larger then number of common
rational and algebraic points of real and p-adic surfaces is, the higher the probability for this is:
the first guess is that the amplitude is proportional the number of common points. On the other
hand, large number of common points means high measurement resolution so that the number
of different surfaces in superposition tends to be smaller.

4. One should not make any un-necessary assumptions about the order of various kinds of quantum
jumps. For the most general option real-to-padic and p-adic-to-real quantum jumps can follow
any quantum jumps and state function reductions to opposite boundaries of CD can also occur
any time in any length scale. Also the length scale of resolution scale assignable to the cognitive
representation should be determined probabilistically. Quantal probabilities for quantum jumps
should therefore apply to all aspect of quantum jump and now ad hoc assumptions should
be made. Very probably internal consistency allows only very few alternative scenarios. The
assumption that the cascade beginning from given CD continues downwards until stops due to
the emergence of negentropic entanglement looks rather natural constraint.

9.9.2 About NMP and quantum jump

NMP is assumed to be the variational principle telling what can happen in quantum jump and says
that the information content of conscious experience for the entire system is maximized. In zero
energy ontology (ZEO) the definition of NMP is far from trivial and the recent progress - as I believe
- in the understanding of structure of quantum jump forces to check carefully the details related to
NMP. A very intimate connection between quantum criticality, life as something in the intersection
of realities and p-adicities, hierarchy of effective vales of Planck constant, negentropic entanglement,
and p-adic view about cognition emerges. One ends up also with an argument why p-adic sector is
necessary if one wants to speak about conscious information. I will proceed by making questions.

What happens in single state function reduction?

State function reduction is a measurement of density matrix. The condition that a measurement
of density matrix takes place implies standard measurement theory on both real and p-adic sectors:
system ends to an eigen-space of density matrix. This is true in both real and p-adic sectors. NMP is
stronger principle at the real side and implies state function reduction to 1-D subspace - its eigenstate.

The resulting N-dimensional space has however rational entanglement probabilities p = 1/N so
that one can say that it is the intersection of realities and p-adicities. If the number theoretic variant
of entanglement entropy is used as a measure for the amount of entropy carried by entanglement rather
than either entangled system, the state carries genuine information and is stable with respect to NMP
if the p-adic prime p divides N . NMP allows only single p-adic prime for real → p-adic transition:
the power of this prime appears is the largest power of prime appearing in the prime decomposition
of N . Degeneracy means also criticality so that that ordinary quantum measurement theory for the
density matrix favors criticality and NMP fixes the p-adic prime uniquely.

If one - contrary to the above conclusion - assumes that NMP holds true in the entire p-adic sector,
NMP gives in p-adic sector rise to a reduction of the negentropy in state function reduction if the
original situation is negentropic and the eigen-spaces of the density matrix are 1-dimensional. This
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situation is avoided if one assumes that state function reduction cascade in real or genuinely p-adic
sector occurs first (without NMP) and gives therefore rise to N-dimensional eigen spaces. The state
is negentropic and stable if the p-adic prime p divides N . Negentropy is generated.

The real state can be transformed to a p-adic one in quantum jump (defining cognitive map) if
the entanglement coefficients are rational or belong to an algebraic extension of p-adic numbers in
the case that algebraic extension of p-adic numbers is allowed (number theoretic evolution gradually
generates them). The density matrix can be expressed as sum of projection operators multiplied
by probabilities for the projection to the corresponding sub-spaces. After state function reduction
cascade the probabilities are rational numbers of form p = 1/N .

Number theoretic entanglement entropy also allows to avoid some objections related to fermionic
and bosonic statistics. Fermionic and bosonic statistics require complete anti-symmetrization/symmetrization.
This implies entanglement which cannot be reduced away. By looking for symmetrized or antisym-
metrized 2-particle state consisting of spin 1/2 fermions as the simplest example one finds that the
density matrix for either particle is the simply unit 2× 2 matrix. This is stable under NMP based on
number theoretic negentropy. One expects that the same result holds true in the general case. The
interpretation would be that particle symmetrization/antisymmetrization carries negentropy.

The degeneracy of the density matrix is of course not a generic phenomenon and one can argue
that it corresponds to some very special kind of physics. The identification of space-time correlates
for the hierarchy for the effective values ~eff = n~ of Planck constant as n-furcations of space-time
sheet suggests strongly the identification of this physics in terms of this hierarchy. Hence quantum
criticality, the essence of life as something in the rational intersection of realities and p-adicities, the
hierarchy of effective values of ~, negentropic quantum entanglement, and the possibility to make
real-p-adic transitions and thus cognition and intentionality would be very intimately related. This is
a highly satisfactory outcome, since these ideas have been rather loosely related hitherto.

What happens in quantum jump?

Suppose that everything can be reduced to what happens for a given CD characterized by a scale.
There are at least two questions to be answered.

1. There are two processes involved. State function reduction and quantum jump transforming
real state to p-adic state (matter to cognition) and vice versa (intention to action). Do these
transitions occur independently or not? Does the ordering of the processes matter? The proposed
view about state function reduction strongly suggests that the p-adic↔real transition (if possible
at all) can occur any time without affecting the outcome of the state function reduction.

2. State function reduction cascade in turn consists of two different kinds of state function reduc-
tions. The M-matrix characterizing the zero energy state is product of square root of density
matrix and of unitary S-matrix and the first step means the measurement of the projection op-
erator. It defines a density matrix for both upper and lower boundary of CD and these density
matrices are essentially same.

(a) At the first step a measurement of the density matrix between positive and negative energy
parts of the quantum state takes place for CD. One can regard both the lower and upper
boundary as an eigenstate of density matrix in absence of negentropic entanglement. The
measurement is thus completely symmetric with respect to the boundaries of CDs. At the
real sector this leads to a 1-D eigen-space of density matrix if NMP holds true. In the
intersection of real and p-adic sectors this need not be the case if the eigenvalues of the
density matrix have degeneracy. Zero energy state becomes stable against further state
function reductions! The interactions with the external world can of course destroy the
stability sooner or later. An interesting question is whether so called higher states of
consciousness relate to this kind of states.

(b) If the first step gave rise to 1-D eigen-space of the density matrix, a state function reduction
cascade at either upper of lower boundary of CD proceeding from long to short scales. At
given step divides the sub-system into two systems and the sub-system-complement pair
which produces maximum negentropy gain is subject to quantum measurement maximizing
negentropy gain. The process stops at given subsystem resulting in the process if the
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resulting eigen-space is 1-D or has negentropic entanglement (p-adic prime p divides the
dimension N of eigenspace in the intersection of reality and p-adicity).
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Chapter 10

A Possible Explanation of Shnoll
Effect

10.1 Introduction

Usually one is not interested in detailed patterns of the fluctuations of physical variables, and assumes
that possible deviations from the predicted spetrum are due to the random character of the phenomena
studied. Shnoll and his collaborators have however studied during last four decades the patterns
associated with random fluctuations and have discovered a strange effect described in detail in [E1]
, [E1, E6, E5, E2, E8, E3] . The examples of [E1] , [E1] give the reader a clear picture about what is
involved.

1. Some examples studied by Shnoll and collaborators are fluctuations of chemical and nuclear
decay rates, of particle velocity in external electric field, of discharge time delay in a neon lamp
RC oscillator, of relaxation time of water protons using the spin echo technique, of amplitude
of concentration fluctuations in the Belousov-Zhabotinsky reaction. Shnoll effect appears also
in financial time series [E9] which gives additional support for its universality. Often the mea-
surement reduces to a measurement of a number of events in a given time interval τ . More
generally, it is plausible that in all measurement situations one divides the value range of the
studied observable to intervals of fixed length and counts the number of events in each interval
to get a histogram representing the distribution N(n), where n is the number of events in a given
interval and N(n) is the number of intervals with n events. These histograms allow to estimate
the probability distribution P (n), which can be compared with theoretical predictions for the
spectrum of fluctuations of n. Typical theoretical expectations for the fluctuation spectrum are
characterized by Gaussian and Poisson distributions.

2. Contrary to the expectations, the histograms describing the distribution of N(n) has a distri-
bution having several maxima and minima (see the figures in the article of Shnoll and collab-
orators). Typically -say for Poisson distribution - one expects single peak. As the duration
of the measurement period increases, this structure becomes gets more pronounced: standard
intuituin would suggest just the opposite to take place. The peaks also tend to be located peri-
odically. According to [E1] , [E1] the smoothed out distribution is consistent with the expected
distribution in the case that it can be predicted reliably.

3. There are also other strange features involved with the effect. The anomalous distribution for
the number n of events per fixed time interval (or more general value interval of measured ob-
servable) seems to be universal as the experiments carried out with biological, chemical, and
nuclear physics systems demonstrate. The distribution seems also to be same at laboratories
located far away from each other. The comparison of consecutive histograms shows that the
histogram shape is likely to be similar to the shape of its nearest temporal neighbors. The
shapes of histograms tend to recur with periods of 24 hours, 27 days, or 365 days. The regular
time variation of consecutive histograms, the similarity of histograms for simultaneous inde-
pendent processes of different nature and occurring in different geographical positions, and the
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above mentioned periods, suggest a common reason for the phenomenon possibility related to
gravitational interactions in Sun-Earth and Earth-Moon system.

In the case that the observable is number n of events per given time interval, theoretical consider-
ations predict a distribution characterized by some parameters. For instance, for Poisson distribution
the probabilities P (n) are given by the expression

P (n|λ) = exp(−λ)
λn

n!
. (10.1.1)

The mean value of n is λ > 0 and also variance equals to λ. The replacement of distribution with
a many-peaked one means that the probabilities P (n|λ) are modified so that several maxima and
minima result. This can occur of course by the randomness of the events but for large enough samples
the effect should disappear.

The universality and position independence of the patterns suggest that the modification changes
slowly as a function of geographic position and time. The interpretation of the periodicities as periods
assignable to gravitational interactions in Sun-Earth system is highly suggestive. It is however very
difficult to imagine any concrete physical models for the effect since distributions look the same even for
processes of different nature. It would seem that the very notion of probability somehow differs from
the ordinary probability based on real numbers and that this deformation of the notion of probability
concept somehow relates to gravitation.

In the following the possibility that direct p-adic variants of real distribution functions such as
Poisson distribution could allow to understand the findings is discussed. It turns out that this is
not the case but that the replacement of integers with quantum integers [A116] nq identified as the
product of quantum integers associated with their prime factors with quantum phase q = exp(iπ/m),
where m ≥ 2 is not of form m = p, p prime, leads to a well-defined correspondence between p-adic
probabilities P (n) and real probabilities conserving the sum of probabilities.

There is however a difficulty, which was not fully realized in the original version of this article.
Quantum primes lq are non-negative only for l < m and this could lead to non-negative probabilities
(consider for instance the counterparts of n! in Poisson distribution). The solution of the problem
is provided by what I call quantum arithmetics [K90, K93] providing a more rigorous formulation
of quantum integers. The recipe is following. To define quantum integer nq decompose first n to
its prime factors l. For l < m one has lq > 0 but not necessarily for l > m. Express l > m as a
q-adic expansion in powers of m with coefficients smaller than m and thus expressible as products of
quantum primes lq for l < m so that the resulting quantum q-adic integers for q = m is non-negative.
For m = p one obtains what one might call quantum p-adics. For quantum p-adics one can

Usually quantum groups are assigned with exotic phenomena in Planck length scale. In TGD
they are assignable to a finite measurement resolution [K87] . TGD inspired quantum measurement
theory describes finite measurement resolution in terms of inclusions of hyper-finite factors of type
II1 (HFFs) and quantum groups related closely to the inclusions and appear also in the models of
topological quantum computation [B31] based on topological quantum field theories [A208] .

The universal modification of probability distributions P (n|λi) characterized by rational numbers
predicts patterns analogous to the ones observed by Shnoll. The parameters P and m characterize
the deformation of the probability distribution and the periodic slow variation of the p-adic prime P
and explain the periodically occurring peaks of the histograms for N(n) as function of n. Also the
dependence of the distribution of N(n) on the direction of the momentum of alpha particle [E2, E8]
can be understood in terms of the effect of the measurement apparatus on many-sheeted space-time
topology and geometry.

The p-adic primes P in question are small. This makes sense in TGD framework only if one accepts
that a very large value of Planck constant is involved. TGD indeed predicts a hierarchy of Planck
constants and identifies dark matter as phases with a large value of Planck constant. The Planck
constant associated with the space-time sheets mediating gravitational interaction is predicted to be
gigantic meaning macroscopic quantum coherence in astrophysical scales. This modification allows
also to formulate a general correspondence principle between real and p-adic physics as a rule stating
that all primes p except the p-adic prime P itself appearing in various formulas are replaced with
their quantum counterparts and P is mapped to its inverse in the modified distribution.
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For the reader not familiar with TGD the article series in Prespacetime journal [L13, L14, L18, L19,
L16, L12, L17, L23] and the two articles about TGD inspired theory of consciousness and of quantum
biology in Journal of Consciousness Research and Exploration [L22, L20, L21] are recommended. Also
the online books at my homepage provide the needed background.

10.2 p-Adic topology and the notion of canonical identifica-
tion

p-Adic physics has become gradually a central part of quantum TGD [K77] and the notion of p-
adic probability has already demonstrated its explanatory power in the understanding of elementary
particles masses using p-adic thermodynamics [K44] . This encourages the attempt to understand
Shnoll effect in terms of an appropriate modification of probability concept based on p-adic numbers.

p-Adic topology [A127] is characterized by p-adic norm given by |x|p = p−k for x = pk(x0 +∑
k>0 xkp

k), x0 > 0. This notion of nearness differs radically from its real counterpart. For instance,
numbers differing bya large power of p are p-adically near to each other. Therefore p-adic continuity
means short range chaos and long range correlations in real sense. One might hope that p-adic notion
of nearness allow the existence of p-adic variants of standard probability distributions characterized
by rational valued parameters and transcendental numbers existing also p-adically such that these
distributions can be mapped to their real counterparts by canonical identification mapping sum of
probabilities to the sum of the images of the probabilities.

10.2.1 Canonical identification

In the case of p-adic thermodynamics [K44] the map of real integers to p-adic integers and vice versa
relies on canonical identification and its various generalizations and canonical identification is also
now a natural starting point.

1. The basic formula for tge canonical identification for given prime p characterizing p-adic number
field Qp is obtained by using for a real number x pinary expansion x =

∑
xnp

−n, xn ∈ {0, p−1}
analogous to decimal expansion. The map is very simple and given by

∑
n

xnp
−n → I(x) =

∑
n

xnp
n . (10.2.1)

The map from reals to p-adics is two-valued in the case of real numbers since pinary expansion
itself is non-unique (p = (p − 1)

∑
k≥0 p

−k as the analog of 1=.99999.. for decimal expansion).
The inverse of the canonical identification has exactly the same form. Canonical identification
maps p-adic numbers to reals in a continuous manner and also the inverse map is continuous
apart from the 2-valuedness eliminated if one introduces pinary cutoff which is indeed natural
when finite measurement resolution is assumed.

2. The first modification of canonical identification replaces pinary expansion of real number in
powers of p with expansion in powers of pk: x =

∑
xnp

−nk, xn ∈ {0, pk − 1} and reads as

∑
n

xnp
−nk → Ik(x) =

∑
n

xnp
nk . (10.2.2)

3. A further variant applies to rational numbers. By using the unique representation q = r/s of
given rational number as ratio of co-prime integers one has

Ik(q =
r

s
) =

Ik(r)

Ik(s)
. (10.2.3)
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10.2.2 Estimate for the p-adic norm of factorial

In the p-adic variant of Poisson distribution canonical images of the factorial n! appear and the the
basic properties of I(n!) as function of n will be needed in the sequel.

1. Given integer n can be written as n = pk(n)m(n) such that m(n) has unit norm p-adically. n!
in turn can be written as

n! =

n∏
r=1

pk(r)m(r) = pK(n) ×
∏
r

m(r) , K(n) =
∑
r

k(r) . (10.2.4)

2. The p-adic norm of n! is given by

Np(n!) = p−K(n) . (10.2.5)

∏
rm(r) has unit norm p-adically and its p-adic canonical image satisfies the upper bound

Ik(
∏
r

m(r)) ≤ pk . (10.2.6)

3. Np(n!) is reduced by the power pk(r) in the step n = r − 1 → r. Therefore I(n!) ≡ Ik=1(n!)
is a decreasing function with discontinuous drops of the value which are especially large when
n is proportional to a large power of p. The peaks corresponding to given value k of k(r)
occur periodically and one has fractal pattern with periodicities define by powers of p. Similar
consideration applies to Ik(n!): now the periodicities correspond to powers of pk rather than
p. In both cases one has local chaos and long range correlations due to the fact that in p-adic
topology nearby points differing by a large power pn are far away in real sense. The natural
question is whether the periodicity of peaks in histograms of [E1] , [E1] could represent a special
case of of these periodicities.

In the sequel an estimate for the maximal power of p dividing n! defining the norm Np(n!) is
needed. The following estimate gives Np(n!) ' p−n for n� p.

1. What is needed is an estimate for the number N(n, k) of for the number of integers k(r) with
given value of k ≥ 1. If this estimate is available for large values of n, one obtains for the
exponent defined associated with the p-adic norm of n! the formula

K(n) ≡
∑

(kr) =
∑

N(k)k . (10.2.7)

2. By studying the 2-adic numbers one finds that the formula

K(n = 2m) =
∑

N(k)k , N(k) =
2m

2k
= 2m−k (10.2.8)

holds true.
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3. The generalization of the this formula to for p > 2 reads as

K(n = pm) =
∑

N(k)k , N(k) = (p− 1)
pm

pk+1
= pm−k . (10.2.9)

This would give at the limit n→∞

K(n = pm) =
pm+1

p− 1
' pm = n . (10.2.10)

There one has K(n) = n in this special case.

4. For a general value of n the approximate formula would be

K(n) ≤
∑

N(k)k , N(k) ' (p− 1)
n

pk
. (10.2.11)

Also now one would have K(n) ' n so that the p-adic norm of n! would be approximately p−n

. The justification for this formula comes by noticing that the number of integers smaller than
n with p-adic norm pk is roughly (p− 1)n/pk since the numbers kpk +X with Np(X) ≤ p−k−1

and k running from 1, ..., p− 1 satisfy the required conditions.

10.3 Arguments leading to the identification of the deformed
Poisson distribution

The following argument represents a trial and error procedure to a unique identificaiton of deformed
Poisson distribution P (n|λ) with a rational value of λ and more generally, to a modication of any
distribution P (n, λi) characterized by rational parameters λi.

10.3.1 The naive modification of Poisson distribution based on canonical
identification fails

To gain some intuition it is instructive to study the possible variants of Poisson distribution based
on canonical identification. The discussion generalizes to more general distributions for probabilities
of integer valued observables provided the parameters of the distribution exist p-adically. The idea
is to start from a p-adic variant of probability theory [A187] , assume that the p-adic valued proba-
bility distributions are mappable to their real counterparts using canonical identification, and to look
whether this procedure yields something consistent with the findings of Shnoll.

To begin with, assume that the notion of p-adic valued probability makes sense. This requires that
the probabilities exist as p-adic numbers. This is true if probabilities are rational numbers which can
be regarded as being common to reals and padic numbers. Also the sum of probabilities must make
sense p-adically so that it can be normalized to to unity. In absence of cutoff to the values of N this
condition is highly non-trivial.

The condition that the canonical identification commutes with the summation of probabilities is
especially strong and would state

∑
(P (n))R = (

∑
Pn)R . (10.3.1)

Here xR denotes the image of x under canonical identification. For ordinary p-adic numbers this
condition requires that the probabilities are just powers of p. If one allows algebraic extensions of
p-adic numbers defined by quantum phases defined by roots of unity mapped to real numbers as such,
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the probabilities can be of form Xpn where X is function of these phases. This condition excludes
automatically the naivest attempts to define canonical image of p-adic variant of Poisson distribution.
This is due to the presence of 1/n! and possible rational appearing in λ.

Optimist could give up the normalization condition and consider instead of probabilities rational
numbers. There are problems also now.

1. The first problem is that normalization factor is defined only up to a multiplication with a
rational and each choice of the normalization factor gives different real counterpart of the p-adic
distribution irrespective of the manner how the real probabilities are defined.

2. The normalization factor exp(−λ) is p-adic number only if λ is proportional to a positive power
of p. This condition also implies that the powers λk/k! approach to zero with respect to p-adic
norm since the p-adic norm of λk is always small than that of k!. The naive guess for the
canonical identification map of p-adic probabilities to their real counterparts is given by the
formula

λn → I(λn)/I(n!)

One can consider also other other variants but for the purposes of argument one can restrict the
consideration to this one. The problem is that I(λn) does not increase but decreases like p−n

so that λR < 1 would hold true. The decrease of the factor 1/n! guarantees the convergence of
probabilities for Poisson distribution. The canonical image I(1/n!) = 1/I(n!) however increases.
The same result is obtained irrespective of the detailed definition of canonical identification.
Therefore the first guess for the canonical image of the proposed p-adic variant of Poisson
distribution has very little to do with ordinary Poisson distribution. The attempts to cure the
situation by modifying the map from p-adics to reals fail. This suggests that one must modify
the p-adic variant of the Poisson distribution itself.

10.3.2 Quantum integers as a solution of the problems

The problems associated with the naive generalization of the Poisson distribution relate to the behavior
of canonical identification when applied to integers other than powers of p. This suggests that one
should replace the integers systematically with some of kind of deformations of integers guaranteeing
also that canonical identification maps sum of probabilities the sum of their images. The notion of
quantum integer [A116] is what comes first in mind.

TGD based motivation for the notion of quantum integer comes from the fact that the so called
hyper-finite factors of type II1 (HFFs) play a key role in quantum TGD and allow to formulate the
notion of finite measurement resolution in terms of inclusions of HFFs [K87] to which the quantum
groups assignable to roots of unity are closely related. The findings of Shnoll would therefore relate
to the delicacies of quantum measurement theory with finite measurement resolution.

The quantum groups based on quantum phases

q = Um = exp(iφm) , φm =
π

m
. m ≥ 3 (10.3.2)

appear in TGD framework and the long standing intuitive expectation has been that there might
exist a deep connection between p-adic length scale hypothesis and quantum phases defined by roots
of unity defining algebraic extensions of p-adic numbers.

The standard definition of quantum integer does not help

The first thing to do is to see whether the standard notions of quantum integer and quantum factorial
[A116] could allow to get rid of the problems.

1. Quantum integers for q = Um are given by

nUm =
Unm − U

n

m

Um − Um
=
sin(nφm)

sin(φm)
. (10.3.3)
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For n� m one has

nUm ' n . (10.3.4)

This property makes quantum integers a good candidate if one wants to generalize the notion of
Poisson distribution and more generally, any probability distribution P (n|λi) parametrized by
rationals. The rule would be very simple: replace all integers by their quantum counterparts:
n→ nq.

This proposal has however some problematic features.

1. nq is negative for n mod 2m > m so that in the case of Poisson distribution one would have
negative probabilities in real context. In the p-adic context there is no well-defined notion of
negative number so that one might avoid this difficulty if one can map p-adic probabilities to
positive real probabilities. Quantum integers have unit norm p-adically so that p-adic Poisson
distribution makes sense for Np(λ) < 1.

2. nUm vanishes for n = m always. Therefore nq! defined as a product of quantum integers smaller
than n vanishes for all n > m. One way out is to restrict the values of n to satisfy n < m. This
number theoretic cutoff would mean in the p-adic case that the sum of p-adic probabilities is
finite without the condition Np(λ) < 1.

3. Quantum integers defined in the standard manner are periodic with period m so that quantum
factorial obtained by dropping the vanishing terms would behave like a product of factorial
associated with m − 1 times quantum factorial of k ≤ m − 1. Ordinary factorial n! increases
much faster. It seems that the standard definition of quantum integer is not correct.

Quantum integers must allow factorization to quantum primes

.
Physics as a generalized number theory vision [K77] suggests a manner to circumvent above de-

scribed problems.

1. Quantum integers defined in the standard manner do not respect the decomposition of integers
to a product of factors- that is one does not have

(mn)q = mqnq . (10.3.5)

The preferred nature of the quantum phases associated with primes in TGD context however
suggests that one should guarantee this property by hand by simply defining the quantum integer
as a product of quantum integers associated with its prime factors:

nq ≡
∏

(pi)
ni
q for n =

∏
pnii . (10.3.6)

This would guarantee that the notion of primeness and related notions crucial for p-adic physics
would make sense also for quantum integers. Note that this deformation would not be made for
the exponents of integers for which sum is the natural operation.

2. If q = Um is such that m is not prime, the quantum phases associated with primes are always
non-vanishing and quantum integers and therefore also quantum factorials nq! defined using the
proposed definition of quantum integers are non-vanishing for all values of n. In p-adic context
this would mean that the probabilities associated with Poisson distribution are finite and for
Np(λp) < 1 sum up to a finite value.
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The number theoretic definition of quantum integers does not automatically solve the problem of
negative quantum integers obtained when integer contains prime factors p > m and vanishing problem
when integer is divisible by p.

1. If the number N− of prime factors of n satisfying p mod 2m > m is odd, the product of
minus signs coming from them is odd and the over all quantum integer is negative. Since
the p-adic probabilities are well defined in p-adic context, one could consider the mapping of
these probabilities to real probabilities by the basic form of canonical identification. If also
λ is expressed in terms of quantum primes only the real image of overall minus sign must be
determined. p-Adically −1 corresponds to a positive p-adic integer (p− 1)(1 + p+ p2 + ...) for
which one has I(−1) = p from the basic definition of canonical identification. Hence the p-adic
and real quantum variants of Poisson distribution would be unique.

This prescription would predict peaks of Poisson distribution for n = n+n−, such that (n+)q is
positive and has only prime factors p+ mod 2m < m and (n−)q is having therefore odd number of
negative prime factors (p−)q satisfying p− mod 2m > m. These peaks would occur periodically
with period n−. Large number of this kind of periods would be present. It might be possible to
identify the periodicities of the peaks of the histograms of Shnoll in this manner.

2. Second manner to solve the sign problem has been already mentioned and relies on the notion
of quantum arithmetics [K90, K93]. The construction recipe for quantum integers is following.
To define quantum integer nq decompose first n into its prime factors l. This guarantees the
quantum integers respect prime factorization for ordinary integers. For l < m one has lq > 0
but not necessarily for l > m. Express l > m as a q-adic expansion l =

∑
lkm

k, with lk < m
and thus expressible as products of quantum primes lq for l < m so that the resulting quantum
q-adic integers for q = exp(iπ/m are non-negative.

For m = p one obtains what one might call quantum p-adics and in this case pq = 0 holds true
so that one must assume cutoff n < p or exclude integers n divisible by p. Note that q-adicity
is consistent with p-adicity for prime factors of m.

One can consider also a more general recipe for quantum p-adic integers (and also quantum
m-adic integers) [K93]. One allows all expansions l =

∑
lnp

n of primes l > p in powers of p with
coefficients ln also now having only prime factors l < p but giving up the constraint ln < p so
that given p-adic integer corresponds to several quantum p-adic integers. This gives quantum
q-adic integers for q = m which in well-defined sense forms a covering of q-adic integers and one
can assign to it what might be called quantum Galois group.

The most general choice of λ

Consider next the most general choice of λ consistent with the constraint that canonical identification
conserves probabilities. Denote by P the p-adic prime characterizing the deformed Poisson distribution
and by p a generic prime.

1. If one assumes the following product representation

λq = PnQUm , (10.3.7)

where P is the p-adic prime and QUm is quantum rational in the proposed sense, p-adic prob-
abilities P (n) are finite for positive values of n and m satisfying the proposed constraints. The
expression for the real counterpart λRof λq is given by

λR =
QUm
P−n

. (10.3.8)

With a proper choice of QUm arbitrary large values are possible for λR and standard form of of
canonical identification for a well-defined p-adic probability distribution produces a real variant
of quantum Poisson distribution which is in a well-defined sense a small deformation of the
Poisson distribution.

http://home.t01.itscom.net/allais/blackprior/shnoll/shnoll-1.pdf
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2. The value of the parameter λ assignable to the ordinary Poisson distribution giving rise to q-
Poisson does not correspond to λR as such. For given λq the value of λ can be determined from
the condition that the average values of n are same for the two distributions:

λ = 〈n〉P = 〈n〉qP . (10.3.9)

3. For m = P the vanishing of PUP would require a cutoff n < P in Poisson distribution. One could
however argue that all values of m must be allowed. The manner to circumvent the difficulty is
to to treat prime p = P as an exception and define in the most general case

Pq ≡ P . (10.3.10)

A stronger condition would be that P appears as a factor of m and it might well be that there
could exist a number theoretical justification for this. Canonical identification would introduce to
P (n) a factor PK(n) defined by the largest power PK(n) dividing n!. By the rough estimate n! of
Eq. 10.2.11 one has K(n) ∼ n. This would introduce additional peaks to the distribution coming
with periodicities defined by pm besides those coming with periodicities defined by integers n−,
which involve odd number of integers p mod m > m/2. This requires

λq = PnQUm , n > 1 (10.3.11)

in order that the sum of p-adic probabilities is well-defined. The sum of real probabilities
converges due to the properties of quantum factorial defined in the manner respecting the de-
composition of integer to a product of primes.

4. This definition of quantum Poisson satisfies also the strongest possible constraint on the map
of p-adic probabilities to real ones. One can indeed include the p-adic normalization factor to
the distribution and rational canonical identification commutes with the normalization factor in
the sense that one has

∑
(P (n))R = (

∑
Pn)R. This is due to the fact that the canonical image

of the sum of probabilities is by definition a sum of images of probabilities since only numbers
expressible in terms of roots of unity and not allowing expression as ordinary p-adic number
multiplied by powers of p and p-adic −1 appear in the sum.

5. Fig. 10.1 represents a comparison of q-Poisson distribution characterized by (p = 7,m =
300, λ0 = 100, k = 1) giving λq = pk × λ0 = 700 and λR = 14.229 with the corresponding
ordinary Poisson distribution characterized by λ = 25.256 which is almost twice the value of
λR. The presence of peaks with periodicity p = 7 due to the identification pq = p for the
prime defining p-adicity and mapped to 1/p in canonical identication is clearly visible in the
distribution.

These considerations are for Poisson distribution but they generalize in an obvious manner to any
distribution P (n|λi) for which parameters λi) are rational numbers.

Quantum integers and correspondence between real and p-adic physics

The understanding of the relationship between real and p-adic physics has been plagued by the fact
that canonical identification and its variants do not make sense when applied to say energy levels
characterized by integers. In this case the correspondence via common rationals is assumed or Ik for
large enough k is used.

The replacement of ordinary integers with their q-counterparts using the proposed rules provides
much more general correspondence principle relating p-adic and real quantum physics to each other
in the case that the formulas of real physics involve only rationals. For instance, in p-adic mass
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Figure 10.1: A comparison of q-Poisson distribution with Poisson distribution with the same mean
value of n assuming pq = p and that p is mapped to 1/p and −1 in numerator is mapped to p in
canonical identification. The values of quantum parameters are (p = 7,m = 300, k = 1, λ0 = 100)
giving λq = pk × λ0 = 700 and λR = 14.229. The mean value of Poisson distribution turns out to be
λ = 〈n〉q = 25.256.

calculations [K44] the integers characterizing conformal weights would be replaced by their quantum
counterparts defined in the proposed manner mapping products to products. This does not affect
p-adic mass calculations if the exceptional prime corresponds to p-adic prime and m which is equal
to p or contains p as a factor. One can also define p-adic harmonic oscillator and p-adic hydrogen
atom and for n > m is large exotic effects become possible. For large values of p-adic prime P and
for m� P these effects are not detectable.

For the p-adic variants of the wave functions the natural space-time coordinates would be dis-
cretized to integers to guarantee that the wave functions exist p-adically for p = P . For hydrogen
atom (/harmonic oscillator) one would obtain the formal analog of q-Poisson (/q-Gaussian) in the
radial coordinate discretized to integer. In angle degrees of freedom the form of discretized wave
functions would be same as in real context obtained by replacing exp(iφ) and cos(θ) and sin(θ) with
their discretized versions in an algebraic extension of p-adic numbers containing appropriate roots of
unity for p = P . If the integer m defines the algebraic extension it should be divisible by the integers
defining the angular momentum projections M up to some cutoff.

This correspondence might apply even at space-time level and imbedding space-level when preferred
coordinates are introduced for imbedding space. This would allow to map the rational imbedding
space points of a real space-time surface to their p-adic counterparts by canonical identification. For
(p,m)→ (∞,∞) this map would effectively reduce to the identification along common rationals but
with respect to p-adic norm it would have totally different behavior.

10.4 Explanation for the findings of Shnoll

One should be able to undertand both the many-peaked character of the distributions as well as their
spatial and temporal variation involving correlations with the gravitational physics of Sun-Earth and
Earth-Moon systems.

10.4.1 The basic characteristics of the distributions

The properties of the deformed distributions might allow to explain the findings of Shnoll at least
qualitatively. The testing of numerical predictions would require detailed numerical data. It is assumed
that the p-adic probabilities can be formally negative with −1 = (P − 1)/(1 − P ) = (P − 1)

∑
P k

mapped to real number by canonical identification to give a positive number. There are also other
options to overcome negativity problem not considered here. The integer m characterizing quantum
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phase m is not prime but can be assumed to be proportional to P to avoid vanishing quantum integers.
This corresponds to m-adicity consistent with P-adicity.

1. The presence of maxima and minima due to canonical identification mapping p-adic distribution
function to its p-adic counterpart is consistent with the basic property of the fluctuation distri-
butions as expressed by the histograms for the number N(n), where n is the fluctuating number
n of events per fixed time unit or discretization interval for the values of some observable.

2. The basic predictions are following. Modified distributions are characterized by a relatively
small prime defining the p-adicity - call it P - and integer m which is not prime but could be
divisible by P . The peaks in histogram for N(n) should appear with periods in n giving rise
to short range chaos and long range order in variable n. Periods of first kind come as powers
of P . A small change of P corresponds to a small change of periodicities. The periods for
second kind correspond to integers n− which contain an odd number of primes l in the ranges
((2r + 1)m, (2r + 2)m), r = 0, 1, 2, .. (quantum phase and thus lq is same for l and l + 2rm).
The spectrum of integers n± changes as m changes but if the change is small, the new spectrum
contains integers in old spectrum. For instance, if n− corresponds to single prime which is in
the middle region of interval (m, 2m) a change |∆m| < m/2 does not remove n− from spectrum.

3. For instance, in one of the experiments (Fig.1 of [E1] , [E1] ) the histogram for N(n) has peaks,
which seem to occur periodically with a separation ∆n of about 100 units. If these periods
correspond to P , its value must be smaller than 100. The nearest primes are P = 89, 97, 101, 113.
In Fig. 2 of same reference one has also periodicity and P must be near 10. Hence there are
good hopes that the proposed model might be able to explain the findings.

4. According to the earlier proposal the selection of p-adic prime is outcome of a process analogous
to quantum measurement. This interpretation would suggests that there is a sequence of quan-
tum measurements in which various p-adic primes are selected with some probability each and
that the probability distribution for the primes depends on external astrophysical parameters
varying periodically. One can also consider the possibility that P and m behave as classical
variables.

10.4.2 The temporal and spatial dependence of the distributions

One should also understand the variation of the shape of the distribution with time and its spatial
variation.

1. The situation is sensitive to the values of P and m. The changes should be such that the
parameters of the smoothed out real probability distribution are not affected much. For instance,
in the case of q-Poisson distribution the values of P and m should change in such a manner that
〈n〉 = λ is not unaffected much. The change of P would affect the positions of the peaks but
small changes of P would not mean too dramatic changes. Periodic time dependence of these
parameters would explain the findings of Shnoll. Gravitational interactions in Sun-Earth-Moon
system and therefore the periodic variations of Sun-Earth and Earth-Moon distances is the first
guess for the cause of the periodic variations.

2. The correlation of the fluctuation periods with astrophysical periods assignable to Earth-Sun
system (diurnal period and period of Earth’s orbit) suggests that the gravitational interaction of
the measurement apparatus with Sun is involved. Also the period 27.28 days which corresponds
to sidereal period of Moon measured in the system defined by distant star. In [E1] , [E1] this
period is somewhat confusingly referred to as synodic period of Sun with respect to Earth
(recall that synodic period corresponds to a period for the appearance of third object (say
Moon) in the same position relative to two other objects (say Earth and Moon)). Therefore also
Moon-Earth gravitational force seems to be involved. Moon-Earth and Earth-Sun gravitational
accelerations indeed have roughly the same order of magnitude. That gravitational accelerations
would determine the effect conforms with Equivalence Principle. The most natural dimensionless
parameter characterizing the situation is |∆agr|/agr expressible in terms of ∆R/R and ∆r/r,
where R resp r denotes the distance between Earth and Sun resp. Earth and Moon, and the
ratio R/r and cosine for the angle θ between the direction vectors for the positions of Moon and

http://home.t01.itscom.net/allais/blackprior/shnoll/shnoll-1.pdf
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Sun from Earth. The observed palindrome effect [E3] is consistent with the assumed dependence
of the effect on the distances of Earth from Sun and Moon. Also the smallness of the effect as
one approaches North Pole conforms with the fact that the variations of distances fro Sun and
Moon become small at this limit .

3. In 24 hour time scale it is enough to take into account only the Earth-Sun gravitational inter-
action. One could perform experiments at different positions at Earth’s surface to see whether
the the variation of distributions correlates with the variation of the gravitational potential.
The maximal amplitude of ∆R/R is 2RE/R ' .04 so that for ∆p/p = k∆R/R one would have
∆p/p = .04k. Already for p ∼ 100 the variation range would be rather small. For ∆m/m one
expects that analogous estimate holds true.

4. One observes in alpha decay rates periodicities which correspond to both sidereal and solar
day [E2] . The periodicity with respect to solar day can be understood in terms of the periodic
variation of Sun-Earth distance. The periodicity with respect to sidereal day would be due to
the diurnal variation of the Earth-Moon distance. Similar doubling of periodicities are predicted
in other relevant time scales.

In the case of alpha decay the effect reveals intricacies not explained by the simplest model [E2, E8]
. In this case one studies random fluctuations random fluctuations for the numbers of alpha particles
emitted in a fixed direction. Collimators are used to select the alpha particles in a given direction and
this is important for what follows. Two especially interesting situations correspond to a detector which
is located to North, East, or West from the sample. What is observed that the effect is different for
East and West directions and there is a phase shift of 12 hours between East and West. In Northern
direction the effect vanishes. Also other experiments reveal East-West asymmetry called local time
effect by the authors [E6, E5] .

1. What the findings mean is that P and m characterizing the distribution for the counts of alpha
particles in a given angle depend on time and and the time dependence sensitive to the direction
angle of the alpha particle. This might be however only apparent since collimators are used to
select alpha particles in given direction. The authors speak about anisotropy of space-time and
Finsler geometry [A34] could be considered as a possible model. In this approach the geometry
of space-time would be something totally independent of measurement apparatus.

In TGD framework the space-time is topologically non-trivial in macroscopic scales and the
presence of collimators making possible to select alpha particles in a given direction affect the
geometry of many-sheeted space-time sheets describing the measurement apparatus and there-
fore the details of the interaction with the gravitational fields of Earth, Sun, and Moon. As a
consequence, the values of P and m should reflect the geometry of the measurement apparatus
and depend only apparently on the direction of vα. If this interpretation is correct, a selection
of events from a sample without collimators should yield distributions without any dependence
on the direction of vα.

2. At quantitative level the distribution for counts in a given direction can depend on angles defined
by the vectors formed from relevant quantities. These include at least the tangential velocity
v = ω × r of the laboratory, the direction of the velocity vα of alpha particle with respect to
sample actually reflecting the geometry of collimators, the net gravitational acceleration anet,
and the direction of Earth’s gravitational acceleration g.

3. The first task is to construct from these vectors a scalar or a pseudo-scalar (if one is ready to
allow large parity breaking effects), which vanishes for North-East direction, has opposite signs
for East and West direction and has at least approximately a behavior consistent with the phase
shift of 12 hours between East and West. The constraints are satisfied by the scalar

X = E · anet , E =
(v × g)× vα
|(v × g)× vα|

. (10.4.1)

Unit vector E changes sign in East-West permutation and also with a period of 12 hours meaning
the change of the roles of East and West with this period in the approximation that the net
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acceleration vector is same at the opposite sides of Earth. The approximation makes sense if the
change of sign induces much large variation than the change of the Earth-Sun and Earth-Moon
distances. Unless P and m are even functions of X, the predicted effect can be consistent with
the experimental findings in the approximation that anet is constant in 24 hour time scale.

10.5 Hierarchy of Planck constants allows small-p p-adicity

In particle physics applications of p-adic physics [K44] the values of p-adic primes are very large and
favor p-adic primes near powers of two. For instance, electron is characterized by a p-adic prime
M127 = 2127 − 1. Small p-adic primes correspond to very short time and length scales, which are not
plausible in the recent situation. Biological systems however suggest the possibility of small values
of p. This is consistent with p-adic length scale hypothesis if one accepts the hypothesis that dark
matter corresponds to a hierarchy of Planck constants coming as integer multiples of the ordinary
Planck constant ~0: ~/~0 = r, r integer.

10.5.1 Estimate for the value of Planck constant

In the recent formulation of quantum TGD the hierarchy of Planck constants there is an argument
reducing the hierarchy of Planck constants to the basic quantum TGD and one can say that scaled
up values of Planck constant are effective values of Planck constant. The scaling of the p-adic prime
scales up the secondary time scale assignable with the particle characterized by prime p as Tk =
2kTCP2

→ rTk. Here TCP2
denotes CP2 time expressible as TCP2

= 2−127T (2, 127) ' 5.877 × 10−40

seconds. There T (2, 127) ' .1 seconds is secondary p-adic time scale assignable to Mersenne prime
M127 characterizing electron. TCP2 is 1.0902× 104 times Planck time TPl = 5.391× 10−44 s.

To obtain small-p p-adicity one must have very large value of r. The proposed quantum model for
dark matter in astrophysical scales indeed predicts gigantic values of gravitational Planck constant
of order GMm for a system of two masses. This would suggests that gravitational interaction allows
large values of Planck constant and small-p p-adicity in macroscopic time scales.

In the experiments described in [E1] , [E1] one studies the number of events per fixed time interval
τ . This time interval is macroscopic in the measurements studied. One has τ = 36 seconds (τ = 6
seconds) in the experiment whose histogram is represented by Fig. 1 (Fig. 2) of [E1] , [E1] . One could
argue that the secondary p-adic time scale TP (2) = rPTCP2 for scaled up Planck constant ~ = r~0

should of the same order of magnitude as τ . This gives the condition

r ∼ τ

PTCP2

<
τ

TCP2

.

For τ = 36 seconds one has τ
TCP2

' 360×M127. For r = 2127 this would give P ∼ 360. The value of

P estimated from the distribution of Fig.1 of [E1] , [E1] is about P ∼ 100 which is about 3.5 times
smaller than the upper bound. This suggests that one p-adic time scale must be shorter than τ but of
same order of magnitude. For the second experiment (Fig. 2 of [E1] , [E1] ) one would obtain P ≤ 50
which is 5 times larger than the estimate for P ∼ 10 from periodicity.

r = 2127 might make sense since M127 defines the secondary p-adic length scale of electron which
is .1 seconds, a fundamental bio-rhythm, and corresponds to photon wavelength which is of order of
circumference of Earth. This would also suggest that the modification of distributions could correspond
to same value of P and m for laboratories at different sides of globe. Whether this is the case is easy
to test in principle.

The notion of causal diamond (intersection of future and past directed lightcones central for the
notion of zero energy ontology. The proper time distance between its tips is given by 2kTCP2

and
assign to each elementary particle a macroscopic time scale identifiable as secondary p-adic time scale
characterizing the particle. T (127) = 2127TCP2

characterizes the causal diamond of electron, which in
turn corresponds to the length scale assigned with P = 2 and r = 2126. Could r = 2126 be in preferred
role that the findings of Shnoll would reflect new physics associated with electron, possibly with its
gravitational interactions?



544 Chapter 10. A Possible Explanation of Shnoll Effect

10.5.2 Is dark matter at the space-time sheets mediating gravitational
interaction involved?

The periodic variation of the distributions in time scales assignable to gravitation encourages to ask
whether the gigantic value of Planck constant could correspond to gravitational Planck constant
introduced originally by Nottale [E7] and assumed in TGD Universe to characterize space-time sheets
mediating gravitational interaction and carrying dark manner -at least gravitons- with gigantic value
of Planck constant implying quantum coherence in astrophysical scales [K70, K59] .

The formula proposed by Nottale [E7] for the gravitational Planck constant is dictated by Equiv-
alence Principle and reads as

rgr =
~gr
~0

=
GMm

v0
. (10.5.1)

Here v0 is a parameter with dimensions of velocity and one has v0/c ' 2−11 for the inner planets in
the model of Nottale and 5 times smaller for outer planets. As a matter fact, the order of magnitude
of the rotation velocity of planet around Sun is related to v0 by numerical constant of order unity by
Bohr rules, which in TGD Universe are an exact part of quantum theory.

If the large value of ~gr is associated with the gravitational interaction of smaller system with
Earth with mass ME = 5.9737×1024 kg, the mass of the system in question should be estimated from
the condition

r = M127 =
GMEm

v0~0
. (10.5.2)

This gives m ' 135× v0
c kg. For v0 = 2−11 this would give mass about m = .05 g which might represent

mass for some part of measurement apparatus. The mass of Sun is MSun ' .333×106ME and similar
estimate gives a mass m = .15× 10−9 kg to be compared with Planck mass mPl = 4.3× 10−9 kg. For
c/v0 = 70 the estimate would give Planck mass. Note however that it is difficult to relate this value
of v0 to any velocity in Earth-Sun system. For the density of water Planck mass corresponds to a size
scale 10−4 m assignable to a large cell.

Maybe dark matter systems representing the quanta of gravitational flux equal to Planck mass
analogous to quanta of electric flux are involved and are important also for biological systems. The
interaction of Planck mass with Earth’s gravitational field would correspond to r = 3 × 2107: M107

defines the p-adic length scale assignable to hadrons.

10.6 Conclusions

The proposed model has the potential of explaining the findings of Shnoll but detailed numerical work
is required to find whether the model works also at the level of details.

1. The universality of the modified distributions would reduce to the replacement of various rational
numbers characterizing the probability distribution with their quantum variants defined in a
manner respecting the decomposition of integers to primes. p-Adic counterparts of probability
distributions are essential for understanding how to avoid the difficulties resulting from negative
values of quantum integers. The model makes very detailed predictions about the periodically
occurring positions of the peaks of the probability distribution as function of P and m based on
number theoretical considerations and in principle allows to determined these parameters for a
given distribution.

2. If the value of P is outcome of state function process, it is not determined by deterministic
dynamics but should have a distribution. If this distribution is peaked around one particular
value, one can understand the findings of Shnoll.

3. The slow variation of the p-adic prime P and integer m characterizing quantum integers would
explain the slow variation of the distributions with position and time. The periodic variations
occurings withboth solar and sidereal periods can be understood if the values of P and m are
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characterized by the sum of gravitational accelerations assignable to Earth-Sun and Earth-Moon
systems.

4. Various effects such as the dependence of the probability distributions on the direction of alpha
particles selected using collimators and 12 hour phase shift between the directions associated
with East and West direction can be understood as direct evidence for the effects of measurement
apparatus on the many-sheeted space-time affecting the values of P and m.

5. The small value of p-adic prime P involved can be understood in TGD framework in terms of
hierarchy of Planck constants [K27] . The value of Planck constant could correspond to Mersenne
prime M127 characterizing electron but this is not required by any deep principle. Gravitational
Planck constant can indeed have gigantic values and for the interaction of a system with mass
of order Planck mass with Sun the gravitational Planck constant is of the required order of
magnitude.

Acknowledgements: I am grateful for Dainis Deps for references related to Shnoll effect.





Chapter 11

Infinite Primes and Motives

11.1 Introduction

The construction of twistor amplitudes has led to the realization that the work of Grothendieck related
to motivic cohomology simplifies enormously the calculation of the integrals of holomorphic forms
over sub-varieties of the projective spaces involved. What one obtains are integrals of multivalued
functions known as Grassmannian poly-logarithms generalizing the notion of poly-logarithm [B13] and
Goncharov has given a simple formula for these integrals [B26] using methods of motivic cohomology
[A66] in terms of classical polylogarithms Lik(x), k = 1, 2, 3, .... This suggests that motivic cohomology
might have applications in quantum physics also as a a conceptual tool. One could even hope that
quantum physics could provide fresh insights algebraic geometry and topology.

Ordinary theoretical physicist probably does not encounter the notions of homotopy, homology,
and cohomology in his daily work and Grothendieck’s work looks to him (or at least me!) like a
horrible abstraction going completely over the head. Perhaps it is after all good to at least try to
understand what this all is about. The association of new ideas with TGD is for me the most effective
manner to gain at least the impression that I have managed to understand something and I will apply
this method also now. If anything else, this strategy makes the learning of new concepts an intellectual
adventure producing genuine surprises, reckless speculations, and in some cases perhaps even genuine
output. I do not pretend of being a real mathematician and I present my humble apologies for all
misunderstandings unavoidable in this kind enterprise. One should take the summary about the
basics of cohomology theory just as a summary of a journalist. I still hope that these scribblings could
stimulate mathematical imagination of a real mathematician.

While trying to understand Wikipedia summaries about the notions related to the motivic coho-
mology I was surprised in discovering how similar the goals and basic ideas about how to achieve them
of quantum TGD and motive theory are despite the fact that we work at totally different levels of
mathematical abstraction and technicality. I am however convinced that TGD as a physical theory
represents similar high level of abstraction and therefore dare hope that the interaction of the these
ideas might produce something useful. As a matter fact, I was also surprised that TGD indeed pro-
vides a radically new approach to the problem of constructing topological invariants for algebraic and
even more general surfaces.

11.1.1 What are the deep problems?

In motivic cohomology one wants to relate and unify various cohomologies defined for a given number
field and its extensions and even for different number fields if I have understood correctly. In TGD one
would like to fuse together real and various p-adic physics and this would suggest that one must relate
also the cohomology theories defined in different number fields. Number theoretical universality [K77]
allowing to relate physics in different number fields is one of the key ideas involved.

Why the generalization of homology [A44] and cohomology [A21] to p-adic context is so non-trivial?
Is it the failure of the notion of boundary does not allow to define homology in geometric sense in
p-adic context using geometric approach. The lack of definite integral in turn does not allow to define
p-adic counterparts of forms except as a purely local notion so that one cannot speak about values
of forms for sub-varieties. Residue calculus provides one way out and various cohomology theories
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defined in finite and p-adic number fields actually define integration for forms over closed surfaces (so
that the troublesome boundaries are not needed), which is however much less than genuine integration.
In twistor approach to scattering amplitudes one indeed encounters integrals of forms for varieties in
projective spaces.

Galois group [A40] is defined as the group leaving invariant the rational functions of roots of
polynomial having values in the original field. A modern definition is as the automorphism group of
the algebraic extension of number field generated by roots with the property that it acts trivially in
the original field.

1. Some examples Galois group in the field or rationals are in order. The simplest example is
second order polynomial in the field of rationals for which the group is Z2 if roots are not
rational numbers. Second example is P (x) = xn − 1 for which the group is cyclic group S(n)
permuting the roots of unity which appear in the elementary symmetric functions of the roots
which are rational. When the roots are such that all their products except the product of
all roots are irrational numbers, the situation is same since all symmetric functions appearing
in the polynomial must be rational valued. Group is smaller if the product for two or more
subsets of roots is real. Galois group generalizes to the situation when one has a polynomial
of many variables: in this case one obtains for the first variable ordinary roots but polynomials
appearing as arguments. Now one must consider algebraic functions as extension of the algebra
of polynomial functions with rational coefficients.

2. Galois group permutes branches of the graph x = (P−1
n )(y, ...) of the inverse function of the

polynomial analogous to the group permuting sheets of the covering space. Galois group is
therefore analogous to first homotopy group. Since Galois group is subgroup of permutation
group, since permutation group can be lifted to braid group acting as the first homotopy group
on plane with punctures, and since the homotopies of plane can be induced by flows, this analogy
can be made more precise and leads to a connection with topological quantum field theories for
braid groups.

3. Galois group makes sense also in padic context and for finite fields and its abelianization by
mapping commutator group to unit element gives rise to the analog of homology group and by
Poincare duality to cohomology group. One can also construct p-adic and finite field represen-
tations of Galois groups.

These observations motivate the following questions. Could Galois group be generalized to so that
they would give rise to the analogs of homotopy groups and homology and cohomology groups as their
abelianizations? Could one find a geometric representation for boundary operation making sense also
in p-adic context?

11.1.2 TGD background

The visions about physics as geometry and physics as generalized number theory suggest that number
theoretical formulation of homotopy-, homology-, and cohomology groups might be possible in terms of
a generalization of the notion of Galois group, which is the unifying notion of number theory. Already
the observations of Andre Weil suggesting a deep connection between topological characteristics of a
variety and its number theoretic properties indicate this kind of connection and this is what seems to
emerge and led to Weil cohomology formulated. The notion of motivic Galois group is an attempt to
realize this idea.

Physics as a generalized number theory involves three threads.

1. The fusion of real and p-adic number fields to a larger structure requires number theoretical
universality in some sense and leads to a generalization of the notion of number by fusion reals
and p-adic number fields together along common rationals (roughly) [K77].

2. There are good hopes that the classical number fields could allow to understand standard model
symmetries and there are good hopes of understanding M4×CP2 and the classical dynamics of
space-time number theoretically [K78].

http://www.mathpages.com/home/kmath290/kmath290.htm
http://en.wikipedia.org/wiki/Motivic_Galois_group
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3. The construction of infinite primes having interpretation as a repeated second quantization of
an supersymmetric arithmetic QFT having very direct connections with physics is the third
thread [K76]. The hierarchy has many interpretations: as a hierarchy of space-time sheets for
many-sheeted space with each level of hierarchy giving rise to elementary fermions and bosons
as bound states of lower level bosons and fermions, hierarchy of logics of various orders realized
as statements about statements about..., or a hierarchy of polynomials of several variables with
a natural ordering of the arguments.

This approach leads also to a generalization of the notion of number by giving it an infinitely
complex number theoretical anatomy implied by the existence of real units defined by the ratios
of infinite primes reducing to real units in real topology. Depending one one’s tastes one can
speak about number theoretic Brahman=Atman identity or algebraic holography. This picture
generalizes to the level of quaternionic and octonionic primes and leads to the proposal that
standard model quantum numbers could be understand number theoretically. The proposal
is that the number theoretic anatomy could allow to represent the ”world of classical worlds”
(WCW) as sub-manifolds of the infinite-dimensional space of units assignable to single point of
space-time and also WCW spinor fields as quantum superpositions of the units. One also ends
up with he idea that there is an evolution associated with the points of the imbedding space as
an increase of number theoretical complexity. One could perhaps say that this space represents
”Platonia”.

11.1.3 Homology and cohomology theories based on groups algebras for
a hierarchy of Galois groups assigned to polynomials defined by
infinite primes

The basic philosophy is that the elements of homology and cohomology should have interpretation as
states of supersymmetric quantum field theory just as the infinite primes do have. Even more, TGD
as almost topological QFT requires that these groups should define quantum states in the Universe
predicted by quantum TGD. The basic ideas of the proposal are simple.

1. One can assign to infinite prime at n:th level of hierarchy of second quantizations a rational func-
tion and solve its polynomial roots by restricting the rational function to the planes xn, ...xk = 0.
At the lowest level one obtains ordinary roots as algebraic number. At each level one can assign
Galois group and to this hierarchy of Galois groups one wants to assign homology and coho-
mology theories. Geometrically boundary operation would correspond to the restriction to the
plane xk = 0. Different permutations for the restrictions would define non-equivalent sequences
of Galois groups and the physical picture suggests that all these are needed to characterize the
algebraic variety in question.

2. The boundary operation applied to Gk gives element in the commutator subgroup [Gk−2, Gk−2].
In abelianization this element goes to zero and one obtains ordinary homology theory. Therefore
one has the algebraic analog of homotopy theory,

3. In order to obtain both homotopy and cohomotopy and cohomology and homology as their
abelizations plus a resemblance with ordinary cohomology one must replace Galois groups by
their group algebras. The elements of the group algebras have a natural interpretation as bosonic
wave functions. The dual of group algebra defines naturally cohomotopy and cohomology theo-
ries. One expects that there is a large number of boundary homomorphisms and the assumption
is that these homomorphisms satisfy anticommutation relations with anticommutor equal to
an element of commutator subgroup [Gk−2, Gk−2, ] so that in abelianization one obtains ordi-
nary anticommutation relations. The interpretation for the boundary and coboundary operators
would be in terms of fermionic annihilation (creation) operators is suggesti so that homology and
cohomology would represent quantum states of super-symmetric QFT. Poincare duality would
correspond to hermitian conjugation mapping fermionic creation operators to annihilation op-
erators and vice versa. It however turns out that the analogy with Dolbeault cohomology with
several exterior derivatives is more approrpriate.

4. In quantum TGD states are realized as many-fermion states assignable to intersections of braids
with partonic 2-surfaces. Braid picture is implied by the finite measurement resolution imply-
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ing discretization at space-time level. Symplectic transformations in turn act as fundamental
symmetries of quantum TGD and given sector of WCW corresponds to symplectic group as
far as quantum fluctuating degrees of freedom are considered. This encourages the hypothesis
that the hierarchy of Galois groups assignable to infinite prime (integer/rational) having inter-
pretation in terms of repeated second quantization can be mapped to a braid of braids of ....
The Galois group elements lifted to braid group elements would be realized as symplectic flows
and boundary homomorphism would correspond to symplectic flow induced at given level in the
interior of sub-braids and inducing action of braid group. In this framework the braided Galois
group cohhomology would correspond to the states of WCW spinor fields in ”orbital” degrees of
freedom in finite measurement resolution realized in terms of number theoretical discretization.

If this vision is correct, the construction of quantum states in finite measurement resolution would
have purely number theoretic interpretation and would conform with the interpretation of quantum
TGD as almost topological QFT. That the groups characterize algebraic geometry than mere topology
would give a concrete content to the overall important ”almost” and would be in accordance with
physics as infinite-dimensional geometry vision.

11.1.4 p-Adic integration and cohomology

This picture leads also to a proposal how p-adic integrals could be defined in TGD framework.

1. The calculation of twistorial amplitudes reduces to multi-dimensional residue calculus. Motivic
integration gives excellent hopes for the p-adic existence of this calculus and braid representa-
tion would give space-time representation for the residue integrals in terms of the braid points
representing poles of the integrand: this would conform with quantum classical correspondence.
The power of 2π appearing in multiple residue integral is problematic unless it disappears from
scattering amplitudes. Otherwise one must allow an extension of p-adic numbers to a ring
containing powers of 2π.

2. Weak form of electric-magnetic duality and the general solution ansatz for preferred extremals
reduce the Kähler action defining the Kähler function for WCW to the integral of Chern-Simons
3-form. Hence the reduction to cohomology takes places at space-time level and since p-adic
cohomology exists there are excellent hopes about the existence of p-adic variant of Kähler
action. The existence of the exponent of Kähler gives additional powerful constraints on the
value of the Kähler fuction in the intersection of real and p-adic worlds consisting of algebraic
partonic 2-surfaces and allows to guess the general form of the Kähler action in p-adic context.

3. One also should define p-adic integration for vacuum functional at the level of WCW. p-Adic
thermodynamics serves as a guideline leading to the condition that in p-adic sector exponent
of Kähler action is of form (m/n)r, where m/n is divisible by a positive power of p-adic prime
p. This implies that one has sum over contributions coming as powers of p and the challenge is
to calculate the integral for K= constant surfaces using the integration measure defined by an
infinite power of Kähler form of WCW reducing the integral to cohomology which should make
sense also p-adically. The p-adicization of the WCW integrals has been discussed already earlier
using an approach based on harmonic analysis in symmetric spaces and these two approaches
should be equivalent. One could also consider a more general quantization of Kähler action as
sum K = K1 +K2 where K1 = rlog(m/n) and K2 = n, with n divisible by p since exp(n) exists
in this case and one has exp(K) = (m/n)r × exp(n). Also transcendental extensions of p-adic
numbers involving n+ p− 2 powers of e1/n can be considered.

4. If the Galois group algebras indeed define a representation for WCW spinor fields in finite
measurement resolution, also WCW integration would reduce to summations over the Galois
groups involved so that integrals would be well-defined in all number fields.

11.1.5 Topics related to TGD-string theory correspondence

Although M-theory has not been successful as a physical theory it has led to a creation of enormously
powerful mathematics and there are all reasons to expect that this mathematics applies also in TGD
framework.
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Floer homology, Gromov-Witten invariants, and TGD

Floer homology defines a generalization of Morse theory allowing to deduce symplectic homology
groups by studying Morse theory in loop space of the symplectic manifold. Since the symplectic
transformations of the boundary of δM4

± ×CP2 define isometry group of WCW, it is very natural to
expect that Kähler action defines a generalization of the Floer homology allowing to understand the
symplectic aspects of quantum TGD. The hierarchy of Planck constants implied by the one-to-many
correspondence between canonical momentum densities and time derivatives of the imbedding space
coordinates leads naturally to singular coverings of the imbedding space and the resulting symplectic
Morse theory could characterize the homology of these coverings.

One ends up to a more precise definition of vacuum functional: Kähler action reduces Chern-
Simons terms (imaginary in Minkowskian regions and real in Euclidian regions) so that it has both
phase and real exponent which makes the functional integral well-defined. Both the phase factor and
its conjugate must be allowed and the resulting degeneracy of ground state could allow to understand
qualitatively the delicacies of CP breaking and its sensitivity to the parameters of the system. The
critical points with respect to zero modes correspond to those for Kähler function. The critical points
with respect to complex coordinates associated with quantum fluctuating degrees of freedom are not
allowed by the positive definiteness of Kähler metric of WCW. One can say that Kähler and Morse
functions define the real and imaginary parts of the exponent of vacuum functional.

The generalization of Floer homology inspires several new insights. In particular, space-time
surface as hyper-quaternionic surface could define the 4-D counterpart for pseudo-holomorphic 2-
surfaces in Floer homology. Holomorphic partonic 2-surfaces could in turn correspond to the extrema
of Kähler function with respect to zero modes and holomorphy would be accompanied by super-
symmetry.

Gromov-Witten invariants appear in Floer homology and topological string theories and this in-
spires the attempt to build an overall view about their role in TGD. Generalization of topological
string theories of type A and B to TGD framework is proposed. The TGD counterpart of the mirror
symmetry would be the equivalence of formulations of TGD in H = M4 × CP2 and in CP3 × CP3

with space-time surfaces replaced with 6-D sphere bundles.

K-theory, branes, and TGD

K-theory and its generalizations play a fundamental role in super-string models and M-theory since
they allow a topological classification of branes. After representing some physical objections against
the notion of brane more technical problems of this approach are discussed briefly and it is proposed
how TGD allows to overcome these problems. A more precise formulation of the weak form of electric-
magnetic duality emerges: the original formulation was not quite correct for space-time regions with
Euclidian signature of the induced metric. The question about possible TGD counterparts of R-R
and NS-NS fields and S, T, and U dualities is discussed.

11.1.6 p-Adic space-time sheets as correlates for Boolean cognition

p-Adic physics is interpreted as physical correlate for cognition. The so called Stone spaces are in
one-one correspondence with Boolean algebras and have typically 2-adic topologies. A generalization
to p-adic case with the interpretation of p pinary digits as physically representable Boolean statements
of a Boolean algebra with 2n > p > pn−1 statements is encouraged by p-adic length scale hypothesis.
Stone spaces are synonymous with profinite spaces about which both finite and infinite Galois groups
represent basic examples. This provides a strong support for the connection between Boolean cognition
and p-adic space-time physics. The Stone space character of Galois groups suggests also a deep
connection between number theory and cognition and some arguments providing support for this
vision are discussed.

11.2 Some backgbround about homology and cohomology

Before representing layman’s summary about the motivations for the motivic cohomology it is good
to introduce some basic ideas of algebraic geometry [A150].
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11.2.1 Basic ideas of algebraic geometry

In algebraic geometry one considers surfaces defined as common zero locus for some number m ≤ n
of functions in n-dimensional space and therefore having dimension n−m in the generic case and one
wants to find homotopy invariants for these surfaces: the notion of variety is more precise concept in
algebraic geometry than surface. The goal is to classify algebraic surfaces represented as zero loci of
collections of polynomials.

The properties of the graph of the map y = P (x) in (x,y)-plane serve as an elementary example.
Physicists is basically interested on the number of roots x for a given value of y. For polynomials one
can solve the roots easily using computer and the resulting numbers are in the generic case algebraic
numbers. Galois group is the basic object and permutes the roots with each other. It is analogous to
the first homotopy group permuting the points of the covering space of graph having various branches
of the many-valued inverse function x = P−1(y) its sheets. Clearly, Galois group has topological
meaning but the topology is that of the imbedding or immersion.

There are invariants related to the internal topology of the surface as well as invariants related to
the external topology such as Galois group. The generalization of the Galois group for polynomials of
single variable to polynomials of several variables looks like an attractive idea. This would require an
assignment of sequence of sub-varieties to a given variety. One can assign algebraic extensions also to
polynomials and it would seem that these groups must be involved. For instance, the absolute Galois
group associated with the algebraic closure of polynomials in algebraically closed field is free group of
rank equal to the cardinality of the field (rank is the cardinality of the minimal generating set).

Homotopy [A45], homology [A45], and cohomology [A45] characterize algebraically the shape of
the surface as invariant not affected by continuous transformations and by homotopies. The notion of
continuity depends on context and in the most general case there is no need to restrict the considera-
tion to rational functions or polynomials or make restrictions on the coefficient field of these functions.
For algebraic surfaces one poses restrictictions on coefficient field of polynimials and the ordinary real
number based topology is replaced with much rougher Zariski topology for which algebraic surfaces
define closed sets. Physicists might see homology and cohomology theories as linearizations of nonlin-
ear notions of manifold and surface obtained by gluing together linear manifolds. This linearization
allows to gain information about the topology of manifolds in terms of linear spaces assignable to
surfaces of various dimensions.

In homology one considers formal sums for these surfaces with coefficients in some field and ba-
sically algebraizes the statement that boundary has no boundary. Cohomology is kind of dual of
homology and in differential geometry based cohomology forms having values as their integrals over
surfaces of various dimensions realize this notion.

Betti cohomology or singular cohomology [A13] defined in terms of simplicial complexes is probably
familiar for physicists and even more so the de Rham cohomology [A23] defined by n-forms as also
the Dolbeault cohomology [A28] using forms characterized by m holomorphic and n antiholomorphic
indices. In this case the role of continuous maps is taken by holomorphic maps. For instance, the
classification of the moduli of 2-D Riemann surfaces involves in an essential manner the periods of
one forms on 2-surfaces and plays important role in the TGD based explanation of family replication
phenomenon [K18].

In category theoretical framework homology theory can be seen as a http://en.wikipedia.org/wiki/functorfunctor
[A37] that assigns to a variety (or manifold) a sequence of homology groups characterized by the di-
mension of corresponding sub-manifolds. One considers formal sums of surfaces. The basic operation
is that of taking boundary which has operation δ as algebraic counterpart. One identifies cycles as
those sums of surfaces for which algebraic boundary vanishes. This is identically true for exact cycles
defined as a boundaries of cycles since boundary of boundary is empty. Only those cycles with are
not exact matter and the homology group is defines as the coset space of the kernel at n:th level with
respect to the image of the n+ 1:th level two spaces. Cohomology groups can be defined in a formally
similar manner and for de Rham cohomology Poincare duality maps homology group Hk to Hn−k.
The correspondence between covariant with vanishing exterior derivative and contravariant antisym-
metric tensors with vanishing divergence is the counterpart of homology-cohomology correspondence
in Riemann manifolds.

The calculation of homology and cohomology groups relies on general theorems which are often
raised to the status of axioms in generalizations of cohomology theory.

1. Exact sequences [A31] of Abelian groups define an important calculational tool. So called
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short exact sequence 0 → B → C → 0 of chain complexes gives rise to long exact sequence
Hn(A)→ Hn(B)→ Hn(C)→ Hn−1(A)→ Hn−1(B)→ Hn−1(C)....

One example of short exact sequence is 0 → H → G → G/H → 0 holding true when H is
normal subgroup so that also G/H is group. This condition allows to express the homology
groups of G as direct sums of those for H and G/H. In relative cohomology inclusion and δ
define exact sequences allowing to express relative cohomology groups [A83] Hn(X,A ⊂ X) in
terms of those for X and A. Mayer-Vietoris sequence relates the cohomologies of sets A,B and
X = A ∪B.

2. Künneth theorem [A56] allows to calculated homology groups for Cartesian product as convo-
lution of those for the factors with respect to direct sum.

Steenrod-Eilenberg axioms [A92] axiomatize cohomology theory in the category of topological
spaces: cohomology theory in this category is a functor to graded abelian groups, satisfying the
Eilenberg-Steenrod axioms: functoriality, naturality of the boundary homomorphism, long exact se-
quence, homotopy invariance, and excision. In algebraic cohomology the category is much more
restricted: algebraic varieties defined in terms of polynomial equations and these axioms are not
enough. In this case Weil cohomology [A107] defines a possible axiomatization consisting of finite
generation, vanishing outside the range [0, dim(X)], Poincare duality, Künneth product formula, a
cycle class map, and the weak and strong Lefschetz axioms.

In p-adic context sets do not have boundaries since p-adic numbers are not well-ordered so that
the statement that boundary has vanishing boundary should be formulated using purely algebraic
language. Also cohomology is problematic since definite integral is ill-defined for the same reason.
This forces to question either the notion of cohomology and homology groups or the definition of
geometric boundary operation and inspires the question whether Galois groups might be a more
appropriate notion.

Perhaps it is partially due to the lack of a geometric realization of the boundary operation in the
case of general number field that there are very many cohomology theories: the brief summary by
Andreas Holmstrom written when he started to work with his thesis, gives some idea about how many!

11.2.2 Algebraization of intersections and unions of varieties

There are several rather abstract notions involved with cohomology theories: categories, functoriality,
sheaves, schemes, abelian rings. Abelian ring is essentially the ring of polynomial functions generated
by the coordinates in the open subset of the variety.

1. The spectrum of ring consists of its proper prime ideals of this function algebra. Ideal is subset
of functions s closed under sum and multiplication by any element of the algebra and proper
ideal is subspace of the entire algebra. In the case of the abelian ring defined on algebraic
variety maximal ideals correspond to functions vanishing at some point. Prime ideals correspond
to functions vanishing in some sub-variety, which does not reduce to a union of sub-varieties
(meaning that one has product of two functions of ring which can separately vanish). Thus the
points in spectrum correspond to sub-varieties and product of functions correspond to a union
of sub-varieties.

2. What is extremely nice that the product of functions represents in general union of disjoint sur-
faces: for physicist this brings in mind many boson states created by bosonic creation operators
with particles identified as surfaces. Therefore union corresponds to a product of ideals defin-
ing a non-prime ideal. The notion of ideal is needed since there is enormous gauge invariance
involved in the sense that one can multiply the function defining the surface by any everywhere
non-vanishing function.

3. The intersection of varieties in turn corresponds to the condition that the functions defining
the varieties vanish separately. If one requires that all sums of the functions belonging to the
corresponding ideals vanish one obtains the same condition so that one can say that intersection
corresponds to vanishing condition for the sum for ideals. The product of cohomology elements
corresponds by Poincare duality [A73] the intersection of corresponding homology elements
interpreted as algebraic cycles so that a beautiful geometric interpretation is possible in real
context at least.
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Remark: For fermionic statistics the functions would be anti-commutative and this would prevent
automatically the powers of ideals. In fact, the possibility of multiple roots for polynomials of several
variables implying what is known as ramification [A81] represents a non-generic situation and one of
the technical problems of algebraic geometry. For ordinary integers ramification means that integer
contains in its composition to primes a power of prime which is higher than one. For the extensions
of rationals this means that rational prime is product of primes of extension with some roots having
multiplicity larger than one. One can of course ask whether higher multiplicity could be interpreted
in terms of many-boson state becoming possible at criticality: in quantum physics bosonic excitations
(Goldstone bosons) indeed emerge at criticality and give rise to long range interactions. In fact, for
infinite primes allowing interpretation in terms of quantum states of arithmetic QFT boson many
particle states corresponds to powers of primes so that the analogy is precise.

11.2.3 Motivations for motives

In the following I try to clarify for myself the motivations for the motivic cohomology which as a
general theory is still only partially existent. There is of course no attempt to say anything about
the horrible technicalities involved. I just try to translate the general ideas as I have understood (or
misunderstood) them to the simple language of mathematically simple minded physicist.

Grothendieck has carried out a monumental work in algebraizing cohomology which only mathe-
matician can appreciate enough. The outcome is a powerful vision and mathematical tools allowing
to develop among other things the algebraic variant of de Rham cohomology, etale cohomology having
values in p-adic fields different from the p-adic field defining the values of cohomology, and crystalline
cohomology [A22].

As the grand unifier of mathematics Grothendieck posed the question whether there good exists
a more general theory allowing to deduce various cohomologies from single grand cohomology. These
cohomology theories would be like variations of the same them having some fundamental core element
-motive- in common.

Category theory [A16] and the notion of scheme [A88], which assigns to open sets of manifold
abelian rings - roughly algebras of polynomial functions- consistent with the algebra of open sets,
provide the backbone for this approach. To the mind of physicist the notion of scheme brings abelian
gauge theory with non-trivial bundle structure requiring several patches and gauge transformations
between them. A basic challenge is to relate to each other the cohomologies associated with algebraic
varieties with given number field k manifolds. Category theory is the basic starting point: cohomology
theory assigns to each category of varieties category of corresponding cohomologies and functors be-
tween these categories allow to map the cohomologies to each other and compare different cohomology
theories.

One of the basic ideas underlying the motivic cohomology seems is that one should be able perform
a local lifting of a scheme from characteristic p (algebraic variety in p-adic number field or its algebraic
extension) to that in characteristic 0 (characteristic is the integer n for which the sum of n units is zero,
for rational numbers, p-adic number fields and their extensions characteristic is zero and p for finite
fields) that is real or complex algebraic variety, to calculate various cohomologies here as algebraic de
Rham cohomology and using the lifting to induce the cohomology to p-adic context. One expects that
the ring in which cohomology has naturally values consists of ordinary or p-adic integers or extension
of p-adic integers. In the case of crystalline cohomology this is however not enough.

The lifting of the scheme is far from trivial since number fields are different and real cohomology
has naturally Z or Q as coefficient ring whereas p-adic cohomology has p-adic integers as coefficient
ring. This lift must bring in analytic continuation which is lacking at p-adic side since n particular
in p-adic topology two spheres with same radius are either non-intersecting or identical. Analytical
continuation using a net of overlapping open sets is not possible.

One could even dream of relating the cohomologies associated with different number fields. I do
not know to what extend this challenge is taken or whether it is regarded as sensible at all. In TGD
framework this kind of map is needed and leads ot the generalization of the number field obtained
by glueing together reals and p-adic numbers among rationals and common algebraic numbers. This
glueing together makes sense also for the space of surfaces by identifying the surfaces which correspond
to zero loci of rational functions with rational coefficients. Similar glueing makes sense for the spaces
of polynomials and rational functions.

Remarks::
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1. The possibility of p-adic pseudo-constants in the solutions of p-adic differential and p-adic dif-
ferential equations reflects this difficulty. This lifting should remove this non-uniqueness in
analytical continuation. One can of course ask whether the idea is good: maybe the p-adic
pseudo constants have some deep meaning. A possible interpretation would be in terms of
non-deterministic character of cognition for which p-adic space-time sheets would be correlates.
The p-adic space-time sheets would represent intentions which can be transformed to actions in
quantum jumps. If one works in the intersection of real and p-adic worlds in which one allows
only rational functions with coefficients in the field or rationals or possibly in some algebraic
extension of rationals situation changes and non-uniqueness disappears in the intersection of real
and p-adic worlds and one might argue that it is here where the universal cohomology applies
or that real and p-adic cohomologies are obtained by some kind of algebraic continuation from
this cohomology.

2. The universal cohomology theory brings in mind the challenge encountered in the construction
of quantum TGD. The goal is to fuse real physics and various p-adic physics to single coherent
whole so that one would have kind of algebraic universality. To achieve this I have been forced
to introduce a heuristic generalization of number field by fusing together reals and various p-adic
number fields among rationals and common algebraic numbers. The notion of infinite primes is
second key notion. The hierarchy of Planck constants involving extensions of p-adic numbers
by roots of unity is closely related to p-adic length scale hierarchy and seems to be an essential
part of the number theoretical vision.

11.3 Examples of cohomologies

In the following some examples of cohomologies are briefly discussed in hope of giving some idea about
the problems involved. Probably the discussion reflects the gaps in my understanding rather than my
understanding.

11.3.1 Etale cohomology and l-adic cohomology

Etale cohomology [A30] is defined for algebraic varieties as analogues of ordinary cohomology groups
of topological space. They are defined purely algebraically and make sense also for finite fields. The
notion of definite integral fails in p-adic context so that also the notion of form makes sense only
locally but not as a map assigning numbers to surfaces. This is cohomological counterpart for the
non-existence of boundaries in p-adic realm. Etale cohomology allows to define cohomology groups
also in p-adic context as l-adic cohomology groups.

In Zariski topology closed sets correspond to surfaces defined as zero loci for polynomials in given
field. The number of functions is restricted only by the dimension of the space. In the real case this
topology is much rougher than real topology. In etale cohomology Zariski topology is too rough. One
needs more open sets but one does not want to give up Zariski topology.

The category of etale maps is the structure needed and actually generalizes the notion of topology.
Instead of open sets one considers maps to the space and effectively replaces the open sets with their
inverse images in another space. Etale maps -idempotent are essentially projections from coverings
of the variety to variety. One can say that open sets are replaced with open sets for the covering
of the space and mapping is replaced with a correspondence (for algebraic surfaces X and Y the
correspondence is given by algebraic equations in X × Y ) which in general is multi-valued and this
leads to the notion of etale topology. The etale condition is formulated in the Wikipedia article in a
rather tricky manner telling not much to a physicist trying to assign some meaning to this word. Etale
requirement is the condition that would allow one to apply the implicit function theorem if it were
true in algebraic geometry: it is not true since the inverse of rational map is not in general rational
map except in the ase of birational maps to which one assigns birational geometry [A14].

Remarks:

1. In TGD framework field as a map from M4 to some target space is replaced with a surface in
space M4 × CP2 and the roles of fields and space are permuted for the regions of space-time
representing lines of generalized Feynman diagrams. Therefore the relation between M4 and
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CP2 coordinates is given by correspondence. Many-sheeted space-time is locally a many-sheeted
covering of Minkowski space.

2. Also the hierarchy of Planck constant involving hierarchy of coverings defined by same values
of canonical momentum densities but different values of time derivatives of imbedding space
coordinates. The enormous vacuum degeneracy of Kähler action is responsible for this many-
valuedness.

3. Implicit function theorem indeed gives several values for time derivatives of imbedding space
coordinates as roots to the conditions fixing the values of canonical momentum densities.

The second heuristic idea is that certain basic cases corresponding to dimensions 0 and 1 and
abelian varieties which are also algebraic groups obeying group law defined by regular (analytic and
single valued) functions are special and same results should follow in these cases.

Etale cohomologies satisfy Poincare duality and Künneth formula stating that homology groups
for Cartesian product are convolutions of homology groups with respect to tensor product. l-adic
cohomology groups have values in the ring of l-adic integers and are acted on by the absolute Galois
group of rational numbers for which no direct description is known.

11.3.2 Crystalline cohomology

Crystalline cohomology represents such level of technicality that it is very difficult for physicists
without the needed background to understand what is in question. I however make a brave attempt
by comparing with analogous problems encountered in the realization of number theoretic universality
in TGD framework. The problem is however something like follows.

1. For an algebraically closed field with characteristic p it is not possible to have a cohomology in
the ring Zp of p-adic integers. This relates to the fact that the equation for xn = x in finite
field has only complex roots of unity as its solutions when n is not divisible by p whereas for he
integers n divisible by p are exceptional due to the fact that xp = x holds true for all elements
of finite field G(p). This implies that xp = x has p solutions which are ordinary p-adic numbers
rather than numbers in an algebraic extension by a root of unity. p-Adic numbers indeed contain
n:th cyclotomic field only if n divides p− 1. On the other hand, any finite field has order q = pn

and can be obtained as an algebraic extension of finite field G(p) with p elements. Its elements
satisfy the Frobenius condition xq=p

n

= x. This condition cannot be satisfied if the extension
contains p:th root of unity satisgying up = 1 since one would have (xu)p

n

= x 6= xu. Therefore
finite fields do not allow an algebraic extensions allowing p :th root of unity so the extension of
p-adic numbers containing p:th root of unity cannot be not induced by the extension of G(p).
As a consequence one cannot lift cohomology in finite field G(pn) to p-adic cohomology.

2. Also in TGD inspired vision about integration p − 1:th and possibly also p:th roots are prob-
lematic. p-Adic cohomology is about integration of forms and the reason why integration neces-
sitates various roots of unity can be understood as follows in TGD framework. The idea is to
reduce integration to Fourier analysis which makes sense even for the p-adic variant of the space
in the case that it is symmetric space. The only reasonable definition of Fourier analysis is in
terms of discrete plane waves which come as powers of n:th root of unity. This notion makes
sense if n is not divisible by p. This leads to a construction of p-adic variants of symmetric
spaces G/H obtained by discretizing the groups to some algebraic subgroup and replacing the
discretized points by p-adic continuum. Certainly the n:th roots of unity with n dividing p− 1
are problematic since they do not corresponds to phase factors. It seems however clear that one
can construct an extension of p-adic numbers containing p:th roots of unity. If it is however
necesssary to assume that the extension of p-adic numbers is induced by that for a finite field,
situation changes. Only roots of unity for n not divisible by factors of p−1 and possibly also by
p can appear in the discretizations. There is infinite number extensions and the interpretation
is in terms of a varying finite measurement resolution.

3. In TGD framework one ends up with roots of unity also when one wants to realize p-adic
variants of various finite group representations. The simplest case is p-adic representations
of angular momentum eigenstates and plane waves. In the construction of p-adic variants of
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symmetric spaces one is also forced to introduce roots of unity. One obtains a hierarchy of
extensions involving increasing number of roots of unity and the interpretation is in terms of
number theoretic evolution of cognition involving both the increase of maximal value of n and
the largest prime involved. Witt ring could be seen as an idealization in which all roots of unity
possible are present.

For l = p l-adic cohomology fails for characteristic p. Crystalline cohomology fills in this gap.
Roughly speaking crystalline cohomology is de Rham cohomology of a smooth lift of X over a field k
with with characteristic p to a variety so called ring of Witt vectors with characteristic 0 consisting of
infinite sequences of the elements of k while de Rham cohomology of X is the crystalline cohomology
reduced modulo p.

The ring of Witt vectors for characteristic p is particular example of ring of Witt vectors [A110]
assignable to any ring as infinite sequences of elements of ring. For finite field Gp the Witt vectors
define the ring of p-adic integers. For extensions of finite field one has extensions of p-adic numbres.
The algebraically closed extension of finite field contains n:th roots of unity for all n not divisible by
p so that one has algebraic closure of finite field with p elements. For maximal extension of the finite
field Gp the Witt ring is thus a completion of the maximal unramified extension of p-adic integers
and contains n:th roots of unity for n not divisible by p. ”Unramified” [A81] means that p defining
prime for p-adic integers splits in extension to primes in such a manner that each prime of extension
occurs only once: the analogy is a polynomial whose roots have multiplicity one. This ring is much
larger than the ring of p-adic integers. The algebraic variety is lifted to a variety in Witt ring with
characteristic 0 and one calculates de Rham cohomology using Witt ring as a coefficient field.

11.3.3 Motivic cohomology

Motivic cohomology is a attempt to unify various cohomologies as variations of the same motive com-
mon to all of them. In motivic cohomology [A66] one encounters pure motives and mixed motives.
Pure motives is a category associated with algebraic varieties in a given number field k with a con-
travariant functor from varieties to the category assigning to the variety its cohomology groups. Only
smooth projective varieties are considered. For mixed motives more general varieties are allowed. For
instance, the condition that projective variety meaning that one considers only homogenous polyno-
mials is given up.

Chow motives [A67] is an example of this kind of cohomology theory and relies on very geometric
notion of Chow ring with equivalence of algebraic varieties understood as rational equivalence. One
can replace rational equivalence with many variants: birational, algebraic, homological, numerical,
etc...

The vision about rationals as common points of reals and p-adic number fields leads to ask whether
the intersection of these cohomologies corresponds to the cohomology associated with varieties defined
by rational functions with rational coefficients. In both p-adic and real cases the number of varieties is
larger but the equivalences are stronger than in the intersection. For a non-professional it is impossible
to say whether the idea about rational cohomology in the intersection of these cohomologies makes
sense.

Homology and cohomology theories rely in an essential manner to the idea of regarding varieties
with same shape equivalent. This inspires the idea that the polynomials or rational functions with
rational coefficients could correspond to something analogous to a gauge choice without losing relevant
information or bringing in information which is irrelevant. If this gauge choice is correct then real and
p-adic cohomologies and homologies would be equivalent apart from modifications coming from the
different topology for the real and p-adic integers.

11.4 Infinite rationals define rational functions of several vari-
ables: a possible number theoretic generalization for the
notions of homotopy, homology, and cohomology

This section represents my modest proposal for how the generalization of number theory based on
infinite integers might contribute to the construction of topological and number theoretic invariants
of varieties. I can represent only the primitive formulation using the language of second year math
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student. The construction is motivated by the notion of infinite prime but applies to ordinary poly-
nomials in which case however the motivation is not so obvious. The visions about TGD as almost
topological QFT, about TGD as generalized number theory, and about TGD as infinite-dimensional
geometry serve as the main guidelines and allow to resolve the problems that plagued the first version
of the theory.

11.4.1 Infinite rationals and rational functions of several variables

Infinite rationals correspond in natural manner to rational functions of several variables.

1. If the number of variables is 1 one has infinite primes at the first level of the hierarchy as formal
rational functions of variable X having as its value as product of all finite primes and one can
decompose the polynomial to prime polynomial factors. This amounts to solving the roots of
the polynomial by obtained by replacing X with formal variable x which is real variable for
ordinary rationals. For Gaussian rationals one can use complex variable.

2. If the roots are not rationals one has infinite prime. Physically this state is the analog of bound
state whereas first order polynomials correspond to free many-particle states of supersymmetric
arithmetic QFT.

3. Galois group permuting the roots has geometric interpretation as the analog of the group of
deck transformations permuting the roots of the covering of the graph of the polynomial y=f(x)
at origin. Galois group is analogous to fundamental group whose abelianization obtained as a
coset group by dividing with the commutator group gives first homology group. The finiteness
of the Galois group does not conform with the view about cohomology and homology, which
suggests that it is the group algebra of Galois group which is the correct mathematical structure
to consider.

One can find the roots also at the higher levels of the hierarchy of infinite primes. One proceeds
by finding the roots at the highest level as roots which are algebraic functions. In other words finds
the decomposition

P (xn, ...) =
∏
k

(xn −Rk(xn−1, ...)

with Rk expanded in powers series with respect to xn−1. This expansion is the only manner to make
sense about the root if xn−1 corresponds to infinite prime. At the next step one puts xn = 0 and
obtains a product of Rk and performs the same procedure for xn−1 and continues down to n = 1 giving
ordinary algebraic numbers as roots. One therefore obtains a sequence of sub-varieties by restricting
the polynomial to various planes xi = 0, i = k, ...., n of dimension k − 1. The invariants associated
with the intersections with these planes define the Galois groups characterizing the polynomial and
therefore also infinite prime itself.

1. The process takes place in a sequential manner. One interprets first the infinite primes at
level n+1 as as polynomial function in the variable Xn+1 with coefficients depending on Xk,
k < n+ 1. One expands the roots R in power series in the variable Xn. In p-adic topology this
series converges for all primes of the previous levels and the deviation from the value at Xn = 0
is infinitesimal in infinite-P p-adic topology.

2. What is new as compared to the ordinary situation is that the necessity of Taylor expansion,
which might not even make sense for ordinary polynomials. One can find the roots and one can
assign a Galois group to them.

3. One obtains a hierarchy of Galois groups permuting the roots and at the lowest level on obtains
roots as ordinary algebraic numbers and can assign ordinary Galois group to them. The Galois
group assigned to the collection of roots is direct sum of the Galois groups associated with
the individual roots. The roots can be regarded as a power series in the variables X and the
deviation from algebraic number is infinitesimal in infinite-p p-adic topology.
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4. The interesting possibility is that the infinitesimal deformations of algebraic numbers could be
interpreted as a generalization of real numbers. In the construction of motivic cohomology the
idea is to lift varieties defined for surfaces in field of characteristic p (finite fields and their
extensions) to surfaces in characteristic 0 field (p-adic numbers) in some sense to infinitesimal
thickenings of their characteristic 0 counterparts. Something analogous is encountered in the
proposed scenario since the roots of the polynomials are algebraic numbers plus multi-p p-adic
expansion in terms of infinite-p p-adic numbers representing infinitesimal in infinite-p p-adic
topology.

11.4.2 Galois groups as non-commutative analogs of homotopy groups

What one obtains is a hierarchy of Galois groups and varieties of n + 1-dimensional space with
dimensions n, n− 1, ..., 1, 0.

1. A suggestive geometric interpretation would be as an analog of first homotopy group permuting
the roots which are now surfaces of given dimension k on one hand and as a higher homotopy
group πk on the on the other hand. This and the analogy with ordinary homology groups
suggests the replacement of Galois group with their group algebras. Homology groups would be
obtained by abelianization of the analogs of homotopy groups with the square of the boundary
homomorphism mapping the group element to commutator sub-group. Group algebra allows
also definition of cohomotopy and cohomology groups by assigning them to the dual of the group
algebra.

2. The boundary operation is very probably not unique and the natural proposal inspired by phys-
ical intuition is that the boundary operations form an anticommutative algebra having inter-
pretation in terms of fermionic creation (say) operators. Cohomology would in turn correspond
to annilation operators. Poincare duality would be hermitian conjugation mapping fermionic
creation operators to annihilation operators and vice versa. Number theoretic vision combined
with the braid representation of the infinite primes in turn suggests that the construction ac-
tually reduces the construction of quantum TGD to the construction of these homology and
cohomology theories.

3. The Galois analogs of homotopy groups and their duals up to the dimension of the algebraic
surface would be obtained but not the higher ones. Note that for ordinary homotopy groups all
homotopy group πn, n > 1 are Abelian so that the analogy is not complete. The abelianizations
of these Galois groups could in turn give rise to higher homology groups. Since the rational
functions involved make sense in all number fields this could provide a possible solution to the
challenge of constructing universal cohomology theory.

The hierarchy of infinite primes and the hierarchy of Galois groups associated with the correspond-
ing polynomials have as an obvious analogy the hierarchy of loop groups and corresponding homotopy
groups.

1. The construction brings in mind the reduction of n-dimensional homotopy to a 1-D homotopy of
n-1-D homotopy. Intuitively n-dimensional homotopy indeed looks like a 1-D homotopy of n-1-D
homotopy so that everything should reduce to iterated 1-dimensional homotopies by replacing
the original space with the space of maps to it.

2. The hierarchical ordering of the variables plays an essential role. The ordering brings strongly
in mind loop groups. Loop group L(Xm, G) defined by the maps from space Xn to group G
can be also regarded as a loop group from space Xm to the loop group L(Xn−m, G) and one
obtains L(Xn, G) = L(X1, L(Xn−1).

The homotopy equivalence classes of these maps define homotopy groups using the spaces Xn

instead of spheres. Infinite primes at level n would correspond to L(Xn, G). Locally the fun-
damental loop group is defined by X = S1 which would suggest that homotopy theory using
tori might be more natural then the one using spheres. Naively one might hope that this kind
of groups could code for all homotopic information about space. As a matter fact, even more
general identity L(X × Y,G) = L(X,L(Y,G)) seems to hold true.
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3. Note that one can consider also many variants of homotopy theories since one can replace the
image of the sphere in manifold with the image of any manyfold and construct corresponding
homotopy theory. Sphere and tori define only the simplest homotopy theories.

11.4.3 Generalization of the boundary operation

The algebraic realization of boundary operation should have a geometric counterpart at least in real
case and it would be even better if this were the case also p-adically and even for finite fields.

1. The geometric analog of the boundary operation would replace the k-dimensional variety with
its intersection with xk = 0 hyperplane producing a union of k − 1-dimensional varieties. This
operation would make sense in all number fields. The components in the union of the surface
would be very much analogous to the lower-dimensional edges of k-simplex so that boundary
operation might make sense. What comes in mind is relative homology H(X,A) in which the
intersection of X with A ⊂ X is equivalent with boundary so that its boundary vanishes. Maybe
one should interpret the homology groups as being associated with the sequence of relative
homologies defined by the sequence of varieties involved as A0 ⊂ A1 ⊂ .. and relativizing for
each pair in the sequence. The ordinary geometric boundary operation is ill-defined in p-adic
context but its analog defined in this manner would be number theoretically universal notion
making sense also for finite fields.

2. The geometric idea about boundary of boundary as empty set should be realized somehow- at
least in the real context. If the boundary operation is consistent with the ordinary homology,
it should give rise to a surface which as an element of Hn−2 is homologically trivial. In relative
homology interpretation this is indeed the case. In real context the condition is satisfied if
the intersection of the n-dimensional surface with the xn−1 = 0 hyper-plane consists of closed
surface so that the boundary indeed vanishes. This is indeed the case as simplest visualizations
in 3-D case demonstrate. Therefore the key geometric idea would be that that the intersection
of the surface defined by zeros of polynomial with lower dimensional plane is a closed surface
in real context and that this generalizes to p-adic context as algebraic statement at the level of
homology.

3. The sequence of slicings could be defined by any permutation of coordinates. The question is
whether the permutations lead to identical homologies and cohomologies. The physical inter-
pretation does not encourage this expection so that different permutation would all be needed
to characterize the variety using the proposed homology groups.

11.4.4 Could Galois groups lead to number theoretical generalizations of
homology and cohomology groups?

My own humble proposal for a number theoretic approach to algebraic topology is motivated by the
above questions. The notion of infinite primes leads to a proposal of how one might assign to a
variety a sequence of Galois group [A40] algebras defining analogs of homotopy groups assignable
to the algebraic extensions of polynomials of many variables obtained by putting the variables of a
polynomial of n-variable polynomial one by one to zero and finding the Galois groups of the resulting
lower dimensional varieties as Galois groups of corresponding extensions of polynomial fields. The
construction of the roots is discussed in detail [K50], where infinite primes are compared with non-
standard numbers. The earlier idea about the possibility to lift Galois groups to braid groups is also
essential and implies a connection with several key notions of quantum TGD.

1. One can assign to infinite primes at the n:th level of hierarchy (n is the number of second
quantizations) polynomials of n variables with variables ordered according to the level of the
hierarchy by replacing the products Xk = πiPi of all primes at k:th level with formal variables
xn to obtain polynomial in xn with coefficients which are rational functions of xk, k < n. Note
that Xk is finite in p-adic topologies and infinitesimal in their infinite-P variants.

2. One can construct the root decomposition of infinite prime at n:th level as the decomposition
of the corresponding polynomial to a product of roots which are algebraic functions in the

http://en.wikipedia.org/wiki/Relative_homology
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extensions of polynomials. One starts from highest level and derives the decomposition by
expanding the roots as powers series with respect to xn. The process can be done without ever
mentioning infinite primes. After this one puts xn = 0 to obtain a product of roots at xn = 0
expressible as rational functions of remaining variables. One performs the decomposition with
respect to xn−1 for all the roots and continues down to n = 1 to obtain ordinary algebraic
numbers.

3. One obtains a collection of varieties in n-dimensional space. At the highest level one obtains
n − 1-D variety referred to as divisor in the standard terminology, n − 2-D variety in xn = 0
hyperplane, n− 3-D surface in (xn, xn−1) = (0, 0) plane and so on. To each root at given level
one can assign polynomial Galois group permuting the polynomial roots at various levels of the
hierarchy of infinite primes in correspondence with the branches of surfaces of a many-valued
map. At the lowest level one obtains ordinary Galois group relating the roots of an ordinary
polynomial. The outcome is a collection of sequences of Galois groups {(Gn, Gn,i, Gn,i,j ...)}
corresponding to all sequences of roots from k = n to k = 1.

One can also say that at given level one has just one Galois group which is Cartesian product
of the Galois groups associated with the roots. Similar situation is encountered when one has a
product of irreducible polynomials so that one has two independent sets of roots.

The next question is how to induce the boundary operation. The boundary operation for the
analogs of homology groups should be be induced in some sense by the projection map putting one of
the coordinates xk to zero. This suggests a geometric interpretation in terms of a hierarchy of relative
homologies Hk(Sk, Sk−1) defined by the hierarchy of surfaces Sk. Boundary map would map Sk to
is intersection at (xn = 0, ..., xk = 0) plane. This map makes sense also p-adically. The square of
boundary operation would produce an intersection of this surface in xk−1 = 0 plane and this should
correspond to boundary sense for Galois groups.

Algebraic representation of boundary operations in terms of group homomorphisms

The challenge is to find algebraic realizations for the boundary operation or operations in terms of
group homomorphisms Gk → Gk−1. One can end up with the final proposal through heuristic ideas
and counter arguments and relying on the idea that algebraic geometry should have interpretation in
terms of quantum physics as it is described by TGD as almost topological QFT.

1. n-dimensional Galois group is somewhat like a fundamental group acting in the space of n-
1-dimensional homotopies so that Grothendieck’s intuition that 1-D homotopies are somehow
fundamental is realized. The abelianizations of these Galois groups would define excellent candi-
dates for homology groups and Poincare duality would give cohomology groups. The homotopy
aspects becomes clearer if one interprets Galois group for n:th order polynomials as subgroup
of permutation group and lifts the Galois group to a subgroup of corresponding braid group.
Galois groups are also stable againt small changes of the coefficients of the polynomial so that
topological invariance is guaranteed.

2. Non-abelian boundary operations Gk → Gk−1 must reduce to their abelian counterparts in
abelianization so that they their squares defining homomorphisms from level k to k− 2 must be
maps of Gk to the commutator subgroup [Gk−2, Gk−2].

3. There is however a grave objection. Finite abelianized Galois groups contain only elements with
finite order so that in this sense the analogy with ordinary homotopy and homology groups
fails. On the other hand, if Galois group is replaced with its group algebra and group algebra is
defined by (say) integer valued maps, one obtains something very much analogous to homotopy
and homology groups. Also group algebras in other rings or fields can be considered. This
replacement would provide the basis of the homotopy and homology groups with an additional
multiplicative structure induced by group operation allowing the interpretation as representa-
tions of Galois group acting as symmetry groups. The tentative physical interpretation would
in terms of quantum states defined by wave functions in groups. Coboundary operation in the
dual of group algebra would be induced by the action of boundary operation in group algebra.
Homotopy and homology would be associated with the group algebra and and cohomotopy and
cohomology with its dual.
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4. A further grave objection against the analog of homology theory is there is no reason to expect
that the boundary homomorphism is unique. For instance, one can always have a trivial solution
mapping Gk to unit element of Gk−1. Isomorphism theorem [A54] implies that the image of the
group Gk in Gk−1 under homomorphism hk is Gk/ker(hk), where ker(hk) is a normal subgroup
of Gk as is easy to see. One must have hk−1(Gk/ker(hk)) ⊂ [Gk−2, Gk−2], which is also a normal
subgroup.

The only reasonable option is to accept all boundary homomorphisms. This collection of bound-
ary homomorphisms would satisfy anticommutation relations inducing similar anticommutation
relations in cohomology. Putting all together, one would would obtain the analog of fermionic
oscillator algebra. In particular, Poincare duality would correspond to the mapping exchanging
fermionic creation and annihilation operators. It however turns out that tis interpretation fails.
Rather, braided Galois homology could represent the states of WCW spinor fields in ”orbital”
degrees of freedom of WCW in finite measurement resolution. A better analogy for braided Ga-
lois cohomology is provided by Dolbeault cohomology which also allows complex conjugation.

If this picture makes sense, one would clearly have what category theorist would have suggested
from the beginning. TGD as almost topological QFT indeed suggests strongly the interpretation of
quantum states in terms of homology and cohomology theories.

Lift of Galois groups to braid groups and induction of braidings by symplectic flows

One can build a tighter connection with quantum TGD by developing the idea about the analogy
between homotopy groups and Galois groups.

1. The only homotopy groups [A45], which are non-commutative are first homotopy groups π1 and
plane with punctures provides the minimal realization for them. The lift of permutation groups
to http://en.wikipedia.org/wiki/Braid_groupbraid groups [A15] by giving up the condition
that the squares of generating permutations satisfy s2

i = 1 defines a projective representation
for them and should apply also now. There is also analogy with Wilson loops. This leads to
topological QFTs for knots and braids [A208, A225].

2. In TGD framework light-like 3-surfaces (and also space-like at the ends of causal diamonds) carry
braids beginning at partonic 2-surfaces and ending at partonic 2-surfaces at the boundaries of
causal diamonds. This realization is highly suggestive now. This also conforms with the general
TGD inspired vision about absolute Galois group of rationals as permutation group S∞ lifted
to braiding groups such that its representation always reduce to finite-dimensional ones [A58].
This also conforms with the view about the role of hyper-finite factors of type II1 and the idea
about finite measurement resolution and one would obtain a new connection between various
mathematical structure of TGD.

3. The physical interpretation of infinite primes represented by polynomials as bound states sug-
gests that infinite prime at level n corresponds to a braid of braids of ... braids such that at
given level of hierachy braid group acting on the physical states is associated with covering group
realized as subgroup of the permutation group for the objects whose number is the number of
roots. This gives also a connection with the the notion of operad [A70, A189, A137] which
involves also a hierarchy of discrete structures with the action of permutation group inside each
and appears also in quantum TGD as a natural notion [K14, K19].

4. The assumption that the braidings are induced by flows of the partonic 2-surface could glue the
actions of different Galois groups to single coherent whole was originally motivated by the hope
that boundary homomorphism could be made unique in this manner. This restriction is however
un-necessary and the physical picture does not support it. The basic motivation for the braid
representation indeed comes from TGD as an almost topological QFT vision.

5. The role of symplectic transformations in TGD suggests the identification of flows as symplectic
flows induced by those of δM2×CP2. These flows should map the area enclosed by the sub-braid
(of braids) to itself and corresponding Hamiltonian should be constant at the boundary of the
area and induce a flow horizontal to the boundary and also continuous at the boundary. The
flow would in general be non-trivial inside the area and induce the braiding of the sub-braid

http://en.wikipedia.org/wiki/Isomorphism_theorem
http://en.wikipedia.org/wiki/Homotopy
http://en.wikipedia.org/wiki/Braid_group
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of braids. One could assign ”Galois spin” to the sub-braids with respect to the higher Galois
group and boundary homomorphism would realize unitary action of Gk as spin rotation at k1:th
level. At k2:th level the ”Galois spin” rotation would reduce to that in commutator subgroup
and in homology theory would become trivial. The interpretation of the commutator group as
the analog of gauge group might make sense. This would conform with an old idea of quantum
TGD that the commutator subgroup of symplectic group acts as gauge transformations.

6. It is not necessary to assign the braids at various level of the hierarchy to the same partonic
2-surface. Since the symplectic transformations act on δM4

± × CP2, one can consider also the
projections of the braids to the homologically non-trivial 2-sphere of CP2 or to the 2-sphere at
light-cone boundary: both of these spheres play important part in the formulation of quantum
TGD and I have indeed assigned the braidings to these surfaces [K37].

7. The representation of the hierarchy of Galois groups acting on the braid of braids of... can be
understood in terms of the replacement of symplectic group of δM4

±×CP2 -call it G- permuting
the points of the braids with its discrete subgroup obtained as a factor group G/H, where H is
a normal subgroup of G leaving the endpoints of braids fixed. One must also consider subgroups
of the permutation group for the points of the triangulation since Galois group for n:th order
polynomial is in general subgroup of Sn One can also consider flows with these properties to get
braided variant of G/H.

The braid group representation works also for ordinary polynomials with continuous coefficients in
all number fields as also finite fields. One therefore achieves number theoretical universality. The values
of the variables xi appearing in the polynomials can belong to any numer field and the representation
spaces of the Galois groups correspond to any number field. Since the Galois groups are stable against
small perturbations of coefficients one obtains topological invariance in both real and p-adic sense.
Also the representation in all number fields are possible for the Galois groups.

The construction is universal but infinite primes provide the motivation for it and can be regarded
as a representation of the generalized cohomology group for surfaces which belong to the intersection of
real and p-adic worlds (rational coefficients). In particular, the expansion of the roots in powers series
is the only manner to make sense about the roots when xn is identified with Xn so that convergence
takes place if some of the lower level infinite primes appearing in the product defining Xn is interpreted
as infinite p-adic prime. All higher powers are infinitesimal in infinite-P p-adic norm. At the lowest
level one obtains expansion in X1 for which Xn

1 has norm p−n with respect to any prime p. The value
of the product of primes different from p is however not well-defined for given p-adic topology. If it
makes sense to speak about multi-p p-adic expansion all powers Xn

1 , n > 0 would be infinitesimal.

What can one say about the lifting to braid groups?

The generators of symmetry group are given by permutations si permuting i:th and i+ 1:th element
of n-element set. The permutations si and sj obviously commute for |i− j| > 2. It is also easy to see
that the identity sisi+1si = si+1sisi+1 holds true. Besides this the identity s2

i = 1 holds true.
Braid group Bn [A15] is obtained by dropping the condition s2

i = 1 and can be regarded as an
infinite covering group of the permutation group. For instance, for the simplest non-trivial case n = 3
the braid group is universal central extrension of the modular group PSL(2, Z). In the general case
the braid group is isomorphic to the mapping class group of a punctured disk with n punctures and
the realization of the braidings as a symplectic transformations would mean additional restriction to
the allowed isotopies inducing the braid group action.

One can decompose any element of braid group Bn to a product of element of symmetric group Sn
and of pure braid group Pn consisting of braidings which correspond to trivial permutations. Pn is a
normal subgroup of braid group and the following short exact sequence 1→ Fn−1 → Pn → Pn−1 → 1
allows to decompose Pn to a product of image of free group Fn−1 and of the image of Pn in Pn−1. This
leads to a decomposition to a representation of Pn as an iterated semidirect product of free groups.

Concerning the lifting of Galois groups to subgroups of braid groups following observations are
relevant.

1. For n:th order polynomial of single variable Galois group can be regarded as a subgroup of
permutation group Sn. The identification is probably not completely unique (at least inner
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automorphisms make the identification non-unique) but I am unable to say whether this has
significance in the recent context.

2. The natural lifting of Galois group to its braided version is as a product of corresponding
subgroup of Sn with with pure braid group of n braids so that pure braidings would allow
also braidings of all permutations as intermediate stages. Pure braid group is normal subgroup
trivially. Whether also more restricted braidings are possible is not clear to me. Braid group has
a subgroup obtained by coloring braid strands with a finite number of colors and allowing only
the braidings which induce permutations of braids of same color. Clearly this group is a good
candidate for the minimal group decomposable to a product of subgroups of symmetric subgroups
containing braided Galois group. Different colors would correspond to the decomposition of Sn
to a product of permutation groups. Note that one can have cyclic subgroups of permutation
sub-groups.

One might hope that it is enough to lift the boundary homomorphisms between Galois groups Gk
and Gk−1 to homomorphisms between corresponding braided groups. Life does not look so simple.

1. The group algebra of Galois group is replaced with an infinite-dimensional group algebra of
braid groups so that the number of physical states is expected to become much larger and the
interpretation could be in terms of many-boson states.

2. The square of the boundary homomorphism must map braided Galois groupB(Gk) to [B(Gk−2), B(Gk−2)].
The obvious question is whether this conditions reduces to corresponding conditions for Galois
group and pure braided groups. In other words, does the braiding commute with the formation
of commutator sub-group: [B(Gk), B(Gk)] = B([Gk, Gk])? In this case the decomposition of the
braided Galois group to a product of Galois group and pure braid group would allow to realize
the braided counterpart of boundary homomorphism as a product of Galois group homomor-
phism and homomorphism acting on the pure braid group. Direct calculation however shows
that this is not the case so that the problem is considerably more complicated.

More detailed view about braided Galois homology

Consider next a more detailed view about the braided Galois homology.

1. One can wonder whether the application of only single boundary operator creates a state which
represents gauge degree of freedom or whether boundaries correspond to ”full” boundaries ob-
tained by applying maximum number of boundary operations, which k:th level is k. ”Full
boundary” would correspond to what one obtains by applying at most k boundary operators
to the state, and many combinations are possible if the number of boundary homomorphisms
is larger than k. The physical states as elements of homology group would be analogous many-
fermion states bu would differ from them in the sense that they would be annihilated by all
fermionic creation operators. In particular, full Fermi spheres at k:th level would represent
gauge degrees of freedom.

Homologically non-trivial states are expected to be rather rare, especially so if already single
boundary operation creates gauge degree of freedom. Certainly the existence of constraints
is natural since infinite primes corresponding to irreducible polynomials of degree higher are
interpreted as bound states. Homological non-triviality would most naturally express bound
state property in bosonic degrees of freedom. In any case, one can argue that fermionic analogy
is not complete and that a more natural interpretation is as an analog of cohomology with several
exterior derivatives.

2. The analogy with fermionic oscillator algebra makes also the realization of bosonic oscillator
operator algebra suggestive. Pointwise multiplication of group algebra elements regarded as
functions in group looks the most plausible option since for continuous groups like U(1) this
implies additivity of quantum numbers. Many boson states for given mode would correspond
to powers of group algebra element with respect to pointwise multiplication. If the commutator
for the analogs of the bosonic oscillator operators is defined as
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[B1, B2] ≡
∑
g1,g2

B1(g1)B2(g2)[g1, g2] , [g1, g2] ≡ g1g2g
−1
1 g−1

2 ,

it is automatically in the commutator sub-group. This condition is not consistent with fermionic
anti-commutation relations. The consistency requires that the commutator is defined as

[B1, B2] ≡
∑
g1,g2

(B1(g1)B2(g2)[[g1, g2] , [g1, g2] ≡ g1g2 − g2g1 . (11.4.1)

The commutator must belong to the group algebra of the commutator subgroup. In this case
the commutativity conditions are non-trivial. Bosonic commutation relations would put further
constraints on the homology.

A delicacy related to commutation and anti-commutation relations should be noticed. One could
fermionic creation (annihilation) operators as elements in the dual of group algebra. If group
algebra and its dual are not identified (this might not be possible) then the anti-commutator is
element of the field of ring in which group algebra elements have values. In the bosonic case
the conjugate of the bosonic group algebra element should be treated in the same manner as a
pointwise multiplication operator instead of an exterior derivative like operator.

3. One could perhaps interpret the commutation and anti-commutation relations modulo commu-
tator subgroup in terms of finite measurement resolution realized by the transition to homology
implying that observables commute in the standard sense. The connection of finite measurement
resolution with inclusions of hyper-finite factors of type II1 implying a connection with quantum
groups and non-commutative geometry conforms also with the vision that finite measurement
resolution means commutativity modulo commutator group.

4. The alert reader has probably already asked why one could not define also diagonal homology
for Gk via diagonal boundary operators δk : Gk → Hk, where Hk is subgroup of Gk. The
above argument would suggest interpretation for this cohomology in terms of finite measurement
resolution. If one allows this the Galois cohomology groups would be labelled by two integers.
Similar situation is encountered in motivic cohomology [A66].

Some remarks

Some remarks about the proposal are in order.

1. The proposal makes as such sense if the polynomials with rational coefficients define a subset of
more general function space able to catch the non-commutative homotopy and homology and
their duals terms of Galois groups associated with rational functions with coefficients. One could
however abstract the construction so that it applies to polynomials with coefficients in real and
p-adic fields and forget infinite primes altogether. One can even consider the replacement of
algebraic surfaces with more general surfaces as along as the notion of Galois group makes sense
since braiding makes sense also in more general situation. This picture would conform with
the idea of number theoretical universality based on algebraic continuation from rationals to
various number fields. In this case infinite primes would characterize the rational sector in the
intersection of real and p-adic worlds.

2. The above discussion is for the rational primes only. Each algebraic extension of rationals
however gives rise to its own primes. In particular, one obtains also complex integers and
Gaussian primes. Each algebraic extension gives to its own notion of infinite prime. One can
also consider quaternionic and octonionic primes and their generalization to infinite primes and
this generalization is indeed one of the key ideas of the number theoretic vision [K76]. Note
that already for quaternions Galois group defined by the automorphisms of the arithmetics is
continuous Lie group.

http://en.wikipedia.org/wiki/Motivic_cohomology
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3. The decomposition of infinite primes to primes in extension of rational or polynomials is analo-
gous to the decomposition of hadron to quarks in higher resolution and suggests that reduction
of the quantum system to its basic building bricks could correspond number theoretically to the
introduction of higher algebraic extensions of various kinds of number fields. The emergence
of higher extensions would mean emergence of algebraic complexity and have interpretation as
evolution of cognition in TGD inspired theory of consciousness.

This picture conforms with the basic visions of quantum TGD about physics as infinite-dimensional
geometry on one hand and physics as generalized number theory on one hand implying that algebraic
geometry reduces in some sense to number theory and one can also regard quantum states as rep-
resentations of algebraic geometric invariants in accordance with the vision about TGD as almost
topological QFT.

Infinite primes form a discrete set since all the coefficients are rational (unless one allows even
algebraic extensions of infinite rationals). Physically infinite primes correspond to elementary particle
like states so that elementary particle property corresponds to number theoretic primeness. Infinite
integers define unions of sub-varieties identifiable physically as many particle states. Rational functions
are in turn interpreted in zero energy ontology as surfaces assignable to initial and final states of
physical event such that positive energy states correspond to the numerator and negative energy
states to the denominator of the polynomial. One also poses the additional condition that the ratio
equals to real unit in real sense so that real units in this sense are able to represent zero energy state
and the number theoretic anatomy of single space-time point might be able to represent arbitrary
complex quantum states.

The generalization of the notion of real point has been already mentioned as also the fact that the
number theoretic anatomy could in principle allow to code for zero energy states if they correspond to
infinite rationals reducing to unit in real sense. Also space-time surfaces could by quantum classical
correspondence represent in terms of this anatomy as I have proposed. Single space-time point could
code in its structure not only the basic algebraic structure of topology as proposed but represent
Platonia. If the above arguments really maks sense then this number theoretic Brahman=Atman
identify would not be a mere beautiful philosophical vision but would have also practical consequences
for mathematics.

11.4.5 What is the physical interpretation of the braided Galois homology

The resulting cohomology suggests either the interpretation in terms of many-fermion states or as a
generalization of de Rham cohomology involving several exterior derivative operators. The arguments
below show that fermionic interpretation does not make sense and that the more plausible interpre-
tation in concordance with finite measurement resolution is in terms of ”orbital” WCW degrees of
freedom represented by the symplectic group assignable to the product of light-cone boundary and
CP2.

What the restriction to the plane xk = 0 could correspond physically?

The best manner to gain a more detailed connection between physics and homology is through an
attempt to understand what operation putting xk = 0 could mean physically.

1. Given infinite prime at level n corresponds to single particle state characterized by Galois group
Gn. The fermionic part of the state corresponds to its small part and purely bosonic part mul-
tiplies Xn−1 factors as powers of primes not dividing the fermionic part of the state. Therefore
the finite part of the state contains information about fermions and bosons labelled by fermionic
primes. When one puts xn = 0, the information about the bosonic part is lost.

One can of course divide the polynomial by a suitable infinite integer of previous level so that
its highest term is just power of Xn with a unit coefficient. Bosonic part appears in this case in
the denominator of the finite part of the infinite prime and does not contribute to zeros of the
resulting rational function at n−1:th level: it of course affects the zeros at n:th level. Hence the
information about bosons at n− 1:th level is lost also now unless one considers also the Galois
groups assignable to the poles of the resulting rational function at n− 1:th level.
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2. What could this loss of information about bosons correspond geometrically and physically? To
answer this question must understand how the polynomial of many variables can be represented
physically in TGD Universe.

The proposal has been that a union of hierarchically ordered partonic 2-surfaces gives rise to a
local representation of n-fold Cartesian power for a piece of complex plane. A more concrete
realization would be in terms of wormhole throats at the end of causal diamond at 3-surfaces
topologically condensed at each other. The operation xn = 0 would corresponding to the basic
reductionistic step destroying the bound state by removing the largest space-time sheets so that
one would have many-particle state rather than elementary particle at the lower level of the
hierarchy of space-time sheet. This loss of information would be unavoidable outcome of the
reductionistic analysis.

One can consider two alternative geometric interpretations depending on whether one identifies to
infinite primes connected 3-surfaces or connected 2-surfaces.

1. If infinite primes correspond to connected 3-surfaces having hierarchical structure of topologi-
cal condensate the disappearing bosons could correspond to the wormhole throats connecting
smaller space-time sheet to the largest space-time sheet involved. Wormhole throats would carry
bosonic quantum numbers and would be removed when the largest space-time sheet disappears.
Many-fermion state at highest level represented by the ”finite” part of the infinite prime would
correspond to ”half” wormhole throats- CP2 type vacuum extremals topological condensed at
smaller space-time sheets but not at the highest one.

2. If elementary particles/infinite primes correspond to connected partonic 2-surfaces (this is not
quite not the case since tangent space data about partonic 2-surfaces matters), one must replace
3-D topological condensation by its 2-dimensional version. Infinite prime would correspond to
single wormhole throat asa partonic 2-surface at which smaller wormhole throats would have
suffered topological condensation. Topological condensation would correspond to a formation of
a connection by flux tube like structure between the 2-surfaces considered. The disappearance
of this highest level would mean decay to a many particle state containing several wormhole
contacts. The formation of anyonic many-particle states could be interpreted in terms of build-
up of higher level infinite primes.

3. What ever the interpretation is, it should be consistent with the idea that braiding as induced
by symplectic flow. If the symplectic flow is defined by the inherent symplectic structure of the
partonic 2-surface only the latter option works. If the symplectic flow acts at the level of the
imbedding space - as is natural to assume- both interpretations make sense.

The restriction to xk = 0 plane cannot correspond to homological boundary operation

Can one model the restriction to xk = 0 plane as boundary operation in the sense of generalized
homology? There are several objections.

1. There are probably several homological boundary operations δi at given level whereas the re-
striction xk = 0 is a unique operation (recall however the possibility to permute the arguments
in the case of polynomial).

2. The homology is expected to contain large number of generators whereas the state defined by
infinite prime is unique as are also the states resulting via restriction operations.

3. It is not possible to assign fermion number to xk = 0 operation since fermion number is not
affected: this would not allow to assign fermion number to the homological boundary operators.

Although the interpretation as many-fermion states does not make sense, one must notice that the
structure of homology is highly analogous to the space of states of super-symmetric QFT and of the
set of infinite primes. Only the infinite primes Xn ± 1, where Xn is the product of all primes at level
n, correspond to states containing no fermions and have interpretation as Dirac sea and vacuum state.
In the same manner the elements of braided Galois homology in general are obtained by applying
the analogs of fermionic annihilation (creation) operators to a full Fermi sphere (Fock vacuum). Also
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the identification of all physical states as many-fermion states in quantum TGD where all known
elementary bosons are identified as fermion pairs conforms with this picture.

A more natural interpretation of the restriction operation is as an operation making possible to
assign to a given state in fermionic sector the space of possible states in WCW degrees of freedom
characterized in terms of Galois cohomology represented in terms of the symplectic group of acting as
isometries of WCW. The transition from Lie algebra description natural for continuum situation to
discrete subgroup is natural due to the discretization realizing the finite measurement resolution.

One cannot however avoid a nasty question. What about the lower level bosonic primes associated
with the infinite prime? What is their interpretation if they do not correspond to WCW degrees of
freedom? Maybe one could identify the bosonic parts of infinite prime as super-partners of fermions
behaving like bosons. The addition of a right handed neutrino to a given quantum state could represent
this supersymmetry.

Braided Galois group homology and construction of quantum states in WCW degrees of
freedom in finite measurement resolution

The above arguments fix the physical interpretation of infinite primes and corresponding group coho-
mology to quite high degree.

1. From above it is clear that the restriction operation cannot correspond directly to homological
boundary operation. Single infinite prime corresponds to an entire spectrum of states. Hence
the assignment of fermion number to the boundary operators is not correct thing to do and one
must interpret the coboundary operations as analogs of exterior derivatives and various states
as bosonic excitations of a given state analogous to states assignable to closed forms of various
degrees in topological or conformal quantum field theories.

2. The natural interpretation of Galois homology is as a homology assignable to a discrete sub-
group hierarchy of the symplectic group acting as isometries of WCW and therefore as the space
of wave functions in WCW degrees of freedom in finite measurement resolution. Infinite primes
would code for fermionic degrees of freedom identifiable as spinor degrees of freedom at the level
of WCW.

3. The connection between infinite primes and braided Galois homology would basically reflect the
supersymmetry relating these degrees of freedom at the level of WCW geometry where WCW
Hamiltonians correspond to bosonic generators and contractions of WCW gamma matrices with
symplectic currents to the fermionic generators of the super-symmetry algebra. If this identi-
fication is correct, it would solve the problem of constructing the modes of WCW spinor fields
in finite measurement resolution. An especially well-come feature would be the reduction of
WCW integration to summations in braided Galois group algebra allowing an easy realization
of number theoretical universality. If the picture is correct it should also have connections to
the realization of finite measurement resolution in terms of inclusions of hyper-finite factors of
type II1 [K26] for which fermionic oscillator algebra provides the basic realization.

4. Of course, it is far from clear whether it is really possible to reduce spin, color and electroweak
quantum numbers to number theoretic characteristics of infinite primes and it might well be that
the proposed construction does not apply to center of mass degrees of freedom of the partonic
2-surface. I have considered these questions for the octonionic generalization of infinite primes
and suggested how standard model quantum numbers could be understood in terms of subset
of infinite octonionic primes [K76].

11.4.6 Is there a connection with the motivic Galois group?

The proposed generalized of Galois group brings in mind he notion of motivic Galois group, which is
one possible generalization for the notion of zero-dimensional Galois group associated with algebraic
extensions of number fields to the level of algebraic varieties.

One of the many technical challenges of the motivic cohomology theory is the non-uniqueness of
the imbedding of the algebraic extension as a subfield in the algebraic closure of k. The number of
these imbeddings is however finite and absolute Galois group associated with the algebraic closure of
k acts in the set of the imbeddings. Which of them one should choose?

http://en.wikipedia.org/wiki/Motivic_Galois_group
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Quantum physicist would solve this problem by saying that there is no need to choose: one
could introduce quantum superpositions of different choices and ”Galois spin” regarding the different
imbeddings as analogs of different spin components. Absolute Galois group would act on the quantum
states regarded as superpositions of different imbeddings by permuting them. In TGD framework this
kind of representation could emerge in p-adic context raise Galois group to a role of symmetry group
acting on quantum states: indeed absolute Galois group is very natural notion in TGD framework.
I have proposed this kind of interpretation for some years ago in a chapter [K38] about Langlands
program [A157, A58, A158, A156].

If I have understood correctly, the idea of the motivic Galois theory is to generalize this correspon-
dence so that the varieties in field k are replaced the varieties in the extension of k imbedded to the
algebraic closure of k, the number of which is finite. Whether the number of the lifts for varieties is
finite seems to depends on the situation.

1. If the imbedding is assumed to be same for all points of the variety the situation seems to reduce
to the imbeddings of k to the algebraic completion of rationals and one would have quantum su-
perposition of varieties in the union of finite number of representatives of the algebraic extension
to which the absolute Galois group acts.

2. Physicist could however ask whether the invariance under the action of Galois group could be
local in some sense. The selection of separable extension could indeed be only pseudo-constant
in p-adic case and thus depend on finite number of pinary digits of the k-valued coordinates of
the point of the algebraic variety. Local gauge invariance would say that any pseudo constant
element of local absolute Galois group acts as a symmetry. This would suggest that one can
introduce Galois connection. Since Lie algebra is not defined now one should introduce the
connection as parallel translations by Galois group element for paths in the algebraic variety.

One key result is that pure motives using numerical equivalence are equivalent with the category
of representations of an algebraic group called motivic Galois group which has Lie algebra and is thus
looks like a continuous group.

1. Lie algebra structure for something apparently discrete indeed makes sense for profinite groups
(synonymous to Stone spaces). Spaces with p-adic topology are basic examples of this kind of
spaces. For instance, 2-adic integers is a Stone space obtained as the set of all bit sequences
allowed to contain infinite number of non-vanishing digits. This implies that real discreteness
transforms to p-adic continuity and the notion of Lie algebra makes sense. For polynomials this
would correspond to polynomials with strictly infinite degree unless one considers the absolute
Galois group associated with the algebraic extension of rationals associated with an ordinary
polynomial. For infinite primes this would correspond to many-fermion states containing infinite
number of fermions kicked out from the Dirac sea and from the point of view of physics would
look like an idealization.

2. Motivic Galois group does not obviously correspond to the Galois groups as they are introduced
above. Absolute Galois group for the extension of say rationals however emerges if one performs
the lift to the algebraic completion and this might be how one ends up with motivic Galois group
and also with p-adic physics. One can perhaos say that the Galois groups as introduced above
make sense in the intersection of real and p-adic worlds.

3. The choice of algebraic extension might be encountered also in the construction of roots for the
polynomials associated with infinite primes and since this choice is not unique it seems that
one must use quantum superposition of the different choices and must introduce the action of
an appropriate absolute Galois group. This group would be absolute Galois group for algebraic
extension of polynomials of n variables at n:th level and ordinary Galois group at the lowest
level of hierarchy which should be or less the same as the Galois group introduced above. This
could bring in additional spin like degrees of freedom in which the absoltey Galois group acts.

The fascinating question is whether one could regard not only the degrees of freedom associated
with the finite Galois groups but even those associated with the absolute Galois group as physical.
Physically the analogs of color quantum numbers whose net values vanish for confined states
would be in question. To sum up, it seems that number theory could contain implicitly an
incredible rich spectrum of physics.

http://en.wikipedia.org/wiki/Motivic_Galois_group
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11.5 Motives and twistor approach applied to TGD

Motivic cohomology has turned out to pop up in the calculations of the twistorial amplitudes using
Grassmannian approach [B13, B26]. The amplitudes reduce to multiple residue integrals over smooth
projective sub-varieties of projective spaces. Therefore they represent the simplest kind of algebraic
geometry for which cohomology theory exists. Also in Grothendieck’s vision about motivic cohomology
[A194] projective spaces are fundamental as spaces to which more general spaces can be mapped in
the construction of the cohomology groups (factorization).

11.5.1 Number theoretic universality, residue integrals, and symplectic
symmetry

A key challenge in the realization of the number theoretic universality is the definition of p-adic
definite integral. In twistor approach integration reduces to the calculation of multiple residue integrals
over closed varieties. These could exist also for p-adic number fields. Even more general integrals
identifiable as integrals of forms can be defined in terms of motivic cohomology.

Yangian symmetry [A112], [B29] is the symmetry behind the successes of twistor Grassmannian
approach [B22] and has a very natural realization in zero energy ontology [K88]. Also the basic
prerequisites for twistorialization are satisfied. Even more, it is possible to have massive states as
bound states of massless ones and one can circumvent the IR difficulties of massless gauge theories.
Even UV divergences are tamed since virtual particles consist of massless wormhole throats without
bound state condition on masses. Space-like momentum exchanges correspond to pairs of throats with
opposite sign of energy.

Algebraic universality could be realized if the calculation of the scattering amplitudes reduces
to multiple residue integrals just as in twistor Grassmannian approach. This is because also p-adic
integrals could be defined as residue integrals. For rational functions with rational coefficients field
the outcome would be an algebraic number apart from power of 2π, which in p-adic framework is
a nuisance unless it is possible to get rid of it by a proper normalization or unless one can accepts
the infinite-dimensional transcendental extension defined by 2π. It could also happen that physical
predictions do not contain the power of 2π.

Motivic cohomology defines much more general approach allowing to calculate analogs of integrals
of forms over closed varieties for arbitrary number fields. In motivic integration [A168] - to be discussed
below - the basic idea is to replace integrals as real numbers with elements of so called scissor group
whose elements are geometric objects. In the recent case one could consider the possibility that (2π)n

is interpreted as torus (S1)n regarded as an element of scissor group which is free group formed by
formal sums of varieties modulo certain natural relations meaning.

Motivic cohomology allows to realize integrals of forms over cycles also in p-adic context. Sym-
plectic transformations are transformation leaving areas invariant. Symplectic form and its exterior
powers define natural volume measures as elements of cohomology and p-adic variant of integrals over
closed and even surfaces with boundary might make sense. In TGD framework symplectic transfor-
mations indeed define a fundamental symmetry and quantum fluctuating degrees of freedom reduce to
a symplectic group assignable to δM4±×CP2 in well-defined sense [K17]. One might hope that they
could allow to define scissor group with very simple canonical representatives- perhaps even polygons-
so that integrals could be defined purely algebraically using elementary area (volume) formulas and
allowing continuation to real and p-adic number fields. The basic argument could be that varieties
with rational symplectic volumes form a dense set of all varieties involved.

11.5.2 How to define the p-adic variant for the exponent of Kähler action?

The exponent of Kähler function defined by the Kähler action (integral of Maxwell action for induced
Kähler form) is central for quantum at least in the real sector of WCW. The question is whether this
exponent could have p-adic counterpart and if so, how it should be defined.

In the real context the replacement of the exponent with power of p changes nothing but in the
p-adic context the interpretation is affected in a dramatic manner. Physical intuition provided by
p-adic thermodynamics [K44] suggest that the exponent of Kähler function is analogous to Bolzmann
weight replaced in the p-adic context with non-negative power of p in order to achieve convergence of
the series defining the partition function not possible for the exponent function in p-adic context.

http://www.jmilne.org/math/xnotes/MOT.pdf
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1. The quantization of Kähler function as K = rlog(m/n), where r is integer, m > n is divisible by
a positive power of p and n is indivisible by a power of p, implies that the exponent of Kähler
function is of form (m/n)r and therefore exists also p-adically. This would guarantee the p-adic
existence of the vacuum functional for any prime dividing m and for a given prime p would select
a restricted set of p-adic space-time sheets (or partonic 2-surfaces) in the intersection of real and
p-adic worlds. It would be possible to assign several p-adic primes to a given space-time sheet (or
partonic 2-surface). In elementary particle physics a possible interpretation is that elementary
particle can correspond to several p-adic mass scales differing by a power of two [K48]. One
could also consider a more general quantization of Kähler action as sum K = K1 + K2 where
K1 = rlog(m/n) and K2 = n, with n divisible by p since exp(n) exists in this case and one
has exp(K) = (m/n)r × exp(n). Also transcendental extensions of p-adic numbers involving
p+ n− 2 powers of e1/n can be considered.

2. The natural continuation to p-adic sector would be the replacement of integer coefficient r with
a p-adic integer. For p-adic integers not reducing to finite integers the p-adic norm of the vac-
uum functional would however vanish and their contribution to the transition amplitude vanish
unless the number of these space-time sheets increases with an exponential rate making the net
contribution proportional to a finite positive power of p. This situation would correspond to a
critical situation analogous to that encounted in string models as the temperature approaches
Hagedorn temperature [B21] and the number states with given energy increases as fast as the
Boltzmann weight. Hagedorn temperature is essentially due to the extended nature of particles
identified as strings. Therefore this kind of non-perturbative situation might be encountered
also now.

3. Rational numbers m/n with n not divisible by p are also infinite as real integers. They are
somewhat problematic. Does it make sense to speak about algebraic extensions of p-adic numbers
generated by p1/n and giving n− 1 fractional powers of p in the extension or does this extension
reduce to something equivalent with the original p-adic number field when one redefines the p-
adic norm as |x|p → |x|1/n? Physically this kind of extension could have a well defined meaning.
If this does not make sense, it seems that one must treat p-adic rationals as infinite real integers
so that the exponent would vanish p-adically.

4. If one wants that Kähler action exists p-adically a transcendental extension of rational numbers
allowing all powers of log(p) and log(k), where k < p is primitive p− 1:th root of unity in G(p).
A weaker condition would be an extension to a ring with containing only log(p) and log(k) but
not their powers. That only single k < p is needed is clear from the identity log(kr) = rlog(k),
from primitive root property, and from the possibility to expand log(kr + pn), where n is p-adic
integer, to powers series with respect to p. If the exponent of Kähler function is the quantity
coding for physics and naturally required to be ordinary p-adic number, one could allow log(p)
and log(k) to exists only in symbolic sense or in the extension of p-adic numbers to a ring with
minimal dimension.

Remark: One can get rid of the extension by log(p) and log(k) if one accepts the definition of
p-adic logarithm as log(x) = log(p−kx/x0) for x = pk(x0 + py), |y|p < 1. To me this definition
looks somewhat artificial since this function is not strictly speaking the inverse of exponent
function but might have a deeper justification.

5. What happens in the real sector? The quantization of Kähler action cannot take place for all
real surfaces since a discrete value set for Kähler function would mean that WCW metric is not
defined. Hence the most natural interpretation is that the quantization takes place only in the
intersection of real and p-adic worlds, that is for surfaces which are algebraic surfaces in some
sense. What this actually means is not quite clear. Are partonic 2-surfaces and their tangent
space data algebraic in some preferred coordinates? Can one find a universal identification for
the preferred coordinates- say as subset of imbedding space coordinates selected by isometries?

If this picture inspired by p-adic thermodynamics holds true, p-adic integration at the level of
WCW would give analog of partition function with Boltzman weight replaced by a power of p reducing
a sum over contributions corresponding to different powers of p with WCW integra.l over space-time
sheets with this value of Kähler action defining the analog for the degeneracy of states with a given

http://en.wikipedia.org/wiki/P-adic_logarithm_function
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value of energy. The integral over space-time sheets corresponding to fixed value of Kähler action
should allow definition in terms of a symplectic form defined in the p-adic variant of WCW. In finite-
dimensional case one could worry about odd dimension of this sub-manifold but in infinite-dimensional
case this need not be a problem. Kähler function could defines one particular zero mode of WCW
Kähler metric possessing an infinite number of zero modes.

One should also give a meaning to the p-adic integral of Kähler action over space-time surface
assumed to be quantized as multiples of log(m/n).

1. The key observation is that Kähler action for preferred extrememals reduces to 3-D Chern-
Simons form by the weak form of electric-magnetic duality. Therefore the reduction to cohomol-
ogy takes place and the existing p-adic cohomology gives excellent hopes about the existence of
the p-adic variant of Kähler action. Therefore the reduction of TGD to almost topological QFT
would be an essential aspect of number theoretical universality.

2. This integral should have a clear meaning also in the intersection of real and p-adic world. Why
the integrals in the intersection would be quantized as multiple of log(m/n), m/n divisible by
a positive power of p? Could log(m/n) relate to the integral of

∫ p
1
dx/x, which brings in mind∮

dz/z in residue calculus. Could the integration range [1,m/n] be analogous to the integration
range [0, 2π]. Both multiples of 2π and logarithms of rationals indeed emerge from definite
integrals of rational functions with rational coefficients and allowing rational valued limits and
in both cases 1/z is the rational function responsible for this.

3. log(m/n) would play a role similar to 2π in the approach based on motivic integration where
integral has geometric objects as its values. In the case of 2π the value would be circle. In
the case of log(m/n) the value could be the arc between the points r = m/n > 1 and r = 1
with r identified the radial coordinate of light-cone boundary with conformally invariant length
measures dr/r. One can also consider the idea that log(m/n) is the hyperbolic angle analogous to
2π so that these two integrals could correspond to hyper-complex and complex residue calculus
respectively.

4. TGD as almost topological QFT means that for preferred extremals the Kähler action reduces
to 3-D Chern-Simons action, which is indeed 3-form as cohomology interpretation requires, and
one could consider the possibility that the integration giving log(m/n) factor to Kähler action is
associated with the integral of Chern-Simons action density in time direction along light-like 3-
surface and that the integral over the transversal degrees of freedom could be reduced to the flux
of the induced CP2 Kähler form. The logarithmic quantization of the effective distance between
the braid end points the in metric defined by modified gamma matrices has been proposed
earlier [K27].

Since p-adic objects do not possess boundaries, one could argue that only the integrals over closed
varieties make sense. Hence the basic premise of cohomology would fail when one has p-adic integral
over braid strand since it does not represent closed curve. The question is whether one could identify
the end points of braid in some sense so that one would have a closed curve effectively or alterna-
tively relative cohomology. Periodic boundary conditions is certainly one prerequisite for this kind of
identification.

1. In one of the many cohomologies known as quantum cohomology [A78] one indeed assumes that
the intersection of varieties is fuzzy in the sense that two surfaces for which points are connected
by what is called pseudo-holomorphic curve can be said to intersect at these points. As a special
case pseudo-holomorphic curve reduce to holomorphic curve defined by a holomorphic map of
2-D Kähler manifold to complex manifold with Kähler structure. The question arises what
”pseudoholomorphic curve connects points” really means. In the recent case a natural analog
would be 2-D string world sheets or partonic 2-surfaces so that complex numbers are replaced by
hyper-complex numbers effectively. The boundaries of string world sheets would be 1-D braid
strands at wormhole throats and at the end of space-time sheet at boundaries of CD. In spirit
of algebraic geometry one could also call the 1-D braid strands holomorphic curves connecting
points of the partonic 2-surfaces at the two light-like boundaries of CD. In the similar manner
space-like braid strands would connect points of partonic 2-surface at same end of CD.

http://en.wikipedia.org/wiki/Quantum_cohomology
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2. In the construction of the solutions of the modified Dirac equation one assumes periodic bound-
ary conditions so that in physical sense these points are identified [K27]. This assumption
actually reduces the locus of solutions of the modified Dirac equation to a union of braids at
light-like 3-surfaces so that finite measurement resolution for which discretization defines space-
time correlates becomes an inherent property of the dynamics. The coordinate varying along
the braid strands is light-like so that the distance in the induced metric vanishes between its
end points (unlike the distance in the effective metric defined by the modified gamma matrices):
therefore also in metric sense the end points represent intersection point. Also the effective
2-dimensionality means are effectively one and same point.

3. The effective metric 2-dimensionality of the light-like 2-surfaces implies the counterpart of con-
formal invariance with the light-like coordinate varying along braid strands so that it might
make sense to say that braid strands are pseudo-holomorphic curves. Note also that the end
points of a braid along light-like 3-surface are not causally independent: this is why M-matrix
in zero energy ontology is non-trivial. Maybe the causal dependence together with periodic
boundary conditions, light-likeness, and pseudo-holomorphy could imply a variant of quantum
cohomology and justify the p-adic integration over the braid strands.

11.5.3 Motivic integration

While doing web searches related to motivic cohomology I encountered also the notion of motivic
measure [A168] proposed first by Kontsevich. Motivic integration is a purely algebraic procedure in
the sense that assigns to the symbol defining the variety for which one wants to calculate measure.
The measure is not real valued but takes values in so called scissor group, which is a free group with
group operation defined by a formal sum of varieties subject to relations. Motivic measure is number
theoretical universal in the sense that it is independent of number field but can be given a value in
particular number field via a homomorphism of motivic group to the number field with respect to sum
operation.

Some examples are in order.

1. A simple example about scissor group is scissor group consisting operations needed in the al-
gorithm transforming plane polygon to a rectangle with unit edge. Polygon is triangulated;
triangles are transformed to rectangle using scissors; long rectangles are folded in one half;
rectangles are rescaled to give an unit edge (say in horizontal direction); finally the resulting
rectangles with unit edge are stacked over each other so that the height of the stack gives the
area of the polygon. Polygons which can be transformed to each other using the basic area
preserving building bricks of this algorithm are said to be congruent.

The basic object is the free abelian group of polygons subject to two relations analogous to
second homology group. If P is polygon which can be cut to two polygons P1 and P2 one has
[P ] = [P1] + [P2]. If P and P ′ are congruent polygons, one has [P ] = [P ′]. For plane polygons
the scissor group turns out to be the group of real numbers and the area of polygon is the area of
the resulting rectangle. The value of the integral is obtained by mapping the element of scissor
group to a real number by group homomorphism.

2. One can also consider symplectic transformations leaving areas invariant as allowed congruences
besides the slicing to pieces as congruences appearing as parts of the algorithm leading to a
standard representation. In this framework polygons would be replaced by a much larger space
of varieties so that the outcome of the integral is variety and integration means finding a simple
representative for this variety using the relations of the scissor group. One might hope that
a symplectic transformations singular at the vertices of polygon combined with with scissor
transformations could reduce arbitrary area bounded by a curve into polygon.

3. One can identify also for discrete sets the analog of scissor group. In this case the integral could be
simply the number of points. Even more abstractly: one can consider algebraic formulas defining
algebraic varieties and define scissor operations defining scissor congruences and scissor group
as sums of the formulas modulo scissor relations. This would obviously abstract the analytic
calculation algorithm for integral. Integration would mean that transformation of the formula
to a formula stating the outcome of the integral. Free group for formulas with disjunction of

http://www.ams.org/journals/bull/2005-42-02/S0273-0979-05-01053-0/S0273-0979-05-01053-0.pdf
http://www.ams.org/journals/bull/2005-42-02/S0273-0979-05-01053-0/S0273-0979-05-01053-0.pdf
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formulas is the additive operation [A194]. Congruence must correspond to equivalence of some
kind. For finite fields it could be bijection between solutions of the formulas. The outcome of
the integration is the scissor group element associated with the formula defining the variety.

4. For residue integrals the free group would be generated as formal sums of even-dimensional
complex integration contours. Two contours would be equivalent if they can be deformed to
each other without going through poles. The standard form of variety consists of arbitrary small
circles surrounding the poles of the integrand multiplied by the residues which are algebraic
numbers for rational functions. This generalizes to rational functions with both real and p-
adic coefficients if one accepts the identification of integral as a variety modulo the described
equivalence so that (2π)n corresponds to torus (S1)n. One can replace torus with 2π if one
accepts an infinite-dimensional algebraic extension of p-adic numbers by powers of 2π. A weaker
condition is that one allows ring containing only the positive powers of 2π.

5. The Grassmannian twistor approach for two-loop hexagon Wilson gives dilogarithm functions
Lk(s) [B26]. General polylogarithm is defined by obey the recursion formula:

Lis+1(z) =

∫ z

0

Lis(t)
dt

t
.

Ordinary logarithm Li1(z) = −log(1− z) exists p-adically and generates a hierarchy containing
dilogarithm, trilogarithm, and so on, which each exist p-adically for |x| < 1as is easy to see. If
one accepts the general definition of logariths one finds that the entire function series exists p-
adically for integer values of s. An interesting question is how strong constraints p-adic existence
gives to the thetwistor loop integrals and to the underlying QFT.

6. The ring having p-adic numbers as coefficients and spanned by transcendentals log(k) and log(p),
where k is primitive root of unity in G(p) emerges in the proposed p-adicization of vacuum
functional as exponent of Kähler action. The action for the preferred extremals reducing to 3-D
Chern-Simons action for space-time surfaces in the intersection of real and p-adic worlds would
be expressible p-adically as a linear combination of log(p) and log(k). log(m/n) expressible
in this manner p-adically would be the symbolic outcome of p-adic integral

∫
dx/x between

rational points. x could be identified as a preferred coordinate along braid strand. A possible
identification for x earlier would be as the length in the effective metric defined by modified
gamma matrices appearing in the modified Dirac equation [K27] .

11.5.4 How could one calculate p-adic integrals numerically?

Riemann sum gives the simplest numerical approach to the calculation of real integrals. Also p-
adic integrals should allow a numerical approach and very probably such approaches already exist
and ”motivic integration” presumably is the proper word to google. The attempts of an average
physicist to dig out this kind of wisdom from the vastness of mathematical literature however lead to
a depression and deep feeling of inferiority. The only manner to avoid the painful question ”To whom
should I blame for ever imagining that I could become a real mathematical physicist some day?” is a
humble attempt to extrapolate real common sense to p-adic realm. One must believe that the almost
trivial Riemann integral must have an almost trivial p-adic generalization although this looks far from
obvious.

A proposal for p-adic numerical integration

The physical picture provided by quantum TGD gives strong constraints on the notion of p-adic
integral.

1. The most important integrals should be over partonic 2-surfaces. Also p-adic variants of 3-
surfaces and 4-surfaces can be considered. The p-adic variant of Kähler action would be an
especially interesting integral and reduces to Chern-Simons terms over 3-surfaces for preferred
extremals. One should use this definition also in the p-adic context since the reduction of a
total divergence to boundary term is not expected to take place in numerical approach if one
begins from a 4-dimensional Kähler action since in p-adic context topological boundaries do not
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exist. The reduction to Chern-Simons term means also a reduction to cohomology and p-adic
cohomology indeed exists.

At the first step one could restrict the consideration to algebraic varieties - in other words zero
loci for a set of polynomials Pi(x) at the boundary of causal diamond consisting of pieces of
δM4
± × CP2. 5 equations are needed. The simplest integral would be the p-adic volume of the

partonic 2-surface.

2. The numerics must somehow rely on the p-adic topology meaning that very large powers pn

are very small in p-adic sense. In the p-adic context Riemann sum makes no sense since the
sum never has p-adic norm larger than the maximum p-adic norm for summands so that the
limit would give just zero. Finite measurement resolution suggests that the analog for the limit
∆x → 0 is pinary cutoff O(pn) = 0, n → ∞, for the function f to be integrated. In the
spirit of algebraic geometry one must asume at least power series expansion if not even the
representability as a polynomial or rational function with rational or p-adic coefficients.

3. Number theoretic approach suggests that the calculation of the volume vol(V ) of a p-adic al-
gebraic variety V as integral should reduce to the counting of numbers for the solutions for
the equations fi(x) = 0 defining the variety. Together with the finite pinary cutoff this would
mean counting of numbers for the solutions of equations fi(x) mod pn = 0. The p-adic volume
V ol(V, n) of the variety in the measurement resolution O(pn) = 0 would be simply the number
of p-adic solutions to the equations fi(x) mod pn = 0. Although this number is expected to
become infinite as a real number at the limit n→∞, its p-adic norm is never larger than one.
In the case that the limit is a well-defined as p-adic integer, one can say that the variety has a
well-defined p-adic valued volume at the limit of infinite measurement resolution. The volume
V ol(V, n) could behave like nnp and exist as a well defined p-adic number only if np is divisible
by p.

4. The generalization of the formula for the volume to an integral of a function over the volume
is straightforward. Let f be the function to be integrated. One considers solutions to the
conditions f(x) = y, where y is p-adic number in resolution O(pn) = 0, and therefore has only
a finite number of values. The condition f(x) − y = 0 defines a codimension 1 sub-variety Vy
of the original variety and the integral is defined as the weighted sum

∑
y y × vol(Vy), where y

denotes the point in the finite set of allowed values of f(x) so that calculation reduces to the
calculation of volumes also now.

General coordinate invariance

From the point of view of physics general coordinate invariance of the volume integral and more
general integrals is of utmost importance.

1. The general coordinate invariance with respect to the internal coordinates of surface is achieved
by using a subset of imbedding space-cooordinates as preferred coordinates for the surface. This
is of also required if one works in algebraic geometric setting. In the case of projective spaces
and similar standard imbedding spaces of algebraic varieties natural preferred coordinates exist.
In TGD framework the isometries of M4 × CP2 define natural preferred coordinate systems.

2. The question whether the formula can give rise to a something proportional to the volume in
the induced metric in the intersection of real and rational worlds interesting. One could argue
that one must include the square root of the determinant of the induced metric to the definition
of volume in preferred coordinates but this might not be necessary. In fact, p-adic integration is
genuine summation whereas the determinant of metric corresponds density of volume and need
not make no sense in p-adic context. Could the fact that the preferred coordinates transform in
simple manner under isometries of the imbedding space (linearly under maximal subgoup) alone
guarantee that the information about the imbedding space metric is conveyed to the formula?

3. Indeed, since the volume is defined as the number of p-adic points, the proposed formula should
be invariant at least under coordinate transformations mediated by bijections of the preferred
coordinates expressible in terms of rational functions. In fact, even more general bijections
mapping p-adic numbers to p-adic numbers could be allowed since they effectively mean the
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introduction of new summation indices. Since the determinant of metric changes in coordinate
transformations this requires that the metric determinant is not present at all. Thus summation
is what allows to achieve the p-adic variant of general coordinate invariance.

4. This definition of volume and more general integrals amounts to solving the remaining coor-
dinates of imbedding space as (in general) many-valued functions of these coordinates. In the
integral those branches contribute to the integral for which the solution is p-adic number or be-
longs to the extension of p-adic numbers in question. By p-adic continuity the number of p-adic
value solutions is locally constant. In the case that one integrates function over the surface one
obtains effectively many-valued function of the preferred coordinates and can perform separate
integrals over the branches.

Numerical iteration procedure

A convenient iteration procedure is based on the representation of integrand f as sum
∑
k fk of

functions associated with different p-adic valued branches zk = zk(x) for the surface in the coordinates
chosen and identified as a subset of preferred imbedding space coordinates. The number of branches
zk contributing is by p-adic continuity locally constant.

The function fk -call it g for simplicity - can in turn be decomposed into a sum of piecewise
constant functions by introducing first the piecewise constant pinary cutoffs gn(x) obtained in the
approximation O(pn+1) = 0. One can write g as

g(x) =
∑

hn(x) , h0(x) = g0(x) , hn = gn(x)− gn−1(x) for n > 0 .

Note that hn(x) is of form gn(x) = an(x)pn, an(x) ∈ {0, p− 1} so that the representation for integral
as a sum of integrals for piecewise constant functions hn converge rapidly. The technical problem is
the determination of the boundaries of the regions inside which these functions contribute.

The integral reduces to the calculation of the number of points for given value of hn(x) and by the
local constancy for the number of p-adic valued roots zk(x) the number of points for N0

∑
k≥0 p

k =
N0/(1− p), where N0 is the number of points x with the property that not all points y = x(1 +O(p))
represent p-adic points z(x). Hence a finite number of calculational steps is enough to determine
completely the contribution of given value to the integral and the only approximation comes from the
cutoff in n for hn(x).

Number theoretical universality

This picture looks nice but it is far from clear whether the resulting integral is that what physicist
wants. It is not clear whether the limit V ol(V, n), n→∞, exists or even should exist always.

1. In TGD Universe a rather natural condition is algebraic universality requiring that the p-adic
integral is proportional to a real integral in the intersection of real and p-adic worlds defined by
varieties identified as loci of polynomials with integer/rational coefficients. Number theoretical
universality would require that the value of the p-adic integral is p-adic rational (or algebraic
number for extensions of p-adic numbers) equal to the value of the real integral and in algebraic
sense independent of the number field. In the eyes of physicist this condition looks highly non-
trivial. For a mathematician it should be extremely easy to show that this condition cannot
hold true. If true the equality would represent extremely profound number theoretic truth.

The basic idea of the motivic approach to integration is to generalize integral formulas so that
the same formula applies in any number field: the specialization of the formula to given number
field would give the integral in that particular number field. This is of course nothing but
number theoretical universality. Note that the existence of this kind of formula requires that in
the intersection of the real and p-adic worlds real and p-adic integrals reduce to same rational
or transcendentals (such as log(1 + x) and polylogarithms).

2. If number theoretical universality holds true one can imagine that one just takes the real integral,
expresses it as a function of the rational number valued parameters (continuable to real numbers)
characterizing the integrand and the variety and algebraically continues this expression to p-
adic number fields. This would give the universal formula which can be specified to any number
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field. But it is not at all clear whether this definition is consistent with the proposed numerical
definition.

3. There is also an intuitive expectation in an apparent conflict with the number theoretic uni-
versality. The existence of the limit for a finite number p-adic primes could be interpreted as
mathematical realization of the physical intuition suggesting that one can assign to a given
partonic 2-surface only a finite number of p-adic primes [K27]. Indeed, quantum classical cor-
respondence combined with the p-adic mass calculations suggests that the partonic 2-surfaces
assignable to a given elementary particle in the intersection of real and p-adic worlds corresponds
to a finite number of p-adic primes somehow coded by the geometry of the partonic 2-surface.

One way out of the difficulty is that the functions - say polynomials - defining the surface have
as coefficients powers of en. For given prime p only the powers of ep exist p-adically so that only
the primes p dividing n would be allowed. The transcendentals of form log(1 + px) and their
polylogarithmic generalizations resulting from integrals in the intersection of real and p-adic
worlds would have the same effect. Second way out of the difficulty would be based on the
condition that the functional integral over WCW (”world of classical worlds”) converges. There
is a good argument stating that the exponent of Kähler action reduces to an exponent of integer
n and since all powers of n appear the convergence is achieved only for p-adic primes dividing
n.

Can number theoretical universality be consistent with the proposed numerical definition
of the p-adic integral?

The equivalence of the proposed numerical integral with the algebraic definition of p-adic integral
motivated by the algebraic formula in the real context expressed in terms of various parameters
defining the variety and the integrand and continued to all number fields would be such a number
theoretical miracle that it deserves italics around it:

For algebraic surfaces the real volume of the variety equals apart from constant C to the number of
p-adic points of the variety in the case that the volume is expressible as p-adic integer.

The proportionality constant C can depend on p-adic number field , and the previous numerical
argument suggests that the constant could be simply the factor 1/(1− p) resulting from the sum of p-
adic points in p-adic scales so short that the number of the p-adic branches zk(x) is locally constant.
This constant is indeed needed: without it the real integrals in the intersection of real and p-adic
worlds giving integer valued result I = m would correspond to functions for which the number of
p-adic valued points is finite.

The statement generalizes also to the integrals of rational and perhaps even more general functions.
The equivalence should be considered in a weak form by allowing the transcendentals contained by the
formulas have different meanings in real and p-adic number fields. Already the integrals of rational
functions contain this kind of transcendentals.

The basic objection that number of p-adic points without cannot give something proportional
to real volume with an appropriate interpretation cannot hold true since real integral contains the
determinant of the induced metric. As already noticed the preferred coordinates for the imbedding
space are fixed by the isometries of the imbedding space and therefore the information about metric
is actually present. For constant function the correspondence holds true and since the recipe for
performing of the integral reduce to that for an infinite sum of constant functions, it might be that
the miracle indeed happens.

The proposal can be tested in a very simple manner. The simplest possible algebraic variety is
unit circle defined by the condition x2 + y2 = 1.

1. In the real context the circumference is 2π and p-adic transcendental requiring an infinite-
dimensional algebraic extension defined in terms of powers of 2π. Does this mean that the
number of p-adic points of circle at the limit n → ∞ for the pinary cutoff O(pn) = 0 is ill-
defined? Should one define 2π as this integral and say that the motivic integral calculus based
on manipulation of formulas reduces the integrals to a combination of p-adically existing numbers
and 2π? In motivic integration the outcome of the integration is indeed formula rather than
number and only a specialization gives it a value in a particular number field. Does 2π have a
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specialization to the original p-adic number field or should one introduce it via transcendental
extension?

2. The rational points (x, y) = (k/m, l/m) of the p-adic unit circle would correspond to Pythagorean
triangles satisfying k2 + l2 = m2 with the general solution k = r2 − s2, l = 2rs, m = r2 + s2.
Besides this there is an infinite number of p-adic points satisfying the same equation: some of
the integers k, l,m would be however infinite as real integers. These points can be solved by
starting from O(p) = 0 approximation (k, l,m) → (k, l,m) mod p ≡ (k0, l0,m0). One must
assume that the equations are satisfied only modulo p so that Pythagorean triangles modulo
p are the basic objects. Pythagorean triangles can be also degenerate modulo p so that either
k0, l0 or even m0 vanishes. Note that for surfaces xn + yn = zn no non-trivial solutions exists
for xn, yn, zn < p for n > 2 and all p-adic points are infinite as real integers.

The Pythagorean condition would give a constraint between higher powers in the expressions
for k, l and m. The challenge would be to calculate the number of this kind of points. If one
can choose the integers k − (k mod p) and l − (l mod p) freely and solve m − (m mod p) from
the quadratic equations uniquely, the number of points of the unit circle consisting of p-adic
integers must be of form N0/(1 − p). At the limit n → ∞ the p-adic length of the unit circle
would be in p-adic topology equal to the number of modulo p Pythagorean triangles (r, s). The
p-adic counterpart of 2π would be ordinary p-adic number depending on p. This definition of
the length of unit circle as number of its modulo p Pythagorean points also Pythagoras would
have agreed with since in the Pythagorean world view only rational triangles were accepted.

3. One can look the situation also directly solving y as y = ±
√

1− x2. The p-adic square root
exists always for x = O(pn), n > 0. The number of these points x is 2/(1 − p). For x = O(p0)
the square root exist for roughly one half of the integers n ∈ {0, p− 1}. The number of integers
(x2)0 is therefore roughly (p−1)/2. The study of p = 5 cae suggests that the number of integers
(1 − (x2)0)0 ∈ {0, p − 1} which are squares is about (p − 1)/4. Taking into account the ±
sign the number of these points by N0 ' (p − 1)/2. In this case the higher O(p) contribution
to x is arbitrary and one obtains total contribution N0/(1 − p). Altogether one would have
(N0 + 2)/(1 − p) so that eliminating the proportionality factor the estimate for the p-adic
counterpart of 2π would be (p+ 3)/2.

4. One could also try a trick. Express the points of circle as (x, y) = (cos(t), sin(t)) such that t is
any p-adic number with norm smaller than one in p-adic case. This unit circle is definitely not
the same object as the one defined as algebraic variety in plane. One can however calculate the
number of p-adic points at the limit n→∞. Besides t = 0, all p-adic numbers with norm larger
than p−n and smaller than 1 are acceptable and one obtains as a result N(n) = 1 + pn−1, where
”1” comes from overall important point t = 0. One has N(n) → 1 in p-adic sense. If t = 0 is
not allowed the length vanishes p-adically. The circumference of circle in p-adic context would
have length equal to 1 in p-adic topology so that no problems would be encountered (numbers
exp(i2π/n) would require algebraic extension of p-adic numbers and would not exist as power
series).

The replacement of the coordinates (x, y) with coordinate t does not respect the rules of alge-
braic geometry since trigonometric functions are not algebraic functions. Should one allow also
exponential and trigonometric functions and their inverses besides rational functions and define
circle also in terms of these. Note that these functions are exceptional in that corresponding
transcendental extensions -say that containing e and its powers- are finite-dimensional?

5. To make things more complicated, one could allow algebraic extensions of p-adic numbers con-
taining roots Un = exp(i2π/n) of unity. This would affect the count too but give a well-defined
answer if one accepts that the points of unit circle correspond to the Pythagorean points mul-
tiplied by the roots of unity.

p-Adic thermodynamics for measurement resolution?

The proposed definition is rather attractive number theoretically since everything would reduce to the
counting of p-adic points of algebraic varieties. The approach generalizes also to algebraic extensions
of p-adic numbers. Mathematicians and also physicists love partition functions, and one can indeed
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assign to the volume integral a partition function as p-adic valued power series in powers Z(t) =
∑
vnt

n

with the coefficients vn giving the volume in O(pn) = 0 cutoff. One can also define partition functions
Zf (t) =

∑
fnt

n, with fn giving the integral of f in the same approximation.
Could this kind of partition functions have a physical interpretation as averages over physical

measurements over different pinary cutoffs? p-Adic temperature can be identified as t = p1/T , T =
1/k. For p-adically small temperatures the lowest terms corresponding to the worst measurement
resolution dominate. At first this sounds counter-intuitive since usually low temperatures are thought
to make possible good measurement resolution. One can however argue that one must excite p-adic
short range degrees of freedom to get information about them. These degrees of freedom correspond to
the higher pinary digits by p-adic length scale hypothesis and high energies by Uncertainty Principle.
Hence high p-adic temperatures are needed. Also measurement resolution would be subject to p-adic
thermodynamics rather than being freely fixed by the experimentalist.

11.5.5 Infinite rationals and multiple residue integrals as Galois invariants

In TGD framework one could consider also another kind of cohomological interpretation. The basic
structures are braids at light-like 3-surfaces and space-like 3-surfaces at the ends of space-time surfaces.
Braids intersects have common ends points at the partonic 2-surfaces at the light-like boundaries of
a causal diamond. String world sheets define braid cobordism and in more general case 2-knot [K37].
Strong form of holography with finite measurement resolution would suggest that physics is coded by
the data associated with the discrete set of points at partonic 2-surfaces. Cohomological interpretation
would in turn would suggest that these points could be identified as intersections of string world sheets
and partonic 2-surface defining dual descriptions of physics and would represent intersection form for
string world sheets and partonic 2-surfaces.

Infinite rationals define rational functions and one can assign to them residue integrals if the
variables xn are interpreted as complex variables. These rational functions could be replaced with
a hierarchy of sub-varieties defined by their poles of various dimensions. Just as the zeros allow
realization as braids or braids also poles would allow a realization as braids of braids. Hence the n-
fold residue integral could have a representation in terms of braids. Given level of the braid hierarchy
with n levels would correspond to a level in the hierarchy of complex varieties with decreasing complex
dimension.

One can assign also to the poles (zeros of polynomial in the denominator of rational function)
Galois group and obtains a hierarchy of Galois groups in this manner. Also the braid representation
would exists for these Galois groups and define even cohomology and homology if they do so for the
zeros. The intersections of braids with of the partonic 2-surfaces would represent the poles in the
preferred coordinates and various residue integrals would have representation in terms of products of
complex points of partonic 2-surface in preferred coordinates. The interpretation would be in terms
of quantum classical correspondence.

Galois groups transform the poles to each other and one can ask how much information they give
about the residue integral. One would expect that the n-fold residue integral as a sum over residues
expressible in terms of the poles is invariant under Galois group. This is the case for the simplest
integrals in plane with n poles and probably quite generally. Physically the invariance under the
hierarchy of Galois group would mean that Galois groups act as the symmetry group of quantum
physics. This conforms with the number theoretic vision and one could justify the formula for the
residue integral also as a definition motivated by the condition of Galois invariance. Of course, all
symmetric functions of roots would be Galois invariants and would be expected to appear in the
expressions for scattering amplitudes.

The Galois groups associated with zeros and poles of the infinite rational seem to have a clear
physical significance. This can be understood in zero energy ontology if positive (negative) physical
states are indeed identifiable as infinite integers and if zero energy states can be mapped to infinite
rationals which as real numbers reduce to real units. The positive/negative energy part of the zero
energy state would correspond to zeros/poles in this correspondence. An interesting question is how
strong correlations the real unit property poses on the two Galois groups hierarchies. The asymmetry
between positive and negative energy states would have interpretation in terms of the thermodynamic
arrow of geometric time [K6] implied by the condition that either positive or negative energy states
correspond to state function reduced/prepared states with well defined particle numbers and minimum
amount of entanglement.
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11.5.6 Twistors, hyperbolic 3-manifolds, and zero energy ontology

While performing web searches for twistors and motives I have begun to realize that Russian math-
ematicians have been building the mathematics needed by quantum TGD for decades by realizing
the vision of Grothendieck. One of the findings was the article Volumes of hyperbolic manifolds and
mixed Tate motives [A163] by Goncharov- one of the great Russian mathematicians involved with the
drama- about volumes of hyperbolic n-manifolds and motivic integrals.

Hyperbolic n-manifolds [A48] are n-manifolds equipped with complete Riemann metric having
constant sectional curvature equal to -1 (with suitable choice of length unit) and therefore obeying
Einstein’s equations with cosmological constant. They are obtained as coset spaces on proper-time
constant hyperboloids of n+1-dimensional Minkowski space by dividing by the action of discrete sub-
group of SO(n,1), whose action defines a lattice like structure on the hyperboloid. What is remarkable
is that the volumes of these closed spaces are homotopy invariants in a well-define sense.

What is even more remarkable that hyperbolic 3-manifolds [A47] are completely exceptional in
that there are very many of them. The complements of knots and links in 3-sphere are often cusped
hyperbolic 3-manifolds (having therefore tori as boundaries). Also Haken manifolds are hyperbolic.
According to Thurston’s geometrization conjecture, proved by Perelman (whom we all know!), any
closed, irreducible, atoroidal 3-manifold with infinite fundamental group is hyperbolic. There is an
analogous statement for 3-manifolds with boundary. One can perhaps say that very many 3-manifolds
are hyperbolic.

The geometrization conjecture of Thurston [A41] allows to see hyperbolic 3-manifolds in a wider
framework. The theorem states that compact 3-manifolds can be decomposed canonically into sub-
manifolds that have geometric structures. It was Perelman who sketched the proof of the conjecture.
The prime decomposition with respect to connected sum reduces the problem to the classification of
prime 3-manifolds and geometrization conjecture states that closed 3-manifold can be cut along tori
such that the interior of each piece has a geometric structure with finite volume serving as a topological
invariant. There are 8 possible geometric structures in dimension three and they are characterized by
the isometry group of the geometry and the isotropy group of point.

Important is also the behavior under Ricci flow [A85] ∂tgij = −2Rij : here t is not space-time
coordinate but a parameter of homotopy. If I have understood correctly, Ricci flow is a dissipative flow
gradually polishing the metric for a particular region of 3-manifold to one of the 8 highly symmetric
metrics defining topological invariants. This conforms with the general vision about dissipation as the
source of maximal symmetries. For compact n-manifolds the normalized Ricci flow ∂tgij = −2Rij +
(2/n)Rgij preserving the volume makes sense. Interestingly, for n = 4 the right hand side is Einstein
tensor so that the solutions of vacuum Einstein’s equations in dimension four are fixed points of
normalized Ricci flow. Ricci flow expands the negatively curved regions and contracts the positively
curved regions of space-time time. Hyperbolic geometries represent one these 8 geometries and for
the Ricci flow is expanding. The outcome is amazingly simple and gives also support for the idea that
the preferred extremals of Kähler action could represent maximally symmetries 4-geometries defining
topological or algebraic geometric invariants: the preferred extremals would be maximally symmetric
representatives - kind of archetypes- for a given topology or algebraic geometry.

The volume spectrum for hyperbolic 3-manifolds forms a countable set which is however not
discrete: some reader might understand what the statement that one can assign to them ordinal ωω

could possibly mean for the man of the street. What comes into my simple mind is that p-adic integers
and more generally, profinite spaces which are not finite, are something similar: one can enumerate
them by infinitely long sequences of pinary digits so that they are countable (I do not know whether
also infinite p-adic primes must be allowed). They are totally disconnected in real sense but do not
form a discrete set since since can connect any two points by a p-adically continuous curve.

What makes twistor people excited is that the polylogarithms emerging from twistor integrals and
making sense also p-adically seems to be expressible in terms of the volumes of hyperbolic manifolds.
What fascinates me is that the moduli spaces for causal diamonds or rather for the double light-cones
associated with their M4 projections with second tip fixed are naturally lattices of the3-dimensional
hyperbolic space defined by all positions of the second tip and 3-dimensional hyperbolici spaces are
the most intersting ones! At least in the intersection of the real and p-adic worlds number theoretic
discretization requires discretization and volume could be quantized in discrete manner.

For n = 3 the group defining the lattice is a discrete subgroup of the group of SO(3,1) which
equals to PSL(2, C) obtained by identifying SL(2, C) matrices with opposite sign. The divisor group

http://arxiv.org/abs/alg-geom/9601021
http://arxiv.org/abs/alg-geom/9601021
http://en.wikipedia.org/wiki/Hyperbolic_manifold
http://en.wikipedia.org/wiki/Hyperbolic_3-manifold
http://en.wikipedia.org/wiki/Geometrization_conjecture
http://en.wikipedia.org/wiki/Ricci_flow
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defining the lattice and hyperbolic spaces as its lattice cell is therefore a subgroup of PSL(2, Zc),
where Zc denotes complex integers. Recall that PSL(2, Zc) acts also in complex plane (and therefore
on partonic 2-surfaces) as discrete Möbius transformations wheras PSL(2, Z) correspond to 3-braid
group. Reader is perhaps familiar with fractal like orbits of points under iterated Möbius transforma-
tions. The lattice cell of this lattice obtained by identifying symmetry related points defines hyperbolic
3-manifolds. Therefore zero energy ontology realizes directly the hyperboliic manifolds whose volumes
should somehow represent the polylogarithms.

The volumes, which are topological invariants, are said to be highly transcendental. In the inter-
section of real and p-adic worlds only algebraic volumes are possible unless one allows extension by
say finite number of roots of e (ep is p-adic number). The p-adic existence of polylogarithms suggests
that also p-adic variants of hyperbolic spaces make sense and that one can assign to them volume as
topological invariance although the notion of ordinary volume integral is problematic. In fact, hyper-
bolic spaces are symmetric spaces and general arguments allow to imagine what the p-adic variants
of real symmetric spaces could be.

11.6 Floer homology and TGD

Floer homology [A35] has provided considerable understanding of symplectic manifolds using physics
based approach relying on 2-D variational principle called symplectic action. One variant of Floer
theory has been applied also to deduce topological invariants of 3-manifolds in terms of SU(2) Chern-
Simons action. The basics of Floer homology without recourse to quantum field theoretic approach
are described at technical level in the lectures of Dietmar Salamon [A207]. The notion of quantum co-
homology closely related to Floer homology and related approaches and involving also supersymmetry
is described by Alexander Givental in [A78].

The quantum fluctuating degrees of freedom of TGD Universe are parameterized by symplectic
group acting as isometries of WCW, which can be regarded as a union of symmetric spaces assignable
to the symplectic group. Hence the optimistic hunch is that Floer homology might provide new insights
about quantum TGD - in particular about the problem of understanding the preferred extremals of
Kähler action. Especially interesting is the relationship of Floer homology to the proposed vision
about braided Galois homology. The following considerations encourage this optimism. In particular,
completely new insights about the role of Minkowskian and Euclidian regions emerge.

11.6.1 Trying to understand the basic ideas of Floer homology

I do not have competence to describe Floer’s homology as a mathematician. Instead, I try just
to outline the basic ideas as I have (possibly mis-)understood them as a physicist by reading the
basic introduction to the theory [A35]. The motivation for the symplectic Floer homology came
from Arnold’s conjecture stating that for a closed symplectic manifold the number of fixed points for
non-degenerate (isolated critical points) symplecto-morphisms has the sum of the Betti numbers as
a lower bound. The equivalence of Floer’s symplectic homology for closed symplectic manifolds with
singular homology proves this conjecture. This means that symplectic Floer homology as such is not
interesting from TGD view point of view.

Morse function in the loop space of the symplectic manifold

Recall that Morse function is a monotonically increasing real valued function in n-manifold for which
critical points are isolated. Its level surfaces induce the slicing of the manifold n − 1-dimensional
surfaces. At the extrema the topology of the slice changes as is clear from a simple example provided
by torus (standing on tangent plane orthogonal to the plane defined by the torus with Morse function
identified as the height function defined by the coordinate orthogonal to the plane). There is minimum
and maximum and two saddle points. Quite generally, the signature of the matrix defined by the
second derivatives of the Morse function -Hessian- characterizes the properties of the critical point.
Hessian allows to deduce information about the topology of the manifold and Morse theorem states
that the number of critical points has a lower limit given by the sum of the Betti numbers defining
the dimensions of various homology groups of the manifolds in singular homology.

Floer generalizes Morse theory from the level of symplectic manifold M with a Morse function
defined by Hamiltonian to the level of the free loop space LM of M . This Morse function depends

http://en.wikipedia.org/wiki/Floer_homology
http://www.math.ethz.ch/~salamon/PREPRINTS/floer.pdf
http://math.berkeley.edu/~giventh/papers/lqc.pdf
http://math.berkeley.edu/~giventh/papers/lqc.pdf
http://math.berkeley.edu/~giventh/papers/lqc.pdf
http://en.wikipedia.org/wiki/Arnold's_conjecture
http://en.wikipedia.org/wiki/Singular_homology
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on preferred Hamiltonian and its cyclic time variation defining a loop in LM . Salamon represents
the approach without recourse to the methods of topological quantum field theories [A207]. A very
schematic representation -even more schematic than that in [A78] - using referring to quantum about
what one does is attempted in following.

1. 2-dimensional action for an orbit of string in M replaces Morse function. The extrema of the
action analogous to critical points of Morse function are crucial for calculating path integral in
QFT approach using saddle point approximation. In topological QFTs path integral reduces to
a well-defined finite dimensional integrals over moduli spaces. One constructs action principle
in the form

S =

∫ ∞
−∞

(||∂um||2 + ||∇f ||2)du (11.6.1)

where u can be seen regarded as a coordinate parallel to cylinder axes defined by the orbit
of the loop of M and t could be regarded as an angle coordinate of the loop. f denotes the
symplectic action functional of the loop defined by time dependent Hamiltonian Ht. ∇f is the
functional gradient of f with respect to coordinates of m regarded as analogous to fields S1×R.
||...||2 defines inner product in the space of maps S1 → M involving integral over the circle
parameterized by coordinate t. Note that this action introduces preferred parameterization of
the cylinder meaning breaking of at least manifest general coordinate invariance.

2. Schematically the field equations read as

∂2
um = ∇2f , (11.6.2)

where ∇2 is functional d’Alembertian reducing to its analog at the level of M but depending
on preferred Hamilton Ht. This condition states that the cylinder represents a harmonic map
S1 ×R→M with respect to the almost Kähler metric of M .

3. Assuming the analog of N = 2 supersymmetry for the solution the above equation reduces to

∂um = ±∇f . (11.6.3)

This condition is just the condition saying that one has a wave packed moving to right or left
and state the hyper-complex variant of holomorphy. These left and right moving solutions are
in key role in string model. In Euclidian metric of S1 ×R the conditions have interpretation as
the generalization of Cauchy-Riemann conditions stating that the map S1 ×R→M commutes
with complex conjugation: in other worlds the multiplication by imaginary unit in S1 × R is
equivalent with the tensor multiplication defined by the almost Kähler form in M . The tangent
space of image is complex sub-space of tangent space of M . Depending on the sign on the right
hand side one has pseudo-holomorphy or anti-pseudo-holomorphy.

4. The solutions with finite action become asymptotically independent of u so that one has ∇f = 0.
This states that the loop represents a cyclic solution of Hamilton’s equations for Hamilton H.
Hamilton could also depend on time in periodic manner so that for t = 0 and t = 2π one has
Ht = H.

5. One can consider also solutions which are independent of u and t asymptotically so that the
circles reduce to critical points asymptotically. One can also consider solutions representing
spheres with more than two critical points as marked points. Also solutions with higher genus
can be considered These solutions are relate closely to the definition of Gromov-Witten invariants
in quantum cohomology.
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This approach generalizes also to Chern-Simons action by replacing f with Chern-Simons action
for the 3-manifold X3 and R×S1 with R×X3 to get space-time. The symplectic manifold is replaced
with the space of Yang-Mills gauge potentials. In this case field equations from the variational principle
are YM equations and instanton and anti-instanton equations are obtained in the super-symmetric
case. Time independent solutions correspond asymptotically to static solutions describing magnetic
monopoles. In this case the critical points of Morse function can be seen as points at which the topology
of the slice of field space defined by the Morse function changes its topology. A good intuitive guideline
is Morse function for torus.

About Witten’s approach to Floer homology

Using the ideas discussed for the first time in Witten’s classic work revealing a connection between
supersymmetry and Morse theory [A173], one can extend M to a super-manifold. Witten defines
N = 2 SUSY algebra by introducing a parameter dependent deformation of the exterior algebra via
dt = exp(−th)dexp(th) and its conjugate d∗t = exp(th)dexp(−th): for t = 0 one has dt = d∗t . h takes
the role the role of Morse function. Q1 = dt + d∗t and Q2 = i(dt − d∗t ) obey standard supersymmetry
algebra Q1Q2 + Q2Q1 = 0 and Q2

1 = Q2
2 ≡ Ht. The solutions of dtΨ = 0 are differential forms of

various degrees and correspond to zero energy solutions for which the supersymmetry is not broken.
The deformed cohomology is equivalent with the original cohomology by Ψ → exp(th)Ψ. This gives
a direct connection between cohomology and supersymmetry whose existence is to be expected from
the basic properties of exterior algebra.

The motivation for the deformation is that for degree p closed forms are localized around critical
points of h with Hessian having p negative eigenvalues so that the correspondence between homology
generators and critical points becomes manifest. There is indeed a natural mapping from de Rham
cohomology to the critical points such that the degree of the form correspond to the number of negative
eigenvalues of the Hessian.

Later Witten managed to expand his ideas about supersymmetric Morse theory so that it could
be applied to Floer homology (1+1 case) and to the calculation of Donaldson invariants of 4-manifold
(1+3 case). Recently Witten has been working with the applications to knot theory (1+2 case) for
ordinary knots and for 2-knots and cobordisms of 1-knots (1+3 case) [A225, A104, A226].

Representation of loops with fixed based in terms of Hamiltonians with cyclic time
dependence

As already noticed Floer - whose work preceded Witten’s work - considered instead of the symplectic
manifold M its free loop space LM . One begins with symplectic action identified as the sum of the
symplectic area of the loop expressible as the value of the one-form defining the symplectic form
over the loop and integral of the Hamiltonian H around the loop. The natural choice of the loop
parameter is as the canonical conjugate of the symplectic potential so that the integrated quantity is
analogous to the minimal substitution p − eA of familiar from elementary quantum mechanics. The
variational equations for the symplectic action are Hamiltonian equations of motion in the force field
defined by the Hamiltonian H and one considers periodic orbits (recall that there is conserved energy
associated with the orbits defined by the Hamiltonian). The counterparts of critical points are loops
which correspond to the extrema of symplectic action.

One can also consider time dependent Hamiltonians Ht for which the initial and final value of
the Hamiltonian is the same preferred Hamiltonian. This kind of Hamiltonians define via their time
evolutions loops in the loop space LG of the symplectic group. At the level of LM the resulting
map of M to itself is symplecto-morphism. Now however energy is not in general conserved. By
periodicity the critical points of the Hamiltonian H correspond to cyclic orbits of periodically time
varying Hamiltonian so that the homotopies of LM with base point defined by H are mapped to
a collection of homotopies of M defined by the critical points of the Hamiltonian. For constant
Hamiltonian Ht = H the critical orbits reduce to a point and the need to obtain non-trivial elements
of homotopy group of M explains why one needs Hamiltonians with cyclic time dependence. The
homotopy group of LM is mapped to that of M by homomorphism.

One could consider also higher homotopy groups of the loop space. The first homotopy group would
correspond to loops in loop space mapped to tori associated with the fixed points of the Hamiltonian.
In this manner one would obtain analogs of homotopy groups defined by mappings from (S1)n to

http://www.intlpress.com/JDG/archive/1982/17-4-661.pdf
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loop space to M and also of homotopy groups. By taking the initial loop to be trivial so that initial
Hamiltonian is constant Hamiltonian, one obtains the symplectic analogs of ordinary homotopy groups
defined as a map from Sn to loop space to M . Also the condition that loops are contracted to points
asymptotically gives rise to homotopy groups.

Representation of non-closed paths of LM as paths connecting critical points of M

In Floer homology one considers also paths of LM and M ,which are not closed. These paths form the
first homotopy groupoid of LM . Since the elements of π0(LM) (loops not deformable to each other)
represented by Hamiltonians with cyclic time dependence are mapped to those of π1(M) at critical
points, a good guess is that the elements of homotopy group π1(LM) can be mapped to elements of
π2(M) connecting critical points of H. If the loops at the ends of cylinder reduce to points the images
of π1(LM) are indeed elements of π2(M) containing two critical points. As noticed, the number
critical points can be also higher.

To achieve the representation of first homotopy group one considers a path of LM parameterized by
a parameter u defining a cylinder in M which should connect the critical points. This requires that the
deformation becomes at the limit u→ ±∞ independent of u so that one obtains a cyclic deformation
of H. The partial differential equations state that one has gradient flow defined by symplectic action
in loop space. The equations (resulting from supersymmetry in QFT approach) pseudo-holomorphy
or generalized Cauchy-Riemann conditions as

∂um± LHt(m) = 0 ,

where LHt(m) = 0 denotes Hamiltonian equations for the coordinates m of M so that LHtm is indeed
the functional gradient of symplectic action. At the asymptotic limit ∂um → 0 boundary conditions
give just Hamiltonian equations.

As already found, one can assign to to these equations a supersymmetric action functional defined
in terms of the almost Kähler metric defining the analog of energy. As a matter fact, the existence of
almost complex structure inM is enough (transitions functions between coordinate patches need not be
holomorphic in this case). The condition that the energy is finite requires asymptotic u-independence
and super-symmetry condition since energy density is the sum of kinetic energy densities associated
with the motion in u direction and of the square of the vector LHtm. Since the time evolution with
respect to u is not energy conserving, the cylinders can connect different critical points of H. This
motivates the term ”connecting cylinder”. From the point of view of physicist the role of the field
equations is to perform a ”gauge choice” selecting particular representative for homotopy.

The orbit of the loop as a pseudo-holomorphic surface

The cylinder defined by the loop defines a pseudo-holomorphic surface. The sub-spaces connected by
pseudo-holomorphic surfaces intersect in quantum cohomology and Gromow-Witten invariant counts
for the number of the pseudo-holomorphic surfaces connecting/intersecting given n surfaces. Stringy
interpretation for the pseudo-holomorphic curves (holomorphic for Kähler manifolds) would be as
string world sheets. There is an obvious connection with the vision about branes connected by string
world sheets. If the asymptotic images of S1 contract to points, they correspond to critical points
(marked points). One can consider also more general solutions of field with n asymptotic circles
containing n critical points as marked points.

The statement of quantum cohomology that two surfaces intersect in fuzzy sense when they are
connected by pseudo-holomorphic curve would mean that that two surfaces intersect when they both
have points common with the pseudo-holomorphic curve. The 2-dimensional mapping cylinders can
be filled to 3-D objects by adding the 2-dimensional pseudo-holomorphic surface. From this the
connection with Chern-Simons action and possibility to apply analogous construction to 3-D manifold
topology becomes obvious. Chern-Simons action in turn implies connection to 4-D manifold topology.

The correspondence with the singular homology

Symplectic Floer homology for closed symplectic manifolds is equivalent with singular homology.
This means that one has one-to-one map of the space spanned by the critical points to the singular
homology. Critical points are classified by the signature of the Hessian of Hamiltonian so that there is
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natural ordering of the critical points, which should correspond to the ordering of the homology groups
since signature varies from n (maximum of Morse function) to zero (minimum of Morse function).
The study of the homology of torus defined in terms of critical points of height function h serves as a
guide-line when one tries to guess the idea behind the correspondence.

To each critical point one can assign a tangent plane defined as the plane of negative signature of the
Hessian of h. Its value equals to 0,1,1,2 for the critical points of h. The critical manifolds assigned with
the negative signature tangent space at critical points can be identified as point, first homologically
non-trivial circle, second homologically non-trivial circle, and the entire torus and correspond to the
generators of the homology. In Floer homology the correspondence need not be as simple as this
but one expect similar correspondence so that the value of grading of homology corresponds to the
signature of the critical point. One must allow only the connections going to the direction of smaller
energy and by a proper choices of signs the dynamics defined by the action defined gradient flow is
indeed dissipative so that this condition is satisfied.

Quantum cup product and pseudo-holomorphic surfaces

As the analog of intersection product in ordinary cohomology homology, the cohomology associated
with the symplectic Floer homology corresponds to the so called pair of pants product of quantum
cohomology [A78] which is a deformed cup product having fuzzy intersection as its dual at the level
of homology.

Ordinary cup product for two forms of degree n1 and n2 is a form which is characterized by its val-
ues for the elements of homology with co-dimension n1 +n2 so that d−n1−n2 is the dimension of the
intersection of the corresponding surfaces. The product is characterized by a coefficients W (α, β, γ)
where the arguments represent homology equivalence classes identifiable as Gromov-Witten invariants
assignable to sphere with three punctures. One can say that three representatives α, β, γ of homology
give rise to a non-vanishing coefficient W (α, β, γ) if there is a pair of pants having non-empty inter-
sections with α, β, γ. The coefficient W (α, β, γ) is analogous to a coupling constant associated with
vertex with α, β, γ representing the particles entering to the vertex.

The factors of the cup product of quantum cohomology are associated with the two legs of the pants
and the outcome of the product to the ”waist”. More abstractly, by conformal transformations the
legs and ”waist” can be reduced to 3 marked points and the number of marked points can be arbitrary
and represent the intersection points for n manifolds connected by a pseudo-holomorphic surface with
n marked points. One can indeed generalize the variational principle to allow besides cylinders also
pseudo-holomorphic surfaces with arbitrary number holes whose boundaries are associated with loops
containing critical point so that critical points would indeed represent marked points of a sphere with
holes. When Ht reduces to H, loops and marked spheres reduce to point a so that ordinary cup
product results.

11.6.2 Could Floer homology teach something new about Quantum TGD?

The understanding of both quantum TGD and its classical counterpart is still far from from compre-
hensive. For instance, skeptic could argue that the understanding of the preferred extremals of Kähler
action is still just a bundle of ideas without a coherent overview. Also the physical roles of Kähler
actions for Euclidian and Minkowskian space-time regions is far from clear. Do they provide dual de-
scriptions as suggested or are both needed? Kähler action for preferred extremal in Euclidian regions
defines naturally Kähler function. Could Kähler action in Minkowskian regions- naturally imaginary
by negative sign of metric determinant- give an imaginary contribution to the vacuum functional
and define Morse function so that both Kähler and Morse would find a prominent role in the world
order of TGD? One might hope that the mathematical insights from Floer homology combined with
the physical picture and constraints from quantum classical correspondence could provide additional
insights about the construction preferred extremals of Kähler action.

Basic picture about preferred extremals of Kähler action

It is useful to gather some basic ideas about construction of preferred extremals before the discussion
of ideas inspired by Floer homology.
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1. For the preferred extremals Kähler action reduces to Chern-Simons term at the light-like surfaces
defining orbits of partonic 2-surfaces and space-like 3-surfaces the ends of the space-time sheets.
These 3-surfaces are extremals of Chern-Simons action subject to the constraint force defined
by the weak form of electric-magnetic duality implying that TGD does not reduce to a mere
topological QFT. One has clearly two dynamics: one along light-like 3-surfaces and one along
space-like 3-surfaces and their internal consistency is a powerful constraint.

2. The Chern-Simons contributions from Minkowskian region is imaginary and corresponds to
almost topological QFT aspect of TGD. The argument reducing the action to Chern-Simons
term has been discussed in detail only in Minkowskian regions and involves in an essential
manner the notions of local polarization and light-like momentum direction: the latter one does
not make sense in Euclidian regions. Note however that Laplace equation makes sense and local
polarization and momentum directions are replaced by those for color quantum numbers. It
will be found that internal consistency requires holography both in Minkowskian and Euclidian
regions. In any case, the Euclidian contribution would give rise to the exponent of Kähler
function and Minkowskian contribution to a phase factor appearing usually in path integral
defining topological QFT. Exponent of Kähler function would guarantee that integration over
WCW is mathematically well-defined.

3. How could one extend the 3-surfaces to 4-surfaces using strong form of holography? One could
think of having for each time=constant collection of 2-D slices of the light-like 3-surfaces a space-
like Chern-Simons dynamics connecting them to each other. One would have two dynamics-one
time-like and one space-like as effective 2-dimensionality required by the strong form of holog-
raphy requires. These dynamics should be mutually consistent and this should give consistency
conditions. The time parameters for these two dynamics would correspond to the two coordi-
nates of string world sheets involved.

4. The idea that one could assign Hamiltonians to the marked points of the partonic 2-surfaces
as carriers is physically compelling. The Hamiltonians of δM4

± ×CP2 inducing Hamiltonians of
WCW play essential role in quantum theory. Also the Hamiltonians at ends of braid strands
should have classical counterparts at space-time level. Could braid strand obey Hamiltonian
dynamics defined by Hamiltonian attached to it? This would give a constraint to the wormhole
throat making itself visible also a properties of the space-time sheet. If so then braid strands
would define a kind of the skeleton for the space-time sheet. This idea could be generalized
so that one would have a skeleton of space-time consisting of string world sheets and finite
measurement resolution would mean the restriction of consideration to this skeleton. Also the
braid strands carrying fermion number (other than right handed neutrino number) should obey
their own dynamics.

Braided Galois homology as counterpart of Floer homology?

The picture suggested by braided Galois homology seems to have natural correspondences with that
provided by Floer homology.

1. The quantum fluctuating degrees of freedom correspond to the symplectic group of δM4
±×CP2.

Finite measurement resolution leads to the discretization. One considers the subgroup G of
symplectic group of δM4

± × CP2 permuting a given set of n points of the partonic 2-surface
defining the end points of braids. Subgroup of Sn having interpretation as Galois group is in
question. The normal subgroup H of symplecto-morphisms leaving these points invariant and
the factor group G/H is the target of primary interest and expected to be discrete group. The
braiding of this group is intuitively equivalent with the replacement of symplectic transformations
with flows and the points can be interpreted as critical points of infinite number of Hamiltonian
belonging to H. In Floer’s theory one makes a gauge choice selecting a generic non-degenerate
Hamiltonian. This choice -or a generalization of it- should have a definite physical meaning in
TGD framework in terms of classical correlates for the quantum numbers of the zero energy
state.

2. Preferred Hamiltonian acting and its time dependent deformation play a key role in Floer homol-
ogy and represent homotopy in symplectic group. In the recent case braided Galois homology
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assigns to preferred extremals subgroup of symplectic flow in Minkowskian space-time regions
and the braid points are invariant under its normal subgroup. The flow defined by time de-
pendent deformation a Hamiltonian of subgroup defines a candidate for the flow defined by
preferred Hamiltonian. The connecting flows in turn would correspond to the Galois group.
The condition that the flow lines of the Hamilton along 3-surfaces poses a strong condition on
the choice of Hamiltonian on one hand and on the preferred extremal on the other hand. The
time evolution of Hamiltonian could be realized by the slicing of imbedding space by light-cone
boundaries parallel to the lower or upper boundary of CD.

3. For braided Galois homology the generators di representing boundary homomorphisms whose
square maps to commutator subgroup and to zero after abelianization define candidates for
the algebra of SUSY generators. Parameter dependent deformation of these generators would
make sense also now and give rise a homology analogous to that of Witten. The generators
of the cohomology would correspond to supersymmetric ground states and one would expect
that cohomology is non-trivial for the critical points of Morse function. This super-symmetry,
which need not have anything to do with the standard notion of supersymmetry, would be
assigned to Minkowskian regions of space-time. One cannot of course exclude purely fermionic
representations of braided Galois homology and number theoretic quantization of fermions would
pose a powerful constraint on the spectrum of fermionic modes.

Kähler function as Kähler action in Euclidian regions and Morse function as Kähler
action in Minkowskian regions?

The role of Kähler action in the Floer like aspects of TGD has been already briefly discussed.

1. Symplectic Floer homology for imbedding space gives just the homology groups of S2 × CP2.
This homology is crucial for the interpretation of TGD but much more detailed information
is required. The analog of Floer homology must be associated with WCW for which quantum
fluctuating degrees of freedom are parametrized by symplectic group of δM4

±×CP2 or symmetric
space associated with it. In finite measurement resolution one would have discrete subgroup
defined as a factor group of subgroup permuting braid points and normal subgroup leaving
them invariant identifiable in terms of a hierarchy of Galois groups. Flows must be considered
in order to have braiding. The flows could also correspond to parameter dependent Hamiltonians
with the parameter varying along light-like wormhole throat or space-like 3-surface at the end
of CD.

2. In the case of Chern-Simons action the critical points correspond to flat connections and define
the generators of the homology for the space of connections. For YM action instanton solutions
play similar role. In the recent case the space of 3-surfaces associated with given CD seems to
be natural object of study.

Kähler function - to be distinguished from Kähler action - would be the first guess for the Morse
function in WCW and the analog of Floer homology would be formally defined by the sums
of the 3-surfaces which correspond to the extrema of Kähler function. This idea fails. Kähler
metric must be positive definite. Therefore the Hessian of the Kähler function in holomorphic
quantum fluctuating degrees of freedom characterized by complex coordinates of WCW should
have only non-negative or non-positive eigen values.

One could try to circumvent the difficulty by assuming that the allowed extrema with varying
signature of Hessian are associated with the zero modes. Therefore the analog of Floer homology
based on Kähler function would not however tell anything about symplectic degrees of freedom
-at least those assignable to the Euclidian regions.

Remark: One can wonder how the Kähler function can escape the implications of Morse theorem.
In the case of CP2 the degeneracy of Kähler function - meaning that it depends on single
U(2) invariant CP2 coordinate only - takes care of the problem. Also now infinite-dimensional
symmetries of WCW are expected to allow to circumvent the Morse theorem.

3. The only manner to save this idea is that the Euclidian regions defined by the generalized Feyn-
man graphs define Kähler function and Minkowskian regions the analog of the action defining



588 Chapter 11. Infinite Primes and Motives

path integral. The earlier proposed duality states that the formulation TGD is possible either
as a functional integral or a path integral. If duality holds true, its effect would be analogous
to that of Wick rotation. The alternative approach would assign physical significance to both
contributions. The Kähler action in Minkowskian regions could serve as Morse function. This
identification is rather natural since the determinant of the induced metric appearing in the
action indeed gives imaginary unit in Minkowskian regions. If this were the case interference
effects would result already at the level of action and the connection with quantum field theories
would be much tighter than previously thought.

Euclidian regions would guarantee the convergence of the functional integral and one would
have a mathematically well-defined theory. The analog of Floer homology would represent
quantum superpositions of critical points identifiable a ground states defined by the extrema of
Kähler action for Minkowskian regions. Perturbative approach to quantum TGD would rely on
functional integrals around the extrema of Kähler function.

4. Should one assume that the reduction to Chern-Simons terms occurs for the preferred extremals
in both Minkowskian and Euclidian regions or only in Minkowskian regions?

(a) All arguments for this have been represented for Minkowskian regions [K27] involve local
light-like momentum direction which does not make sense in the Euclidian regions. This
does not however kill the argument: one can have non-trivial solutions of Laplacian equation
in the region of CP2 bounded by wormhole throats: for CP2 itself only covariantly constant
right-handed neutrino represents this kind of solution and at the same time supersymmetry.
In the general case solutions of Laplacian represent broken super-symmetries and should
be in one-one correspondences with the solutions of the modified Dirac equation. The
interpretation for the counterparts of momentum and polarization would be in terms of
classical representation of color quantum numbers.

(b) If the reduction occurs in Euclidian regions, it gives in the case of CP2 two 3-D terms
corresponding to two 3-D gluing regions for three coordinate patches needed to define
coordinates and spinor connection for CP2 so that one would have two Chern-Simons terms.
I have earlier claimed that without any other contributions the first term would be identical
with that from Minkowskian region apart from imaginary unit and different coefficient. This
statement is wrong since the space-like parts of the corresponding 3-surfaces are discjoint
for Euclidian and Minkowskian regions.

(c) There is also another very delicate issue involved. Quantum classical correspondence re-
quires that the quantum numbers of partonic states must be coded to the space-time ge-
ometry, and this is achieved by adding to the action a measurement interaction term which
reduces to what is almost a gauge term present only in Chern-Simons-Dirac equation but
not at space-time interior [K27]. This term would represent a coupling to Poincare quan-
tum numbers at the Minkowskian side and to color and electro-weak quantum numbers at
CP2 side. Therefore the net Chern-Simons contributions would be different.

(d) There is also a very beautiful argument stating that Dirac determinant for Chern-Simons-
Dirac action equals to Kähler function, which would be lost if Euclidian regions would
not obey holography. The argument obviously generalizes and applies to both Morse and
Kähler function which are definitely not proportional to each other.

5. The preferred extremal of Kähler action itself would connect 3-surfaces at the opposite bound-
aries of CD just as the action for Floer theory connects two loops assignable to critical points. In
zero energy ontology the unions of 3-surfaces at the ends of CD is the basic unit and correspond
to the critical points of Morse function. The question is whether objects can be mapped to a set
of critical points of the preferred Hamiltonian in a natural manner. Braided Galois homology
with preferred Hamiltonian defining the braids as its flow lines gives hopes about this.

6. In Floer theory the homology of LM is mapped to homology of M . The homology of the WCW
cannot be mapped to that of the imbedding space. The hierarchy of Planck constants [K26]
assigned to the multivalued correspondence between canonical momentum densities of Kähler
action and time derivatives of imbedding space coordinates leads to the introduction of singular
covering spaces of the imbedding space with the number of sheets of covering depending on
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space-time region. The homology of WCW might be mapped homomorphically to the homology
of this space.

In the case of loop space H0(LM) is mapped to H1(M). Something similar should take place
now since all odd homology groups of WCW must vanish if it is Kähler manifold whereas zeroth
homology could be non-trivial. In zero energy ontology 3-surfaces having disjoint components
at the ends of CD indeed correspond naturally to paths of connected 3-surface so that this
condition might be realized.

On basis of these arguments it seems that the general structure of Floer homology fits rather nicely
the structure of quantum TGD.

TGD counterparts for pseudo-holomorphic surfaces

If the Morse function exists as Kähler action for preferred extremal in the Minkowskian regions of
the space-time, there are good hopes of obtaining the analog of Floer homology in TGD framework.
Consider first pseudo-holomorphic surfaces.

1. The analogy with Floer homology would suggest that the analogs of pseudo-holomorphic surfaces
assignable to the critical points of Morse function correspond to 3-surfaces at the ends of CD
are 3-surface defined by the simultaneous vanishing of two holomorphic rational functions of the
complex coordinates of S2 ⊂ δM4

± and of CP2 depending parametrically on the light-like radial
coordinate of δM± giving 7−4 = 3 conditions. The effective metric 2-dimensionality implied by
the strong form of holography is expected to pose conditions on the radial dependence of these
functions.

2. Pseudo-holomorphic closed string world sheets with punctures provide a beautiful geometric
realization of quantum cohomology. If positive and negative energy parts of zero energy states
can be regarded as elements of homology, space-time sheets could take a similar role. In finite
measurement resolution string world sheets would perform the same function so that closed
strings would be replaced with open ones as connectors in TGD based quantum cohomology.
Signature is not a problem: in string theories the hypercomplex variant of holomorphy is allowed.
String world sheets would connect partonic two surfaces at the given end of partonic CD and
also at different ends of CD. String world sheets could branch but the mechanism would be the
decay of open string creating new partonic 2-surfaces meeting at TGD counterpart of Feynman
vertex. Note that also in Witten’s approach to Floer theory and Donaldson theory the signature
of string world sheets is Minkowskian.

Remarks:

(a) One can imagine an extremely simple definition for the intersection for partonic 2-surfaces
at opposite boundaries of CD proposed actually earlier. One could identify the opposite
boundaries of CD given by pieces δM4

± ×CP2 by identifying δM4
+ and δM4

− in an obvious
manner. This definition is however a natural dynamical counterpart for intersection in
classical sense obtained by identifying the boundaries of CD.

(b) So called massless extremals represent one example about the analogs of right and left
moving solutions in TGD framework [K10]. They distinguish sharply between classical
TGD and Maxwell’s hydrodynamics. There are arguments suggesting that quite generally
the preferred extremals in Minkowskian regions representable as graphs of maps M4 ×
CP2 decompose to regions characterized by local directions of momentum and polarization
representing propagation of massless waves. This would be the classical space-time correlate
for the decomposition of radiation to massless quanta.

3. Partonic 2-surfaces with particles at the ends of braid strands would define basic objects and
would naturally correspond to holomorphic surfaces for the critical points of Morse function
defined by the contribution of Minkowskian regions to Kähler action. The hyper-complex string
world sheets and hyper-quaternionicity are however necessary for the M4 × CP2 −M8 corre-
spondence suggested by physics as generalized number theory vision. The finite dimensions of
the moduli spaces would not be a problem since holomorphy would characterize only the critical
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points. The connection between super-symmetry and cohomology plays a key role in TQFT and
pseudo-holomorphy is an excellent candidate for the geometric correlate of supersymmetry of
some kind.

The natural question is whether pseudo-holomorphy could generalize in 4-D context to its quater-
nionic analog.

1. One of the basic conjectures of TGD is that preferred extremals of Kähler action can be regarded
as hyper-quaterionic sub-manifolds. The tangent spaces of space-time surfaces would define
hyper-quaternionic sub-spaces of complexified octonions with imaginary units of quaternions
would be multiplied by commuting imaginary unit.

2. The tangent spaces of space-time surface would also contain a preferred hyper-complex plane or
more generally, a hyper-complex plane which depends on position so that these planes integrate
to string world sheet. This would allow to regard space-time surfaces either as surfaces in M4×
CP2 or in hyper-octonionic subspace M8 [K78]. Integrable distributions of the hyper-complex
sub-manifolds would define string world sheets analogous with hypercomplex sub-manifolds. The
physical interpretation would be in terms of local preferred planes of un-physical polarizations.
The philosophical motivation of hyper-quaternionicity would be that associativity for space-time
surfaces and commutativity for string world sheets could define a number theoretical variational
principle.

3. The role of pseudo-holomorphy suggests that hyper-quaternionicity could characterize the critical
points of Morse function defined by Kähler action in Minkowskian regions of space-time. If
all preferred extremals are hyper-quaternionic, this property cannot imply holomorphy of the
partonic surfaces.

4. It was already mentioned that finite measurement resolution defines a skeleton of space-time
surface realized in terms of string world sheets. This skeleton would generalize a curve of complex
plane at which holomorphic function defining a complex coordinate is real to hyper-complex
sub-manifold of hyper-quaternionic space-time surface. Given this skeleton, the construction of
space-time surface would be analogous to an analytic continuation from hyper-complex realm
to hyper-quaternionic realm.

Hierarchy of Planck constants, singular coverings of the imbedding space, and homology
of WCW

1. As already noticed, the homology groups of imbedding space are certainly too simple to be of
interest from the point of physics and quantum TGD. Physically interesting analogs of homology
groups could be associated with the space-time surface itself or with the singular covering of
imbedding space allowing to describe the many-valued correspondence between canonical mo-
mentum densities and time derivatives of imbedding space coordinates. This would allow to
interpret the resulting non-trivial homology as a property of either space-time surface or of ef-
fective imbedding space. In any case, one should add to the homology the constraint that the
elements of homology are representable as sub-varieties for the preferred extremals of Kähler
action. This might allow to code physics using the formalism of homology theory. Floer like
theory would also define a homomorphism mapping the homology Hn(WCW ) to the homology
group Hm+1 of the singular covering of the imbedding space.

2. The recent interpretation for the effective hierarchy of Planck constants coming as integer multi-
ples of ordinary Planck constants has interpretation in terms of effective coverings of space-time
surface implied by the 1-to-many character of the map assigning to canonical momentum den-
sities of Kähler action time derivatives of imbedding space coordinates. The strange sounding
proposal is that at partonic two surfaces branching occurs in the sense that the various branch-
ings of the many-valued function involved with this correspondence co-incide. Branching would
however occur both in the direction of the light-like 3-surface and space-like 3-surface at the end
of CD. Branching could occur at both ends of given CD or only at single end if the branching is
taken as a space-time correlate for dissipation and arrow of time, and perhaps even for quantum
superposition as will be discussed below.
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3. This branching brings in mind the emergence of homologically non-trivial curves from the critical
points in Floer cohomology and possibility of several curves connecting two critical points (torus
serves as a good illustration also now). The analogy would be more convincing if one could
assign to the branches a sign factor analogous to the sign of the eigenvalue of Hessian as physical
signature. One possibility is that the sign factor tells whether the line is incoming or outgoing.
Also the sign of energy in the case of virtual particles could appear in the sign factor.

How detailed quantum classical correspondence can be?

The gradient dynamics is quite essential for the super-symmetric solutions of Floer theory and typically
gradient dynamics is dissipative leading to fixed points of the function function involved. Dissipative
dynamics allows to order critical points in terms of the energy defined by Hamilton and also connect
different critical points. Physicist would obviously ask whether this aspect of the dynamics is only
an artifact of the model or whether it has a much deeper physical significance. If it does not, the
following considerations can be taken only as a proposal for how the quantum correlates could be
represented at space-time level and how detailed they can be.

Can the dynamics defined by preferred extremals of Kähler action be dissipative in some sense?
The generation of the arrow of time has a nice realization in zero energy ontology as a choice of
well-defined particle numbers and other quantum numbers at the ”lower” end of CD. By quan-
tum classical correspondence this should have a space-time correlate. Gradient dynamics is a highly
phenomenological realization of the dissipative dynamics and one must try to identify a microscopic
variant of dissipation in terms of entropy growth of some kind. If the arrow of time and dissipation
has space-time correlate, there are hopes about the identification of this kind of correlate.

Quantum classical correspondence has been perhaps the most useful guiding principle in the con-
struction of quantum TGD. What is says that not only quantum numbers but also quantum jump
sequences should have space-time correlates: about this the failure of strict determinism of Kähler
action gives good hopes. Even the quantum superposition- at least for certain situations -might have
space-time correlates.

1. Measurement interaction term in the modified Dirac action at the upper end of CD indeed
defines a coupling to the classical dynamics [K27] in a very delicate manner. This kind of
measurement interaction is indeed basic element of quantum TGD. Also the color and charges
and angular momentum associated with the Hamiltonians at point of braids could couple to the
dynamics via the boundary conditions.

2. The braid strand with a given Hamiltonian could obey Hamiltonian equations of motion: this
would give rise to a skeleton of space-time defined by braid strands possibly continued to string
world sheets and would provided different realization of quantum classical correspondence.

3. Quantum TGD can be regarded as a square root of thermodynamics in well-defined sense. Could
it be possible to couple the Hermitian square root of density matrix appearing in M-matrix and
characterizing zero energy state thermally to the geometry of space-time sheets by coupling it
to the classical dynamical via boundary conditions depending on its eigenvalues? The necessity
to choose single eigenvalue spoils the attempt and one obtains only a representation for single
measurement outcome. It seems that one can achieve only a representation of the ensemble at
space-time level consisting of space-time sheets representing various outcomes of measurement.
This ensemble would be realized as ensemble of sub-CDs for a given CD.

4. One can pose even more ambigous question: could quantum superposition of WCW spinor fields
have a space-time correlate in the sense that all space-time surfaces in the superposition would
carry information about the superposition itself? Obviously this would mean self-referentiality
via quantum-classical feedback.

The following discussion concentrates on possible space-time correlates for the quantum superpo-
sition of WCW spinor fields and for the arrow of time.

1. It seems difficult to imagine space-time correlate for the quantum superposition of final states
with varying quantum numbers since these states correspond to quantum superpositions of
different space-time surfaces. How could one code information about quantum superposition of
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space-time surfaces to the space-time surfaces appearing in the superposition? This kind of self-
referentiality seems to be necessary if one requires that various quantum numbers characterizing
the superposition (say momentum) couple via boundary conditions to the space-time dynamics.

2. The failure of non-determinism of quantum dynamics is behind dissipation and strict determin-
ism fails for Kähler action. This gives hopes that the dynamics induces also arrow of time.
Energy non-conservation is of course excluded and one should be able to identify a measure of
entropy and the analog of second law of thermodynamics telling what happens at for preferred
extremals when the situation becomes non-deterministic. The vertices of generalized Feynman
graphs are natural places were non-determinism emerges as are also sub-CDs. Naive physical
intuition would suggest that dissipation means generation of entropy: the vertices would favor
decay of particles rather than their spontaneous assembly. The analog of blackhole entropy
assignable to partonic 2-surfaces might allow to characterize this quantatively. The symplectic
area of partonic 2-surface could be a symplectic invariant of this kind.

3. Could the mysterious branching of partonic 2-surfaces -obviously analogous to even more myste-
rious branching of quantum state in many worlds interpretation of quantum mechanics- assigned
to the multivalued character of the correspondence between canonical momentum densities and
time derivatives of H coordinates allow to understand how the arrow of time is represented at
space-time level?

(a) This branching would effectively replace CD with its singular covering with number of
branches depending on space-time region. The relative homology with respect to the upper
boundary of CD (so that the branches of the trees would effectively meet there) could
define the analog of Floer homology with various paths defined by the orbits of partonic
2-surfaces along lines of generalize Feynman diagram defining the first homology group.
Typically tree like structures would be involved with the ends of the tree at the upper
boundary of CD effectively identified.

(b) This branching could serve as a representation for the branching of quantum state to a
superposition of eigenstates of measured quantum observables. If this is the case, the
various branches to which partonic 2-surface decays at partonic 2-surface would more or
less relate to quantum superposition of final states in particle reaction. The number of
branches would be finite by finite measurement resolution. For a given choice of the arrow
of geometric time the partonic surface would not fuse back at the upper end of CD.

(c) Rather paradoxically, the space-time correlate for the dissipation would reduce the dissi-
pation by increasing the effective value of ~: the interpretation would be however in terms
of dark matter identified in terms of large ~ phase. In the same manner dissipation would
be accompanied by evolution since the increase of ~ naturally implies formation of macro-
scopically quantum coherent states. The space-time representation of dissipation would
compensate the increase of entropy at the ensemble level.

(d) The geometric representation of quantum superposition might take place only in the inter-
section of real and p-adic worlds and have interpretation in terms of cognitive representa-
tions. In the intersection one can also have a generalization of second law [K47] in which
the generation of genuine negentropy in some space-time regions via the build up of cogni-
tive representation compensated by the generation of entropy at other space-time regions.
The entropy generating behavior of living matter conforms with this modification of the
second law. The negentropy measure in question relies on the replacement of logarithms
of probabilities with logarithms of their p-adic norms and works for rational probabilities
and also their algebraic variants for finite-dimensional algebraic extensions of rationals.

(e) Each state in the superposition of WCW quantum states would contain this representation
as its space-time correlate realizing self-referentiality at quantum level in the intersection of
real and p-adic worlds. Also the state function reduced members of ensemble could contain
this cognitive representation at space-time level. Essentially quantum memory making
possible self-referential linguistic representation of quantum state in terms of space-time
geometry and topology would be in question. The formulas written by mathematicians
would define similar map from quantum level to the space-time level making possible to
”see” one’s thoughts.
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11.7 Could Gromov-Witten invariants and braided Galois ho-
mology together allow to construct WCW spinor fields?

The challenge of TGD is to understand the structure of WCW spinor fields both in the zero modes
which correspond to symplectically invariant degrees of freedom not contributing to the WCW Kähler
metric and in quantum fluctuating degrees of freedom parametrized by the symplectic group of
δM4
± × CP2. The following arguments suggest that an appropriate generalization of Gromov-Witten

invariants to covariants combined with braid Galois homology could allow do construct WCW spinor
fields and at the same time M-matrices defining the rows of the unitary U-matrix between zero energy
states.

11.7.1 Gromov-Witten invariants

Gromov-Witten invariants [A43] are rational numbers GWX,A
g,n , which in a loose sense count the

number of pseudo-holomorphic curves of genus g and n marked points and homology equivalence class
A in symplectic space X meeting n surfaces of X with given homology equivalence classes. These
invariants can distinguish between different symplectic manifolds. Since also the proposed generalized
homology groups would define symplectic invariants if the realization of braided Galois groups as
symplectic flows works, the attempt to understand the relation of Gromov-Witten invariants of TGD
is well-motivated.

Let X be a symplectic manifold with almost complex structure J (the transition functions are not
holomorphic) and C be an algebraic variety in X of genus g and with complex structure j having n
marked points x1,...xn, which are points ofX. Pseudo-homolomorphic maps of C toX are by definition
maps, whose Jacobian map commutes with the multiplication of the tangent space vectors with the
antisymmetric tensor representing imaginary unit J ◦ df = df ◦ j. If the symplectic manifold allows
Kähler structure, one can say that pseudohomolomorphic maps commute with the multiplication by
imaginary unit so that tangent plane of complex 2-manifold is mapped to a complex tangent plane of
X.

The moduli space Mg,n(X) of the pseudoholomorphic maps is finite-dimensional. One considers
also its subspaces Mg,n(X,A) of Mg,n(X), where A represents a fixed homology equivalence class A
for the image of C in X. The so called evaluation map from Mg,n(X,A) to Mg,n(X))×Xn defined by
(C, x1, x2, ...xn, f) → (st(C, x1, x2, ...xn); f(x1), ...., f(xn)). Here st(C, x1, x2, ...xn) denotes so called
stabilization of (C, x1, ....xn) defined in the following manner. A smooth component of Riemann
surface is said to be stable if the number of automorphisms (conformal transformations) leaving the
marked and nodal (double) points invariant is finite. Stabilization is obtained by dropping away the
unstable components from the domain of C.

The image of the fundamental class of the moduli space Mg,n(X) defines a homology class in
Mg,n(X))×Xn. Since the homology groups of Mg,n(X))×Xn are by Künneth theorem expressible as
convolutions of homology groups of Mg,n(X) and n copies of X, this homology class can be expressed
as a sum

∑
β,αi

GWX,A
g,n β × α1...× αn .

The coefficients, which in the general case are rational valued, define Gromov-Witten invariants.
One can roughly say that these rational numbers count the number of surfaces C intersecting the
n homology classes αi of X. n surfaces intersect when there is a surface of genus g with n marked
points intersection the surfaces at marked points and Gromov-Witten invariant counts the number of
homologically non-equivalent pseudo-holomorphic 2-surfaces of this kind [A78].

Branes connected by closed strings would represent a basic example about quantum intersections.
Also in Floer homology [A207] and quantum cohomology [A78] this kind of fuzzy intersection is
encountered. The fundamental Gromov-coeffiecients W (α, β, γ) are for three homology generators
α, β, γ and connecting surface correspond to pseudo-holomorphic spheres (or higher genus surfaces)
with three marked points obtained by contracting the outgoing three strings of stringy trouser vertex
to point.

http://en.wikipedia.org/wiki/Gromov–Witten_invariant
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11.7.2 Gromov-Witten invariants and topological string theory of type A

Gromow-Witten invariants appear in topological string theory of type A [A100] for which the scattering
amplitudes depend on Kähler structure of X only. The target space X of this theory is 6-dimensional
symplectic manifold. X can correspond to 6-dimensional Calabi-Yau manifold. Twistor space is one
particular example of this kind of manifold and one can indeed relate twistor amplitudes to those of
topological string theory in twistor space.

Type A topological string theory contains both fundamental string orbits, which are 2-surfaces
wrapping over 2-real-D homorphic curves in X and D2 branes, whose 3-D ”orbits” in X wrap over
Lagrangian manifolds having by definition a vanishing induced symplectic form. There are also strings
connecting the branes. C corresponds now to the world sheet of string with n marked points repre-
senting emitted particles. Gromov-Witten invariants are defined as integrals over the moduli spaces
Mg,n(X) and provide a rigorous definition for path integral and the free energy at given genus g is
the generating function for Gromov-Witten invariants.

Witten introduced the formulation of the topological string theories in terms of topological sigma
models [A99]. The formulation involves the analog of BRST symmetry encountered in gauge fixing
meaning that one replaces target space with super-space by assigning to target space-coordinates
anticommutating partners which do not however represent genuine fermionic degrees of freedom.
One also replaces string world sheet with a super-manifold N = (2, 2) SUSY and spinors are world
sheet spinors and Lorentz transformations act on string world sheet. Topological string models are
characterized by continuous R-symmetries and the mixing of rotational and R-symmetries takes place.
The R-symmetry associated with 2-D world sheet Lorentz transformation compensates for the spin
rotation so that one indeed obtains a BRST charge Q (for elementary introduction to BRST symmetry
see [B36]), which is scalar and the condition Q2 = 0 is satisfied identically so that cohomology is
obtained.

11.7.3 Gromov-Witten invariants and WCW spinor fields in zero mode
degrees of freedom

One can ask whether Gromow-Witten invariants of something more general could emerge naturally
in TGD framework.

1. Gromov-Witten invariants modified so that closed string orbits are replaced by open string world
sheets with boundaries identifiable as braid strands relate to the braided Galois homology. Both
the geometric interpretation these invariants in terms of fuzzy quantum intersection induced by
connecting string world sheets and the discussion of the Floer homology like aspects of quantum
TGD support this idea.

2. Another interpretation is that Gromov-Witten invariants or their generalizations emerge in the
construction of WCW spinor fields in zero mode degrees of freedom, which do not contribute
to the line element of WCW Kähler metric. Contrary to the first hopes there is no convincing
support for this view.

Comparison of the basic geometric frameworks

The basic geometric frameworks are sufficiently similar to encourage the idea that Gromov-Witten
type invariants might make sense in TGD framework.

1. In the standard formulation of TGD the 6-dimensional symplectic manifold is replaced with
the metrically 6-dimensional manifold δM4

± × CP2 having degenerate symplectic and Kähler
structure and reducing effectively (metrically) to the symplectic manifold S2 × CP2. Partonic
2-surfaces at the light-like boundaries of CD identifiable as wormhole throats define the coun-
terparts of fundamental string like object of topological string theory of type A. The n marked
points of Gromov-Witten theory could correspond to the ends of braid strands carrying purely
bosonic quantum numbers characterized by the attached δM4

±×CP2 Hamiltonians with well de-
fined angular momentum and color quantum numbers. One must distinguish these braid strands
from the braid strands carrying fermion quantum numbers.

http://en.wikipedia.org/wiki/Topological_string_theory
http://www.math.sunysb.edu/~wdlinch3/NewPages-Images/BRSTandGaugefixing-Martin%20Rocek.pdf
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2. There are also differences. One assigns 3-D surfaces to the boundaries of CD and partonic 2-
surfaces at CD are connected with are interpreted as strings so that partonic 2-surfaces have also
brane like character. One can identify 3-D surfaces for which induced Kähler forms of CP2 and
δM4
± vanish (any surface with 1-D projection to δM4

± and 2-D CP2 projection with Lagrangian
manifold would define counterpart of brane) but it is not natural to raise these objects to a
special role.

3. I have proposed that quantum TGD is analogous to a physical analog of Turing machine in the
sense that the inclusions of HFFs could allow to emulate any QFT with almost gauge group
assignable to the included algebra [K26]. The representation of these gauge groups as subgroups
of symplectic transformations leaving the marked points of the partonic 2-surfaces invariant
gives hopes of realizing this idea mathematically. Symplectic groups are indeed completely
exceptional because of their representative power [A95] and used already in classical mechanics
and field theory to represent symmetries. An interesting question is whether the symplectic
group associated with δM4

± × CP2 could be universal in the sense that any gauge group of this
kind allows a faithful homomorphism to this group.

One should understand what pseudo-holomorphy means in TGD framework. One must consider
both the identification of pseudo-holomorphic surfaces as string world sheets or as partonic 2-surfaces.
Consider first the interpretation of pseudo-holomorphic 2-surfaces as string world sheets assignable to
the space-time sheets.

1. String world sheets would not represent closed strings and their ends would define braid strands
at light-like 3-surfaces and at the space-like 3-surfaces defining the ends of space-time. This is
not a problem: also the standard picture about pseudo-holomorphic surfaces as spheres with
punctures is obtained by idealizing the holes of closed string with punctures [A207]. Open
string world sheet be seen as a string containing holes defined by the boundary braid strands.
Disjoint partonic two surfaces at the ends of braid strands would intersect in quantum sense.
The interpretation for the fuzzy intersection would be in terms of causal dependence of the
quantum state at the ends of CD so that the assignment of Gromov-Witten invariants to them
would be natural.

2. This option looks very natural from TGD point of view since the moduli space is expected to
be finite-dimensional and have interpretation in terms of the preferred extremal property. For
a given partonic 2-surfaces and tangent space data at them the moduli would be fixed more or
less uniquely and the variation of the tangent space data would vary the moduli.

Also the identification of pseudo-holomorphic surfaces as partonic 2-surfaces can be considered. It
would apparently conform with the canonical identification of pseudo-holomorphic surfaces but the
interpretation as connectors in fuzzy cup product can be challenged.

1. Since the moduli space of pseudo-holomorphic surfaces is finite-dimensional, only a very re-
stricted set of partonic 2-surfaces satisfies pseudo-holomorphy condition. The induced metric
of the partonic 2-surface defines a unique complex structure. Pseudo-holomorphy states that
Jacobian takes the complex tangent place of partonic 2-surface to a comlex plane of the tangent
space of δM4

±×CP2. Pseudo-holomorphy is implied by holomorphy stating that both CP2 coor-
dinates and S2 coordinates as functions of the complex coordinate of the partonic 2-surface are
holomorphic functions implying that the induced metric as the standard ds2 = gzzdzdz. Holo-
morphy is also implied if one can express as a variety using functions which are holomorphic
functions of δM4

± and CP2 complex coordinates and analytic functions of the radial coordinate
r. These surfaces are characterized by the homology-equivalence classes of their projections in
δM4
± (3-D Euclidian space with puncture at origin) and in CP2. Both are characterized by

integer. These surfaces obviously define a subset of partonic 2-surfaces and one can actually
assign to the string-like objects as cartesian products of string world sheets satisfying minimal
surface equations and of 2-D complex sub-manifolds of CP2.

2. The first objection is that partonic two-surfaces do not represent time-evolution so punctures
associated with them cannot be regarded as causally dependent. From physics point of view it
does not make sense to speak about fuzzy intersection except in terms of finite measurement

http://www.pims.math.ca/~gotay/Symplectization(E).pdf
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resolution implying that second quantized induced spinor fields have finite number of modes so
that they do not anticommute at partonic 2-surfaces anymore.

3. Second objection is that there is nothing physically interesting that partonic 2-surfaces could
connect!

4. The third counter argument is that pseudo-holomorphy condition allows only finite-dimensional
moduli space whereas the space of partonic 2-surfaces is infinite-dimensional. Two explanations
suggest itself.

(a) The finite-measurement resolution might imply an effective reduction of the space of par-
tonic 2-surfaces to this moduli space? Finite measurement resolution could be understood
also as a kind of gauge invariance when realized in terms of inclusion of hyper-finite fac-
tors of type II1 (HFFs) with the action of sub-factor having no effect on its observable
properties. Holomorphy would serve as a gauge fixing condition.

(b) If TGD as almost topological QFT can be formulated as an analog of Floer’s theory relying
on action principle, the natural proposal is that holomorphic partonic 2-surfaces corre-
spond to critical values for the Kähler action assignable to the Minkowskian regions of the
preferred extremal.

It seems relatively safe to conclude that only the string world sheets have a natural interpretation
as connectors the deformed interwection product in TGD framework.

Could an analog of topological string theory make sense in TGD framework

The observations of previous paragraphs motivate the question whether an analog of type A topo-
logical string theory could emerge in the construction of WCW spinor fields. The basic problem is
to understand how the WCW spinor fields depend on symplectic invariants, which however need not
correspond to zero modes which should be expressible in terms of symplectic fluxes alone. One might
hope that topological string theory of some kind could allow to construct this kind of symplectic
invariants.

1. The encouraging symptom is that the n-point functions of both A and B type topological string
theories are non-trivial only in dimension D = 6, which is the metric dimension of δM4

± ×CP2.
Since the n-point functions of type A topological string theory depend only on the Kähler struc-
ture associated now by CP2 and δM4

± Kähler forms they could code for the physics associated
with the zero modes representing non-quantum fluctuating degrees of freedom. Since type B
topological string theory requires vanishing of the first Chern class implying Calabi-Yau prop-
erty, this theory is not possible in the standard formulation of TGD.

The emergence of the topological string theory of type A seems to be in conflict with what
twistorialization suggests. Witten suggested in his classic article [B44] boosting the twistor
revolution, that the Fourier transforms of the sattering amplitudes from momentum space to
twistor space scattering amplitudes for perturbative N = 4 SUSY could be interpreted in terms
of D-instanton expansion of topological string theory of type B defined in twistor space CP3.
Twistorial considerations however led to a proposal [K88] that TGD allows formulation also in
terms of 6-dimensional surfaces in CP3 × CP3, which are sphere bundles. CP3 is a Calabi-Yau
manifold and the natural question is whether the analog of topological string theory of type
B might emerge in this formulation. The counterpart of the mirror symmetry relating A and
B type models for different Calabi-Yau models would relate the two formulations of quantum
TGD.

2. One can identify the marked points as the end points of both space-like and time-like braids but
it is not natural to assign them fermionic quantum numbers except those of covariantly constant
right-handed neutrino spinor with the points of symplectic triangulation. This is well-motivated
since symplectic algebra extends to super-symplectic algebra with covariantly constant right
handed neutrino spinor defining the super-symmetry. One can assign the values of Hamiltonians
of δM4

±×CP2 to the marked points belonging to the irreducible representations of rotation group
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and color group such that the total quantum numbers vanish by the symplectic invariance. n-
point functions would be correlation functions for Hamiltonians. In a well-defined sense one
would have color and angular momentum confinement in WCW degres of freedom.

The vanishing of net quantum numbers need not hold true for single connected partonic 2-
surface. Also it could hold true only for a collection of partonic 2-surfaces associated with same
3-surface at either end of CD. The most general condition would be that the total color and
spin numbers of positive and negative energy parts of the state sum up to zero in symplectic
degrees of freedom.

3. The generating function for Gromov-Witten invariants is defined for a connected pseudo-holomorphic
2-surface with a fixed genus g as such is not general enough if one allows partonic 2-surfaces
with several components. The generalization would provide information about the preferred
extremal of Kähler action and about the topology of space-time surface. The generalization of
the Gromov-Witten partition function would define as its inverse the normalization factor for
zero energy state identifiable as M-matrix defined as a positive diagonal square root of density
matrix multiplied by S-matrix for which initial partons possess fixed genus and which contains
superposition over braids with arbitrary number of strands. The intuition from ordinary thermo-
dynamics suggests that this partitition function is in a reasonable approximation expressible as
convolution for n-points functions for individual partonic 2-surfaces allowing the set of marked
points to carry net δM4

± angular momentum and color quantum numbers.

Description of super-symmetries in TGD framework

It is interesting to see whether the formulation of super-symmetries in the framework of topological
sigma models giving rise to Gromov-Witten invariants [A99] has any reasonable relation to TGD
where the notion of super-space does not look natural as a fundamental notion although it might be
very useful as a formal tool in the formulation of SUSY QFT limit [K28] and even quantum TGD
itself.

1. Almost topological QFT property means that Kähler action for the preferred extremals reduces
to Chern-Simons action assuming the weak form of electric magnetic duality. In the fermionic
sector one must use modified gamma matrices defined as contractions of the canonical momentum
densities for Kähler action (Kähler-Chern-Simon action) with imbedding space gamma matrices
in the counterpart of Dirac action in the interior of space-time sheet and at 3-D wormhole
throats. The modified gamma matrices define effective metric quadratic in canonical momentum
densities which is typically highly degenerate. It contains information about the induced metric.
Therefore one cannot expect that topological sigma model approach could work as such in TGD
framework.

2. In TGD framework supersymmetries are generated by right-handed covariantly constant neu-
trinos and antineutrinos with both spin directions. These spinors are imbedding space spinors
rather than world sheet spinors but one can say that the induction of the spinor structure makes
them world sheet spinors. Since the momentum of the spinors is vanishing, one can assign all
possible spin directions to the neutrinos.

3. Covariantly constant right-handed neutrino and antineutrino can have all possible spin directions
and for fixed choice of quantization axes two spin directions are possible. Therefore one could
say that rotation group acts as non-Abelian group of R-symmetries. TGD formulation need not
be based on sigma model so that it is not all clear whether a twisted Lorenz transformations
are needed. If so, the most obvious guess is that space-time rotations are accompanied by R-
symmetry rotation of right-handed neutrino spinors compensating the ordinary rotation it as in
the case of topological sigma model originally introduced by Witten.

It is interesting to look the situation also from the point of view of the breaking of SUSY for
supergravity defined in dimension 8 by using the table listing super-gravities in various dimensions
[B11].

1. One can assign to the causal diamond a fixed direction as a WCW correlate for the fixing of spin
quantization axis and this direction corresponds to a particular modulus. The preferred time

http://bolvan.ph.utexas.edu/~vadim/Classes/01f/396T/table.pdf
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directiond defined by the line connecting the tips of CD and this direction define a plane of non-
physical polarizations having in number theoretical approach as a preferred hypercomplex plane
of hyper-octonions [K78]. Hence it would seem that by the symmetry breaking by the choice
of quantization axes allows only two spin directions the right handed neutrino and antineutrino
and that different choices of the quantization axes correspond to different values for the moduli
space of CDs.

2. Since imbedding space spinors are involved, the sugra counterpart of TGD is N = 2 super
gravity in dimension 8 for which super charges are Dirac spinors and their hermitian conjugates
with U(2) acting as R-symmetries. Note that the supersymmetry does not require Majorana
spinors unlike N = 1 supersymmetry does in string model and fixes the target space dimension
to D = 10 or D = 11. Just like D = 11 of M-theory is the unique maximal dimension if one
requires fundamental Majorana spinors (for which there is no empirical support), D = 8 of TGD
is the unique maximal dimension if one allows only Dirac spinors.

3. In dimensional reduction to D = 6, which is the metric dimension of the boundary of δCD a
breaking of N = 8 sugra N = (2, 2) sugra occurs, and one obtains decomposition into pseudo-
real representations with supercharges in representations (4,0) and (0,4) of R = Sp(2) × Sp(2)
(Sp(2) = Sl(2, R) corresponds to 2-D symplectic transformations identifiable also as Lorentz
group SO(1,2)). (4,0) and (0,4) could correspond to left and right handed neutrinos with both
directions of helicities and thus potentially massive. CP2 geometry breaks this supersymmetry.

4. The reduction to the level of right handed neutrinos requires a further symmetry breaking and
D = 5 sugra indeed contains supercharges Q and their conjugates in 4-D pseudoreal representa-
tion of R = Sp(4). Note that this group corresponds to 2× 2 quaternionic matrices. A possible
interpretation would be as a reduction in CP2 degrees freedom to U(2)×U(1) invariant sphere.

5. The R-symmetries mixing neutrinos and antineutrinos are pysically questionable so that a break-
ing of R-symmetry to Sp(2)×Sp(2) to SU(2)×SU(2) or even SU(2) should take place. A further
reduction to homologically non-trivial geodesic sphere of CP2 might reduce the action of CP2(2)
holonomies to those generated by electric charge and weak isospin and thus leaving right-handed
neutrinos invariant. Fixing the quantization axis of spin would reduce R-symmetry to U(1). The
inverse imaged of this geodesic sphere is identified as string world sheet [K37].

How braided Galois homology and Gromov-Witten type homology and WCW spinor
fields could relate?

One can distinguish between WCW ”orbital” degrees of freedom and fermionic degrees of freedom and
in the case of WCW degrees of freedom also between zero modes expressible in terms of Kähler fluxes
and quantum fluctuating degrees of freedom expressible using wave functions in symplectic group.

1. Quantum fluctuating degrees of freedom

As far as quantum number are considered, quantum fluctuating degrees of freedom correspond to
the symplectic algebra in the basis defined by Hamiltonians belonging to the irreps of rotation group
and color group.

1. At the level of partonic 2-surfaces finite measurement resolution leads to discretization in terms of
braid ends and symplectic triangulation. At the level of WCW discretization replaces symplectic
group with its discrete subgroup. This discrete subgroup must result as a coset space defined by
the subgroup of symplectic group acting as Galois group in the set of braid points and its normal
subgroup leaving them invariant. The group algebra of this discrete subgroup of symplectic
group would have interpretation in terms of braided Galois cohomology. This picture provides
an elegant realization for finite measurement resolutions and there is also a connection with the
realization of finite measurement resolution using categorification [A119], [K14].

2. The proposed generalized homology theory involving braided Galois group and symplectic group
of δM4

±×CP2 would realize the ”almost” in TGD as almost topological QFT in finite measure-
ment resolution replacing symplectic group with its discretized version. This algebra would
relate to the quantum fluctuating degrees of freedom. The braids would carry only fermion
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number and there would be no Hamiltonians attached with them. The braided Galois homology
could define in the more general situation invariants of symplectic isotopies.

3. The generalization of Gromov-Witten invariants to n-point functions defined by Hamiltonians
of δM4

± × CP2 are symplectic invariants if net δM4
± × CP2 quantum numbers vanish. As As a

special case one obtains Gromove-Witten invariants. The most general definition assumes that
the vanishing of quantum numbers occurs only for zero energy states having disjoint unions
of partonic 2-surfaces at the boundaries of CDs as geometric correlate. Since Hamiltonians
correspond to quantum fluctuating degrees of freedom the interpretation in terms of zero modes
is not not possible. The comparison of Floer homology with quantum TGD encourages to think
that the generalizations of Gromov-Witten invariants can be assigned to the braided Galois
homology.

4. One should also add four-momenta and twistors to this picture. The separation of dynamical
fermionic and sup-symplectic degrees of freedom suggesets that the Fourier transforms for ampli-
tudes containing the fermionic braid end points as arguments define twistorial amplitudes. The
representations of light-like momenta using twistors would lead to a generalization of the twistor
formalism. At zero momentum limit one would obtain symplectic QFT with states characterized
by collections of Hamiltonians and their super-counterparts.

2. Zero modes

WCW spinor field depends also on zero modes and the challenge is to identify the appropriate
variables coding for this information in accordance with quantum classical correspondence. The best
that one could achieve would be a basis for the parts of WCW spinor fields in these degrees of freedom.
Zero modes correspond essentially to the non-local symplectic invariants assignable to the projections
of the δM4

± and CP2 symplectic forms to the space-time surface and expressible in terms of symplectic
fluxes only. The appropriate symplectic fluxes should be determined by the information about the
quantum state in quantum fluctuating degrees of freedom by quantum classical correspondence.

1. The exponent of Kähler action for preferred extremal- by above proposal real in Euclidian re-
gions and imaginary in Minkowskian regions and reducing to Chern-Simons action at both sides
- contains also information about zero modes and would code implicitly the vacuum functional
in zero modes. What would be needed is an explicit representation for this part of vacuum func-
tional. The identification of zero modes as classical variables requires entanglement between
zero modes and quantum fluctuating degrees of freedom and one-one correspondence analogous
to that between the states of the measurement apparatus and the outcome of quantum mea-
surement is expected. This duality would express quantum holography and quantum classical
correspondence crucial for quantum measurement theory.

2. Could the generating function for appropriately generalized Gromow-Witten invariants define a
candidate for what might be regarded as a vacuum functional in zero modes separating into a
factor in WCW spinor field? The first thing to notice is that symplectic invariance is not equiv-
alent with zero mode property. In Floer homology there is a preferred Hamiltonian interpreted
in TGD framework in terms of the braiding defining braided Galois homology. Neither Floer
homology, Gromov-Witten invariants nor braided Galois homology do depend on the details
of the Hamiltonian. Does this mean that the TGD counterparts of Gromov-Witten invariants
might could be interpreted as zero modes and generating function for these invariants as vac-
uum functional in zero modes? Or does the fact that Hamiltonian flow is involved mean that
information about quantum fluctuating degrees of freedom is present?

Symplectic QFT [K14] provides a more promising approach to the description of zero modes in
terms of symplectic fluxes.

1. The earlier proposal [K14] for symplectic QFT defined as a generalization of conformal QFT
coding for these degrees of freedom assigns to the partonic 2-surface collections of marked points
defining its division to 2-polygons carrying Kähler magnetic flux together with the signed area
defined by R3

+ symplectic form (essentially solid angle assignable to partonic 2-surface or its
portion with respect to the tip of light-cone). A given assignment of marked points defines
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symplectic fusion algebra and these algebras integrate to an operad with a product defined by
the product of fusion algebras.

2. Symplectic triangulation would define symplectic invariants. The nodes of the symplectic tri-
angulation could be identified as the ends of braid strands assignable to string world sheets.
If the information about quantum state can be used to fix the edges of the triangulation, the
phases defined by the fluxes associated with the triangles define physically interesting symplectic
invariants. If one assumes that each Hamiltonian assignable to the partonic 2-surface defines its
own symplectic triangulation, the Hamiltonian equations associated with the Hamiltonian would
naturally define the edges of the triangulation. Symplectic triangulation would characterize a
Bose-Einstein condensate like state assignable to single Hamiltonian. The total magnetic flux
for the triangulation would characterize the Hamiltonian. If only single Hamiltonian is involved
the orbit should be a closed orbit connecting the node to itself and also now could assign to it
a symplectic area.

3. Symplectic triangulation would add additional pieces to the proposed skeleton of the space-time
surface. If the symplectic triangulation can be continued from partonic 2-surfaces to the interior
of space-time in both time and spatial direction it would provide space-time with a web string
world sheets connected by sheets assignable to the edges of the symplectic triangulation.

11.8 K-theory, branes, and TGD

K-theory is an essential part of the motivic cohomology. Unfortunately, this theory is very abstract and
the articles written by mathematicians are usually incomprehensible for a physicist. Hence the best
manner to learn K-theory is to learn about its physics applications. The most important applications
are brane classification in super string models and M-theory. The excellent lectures by Harah Evslin
with title What doesn’t K-theory classify? [B24] make it possible to learn the basic motivations for the
classification, what kind of classifications are possible, and what are the failures. Also the Wikipedia
article [B5] gives a bird’s eye of view about problems. As a by-product one learns something about
the basic ideas of K-theory.

In the sequel I will discuss critically the basic assumptions of brane world scenario, sum up my
understanding about the problems related to the topological classification of branes and also to the
notion itself, ask what goes wrong with branes and demonstrate how the problems are avoided in TGD
framework, and conclude with a proposal for a natural generalization of K-theory to include also the
division of bundles inspired by the generalization of Feynman diagrammatics in quantum TGD, by
zero energy ontology, and by the notion of finite measurement resolution.

11.8.1 Brane world scenario

The brane world scenario looks attractive from the mathematical point of view ine one is able to get
accustomed with the idea that basic geometric objects have varying dimensions. Even accepting the
varying dimensions, the basic physical assumptions behind this scenario are vulnerable to criticism.

1. Branes are geometric objects of varying dimension in the 10-/11-dimensional space-time -call it
M - of superstring theory/M-theory. In M-theory the fundamental strings are replaced with M-
branes, which are 2-D membranes with 3-dimensional orbit having as its magnetic dual 6-D M5-
brane. Branes are thought to emerge non-perturbatively from fundamental 2-branes but what
this really means is not understood. One has D-p-branes with Dirichlet boundary conditions
fixing a p + 1-dimensional surface of M as brane orbit: one of the dimensions corresponds to
time. Also S-branes localized in time have been proposed.

2. In the description of the classical limit branes interact with the classical fields of the target space
by the generalization of the minimal coupling of charged point-like particle to electromagnetic
gauge potential. The coupling is simply the integral of the gauge potential over the world-line
- the value of 1-form for the wordline. Point like particle represents 0-brane and in the case of
p-brane the generalization is obtained by replacing the gauge potential represented by a 1-from
with p+ 1-form. The exterior derivative of this p+ 1-form is p+ 2-form representing the analog

http://en.wikipedia.org/wiki/K-theory
http://en.wikipedia.org/wiki/K-theory_(physics)
http://arxiv.org/pdf/hep-th/0610328
http://en.wikipedia.org/wiki/K-theory_(physics)
http://en.wikipedia.org/wiki/K-theory_(physics)
http://en.wikipedia.org/wiki/Membrane_(M-theory)
http://en.wikipedia.org/wiki/D-brane
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of electromagnetic field. Complete dimensional democracy strongly suggests that string world
sheets should be regarded as 1-branes.

3. From TGD point of view the introduction of branes looks a rather ad hoc trick. By generalizing
the coupling of electromagnetic gauge potential to the word line of point like particle one could
introduce extended objects of various dimensions also in the ordinary 4-D Maxwell theory but
they would be always interpreted as idealizations for the carriers of 4- currents. Therefore the
crucial step leading to branes involves classical idealization in conflict with Uncertainty Principle
and the genuine quantal description in terms of fields coupled to gauge potentials.

My view is that the most natural interpretation for what is behind branes is in terms of currents
in D=10 or D= 11 space-time. In this scheme branes have role only as semi-classical idealizations
making sense only above some scale. Both the reduction of string theories to quantum field
theories by holography and the dynamical character of the metric of the target space conforms
with super-gravity interpretation. Internal consistency requires also the identification of strings
as branes so that superstring theories and M-theory would reduce to an idealization to 10-/11-
dimensional quantum gravity.

In this framework the brave brane world episode would have been a very useful Odysseia. The
possibility to interpret various geometric objects physically has proved to be an extremely powerful
tool for building provable conjectures and has produced lots of immensely beautiful mathematics. As
a fundamental theory this kind of approach does not look convincing to me.

11.8.2 The basic challenge: classify the conserved brane charges associated
with branes

One can of course forget these critical arguments and look whether this general picture works. The
first thing that one can do is to classify the branes topologically. I made the same question about 32
years ago in TGD framework: I thought that cobordism for 3-manifolds might give highly interesting
topological conservation laws. I was disappointed. The results of Thom’s classical article about
manifold cobordism demonstrated that there is no hope for really interesting conservation laws. The
assumption of Lorentz cobordism meaning the existence of global time-like vector field would make the
situation more interesting but this condition looked too strong and I could not see a real justification
for it. In generalized Feynman diagrammatics there is no need for this kind of condition.

There are many alternative approaches to the classification problem. One can use homotopy,
homology, cohomology and their relative and other variants, topological or algebraic K-theory, twisted
K-theory, and variants of K-theory not yet existing but to be proposed within next years. The list is
probably endless unless something like motivic cohomology brings in enlightment.

1. First of all one must decide whether one classifies p-dimensional time=constant sections of p-
branes or their p+ 1-dimensional orbits. Both approaches have been applied although the first
one is natural in the standard view about spontaneous compactification. For the first option
topological invariants could be seen as conserved charges: homotopy invariants and homological
and cohomological characteristics of branes provide this kind of invariants. For the latter option
the invariants would be analogous to instanton number characterizing the change of magnetic
charge.

2. Purely topological invariants come first in mind. Homotopy groups of the brane are invariants
inherent to the brane (the brane topology can however change). Homological and cohomological
characteristics of branes in singular homology characterize the imbedding to the target space.
There are also more delicate differential topological invariants such as de Rham cohomology
defining invariants analogous to magnetic charges. Dolbeault cohomology emerges naturally for
even-dimensional branes with complex structure.

3. Gauge theories - both abelian and non-Abelian - define a standard approach to the construc-
tion of brane charges for the bundle structures assigned with branes. Chern-Simons classes are
fundamental invariants of this kind. Also more delicate invariants associated with gauge po-
tentials can be considered. Chern-Simons theory with vanishing field strengths for solutions of
field equations provides a basic example about this. For intance, SU(2) Chern-Simons theory
provides 3-D topological invariants and knot invariants.
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4. More refined approaches involve K-theory -closely related to motivic cohomology - and its twisted
version. The idea is to reduce the classification of branes to the classification of the bundle
structures associated with them. This approach has had remarkable successes but has also its
short-comings.

The challenge is to find the mathematical classification which suits best the physical intuitions (,
which might be fatally wrong as already proposed) but is universal at the same time. This challenge
has turned out to be tough. The Ramond-Ramond (RR) p-form fields of type II superstring theory
are rather delicate objects and a source of most of the problems. The difficulties emerge also by the
presence of Neveu-Schwartz 3-form H = dB defining classical background field.

K-theory has emerged as a good candidate for the classification of branes. It leaves the confines
of homology and uses bundle structures associated with branes and classifies these. There are many
K-theories. In topological K-theory bundles form an algebraic structure with sum, difference, and
multiplication. Sum is simply the direct sum for the fibers of the bundle with common base space.
Product reduces to a tensor product for the fibers. The difference of bundles represents a more
abstract notion. It is obtained by replacing bundles with pairs in much the same way as rationals
can be thought of as pairs of integers with equivalence (m,n) = (km, kn), k integer. Pairs (n, 1)
representing integers and pairs (1, n) their inverses. In the recent case one replaces multiplication
with sum and regards bundle pairs and (E,F ) and (E +G,F +G) equivalent. Although the pair as
such remains a formal notion, each pair must have also a real world representativs. Therefore the sign
for the bundle must have meaning and corresponds to the sign of the charges assigned to the bundle.
The charges are analogous to winding of the brane and one can call brane with negative winding
antibrane. The interpretation in terms of orientation looks rather natural. Later a TGD inspired
concrete interpretation for the bundle sum, difference, product and also division will be proposed.

11.8.3 Problems

The classification of brane structures has some problems and some of them could be argued to be not
only technical but reflect the fact that the physical picture is wrong.

Problems related to the existence of spinor structure

Many problems in the classification of brane charges relate to the existence of spinor structure. The
existence of spinor structure is a problem already in general general relativity since ordinary spinor
structure exists only if the second Stiefel-Whitney class [A93] of the manifold is non-vanishing: if the
third Stiefel-Whitney class vanishes one can introduce so called spinc structure. This kind of problems
are encountered already in lattice QCD, where periodic boundary conditions imply non-uniqueness
having interpretation in terms of 16 different spinor structures with no obvious physical interpretation.
One the strengths of TGD is that the notion of induced spinor structure eliminates all problems of
this kind completely. One can therefore find direct support for TGD based notion of spinor structure
from the basic inconsistency of QCD lattice calculations!

1. Freed-Witten anomaly [B19] appearing in type II string theories represents one of the problems.
Freed and Witten show that in the case of 2-branes for which the generalized gauge potential
is 3-form so called spinc structure is needed and exists if the third Stiefel-Whitney class w3

related to second Stiefel Whitney class whose vanishing guarantees the existence of ordinary
spin structure (in TGD framework spinc structure for CP2 is absolutely essential for obtaining
standard model symmetries).

It can however happen that w3 is non-vanishing. In this case it is possible to modify the spinc

structure if the condition w3 + [H] = 0 holds true. It can however happen that there is an
obstruction for having this structure - in other words w3 + [H] does not vanish - known as
Freed-Witten anomaly. In this case K-theory classification fails. Witten and Freed argue that
physically the wrapping of cycle with non-vanishing w3+[H] by a Dp-brane requires the presence
of D(p−2) brane cancelling the anomaly. If D(p−2) brane ends to anti-Dp in which case charge
conservation is lost. If there is not place for it to end one has semi-infinite brane with infinite
mass, which is also problematic physically. Witten calls these branes baryons: these physically
very dubious objects are not classified by K-theory.

http://en.wikipedia.org/wiki/Ramond–Ramond_field
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2. The non-vanishing of w3 + [H] = 0 forces to generalize K-theory to twisted K-theory [A102].
This means a modification of the exterior derivative to get twisted de Rham cohomology and
twisted K-theory and the condition of closedness in this cohomology for certain form becomes the
condition guaranteeing the existence of the modified spinc structure. D-branes act as sources of
these fields and the coupling is completely analogous to that in electrodynamics. In the presence
of classical Neveu-Schwartz (NS-NS) 3-form field H associated with the back-ground geometry
the field strength Gp+1 = dCp is not gauge invariant anymore. One must replace the exterior
derivative with its twisted version to get twisted de Rham cohomology:

d→ d+H ∧ .

There is a coupling between p- and p+2-forms together and gauge symmetries must be modified
accordingly. The fluxes of twisted field strengths are not quantized but one can return to original
p-forms which are quantized. The coupling to external sources also becomes more complicated
and in the case of magnetic charges one obtains magnetically charged Dp-branes. Dp-brane
serves as a source for D(p− 2)- branes.

This kind of twisted cohomology is known by mathematicians as Deligne cohomology. At the
level of homology this means that if branes with dimension of p are presented then also branes
with dimension p+2 are there and serve as source of Dp-branes emanating from them or perhaps
identifiable as their sub-manifolds. Ordinary homology fails in this kind of situation and the
proposal is that so called twisted K-theory could allow to classify the brane charges.

3. A Lagrangian formulation of brane dynamics based on the notion of p-brane democracy [B42]
due to Peter Townsend has been developed by various authors.

Ashoke Sen has proposed a grand vision for understanding the brane classification in terms of
tachyon condensation in absence of NS-NS field H [B41]. The basic observation is that stacks of
space-filling D- and anti D-branes are unstable against process called tachyon condensation which
however means fusion of p+ 1-D brane orbits rather than p-dimensional time slicse of branes. These
branes are however accompanied by lower-dimensional branes and the decay process cannot destroy
these. Therefore the idea arises that suitable stacks of D9 branes and anti-D9-branes could code for
all lower-dimensional brane configurations as the end products of the decay process.

This leads to a creation of lower-dimensional branes. All decay products of branes resulting in the
decay cascade would be by definition equivalent. The basic step of the decay process is the fusion
of D-branes in stack to single brane. In bundle theoretic language one can say that the D-branes
and anti-D branes in the stack fuse together to single brane with bundle fiber which is direct sum of
the fibers on the stack. This fusion process for the branes of stack would correspond in topological
K-theory. The fusion of D-branes and anti-D branes would give rise to nothing since the fibers would
have opposite sign. The classification would reduce to that for stacks of D9-branes and anti D9-branes.

Problems with Hodge duality and S-duality

The K-theory classification is plagued by problems all of which need not be only technical.

1. R-R fields are self dual and since metric is involved with the mapping taking forms to their duals
one encounters a problem. Chern characters appearing in K-theory are rational valued but the
presence of metric implies that the Chern characters for the duals need not be rational valued.
Hence K-theory must be replaced with something less demanding.

The geometric quantization inspired proposal of Diaconescu, Moore and Witten [B18] is based
on the polarization using only one half of the forms to get rid of the proboem. This is like
thinking the 10-D space-time as phase space and reducing it effectively to 5-D space: this brings
strongly in mind the identification of space-time surfaces as hyper-quaternionic (associative)
sub-manifolds of imbedding space with octonionic structure and one can ask whether the basic
objects also in M-theory should be taken 5-dimensional if this line of thought is taken seriously.
An alternative approach uses K-theory to classify the intersections of branes with 9-D space-time
slice as has been porposed by Maldacena, Moore and Seiberg [B30].
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2. There another problem related to classification of the brane charges. Witten, Moore and Dia-
conescu [B18] have shown that there are also homology cycles which are unstable against decay
and this means that twisted K-theory is inconsistent with the S-duality of type IIB string theory.
Also these cycles should be eliminated in an improved classification if one takes charge conser-
vation as the basic condition and an hitherto un-known modification of cohomology theory is
needed.

3. There is also the problem that K-theory for time slices classifies only the R-R field strengths. Also
R-R gauge potentials carry information just as ordinary gauge potentials and this information
is crucial in Chern-Simons type topological QFTs. K-theory for entire target space classifies
D-branes as p+ 1-dimensional objects but in this case the classification of R-R field strengths is
lost.

The existence of non-representable 7-D homology classes for targent space dimension
D > 9

There is a further nasty problem which destroys the hopes that twisted K-theory could provide a
satisfactory classification. Even worse, something might be wrong with the superstring theory itself.
The problem is that not all homology classes allow a representation as non-singular manifolds. The
first dimension in which this happens is D = 10, the dimension of super-string models! Situation is
of course the same in M-theory. The existence of the non-representables was demonstrated by Thom
- the creator of catastrophe theory and of cobordism theory for manifolds- for a long time ago.

What happens is that there can exist 7-D cycles which allow only singular imbeddings. A good
example would be the imbedding of twistor space CP3, whose orbit would have conical singularity for
which CP3 would contract to a point at the ”moment of big bang”. Therefore homological classification
not only allows but demands branes which are orbifolds. Should orbifolds be excluded as unphysical?
If so then homology gives too many branes and the singular branes must be excluded by replacing the
homology with something else. Could twisted K-theory exclude non-representable branes as unstable
ones by having non-vanishing w3 + [H]? The answer to the question is negative: D6-branes with
w3 + [H] = 0 exist for which K-theory charges can be both vanishing or non-vanishing.

One can argue that non-representability is not a problem in superstring models (M-theory) since
spontaneous compactification leads to M × X6 (M × X7). On the other hand, Cartesian product
topology is an approximation which is expected to fail in high enough length scale resolution and
near big bang so that one could encounter the problem. Most importantly, if M-theory is theory of
everything it cannot contain this kind of beauty spots.

11.8.4 What could go wrong with super string theory and how TGD cir-
cumvents the problems?

As a proponent of TGD I cannot avoid the temptation to suggest that at least two things could go
wrong in the fundamental physical assumptions of superstrings and M-theory.

1. The basic failure would be the construction of quantum theory starting from semiclassical
approximation assuming localization of currents of 10 - or 11-dimensional theory to lower-
dimensional sub-manifolds. What should have been a generalization of QFT by replacing
pointlike particles with higher-dimensional objects would reduce to an approximation of 10-
or 11-dimensional supergravity.

This argument does not bite in TGD. 4-D space-time surfaces are indeed fundamental objects
in TGD as also partonic 2-surfaces and braids. This role emerges purely number theoretically
inspiring the conjecture that space-time surfaces are associative sub-manifolds of octonionic
imbedding spaces, from the requirement of extended conformal invariance, and from the non-
dynamical character of the imbedding space.

2. The condition that all homology equivalence classes are representable as manifolds excludes all
dimensions D > 9 and thus super-strings and M-theory as a physical theory. This would be
the case since branes are unavoidable in M-theory as is also the landscape of compactifications.
In semiclassical supergravity interpretation this would not be catastrophe but if branes are
fundamental objects this shortcoming is serious. If the condition of homological representability
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is accepted then target space must have dimension D < 10 and the arguments sequence leading
to D=8 and TGD is rather short. The number theoretical vision provides the mathematical
justification for TGD as the unique outcome.

3. The existence of spin structure is clearly the source of many problems related to R-R form. In
TGD framework the induction of spinc structure of the imbedding space resolves all problems
associated with sub-manifold spin structures. For some reason the notion of induced spinor
structure has not gained attention in super string approach.

4. Conservative experimental physicist might criticize the emergence of branes of various dimen-
sions as something rather weird. In TGD framework electric-magnetic duality can be understood
in terms of general coordinate invariance and holography and branes and their duals have di-
mension 2, 3, and 4 organize to sub-manifolds of space-time sheets. The TGD counterpart for
the fundamental M-2-brane is light-like 3-surface. Its magnetic dual has dimension given by
the general formula pdual = D − p − 4, where D is the dimension of the target space [B23]. In
TGD one has D = 8 giving pdual = 2. The first interpretation is in terms of self-duality. A
more plausible interpretation relies on the identification of the duals of light-like 3-surfaces as
spacelike-3-surfaces at the light-like boundaries of CD. General Coordinate Invariance in strong
sense implies this duality. For partonic 2-surface one would have p = 1 and pdual = 3. The
identification of the dual would be as space-time surface. The crucial distinction to M-theory
would be that branes of different dimension would be sub-manifolds of space-time surface.

5. For p = 0 one would have pdual = 4 assigning five-dimensional surface to orbits of point-like
particles identifiable most naturally as braid strands. One cannot assign to it any direct physical
meaning in TGD framework and gauge invariance for the analogs of brane gauge potentials
indeed excludes even-dimensional branes in TGD since corresponding forms are proportional to
Kähler gauge potential (so that they would be analogous to odd-dimensional branes allowed by
type IIB superstrings).

4-branes could be however mathematically useful by allowing to define Morse theory for the
critical points of the Minkowskian part of Kähler action. While writing this I learned that
Witten has proposed a 4-D gauge theory approach with N = 4 SUSY to the classification
of knots. Witten also ends up with a Morse theory using 5-D space-times in the category-
theoretical formulation of the theory [A138]. For some time ago I also proposed that TGD as
almost topological QFT defines a theory of knots, knot braidings, and of 2-knots in terms of
string world sheets [K37]. Maybe the 4-branes could be useful for understanding of the extrema
of TGD of the Minkowskian part of Kähler action which would take take the same role as
Hamiltonian in Floer homology: the extrema of 5-D brane action would connect these extrema.

6. Light-like 3-surfaces could be seen as the analogs von Neuman branes for which the boundary
conditions state that the ends of space-like 3-brane defined by the partonic 2-surfaces move with
light-velocity. The interpretation of partonic 2-surfaces as space-like branes at the ends of CD
would in turn make them D-branes so that one would have a duality between D-branes and
N-brane interpretations. T-duality exchanges von Neumann and Dirichlet boundary conditions
so that strong from of general coordinate invariance would correspond to both electric-magnetic
and T-duality in TGD framework. Note that T-duality exchanges type IIA and type IIB super-
strings with each other.

7. What about causal diamonds and their 7-D lightlike boundaries? Could one regard the light-like
boundaries of CDs as analogs of 6-branes with light-like direction defining time-like direction
so that space-time surfaces would be seen as 3-branes connecting them? This brane would not
have magnetic dual since the formula for the dimensions of brane and its magnetic dual allows
positive brane dimension p only in the range (1,3).

11.8.5 Can one identify the counterparts of R-R and NS-NS fields in TGD?

R-R and NS-NS 3-forms are clearly in fundamental role in M-theory. Since in TGD partonic 2-surfaces
define the analogs of fundamental M-2-branes, one can wonder whether these 3-forms could have TGD
counterparts.

http://arxiv.org/abs/hep-th/0004044v2
http://arxiv.org/abs/1106.4789v1
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http://en.wikipedia.org/wiki/T-duality
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1. In TGD framework the 3-forms G3,A = dC2,A defined as the exterior derivatives of the two-forms
C2,A identified as products C2,A = HAJ of Hamiltonians HA of δM4

±×CP2 with Kähler forms of
factors of δM4

±×CP2 define an infinite family of closed 3-forms belonging to various irreducible
representations of rotation group and color group. One can consider also the algebra generated
by products HAA, HAJ , HAA∧J , HAJ∧J , where A resp. J denotes the Kähler gauge potential
resp. Kähler form or either δM4

± or CP2. A resp. Also the sum of Kähler potentials resp. forms
of δM4

± and CP2 can be considered.

2. One can define the counterparts of the fluxes
∫
Adx as fluxes of HAA over braid strands, HAJ

over partonic 2-surfaces and string world sheets, HAA∧J over 3-surfaces, andHAJ∧J over space-
time sheets.Gauge invariance however suggests that for non-constant Hamiltonians one must
exclude the fluxes assigned to odd dimensional surfaces so that only odd-dimensional branes
would be allowed. This would exclude 0-branes and the problematic 4-branes. These fluxes
should be quantized for the critical values of the Minkowskian contributions and for the maxima
with respect to zero modes for the Euclidian contributions to Kähler action. The interpretation
would be in terms of Morse function and Kähler function if the proposed conjecture holds
true. One could even hope that the charges in Cartan algebra are quantized for all preferred
extremals and define charges in these irreducible representations for the isometry algebra of
WCW. The quantization of electric fluxes for string world sheets would give rise to the familiar
quantization of the rotation

∫
E · dl of electric field over a loop in time direction taking place in

superconductivity.

3. Should one interpret these fluxes as the analogs of NS-NS-fluxes or R-R fluxes? The exterior
derivatives of the forms G3 vanish which is the analog for the vanishing of magnetic charge
densities (it is however possible to have the analogs of homological magnetic charge). The
self-duality of Ramond p-forms could be posed formally (Gp =∗ G8−p) but does not have any
implications for p < 4 since the space-time projections vanish in this case identically for p > 3.
For p = 4 the dual of the instanton density J ∧ J is proportional to volume form if M4 and is
not of topological interest. The approach of Witten eliminating one half of self dual R-R-fluxes
would mean that only the above discussed series of fluxes need to be considered so that one would
have no troubles with non-rational values of the fluxes nor with the lack of higher dimensional
objects assignable to them. An interesting question is whether the fluxes could define some kind
of K-theory invariants.

4. In TGD imbedding space is non-dynamical and there seems to be no counterpart for the NS
3-form field H = dB. The only natural candidate would correspond to Hamiltonian B = J
giving H = dB = 0. At quantum level this might be understood in terms of bosonic emergence
[K60] meaning that only Ramond representations for fermions are needed in the theory since
bosons correspond to wormhole contacts with fermion and anti-fermions at opposite throats.
Therefore twisted cohomology is not needed and there is no need to introduce the analogy
of brane democracy and 4-D space-time surfaces containing the analogs of lower-dimensional
brains as sub-manifolds are enough. The fluxes of these forms over partonic 2-surfaces and
string world sheets defined non-abelian analogs of ordinary gauge fluxes reducing to rotations
of vector potentials and suggested be crucial for understanding braidings of knots and 2-knots
in TGD framework. [K37]. Note also that the unique dimension D=4 for space-time makes 4-D
space-time surfaces homologically self-dual so that only they are needed.

11.8.6 What about counterparts of S and U dualities in TGD framework?

The natural question is what could be the TGD counterparts of S−, T− and U -dualities. If one
accepts the identification of U -duality as product U = ST and the proposed counterpart of T duality
as a strong form of general coordinate invariance, it remains to understand the TGD counterpart of
S-duality - in other words electric-magnetic duality - relating the theories with gauge couplings g and
1/g. Quantum criticality selects the preferred value of gK : Kähler coupling strength is very near to
fine structure constant at electron length scale and can be equal to it. Since there is no coupling
constant evolution associated with αK , it does not make sense to say that gK becomes strong and is
replaced with its inverse at some point. One should be able to formulate the counterpart of S-duality

http://tgd.wippiespace.com/public_html/tgdgeom/tgdgeom.html#knotstgd
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as an identity following from the weak form of electric-magnetic duality and the reduction of TGD to
almost topological QFT. This seems to be the case.

1. For preferred extremals the interior parts of Kähler action reduces to a boundary term be-
cause the term jµAµ vanishes. The weak form of electric-magnetic duality requires that Kähler
electric charge is proportional to Kähler magnetic charge, which implies reduction to abelian
Chern-Simons term: the Kähler coupling strength does not appear at all in Chern-Simons term.
The proportionality constant beween the electric and magnetic parts JE and JB of Kähler form
however enters into the dynamics through the boundary conditions stating the weak form of
electric-magnetic duality. At the Minkowskian side the proportionality constant must be pro-
portional to g2

K to guarantee a correct value for the unit of Kähler electric charge - equal to
that for electric charge in electron length scale- from the assumption that electric charge is
proportional to the topologically quantized magnetic charge. It has been assumed that

JE = αKJB

holds true at both sides of the wormhole throat but this is an un-necessarily strong assumption
at the Euclidian side. In fact, the self-duality of CP2 Kähler form stating

JE = JB

favours this boundary condition at the Euclidian side of the wormhole throat. Also the fact
that one cannot distinguish between electric and magnetic charges in Euclidian region since all
charges are magnetic can be used to argue in favor of this form. The same constraint arises
from the condition that the action for CP2 type vacuum extremal has the value required by the
argument leading to a prediction for gravitational constant in terms of the square of CP2 radius
and αK the effective replacement g2

K → 1 would spoil the argument.

2. Minkowskian and Euclidian regions should correspond to a strongly/weakly interacting phase
in which Kähler magnetic/electric charges provide the proper description. In Euclidian regions
associated with CP2 type extremals there is a natural interpretation of interactions between
magnetic monopoles associated with the light-like throats: for CP2 type vacuum extremal itself
magnetic and electric charges are actually identical and cannot be distinguished from each
other. Therefore the duality between strong and weak coupling phases seems to be trivially
true in Euclidian regions if one has JB = JE at Euclidian side of the wormhole throat. This is
however an un-necessarily strong condition as the following argument shows.

3. In Minkowskian regions the interaction is via Kähler electric charges and elementary particles
have vanishing total Kähler magnetic charge consisting of pairs of Kähler magnetic monopoles so
that one has confinement characteristic for strongly interacting phase. Therefore Minkowskian
regions naturally correspond to a weakly interacting phase for Kähler electric charges. One can
write the action density at the Minkowskian side of the wormhole throat as

(J2
E − J2

B)

αK
= αKJ

2
B −

J2
B

αK
.

The exchange JE ↔ JB accompanied by αK → −1/αK leaves the action density invariant.
Since only the behavior of the vacuum functional infinitesimally near to the wormhole throat
matters by almost topological QFT property, the duality is realized. Note that the argument
goes through also in Euclidian regions so that it does not allow to decide which is the correct
form of weak form of electric-magnetic duality.

4. S-duality could correspond geometrically to the duality between partonic 2-surfaces responsible
for magnetic fluxes and string worlds sheets responsible for electric fluxes as rotations of Kähler
gauge potentials around them and would be very closely related with the counterpart of T -
duality implied by the strong form of general coordinate invariance and saying that space-like
3-surfaces at the ends of space-time sheets are equivalent with light-like 3-surfaces connecting
them.
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The boundary condition JE = JB at the Euclidian side of the wormhole throat inspires the
question whether all Euclidian regions could be self-dual so that the density of Kähler action would
be just the instanton density. Self-duality follows if the deformation of the metric induced by the
deformation of the canonically imbedded CP2 is such that in CP2 coordinates for the Euclidian region
the tensor (gαβgµν − gανgµβ)/

√
g remains invariant. This is certainly the case for CP2 type vacuum

extremals since by the light-likeness of M4 projection the metric remains invariant. Also conformal
scalings of the induced metric would satisfy this condition. Conformal scaling is not consistent with
the degeneracy of the 4-metric at the wormhole throat. Self-duality is indeed an un-necessarily strong
condition.

Comparison with standard view about dualities

One can compare the proposed realization of T , S and U to the more general dualities defined by the
modular group SL(2, Z), which in QFT framework can hold true for the path integral over all possible
gauge field configurations. In the resent case the dualities hold true for every preferred extremal
separately and the functional integral is only over the space-time projections of fixed Kähler form of
CP2. Modular invariance for Maxwell action was discussed by E. Verlinde for Maxwell action with
θ term for a general 4-D compact manifold with Euclidian signature of metric in [B43]. In this case
one has path integral giving sum over infinite number of extrema characterized by the cohomological
equivalence class of the Maxwell field the action exponential to a high degree. Modular invariance is
broken for CP2: one obtains invariance only for τ → τ + 2 whereas S induces a phase factor to the
path integral.

1. In the recent case these homology equivalence classes would correspond to homology equivalence
classes of holomorphic partonic 2-surfaces associated with the critical points of Kähler function
with respect to zero modes.

2. In the case that the Euclidian contribution to the Kähler action is expressible solely in terms of
wormhole throat Chern-Simons terms, and one can neglect the measurement interaction terms,
the exponent of Kähler action can be expressed in terms of Chern-Simons action density as

L = τLC−S ,

LC−S = J ∧A ,

τ =
1

g2
K

+ i
k

4π
, k = 1 . (11.8.-1)

Here the parameter τ transforms under full SL(2, Z) group as

τ → aτ + b

cτ + d
. (11.8.0)

The generators of SL(2, Z) transformations are T : τ → τ + 1, S : τ → −1/τ . The imaginary
part in the exponents corresponds to Kac-Moody central extension k = 1.

This form corresponds also to the general form of Maxwell action with CP breaking θ term given
by

L =
1

g2
K

J ∧∗ J + i
θ

8π2
J ∧ J , θ = 2π . (11.8.1)

Hence the Minkowskian part mimicks the θ term but with a value of θ for which the term does
not give rise to CP breaking in the case that the action is full action for CP2 type vacuum
extremal so that the phase equals to 2π and phase factor case is trivial. It would seem that the

http://arxiv.org/abs/hep-th/9506011v3
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deviation from the full action for CP2 due to the presence of wormhole throats reducing the value
of the full Kähler action for CP2 type vacuum extremal could give rise to CP breaking. One can
visualize the excluded volume as homologically non-trivial geodesic spheres with some thickness
in two transverse dimensions. At the limit of infinitely thin geodesic spheres CP breaking would
vanish. The effect is exponentially sensitive to the volume deficit.

CP breaking and ground state degeneracy

Ground state degeneracy due to the possibility of having both signs for Minkowskian contribution to
the exponent of vacuum functional provides a general view about the description of CP breaking in
TGD framework.

1. In TGD framework path integral is replaced by inner product involving integral over WCV. The
vacuum functional and its conjugate are associated with the states in the inner product so that
the phases of vacuum functionals cancel if only one sign for the phase is allowed. Minkowskian
contribution would have no physical significance. This of course cannot be the case. The ground
state is actually degenerate corresponding to the phase factor and its complex conjugate since√
g can have two signs in Minkowskian regions. Therefore the inner products between states

associated with the two ground states define 2 × 2 matrix and non-diagonal elements contain
interference terms due to the presence of the phase factor. At the limit of full CP2 type vacuum
extremal the two ground states would reduce to each other and the determinant of the matrix
would vanish.

2. A small mixing of the two ground states would give rise to CP breaking and the first principle
description of CP breaking in systems like K − K and of CKM matrix should reduce to this
mixing. K0 mesons would be CP even and odd states in the first approximation and correspond
to the sum and difference of the ground states. Small mixing would be present having exponential
sensitivity to the actions of CP2 type extremals representing wormhole throats. This might allow
to understand qualitatively why the mixing is about 50 times larger than expected for B0 mesons.

3. There is a strong temptation to assign the two ground states with two possible arrows of geo-
metric time. At the level of M-matrix the two arrows would correspond to state preparation at
either upper or lower boundary of CD. Do long- and shortlived neutral K mesons correspond
to almost fifty-fifty orthogonal superpositions for the two arrow of geometric time or almost
completely to a fixed arrow of time induced by environment? Is the dominant part of the arrow
same for both or is it opposite for long and short-lived neutral measons? Different lifetimes
would suggest that the arrow must be the same and apart from small leakage that induced by
environment. CP breaking would be induced by the fact that CP is performed only K0 but not
for the environment in the construction of states. One can probably imagine also alternative
interpretations.

Remark: The proportionality of Minkowskian and Euclidian contributions to the same Chern-
Simons term implies that the critical points with respect to zero modes appear for both the phase
and modulus of vacuum functional. The Kähler function property does not allow extrema for vacuum
functional as a function of complex coordinates of WCW since this would mean Kähler metric with
non-Euclidian signature. If this were not the case. the stationary values of phase factor and extrema
of modulus of the vacuum functional would correspond to different configurations.

11.8.7 Could one divide bundles?

TGD differs from string models in one important aspects: stringy diagrams do not have interpretation
as analogs of vertices of Feynman diagrams: the stringy decay of partonic 2-surface to two pieces does
not represent particle decay but a propagation along different paths for incoming particle. Particle
reactions in turn are described by the vertices of generalized Feynman diagrams in which the ends
of incoming and outgoing particles meet along partonic 2-surface. This suggests a generalization of
K-theory for bundles assignable to the partonic 2-surfaces. It is good to start with a guess for the
concrete geometric realization of the sum and product of bundles in TGD framework.
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1. The analogs of string diagrams could represent the analog for direct sum. Difference between
bundles could be defined geometrically in terms of trouser vertex A + B → C. B would by
definition represent C − A. Direct sum could make sense for single particle states and have as
space-time correlate the conservation of braid strands.

2. A possible concretization in TGD framework for the tensor product is in terms of the vertices
of generalized Feynman diagrams at which incoming light-like 3-D orbits of partons meet along
their ends. The tensor product of incoming state spaces defined by fermionic oscillator algebras
is naturally formed. Tensor product would have also now as a space-time correlate conservation
of braid strands. This does not mean that the number of braid strands is conserved in reactions
if also particular exchanges can carry the braid strands of particles coming to the vertex.

Why not define also division of bundles in terms of the division for tensor product? In terms of
the 3-vertex for generalized Feynman diagrams A ⊗ B = C representing tensor product B would be
by definition C/A. Therefore TGD would extend the K-theory algebra by introducing also division as
a natural operation necessitated by the presence of the join along ends vertices not present in string
theory. I would be surprised if some mathematician would not have published the idea in some exotic
journal. Below I represent an argument that this notion could be also applied in the mathematical
description of finite measurement resolution in TGD framework using inclusions of hyper-finite factor.
Division could make possible a rigorous definition for for non-commutative quantum spaces.

Tensor division could have also other natural applications in TGD framework.

1. One could assign bundles M+ and M− to the upper and lower light-like boundaries of CD.
The bundle M+/M− would be obtained by formally identifying the upper and lower light-like
boundaries. More generally, one could assign to the boundaries of CD positive and negative
energy parts of WCW spinor fields and corresponding bundle structures in ”half WCW”. Zero
energy states could be seen as sections of the unit bundle just like infinite rationals reducing to
real units as real numbers would represent zero energy states.

2. Finite measurement resolution would encourage tensor division since finite measurement resolu-
tion means essentially the loss of information about everything below measurement resolution
represented as a tensor product factor. The notion of coset space formed by hyper-finite factor
and included factor could be understood in terms of tensor division and give rise to quan-
tum group like space with fractional quantum dimension in the case of Jones inclusions [K87].
Finite measurement resolution would therefore define infinite hierarchy of finite dimensional non-
commutative spaces characterized by fractional quantum dimension. In this case the notion of
tensor product would be somewhat more delicate since complex numbers are effectively replaced
by the included algebra whose action creates states not distinguishable from each other [K87].
The action of algebra elements to the state |B〉 in the inner product 〈A|B〉 must be equivalent
with the action of its hermitian conjugate to the state 〈A|. Note that zero energy states are in
question so that the included algebra generates always modifications of states which keep it as
a zero energy state.

11.9 A connection between cognition, number theory, alge-
braic geometry, topology, and quantum physics

I have had some discussions with Stephen King and Hitoshi Kitada in a closed discussion group about
the idea that the duality between Boolean algebras and Stone spaces could be important for the
understanding of consciousness, at least cognition. In this vision Boolean algebras would represent
conscious mind and Stone spaces would represent the matter: space-time would emerge.

I am personally somewhat skeptic because I see consciousness and matter as totally different levels
of existence. Consciousness (and information) is about something, matter just is. Consciousness
involves always a change as we no from basic laws about perception. There is of course also the
experience of free will and the associated non-determinism. Boolean algebra is a model for logic, not
for conscious logical reasoning. There are also many other aspects of consciousness making it very
difficult to take this kind of duality seriously.
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I am also skeptic about the emergence of space-time say in the extremely foggy form as it used
in entropic gravity arguments. Recent day physics poses really strong constraints on our view about
space-time and one must take them very seriously.

This does not however mean that Stone spaces could not serve as geometrical correlates for Boolean
consciousness. In fact, p-adic integers can be seen as a Stone space naturally assignable to Boolean
algebra with infinite number of bits.

11.9.1 Innocent questions

I ende up with the innocent questions, as I was asked to act as some kind of mathematical consultant
and explain what Stone spaces actually are and whether they could have a connection to p-adic
numbers. Anyone can of course go to Wikipedia and read the article Stone’s representation theorem
for Boolean algebras. For a layman this article does not however tell too much.

Intuitively the content of the representation theorem looks rather obvious, at least at the first sight.
As a matter fact, the connection looks so obvious that physicists often identify the Boolean algebra
and its geometric representation without even realizing that two different things are in question. The
subsets of given space- say Euclidian 3-space- with union and intersection as basic algebraic operations
and inclusion of sets as ordering relation defined a Boolean algebra for the purposes of physicist. One
can assign to each point of space a bit. The points for which the value of bit equals to one define the
subset. Union of subsets corresponds to logical OR and intersection to AND. Logical implication B→
A corresponds to A contains B.

When one goes to details problems begin to appear. One would like to have some non-trivial form
of continuity.

1. For instance, if the sets are form open sets in real topology their complements representing
negations of statements are closed, not open. This breaks the symmetry between statement and
it negation unless the topology is such that closed sets are open. Stone’s view about Boolean
algebra assumes this. This would lead to discrete topology for which all sets would be open sets
and one would lose connection with physics where continuity and differential structure are in
key role.

2. Could one dare to disagree with Stone and allow both closed and open sets of E3 in real
topology and thus give up clopen assumption? Or could one tolerate the asymmetry between
statements and their negations and give some special meaning for open or closet sets- say as
kind of axiomatic statements holding true automatically. If so, one an also consider algebraic
varieties of lower dimension as collections of bits which are equal to one. In Zariski topology used
in algebraic geometry these sets are closed. Again the complements would be open. Could one
regard the lower dimensional varieties as identically true statements so that the set of identically
true statements would be rather scarce as compared to falsities? If one tolerates some quantum
TGD, one could ask whether the 4-D quaternionic/associative varieties defining classical space-
times and thus classical physics could be identified as the axiomatic truths. Associativity would
be the basic truth inducing the identically true collections of bits.

11.9.2 Stone theorem and Stone spaces

For reasons which should be clear it is perhaps a good idea to consider in more detail what Stone duality
says. Stone theorem states that Boolean algebras are dual with their Stone spaces. Logic and certain
kind of geometry are dual. More precisely, any Boolean algebra is isomorphic to closed open subsets
of some Stone space and vice versa. Stone theorem respects category theory. The homomorphisms
between Boolean algebras A and B corresponds to homomorphism between Stone spaces S(B) and
S(A): one has contravariant functor between categories of Boolean algebras and Stone spaces. In the
following set theoretic realization of Boolean algebra provides the intuitive guidelines but one can of
course forget the set theoretic picture altogether and consider just abstract Boolean algebra.

1. Stone space is defined as the space of homomorphisms from Boolean algebra to 2-element Boolean
algebra. More general spaces are spaces of homomorphisms between two Boolean algebras. The
analogy in the category of linear spaces would be the space of linear maps between two linear
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spaces. Homomorphism is in this case truth preserving map: h(A AND B) = h(a) AND h(B),
h( OR B) = h(a) OR h(B) and so on.

2. For any Boolean algebra Stone space is compact, totally disconnected Hausdorff space. Con-
versely, for any topological space, the subsets, which are both closed and open define Boolean
algebra. Note that for a real line this would give 2-element Boolean algebra. Set is closed and
open simultaneously only if its boundary is empty and in p-adic context there are no boundaries.
Therefore for p-adic numbers closed sets are open and the sets of p-adic numbers with p-adic
norm above some lower bound and having some set of fixed pinary digits, define closed-open
subsets.

3. Stone space dual to the Boolean algebra does not conform with the physicist’s ideas about
space-time. Stone space is a compact totally disconnected Hausdorff space. Disconnected space
is representable as a union of two or more disjoint open sets. For totally disconnected space this
is true for every subset. Path connectedness is stronger notion than connected and says that
two points of the space can be always connected by a curve defined as a mapping of real unit
interval to the space. Our physical space-time seems to be however connected in this sense.

4. The points of the Stone space S(B) can be identified ultrafilters. Ultrafilter defines homomor-
phism of B to 2-element of Boolean algebra Boolean algebra. Set theoretic realization allows to
understand what this means. Ultrafilter is a set of subsets with the property that intersections
belong to it and if set belongs to it also sets containing it belong to it: this corresponds to the
fact that set inclusion A ⊃ B corresponds to logical implication. Either set or its complement
belongs to the ultrafilter (either statement or its negation is true). Empty set does not. Ultra-
filter obviously corresponds to a collection of statements which are simultaneously true without
contradictions. The sets of ultrafilter correspond to the statements interpreted as collections of
bits for which each bit equals to 1.

5. The subsets of B containing a fixed point b of Boolean algebra define an ultrafilter and imbedding
of b to the Stone space by assigning to it this particular principal ultrafilter. b represents a
statement which is always true, kind of axiom for this principal ultrafilter and ultrafilter is the
set of all statements consistent with b.

Actually any finite set in the Boolean algebra consisting of a collection of fixed bits bi defines an
ultrafilter as the set all subsets of Boolean algebra containing this subset. Therefore the space
of all ultra-filters is in one-one correspondence with the space of subsets of Boolean statements.
This set corresponds to the set of statements consistent with the truthness of bi analogous to
axioms.

11.9.3 2-adic integers and 2-adic numbers as Stone spaces

I was surprised to find that p-adic numbers are regarded as a totally disconnected space. The intuitive
notion of connected is that one can have a continuous curve connecting two points and this is certainly
true for p-adic numbers with curve parameter which is p-adic number but not for curves with real
parameter which became obvious when I started to work with p-adic numbers and invented the notion
of p-adic fractal. In other words, p-adic integers form a continuum in p-adic but not in real sense.
This example shows how careful one must be with definitions. In any case, to my opinion the notion
of path based on p-adic parameter is much more natural in p-adic case. For given p-adic integers one
can find p-adic integers arbitrary near to it since at the limit n→∞ the p-adic norm of pn approaches
zero. Note also that most p-adic integers are infinite as real integers.

Disconnectedness in real sense means that 2-adic integers define an excellent candidate for a Stone
space and the inverse of the Stone theorem allows indeed to realize this expectation. Also 2-adic
numbers define this kind of candidate since 2-adic numbers with norm smaller than 2n for any n can
be mapped to 2-adic integers. One would have union of Boolean algebras labelled by the 2-adic norm
of the 2-adic number. p-Adic integers for a general prime p define obviously a generalization of Stone
space making sense for effectively p-valued logic: the interpretation will be discussed below.

Consider now a Boolean algebra consisting of all possible infinitely long bit sequences. This algebra
corresponds naturally to 2-adic integers. The generating Boolean statements correspond to sequences
with single non-vanishing bit: by taking the unions of these points one obtains all sets. The natural
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topology is that for which the lowest bits are the most significant. 2-adic topology realizes this idea
since n:th bit has norm 2−n. 2-adic integers as an p-adic integers are as spaces totally disconnected.

That 2-adic integers and more generally, 2-adic variants of n-dimensional p-adic manifolds would
define Stone bases assignable to Boolean algebras is consistent with the identification of p-adic space-
time sheets as correlates of cognition. Each point of 2-adic space-time sheet would represent 8 bits
as a point of 8-D imbedding space. In TGD framework WCW (”world of classical worlds”) spinors
correspond to Fock space for fermions and fermionic Fock space has natural identification as a Boolean
algebra. Fermion present/not present in given mode would correspond to true/false. Spinors decom-
pose to a tensor product of 2-spinors so that the labels for Boolean statements form a Boolean algebra
too in this case. A possible interpretation is as statements about statements.

In TGD Universe life and thus cognition reside in the intersection of real and p-adic worlds.
Therefore the intersections of real and p-adic partonic 2-surfaces represent the intersection of real and
p-adic worlds, those Boolean statements which are expected to be accessible for conscious cognition.
They correspond to rational numbers or possibly numbers in n algebraic estension of rationals. For
rationals pinary expansion starts to repeat itself so that the number of bits is finite. This intersection
is also always discrete and for finite real space-time regions finite so that the identification looks a
very natural since our cognitive abilities seem to be rather limited. In TGD inspired physics magnetic
bodies are the key players and have much larger size than the biological body so that their intersection
with their p-adic counterparts can contain much more bits. This conforms with the interpretation
that the evolution of cognition means the emergence of increasingly longer time scales. Dark matter
hierarchy realized in terms of hierarchy of Planck constants realizes this.

11.9.4 What about p-adic integers with p > 2?

The natural generalization of Stone space would be to a geometric counterpart of p-adic logic which
I discussed for some years ago. The representation of the statements of p-valued logic as sequences of
pinary digits makes the correspondence trivial if one accepts the above represented arguments. The
generalization of Stone space would consist of p-adic integers and imbedding of a p-valued analog of
Boolean algebra would map the number with only n:th digit equal to 1, ..., p − 1 to corresponding
p-adic number.

One should however understand what p-valued statements mean and why p-adic numbers near
powers of 2 are important. What is clear that p-valued logic is too romantic to survive. At least our
every-day cognition is firmly anchored to a reality where everything is experience to be true or false.

1. The most natural explanation for p > 2 adic logic is that all Boolean statements do not allow a
physical representation and that this forces reduction of 2n valued logic to p < 2n-valued one.
For instance, empty set in the set theoretical representation of Boolean logic has no physical
representation. In the same manner, the state containing no fermions fails to represent anything
physically. One can represent physically at most 2n− 1 one statements of n-bit Boolean algebra
and one must be happy with n − 1 completely represented digits. The remaining statements
containing at least one non-vanishing digit would have some meaning, perhaps the last digit
allowed could serve as a kind of parity check.

2. If this is accepted then p-adic primes near to power 2n of 2 but below it and larger than the
previous power 2n−1 can be accepted and provide a natural topology for the Boolean statements
grouping the binary digits to p-valued digit which represents the allowed statements in 2n

valued Boolean algebra. Bit sequence as a unit would be represented as a sequence of physically
realizable bits. This would represent evolution of cognition in which simple yes or not statements
are replaced with sequences of this kind of statements just as working computer programs
are fused as modules to give larger computer programs. Note that also for computers similar
evolution is taking place: the earliest processors used byte length 8 and now 32, 64 and maybe
even 128 are used.

3. Mersenne primes Mn = 2n− 1 would be ideal for logic purposes and they indeed play a key role
in quantum TGD. Mersenne primes define p-adic length scales characterize many elementary
particles and also hadron physics. There is also evidence for p-adically scaled up variants of
hadron physics (also leptohadron physics allowed by the TGD based notion of color predicting
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colored excitations of leptons). LHC will certainly show whether M89 hadron physics at TeV
energy scale is realized and whether also leptons might have scaled up variants.

4. For instance, M127 assignable to electron secondary p-adic time scale is .1 seconds, the funda-
mental time scale of sensory perception. Thus cognition in .1 second time scale single pinary
statement would contain 126 digits as I have proposed in the model of memetic code. Memetic
codons would correspond to 126 digit patterns with duration of .1 seconds giving 126 bits of
information about percept.

If this picture is correct, the interpretation of p-adic space-time sheets- or rather their intersections
with real ones- would represent space-time correlates for Boolean algebra represented at quantum level
by fermionic many particle states. In quantum TGD one assigns with these intersections braids- or
number theoretic braids- and this would give a connection with topological quantum field theories
(TGD can be regarded as almost topological quantum field theory).

11.9.5 One more road to TGD

The following arguments suggests one more manner to end up with TGD by requiring that fermionic
Fock states identified as a Boolean algebra have their Stone space as space-time correlate required
by quantum classical correspondence. Second idea is that space-time surfaces define the collections
of binary digits which can be equal to one: kind of eternal truths. In number theoretical vision
associativity condition in some sense would define these divine truths. Standard model symmetries
are a must- at least as their p-adic variants -and simple arguments forces the completion of discrete
lattice counterpart of M4 to a continuum.

1. If one wants Poincare symmetries at least in p-adic sense then a 4-D lattice inM4 with SL(2, Z)×
T 4, where T 4 is discrete translation group is a natural choice. SL(2, Z) acts in discrete Minkowski
space T 4 which is lattice. Poincare invariance would be discretized. Angles and relative velocities
would be discretized, etc..

2. The p-adic variant of this group is obtained by replacing Z and T 4 by their p-adic counterparts:
in other words Z is replaced with the group Zp of p-adic integers. This group is p-adically
continuous group and acts continuously in T 4 defining a p-adic variant of Minkowski space
consisting of all bit sequences consisting of 4-tuples of bits. Only in real sense one would have
discreteness: note also that most points would be at infinity in real sense. Therefore it is possible
to speak about analytic functions, differential calculus, and to write partial differential equations
and to solve them. One can construct group representations and talk about angular momentum,
spin and 4-momentum as labels of quantum states.

3. If one wants standard model symmetries p-adically one must replace T 4 with T 4 × CP2. CP2

would be now discrete version of CP2 obtained from discrete complex space C3 by identifying
points different by a scaling by complex integer. Discrete versions of color and electroweak
groups would be obtained.

The next step is to ask what are the laws of physics. TGD fan would answer immediately: they
are of course logical statements which can be true identified as subsets of T 4 × CP2 just as subset in
Boolean algebra of sets corresponds to bits which are true.

1. The collections of 8-bit sequences consisting of only 1:s would define define 4-D surfaces in
discrete T 4 × CP2 . Number theoretic vision would suggest that they are quaternionic surfaces
so that one associativity be the physical law at geometric level. The conjecture is that preferred
extremals of Kähler action are associative surfaces using the definition of associativity as that
assignable to a 4-plane defined by modified gamma matrices at given point of space-time surface.

2. Induced gauge field and metric make sense for p-adic integers. p-Adically the field equations
for Kähler action make also sense. These p-adic surfaces would represent the analog of Boolean
algebra. They would be however something more general than Stone assumes since they are not
closed-open in the 8-D p-adic topology.

One however encounters a problem.



11.9. A connection between cognition, number theory, algebraic geometry, topology,
and quantum physics 615

1. Although the field equations associated with Kähler action make sense, Kähler action itself does
not exists as integral nor does the genuine minimization make sense since p-adically numbers are
not well ordered and one cannot in general say which of two numbers is the larger one. This is a
real problem and suggests that p-adic field equations are not enough and must be accompanied
by real ones. Of course, also the metric properties of p-adic space-time are in complete conflict
with what we believe about them.

2. One could argue that for preferred extremals the integral defining Kähler action is expressible
as an integral of 4-form whose value could be well-defined since integrals of forms for closed
algebraic surfaces make sense in p-adic cohomology theory pioneered by Grothendieck. The
idea would be to use the definition of Kähler action making sense for preferred extremals as its
definition in p-adic context. I have indeed proposed that space-time surfaces define representa-
tives for homology with inspiration coming from TGD as almost topological QFT. This would
give powerful constraints on the theory in accordance with the interpretation as a generalized
Bohr orbit.

3. This argument together with what we know about the topology of space-time on basis of every-
day experience however more or less forces the conclusion that also real variant of M4 ×CP2 is
there and defines the proper variational principle. The finite points (on real sense) of T 4×CP2 (in
discrete sense) would represent points common to real and p-adic worlds and the identification
in terms of braid points makes sense if one accepts holography and restricts the consideration to
partonic 2-surfaces at boundaries of causal diamond. These discrete common points would rep-
resent the intersection of cognition and matter and living systems and provide a representation
for Boolean cognition.

4. Finite measurement resolution enters into the picture naturally. The proper time distance be-
tween the tips would be quantized in multiples of CP2 length. There would be several choices
for the discretized imbedding space corresponding to different distance between lattice points:
the interpretation is in terms of finite measurement resolution.

It should be added that discretized variant of Minkowski space and its p-adic variant emerge in
TGD also in different manner in zero energy ontology.

1. The discrete space SL(2, Z)× T 4 would have also interpretation as acting in the moduli space
for causal diamonds identified as intersections of future and past directed light-cones. T 4 would
represent lattice for possible positions of the lower tip of CD and and SL(2, Z) leaving lower
tip invariant would act on hyperboloid defined by the position of the upper tip obtained by
discrete Lorentz transformations. This leads to cosmological predictions (quantization of red
shifts). CP2 length defines a fundamental time scale and the number theoretically motivated
assumption is that the proper time distances between the tips of CDs come as integer multiples
of this distance.

2. The stronger condition explaining p-adic length scale hypothesis would be that only octaves of
the basic scale are allowed. This option is not consistent with zero energy ontology. The reason
is that for more general hypothesis the M-matrices of the theory for Kac-Moody type algebra
with finite-dimensional Lie algebra replaced with an infinite-dimensional algebra representing
hermitian square roots of density matrices and powers of the phase factor replaced with powers
of S-matrix. All integer powers must be allowed to obtain generalized Kac-Moody structure,
not only those which are powers of 2 and correspond naturally to integer valued proper time
distance between the tips of CD. Zero energy states would define the symmetry Lie-algebra of
S-matrix with generalized Yangian structure.

3. p-Adic length scale hypothesis would be an outcome of physics and it would not be surprising
that primes near power of two are favored because they are optimal for Boolean cognition.

The outcome is TGD. Reader can of course imagine alternatives but remember the potential
difficulties due to the fact that minimization in p-adic sense does not make sense and action defined
as integral does not exist p-adically. Also the standard model symmetries and quantum classical
correspondence are to my opinion ”must”:s.
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11.9.6 A connection between cognition and algebraic geometry

Stone space is synonym for profinite space. The Galois groups associated with algebraic extensions
of number fields represent an extremely general class of profinite group [A74]. Every profinite group
appears in Galois theory of some field K. The most most interesting ones are inverse limits of
Gal(F1/K) where F1 varies over all intermediate fields. Profinite groups appear also as fundamental
groups in algebraic geometry. In algebraic topology fundamental groups are in general not profinite.
Profiniteness means that p-adic representations are especially natural for profinite groups.

There is a fascinating connection between infinite primes and algebraic geometry discussed above
leads to the proposal that Galois groups - or rather their projective variants- can be represented as
braid groups acting on 2-dimensional surfaces. These findings suggest a deep connection between
space-time correlates of Boolean cognition, number theory, algebraic geometry, and quantum physics
and TGD based vision about representations of Galois groups as groups lifted to braiding groups
acting on the intersection of real and p-adci variants of partonic 2-surface conforms with this.

Fermat theorem serves as a good illustration between the connection between cognitive representa-
tions and algebraic geometry. A very general problem of algebraic geometry is to find rational points
of an algebraic surface. These can be identified as common rational points of the real and p-adic
variant of the surface. The interpretation in terms of consciousness theory would be as points defining
cognitive representation as rational points common to real partonic 2-surface and and its p-adic vari-
ants. The mapping to polynomials given by their representation in terms of infinite primes to braids
of braids of braids.... at partonic 2-surfaces would provide the mapping of n-dimensional problem to
2-dimensional one.

One considers the question whether there are integer solutions to the equation xn + yn + zn = 1.
This equation defines 2-surfaces in both real and p-adic spaces. In p-adic context it is easy to construct
solutions but they usually represent infinite integers in real sense. Only if the expansion in powers of
p contains finite number of powers of p, one obtains real solution as finite integers.

The question is whether there are any real solutions at all. If they exist they correspond to the
intersections of the real and p-adic variants of these surfaces. In other words p-adic surface contains
cognitively representable points. For n > 2 Fermat’s theorem says that only single point x = y = z = 0
exists so that only single p-adic multi-bit sequence (0, 0, 0, ...) would be cognitively representable.

This relates directly to our mathematical cognition. Linear and quadratic equations we can solve
and in these cases the number in the intersection of p-adic and real surfaces is indeed very large. We
learn the recipes already in school! For n > 2 difficulties begin and there are no general recipes and
it requires mathematician to discover the special cases: a direct reflection of the fact that the number
of intersection points for real and p-adic surfaces involved contains very few points.

11.9.7 Quantum Mathematics

To my view the self referentiality of consciousness is the real ”hard problem” of consciousness theories.
The ”hard problem” as it is usually understood is only a problem of dualistic approach. My own belief
is that the understanding of self-referentiality requires completely new mathematics with explicitly
built-in self-referentiality. One possible view about this new mathematics is described in [K93]: here
I provide only a brief summary in a form of recipe. The basic idea could have been abstracted from
algebraic holography: replace numbers by Hilbert spaces and basic arithmetic operations with their
counterparts for Hilbert spaces. Repeat this procedure by replacing the points of Hilbert spaces with
Hilbert spaces and continue this procedure ad infinitum. It is quite possible that this procedure
analogous to second quantization is more or less equivalent with the construction of infinite primes
[K76].

Construction recipe

The construction recipe is following.

1. The idea is to start from arithmetics: + and × for natural numbers and generalize it .

(a) The key observation is that + and × have direct sum and tensor product for Hilbert spaces
as complete analogs and natural number n has interpretation as Hilbert space dimension
and can be mapped to n-dimensional Hilbert space.

http://en.wikipedia.org/wiki/Profinite_groups
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Replace natural numbers n with n-dimensional Hilbert spaces at the first abstraction step.
n+m and n×m go to direct sum n⊕m and tensor product n⊗m of Hilbert spaces. One
would calculate with Hilbert spaces rather than numbers. This induces calculation also for
Hilbert space states and sum and product are like 3-particle vertices.

(b) At second step construct integers (also negative) as pairs of Hilbert spaces (m,n) identifying
(m ⊕ r, n ⊕ r) and (m,n). This gives what might be called negative dimensional Hilbert
spaces! Then take these pairs and define rationals as Hilbert space pairs (m,n) of this
kind with (m,n) equivalent to (k ⊗ m, k ⊗ n). This gives rise to what might be called
m/n-dimensional Hilbert spaces!

(c) At the third step construct Hilbert space variants of algebraic extensions of rationals.
Hilbert space with dimension

√
2 say: this is a really nice trick [K93]. The idea is to

consider for n-dimensional extension n-tuples of Hilbert spaces and induce tensor product
for them from the product for the numbers of extension. After that one can continue with
p-adic number fields and even reals: one can indeed understand even what π-dimensional
Hilbert space could be! These spaces could also have interpretation in term of hyper-finite
factors for which Hilbert spaces which otherwise would have infinite-dimension have finite
and continuous dimension [K87]. If Hilbert space infinite-dimensional in the usual sense has
dimension 1 (say) in the sense that identity operator has trace equal to 1 then subspaces
in general have continuous range of dimensions smaller than one.

The direct sum decompositions and tensor products would have genuine meaning Hilbert spaces
associated with transcendentals are finite-dimensional in the sense as it is defined here but
infinite-dimensional in ordinary sense. These Hilbert spaces would have different decompositions
and would not be equivalent. Also in quantum physics decompositions to tensor products and
direct sums (say representations of symmetry group) have phyiscal meaning: abstract Hilbert
space of infinite dimension is too rough a concept.

A direct connection with the ideas about complexity emerges. Rationals correspond to pairs of
pairs of finite-dimensional Hilbert spaces corresponding to integers. Algebraic numbers corre-
spond to n-tuples of finite-dimensional Hilbert spaces. Transcendentals correspond to infinite-
dimensional Hilbert spaces decomposing to direct sums of tensor products: for instance, pinary
expansion could define this decomposition. This decomposition matters so that abstract infinite-
dimensional Hilbert spaces are not in question. The additional structure due to tensor product
and direct sum is present also in physical applications: for instance the decomposition to irre-
ducible representations defines this kind of direct sum decomposition.

2. Do the same for complex numbers, quaternions, and octonions, imbedding space M4×CP2, etc..
The objection is that the construction is not general coordinate invariant. In coordinates in which
point corresponds to integer valued coordinate one has finite-D Hilbert space and in coordinates
in which coordinates of point correspond to transcendentals one has infinite-D Hilbert space.
This makes sense only if one interprets the situation in terms of cognitive representations for
points. π is very difficult to represent cognitively since it has infinite number of digits for which
one cannot give a formula. ”2” in turn is very simple to represent. This suggests interpretation
in terms of self-referentiality. The two worlds with different coordinatizations are not equivalent
since they correspond to different cognitive contents.

3. Replace also the coordinates of points of Hilbert spaces with Hilbert spaces again and again!

The second key observation is that one can do all this again but at new level. Replace the
numbers defining vectors of the Hilbert spaces (number sequences) assigned to numbers with
Hilbert spaces! Continue ad infinitum by replacing points with Hilbert spaces again and again.

One obtains a sequence of abstractions, which would be analogous to a hierarchy of n:th order
logics. At lowest levels would be just predicate calculus: statements like 4 = 22. At second level
abstractions like y = x2. At next level collections of algebraic equations, etc....

This construction is structurally very similar to - if not equivalent with - the construction of
infinite primes which corresponds to repeated second quantization in quantum physics. There is
also a close relationship to - maybe equivalence with - what I have called algebraic holography or
number theoretic Brahman=Atman identity [K76]. Numbers have infinitely complex anatomy
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not visible for physicist but necessary for understanding the self referentiality of consciousness
and allowing mathematical objects to be holograms coding for mathematics. Hilbert spaces
would be the DNA of mathematics from which all mathematical structures would be built!

Generalized Feynman diagrams as mathematical formulas?

One can assign to direct sum and tensor product their co-operations [K93, K9] and sequences of
mathematical operations are very much like generalized Feynman diagrams. Co-product for instance
would assign to integer m superposition of all its factorizations to a product of two integers with some
amplitude for each factorization. Same applies to co-sum. Operation and co-operation would together
give meaning to number theoretical 3-particle vertices. The amplitudes for the different factorizations
must satisfy consistency conditions: associativity and distributivity could give constraints to the
couplings to different channels- as particle physicist might express it.

The proposal is that quantum TGD is indeed quantum arithmetics with product and sum and
their co-operations. Perhaps even something more general since also quantum logics and quantum
set theory could be included! Generalized Feynman diagrams would correspond to formulas and
sequences of mathematical operations with stringy 3-vertex as fusion of 3 -surfaces corresponding to
⊕ and Feynmannian 3-vertex as gluing of 3-surfaces along their ends, which is partonic 2-surface,
corresponding to ⊗! One implication is that all generalized Feynman diagrams would reduce to a
canonical form without loops and incoming/outgoing legs could be permuted. This is actually a
generalization of old fashioned string model duality symmetry that I proposed years ago but gave it
up as too ”romantic” [K9].



Chapter 12

Quantum Arithmetics and the
Relationship between Real and
p-Adic Physics

12.1 Introduction

The construction of quantum counterparts for various mathematical structures of theoretical physics
have been a fashion for decades. Quantum counterparts for groups, Lie algebras, coset spaces, etc...
have been proposed often on purely formal grounds. In TGD framework quantum group like structures
emerges via the hyper-finite factors of type II1 (HFFs) about which WCW spinors represent a canoni-
cal example [K87]. The inclusions of HFFs provide a very attractive manner to realize mathematically
the notion of finite measurement resolution.

In the following a proposal for what might be called quantum integers and quantum matrix groups
is discussed. Quantum integers nq differ from their standard variants in that the map n→ nq respects
prime decomposition so that one obtains quantum number theory. Also quantum rationals belonging
to algebraic extension of rationals can be defined as well as their algebraic extensions. Quantum
arithmetics differs from the usual one in that quantum sum is defined in such a manner that the
map n → nq commutes also with sum besides the product: mq +q nq = (m + n)q. Quantum matrix
groups differ from their standard counterparts in that the matrix elements are not non-commutative.
The matrix multiplication involving summation over products is however replaced with quantum
summation.

The proposal is that these new mathematical structures allow a better understanding of the re-
lationship between real and p-adic physics for various values of p-adic prime p, to be called l in the
sequel because of its preferred physical nature resembling that of l-adic prime in l-adic cohomology.
The correspondence with the ordinary quantum groups [A79] is also considered and suggested to
correspond to a discretization following as a correlate of finite measurement resolution.

12.1.1 What could be the deeper mathematics behind dualities?

Dualities certainly represent one of the great ideas of theoretical physics of the last century. The
mother of all dualities might be electric-magnetic duality due to Montonen and Olive [B8]. Later a
proliferation, one might say even inflation, of dualities has taken place. AdS/CFT correspondence
[B32] is one example relating to each other perturbative QFT working in short scales and string theory
working in long scales.

Also in TGD framework several dualities suggests itself. All of them seem to relate to dictotomies
such as weak–strong, perturbative–non-perturbative, point like particle–string. Also number theory
seems to be involved in an essential manner.

1. If M8 −−M4 ×CP2 duality is true it is possible to regard space-times as surfaces in either M8

or M4 × CP2 [K78]. One manner to interpret the duality would as the analog of q-p duality
in wave mechanics. Surfaces in M8 would be analogous to momentum space representation of
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the physical stats: space-time surfaces in M8 would represent in some sense the points for the
tangent space of the ”world of classical worlds” (WCW) just like tangent for a curve gives the
first approximation for the curve near a given point.

The argument supporting M8 − −M4 × CP2 duality involves the basic facts about classical
number fields - in particular octonions and their complexification - and one can understand
M4×CP2 in terms of number theory. The analog of the color group in M8 picture would be the
isometry group SO(4) of E4 which happens to be the symmetry group of the old fashioned hadron
physics. Does this mean that M4 × CP2 corresponds to short length scales and perturbative
QCD whereas M8 would correspond to long length scales and non-perturbative approach?

2. Second duality would relate partonic 2-surfaces and string world sheets playing a key role in the
recent view about preferred extremals of Kähler action [L26]. Partonic 2-surfaces are magnetic
monopoles and TGD counterparts of elementary particles, which in QFT approach are regarded
as point like objects. The description in terms of partonic 2-surfaces forgetting that they are
parts of bigger magnetically neutral structures would correspond to perturbative QFT. The
description in terms of string like objects with vanishing magnetic charge is needed in longer
length scales. Electroweak symmetry breaking and color confinement would be the natural
applications. The essential point is that stringy description corresponds to long length scales
(strong coupling) and partonic description to short length scales (weak coupling).

Number theory seems to be involved also now: string world sheets could be seen as hyper-
complex 2-surfaces of space-time surface with hyper-quaternionic tangent space structure and
partonic 2-surfaces as co-hyper complex 2-surfaces (normal space would be hyper-complex).

3. Space-time surface itself would decompose to hyper-quaternionic and co-hyperquaternionic re-
gions and a duality also at this level is suggestive [L24], [K10]. The most natural candidates for
dual space-time regions are regions with Minkowskian and Euclidian signatures of the induced
metric with latter representing the generalized Feynman graphs. Minkowskian regions would
correspond to non-pertubative long length scale description and Euclidian regions to perturba-
tive short length scale description. This duality should relate closely to quantum measurement
theory and realize the assumption that the outcomes of quantum measurements are always
macroscopic long length scale effects. Again number theory is in a key role.

Real and p-adic physics and their unification to a coherent whole represent the basic pieces of
physics as generalized number theory program.

1. p-Adic physics can mean two different things. p-Adic physics could mean a discretization of
real physics relying on effective p-adic topology. p-Adic physics could also mean genuine p-adic
physics at p-adic space-time sheets. Real continuity and smoothness is an enormous constraint on
short distance physics. p-Adic continuity and smoothness pose similar constraints in short scales
an therefore on real physics in long length scales if one accepts that real and space-time surfaces
(partonic 2-surfaces for minimal option) intersect along rational points and possible common
algebraics in preferred coordinates. p-Adic fractality implying short range chaos and long range
correlations is the outcome. Therefore p-adic physics could allow to avoid the landscape problem
of M-theory due to the fact that the IR limit is unpredictable although UV behavior is highly
unique.

2. The recent argument [L26] suggesting that the areas for partonic 2-surfaces and string world
sheets could characterize Kähler action leads to the proposal that the large Nc expansion [B1]
in terms of the number of colors defining non-perturbative stringy approach to strong coupling
phase of gauge theories could have interpretation in terms of the expansion in powers of 1/

√
p,

p the p-adic prime. This expansion would converge extremely rapidly since Nc would be of the
order of the ratio of the secondary and primary p-adic length scales and therefore of the order
of
√
p: for electron one has p = M127 = 2127 − 1.

3. Could there exist a duality between genuinely p-adic physics and real physics? Could the
mathematics used in p-adic mass calculations- in particular canonical identification

∑
n xnp

n →∑
xnp

−n - be extended to apply to quantum TGD itself and allow to understand the non-
perturbative long length scale effects in terms of short distance physics dictated by continuity

http://tgdtheory.com/articles/minimalsurface.pdf
http://tgdtheory.com/articles/prefextremals.pdf
http://tgdtheory.com/articles/minimalsurface.pdf
http://en.wikipedia.org/wiki/1/N_expansion
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and smoothness but in different number field? Could a proper generalization of the canonical
identification map allow to realize concretely the real–p-adic duality?

A generalization of the canonical identification [K53] and its variants is certainly needed in order
to solve the problems caused by the fact that it does not respect symmetries. That the generalization
might exist was suggested already by the model for Shnoll effect [K5], which led to a proposal that
this effect can be understand in terms of a deformation of probability distribution f(n) (n non-
negative integer) for random fluctuations. The deformation would replace the rational parameters
characterizing the distribution with new ones obtained by mapping the parameters to new ones by
using the analog of canonical identification respecting symmetries. This deformation would involve
two parameters: quantum phase q = exp(iπ/m) and preferred prime l, which need not be independent
however: m = l, is a highly suggestive restriction.

The idea of the model of Shnoll effect was to modify the map n → nq in such a manner that
it is consistent with the prime decomposition of ordinary integers. One could even consider the
notion of quantum arithmetics requiring that the map commutes with sum. This in turn suggest the
generalization of the matrix groups to what might be called quantum matrix groups. The matrix
elements would not be however non-commutative but obey quantum arithmetics. These quantum
groups would be labelled by prime l and the original form of the canonical identification l → 1/l
defines a group homomorphism. This form of canonical identification respecting symmetries could be
applied to the linear representations of these groups. This map would be both continuous and respect
symmetries.

12.1.2 Correspondence along common rationals and canonical identifica-
tion: two manners to relate real and p-adic physics

The relationship between real and p-adic physics deserves a separate discussion.

1. The first correspondence between reals and p-adics is based on the idea that rationals are
common to all number fields implying that rational points are common to both real and p-
adic worlds. This requires preferred coordinates. It also leads to a fusion of different number
fields along rationals and common algebraics to a larger structure having a book like structure
[K77, K53].

(a) Quite generally, preferred space-time coordinates would correspond to a subset of preferred
imbedding space coordinates, and the isometries of the imbedding space give rise to this
kind of coordinates which are however not completely unique. This would give rise to a
moduli space corresponding to different symmetry related coordinates interpreted in terms
of different choices of causal diamonds (CDs).

(b) Cognitive representation in the rational (partly algebraic) intersection of real and p-adic
worlds would necessarily select certain preferred coordinates and this would affects the
physics in a delicate manner. The selection of quantization axis would be basic example of
this symmetry breaking. Finite measurement resolution would in turn reduce continuous
symmetries to discrete ones.

(c) Typically real and p-adic variants of given partonic 2-surface would have discrete and
possibly finite set of rational points plus possible common algebraic points. The intersection
of real and p-adic worlds would consist of discrete points. At more abstract level rational
functions with rational coefficients used to define partonic 2-surfaces would correspond to
common 2-surfaces in the intersection of real and p-adic WCW:s. As a matter fact, the
quantum arithmetics would make most points algebraic numbers.

(d) The correspondence along common rationals respects symmetries but not continuity: the
graph for the p-adic norm of rational point is totally discontinuous. Most non-algebraic
reals and p-adics do not correspond to each other. In particular, transcendental at both
sides belong to different worlds with some exceptions like ep which exists p-adically.

2. There is however a totally different view about real–p-adic correspondence. The predictions of
p-adic mass calculations are mapped to real numbers via the canonical identification applied
to the p-adic value of mass squared [K53, K52]. One can imagine several forms of canonical

http://tgdtheory.com/tgdnumber/tgdnumber.html#padmat
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identification but this affects very little the predictions since the convergence in powers of p for
the mass squared thermal expectation is extremely fast.

3. The two views are consistent if appropriately generalized canonical identification is interpreted as
a concrete duality mapping short length scale physics and long length scale physics to each other.
As a matter fact, I proposed for more that 15 years ago that canonical identification could be
essential element of cognition mapping external world to p-adic cognitive representations realized
in short length scales and vice versa. If so, then real–p-adic duality would be a cornerstone
of cognition [K56]. Common rational points would relate to the intentionality which is second
aspect of the p-adic real corresponence: the transformation of real to p-adic surfaces in quantum
jump would be the correlate for the transformation of intention to action. The realization of
intention would correspond to the correspondence along rationals and common algebraics (the
more common points real and p-adic surface have, the more faithful the realization of intentional
action) and the generation of cognitive representations to the canonical identification.

There are however hard technical problems involved. Maybe canonical identification should be
realized at the level of imbedding space at least - or even at space-time level. Canonical identification
would be locally continuous in both directions. Note that for the points with finite pinary expansion
(ordinary integers) the map is two-valued. Note also that rationals can be expanded in infinite powers
series with respect to p and one can ask whether one should do this or map q = m/n to I(m)/I(n)
(the representation of rational is unique if m and n have no common factors).

The basic problem is that canonical identification in its basic form does not respect symmetries:
the action of the p-adic symmetry followed by a canonical identification to reals is not equal to the
canonical identification map followed by the real symmetry.

1. One can imagine modifications of the canonical identification in attempts to solve this problem.
One can map rationals by m/n→ I(m)/I(n). One can also express m and n as power series of
pk as x =

∑
xnp

nk and perform the map as x→
∑
xnp

−nk. This allows to preserve symmetries
in arbitrary good measurement resolution characterizing by the power p−k on real side.

2. Could one circumvent this difficulty without approximations? This kind of approach should work
at least when finite measurement resolution is used meaning the replacement of the space-time
surface with a set of discrete points. Could the already mentioned quantum integers provide a
generalization of the notion of symmetry itself in order to circumvent ugly constructions?

12.1.3 Brief summary of the general vision

The basic questions of the p-adicization program are following.

1. Is there a duality between real and p-adic physics? What is its precice mathematic formulation?
In particular, what is the concrete map p-adic physics in long scales (in real sense) to real
physics in short scales? Can one find a rigorous mathematical formulation of the canonical
identification induced by the map p→ 1/p in pinary expansion of p-adic number such that it is
both continuous and respects symmetries.

2. What is the origin of the p-adic length scale hypothesis suggesting that primes near power of
two are physically preferred? Why Mersenne primes are especially important?

A partial answer to these questions proposed in this chapter relies on the following ideas inspired
by the model of Shnoll effect [K5]. The first piece of the puzzle is the notion of quantum arithmetics
formulated in non-rigorous manner already in the model of Shnoll effect.

1. For Option I sums are mapped to sums and products to products and is effectively equivalent with
ordinary p-adic arithmetics. Quantum map of primes p1 < p only accompanies the canonical
identification mapping p-adic numbers to reals. This option respects p-adic symmetries only in
finite measurement resolution.

2. For Option II primes p1 < p are mapped also to their quantum counterparts and generate a
ring. Sums are not mapped to sums and there are two options depending on whether products

http://tgdtheory.com/tgdconsc/tgdconsc.html#cognic
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are mapped to products or not. One obtains the analog of Kac-Moody algebra with coefficients
for given power of p defining an algebra analogies to polynomial algebra. One can define also
rationals and obtains a structure analogous to a function field. This field allows projection to
p-adic numbers but is much larger than p-adic numbers. The construction works also for the
general quantum phases q than those defined by primes. For this option the symmetries of
quantum p-adics would be preserved in the canonical identification.

3. p-Adic–real duality can be identified as the analog of canonical identification induced by the
map p → 1/p in the pinary expansion of quantum rational. This maps maps p-adic and real
physics to each other and real long distances to short ones and vice versa. This map is especially
interesting as a map for defining cognitive representations.

Quantum arithmetics inspires the notion of quantum matrix group as a counterpart of quantum
group for which matrix elements are non-commuting numbers. Now the elements would be ordinary
numbers. Quantum classical correspondence and the notion of finite measurement resolution realized
at classical level in terms of discretization suggest that these two views about quantum groups are
closely related. The preferred prime p defining the quantum matrix group is identified as p-adic prime
and canonical identification p→ 1/p is group homomorphism so that symmetries are respected.

Option I gives p-adic counterparts of classical groups since quantum map n → nq and its gener-
alization to rationals can be assigned to the map of p-adic numbers to real numbers. Requiring the
group conditions to be satisfied in order O(p) = 0 one obtains classical groups for finite fields G(p, 1)
by simply requiring that group conditions are satisfied in order O(p) = 0. One can also have also
classical groups associated with finite fields G(p, n) having pn elements.

Option II is more interesting and quantum counterparts could be seen as counterparts of classical
groups obtained by replacing group elements with the elements of ring defined by Kac-Moody algebra.

1. The quantum counterparts of special linear groups SL(n, F ) exists always. For the covering
group SL(2, C) of SO(3, 1) this is the case so that 4-dimensional Minkowski space is in a very
special position. For orthogonal, unitary, and orthogonal groups the quantum counterpart exists
only if quantum arithmetics is characterized by a prime rather than general integer and when
the number of powers of p for the generating elements of the quantum matrix group satisfies an
upper bound characterizing the matrix group.

2. For the quantum counterparts of SO(3) (SU(2)/ SU(3)) the orthogonality conditions state
that at least some multiples of the prime characterizing quantum arithmetics is sum of three
(four/six) squares. For SO(3) this condition is strongest and satisfied for all integers, which are
not of form n = 22r(8k + 7)). The number r3(n) of representations as sum of squares is known
and r3(n) is invariant under the scalings n → 22rn. This means scaling by 2 for the integers
appearing in the square sum representation.

3. r3(n) is proportional to the so called class number function h(−n) telling how many non-
equivalent decompositions algebraic integers have in the quadratic algebraic extension generated
by
√
−n.

The findings about quantum SO(3) encourages to consider a possible explanation for p-adic length
scale hypothesis and preferred p-adic primes.

1. The idea to be studied is that the quantum matrix group which is discrete is in some sense very
large for preferred p-adic primes. If cognitive representations correspond to the representations
of quantum matrix group, the representational capacity of cognitive representations is high and
this kind of primes are survivors in the algebraic evolution leading to algebraic extensions with
increasing dimension. The simple estimates of this chapter restricting the consideration to finite
fields (O(p) = 0 approximation) do not support this idea in the case of Mersenne primes.

2. An alternative idea discussed in [K93] is that number theoretic evolution leading to algebraic
extensions of rationals with increasing dimension favors p-adic primes which do not split in the
extensions to primes of the extension. There is also a nice argument that infinite primes which
are in one-one correspondence with prime polynomials code for algebraic extensions. These
primes code also for bound states of elementary particles. Therefore the stable bound states
would define preferred p-adic primes as primes which do not split in the algebraic extension
defined by infinite prime. This should select Mersenne primes as preferred ones.
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12.2 Various options for quantum arithmetics

In this section the notion of quantum arithmetics as a generalization of ordinary arithmetics preserving
its structure is discussed. One can imagine several options for quantum arithmetics. Common feature
of all options is that products of integers are mapped to products of quantum integers achieved by
mapping primes l to quantum primes lq = (ql − q−l)/(q − q−1), q = exp(iπ/p).

In the case of sum one could pose the condition that quantum sums are images of ordinary sums: in
this case (option I) one obtains something reducing to ordinary p-adic numbers and l→ lq accompanies
canonical identification p→ 1/p mapping p-adic rationals to reals.

Option II gives up the condition that quantum sum is induced by p-adic sum and assumes that lq
generate act as generators of Kac-Moody type algebra defined by powers pn such that sum is sum is
completely analogous to that for Kac-Moody algebra: a+ b =

∑
n anp

n +
∑
bnp

n =
∑
n(an + bn)pn.

Also the notion of quantum matrix group differing from ordinary quantum groups in that matrix
elements are commuting numbers is discussed. This group forms a discrete counterpart of ordinary
quantum group and its existence suggested by quantum classical correspondence.

12.2.1 Quantum arithmetics

The starting point idea was that quantum arithmetics maps products of integers to products of
quantum integers. It has turned out that this need not be the case for the sum and even in the case of
product one can ask whether the assumption is necessary. For Option I sum and product are respected
but this option is more or less equivalent with p-adic numbers. For Option II the images of primes
generate Kac-Moody type algebra and sums are not mapped to sums and the number of elements of
quantum algebra is larger than that of p-adic number field. Also in this case one can consider option
giving up the condition that products are mapped to products.

Are products mapped to products?

The first question is whether products are mapped to products.

1. The multiplicative structure of ordinary integers is respected in the map taking ordinary integers
to quantum integers:

n = kl→ nq = kqlq . (12.2.1)

This is guaranteed if the map is induced by the map of ordinary primes to quantum primes.
This means that one decomposes n to a product of primes l and maps l→ lq. For primes l < p
the map reads as l → lq = (ql − q−l)/(q − q), q = exp(iπ/p) and gives positive number. For
l > p this need not be the case and for primes l > p one expands l as l =

∑
lmp

n, lm < p, and
expresses lm as product of primes l < p mapped to lq each to obtain lmq ≥ 0. Non-negativity
is important in the modelling of Shnoll effect by a deformation of probability distribution P (n)
by replacing the argument n by quantum integers and the parameters of the distribution by
quantum rationals [K5].

2. One could of course consider giving up the condition that products are mapped to products.
In this case one would simply expess n as n =

∑
nkp

k and map nk to nqk by using its prime
decompositions. Therefore product would be mapped to product only for integers n < p with
product smaller than p.

Are sums mapped to sums?

Second question is about whether quantum map commutes with sum. There are two options.

1. For Option I also the sum of quantum integers is well-defined and induces sum of the quantum
rationals. Therefore the sum +q for quantum integers would reflect the summation of ordinary
integers:
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n = k + l→ nq = kq +q lq . (12.2.2)

Option I can be interpreted in terms of ordinary p-adic integers and therefore it will not be
discussed in the following.

2. For option II one gives up the condition for the sum. This means that p-adic numbers are
replaced with a ring of quantum p-adics generated by the the images lq of primes l < m, where
m defines the quantum phase. In other words, one forms all possible products and sums of the
these generators and also their negatives. The sum is defined as the complete analog of sum for
Kac-Moody algebras: a+ b =

∑
anm

n +
∑
bnm

n =
∑

(an + bn)mn and obviously differs from
m-adic sum. The general element of algebra is x =

∑
xnm

n, where one has

xn =
∑
{ni}

N({ni})
∏
i

xnii , xi = pi,q, pi < m , q = exp(iπ/m) .

Here N({ni}) is integer. m = p gives what might be called quantum p-adic numbers. Note that
also zeroth order term giving rise to integers as constant term of polynomials is also present. The
map would produc integers from zeroth order terms so that skeptic could see the construction
too complex.

One has what could be regarded as analog of polynomial algebra with coefficients of polynomials
given by integers. Note that the coefficients can be also negative since quantum map combined
with canonical identification maps -1 to -1: canonical identification mapping −1 to (p− 1)q(1 +
p + p2...) would give only non-negative real numbers. If one wants that also the images under
canonical identification form a field (so that −x for given x belongs to the system) one must
assume that −1 is mapped to −1. Also the condition that one obtains classical groups requires
this. One can form also rationals of this algebra as ratios of this kind of polynomials and a
subset of them projects naturally to p-adic rationals.

3. One can project quantum integers for Option II to p-adic numbers by mapping the the products
of powers of generators lq, l < m to products of ordinary p-adic primes l < m in the sums
defining the coefficients in the expansion in powers of m to ordinary p-adic integers. This
projection defines a structure analogous to a covering space for p-adic numbers. The covering
contains infinite number of elements since also the negatives of generators are allowed in the
construction. The covering by elements with positive coefficients of mn is finite.

4. Quantum p-adics form a ring but do they form a field? This seems to be the case since quantum
p-adics are very much analogous to a function field for which the argument of function is defined
by integer characterizing the powers of p in quantum pinary expansion. One would have the
analogy of function field in the set of integers. This means that one can indeed speak of quantum
rationals M/N which can be mapped to reals by I(M/N) = I(M)/I(N).

About the choice of the quantum parameter q

Some comments about the quantum parameter q are in order.

1. The basic formula for quantum integers in the case of quantum groups is

nq =
qn − qn

q − q
. (12.2.3)

Here q is any complex number. The generalization respective the notion of primeness is obtained
by mapping only the primes p to their quantum counterparts and defining quantum integers as
products of the quantum primes involved in their prime factorization.
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pq =
qp − qp

q − q
nq =

∏
p

pnpq for n =
∏
p

pnp . (12.2.3)

2. In the general case quantum phase is complex number with magnitude different from unity:

q = exp(η)exp(iπ/m) . (12.2.4)

The quantum map is 1-1 for a non-vanishing value of η and the limit m → ∞ gives ordinary
integers. It seems that one must include the factor making the modulus of q different from
unity if one wants 1-1 correspondence between ordinary and quantum integers guaranteing a
unique definition of quantum sum. In the p-adic context with m = p the number exp(η) exists
as an ordinary p-adic number only for η = np. One can of course introduce a finite-dimensional
extension of p-adic numbers generated by e1/k.

3. The root of unity must correspond to an element of algebraic extension of p-adic numbers.
Here Fermat’s theorem ap−1 mod p = 1 poses constraints since p− 1:th root of unity exists as
ordinary p-adic number. Hence m = p − 1:th root of unity is excluded. Also the modulus of q
must exist either as a p-adic number or a number in the extension of p-adic numbers.

4. If q reduces to quantum phase, the n = 0, 1,−1 are fixed points of n→ nq for ordinary integers
so that one could say that all these numbers are common tointegers and quantum integers for all
values of q = exp(iπ/m). For p-adic integers −1 = (p−1)(1+p+p2+.. is problematic. Should one
use direct formula mapping it to −1 or should one map the expansion to (p−1)q(1+p+p2 + ....)?
This option looks more plausible.

(a) For the first option the images under canonical can have both signs and can form a field.
For the latter option would obtain only non-negative quantum p-adics for ordinary p-adic
numbers. They do not form a field. For algebraic extensions of p-adics by roots of unity
one can obtain more general complex numbers as quantum images. For the latter option
also the quantum p-adic numbers projecting to a given prime l regarded as p-adic integer
form a finite set and correspond to all expansions l =

∑
lkp

k where lk is product of powers
of primes pi < p but one can have also lk > p.

(b) Quantum integers containing only the O(p0) term in the binary expansion for a sub-ring.
Corresponding quantum rationals could form a field defining a kind of covering for finite
field G(p, 1).

(c) The image I(m/n) of the pinary expansion of p-adic rational is different from I(m)/I(n).
The formula m/n → I(m)/I(n) is the correct manner to define canonical identification
map. In this case the real counterparts of p-adic quantum integers do not form the analog
of function fields since the numbers in question are always non-negative.

5. For p-adic rationals the quantum map reads as m/n → mq/nq by definition. But what about
p-adic transcendentals such as ep? There is no manner to decompose these numbers to finite
primes and it seems that the only reasonable map is via the mapping of the coefficients xn in
x =

∑
xnp

n to their quantum adic counterparts. It seems that one must expand all quantum
transcendentals having as a signature non-periodic pinary expansion to quantum p-adics to
achieve uniqueness. Second possibility is to restrict the consideration to rational p-adics. If
one gives up the condition that products are mapped to products, one can map n = nkp

k to
nq =

∑
nkqp

k. Only the products of p-adic integers n < p smaller than p would be mapped to
products.
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6. The index characterizing Jones inclusion [A178] [K26] is given by [M : N ] = 4cos2(2π/n) and
corresponds to quantum dimension of 2q × 2q quantum matrices. TGD suggest that a series
of more general quantum matrix dimensions identifiable as indices of inclusions and given by
[M : N ] = l2q , l < p prime and q = exp(iπ/n), corresponding to prime Hilbert spaces and
q = n-adicity. lq < l is in accordance with the idea about finite measurement resolution and for
large values of p one would have lq ' l.

To sum up, one can imagine several options and it is not clear which option is the correct one.
Certainly Option I for which the quantum map is only part of canonical identification is the simpler
one but for this option canonical identification respects discrete symmetries only approximately. The
model for Shnoll effect requires only Option I. The notion of quantum integer as defined for Opion II
imbeds p-adic numbers to a much larger structure and therefore much more general than that proposed
in the model of Shnoll effect [K5] but gives identical predictions when the parameters characterizing
the probability distribution f(n) correspond contain only single term in the p-adic power expansion.
The mysterious dependence of nuclear decay rates on physics of solar system in the time scale of
years reduces to similar dependence for the parameters characterizing f(n). Could this dependence
relate directly to the fact that canonical identification maps long length scale physics to short length
scales physics. Could even microscopic systems such as atomic nuclei give rise to what might be called
”cognitive representations” about the physics in astrophysical length scales?

12.2.2 Canonical identification for quantum rationals and symmetries

The fate of symmetries in canonical identification map is different for options I and II. Consider first
Option I for quantum p-adics. This option effectively reduces to p-adic numbers so that the situation
would be essentially the same as for the canonical identification of ordinary p-adic numbers mapping
the coefficients of powers of p to their quantum counterparts so that the problems with symmetries
remain. One can of course ask why canonical identification should map p-adic symmetries to real
symmetries. There is no obvious answer to the question.

1. The prime p in the expansion
∑
xnl

n is interpreted as a symbolic coordinate variable and the
product of two quantum integers is analogous to the product of polynomials reducing to a
convolution of the coefficient using quantum sum. The coefficient of a given power of p in the
product would be just the convolution of the coefficients for factors using quantum sum. In the
sum coefficients would be just the quantum sums of coefficients of summands.

2. Option I maps p-adic integers to their quantum counterparts by mapping the coefficients 0 <
xn < p to their quantum counterparts defined by q = exp(iπ/p).

(a) One can also define quantum rationals by writing a given rational in unique manner as r =
pkm/n, expanding m and n as finite power series in p, and by replacing the coefficients with
their quantum counterparts. The mapping of quantum rationals to their real counterparts
would be by canonical identification p → 1/p in mq/nq. Also the completion of quantum
rationals obtained by allowing infinite powers series for m and n makes sense and defines
by canonical identification what might be called quantum reals.

(b) Quantum arithmetics defined in this manner reflects faithfully the ordinary p-adic arith-
metics and this leads to what might be seen as a problem with symmetries. In the product
of ordinary p-adic integers the convolution for given power of p can lead to overflow and
this leads to the emergence of modulo arithmetics. As a consequence, the canonical identi-
fication

∑
xnl

n →
∑
xnl
−n does not respect product and sum in general (simple example:

I((xl)2) = x2l−2 6= (I(xl))2 = (x2modl)l−2 + (x2 − x2modl)l−3 for x > l/2). Therefore
canonical identification induced by l→ 1/l does not respect symmetries represented affinely
(as linear transformations and translations) although it is continuous.

(c) For quantum rationals defined as ratiosmq/nq of quantum integers and mapped to I(mq)/I(nq)
the situation improves dramatically but is not cured completely. The breaking of symme-
tries could have a natural interpretation in finite measurement resolution. For instance,
one could argue that p-adic space-time sheets are extrema of Kähler action in algebraic
sense and their real counterparts obtained by canonical identification are kind of smoothed
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out quantum average space-time surfaces, which do not satisfy real field equations and are
not even differentiable. In this framework p-adicization would defined quantum average
space-time as a p-adically smooth object which nice geometric properties.

Consider next Option II for quantum p-adics.

1. The original motivation for quantum rationals was to obtain correspondence with reals respecting
symmetries. For option II this dream can be achieved if the symmetries are defined for quantum
rationals rather than p-adic numbers. Whether this means that quantum rationals are somehow
deeper notion that p-adic number field is an interesting question. Since quantum rationals are
obtained from quantum integers definong a Kac-Moody type algebra in powers of pn symmetry
conditions for quantum rational matrices reduce to conditions in terms of quantum integers and
hold separately for each power of p. Therefore the value of p does not actually matter, and the
replacement p→ 1/p respects the symmetries.

For instance, for the quantum counterpart of group SL(2, Z) assuming that pN is the largest
power in the matrix elements the condition det(A) = 1 gives 2N + 1 conditions for 4(N + 1)
parameters leaving 2N+3 parameters. The matrix elements are integers so that actual conditions
are more stringent.

2. For this option non-uniqueness is a potential problem. One can have several quantum integers
projecting to the same finite integer in powers of p. The number would be actually infinite when
the coefficients of powers of p can occur with both signs. Does the non-uniqueness mean that
quantum p-adics are more fundamental than p-adics?

3. The non-uniqueness inspires questions about the relationship between quantum field theory
and number theory. Could the sum over different quantum representatives for p-adic integers
define the analog of the functional integral in the ideal measurement resolution? Could loop
corrections correspond number theoretically to the sum over all the alternatives allowed in a
given measurement resolution defined by maximal number of powers of p in expansions of m
and n in r = m/n? This would extend the vision about physics as generalized number theory
considerably.

Note that quantum p-adic numbers are algebraic numbers so that quantum integers are algebraic
numbers with prime p remaining ordinary integer. For the second option canonical identification could
give rise to a correspondence between real physics and p-adic physics respecting both continuity and
symmetries and mapping long real length scales to short p-adic scales and vice versa and perhaps also
provide a purely number theoretic description of quantum corrections in terms of p-adic–quantum
p-adic correspondence.

12.2.3 More about the non-uniqueneess of the correspondence between
p-adic integers and their quantum counterparts

For the second option the map from p-adic numbers to quantum integers is not unique and it is
interesting to have some idea about how many quantum counterparts given p-adic integer has and
what might be their physical interpretation: a possible interpretation in terms of radiative corrections
has been already noticed. If −1 is mapped to −1 rather than (p − 1)q(1 + p + p2 + ...) in quantum
map and therefore also in canonical identification quantum p-adics form an analog of a function field.
The number of quantum p-adics projected to same integer is infinite.

The number of quantum p-adics for which the coefficients of the polymonomials of quantum primes
p1 < p regarded as variables are positive is finite. These kind of quantum integers could be called
strictily positive. It is easy to count the number of different strinctly positive quantum counterparts
of p-adic integer n = n0 + n1p+ n2p

2 + ...+ nkp
k. This representation is of course unique unlike the

corresponding quantum integer.

1. To construct quantum counterparts of n one can proceed power by power. n0 allows just one
representative. n0 + n1p allows d(n1, 2) quantum representatives, where the partition function
d(n1, 2) is the number of ways of representing n1 as a sum n1 = m + n of two non-negative
integers giving rise to a decomposition n0 + n1p = (n0 + mp) + np. At the next step one
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represents n2 as a sum of three non-negative integers: their number number is d(n2, 3). At the
step k one obtains d(nk, k + 1) partitions. Note that d(n, r) are fundamental number theoretic
functions appearing in the construction of tensor products of group representations.

2. The total number of partitions is
∏k
r=1 d(nr, r+ 1). Not surprisingly, the partitions of integer n

to a sum of k integers appears in the construction of representations of Virasoro algebras. The
number of states with total conformal weight n constructible using at most k Virasoro generators
equals to d(n, k). In the recent case there is however important restriction: the integers nr are
not divisible by p. Maybe the representations of Virasoro algebra fundamental for quantum
TGD could have a purely number theoretic interpretation.

Similar situation occurs in the construction of tensor powers of group representations for any
additive quantum number for which the basic unit is fixed. Could quantum classical correspon-
dence be realized as a mapping of different states of a tensor product as different quantum p-adic
space-time sheets?

3. The partition of nkp
k between k lower powers of p resembles combinatorially the insertion of loop

corrections of order pk in all possible manners to a Feynman diagram containing corresponds
up to pk−1. Maybe the sum over quantum corrections could be reduced to the summation of
amplitudes in which p-adic integer is mapped to its quantum counterpart in all possible manners.
In zero energy ontology quantum corrections to generalized Feynman diagrams in a new p-adic
length scaled defined by pk indeed more or less reduces to the addition of zero energy states as
a new tensor factor in all possible manners so that structurally the process would be like adding
tensor factor.

To number of geometric objects to which one can assign quantum counterparts is rather limited.
For the points of imbedding space with rational coordinates the number of quantum rational coun-
terparts would be finite. If either of the integers appearing in the p-adic rational become infinite as
a real integer, the number of quantum rationals becomes infinite. Therefore most of the points of a
D > 0-dimensional p-adic surface would map to an infinite number of copies. The restriction to a
finite number of pinary digits makes sense only at the ends of braid strands at partonic 2-surfaces.
This provides additional support for the effective 2-dimensionality and the braid representation for
the finite measurement resolution. The selection of braid ends is strongly constrained by the condition
that the number of pinary digits for the imbedding space coordinates is finite.

The interesting question is whether the summation over the infinite number of quantum copies of
the p-adic partonic 2-surface corresponds to the functional integral over partonic 2-surfaces with braid
ends fixed and thus having only one term in their pinary expansion. This kind of functional integral
is indeed encountered in quantum TGD.

1. The summations in which the quantum positions of braid ends form a finite set would correspond
to finite pinary cutoff. Second question is what the quantum summation for partonic 2-surfaces
means: certainly there must be correlations between very nearby points if the summation is to
make sense. The notion of finite measurement resolution suggests that summation reduces to
that over the quantum positions of the braid ends.

2. Indeed, the reduction of the functional integral to a summation over quantum copies makes sense
only if it can be carried out as a limit of a discrete sum analogous to Riemann sum and giving
as a result what might be called quantum p-adic integral. This limit would mean inclusion of
an increasing number of points of the partonic 2-surface to the quantum sum defined by the
increasing pinary cutoff. One would also sum over the number of braid strands. This approach
could make sense physically if the collection of p-adic partonic 2-surfaces together with their
tangent space data corresponds to a maximum of Kähler function. Quantum summation would
correspond to a functional integral over small deformations with weight coming from the p-adic
counterpart of vacuum functional mapped to its quantum counterpart. Canonical identification
would give the real or complex counterpart of the integral.

12.2.4 The three options for quantum p-adics

I have proposed two alternative definitions for quantum integers. In [K93] a third option is discussed.
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1. Option I is that quantum integers are in 1-1 correspondence with ordinary p-adic integers and
the correspondence is obtained by the replacement of the coefficients of the pinary expansion
with their quantum counterparts. In this case quantum p-adic integers would inherit the sum
and product of ordinary p-adic integers. This is the conservative option and certainly works but
is equivalent with the replacement of canonical identification with a map replacing coefficients
of powers of p with their quantum counterparts. This option has a m-adic generalization corre-
sponding to the expansion of m-adic numbers in powers of integer m with coefficients an < m.
As a special case one has m = pN . The quantum map would contain the interesting physics.

2. The approach adopted in the sequel is based on Option II based on the identification of quantum
p-adics as an analog of Kac-Moody algebra with powers pn in the same role as the powers zn

for Kac-Moody algebra. The two algebras have identical rules for sum and multiplication, and
one does not require the arithmetics to be induced from the p-adic arithmetics (as assumed
originally) since this would lead to a loss of associativity in the case of sum. Therefore the
quantum counterparts of primes l 6= p generate the algebra. One can also make the limitation
l < pN to the generators. The quantum counterparts of p-adic integers are identified as products
of quantum counterparts for the primes dividing them. The counterparts of in the map of integers
to quantum integers are 0, 1,−1 are , 0, 1,−1 as is easy to see. The number of quantum integers
projecting to same p-adic integer is infinite. For p = 2 quantum integers reduce to Z2 since
primes are mapped to ±1 under quantum map. For p = 3 one obtains powers of 2q. As p
increase the structure gets richer. One can define rationals in this algebra as pairs of quantum
integers not divisible with each other. At the limit when the quantum phase approaches to unit,
quantum integers approach to ordinary ones and ordinary arithmetics results.

3. One can consider also quantum m-adic option with expansion l =
∑
lkm

k in powers of integer
m with coefficients decomposable to products of primes l < m. This option is consistent with
p-adic topology for primes p divisible by m and is suggested by the inclusion of hyper-finite
factors [K26] characterized by quantum phases q = exp(iπ/m). Giving up the assumption that
coefficients are smaller than m gives what could be called quantum covering of m-adic numbers.
For this option all quantum primes lq are non-vanishing. Phases q = exp(iπ/m) characterize
Jones inclusions of hyper-finite factors of type II1 assumed to characterize finite measurement
resolution.

4. The definition of quantum p-adics discussed in [K93] replaces integers with Hilbert spaces of same
dimension and + and × with direct sum ⊕ and tensor product ⊗. Also co-product and co-sum
must be introduced and assign to the arithmetics quantum dynamics, which leads to proposal
that sequences of arithmetic operations can be interpreted arithmetic Feynman diagrams having
direct TGD counterparts. This procedure leads to what might be called quantum mathematics
or Hilbert mathematics since the replacement can be made for any structure such as rationals,
algebraic numbers, reals, p-adic numbers, even quaternions and octonions. Even set theory has
this kind of generalization. The replacement can be made also repeatedly so that one obtains
a hierarchy of structures very similar to that obtained in the construction of infinite primes by
a procedure analogous to repeated second quantization. One possible interpretation is in terms
of a hierarchy of logics of various orders. Needless to say this definition is the really deep one
and actually inspired by quantum TGD itself. In this picture the quantum p-adics as they are
defined here would relate to the canonical identification map to reals and this map would apply
also to Hilbert p-adics.

12.3 Do commutative quantum counterparts of Lie groups ex-
ist?

The proposed definition of quantum rationals involves exceptional prime p expected to define what
might be called p-adic prime. In p-adic mass calculations canonical identification is based on the
map p → 1/p and has several variants but quite generally these variants fail to respect symmetries.
Canonical identification for space-time coordinates fails also to be general coordinate invariant unless
one has preferred coordinates. A possible interpretation could be that cognition affects physics: the
choice of coordinate system to describe physics affects the physics.
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The natural question is whether the proposed definition of quantum integers as series of powers of
p-adic prime p with coefficients which are arbitrary quantum rationals not divisible by p with product
defined in terms of convolution for the coefficients of the series in powers of p using quantum sum for
the summands in the convolution could change (should one say ”save”?) the situation.

To see whether this is the case on must find whether the quantum analogues of classical matrix
groups exist. To avoid confusion it should be emphasized that these quantum counterparts are distinct
from the usual quantum groups having non-commutative matrix elements. Later a possible connection
between these notions is discussed. In the recent case matrix elements commute but sum is replaced
with quantum sum and the matrix element is interpreted as a powers series or polynomial in symbolic
variable x = p or x = 1/p, p prime such that coefficients are rationals not divisible by p.

The crucial points are the following ones.

1. All classical groups [A19] are subgroups of the special linear groups [A91] SLn(F ), F = R,C,
consisting of matrices with unit determinant. One can also replace F with the integers of the
field F to get groups like SL(2, Z). Classical groups are obtained by posing additional conditions
on SLn(F ) such as the orthonormality of the rows with respect to real, complex or quaternionic
inner product. Determinant defines a homomorphism mapping the product of matrices to the
product of determinants in the field F .

Could one generalize rational special linear group and its algebraic extensions by replacing the
group elements by ratios of polynomials of a formal variable x, which has as its value the preferred
prime p such that the coefficients of the polynomials are quantum integers not divisible by p?
For Option I the situation one has just ratios of p-adic integers finite as real integers and for
Option II the integers are polynomials x =

∑
xnp

n, where one has

xn =
∑
{ni}

N({ni})
∏
i

xnii , xi = pi,q, pi < p , q = exp(iπ/p) .

Here N({ni}) is integer. Could one perform this generalization in such a manner that the
canonical identification p → 1/p maps this group to an isomorphic group? If quantum p-adic
counterpart of the group is non-trivial, this seems to be the case since p plays the role of an
argument of a polynomial with a specific values.

2. The identity det(AB) = det(A)det(B) and the fact that the condition det(A) = 1 involves at
the right hand side only the unit element common to all quantum integers suggests that this
generalization could exist. If one has found a set of elements satisfying the condition detq(A) = 1
all quantum products satisfy the same condition and subgroup of rational special linear group
is generated.

12.3.1 Quantum counterparts of special linear groups

Special linear groups [A91] defined by matrices with determinant equal to 1 contain classical groups
as subgroups and the conditions for their quantum counterparts are therefore the weakest possible.
Special linear group makes sense also when one restricts the matrix elements to be integers of the field
so that one has for instance SLn(Z). Opiton I reduces to that for ordinary p-adics. For Option II each
power of p can be treated independently so that the situation is easier. The treatment of conditions
in two cases differs only in that overflows in p are possible for Option I. The numbers of conditions
are same.

Let us consider SLn(Z) first.

1. To see that the generalization exists in the case of special linear groups one just just writes the
matrix elements aij in series in powers of p

aij =
∑
n

aij(n)pn . (12.3.1)

This expansion is very much analogous to that for the Kac-Moody algebra element and also the
product and sum obey similar algebraic structure. p is treated as a symbolic variable in the

http://en.wikipedia.org/wiki/Classical_groups
http://en.wikipedia.org/wiki/Special_linear_group
http://en.wikipedia.org/wiki/Special_linear_group
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conditions stating detq(A) = 1. It is essential that detq(A) = 1 holds true when p is treated as
a formal symbol so that each power of p gives rise to separate conditions.

2. For SLn the definition of determinant involves sum over products of n elements. Quantum sums
of these elements are in question.

3. Consider now the number of conditions involved. The number of matrix elements is in real case
N2(k+ 1), where k is the highest power of p involved. det(A) = 1 condition involves powers of p
up to lNk and the total number of conditions is kN + 1 - one for each power. For higher powers
of p the conditions state the vanishing of the coefficients of pm. This is achieved elegantly in the
sense of modulo arithmetics if the quantum sum involved is proportional to lq.

The number of free parameters is

# = (k + 1)N2 − kN − 1 = kN(N − 1) +N2 − 1 . (12.3.2)

For N = 2, k = 0 one obtains # = 3 as expected for SL(2,R). For N = 2, k = 1 one obtains
# = 5. This can be verified by a direct calculation. Writing aij = bij + cijp one obtains three
conditions

detq(B) = 1 , T rq(BC) = 0 , detq(C) = 0 . (12.3.3)

for the 8 parameters leaving 5 integer parameters.

Integer values of the parameters are indeed possible. Using the notation

bij =

(
a0 b0
c0 d0

)
, cij =

(
a1 b1
c1 d1

)
(12.3.4)

one can write the solutions as

(a1, b1) = k(c1, d1) , (c1, d1) = l(a0 − kc0, b0 − kd0) ,
a0d0 − b0c0 = 1 .

(12.3.5)

Therefore 6 integers characterize the solution.

4. Complex case can be treated in similar manner. In this case the number of three parameters is
2(k + 1)N2, the number of conditions is 2(kN + 1) and the number of parameters is

# = 2(k + 1)N2 − 2(kN + 1) . (12.3.6)

5. Since the conditions hold separately for each power of p, the formulate detq(AB) = detq(A)detq(B)
implies that the matrices satisfying the conditions generate a subgroup of SLn.

One can generalize the argument to rational values of matrix elements in a simple manner. The
matrix elements can be written in the form Aij = Zij/K and the only modification of the equations
is that the zeroth order term in p gives det(Z) = Kn for SLn. One can expand Kn in powers of p and
it gives inhomogenous term to in each power of p. For instance, if K is zeroth order in p, solutions to
the conditions certainly exist.

The result means that rational subgroups of special linear groups SLn(R) and SL(n,C) and also
the real and complex counterparts of SL(n,Z) quantum matrix groups characterized by prime p exist
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in both real and p-adic context and can be related by the map p → 1/p mapping short and length
scales to each other.

It is remarkable that only the Lorentz groups SO(2, 1) and SO(3, 1) have covering groups are
isomorphic to SL(2, R) and SL(2, C) allow these subgroups. All classical Lie groups involve additional
conditions besides the condition that the determinant of the matrix equals to one and all these groups
except symplectic groups fail to allow the generalization of this kind for arbitrary values of k. Therefore
four-dimensional Minkowski space is in completely exceptional position.

12.3.2 Do classical Lie groups allow quantum counterparts?

In the case of classical groups one has additional conditions stating orthonormality of the rows of the
matrix in real, complex, or quaternionic number field. It is quite possible that the conditions might
not be satisfied always and it turns out that for G2 and probably also for other exceptional groups
this is the case.

1. Non-exceptional classical groups

It is easy to see that all non-exceptional classical groups quantum counterparts in the proposed
sense for sufficiently small values of k and in the case of symplectic groups quite generally. In this
case one must assume rational values of group elements and one can transform the conditions to
those involving integers by writing Aij = Zij/K. The expansion of K gives for orthogonal groups
the condition that the lengths of the integer rows defining Zij have length K2 plus orthogonality
conditions. det(A) = 1 condition holds true also now since a subgroup of special linear group is in
question.

1. Consider first orthogonal groups SO(N).

(a) For q = 1 there are N2 parameters. There are N conditions stating that the rows are unit
vectors and N(N − 1)/2 conditions stating that they are orthogonal. The total number of
free parameters is # = N(N − 1)/2.

(b) If the highest power of p is k there are (k+1)N2 parameters and (2k+1)[N+N(N−1)/2] =
(2k + 1)(N + 1)/2 conditions. The number of parameters is

# = N2(k + 1)− N(N + 1)(2k + 1)

2
=
N(N − 2k + 1)

2
. (12.3.7)

This is negative for k > (N + 1)/2. It is quite not clear how to interpret this result.
Does it mean that when one forms products of group elements satisfying the conditions
the powers higher than kmax = [(N + 1)/2] vanish by quantum modulo arithmetics. Or do
the conditions separate to separate conditions for factors in AB: this indeed occurs in the
unitarity conditions as is easy to verify. For SO(3) and SO(2, 1) this would give kmax = 2.
For SO(3, 1) one would have kmax = 2 too. Note that for the covering groups SL(2, R)
and SL(2, C) there is no restrictions of this kind.

(c) The normalization conditions for the coefficients of the highest power of a given row imply
that the vector in question has vanishing length squared in quantum inner product. For
q = 1 this implies that the coefficients vanish. The repeated application of this condition
one would obtain that k = 0 is the only possible solution. For q 6= 1 the conditions can
be satisfied if the quantum length squared is proportional to lq = 0. It seems that this
condition is absolutely essential and serves as a refined manner to realize p-adic cutoff and
quantum group structure and p-adicity are extremely closely related to each other. This
conclusion applies also in the case of unitary groups and symplectic groups.

(d) Complex forms of rotation groups can be treated similarly. Both the number of parameters
and the number of conditions is doubled so that one obtqins # = N2(k + 1) − N(N +
1)(2k + 1) = N(N − 2k + 1) which is negative for k > (N + 1)/2.

2. Consider next the unitary groups U(N). Similar argument leads to the expression

# = 2N2(k + 1)− (2k + 1)N2 = N2 (12.3.8)
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so that the number of three parameters would be N2- same as for U(N). The determinant has
modulus one and the additional conditions requires that this phase is trivial. This is expected
to give k+ 1 conditions since the fixed phase has l-adic expansion with k+ 1 powers. Hence the
number of parameters for SU(N) is

# = N2 − k + 1 (12.3.9)

giving the condition kmax < N2 − 1 which is the dimension of SU(N).

3. Symplectic group can be regarded as a quaternionic unitary group. The number of parameters is
4N2(k+1) and the number of conditions is (2k+1)(N+2N(N−1)) = N(2N−1)(2k+1) so that
the number of three parameters is # = 4N2(k+1)−(2k+1)N(N−1) = (2k+3)N2 +N(2k+1).
Fixing single quaternionic phase gives 3(k+1) conditions so that the number of parameters
reduces to

# = (2k + 3)N2 + (2k + 1)N − 3(k + 1) = (k + 1)(2N2 + 2N − 3) +N(N − 1) ,(12.3.10)

which is positive for all values of N and k so that also symplectic groups are in preferred
position. This is rather interesting, since the infinite-dimensional variant of symplectic group
associated with the δM4×CP2 is in the key role in quantum TGD and one expects that in finite
measurement resolution its finite-dimensional counterparts should appear naturally.

2. Exceptional groups are exceptional

Also exceptional groups [A32] [A32] related closely to octonions allow an analogous treatment once
the nature of the conditions on matrix elements is known explicitly. The number of conditions can
be deduced from the dimension of the ordinary variant of exceptional group in the defining matrix
representation to deduce the number of conditions. The following argument allows to expect that
exceptional groups are indeed exceptional in the sense that they do not allow non-trivial quantum
counterparts.

The general reason for this is that exceptional groups are very low dimensional subgroups of matrix
groups so that for the quantum counterparts of these groups the number Ncond of group conditions is
too large since the number of parameters is (k + 1)N2 in the defining matrix representation (if such
exists) and the number of conditions is at least (2k+1)Nclass, where Nclass is the number of condition
for the classical counterpart of the exceptional group. Note that r-linear conditions the number of
conditions is proportional to rk + 1.

One can study the automorphism group G2 [A38] of octonions as an example to demonstrate that
the truth of the conjecture is plausible.

1. G2 is a subgroup of SO(7). One can consider 7-D real spinor representation so that a represen-
tation consists of real 7× 7matrices so that one has 72 = 49 parameters. One has N(N + 1)/2
orthonormality conditions giving for N = 7 orthonormality conditions 28 conditions. This leaves
21 parameters. Besides this one has conditions stating that the 7-dimensional analogs of the
3-dimensional scalar-3-products A · (B × C) for the rows are equal 1, -1, or 0. The number of
these conditions is N(N − 1)(N − 2)/3!. For N = 7 this gives 35 conditions meaning that these
conditions cannot be independent of orthonormalization conditions The number of parameters
is # = 49− 35 = 14 - the dimension of G2 - so that these conditions must imply orthonormality
conditions.

2. Consider now the quantum counterpart of G2. There are (k + 1)N2 = 49(k + 1) parameters
altogether. The number of cross product conditions is (3k + 1)× 35 since the highest power of
p in the scalar-3-product is l3k. This would give

# = −56k + 14 . (12.3.11)

http://en.wikipedia.org/wiki/Exceptional_groups
http://en.wikipedia.org/wiki/G2_(mathematics)
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This number is negative for k > 0. Hence G2 would not allow quantum variant. Could this be
interpreted by saying that the breaking of G2 to SU(3) must take place and indeed occurs in
quantum TGD as a consequence of associativity conditions for space-time surfaces.

3. The conjecture is that the situation is same for all exceptional groups.

The general results suggest that both the covering group of the Lorenz group of 4-D Minkowski
space and the hierarchy symplectic groups have very special mathematical role and that the notions
of finite measurement resolution and p-adic physics have tight connections to classical number fields,
in particular to the non-associativity of octonions.

12.3.3 Questions

In the following some questions are introduced and discussed.

How to realize p-adic-real duality at the space-time level?

The concrete realization of p-adic–real duality would require a map from p-adic realm to real realm
and vice-versa induced by the map p→ 1/p leading from p-adic number field to real number field or
vice versa.

If possible, the realization of p-adic real duality at the space-time level should not pose additional
conditions on the preferred extremals themselves. Together with effective 2-dimensionality this sug-
gests that the map from p-adic realm to real realm maps partonic 2-surfaces to partonic 2-surfaces
defining at least partially the boundary data for holography.

The situation might not be so simple as this.

1. One must however also consider the possibility that its is 3-D space-like surfaces at the ends of
CDs which are mapped by the duality from p-adic realm to real realm or vice versa. A possible
reason is that this kind of surfaces can be easily defined as intersections Fi(z, rξ

2, ξ2) = 0, i = 1, 2
of two complex valued functions Fi of compex coordinate z and radial light-like coordinate for
δM4
± = S2 × T+ and two complex coordinates ξi, i = 1, 2 of CP2: the number of conditions is

4 and this gives D= 7-4=3-dimensional space-like surface as a solution. These surfaces - that is
functions Fi cannot be completely free but solutions of field equations in the direction of radial
coordinate, and this might pose a difficulty.

2. It is also possible that some local 4-D tangent space data at partonic 2-surfaces are needed to
characterize the space-time surface. An alternative possibility is that the failure of standard
form of determinism for Kähler action forces to introduce partonic 2-surfaces in various scales
and the breaking of strict 2-dimensionality does not occur locally. This option would correspond
at quantum level radiative corrections in shorter scales down to CP2 scale and might be seen as
aesthetically more attractive option.

3. The realization of p-adic real duality by applying the proposed form of canonical identification
to quantum rational points requires preferred coordinates. For the minimum option defined by
the map of partonic 2-surfaces (no 4-D tangent space data) this would mean that one must
have preferred coordinates for partonic 2-surfaces. It is easy to imagine how to identify this
kind of preferred complex coordinate. The complex coordinate could correspond to a preferred
complex coordinate for S2 ⊂ δM4

± or for a homologically non-trivial geodesic sphere of CP2. The
complex coordinates would transform linearly under the maximal compact subgroup of SO(3)
resp. SU(3).

How commutative quantum groups could relate to the ordinary quantum groups?

The interesting question is whether and how the commutative quantum groups relate to ordinary
quantum groups.

This kind of question is also encountered when considers what finite measurement resolution means
for second quantized induced spinor fields [K27]. Finite measurement resolution implies a cutoff on
the number of the modes of the induced spinor fields on partonic 2-surfaces. As a consequence, the
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induced spinor fields at different points cannot ant-commute anymore. One can however require anti-
commutativity at a discrete set of points with the number of points ”more or less equal” to the number
of modes. Discretization would follow naturally from finite measurement resolution in its quantum
formulation.

The same line of thinking might apply to to quantum groups. The matrix elements of quantum
group might be seen as quantum fields in the field of real or complex numbers or possibly p-adic number
field or of its extension. Finite measurement resolution means a cutoff in the number of modes and
commutativity of the matrix elements in a discrete set of points of the number field rather than
for all points. Finite measurement resolution would apply already at the level of symmetry groups
themselves. The condition that the commutative set of points defines a group would lead to the
notion of commutative quantum group and imply p-adicity as an additional and completely universal
outcome and select quantum phases exp(iπ/p) in a preferred position. Also the generalization of
canonical identification so central for quantum TGD would emerge naturally.

One must of course remember that the above considerations probably generalize so that one should
not take the details of the discussion too seriously.

How to define quantum counterparts of coset spaces?

The notion of commutative quantum group implies also a generalization of the notion of coset space
G/H of two groups G and H ⊂ G. This allows to define the quantum counterparts of the proper
time constant hyperboloid and CP2 = SU(3)/U(2) as discrete spaces consisting of quantum points
identifiable as representatives of cosets of the coset space of discrete quantum groups. This approach
is very similar but more precise than the earlier approach in which the points in discretization had
angle coordinates corresponding to roots of unity and radial coordinates with discretization defined
by p-adic prime.

The infinite-dimensional ”world of classical worlds” (WCW) can be seen as a union of infinite-
dimensional symmetric spaces (coset spaces) [K17] and the definition as a quantum coset group could
make sense also now in finite measurement resolution. This kind of approach has been already sug-
gested and might be made rigorous by constructing quantum counterparts for the coset spaces associ-
ated with the infinite-dimensional symplectic group associated with the boundary of causal diamond.
The problem is that matrix group is not in question. There are however good hopes that the symplec-
tic group could reduces to a finite-dimensional matrix group in finite measurement resolution. Maybe
it is enough to achieve this reduction for matrix representations of the symplectic group.

12.3.4 Quantum p-adic deformations of space-time surfaces as a represen-
tation of finite measurement resolution?

A mathematically fascinating question is whether one could use quantum arithmetics as a tool to
build quantum deformations of partonic 2-surfaces or even of space-time surfaces and how could
one achieve this. These quantum space-times would be commutative and therefore not like non-
commutative geometries assigned with quantum groups. Perhaps one could see them as commutative
semiclassical counterparts of non-commutative quantum geometries just as the commutative quantum
groups discussed in [K90] could be seen commutative counterparts of quantum groups.

As one tries to develop a new mathematical notion and interpret it, one tends to forget the
motivations for the notion. It is however extremely important to remember why the new notion is
needed.

1. In the case of quantum arithmetics Shnoll effect is one excellent experimental motivation. The
understanding of canonical identification and realization of number theoretical universality are
also good motivations coming already from p-adic mass calculations. A further motivation
comes from a need to solve a mathematical problem: canonical identification for ordinary p-adic
numbers does not commute with symmetries.

2. There are also good motivations for p-adic numbers. p-Adic numbers and quantum phases can
be assigned to finite measurement resolution in length measurement and in angle measurement.
This with a good reason since finite measurement resolution means the loss of ordering of points
of real axis in short scales and this is certainly one outcome of a finite measurement resolution.

http://tgdtheory.com/tgdgeom/tgdgeom.html#compl1
http://tgdtheory.com/tgdgeom/tgdgeom.html#compl1
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This is also assumed to relate to the fact that cognition organizes the world to objects defined
by clumps of matter and with the lumps ordering of points does not matter.

3. Why quantum deformations of partonic 2-surfaces (or more ambitiously: space-time surfaces)
would be needed? Could they represent convenient representatives for partonic 2-surfaces (space-
time surfaces) within finite measurement resolution?

(a) If this is accepted, there is no compelling need to assume that this kind of space-time
surfaces are preferred extremals of Kähler action.

(b) The notion of quantum arithmetics and the interpretation of p-adic topology in terms
of finite measurement resolution however suggest that they might obey field equations in
preferred coordinates but not in the real differentiable structure but in what might be called
quantum p-adic differentiable structure associated with prime p.

(c) Canonical identification would map these quantum p-adic partonic (space-time surfaces) to
their real counterparts in a unique continuous manner and the image would be real space-
time surface in finite measurement resolution. It would be continuous but not differentiable
and would not of course satisfy field equations for Kähler action anymore. What is nice
is that the inverse of the canonical identification which is two-valued for finite number of
pinary digits would not be needed in the correspondence.

(d) This description might be relevant also to quantum field theories (QFTs). One usually
assumes that minima obey partial differential equations although the local interactions in
QFTs are highly singular so that the quantum average field configuration might not even
possess differentiable structure in the ordinary sense! Therefore quantum p-adicity might
be more appropriate for the minima of effective action.

The cautious conclusion would be that commutative quantum deformations of space-time sur-
faces could have a useful function in TGD Universe.

Consider now in more detail the identification of the quantum deformations of space-time surfaces.

1. Rationals are in the intersection of real and p-adic number fields and the representation of
numbers as rationals r = m/n is the essence of quantum arithmetics. This means that m and
n are expanded to series in powers of p and coefficients of the powers of p which are smaller
than p are replaced by the quantum counterparts. They are quantum quantum counterparts of
integers smaller than p. This restriction is essential for the uniqueness of the map assigning to
a give rational quantum rationals.

2. One must get also quantum p-adics and the idea is simple: if the pinary expansions of m and n in
positive powers of p are allowed o become infinite, one obtains a continuum very much analogous
to that of ordinary p-adic integers with exactly the same arithmetics. This continuum can be
mapped to reals by canonical identification. The possibility to work with numbers which are
formally rationals is utmost importance for achieving the correct map to reals. It is possible to
use the counterparts of ordinary pinary expansions in p-adic arithmetics.

3. One can defined quantum p-adic derivatives and the rules are familiar to anyone. Quantum
p-adic variants of field equations for Kähler action make sense.

(a) One can take a solution of p-adic field equations and by the commutativity of the map
r = m/n → rq = mq/nq and of arithmetic operations replace p-adic rationals with their
quantum counterparts in the expressions of quantum p-adic imbedding space coordinates
hk in terms of space-time coordinates xα.

(b) After this one can map the quantum p-adic surface to a continuous real surface by using
the replacement p → 1/p for every quantum rational. This space-time surface does not
anymore satisfy the field equations since canonical identification is not even differentiable.
This surface - or rather its quantum p-adic pre-image - would represent a space-time surface
within measurement resolution. One can however map the induced metric and induced
gauge fields to their real counterparts using canonical identification to get something which
is continuous but non-differentiable.
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4. This construction works nicely if in the preferred coordinates for imbedding space and partonic
(space-time) surface itself the imbedding space coordinates are rational functions of space-time
coordinates with rational coefficients of polynomials (also Taylor and Laurent series with rational
coefficients could be considered as limits). This kind of assumption is very restrictive but in
accordance with the fact that the measurement resolution is finite and that the representative
for the space-time surface in finite measurement resolution is to some extent a convention. The
use of rational coefficients for the polynomials involved implies that for polynomials of finite
degree WCW reduces to a discrete set so that finite measurement resolution has been indeed
realized quite concretely!

Consider now how the notion of finite measurement resolution allows to circumvent the objections
against the construction.

1. Manifest GCI is lost because the expression for space-time coordinates as quantum rationals is
not general coordinate invariant notion unless one restricts the consideration to rational maps
and because the real counterpart of the quantum p-adic space-time surface depends on the choice
of coordinates. The condition that the space-time surface is represented in terms of rational
functions is a strong constraint but not enough to fix the choice of coordinates. Rational maps
of both imbedding space and space-time produce new coordinates similar to these provided the
coefficients are rational.

2. Different choices for imbedding space and space-time surface lead to different quantum p-adic
space-time surface and its real counterpart. This is an outcome of finite measurement resolution.
Since one cannot order the space-time points below the measurement resolution, one cannot fix
uniquely the space-time surface nor uniquely fix the coordinates used. This implies the loss of
manifest general coordinate invariance and also the non-uniqueness of quantum real space-time
surface. The choice of coordinates is analogous to gauge choice and quantum real space-time
surface preserves the information about the gauge.

12.4 Could one understand p-adic length scale hypothesis num-
ber theoretically?

p-Adic length scale hypothesis states that primes near powers of two are physically interesting. In
particular, both real and Gaussian Mersenne primes seem to be fundamental and can be tentatively
assigned to charged leptons and living matter in the length scales between cell membrane thickness
and size of the cell nucleus. They can be also assigned to various scaled up variants of hadron physics
and with leptohadron physics suggested by TGD.

12.4.1 Number theoretical evolution as a selector of the fittest p-adic
primes?

How could one understand p-adic length scale hypothesis? The general explanation would be in
terms of number theoretic evolution by quantum jumps selecting the primes that are the fittest. The
vision discussed in [K93] d leads to the proposal that the fittest p-adic primes are those which do not
split in the physically preferred algebraic extensions of rationals. Algebraic extensions are naturally
characterized by infinite primes characterizing also stable bound states of particles. Therefore these
stable infinite primes or equivalently stable bound states would characterize also the p-adic primes
which are fit. This explanation looks rather attractive.

p-Adic evolution would mean also a selection of preferred scales for CDs, instead of integer multi-
ples of CP2 scale only prime multiples or possibly prime power multiples would be favored and primes
near powers of two were especially fit. A possible ”biological” explanation is that for the preferred
primes the number of quantum states is especially large making possible to build complex sensory and
cognitive representations about external world.

The proposed vision about commutative quantum groups encourages to consider a number theo-
retic explanation for the p-adic length scale hypothesis consistent with the evolutionary explanation
is that the quantum counterpart of symmetry groups are especially large for preferred primes. Large
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symmetries indeed imply large numbers of states related by symmetry transformations and high rep-
resentational capacity provided by the p-adic–real duality. It is easy to make a rough test of the
proposal for G = SO(3), SU(2) or SU(3) associated with p-adic integers modulo p reducing to the
counterpart of G for finite field might be especially large for physically preferred primes. Mersenne
primes do not however seem to be special in this sense so that the following considerations can be
taken as an exercise in the use of number theoretic functions and the reader can quite well skip the
section.

12.4.2 Only Option I is considered

One considers only the Option I, which reduces to ordinary p-adic numbers effectively since quantum
map induced by pi → piq for pi < p can be combined with canonical identification. The arguments
developed say nothing about option II. For option I the group transformations for which the conditions
hold true modulo p make sense if matrix elements are integers satisfying aij < p. This makes sense for
large values of p associated with elementary particles. This implies a reduction to finite field G(p, 1).
The original argument was more general and used same condition but involved an error.

1. For SL(2, C) - the covering group of Lorentz group - one obtains no constraints and all quantum
phases exp(iπ/n) are allowed: this would mean that all CDs are in the same position. The
rational SL(2, C) matrices whose determinant is zero modulo p form a group assgignable to
finite field and and it might be that for some values of p this group is exceptionally large.
SL(2, C) defines also the covering group of conformal symmetries of sphere.

2. For orthogonal, unitary, and symplectic groups only n = p, p prime allows k > 0 and genuine
p-adicity. Since SO(3, 1), SO(3), SU(2) and SU(3) should alow p-adicization this selects CDs
with size scale characterized by prime p.

3. For orthogonal, unitary, and symplectic groups one obtains non-trivial solutions to the unitarity
conditions only if the highest power of p corresponds quantum image of a vector with zero norm
modulo p as follows from the basic properties of quantum arithmetics.

(a) In the case of SO(3) one has the condition

3∑
i=1

x2
i = 1 + k × p (12.4.1)

Note that this condition can degenerate to a condition stating that a sum of two squares
is multiple of prime. As noticed the prime must be large and x2

i < p holds true.

(b) For the covering group SU(2) of SO(3) one has the condition

4∑
i=1

x2
i = 1 + k × p (12.4.2)

since two complex numbers for the row of SU(2) matrix correspond to four real numbers.

(c) For SU(3) one has the condition

6∑
i=1

x2
i = 1 + k × p (12.4.3)

corresponding to 3 complex numbers defining the row of SU(3) matrix.

What can one say about these conditions? The first thing to look is whether the conditions can
be satisfied at all. Second thing to look is the number of solutions to the conditions.
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12.4.3 Orthogonality conditions for SO(3)

The conditions for SO(3) are certainly the strongest ones so that it is reasonable to study this case
first.

1. One must remember that there are also integers -in particular primes- allowing representation
as a sum of two squares. For instance, Fermat primes whose number is very small, allow
representation Fn = 2+1. More generally, Fermat’s theorem on sums of two squares states that
and odd prime is expressible as sum of two squares only if it satisfies p mod 4 = 1. The second
possibility is p mod 4 = 3 so that roughly one half of primes satisfy the p mod 4 = 1 condition:
Mersenne primes do not satisfy it.

The more general condition giving sum proportional to prime is satisfied for all n = k2l, k =
1, 2, ...

2. For the sums of three non-vanishing squares one can use the well-known classical theorem stating
that integer n can be represented as a sum of three squares only if it is not of the form [A53]

n = 22r(8k + 7) (12.4.4)

For instance, squares of odd integers are of form 8k + 1 and multiplied by any power of two
satisfy the condition of being expressible as a sum of three squares.

If n satisfies (does not satisfy) this condition then nm2 satisfies (doe not satisfy) it for any m this
since m2 gives some power of 2 multiplied by a 8k+1 type factor so that one can say that square
free odd integers for which the condition n 6= 7 (mod 8) generate this set of integers. Note that
the integers representable as sums of three non-vanishing squares do not allow a representation
using two squares. The product of odd primes p1 = 8m1 + k1 and p1 = 8m2 + k2 fails to satisfy
the condition only if one has k1 = 3 and k2 = 5. The product of n primes pi = 8mi + ki must
satisfy the condition

∏
ki 6= 7 (mod 8) in order to serve as a generating square free prime.

In the recent case one must have n mod p = 1. For Mersenne primes m = 1 + kMn allows
representation as a sum of three squares for most values of k. In particular, for k = 1 one obtains
m = 2n allowing at least the representation m = 2n−1 + 2n−1. One must also remember that all
that is needed is that sufficiently small multiples of Mersenne primes correspond to large value
of r3(n) if the proposed idea has any sense.

12.4.4 Number theoretic functions rk(n) for k = 2, 4, 6

The number theoretical functions rk(n) telling the number of vectors with length squred equal to
a given integer n are well-known for k = 2, 3, 4, 6 and can be used to gain information about the
constraints posed by the existence of quantum groups SO(2), SO(3), SU(2) and SU(3). In the
following the easy cases corresponding to k = 2, 4, 6 are treated first and after than the more difficult
case k = 3 is discussed. For the auxiliary function the reader can consult to the Appendix.

The behavior of r2(n)

r2(n) gives information not only about quantum SO(2) but also about SO(3) since 2-D vectors define
3-D vectors in an obvious manner. The expression for r2(n) is given by

r2(n) =
∑
d|n

χ(d) , χ(d) =

(
−4

d

)
. (12.4.5)

χ(d) is so called principal character defined in appendix. For n = 1 +Mk = 2k only powers of 2 and 1
divide n and for even numbers principal character vanishes so that one obtains r2(1+Mk) = χ(1) = 1.
This corresponds to the representation 2k = 2k−1 + 2k−1.

http://www.proofwiki.org/wiki/Integer_as_Sum_of_Three_Squares
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The behavior of r4(n)

The expression for r4(n) reads as

r4(n) =

{
8σ(n) if n is odd ,
24σ(m) if n = 2νm, m odd .

. (12.4.6)

For n = Mk + 1 = 2k one has r4(n) = 24σ(1) = 24.
The asymptotic behavior of σ function is known so that it is relatively easy to estimate the behavior

of r4(n). The behavior involves random looking local fluctuation which can be understood as reflective
the multiplicative character implying correlation between the values associated with multiples of a
given prime.

The behavior of r6(n)

The analytic expression for r6(n) is given by

r6(n) =
∑
d|n

[
16χ(

n

d
)− 4χ(d)

]
d2 ,

χ(n) =

(
−4

n

)
=

 0 if n is even
1 if n = 1 (mod 4)
−1 if n = 3 (mod 4)

(12.4.6)

For n = Mk + 1 = 2k this gives r6(n) = 12× 22k− 4 so that the number of representation is very large
for large Mersenne primes.

12.4.5 What can one say about the behavior of r3?

The proportionality of r3(D) to the order of h(−D) [A9] of the ideal class group [A51] [A51] for
quadratic extensions of rationals [A9] inspires some conjectures.

1. The conjecture that preferred primes p correspond to large commutative quantum groups trans-
lates to a conjecture that the order of ideal class group is large for the algebraic extension
generated by

√
−p− 1 or more generally

√
−kp− 1 - at least for some values of k. Could suit-

able integer multiples primes near power of 2 - in particular Mersenne primes - be such primes?
Note that only integer multiple is required by the basic argument.

2. Also some kind of approximate fractal behavior rk(sp) ' rk(p)fk(s) for some values of s anal-
ogous to that encountered for r4(D) for all values of s might hold true since k = 3 is a critical
transition dimension between k = 2 and k = 3. In particular, an approximate periodicity in
octaves of primes might hold true: rk(2sp) ' rk(p): this would support p-adic length scale
hypothesis and make the comutative quantum group large.

Expression of r3 in terms of class number function

To proceed one must have an explicit expression for the class number function h(D) and the expression
of r3 in terms of h(D).

1. The expression for h(D) discussed in the Appendix reads as gives

h(−D) = − 1

D

D∑
1

r ×
(
−D
r

)
. (12.4.7)

The symbols(
(−D
r

)
are Dirchlet and Kronecker symbols defined in the Appendix. Note that for

D = Mk + 1 = 2k the algebraic expansion in quesetion reduces to that generated by
√
−2 so

that the algebraic extension is definitely special.

http://en.wikipedia.org/wiki/Arithmetic_function
http://en.wikipedia.org/wiki/Ideal_class_group
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2. One can express r3(|D|) in terms of h(D) as

r3(|D|) = 12(1− (
D

2
))h(D) . (12.4.8)

Note that (p2 ) refers to Kronecker symbol.

3. From Wolfram one finds the following expressions of r3(n) for square free integers

r3(n) = 24h(−n) n = 3 (mod 8) ,
r3(n) = 12h(−4n) n = 1, 2, 5, 6 (mod 8) ,
r3(n) = 0 n = 7 (mod 8) .

(12.4.9)

4. The generating function for r3 [A94] is third power of theta function θ3.

∑
n≥0

r3(n)xn = θ3
3(n) = 1 + 6x+ 12x2 + 8x3 + 6x4 + 24x5 + 24x6 + 12x8 + 30x9 + ... .(12.4.10)

This representation follows trivially from the definition of θ function as sum
∑∞
n=−∞ xn

2

.

The behavior of h(−D) for large arguments is not easy to deduce without numerical calculations
which probably get too heavy for primes of order M127. The definition involves sum of p terms labeled
by r = 1, ..., p, and each term is a product is product of terms expressible as a product over the prime
factors of of r with over all term being a sign factor. ”Interference ” effects between terms of different
sign are obviously possible in this kind of situation and one might hope that for large primes these
effects imply wild fluctuations of r3(p).

Simplified formula for r3(D)

Recall that the proportionality of r3(|D|) to the ideal class number h(D) is for D < −4 given by

r3(|D|) = 12[1−
(
D

2

)
]h(D) . (12.4.11)

The expression for the Kronecker symbol appears in the formula as well as formulas to be discussed
below and reads as

(
D

2

)
=

 0 if D is even ,
1 if D = −1 (mod 8) ,
−1 if D = ±3 (mod 8) .

(12.4.12)

The proportionality factor vanishes for D = 22r(8m+ 7) and equals to 12 for even values of D and to
24 for D = ±3 (mod 8).

To get more detailed information about r3 one can begin from class number formula [A18] for
D < −4 reading as

h(D) =
1

|D|

|D|∑
r=1

r

(
D

r

)
. (12.4.13)

Each Jacobi symbol
(
D
r

)
decomposes to a product of Legendre and Kronecker symbols

(
D
pi

)
in the

decomposition of odd integer r to a product of primes pi.

http://mathworld.wolfram.com/SumofSquaresFunction.html
http://mathworld.wolfram.com/SumofSquaresFunction.html
http://en.wikipedia.org/wiki/Class_number_formula
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For
(
D
pi

)
= 1 pi splits into a product of primes in quadratic extension generated by

√
D. If it

vanishes pi is square of prime in the quadratic extension. In the recent case neither of these options
are possible for the primes involved as is easy to see by using the definition of algebraic integers.

Hence one has
(
D
pi

)
= −1 for all odd primes to transform the formula for D < −4 to the form

h(D) =
1

|D|

|D|∑
r=1

r[

(
D

2

)
]ν2(r)(−1)Ω(r)−ν2(r)

=
1

|D|

|D|∑
r=1

r[−
(
D

2

)
]ν2(r)(−1)Ω(r)) .

. (12.4.12)

Here ν2(r) characterizes the power of 2 appearing in r and Ω(r) is the number of prime divisors of r
with same divisor counted so many times as it appears. Hence the sign factor is same for all integers
r which are obtained from the same square free integer by multiplying it by a product of even powers
of primes.

Consider next various special cases.

1. For even values D < −4 (say D = −1 −Mn) only odd integers r contribute to the sum since
the Kronecker symbols vanish for even values of r.

h(D = 2d) =
1

|D|
∑

1≤r<|D| odd

r(−1)Ω(r)

. (12.4.11)

2. For D = ±1 (mod 8) , the factors
(
D
2

)
= −1 implies that one can forget the factors of 2

altogether in this case (note that for D = −1 (mod 8) r3(|D|) vanishes unlike h(D)).

h(D = ±1(mod 8)) =
1

|D|

|D|∑
r=1

r(−1)Ω(r))

. (12.4.10)

3. For D = ±3 (mod 8) , the factors
(
D
2

)
= 1 implies that one has

h(D = ±3(mod 8)) =
1

|D|

|D|∑
r=1

r(−1)Ω(r)−ν2(r)

. (12.4.10)

The magnitudes of the terms in the sum increase linearly but the sign factor fluctuates wildly so
that the value of h(−D) varies chaotically but must be divisible by p and negative since r3(p) must
be a positive integer.
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Could thermodynamical analogy help?

For D < −4 h(D) is expressible in terms of sign factors determined by the number of prime factors or
odd prime factors modulo two for integers or odd integers r < D. This raises hopes that h(D) could
be calculated for even large values of D.

1. Consider first the case D = ±1 (mod 8)). The function λ(r) = (−1)Ω(r) is known as Liouville
function [A59]. From the product expansion of zeta function in terms of ”prime factors” it is
easy to see that the generating function for λ(r)

∑
n

λ(n)n−s =
ζ(2s)

ζ(s)
=

1

ζF (s)
,

ζ(s) =
∏
p

(1− p−s)−1 , ζF (s) =
∏
p

(1 + p−s) . (12.4.10)

Recall that ζ(s) resp. ζF (s) has a formal interpretation as partition functions for the thermo-
dynamics of bosonic resp. fermionic system. This representation applies to h(D = ±1(mod8)).

2. For D = 2d the representation is obtained just by dropping away the contribution of all even
integers from Liouville function and this means division of (1+2−s) from the fermionic partition
function ζF (s). The generating function is therefore

∑
n odd

λ(n)n−s =
∏
p odd

(1 + p−s)−1 = (1 + 2−s)
1

ζF (s)
. (12.4.11)

3. For h(D = ±3( mod 8)). One most modify the Liouville function by replacing Ω(r) by the
number of odd prime factors but allow also even integers r. The generating function is now

∑
n

λ(n)(−1)ν2(n)n−s =
1

1− 2−s

∏
p odd

(1 + p−s)−1 =
1

1− 2−s
1

ζF (s)
. (12.4.12)

The generating functions raise the hope that it might be possible to estimate the values of the
h(D) numerically for large values of D using a thermodynamical analogy.

1. h(D) is obtained as a kind of thermodynamical average 〈r(−1)Ω(r)〉 for particle number r
weighted by a sign factor telling the number of divisors interpreted as particle number. s plays
the role of the inverse of the temperature and infinite temperature limit s = 0 is considered.
One can also interpret this number as difference of average particle number for states restricted
to contain even resp. odd particle number identified as the number of prime divisors with 2 and
even particle numbers possibly excluded.

2. The average is obtained at temperature corresponding to s = 0 so that n−s = 1 holds true
identically. The upper bound r < D means cutoff in the partition sum and has interpretation as
an upper bound on the energy log(r) of many particle states defined by the prime decomposition.
This means that one must replace Riemann zeta and its analogs with their cutoffs with n ≤ |D|.
Physically this is natural.

3. One must consider bosonic system all the cases considered. To get the required sign factor one
must associated to the bosonic partition functions assigned with individual primes in ζ(s) the
analog of chemical potential term exp(−µ/T ) as the sign factor exp(iπ) = −1 transforming ζ to
1/ζF in the simplest case.

One might hope that one could calculate the partition function without explicitly constructing
all the needed prime factorizations since only the number of prime factors modulo two is needed for
r ≤ |D|.

http://en.wikipedia.org/wiki/Liouville_function
http://en.wikipedia.org/wiki/Liouville_function
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Expression of r3 in terms of Dirichlet L-function

It is known [A68] that the function r3(D) is proportional to Dirichlet L-function L(1, χ(D)) [A26]:

r3(|D|) =
12
√
D

π
L(1, χ(D))) ,

L(s, χ) =
∑
n>0

χ(n,D)

ns
,

(12.4.11)

χ(n,D) is Dirichlet character [A25] which is periodic and multiplicative function - essentially a phase
factor- satisfying the conditions

χ(n,D) 6= 0 if n and D have no common divisors > 1 ,

χ(n,D) = 0 if n and D have a common divisor > 1 ,

χ(mn,D) = χ(m,D)χ(n,D) , χ(m+D,D) = χ(m,D) ,

χ(1, D) = 1 .

(12.4.12)

1. L(1, χ(D)) varies in average sense slowly but fluctuates wildly between certain bounds. One can
say that there is local chaos.

The following estimates for the bounds are given in [A130]:

c1(D) ≡ k1log(log(D) < L1(1, χ(D)) < c2(D) ≡ k2log(log(D)) . (12.4.13)

Also other bounds are represented in the article.

Could preferred integers correspond to the maxima of Dirichlet L-function?

The maxima of Dirichlet L-function are excellent candidates for the local maxima of r3(D) since
√
D

is slowly varying function.

1. As already found, integers n = 1+Mk = 2k cannot represent pronounced maxima of r3(n) since
there are no representation as a sum of three squares and the proportionality constant vanishes.
Note that in this case the representation reduces to a representation in terms of two integers.
In this special case it does not matter whether L-function has a maximum or not.

(a) Could just the fact that the representation for n = 1 + Mk = 2k in terms of three primes
is not possible, select Mersenne primes Mn > 3 as preferred ones? For SU(2), which is
covering group of SO(3) the representation as a sum of four squares is possible. Could it be
that the spin 1/2 character of the fermionic building blocks of elementary particles means
that a representation as sum of four squares is what matters. But why the non-existence
of representation of n as a sum of three squares might make Mersenne primes so special?

2. Could also primes near power of 2 define maxima? Unfortunately, the calculations of [A130]
involve averaging, minimum, and maximum over 106 integers in the ranges n × 106 < D <
(n+ 1)× 106, so that they give very slowly varying maximum and minimum.

3. Could Dirichlet function have some kind of fractal structure such that for any prime one would
have approximate factorization? The naivest guesses would be L(1, χkl) ' f1(k)L(1, χl) with
k = 2s. This would mean that the primes for which D(1, χp) is maximum would be of special
importance.

4. p-Adic fractality and effective p-adic topology inspire the question whether L-function is p-
adic fractal in the regions above certain primes defining effective p-adic topology D(1, χpk) '
f1(k)DK(1, χp) for preferred primes.

http://en.wikipedia.org/wiki/Dirichlet_L-function
http://en.wikipedia.org/wiki/Dirichlet_character
http://books.google.com/books?id=5nrGFEcrvr4C&pg=PA37&lpg=PA37&dq="numerical+calculation+of+class+number+function"&source=bl&ots=m_TQHACLaZ&sig=ONW3_hbNraim67o_jPEnaH1g-cI&hl=en&ei=wEupTp3rBo-DhQeH_uzJDg&sa=X&oi=book_result&ct=result&resnum=6&ved=0CEoQ6AEwBQ#v=onepage&q&f=false
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Interference as a helpful physical analogy?

Could one use physical analog such as interference for the terms of varying sign appearing in L-function
to gain some intuition about the situation?

1. One could interpret L-function as a number theoretic Fourier transform with D interpreted as
a wave vector and one has an interference of infinite number of terms in position space whose
points are labelled by positive integers defining a half -lattice with unit lattice length. The
magnitude of n:th summand 1/n and its phase is periodic with period D = kp. The value of
the Fourier component is finite except for D = 0 which corresponds to Riemann Zeta at s = 1.
Could this means that the Fourier component behaves roughly like 1/D apart from an oscillating
multiplicative factor.

2. The number theoretic counterparts of plane waves are special in that besides D-periodicity
they are multiplicative making thema lso analogs of logarithmic waves. For ordinary Fourier
components one additivity in the sense that Ψ(k1 + k2) = Ψ(k1)Ψ(k2). Now one has Ψ(k1k2) =
Ψ(k1)Ψ(k2) so that log(D) corresponds to ordinary wave vector. p-Adic fractality is an analog
for periodicity in the sense of logarithmic waves so that powers rather than integer multiples of
the basic scale define periodicity. Could the multiplicative nature of Dirichlet characters imply
p-adic - or at least 2-adic - fractality, which also means logarithmic periodicity?

3. Could one say that for these special primes a constructive interference takes place in the sum
defining the L-function. Certainly each prime represents the analog of fundamental wavelength
whose multiples characterize the summands. In frequency space this would mean fundamental
frequency and its sub-harmonics.

Period doubling as physical analogy?

1. For k = 4 all scales are present because of the multiplicative nature of σ function. Now only
the Dirichlet characters are multiplicative which suggests that only few integers define preferred
scales? Prime power multiples of the basic scale are certainly good candidates for preferred
scales but amongst them must be some very special prime powers. p = 2 is the only even prime
so that it is the first guess.

2. Could the system be chaotic or nearly chaotic in the sense of period doubling so that oc-
taves of preferred primes interfere constructively? Why constructively? Could complete chaos
-interpreted as randomness- correspond to a destructive interference and minimum of the L-
function?

3. What about scalings by squares of a given prime? It seems that these scalings cannot be
excluded by any simple argument. The point is that r3(n) contains also the factor

√
n which

must transform by integer in the scaling n→ kn. Therefore k must be power of square.

This leaves two extreme options. Both options are certainly testable by simple numerical calcu-
lations for small primes. For instance one can use generating function θ3

3(x) =
∑
r3(n)xn to kill the

conjectures.

1. The first option corresponds to scalings by all integers that are squares. This option is also
consistent with the condition n 6= 2k(8m + 7) since both the scaling by a square of odd prime
and by a square of 2 preserve this condition since one has n2 = 1 (mod 8) for odd integers. This
is also consistent with the finding that r3(n) = 1 holds true only for a finite number of integers.
A simple numerical calculation for the sums of 3 squares of 16 first integers demonstrates that
the conjecture is wrong.

2. The second option corresponds only to the scaling by even powers of two and is clearly the min-
imal option. This period quadrupling for n corresponds to period doubling for the components
of 3-vector. A calculation of the sums of squares of the 16 first integers demonstrates that for
n = 3, 6, 9, 11, .. the conjecture the value of r3(n) is same so that the conjecture might hold true!
If it holds true then Dirichlet L-function should suffer scaling by 2−r in the scaling n → 22rn.
The integer solutions for n scaled by 2r are certainly solutions for 22rn. Quite generally, one
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has r3(m2n) ≥ r3(n) for any integer m. The non-trivial question is whether some new solutions
are possible when the scaling is by 22r.

A simple argument demonstrates that there cannot be any other solutions to
∑3
ni=1m

2
i = 22rn

than the the scaled up solutions mi = 2ni obtained from
∑3
ni=1 n

2
i = n. This is seen by noticing

that non-scaled up solutions must contain 1, 2, or3 integers mi, which are odd. For this kind of
integers one has m2 = 1 (mod 4) so that the sum (

∑
im

2
i )= 1,2, or 3 (mod 4) whereas the the

right hand side vanishes mod 4.

3. If D is interpreted as wave vector, period quadrupling could be interpreted as a presence of
logarithmic wave in wave-vector space with period 2log(2).

Does 2-adic quantum arithmetics prefer CD scales coming as powers of two?

For p = 2 quantum arithmetics looks singular at the first glance. This is actually not the case since
odd quantum integers are equal to their ordinary counterparts in this case. This applies also to powers
of two interpreted as 2-adic integers. The real counterparts of these are mapped to their inverses in
canonical identification.

Clearly, odd 2-adic quantum quantum rationals are very special mathematically since they cor-
respond to ordinary rationals. It is fair to call them ”classical” rationals. This special role might
relate to the fact that primes near powers of 2 are physically preferred. CDs with n = 2k would be
in a unique position number theoretically. This would conform with the original - and as such wrong
- hypothesis that only these time scales are possible for CDs. The preferred role of powers of two
supports also p-adic length scale hypothesis.

The discussion of the role of quantum arithmetics in the construction of generalized Feynman
diagrams in [K33] allows to understand how for a quantum arithmetics based on particular prime p
particle mass squared - equal to conformal weight in suitable mass units- divisible by p appears as an
effective propagator pole for large values of p. In p-adic mass calculations real mass squared is obtained
by canonical identification from the p-adic one. The construction of generalized Feynman diagrams
allows to understand this strange sounding rule as a direct implication of the number theoretical
universality realized in terms of quantum arithmetics.

12.5 How quantum arithmetics affects basic TGD and TGD
inspired view about life and consciousness?

The vision about real and p-adic physics as completions of rational physics or physics associated with
extensions of rational numbers is central element of number theoretical universality. The physics in
the extensions of rationals are assigned with the interaction of real and p-adic worlds.

1. At the level of the world of classical worlds (WCW) the points in the intersection of real and
p-adic worlds are 2-surfaces defined by equations making sense both in real and p-adic sense.
Rational functions with polynomials having rational (or algebraic coefficients in some extension
of rationals) would define the partonic 2-surface. One can of course consider more stringent
formulations obtained by replacing 2-surface with certain 3-surfaces or even by 4-surfaces.

2. At the space-time level the intersection of real and p-adic worlds corresponds to rational points
common to real partonic 2-surface obeying same equations (the simplest assumption). This
conforms with the vision that finite measurement resolution implies discretization at the level
of partonic 2-surfaces and replaces light-like 3-surfaces and space-like 3-surfaces at the ends of
causal diamonds with braids so that almost topological QFT is the outcome.

How does the replacement of rationals with quantum rationals modify quantum TGD and the
TGD inspired vision about quantum biology and consciousness?

12.5.1 What happens to p-adic mass calculations and quantum TGD?

The basic assumption behind the p-adic mass calculations and all applications is that one can assign
to a given partonic 2-surface (or even light-like 3-surface) a preferred p-adic prime (or possibly several
primes).
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The replacement of rationals with quantum rationals in p-adic mass calculations implies effects,
which are extremely small since the difference between rationals and quantum rationals is extremely
small due to the fact that the primes assignable to elementary particles are so large (M127 = 2127 − 1
for electron). The predictions of p-adic mass calculations remains almost as such in excellent accuracy.
The bonus is the uniqueness of the canonical identification making the theory unique.

The problem of the original p-adic mass calculations is that the number of common rationals (plus
possible algebraics in some extension of rationals) is same for all primes p. What is the additional
criterion selecting the preferred prime assigned to the elementary particle?

Could the preferred prime correspond to the maximization of number theoretic negentropy for a
quantum state involved and therefore for the partonic 2-surface by quantum classical correspondence?
The solution ansatz for the modified Dirac equation indeed allows this assignment [K27]: could this
provide the first principle selecting the preferred p-adic prime? Here the replacement of rationals with
quantum rationals improves the situation dramatically.

1. Quantum rationals are characterized by a quantum phase q = exp(iπ/p) and thus by prime p
(in the most general but not so plausible case by an integer n). The set of points shared by real
and p-adic partonic 2-surfaces would be discrete also now but consist of points in the algebraic
extension defined by the quantum phase q = exp(iπ/p).

2. What is of crucial importance is that the number of common quantum rational points of partonic
2-surface and its p-adic counterpart would depend on the p-adic prime p. For some primes p
would be large and in accordance with the original intuition this suggests that the interaction
between p-adic and real partonic 2-surface is stronger. This kind of prime is the natural candidate
for the p-adic prime defining effective p-adic topology assignable to the partonic 2-surface and
elementary particle. Quantum rationals would thus bring in the preferred prime and perhaps at
the deepest possible level that one can imagine.

12.5.2 What happens to TGD inspired theory of consciousness and quan-
tum biology?

The vision about rationals as common to reals and p-adics is central for TGD inspired theory of
consciousness and the applications of TGD in biology.

1. One can say that life resides in the intersection of real and p-adic worlds. The basic motivation
comes from the observation that number theoretical entanglement entropy can have negative val-
ues and has minimum for a unique prime [K47]. Negative entanglement entropy has a natural
interpretation as a genuine information and this leads to a modification of Negentropy Maxi-
mization Principle (NMP) allowing quantum jumps generating negentropic entanglement. This
tendency is something completely new: NMP for ordinary entanglement entropy would force
always a state function reduction leading to unentangled states and the increase of ensemble
entropy.

What happens at the level of ensemble in TGD Universe is an interesting question. The pes-
simistic view [K47], [L25] is that the generation of negentropic entanglement is accompanied
by entropic entanglement somewhere else guaranteeing that second law still holds true. Living
matter would be bound to pollute its environment if the pessimistic view is correct. I cannot
decide whether this is so: this seems like deciding whether Riemann hypothesis is true or not or
perhaps unprovable.

2. Replacing rationals with quantum rationals however modifies somewhat the overall vision about
what life is. It would be quantum rationals which would be common to real and p-adic variants
of the partonic 2-surface. Also now an algebraic extension of rationals would be in question so
that the proposal would be only more specific. The notion of number theoretic entropy still
makes sense so that the basic vision about quantum biology survives the modification.

3. The large number of common points for some prime would mean that the quantum jump trans-
forming p-adic partonic 2-surface to its real counterpart would take place with a large probability.
Using the language of TGD inspired theory of consciousness one would say that the intentional
powers are strong for the conscious entity involved. This applies also to the reverse transition

http://tgdtheory.com/articles/thermolife.pdf
http://tgdtheory.com/articles/thermolife.pdf
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generating a cognitive representation if p-adic-real duality induced by the canonical identifica-
tion is true. This conclusion seems to apply even in the case of elementary particles. Could even
elementary particles cognize and intend in some primitive sense? Intriguingly, the secondary
p-adic time scale associated with electron defining the size of corresponding CD is .1 seconds
defining the fundamental 10 Hz bio-rhythm. Just an accident or something very deep: a direct
connection between elementary particle level and biology perhaps?

12.6 Appendix: Some number theoretical functions

Explicit formulas for the number rk(n) of the solutions to the conditions
∑k

1 x
2
k = n are known and

define standard number theoretical functions closely related to the quadratic algebraic extensions of
rationals. The formulas for rk(n) require some knowledge about the basic number theoretical functions
to be discussed first. Wikipedia contains a good overall summary about basic arithmetic functions [A9]
including the most important multiplicative and additive arithmetic functions.

Included are character functions which are periodic and multiplicative: examples are symbols
(m/n) assigned with the names of Legendre, Jacobi, and Kronecker as well as Dirichlet character.

12.6.1 Characters and symbols

Principal character

Principal character [A9] χ(n) distinguishes between three situations: n is even, n = 1 (mod 4), and
n = 3 (mod 4) and is defined as

χ(n) =

(
−4

n

)
=

 0 if n=0 (mod 2)
+1 if n = 1 (mod 4)
−1 if n = 3 (mod 4)

(12.6.1)

Principal character is multiplicative and periodic with period k = 4.

Legendre and Kronecker symbols

Legendre symbol
(
n
p

)
characterizes what happens to ordinary primes in the quadratic extensions of

rationals. Legendre symbol is defined for odd integers n and odd primes p as

(
n

p

)
=

 0 if n = 0 (mod p) ,
+1 if n 6= 0 (mod p) and n = x2 (mod p) ,
−1 if there is no such x .

(12.6.2)

When D is so called fundamental discriminant- that is discriminant D = b2 − 4c for the equation
x2 − bx+ c = 0 with integer coefficients b, c, Legendre symbols tells what happens to ordinary primes
in the extension:

1.
(
D
p

)
= 0 tells that the prime in question divides D and that p is expressible as a square in the

quadratic extension of rationals defined by
√
D.

2.
(
D
p

)
= 1 tells that p splits into a product of two different primes in the quadratic extension.

3. For
(
D
p

)
= −1 the splitting of p does not occur.

This explains why Legendre symbols appear in the ideal class number h(D) characterizing the number
of different splittings of primes in quadratic extension.

Legendre symbol can be generalized to Kronecker symbol well-defined for also for even integers D.
The multiplicative nature requires only the definition of

(
n
2

)
for arbitrary n:

http://en.wikipedia.org/wiki/Arithmetic_function
http://en.wikipedia.org/wiki/Arithmetic_function
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(n
2

)
=

{
0 if n is even ,

(−1)
n2−1

8 if n is odd .
(12.6.3)

Kronecker symbol for p = 2 tells whether the integer is even, and if odd whether n = ±1 (mod 8) or
a = ±3 (mod 8) holds true. Note that principal character χ(n) can be regarded as Dirichlet character(−4
n

)
.

For D = p quadratic resiprocity [A77] allows to transform the formula

χp(n) = (−1)(p−1)/2(−1)(n−1)/2
( p
n

)
= (−1)(p−1)/2(−1)(n−1)/2

∏
pi|n

(
p

pi

)
. (12.6.4)

Dirichlet character

Dirichlet character [A25]
(
a
n

)
is also a multiplicative function. Dirichlet character is defined for all

values of a and odd values of n and is fixed completely by the conditions

χD(k) = χD(k +D) , χD(kl) = χD(k)χD(l) ,

If D|n then χD(n) = 0 , otherwise χD(n) 6= 0 .
(12.6.5)

Dirichlet character associated with quadratic residues is real and can be expressed as

χD(n) =
( n
D

)
=
∏
pi|D

(
n

pi

)
. (12.6.6)

Here
(
n
pi

)
is Legendre symbol described above. Note that the primes pi are odd.

(
n
1

)
= 1 holds true

by definition.

For prime values of D Dirichet character reduces to Legendre symbol. For odd integers Dirichlet
character reduces to Jacobi symbol defined as a product of the Legendre symbols associated with the
prime factors. For n = pk Dirichlet character reduces to (

(
p
n

)
)k and is non-vanishing only for odd

integers not divisible by p and containing only odd prime factors larger than p besides power of 2
factor.

12.6.2 Divisor functions

Divisor functions [A27] σk(n) are defined in terms of the divisors d of integer n with d = 1 and d = n
included and are also multiplicative functions. σk(n) is defined as

σk(n) =
∑
d|n

dk , (12.6.7)

and can be expressed in terms of prime factors of n as

σk(n) =
∑
i

(pki + p2k
i + ...+ paiki ) . (12.6.8)

σ1 ≡ σ appears in the formula for r4(n).

The figures in Wikipedia [A42] give an idea about the locally chaotic behavior of the sigma function.

http://en.wikipedia.org/wiki/Quadratic_reciprocity
http://en.wikipedia.org/wiki/Dirichlet_character
http://en.wikipedia.org/wiki/Divisor_function
http://en.wikipedia.org/wiki/File:Sigma_function.svg
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12.6.3 Class number function and Dirichlet L-function

In the most interesting k = 3 case the situation is more complicated and more refined number theoretic
notions are needed. The function r3(D) is expressible in terms of so called class number function h(n)
characterizing the order of the ideal class group for a quadratic extension of rationals associated with
D, which can be negative. In the recent case D = −p is of special interest as also D = −kp, especially
so for k = 2r. h(n) in turn is expressible in terms of Dirichlet L-function so that both functions are
needed.

1. Dirichlet L-function [A26] can be regarded as a generalization of Riemann zeta and is also
conjectured to satisfy Riemann hypothesis. Dirichlet L-function can be assigned to any Dirichlet
character χD appearing in it as a function valued parameter and is defined as

L(s, χD) =
∑
n

χD(n)

ns
. (12.6.9)

For χ1 = 1 one obtains Riemann Zeta. Also L-function has expression as product of terms
associated with primes converging for Re(s) > 1, and must be analytically continued to get an
analytic function in the entire complex plane. The value of L-function at s = 1 is needed and
for Riemann zeta this corresponds to pole. For Dirichlet zeta the value is finite and L(1, χ−n)
indeed appears in the formula for r3(n).

2. Consider next what class number function h means.

(a) Class number function [A18] characterizes quadratic extensions defined by
√
D for both

positive and negative values of D. For these algebraic extensions the prime factorization in
the ring of algebraic integers need not be unique. Algebraic integers are complex algebraic
numbers which are not solutions of a polynomial with coefficients in Z and with leading
term with unit coefficient. What is important is that they are closed under addition and
multiplication. One can also defined algebraic primes. For instance, for the quadratic
extension generated by

√
±5 algebraic integers are of form m+ n

√
±5 since

√
±5 satisfies

the polynomial equation x2 = ±5.

Given algebraic integer n can have several prime decompositions: n = p1p2 = p3p4, where
pi algebraic primes. In a more advance treatment primes correspond to ideals of the algebra
involved: obviously algebra of algebraic integers multiplied by a prime is closed with respect
to multiplication with any algebraic integer.

A good example about non-unique prime decomposition is 6 = 2×3 = (1+
√
−5)(

√
1−
√
−5

in the quadratic extension generated by
√
−5.

(b) Non-uniqueness means that one has what might be called fractional ideals: two ideals I
and J are equivalent if one can write (a)J = (b)I where (n) is the integer ideal consisting
of algebraic integers divisible by algebraic integer n. This is the counterpart for the non-
uniquencess of prime decomposition. These ideals form an Abelian group known as ideal
class group [A51]. For algebraic fields the ideal class group is always finite.

(c) The order of elements of the ideal class group for the quadratic extension determined by
integer D can be written as

h(D) =
1

D

|D|∑
1

r ×
(
D

r

)
, D < −4 . (12.6.10)

Here
(
D
r

)
denotes the value of Dirichlet character. In the recent case D is negative.

3. It is perhaps not completely surprising that one can express r3(|D|) characterizing quadratic
form in terms of h(D) charactering quadratic algebraic extensions as

http://en.wikipedia.org/wiki/Dirichlet_L-function
http://en.wikipedia.org/wiki/Class_number_formula
http://en.wikipedia.org/wiki/Ideal_class_group
http://en.wikipedia.org/wiki/Ideal_class_group
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r3(|D|) = 12(1−
(
D

2

)
)h(D) , D < −4 . (12.6.11)

Here
(
D
2

)
denotes Kronecker symbol.



Chapter 13

Quantum Adeles

13.1 Introduction

Quantum arithmetics [K90] is a notion which emerged as a possible resolution of long-lasting challenge
of finding mathematical justification for the canonical identification mapping p-adics to reals.

13.1.1 What quantum p-adics could be?

The basic idea is that p-adic numbers could have quantum counterparts. This idea has developed
through several twists and turns and involved moments of almost despair.

The first attempts

The first attempts where based on the replacement of p-adic numbers with quantum p-adics in the
hope that the arithmetics could be lifted to quantum level.

1. The earlier work with quantum arithmetics [K90] suggests a modification of p-adic numbers by
replacing the coefficients an p-adic pinary expansions with their quantum counterparts (an)q
allowing the coefficients an of prime powers to be integers not divisible by p and involving only
primes l < p in the prime decomposition (for l > p the quantum counterpart can be negative).
an > p is allowed for the ”interesting but risky” and an < p is required for ”less-interesting but
safe” option.

2. For the ”interesting” option the assignment of quantum integer to a given p-adic integer is
not unique. A natural looking but not absolutely necessary constraint is that the assignment
respects the decomposition of the p-adic integer to powers of prime. With this assumption the
construction of quantum integers would reduce to that for primes l. The quantum counterpart of
l > p is not unique if the coefficients of powers of p can be larger than p. There exists preferred
quantum counterpart obtained by assuming that an < p. Restricting the consideration to these
quantum integers gives just p-adic integers if one regards quantum map n → nq and canonical
identification as unrelated notions.

3. Quantum p-adic integers for the ”interesting option” could be in some sense to p-adic integers
what the integers in the extension of number field are for the number field and attempts to
identify quantum Galois group for given prime were made. The attempt to define basic arith-
metic operations for quantum p-adics led however to difficulties and motivated to assign to the
conjecture quantum Galois group wave functions so that the quantum sum and product would
be defined for the wave functions assigned for the quantum p-adic integers. This option looked
also too complex to be fundamental. Also the question whether this option gives rise to a gener-
alization of number field, remained open, and no natural identification of quantum Galois group
was found.

Eventually I was forced to ask whether it would be wiser to be conservative and concentrate
on the ”less-interesting” option and try to make it more interesting. Could the emergence 1-to-
many correspondence between ordinary and quantum p-adics be something totally unrelated to the
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construction of quantum p-adics? Could it emerge in the quantum map n → nq taking into account
the effects of finite measurement resolution and meaning symmetry breaking: the different p-adic
expansions of n allowing the coefficient an of pn to be integers divisible only by primes l < p but
having also values an > p would be mapped to different quantum p-adic numbers. If this were the
case, quantum p-adics must mean something else than was thought first.

The replacement of numbers with sequences of arithmetic operations and integers with
Hilbert spaces

The first attempt to solve the problems related to the definition of +q and ×q was inspired by
zero energy ontology and led to a replacement of numbers with sequences of arithmetic operations
describable by analogs of Feyman diagrams. The comparison with generalized Feynman diagrams
allowed to realize how ”less-interesting” option could become ”interesting”: numbers could be replaced
with Hilbert spaces and all the conditions would be trivially satisfied!

1. The notion of generalized Feynman diagram suggests that of arithmetic Feynman diagram de-
scribing a sequence of arithmetic operations performed for a set of incoming integers and pro-
ducing a set of outgoing integers. The basic 3-vertices of the arithmetic Feynman diagram would
be ×q and +q and their co-operations. The moves of Feynman diagrams leaving the amplitude
invariant would code for associativity and distributivity. All loops could be eliminated by these
moves and diagram transformed to a canonical tree diagram in which incoming resp. outgoing
lines could be permuted. This kind of reduction to tree diagrams is an old proposal that I gave
up as too ”romantic” [K9] but which re-emerged from zero energy ontology where the assump-
tion that also internal lines (wormhole throats) are massless and on shell although the sign of
energy can be negative, poses extremely powerful kinematical constraints reducing the number
of Feynman diagrams. Incoming lines would correspond to integers decomposing into products
of primes and an attractive interpretation is that these primes correspond to braid strands.

2. The basic vertices in quantum TGD correspond to the stringy 3-vertex and 3-vertex for Feynman
graphs. They correspond at Hilbert space level naturally to tensor product and direct sum.
Could ×q and +q correspond to ⊗ and ⊕ obeying also associativity and distributivity and could
quantum arithmetics for Hilbert spaces apply to quantum TGD? If so, the integers characterizing
the lines of arithmetic Feynman diagrams would correspond to Hilbert space dimensions - or
rather, Hilbert spaces and quantum states - and in the vertices the incoming states fuse to a
direct sum ⊕ or tensor product ⊗!

3. One could assign to integer n a multiple covering defined by the state basis of n-dimensional
Hilbert space. This is just what one wants! The quantum Galois group would be subgroup of
the permutation group permuting the elements of this basis. The analogy with covering spaces
suggests cyclic group Zn. The non-trivial quantum Galois group would thus emerge also for the
”less-interesting” but non-risky option so that the conservative approach might work after all!

4. The Hilbert spaces in question could represent physical states - in p-adic context one could
speak about cognitive representations. It also turns out possible to relate these Hilbert spaces
directly to the singular coverings of imbedding space associated with the hierarchy of Planck
constants assigned with dark matter in TGD Universe. This gives a concrete content for the
quantum Galois group as cyclic permutations of the sheets of the covering of the imbedding
space. Hilbert spaces can be identified as function spaces associated with the discrete point
sets of the covering projected to the same point. Also a beautiful connection with infinite
primes defining algebraic extensions of rationals emerges and infinite primes would characterize
physical states by characterizing their dimensions of Hilbert spaces assignable to the incoming
and outgoing lines.

5. Quantum arithmetics would be arithmetics of Hilbert spaces and of states assigned to them.
This arithmetics allows also extension to rationals and algebraic numbers, and even the Hilbert
space variants of algebraic complex numbers, quaternions and octonions can be considered. Also
quantum adeles can be defined in terms of Hilbert spaces. These generalization are expected to
be crucial for the understanding of generalized Feynman diagrams.
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13.1.2 Quantum TGD and Hilbert adeles

Irrespective of whether the isomorphism holds true quantum adeles - if they exist - could provide a
very powerful tool also for the formulation of quantum TGD and realize the old intuition that AGG
is a symmetry group of quantum TGD [K38] .

1. The innocent TGD inspired question posed already earlier is whether the fusion of real and
various p-adic physics together could be realized in terms of adeles providing - if not anything
else - an ingenious book keeping device allowing to do real physics and all p-adic physics simul-
taneously by replacing the whole stuff by single letter A! Now however replaced with Aq.

2. The function spaces associated with quantum adeles decompose to tensor products of function
spaces associated with the completions of rationals and one can speak about rational entangle-
ment between different number fields. Rational entanglement can be generalized to algebraic
entanglement when one replaces rationals with their algebraic extension and primes with corre-
sponding primes. Could it be that this rational/algebraic entanglement is the rational/algebraic
suggested to characterize living matter and to which one can assign negative entanglement en-
tropy having interpretation as a measure for genuine information?

3. The basic vision of TGD inspired quantum bio-physics is that life resides in the intersection of
real and p-adic worlds in which rational/algebraic entanglement is natural. One can argue that
rational and algebraic entanglement are unstable and that it cannot be realized in any system -
living or not. The objection is that Negentropy Maximization Principle (NMP [K47]) favors the
generation of negentropic entanglement and once formed between two material systems described
by real numbers is stable. Could it be that the mechanism producing this kind of entanglement is
the necessary rational/algebraic entanglement between different number fields - between matter
and mind one might say - and that quantum jumps transforming p-adic space-time sheets to real
ones generates rational/algebraic entanglement between systems consisting of matter. Intention
transforming to action would be the interpretation for this process.

4. The construction of generalized Feynman diagrams leads to a picture in which propagator lines
give rise to expressions in various p-adic number fields and vertices naturally to multi-p-adic
expressions involving p-adic primes of incoming lines. This picture has also natural generaliza-
tion to quantum variants of p-adic numbers and the expressions are eventually mapped to real
numbers by canonical identification induced by p → 1/p for quantum rationals appearing in
various lines and in vertices of the generalized Feynman diagram. This construct would natu-
rally to a tensor product of state spaces assignable to different p-adic primes and also reals so
that M-matrix elements would be naturally in this tensor product. Note that the function space
associated with (quantum) adeles is naturally tensor product of functions spaces associated with
Cartesian factors of the adele ring with rationals defining the entanglement coefficients. All this
of course generalizes by replacing rationals by their algebraic extensions.

13.2 Earlier attempts to construct quantum arithmetics

Quantum arithmetics [K90] provides a possible resolution of a long-lasting challenge of finding a
mathematical justification for the canonical identification mapping p-adics to reals playing a key role
in TGD - in particular in p-adic mass calculations [K52].

In [K90] several options for quantum arithmetics were discussed. Common feature of all options
is that products of integers are mapped to products of quantum integers achieved by mapping primes
l to quantum primes lq = (ql − q−l)/(q − q−1), q = exp(iπ/p).

In the case of sum one could pose the condition that quantum sums are images of ordinary sums: in
this case (option I) one obtains something reducing to ordinary p-adic numbers and l→ lq accompanies
canonical identification p→ 1/p mapping p-adic rationals to reals.

Option II gives up the condition that quantum sum is induced by p-adic sum and assumes that lq
generate act as generators of Kac-Moody type algebra defined by powers pn such that sum is sum is
completely analogous to that for Kac-Moody algebra: a+ b =

∑
n anp

n +
∑
bnp

n =
∑
n(an + bn)pn.

In this chapter a third and much more general option is discussed. In order to give the needed
context, the options discussed in [K90] are however briefly discussed first.
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13.2.1 Quantum arithmetics

The starting point idea was that quantum arithmetics maps products of integers to products of
quantum integers. It has turned out that this need not be the case for the sum and even in the case of
product one can ask whether the assumption is necessary. For Option I sum and product are respected
but this option is more or less equivalent with p-adic numbers. For Option II the images of primes
generate Kac-Moody type algebra and sums are not mapped to sums and the number of elements of
quantum algebra is larger than that of p-adic number field. Also in this case one can consider option
giving up the condition that products are mapped to products.

Are products mapped to products?

The first question is whether products are mapped to products.

1. The multiplicative structure of ordinary integers is respected in the map taking ordinary integers
to quantum integers:

n = kl→ nq = kqlq . (13.2.1)

This is guaranteed if the map is induced by the map of ordinary primes to quantum primes.
This means that one decomposes n to a product of primes l and maps l→ lq. For primes l < p
the map reads as l → lq = (ql − q−l)/(q − q), q = exp(iπ/p) and gives positive number. For
l > p this need not be the case and for primes l > p one expands l as l =

∑
lmp

n, lm < p, and
expresses lm as product of primes l < p mapped to lq each to obtain lmq ≥ 0. Non-negativity
is important in the modelling of Shnoll effect by a deformation of probability distribution P (n)
by replacing the argument n by quantum integers and the parameters of the distribution by
quantum rationals [K5].

2. One could of course consider giving up the condition that products are mapped to products.
In this case one would simply expess n as n =

∑
nkp

k and map nk to nqk by using its prime
decompositions. Therefore product would be mapped to product only for integers n < p with
product smaller than p.

Are sums mapped to sums?

Second question is about whether quantum map commutes with sum. There are two options.

1. For Option I also the sum of quantum integers is well-defined and induces sum of the quantum
rationals. Therefore the sum +q for quantum integers would reflect the summation of ordinary
integers:

n = k + l→ nq = kq +q lq . (13.2.2)

Option I can be interpreted in terms of ordinary p-adic integers and therefore it will not be
discussed in the following.

2. For option II one gives up the condition for the sum. This means that p-adic numbers are
replaced with a ring of quantum p-adics generated by the the images lq of primes l < m, where
m defines the quantum phase. In other words, one forms all possible products and sums of the
these generators and also their negatives. The sum is defined as the complete analog of sum for
Kac-Moody algebras: a+ b =

∑
anm

n +
∑
bnm

n =
∑

(an + bn)mn and obviously differs from
m-adic sum. The general element of algebra is x =

∑
xnm

n, where one has

xn =
∑
{ni}

N({ni})
∏
i

xnii , xi = pi,q, pi < m , q = exp(iπ/m) .
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Here N({ni}) is integer. m = p gives what might be called quantum p-adic numbers. Note that
also zeroth order term giving rise to integers as constant term of polynomials is also present. The
map would produc integers from zeroth order terms so that skeptic could see the construction
too complex.

One has what could be regarded as analog of polynomial algebra with coefficients of polynomials
given by integers. Note that the coefficients can be also negative since quantum map combined
with canonical identification maps -1 to -1: canonical identification mapping −1 to (p− 1)q(1 +
p + p2...) would give only non-negative real numbers. If one wants that also the images under
canonical identification form a field (so that −x for given x belongs to the system) one must
assume that −1 is mapped to −1. Also the condition that one obtains classical groups requires
this. One can form also rationals of this algebra as ratios of this kind of polynomials and a
subset of them projects naturally to p-adic rationals.

3. One can project quantum integers for Option II to p-adic numbers by mapping the the products
of powers of generators lq, l < m to products of ordinary p-adic primes l < m in the sums
defining the coefficients in the expansion in powers of m to ordinary p-adic integers. This
projection defines a structure analogous to a covering space for p-adic numbers. The covering
contains infinite number of elements since also the negatives of generators are allowed in the
construction. The covering by elements with positive coefficients of mn is finite.

4. Quantum p-adics form a ring but do they form a field? This seems to be the case since quantum
p-adics are very much analogous to a function field for which the argument of function is defined
by integer characterizing the powers of p in quantum pinary expansion. One would have the
analogy of function field in the set of integers. This means that one can indeed speak of quantum
rationals M/N which can be mapped to reals by I(M/N) = I(M)/I(N).

About the choice of the quantum parameter q

Some comments about the quantum parameter q are in order.

1. The basic formula for quantum integers in the case of quantum groups is

nq =
qn − qn

q − q
. (13.2.3)

Here q is any complex number. The generalization respective the notion of primeness is obtained
by mapping only the primes p to their quantum counterparts and defining quantum integers as
products of the quantum primes involved in their prime factorization.

pq =
qp − qp

q − q
nq =

∏
p

pnpq for n =
∏
p

pnp . (13.2.3)

2. In the general case quantum phase is complex number with magnitude different from unity:

q = exp(η)exp(iπ/m) . (13.2.4)

The quantum map is 1-1 for a non-vanishing value of η and the limit m → ∞ gives ordinary
integers. It seems that one must include the factor making the modulus of q different from
unity if one wants 1-1 correspondence between ordinary and quantum integers guaranteing a
unique definition of quantum sum. In the p-adic context with m = p the number exp(η) exists
as an ordinary p-adic number only for η = np. One can of course introduce a finite-dimensional
extension of p-adic numbers generated by e1/k.
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3. The root of unity must correspond to an element of algebraic extension of p-adic numbers.
Here Fermat’s theorem ap−1 mod p = 1 poses constraints since p− 1:th root of unity exists as
ordinary p-adic number. Hence m = p − 1:th root of unity is excluded. Also the modulus of q
must exist either as a p-adic number or a number in the extension of p-adic numbers.

4. If q reduces to quantum phase, the n = 0, 1,−1 are fixed points of n→ nq for ordinary integers
so that one could say that all these numbers are common tointegers and quantum integers for all
values of q = exp(iπ/m). For p-adic integers −1 = (p−1)(1+p+p2+.. is problematic. Should one
use direct formula mapping it to −1 or should one map the expansion to (p−1)q(1+p+p2 + ....)?
This option looks more plausible.

(a) For the first option the images under canonical can have both signs and can form a field.
For the latter option would obtain only non-negative quantum p-adics for ordinary p-adic
numbers. They do not form a field. For algebraic extensions of p-adics by roots of unity
one can obtain more general complex numbers as quantum images. For the latter option
also the quantum p-adic numbers projecting to a given prime l regarded as p-adic integer
form a finite set and correspond to all expansions l =

∑
lkp

k where lk is product of powers
of primes pi < p but one can have also lk > p.

(b) Quantum integers containing only the O(p0) term in the binary expansion for a sub-ring.
Corresponding quantum rationals could form a field defining a kind of covering for finite
field G(p, 1).

(c) The image I(m/n) of the pinary expansion of p-adic rational is different from I(m)/I(n).
The formula m/n → I(m)/I(n) is the correct manner to define canonical identification
map. In this case the real counterparts of p-adic quantum integers do not form the analog
of function fields since the numbers in question are always non-negative.

5. For p-adic rationals the quantum map reads as m/n → mq/nq by definition. But what about
p-adic transcendentals such as ep? There is no manner to decompose these numbers to finite
primes and it seems that the only reasonable map is via the mapping of the coefficients xn in
x =

∑
xnp

n to their quantum adic counterparts. It seems that one must expand all quantum
transcendentals having as a signature non-periodic pinary expansion to quantum p-adics to
achieve uniqueness. Second possibility is to restrict the consideration to rational p-adics. If
one gives up the condition that products are mapped to products, one can map n = nkp

k to
nq =

∑
nkqp

k. Only the products of p-adic integers n < p smaller than p would be mapped to
products.

6. The index characterizing Jones inclusion [A178] [K26] is given by [M : N ] = 4cos2(2π/n) and
corresponds to quantum dimension of 2q × 2q quantum matrices. TGD suggest that a series
of more general quantum matrix dimensions identifiable as indices of inclusions and given by
[M : N ] = l2q , l < p prime and q = exp(iπ/n), corresponding to prime Hilbert spaces and
q = n-adicity. lq < l is in accordance with the idea about finite measurement resolution and for
large values of p one would have lq ' l.

To sum up, one can imagine several options and it is not clear which option is the correct one.
Certainly Option I for which the quantum map is only part of canonical identification is the simpler
one but for this option canonical identification respects discrete symmetries only approximately. The
model for Shnoll effect requires only Option I. The notion of quantum integer as defined for Opion II
imbeds p-adic numbers to a much larger structure and therefore much more general than that proposed
in the model of Shnoll effect [K5] but gives identical predictions when the parameters characterizing
the probability distribution f(n) correspond contain only single term in the p-adic power expansion.
The mysterious dependence of nuclear decay rates on physics of solar system in the time scale of
years reduces to similar dependence for the parameters characterizing f(n). Could this dependence
relate directly to the fact that canonical identification maps long length scale physics to short length
scales physics. Could even microscopic systems such as atomic nuclei give rise to what might be called
”cognitive representations” about the physics in astrophysical length scales?
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13.2.2 Summary: the three options for quantum p-adics

I have proposed two alternative definitions for quantum integers.

1. Option I is that quantum integers are in 1-1 correspondence with ordinary p-adic integers and
the correspondence is obtained by the replacement of the coefficients of the pinary expansion
with their quantum counterparts. In this case quantum p-adic integers would inherit the sum
and product of ordinary p-adic integers. This is the conservative option and certainly works but
is equivalent with the replacement of canonical identification with a map replacing coefficients
of powers of p with their quantum counterparts. This option has a m-adic generalization corre-
sponding to the expansion of m-adic numbers in powers of integer m with coefficients an < m.
As a special case one has m = pN . The quantum map would contain the interesting physics.

2. Option II based on the identification of quantum p-adics as an analog of Kac-Moody algebra
with powers pn in the same role as the powers zn for Kac-Moody algebra. The two algebras have
identical rules for sum and multiplication, and one does not require the arithmetics to be induced
from the p-adic arithmetics (as assumed originally) since this would lead to a loss of associativity
in the case of sum. Therefore the quantum counterparts of primes l 6= p generate the algebra.
One can also make the limitation l < pN to the generators. The quantum counterparts of p-adic
integers are identified as products of quantum counterparts for the primes dividing them. The
counterparts of in the map of integers to quantum integers are 0, 1,−1 are , 0, 1,−1 as is easy
to see. The number of quantum integers projecting to same p-adic integer is infinite. For p = 2
quantum integers reduce to Z2 since primes are mapped to ±1 under quantum map. For p = 3
one obtains powers of 2q. As p increase the structure gets richer. One can define rationals in
this algebra as pairs of quantum integers not divisible with each other. At the limit when the
quantum phase approaches to unit, quantum integers approach to ordinary ones and ordinary
arithmetics results.

3. One can consider also quantum m-adic option with expansion l =
∑
lkm

k in powers of integer
m with coefficients decomposable to products of primes l < m. This option is consistent with
p-adic topology for primes p divisible by m and is suggested by the inclusion of hyper-finite
factors [K26] characterized by quantum phases q = exp(iπ/m). Giving up the assumption that
coefficients are smaller than m gives what could be called quantum covering of m-adic numbers.
For this option all quantum primes lq are non-vanishing. Phases q = exp(iπ/m) characterize
Jones inclusions of hyper-finite factors of type II1 assumed to characterize finite measurement
resolution.

The definition of quantum p-adics discussed in this chapter replaces integers with Hilbert spaces of
same dimension and + and × with direct sum ⊕ and tensor product ⊗. Also co-product and co-sum
must be introduced and assign to the arithmetics quantum dynamics, which leads to proposal that
sequences of arithmetic operations can be interpreted arithmetic Feynman diagrams having direct
TGD counterparts. This procedure leads to what might be called quantum mathematics or Hilbert
mathematics since the replacement can be made for any structure such as rationals, algebraic numbers,
reals, p-adic numbers, even quaternions and octonions. Even set theory has this kind of generalization.
The replacement can be made also repeatedly so that one obtains a hierarchy of structures very similar
to that obtained in the construction of infinite primes by a procedure analogous to repeated second
quantization. One possible interpretation is in terms of a hierarchy of logics of various orders. Needless
to say this definition is the really deep one and actually inspired by quantum TGD itself. In this picture
the quantum p-adics as they are defined here would relate to the canonical identification map to reals
and this map would apply also to Hilbert p-adics.

13.3 Hilbert p-adics, Hilbert adeles, and TGD

One can imagine also a third generalization of the number concept. One can replace integer n with
n-dimensional Hilbert space and sum and product with direct sum and tensor product and introduced
their co-operations, the definition of which is non-trivial. This procedure yields also Hilbert space
variants of rationals, algebraic numbers, p-adic number fields, and even complex, quaternionic and
octonionic algebraics. Also adeles can be replaced with their Hilbert space counterparts. Even more,
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one can replace the points of Hilbert spaces with Hilbert spaces and repeat this process, which is
very similar to the construction of infinite primes having interpretation in terms of repeated second
quantization. This process could be the counterpart for construction of nth order logics and one might
speak of Hilbert or quantum mathematics. It would also generalize the notion of algebraic holography.

This vision emerged from the connections with generalized Feynman diagrams, braids, and with
the hierarchy of Planck constants realized in terms of coverings of the imbedding space. Hilbert space
generalization of number concept seems to be extremely well suited for the purposes of TGD. For in-
stance, generalized Feynman diagrams could be identifiable as arithmetic Feynman diagrams describ-
ing sequences of arithmetic operations and their co-operations. The definition of co-operations would
define quantum dynamics. Physical states would correspond to the Hilbert space states assignable to
numbers.

13.3.1 Could the notion of Hilbert mathematics make sense?

After having worked one month with the iea I found myself in a garden of branching paths and
realized that something must be wrong. Is the idea about quantum p-adics a disgusting fix idee or is
it something deeper?

The successful manner to make progress in this this kind of situation has been the combination of
existing firmly established ideas with the newcomer. Could the attempt to relate quantum p-adics to
generalized Feynman graphs, infinite primes, and hierarchy of Planck constants help?

Second good strategy is maximal simplification. In the recent case this encourages sticking to the
most conservative option for which quantum p-adics are obtained from ordinary p-adics by mapping
the coefficients of powers of p to quantum integers. This option has also a variant for which one has
expansion in powers of pN defining pinary cutoff. At the level of p-adic numbers different values of
N make no difference but at the level of finite measurement resolution situation is different. Also
quantum m-adicity would have natural interpretation in terms of measurement resolution rather than
fundamental algebra.

Replacing integers with Hilbert spaces

Consider now the argument leading to the interpretation of p-adic integers as Hilbert space dimensions
and the formulation of quantum p-adics as p-adic Hilbert spaces whose state basis defines a multiple
covering of integer defining the dimension of the Hilbert space.

1. The notion of generalized Feynman diagram and zero energy ontology suggest suggests that of
arithmetic Feynman diagram describing a sequence of arithmetic operations performed for a set
of incoming integers and producing a set of outgoing integers. This approach indeed led to the
discovery that integers could be replaced by Hilbert spaces.

2. The basic 3-vertices of the arithmetic Feynman diagram would be ×q and +q and their co-
operations. The moves of Feynman diagrams leaving the amplitude invariant would code for
associativity and distributivity. All loops could be eliminated by these moves and diagram trans-
formed to a canonical tree diagram in which incoming resp. outgoing lines could be permuted.

3. Incoming lines would correspond to integers decomposing into products of primes and an at-
tractive interpretation is that these primes correspond to braid strands for generalized Feynman
diagrams.

4. The basic vertices in quantum TGD correspond to the stringy 3-vertex and 3-vertex for Feynman
graphs. They correspond at Hilbert space level naturally to tensor product and direct sum.
Could ×q and +q correspond to tensor product and direct sum obeying also associativity and
distributivity?! If so, the integers characterizing the lines of arithmetic Feynman diagrams would
correspond to Hilbert space dimensions - or rather, Hilbert spaces - and in vertices the incoming
states fuse to direct sum of tensor product!

5. What this would mean is that one could assign to each p-adic integer a multiple covering defined
by the state basis of the corresponding Hilbert space. This is just what one wants! The quantum
Galois group would be subgroup of the permutation group permuting the elements of this basis.
The analogy with covering spaces suggests just cyclic group. The non-trivial quantum Galois
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group would emerge also for the ”less-interesting” but non-risky option so that the conservative
approach might work!

6. The Hilbert spaces in question could represent physical states - maybe cognitively in the p-
adic context. It also turns out possible to relate these Hilbert spaces directly to the singular
coverings of imbedding space associated with the hierarchy of Planck constants assigned with
dark matter in TGD Universe. This gives a concrete content for the quantum Galois group as
cyclic permutations of the sheets of the covering of the imbedding space and Hilbert spaces can
be identified as function spaces associated with the discrete point sets of covering projected to
the same point. Also a beautiful connection with infinite primes defining algebraic extensions of
rationals emerges and infinite primes would characterize physical states by characterizing their
dimensions of Hilbert spaces assignable to the incoming and outgoing lines.

This approach works for the ordinary p-adic integers. There is no need to allow coefficients
an > p (”interesting” option) in the expansion

∑
anp

n of p-adic numbers but still consisting of
primes l < p. ”Interesting” option would emerge as one takes finite measurement resolution into
account by mapping the Hilbert spaces defining coefficients of Hilbert space pinary expansion with
their quantum counterparts. More precisely.

1. At Hilbert space level pinary expansion of p-adic Hilbert space becomes direct sum ⊕nan ⊗ pn.
an = ⊗ipi, pi < p, denotes tensor product of prime Hilbert spaces for which I use the same label
as for p-adic numbers. pn denotes Hilbert space with dimension pn. In real context it is very
natural to decompose real Hilbert spaces to tensor products of prime Hilbert spaces.

2. Quantum p-adic numbers would be obtained by mapping the Hilbert space valued coefficients
an of the to their quantum counterparts (an)q, which are conjectured to allow precise definition
in terms of inclusions of hyper-finite factors with Jones inclusions associated with the quantum
counterpart of 2-D Hilbert space. The quantum map would reduce to the mapping of the tensor
factors p1 of an to (p1)q. Same would apply to quantum states. The map would be defined as
⊕an⊗ pn → ⊕(an)q ⊗ pn, (an)q = ⊗p1(p1)q. The map p1 → (p1)q would take into account finite
measurement resolution.

3. ”Interesting” option would be obtained as follows. It is possible to express given p-adic number
in many manners if one only requires that the coefficients an in the direct sum are tensor
products of prime Hilbert spaces with dimension p1 < p but does not assume an < p. For
instance, for p = 3 and n = 8 one has 8 = 2 ⊕ 2⊗ or 8 = 2 ⊗ 2 ⊗ 2. These representations are
p-adically equivalent. Quantum map however spoils this equivalence. 2 ⊕ 2 ⊗ 3 → 2q ⊕ 2q ⊗ 3
and 8 = 2⊗2⊗2→ 2q⊗2q⊗2q are not same quantum Hilbert spaces. The ”interesting” option
would thus emerge as one takes into account the finite measurement resolution.

4. One could say that the quantum Hilbert spaces associated with a given p-adic Hilbert space form
a covering space like structure. Quantum Galois group identified as a subgroup of permutations
of these quantum Hilbert spaces need not make sense however.

After this lengthy motivating introduction I want to describe some details of the arithmetics of
p-adic Hilbert spaces. This arithmetics is formally identical with the ordinary integer arithmetics.
What is however interesting is that one can generalize it so that one obtains something that one
could call Hilbert spaces of dimension which is negative, rational, algebraic, or even complex, and
even quaternionic or octonionic. It might be necessary to have these generalizations if one wants full
generality.

1. Consider first what might be called p-adic Hilbert spaces. For brevity I will denote Hilbert
spaces in the same manner as p-adic numbers: reader can replace ”n” with ”Hn” if this looks
more appropriate. p-Adic Hilbert spaces have direct sum expansions of form

n = ⊕kak ⊗ pk .

All integers appearing in the formula can be also interpreted as Hilbert space dimensions. In
the real context it is very natural to decompose real Hilbert spaces to tensor products of prime
Hilbert spaces.
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2. How to define Hilbert spaces with negative dimension? In p-Adic context this is not a problem.
Hilbert space with dimension −1 is given by Hilbert spaces with dimension (p − 1)/(1 − p) =
(p− 1)(1 + p+ p2 + ...) converging p-adically and given by

−1 = ⊕k(p− 1)⊗ pk .

In real context one must consider pairs of Hilbert spaces (m,n) and define equivalence (m,n) =
(m+k, n+k). In canonical representation Hilbert space with positive dimension m corresponds
to (m, 0) and Hilbert spaces with negative dimension −m to (0,m). This procedure is familiar
from the theory of vector bundles where one subtracts vector bundles and defines their negatives.

3. In p-adic context one can also define p-adic Hilbert spaces with rational dimension if the p-adic
norm of the rational (m/n) is smaller than 1. This is achieved simply by the expansion

m

n
= ⊕kak ⊗ pk .

In real context tone can define Hilbert spaces with rational valued dimension just as one defines
rational numbers - that is as pairs of Hilbert spaces (m,n) with equivalence (m,n) ≡ (km, kn).

4. One can even define Hilbert spaces with dimensions in algebraic extensions of rationals.

(a) Consider first the real case and the extension defined by Gaussian integers for which integers
are of form m + in ≡ (m,n). What is needed is just the product rule: (m,n) ⊗ (r, s) =
(m ⊗ r − ⊕(−n ⊗ s),m ⊗ s ⊕ r ⊗ n). This expression is completely well-defined in the p-
adic context and also in real context if one accepts the proposed defined of integer Hilbert
spaces as pairs of ordinary Hilbert spaces. For Q(

√
5) one would have (m,n) × (r, s) =

(m⊗ r ⊕ 5⊗ n⊗ s,m⊗ s⊕ r ⊗ n). In n-dimensional case one just replaces Hilbert spaces
with n-multiple of ordinary Hilbert spaces and uses the multiplication rules.

(b) In p-adic context similar approach works when the algebraic extension requires also exten-
sion of p-adic numbers. In p-adic context however many algebraic numbers can exist as
ordinary p-adic numbers. For instance, for p mod 4 = 1

√
−1 exists as well as its Hilbert

space counterpart. For quadratic extensions of p > 2-adic numbers the 4-D extension
involving the addition of two square roots all square roots except that of p exist -adically.

Quantum Hilbert spaces and generalization to extensions of rationals

The map of p-adic integers to their quantum counterparts generalizes so that it applies to Hilbert
spaces. This means that prime Hilbert spaces are mapped to the quantum counterparts. What this
means is not quite obvious. Quantum groups appearing in the context of Jones inclusions lead to
the emergence of quantum spinors that is quantum counterparts of 2-D Hilbert spaces. This suggest
that more general inclusions lead to prime-dimensional quantum Hilbert spaces. The idea is simple:
quantum matrix algebra M/N with quantum dimension (2q)

2 is defined as a coset space of hyper-finite
factor M and included factor N ⊂M . This quantum matrix algebra acts in quantum spinor space of
dimension 2q. The generalization would introduce pq-dimensional quantum Hilbert spaces.

A good test for the proposal is whether it generalizes naturally to algebraic extensions of rationals.

1. For algebraic extensions some ordinary primes split into products of primes associated with
the extension. The problem is that for these algebraic primes the factors exp(iπ/P ) fail to
be algebraic numbers and finite roots of unity and its is not at all clear whether the naive
generalization of the notion of quantum p-adic makes sense. This suggests that only the ordinary
primes which do not split into products of primes of extension remain and one can define quantum
p-adics only for these whereas the other primes correspond to ordinary algebraic extension of
p-adic numbers. This would make algebraic extension of rationals the coefficient group of adele
consisting of p-adic numbes fields associated with non-split primes only. Note that rationals or
their extension would naturally appear as tensor factor of adeles meaning that their action can
be thought to affect any of the factors of the adele.
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2. For split primes the p-adic Hilbert spaces must be defined for their algebraic prime factors. The
proposed procedure of defining Hilbert space counterparts for algebraic extensions of rationals
provides a recipe for how to achieve this. These Hilbert spaces the quantum map would be
trivial.

3. Hilbert space counterpart for the albebraic extension of rationals and of p-adics makes also sense.
The Hilbert space assigned with integer which splits into primes of extension splits also to a
tensor product of prime Hilbert spaces assignable with the extension. The splitting of integers
and primes is highly analogous to the decomposition of hadron to quarks and gluons. This
decomposition is not seen at the level of rationals reprsenting observed.

What about Hilbert spaces with real number valued dimension?

What Hilbert space variant of a real number could mean? What Hilbert space with dimension equal
to arbitrary real number could mean? One can imagine two approaches.

1. The first approach is based on the map of Hilbert p-adics to real p-adics by a map used to map
p-adic numbers to reals. The formula would be ⊕nan ⊗ pn → ⊕(an)q ⊗ p−n. (an)q = ⊗llelq ,
were lq is quantum Hilbert space of prime dimension. Also the Hilbert space p−n would be
well-defined as a Hilbert rational defined as a pair of Hilbert spaces.

For hyper-finite factors of type II1 Hilbert spaces with continuous dimension emerge naturally.
The reason is that the dimension of the Hilbert space is defined as quantum trace of identity
operator characterized by quantum phase this dimension is finite and continuous. This allows
a spectrum of sub-Hilbert spaces with continuously varying real dimension. The appearance
of quantum Hilbert spaces in the canonical identification map conforms with this and even for
dimension 0 < n < p gives rise to quantum Hilbert space with algebraic quantum dimension

given as n =
∏
le
l

q for n =
∏
l l
el .

2. Second approach relies on the mimicry of the completion of ordinary rationals to real numbers.
One can define Hilbert space analogs of rationals and algebraics by defining positive and negative
rationals as pairs of Hilbert spaces with equivalence relation (m,n) ≡ (m⊕r, n⊕r). Taking pairs
of these pairs with equivalence relation (M,N) ≡ (K ⊗M,K ⊗N) one obtains Hilbert spaces
corresponding to rational numbers. Algebraic extensions are obtained similarly. By taking limits
just in the same manner as for real numbers one would obtain Hilbert reals with transcendental
dimensions. For instance, e could be defined as the limit of tensor power (1⊕ 1/n)n, n→∞.

Again one must remember that the co-vertices define the hard part of the problem and their defini-
tion means postulate of quantum dynamics. This would be the genuinely new element and transform
mathematics to quantum physics. Every sequences of algebraic operations having a realization as
Feynman diagram involving arithmetic operations as positive energy part of Feynman diagrams and
co-operations as the negative energy part of diagram connected by single line.

It should not go un-noticed that the direct sum and tensor product decompositions of possibly
infinite-dimensional Hilbert spaces are very essential for the interpretation. For infinite-dimensional
Hilbert spaces these decompositions would be regarded as equivalent for an abstract definition of
Hilbert space. In physical applications tensor product and direct sum representations have also very
concrete physical content.

Hilbert calculus?

What this approach suggests is a generalization of calculus in both real and and p-adic context. The
first thing to do is to define Hilbert functions as Hilbert space valued functions as x → f(x). This
could be done formally by assigning to Hilbert space associated with point x Hilbert space associated
with the point f(x) for all values of x. Function could have representation as Taylor series or Laurent
series with sum replaced with direct sum and products with tensor products. The correspondence
x → f(x) would have as a counterpart the analog of Feynman diagram describing the Taylor series
with final line defining the value f(x). Also derivatives and integrals would be at least formally
defined. This would requite separate diagram for every point x. One can consider also the possibility
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of more abstract definition of f(x). For instance the set of coefficients {fn} in the Taylor series of f
would defined a collection of Hilbert spaces.

One should be able to define also co-functions in terms of co-vertices. The value of co-function at
point y would give all the values of x for which one has f(x) = y. Co-function would correspond to
a quantum superposition of values of inverse function and to time reversed zero energy states. The
breaking of time reversal would be inherent in the very definition of function as an arrow from one
Hilbert set to another Hilbert set and typically the functions involved would be many-valued form
beginning. Perhaps it would be better to speak from the beginning about relations between two sets
rather than functions. The physical realization of Hilbert calculus would be obtained by assigning to
incoming arguments represented as Hilbert space quantum states.

Quantum mathematics?

Could one transform entire mathematics to quantum mathematics - or would it be better to say
Hilbert mathematics? Reader can decide. Consider first Hilbert set theory. The idea wold be to
replace numbers with Hilbert spaces. This would give Hilbert structure. By replacing Hilbert spaces
with their quantum counterparts characterized by quantum dimensions nq one would obtain which
might be called quantum Hilbert structure.

1. At the level of set theory this would mean replacement of sets with Hilbert sets. A set with n
elements would correspond intuitively to n-dimensional Hilbert space. Therefore tHilbert sets
would provide much more specific realization of set theory than abstract set theory in which
the elements of set can be anything. For n-dimensional Hilbert space however the ordering of
the elements of basis induces automatically the ordering of the elements of the set. Does the
process of counting the elements of set corresponds to this ordering. Direct sum would be the
counterpart of set theoretic union. One could construct natural numbers inductively as direct
sums (n+1) = n⊕1. To be subset would correspond to sub-Hilbert space property. Intersection
of two Hilbert sets would correspond to the direct sum of common direct summands. Also set
difference and symmetric difference could be defined.

2. The set theoretic realization of Boolean logic would have Hilbert variant. This would mean that
logical statements could be formulated using Hilbert variants of basic logical functions.

3. Cartesian product of sets would correspond to a tensor product of Hilbert spaces. This would
bring in the notion of prime since Hilbert integers would have decomposition into tensor products
of Hilbert primes. Note that here one can consider the symmetrization of tensor product modulo
phase factor and this could give rise to bosonic and fermionic statistics and perhaps also to
anyonic statistics when the situation is 2-dimensional as it indeed is for partonic 2-surfaces.

4. What about sets of sets?

(a) The elements of n-dimensional Hilbert space consist of numbers in some number field.
By replacing these numbers with corresponding Hilbert spaces one would obtain Hilbert
space of Hilbert spaces as a counterpart for sets of sets. One would have Hilbert space
whose points are Hilbert spaces: Hilbert-Hilbert space!. This process could be continued
indefinitely and would give rise to a hierarchy formed by Hilbertn-spaces. This would be
obviously something new and mean self-referential property. For Hilbertn-spaces one would
the points at n:th level of hierarchy with points of the number field involved and obtain
a concrete realization. The construction of infinite primes involves formations of sets of
rationals and sets of these sets, etc.... and would have also interpretation as formation of
a hierarchy of Hilbert sets of sets of.....

(b) Power set as set of subsets of set would be obtained from direct sum of Hilbert spaces, by
replacing the points of each Hilbert space with corresponding Hilbert spaces.

(c) One could define the analog of set theoretic intersection also for tensor products as the set
of common prime Hilbert factors for two Hilbert sets. For ordinary integers defined as sets
the intersection in this sense would correspond to the common prime factors. In Cartesian
product the intersection would correspond to common Cartesian factors.
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5. The completely new and non-trivial element bringing in the quantum dynamics is brought in
by co-operations for union and intersection. The solution to the equation f(x) = y could be
represented as a number theoretic Feynman diagram in zero energy ontology. Positive energy
part would correspond to y and diagram beginning from y would represent co-function of f(x)
identifiable as its inverse. Negative energy state would represent a quantum superposition of the
values of x representing the solutions.

6. One can ask whether a Feynman diagrammatic representation for the statements like ∃x ∈ A
such that f(x) = g(x) and ∀x ∈ Af(x) = g(x) exists. One should be able to construct quantum
state which is superposition of solutions to the condition f(x) = g(x). If this state is non-
vanishing the solution exists.

This kind of statements are statements of first order logic involving existential quantifiers whereas
the statements of predicate logic would correspond simply to a calculation of a value of function
at given point. The hierarchy of Hilbertn spaces brings in mind strongly the hierarchy of infinite
primes assigned already earlier to a hierarchy of logics. Could the statements of n:th order
logic require the use of Hilbertn- spaces. The replacement of numbers with Hilbert spaces
could correspond to formation of statements of first order logic. The individual quantum states
satisfying the statement would represent the statements of predicate logic.

The construction of infinite primes can be regarded as repeated second quantization in which
the many particle states of the previous level become single particle states of the new level.
Maybe also the hierarchy of Hilbertn-spaces could be seen in terms of a hierarchy of second
quantizations.

Infinite primes lead to the notion of algebraic holography meaning that real point has infinitely
rich number theoretical anatomy due to the existence of real units expressible as ratios of infinite
integers reducing to real unit in real topology. The possibility to replace the points of space-time
with Hilbert spaces and to continue this process indefinitely would realize the same idea.

Number theoretic Feynman diagrams

Could one imagine a number theoretical quantum dynamics in which integers are replaced with se-
quences of arithmetic operations? If numbers are replaced with Hilbert spaces and if one can assigns
to each number a state of the Hilbert space accompanying it, this seems to be possible.

1. All algebraic functions would be replaced with their algebraic expressions, which would be
interpreted as analogs of zero energy states in which incoming arguments would represent positive
energy part and the result of operation outgoing state. This would also unify algebra and co-
algebra thinking and the information about the values of the arguments of the function would
not be forgotten in the operations.

2. The natural constraints on the dynamics would be trivial. In +q vertex a direct sum of incoming
states and in ×q gives rise to tensor product. This also at the level of Hilbert spaces involved.
The associativity and commutativity of direct sum and tensor product guarantee automatically
the these properties for the vertices. The associativity and commutativity conditions are analo-
gous to associativity conditions for 3-point functions of conformal field theories. Distributivity
condition is something new. Co-product and co-sum obey completely analogous constraints as
product and sum.

3. For product the total numbers of prime factors is conserved for each prime appearing in the
product meaning that the total momenta nilog(pi) are conserved separately for each prime in
the process involving only products. This kind of conservation law is natural also for infinite
primes and one can indeed map the simplest infinite primes at the lowest level analogous to free
Fock states of bosons and fermions to ordinary rationals so that the addition of Galois degrees
of freedom tentatively identified as cyclic permutations of the state basis for Hilbert space asso-
ciated with given prime would give for a particle labelled by prime p additional internal degrees
of freedom. In fact, one can illustrate infinite prime as in terms of two braids corresponding to
the numerator and denominator of corresponding rational and the primes appearing in rationals
take the role of braid strands. For ×q the conservation of quantum numbers would correspond
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to conservation of representations. This guarantees commutativity and associativity of product.
One can also allow co-product and co-sum and they obey completely analogous constraints as
product and sum and they have counterparts at the level of Hilbert spaces two studied in the
theory of quantum groups.

One can represent algebraic operations using the analogs of Feynman diagrams and there is an
intriguing analogy with generalized Feynman diagrams which forces to ask whether the generalized
Feynman diagrams of quantum TGD could be interpreted in terms of quantum counterparts algebraic
equations transformed if one extends the number field to quaternions and their possibly existing p-adic
counterparts.

1. Multiplicative and additive inverses - in the case that they exist - can be seen as kind of conjuga-
tion operations analogous to C and P which commute with each other. Their product n→ −1/n
could be seen as the analog of T if CPT = 1 is taken as identity. Co-product and co-sum would
would be obtained from product and sum by CP or T.

2. One can represent the integer X = X({nk}) resulting from a sequence of algebraic operations
+q and ×q performed for integers nk appearing as inputs of a Feynman diagram having the
value of X as outgoing line. n+,k represent incoming external lines and intermediate products
of algebraic operations appear as internal ”off-mass-shell” lines. +q and ×q represent the basic
vertices. This gives only tree diagrams with single outgoing line representing the (quantum
value) of X.

Associativity and commutativity for +q resp. ×q would mean that the lines of diagram with
3 incoming particles and two vertices can be modified by permuting the incoming lines in all
possible manners. Distributivity a×q (b+q c) = a×q b+q a×q c does not correspond anything
familiar from conformal field theories since the line representing a appears twice on the right hand
side of the identity and there are 3 vertices whereas left hand side involves 2 vertices. In TGD
framework the interpretation of the analogs of stringy decay vertices in terms of propagation
along two different paths allows however to interpret these vertices as counterparts of +q whereas
the TGD counterparts of vertices of Feynman diagrams would correspond to ×q. +q would
correspond at state space level to direct sum and ×q to tensor product.

3. The lines of Feynman diagrams are naturally replaced with braids - just as in quantum TGD.
The decomposition of the incoming quantum rational q = m/n to primes defines a braid with
two colors of braid strands corresponding to the primes appearing in m and n so that a close
connection with braid diagrams emerges. This of course raises the question whether one could
allow non-trivial braiding operation for two braid strands represented by primes. Non-triviality
would mean that p1p2 = p2p1 would not hold true only in projective sense so that the exchange
would induce a phase factor. This would suggest that the commutativity of the basic operations
- or at least multiplication - might hold true only apart from quantum phase factor. This would
not be too surprising since quantum phases are the essence of what it is to be quantum integer.

4. The diagrammatical counterparts of co-operations are obtained by time reversal transforming
incoming to outgoing lines and vice versa. If one adds co-products and sums to the algebraic
operations producing X one obtains diagrams with loops. If ordinary algebraic rules generalizes
the diagrams with loops must be transformable to diagrams without them by algebraic ”moves”.
The simplification of arithmetic formulas that we learn in elementary school would correspond
to a sequence of ”moves” leading to a tree diagram with single internal line at the middle and
representing X = Y . One can form also diagrams of form X = Y = Z = ... just as in zero
energy ontology.

5. In zero energy ontology a convenient manner to represent a identity X = Y - call it a ”quantum
correlate for mathematical thought” - involving only sums and products and therefore no loops is
as a tree diagram involving only two kinds of 3-vertices, namely +q and ×q and their co-algebra
vertices representing time reversed processes. In zero energy ontology this kind of representation
would correspond to either the condition X/Y = 1 or as X − Y = 0. In both cases one can say
that the total quantum numbers would be conserved - that is net quantum numbers assignable
to prime factors of X vanish for zero energy state. The diagram involves always single integral
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line representing the identical values of X and Y . Line representing X would be preceded by
a tree diagram involving only product and sum vertices and Y would involve only co-product
and co-sum. For ordinary arithmetics every algebraic operation is representable in this kind of
diagram, which suggests that infinite number of different diagrams involving loops are equivalent
to this diagram with single internal line.

6. The resulting braid Feynman diagrammatics would obey extremely powerful rules due to the
possibility of the ”moves”. All possible independent equations X = Y would define the basis
of zero energy states. In quantum TGD the breaking of time reversal invariance is unavoidable
and means that only the positive or negative energy parts of the diagram can have well defined
quantum numbers. The direct translation would be that the zero energy states correspond
to sums over all diagrams for which either positive/negative energy part corresponds to given
rationals and the negative/positive energy part of the state is superposition of states consisting of
rationals. This would mean non-trivial U-matrix dictated by the coefficients of the superpositions
and genuine arithmetic quantum dynamics.

13.3.2 Hilbert p-adics, hierarchy of Planck constants, and finite measure-
ment resolution

The hierarchy of Planck constants assigns to the N -fold coverings of the imbedding space points N -
dimensional Hilbert spaces. The natural identification of these Hilbert spaces would be as Hilbert
spaces assignable to space-time points or with points of partonic 2-surfaces. There is however an
objection against this identification.

1. The dimension of the local covering of imbedding space for the hierarchy of Planck constants
is constant for a given region of the space-time surface. The dimensions of the Hilbert space
assignable to the coordinate values of a given point of the imbedding space are defined by the
points themselves. The values of the 8 coordinates define the algebraic Hilbert space dimensions
for the factors of an 8-fold Cartesian product, which can be integer, rational, algebraic numbers
or even transcendentals and therefore they vary as one moves along space-time surface.

2. This dimension can correspond to the locally constant dimension for the hierarchy of Planck
constants only if one brings in finite measurement resolution as a pinary cutoff to the pinary
expansion of the coordinate so that one obtains ordinary integer-dimensional Hilbert space.
Space-time surface decomposes into regions for which the points have same pinary digits up to
pN in the p-adic case and down to p−N in the real context. The points for which the cutoff is
equal to the point itself would naturally define the ends of braid strands at partonic 2-surfaces
at the boundaries of CD:s.

3. At the level of quantum states pinary cutoff means that quantum states have vanishing pro-
jections to the direct summands of the Hilbert spaces assigned with pinary digits pn, n > N .
For this interpretation the hierarchy of Planck constants would realize physically pinary digit
representations for number with pinary cutoff and would relate to the physics of cognition.

One of the basic challenges of quantum TGD is to find an elegant realization for the notion of
finite measurement resolution. The notion of resolution involves observer in an essential manner and
this suggests that cognition is involved. If p-adic physics is indeed physics of cognition, the natural
guess is that p-adic physics should provide the primary realization of this notion.

The simplest realization of finite measurement resolution would be just what one would expect it
to be except that this realization is most natural in the p-adic context. One can however define this
notion also in real context by using canonical identification to map p-adic geometric objets to real
ones.

Does discretization define an analog of homology theory?

Discretization in dimension D in terms of pinary cutoff means division of the manifold to cube-like
objects. What suggests itself is homology theory defined by the measurement resolution and by the
fluxes assigned to the induced Kähler form.
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1. One can introduce the decomposition of n-D sub-manifold of the imbedding space to n-cubes by
n−1-planes for which one of the coordinates equals to its pinary cutoff. The construction works
in both real and p-adic context. The hyperplanes in turn can be decomposed to n− 1-cubes by
n−2-planes assuming that an additional coordinate equals to its pinary cutoff. One can continue
this decomposition until one obtains only points as those points for which all coordinates are
their own pinary cutoffs. In the case of partonic 2-surfaces these points define in a natural
manner the ends of braid strands. Braid strands themselves could correspond to the curves for
which two coordinates of a light-like 3-surface are their own pinary cutoffs.

2. The analogy of homology theory defined by the decomposition of the space-time surface to cells
of various dimensions is suggestive. In the p-adic context the identification of the boundaries of
the regions corresponding to given pinary digits is not possible in purely topological sense since
p-adic numbers do not allow well-ordering. One could however identify the boundaries sub-
manifolds for which some number of coordinates are equal to their pinary cutoffs or as inverse
images of real boundaries. This might allow to formulate homology theory to the p-adic context.

3. The construction is especially interesting for the partonic 2-surfaces. There is hierarchy in the
sense that a square like region with given first values of pinary digits decompose to p square like
regions labelled by the value 0, ..., p−1 of the next pinary digit. The lines defining the boundaries
of the 2-D square like regions with fixed pinary digits in a given resolution correspond to the
situation in which either coordinate equals to its pinary cutoff. These lines define naturally
edges of a graph having as its nodes the points for which pinary cutoff for both coordinates
equals to the actual point.

4. I have proposed earlier [K14] what I have called symplectic QFT involving a triangulation of the
partonic 2-surface. The fluxes of the induced Kähler form over the triangles of the triangulation
and the areas of these triangles define symplectic invariants, which are zero modes in the sense
that they do not contribute to the line element of WCW although the WCW metric depends on
these zero modes as parameters. The physical interpretation is as non-quantum fluctuating clas-
sical variables. The triangulation generalizes in an obvious manner to quadrangulation defined
by the pinary digits. This quadrangulation is fixed once internal coordinates and measurement
accuracy are fixed. If one can identify physically preferred coordinates - say by requiring that
coordinates transform in simple manner under isometries - the quadrangulation is highly unique.

5. For 3-surfaces one obtains a decomposition to cube like regions bounded by regions consisting
of square like regions and Kähler magnetic fluxes over the squares define symplectic invariants.
Also Kähler Chern-Simons invariant for the 3-cube defines an interesting almost symplectic
invariant. 4-surface decomposes in a similar manner to 4-cube like regions and now instanton
density for the 4-cube reducing to Chern-Simons term at the boundaries of the 4-cube defines
symplectic invariant. For 4-surfaces symplectic invariants reduce to Chern-Simons terms over
3-cubes so that in this sense one would have holography. The resulting structure brings in mind
lattice gauge theory and effective 2-dimensionality suggests that partonic 2-surfaces are enough.

The simplest realization of this homology theory in p-adic context could be induced by canonical
identification from real homology. The homology of p-adic object would the homology of its canonical
image.

1. Ordering of the points is essential in homology theory. In p-adic context canonical identification
x =

∑
xnp

n →
∑
xnp

−n map to reals induces this ordering and also boundary operation for
p-adic homology can be induced. The points of p-adic space would be represented by n-tuples
of sequences of pinary digits for n coordinates. p-Adic numbers decompose to disconnected sets
characterized by the norm p−n of points in given set. Canonical identification allows to glue
these sets together by inducing real topology. The points pn and (p − 1)(1 + p + p2 + ...)pn+1

having p-adic norms p−n and p−n−1 are mapped to the same real point p−n under canonical
identification and therefore the points pn and (p− 1)(1 + p+ p2 + ...)pn+1 can be said to define
the endpoints of a continuous interval in the induced topology although they have different p-
adic norms. Canonical identification induces real homology to the p-adic realm. This suggests
that one should include canonical identification to the boundary operation so that boundary
operation would be map from p-adicity to reality.
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2. Interior points of p-adic simplices would be p-adic points not equal to their pinary cutoffs defined
by the dropping of the pinary digits corresponding pn, n > N . At the boundaries of simplices
at least one coordinate would have vanishing pinary digits for pn, n > N . The analogs of
n − 1 simplices would be the p-adic points sets for which one of the coordinates would have
vanishing pinary digits for pn, n > N . n−k-simplices would correspond to points sets for which
k coordinates satisfy this condition. The formal sums and differences of these sets are assumed
to make sense and there is natural grading.

3. Could one identify the end points of braid strands in some natural manner in this cohomology?
Points with n ≤ N pinary digits are closed elements of the cohomology and homologically
equivalent with each other if the canonical image of the p-adic geometric object is connected
so that there is no manner to identify the ends of braid strands as some special points unless
the zeroth homology is non-trivial. In [K91] it was proposed that strand ends correspond to
singular points for a covering of sphere or more general Riemann surface. At the singular point
the branches of the covering would co-incide.

The obvious guess is that the singular points are associated with the covering characterized by
the value of Planck constant. As a matter fact, the original assumption was that all points
of the partonic 2-surface are singular in this sense. It would be however enough to make this
assumption for the ends of braid strands only. The orbits of braid strands and string world sheet
having braid strands as its boundaries would be the singular loci of the covering.

Does the notion of manifold in finite measurement resolution make sense?

A modification of the notion of manifold taking into account finite measurement resolution might be
useful for the purposes of TGD.

1. The chart pages of the manifold would be characterized by a finite measurement resolution and
effectively reduce to discrete point sets. Discretization using a finite pinary cutoff would be the
basic notion. Notions like topology, differential structure, complex structure, and metric should
be defined only modulo finite measurement resolution. The precise realization of this notion is
not quite obvious.

2. Should one assume metric and introduce geodesic coordinates as preferred local coordinates in
order to achieve general coordinate invariance? Pinary cutoff would be posed for the geodesic
coordinates. Or could one use a subset of geodesic coordinates for δCD × CP2 as preferred
coordinates for partonic 2-surfaces? Should one require that isometries leave distances invariant
only in the resolution used?

3. A rather natural approach to the notion of manifold is suggested by the p-adic variants of sym-
plectic spaces based on the discretization of angle variables by phases in an algebraic extension
of p-adic numbers containing nth root of unity and its powers. One can also assign p-adic con-
tinuum to each root of unity [K27]. This approach is natural for compact symmetric Kähler
manifolds such as S2 and CP2. For instance, CP2 allows a coordinatization in terms of two pairs

(P k, Qk) of Darboux coordinates or using two pairs (ξk, ξ
k
), k = 1, 2, of complex coordinates.

The magnitudes of complex coordinates would be treated in the manner already described and
their phases would be described as roots of unity. In the natural quadrangulation defined by
the pinary cutoff for |ξk| and by roots of unity assigned with their phases, Kähler fluxes would
be well-defined within measurement resolution. For light-cone boundary metrically equivalent
with S2 similar coordinatization using complex coordinates (z, z) is possible. Light-like radial
coordinate r would appear only as a parameter in the induced metric and pinary cutoff would
apply to it.

Hierachy of finite measurement resolutions and hierarchy of p-adic normal Lie groups

The formulation of quantum TGD is almost completely in terms of various symmetry group and
it would be highly desirable to formulate the notion of finite measurement resolution in terms of
symmetries.
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1. In p-adic context any Lie-algebra gG with p-adic integers as coefficients has a natural grading
based on the p-adic norm of the coefficient just like p-adic numbers have grading in terms of
their norm. The sub-algebra gN with the norm of coefficients not larger than p−N is an ideal
of the algebra since one has [gM , gN ] ⊂ gM+N : this has of course direct counterpart at the level
of p-adic integers. gN is a normal sub-algebra in the sense that one has [g, gN ] ⊂ gN . The
standard expansion of the adjoint action ggNg

−1 in terms of exponentials and commutators
gives that the p-adic Lie group GN = exp(tpgN ), where t is p-adic integer, is a normal subgroup
of G = exp(tpg). If indeed so then also G/GN is group, and could perhaps be interpreted as
a Lie group of symmetries in finite measurement resolution. GN in turn would represent the
degrees of freedom not visible in the measurement resolution used and would have the role of a
gauge group.

2. The notion of finite measurement resolution would have rather elegant and universal repre-
sentation in terms of various symmetries such as isometries of imbedding space, Kac-Moody
symmetries assignable to light-like wormhole throats, symplectic symmetries of δCD×CP2, the
non-local Yangian symmetry, and also general coordinate transformations. This representation
would have a counterpart in real context via canonical identification I in the sense that A→ B
for p-adic geometric objects would correspond to I(A)→ I(B) for their images under canonical
identification. It is rather remarkable that in purely real context this kind of hierarchy of sym-
metries modulo finite measurement resolution does not exist. The interpretation would be that
finite measurement resolution relates to cognition and therefore to p-adic physics.

3. Matrix group G contains only elements of form g = 1 + O(pm), m ≥ 1 and does not therefore
involve matrices with elements expressible in terms roots of unity. These can be included by
writing the elements of the p-adic Lie-group as products of elements of above mentioned G with
the elements of a discrete group for which the elements are expressible in terms of roots of unity
in an algebraic extension of p-adic numbers. For p-adic prime p p:th roots of unity are natural
and suggested strongly by quantum arithmetics [K90].

13.3.3 Quantum adeles

Before saying anything about Hilbert space adeles it is better to consider ordinary adeles.

1. Fusing reals and quantum p-adic integers for various values of prime p to Cartesian product
AZ = R × (

∏
p Zp) gives the ring of integer adeles. The tensor product Q ⊗Z AZ gives rise to

rational adeles. Z means the equivalence (nq, a) ≡ (q, na). This definition generalization to any
number field including algebraic extensions of rationals. It is not quite clear to me how essential
the presence of R as Cartesian factor is. One can define ideles as invertible adeles by inverting
individual p-adic numbers and real number in the product. If the component in the Cartesian
product vanishes, the component of inverse also vanishes.

2. The definition of a norm of adele is not quite straightforward.

(a) The norm of quantum adeles defined as product of real and p-adic norms is motivated by the
formula for the norm of rational numbers as the product of its p-adic norms. This definition
of norm however looks non-physical and non-mathematical. For instance, it requires that
all p-adic components of quantum adele are non-vanishing and most of them have norm
equal to one and are therefore p-adic integers of norm one. This condition would also break
general coordinate invariance at the level of quantum adelic imbedding space very strongly.
Also for adelic spinors and adelic Hilbert space this condition is definitely non-sensical.

(b) The physically acceptable norm for adeles should reflect the basic properties of p-adic norm
for a given p-adic field in the product but should also have the characteristic property of
Hilbert space norm that the norm squared is sum of the norms squared for the factors of
the adele. The solution to these demands seems to be simple: map the p-adic number to
its quantum counterpart in each factor and map this number to real number by canonical
identification. After this form the real Hilbert space norm of the resulting element of
infinite-dimensional real Hilbert space. This norm generalizes in a natural manner to linear
spaces possessing adeles as components. Most importantly, for this norm the elements of
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adele having finite number of components have a non-vanishing norm and field property is
possible.

Consider now what happens when one replaces p-adic integers with p-adic Hilbert spaces and
p-adic numbers as components of the vectors of the Hilbert space.

1. As far as arithmetics is considered, the definition of Hilbert space adeles for p-adic number fields
is formally the same as that of ordinary adeles. It of course takes time to get accustomed to
think that rationals correspond to a pair of Hilbert spaces and their product is formulated for
this pair.

2. p-Adic Hilbert spaces would be linear spaces with p-adic coefficients that is vectors with p-adic
valued components. Inner product and norm would be defined by mapping the components
of vectors to real/complex numbers by mapping them first to quantum p-adics and them to
reals by canonical identification. Note that the attempts to define p-adic Hilbert spaces using
p-adic norm or formal p-adic valued norm mapped to real number by canonical identification
lead to difficulties since already in 2-D case the equation x2 + y2 = 0 has solution y =

√
−1x for

p mod 4 = 1 since in this case
√
−1 exists p-adically.

3. A possible problem relates to the fact that all p-adic numbers are mapped to non-negative real
numbers under canonical identification if the coefficients an in the expansion

∑
n anp

n consists
of primes l < p for which quantum counterpart is non-negative. For ordinary p-adic numbers
orthogonal vectors in a given basis would be simply vectors with no common non-vanishing
components. Does this mean the existence of a preferred basis with elements (0, .., 0, 1, 0...)
so that any other unitarily related basis would be impossible. Or should one introduce cyclic
algebraic extension of p-adic numbers with n-elements exp(i2πk/n) for which one obtains linear
superposition and can form new unitarily related basis taking into account the restrictions
posed by p-adicity. This option is suggested also by the identification of the Hilbert space as
wave functions in the local singular covering of imbedding space. The phases form also in a
natural manner cyclic group Zn identifiable as quantum Galois group assignable to integer n
and decomposing to a product of cyclic groups Zpi , pi|n.

Also real numbers form a Cartesian factor of adeles. The question what Hilbert spaces with
dimension equal to arbitrary real number could mean has been already discussed and there are two
approaches to the problem: one based on canonical identification and quantum counterparts of p-adic
numbers and one to a completion of Hilbert rationals.

13.4 Generalized Feynman diagrams as quantum arithmetic
Feynman diagrams?

The idea that the generalized Feynman diagrams of TGD could have interpretation in terms of arith-
metic QFT is not new but the quantum arithmetic Feynman diagrams give much more precise content
to this idea.

1. The possibility to eliminate all loops is by ”moves” is an old idea (briefly discussed in [K9]),
which I introduced as a generalization of the old fashioned s-t duality of string models. One
motivation was of course the resulting cancellation of diverges. I however gave up this idea as too
romantic [K9]. The properties of the counterparts of twistor diagrams in zero energy ontology
re-inspires this idea.

2. The basic question concerns the possible physical interpretation of the two kinds of 3-vertices
and their co-vertices, which are also included and mean decomposition of incoming particle
characterized by integer m to quantum superposition of two particle states characterized by
integers n, p satisfying m = n+ p for the co-sum and m = n× p for co-product. The amplitudes
of different state pairs n, p in fact determine the quantum dynamics and typically the irreversible
dynamics leading from state with well-defined quantum number characterized by integers would
be due to the presence of co-vertices meaning delocalization.
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3. If quantum p-adic integers correspond to Hilbert spaces then the identifications +q = ⊕ and
×q = ⊗ become possible. The challenge is to fix uniquely their co-vertices and this procedure
fixes completely number theoretic Feynman amplitudes. Quantum dynamics would reduce to
co-arithmetics. Or should one say that mathematics could reduce to quantum dynamics?

4. ×q and +q alone look very quantal and the generalization of string model duality means that
besides cyclic permutations arbitrary permutations of incoming resp. outgoing lines act as
symmetries. The natural question is whether this symmetry generalizes to permutations of all
lines. This of course if commutativity in strict sense holds true also for quantum arithmetics:
it could be that it holds true only in projective sense. Distributivity has however no obvious
interpretation in terms of standard quantum field theory. The arithmetics for integers would
naturally reflect the arithmetics of Hilbert spaces dimensions induced by direct sum and tensor
product

13.4.1 Quantum TGD predicts counterparts for ×q and +q vertices

Also quantum TGD allows two kinds of vertices identifiable in terms of the arithmetic vertices and
this gives strong physical constraints on +q vertices.

1. First kind of vertices are the direct topological analogs of vertices of ordinary Feynman diagrams
and there are good arguments suggesting that only 3-vertices are possible and would mean
joining of 3 light-like 3-surfaces representing lines of generalized Feyman diagram along their
2-dimensional ends. At the these vertices space-time fails to be a manifold but 3-surface and
partonic 2-surface are manifolds. These vertices correspond naturally to ×q or equivalently ⊗.

2. The vertices of second kind correspond to the stringy vertices, in particular the analog of stringy
trouser vertices. The TGD based interpretation - different from stringy interpretation- is that no
decay takes place for a particle: rather the same particles travels along different routes. These
vertices correspond to four-surfaces, which are manifolds but 3-surfaces and partonic 2-surface
fail to be manifolds at the vertex. There is a strong temptation to interpret +q - or equivalently
⊕ - as the counterpart of stringy vertices so that the two lines entering to +q would represent
same incoming particle and should have in some sense same quantum numbers in the situation
when the particle is an eigenstate of the quantum numbers in question? This would allow to
understand the strange looking quantum distributivity and also to deduce what can happen in
+q vertex.

3. What does the conservation of quantum numbers mean for quantum Galois quantum num-
bers identified in the proposed manner as quantum number associated with the cyclic groups
assignable to the integers appearing in the vertex? For ×q vertex the answer is simple since ten-
sor product is formed. This means that the number theoretic momentum is conserved. For direct
sum one obtains direct sum of the incoming states and one cannot speak about conservation of
quantum numbers since the final state does not possess well-defined quantum numbers.

13.4.2 How could quantum numbers of physical states relate to the number
theoretic quantum numbers?

Quite generally, the above proposal would allow to represent all n-plets of rationals as zero energy
states with either positive or negative arrow of time and one could assign to these states M -matrices
as entanglement coefficients and define quantum jump as a sequence of two state function reductions
occurring to states with opposite arrow of time. This kind of strong structural similarities with
quantum TGD are hardly not a accident when one takes into account the connection with infinite
primes and one could hope that zero energy states and generalized Feynman graphs could represent the
arithmetics of Hilbert adeles with very dramatic consequences due to the arithmetic moves allowing to
eliminate loops and permuted incoming lines without affecting the diagram except by a phase factor.
The hierarchy of infinite primes suggests strongly the generalization of this picture since the resulting
states would correspond only to the infinite integers at the lowest level of the hierarchy and identifiable
in terms of free Fock states of super-symmetric arithmetic QFT.

The possible reduction of generalized Feynman diagrams to Hilbert adelic arithmetics raises several
questions and one can try to proceed by requiring consistency with the earlier speculations.
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1. How the quantum numbers like momentum, spin and various internal quantum numbers relate
to the number theoretic quantum numbers k = n2π/p defined only modulo p? The natural
idea is that they find a representation in the number theoretical anatomy of the state so that
these quantum numbers corresponds to waves with these momenta at the orbits of quantum
Galois group. Momentum UV cutoff would have interpretation in terms of finite measurement
resolution completely analogous to that encountered in condensed matter physics for lattice like
systems. This would realize self-reference in the sense that cognitive part of the quantum state
would represent quantum numbers characterizing the real part of the quantum state.

2. What about the quantum p-adics themselves characterizing incoming and out-going states in
number theoretic vertices? There would be a conservation of number theoretical ”momentum”
characterized by logarithm of a rational in ×q vertex. Does this momentum have any concrete
physical counterpart? Perhaps not since it would be associated with quantum p-adic degrees of
freedom serving as correlates for cognition. In fact, the following argument suggest interpreta-
tion in terms of a finite dimension (finite by finite measurement resolution) of a Hilbert space
associated with the orbit of a partonic 2-surface.

(a) The prime factors of integer characterizing the orbit of a partonic 2-surface correspond
naturally to braid strands for generalized Feynman diagrams. This suggests that the primes
in question can be assigned with braid strands and would be indeed something new. The
product of the primes associated with the particles entering ×q vertex would be same as
the product of primes leaving this vertex. In the case of +q vertex the integer associated
with each line would be same. One cannot identify these primes as p-adic primes since
entire orbit of partonic 2-surface and therefore all braid strands are characterized by single
common p-adic prime p.

(b) Hilbert spaces with prime dimension are in a well-defined sense primes for tensor product,
and any finite-dimensional Hilbert space decomposes into a product of prime Hilbert spaces.
Hence the integer n associated with the line of a generalized Feynman diagram could
characterize the dimension of the finite-dimensional Hilbert space (by finite measurement
resolution) associated with it. The decomposition of n to prime factors would correspond
to a decomposition of this Hilbert space to a tensor product of prime factors assignable to
braid strands. This would define a direct Hilbert space counterpart for the decomposition of
braid into braid strands and would be very natural physically and actually define the notion
of elementarity. The basic selection rule for ×q vertex would be that the prime factors of
incoming Hilbert spaces recombining to form Hilbert spaces of outgoing particles. For the
+q incoming Hilbert spaces of dimensions n1 and nb would fuse to n1 + n2 dimensional
direct sum. a(b + c) = ab + ac would state that the tensor product with direct sum is
sum of tensor products with direct summands. Therefore the two kind of vertices as well
as corresponding vertices of quantum TGD would correspond to basic algebraic operations
for finite-dimensional Hilbert spaces very natural for finite measurement resolution.

(c) Could the different quantum versions of p-adic prime l > p correspond to different direct
sum decompositions of a Hilbert space with prime dimension to Hilbert spaces with prime
dimensions appearing in the quantum pinary expansion in powers of p? The coefficients of
powers of p defined as products of quantum primes l < p would be quantum dimensions
and reflect effects caused by finite measurement resolution whereas the powers of p would
correspond to ordinary dimensions. This decomposition would correspond to a natural
decomposition to a direct sum by some natural criterion related to finite measurement
resolution. For instance, power pn could correspond to n-ary p-adic length scale. The
decomposition would take place for every strand of braid.

The objection is that for algebraic extensions of rationals the primes of the extension
can be algebraic number so that the corresponding Hilbert space dimension would be
complex algebraic number. It seems that only the primes l > p which do not split for the
algebraic extension used (and thus label quantum p-adic number fields in the adele) can
be considered as prime dimensions for the Hilbert spaces associated with braid strands.
The latter option is more natural and would mean that the number theoretic evolution
generating increasingly higher-dimensional algebraic extensions implies selection of both
preferred p-adic primes and preferred prime dimensions for state spaces. One implication
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would be that the quantum Galois group assignable to given p-adic integer would in general
be smaller for an algebraic extension of rationals than for rationals since only the non-
splittable primes in its factorization would contribute to the quantum Galois group.

(d) As already discussed, the most plausible interpretation is that the pair of co-prime integers
defining the quantum rational defines a pair of Hilbert space dimensions possibly assignable
to fermions and bosons respectively. Interestingly, for the simplest infinite primes repre-
senting Fock states and mappable to rationals m/n the integers m and n could be formally
associated with many-boson and many-fermion states.

(e) Because of multiplicative conservation law in ×q vertex quantum p-adic numbers does not
have a natural interpretation as ordinary quantum numbers - say momentum components.
The problem is that the momentum defined as logarithm of multiplicatively conserved
number theoretic momentum would not be p-adic number without the introduction of an
infinite-dimensional transcendental extension to guarantee the existence of logarithms of
primes.

(f) If this vision is correct, the representation of ordinary quantum numbers as quantum Galois
quantum numbers would be a representation in a state space formed by (quantum) state
spaces of various quantum dimensions and thus rather abstract but quite possible in TGD
framework. This is of course a huge generalization from the simple wave mechanical pic-
ture based on single Hilbert space but in spirit with abstract category-theoretical thinking
about what integers are category-theoretically. The integers appearing as integers in the
Cartesian factors of adeles would represent Hilbert space dimensions in the case of gener-
alized Feynman diagrams. The arithmetic Feynman rules would be only a part of story: as
such very abstract but made concrete by braid representation.

3. Note that the interpretation of + and × vertices in terms of Hilbert space dimensions makes
sense also in the real context whereas the further decomposition into direct sum in powers of pn

does not make sense anymore.

13.4.3 Number theoretical quantum numbers and hierarchy of Planck con-
stants

What could be the TGD inspired physical interpretation of these mysterious looking Hilbert spaces
possessing prime dimensions and having no obvious identification in standard physics context?

How the Hilbert space dimension relates to the value of Planck constant?

The first question is how the Hilbert space dimension assigned to a given line of a generalized Feynman
diagram relates to the the value of Planck constant.

1. As already noticed, the decomposition of integer to primes would naturally correspond to its
decomposition to braid strands to which one can assign Hilbert spaces of prime-valued dimension
D = l appearing as factors of integer n. This suggests a Hilbert space is defined by wave functions
in a set Bn with n points,. This Hilbert space naturally decomposes into a tensor product of
Hilbert spaces with Hilbert spaces associated with point sets Bl containing l of points with l|n.

2. The only space of this kind that comes in mind relates to the proposed hierarchy of (effective)
Planck constants coming as integer multiples of ordinary Planck constant. For the simplest
option Planck constant ~n = n~0 would correspond to a local (singular) covering of the imbed-
ding space due to the n-valuedness of the time derivatives of the imbedding space coordinates
as function of canonical momentum densities which is due to the huge vacuum degeneracy of
Kähler action.

3. The discrete group Zn would act as a natural symmetry of the covering and would decomposes
a Zn =

∏
l|n Z

el
l and the orbits of Zl in the covering would define naturally the sets Bl. Given

prime l in the decomposition would correspond to an l-fold covering of a braid strand and to a
wave function in this space.
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4. The proposal for the hierarchy of Planck constants assumes that different sheets of this singular
covering degenerate to single sheet at partonic 2-surfaces at the ends of CD. Furthermore, the
integers n would decompose to to products n = n1n2 corresponding to directions of time-like
braids along wormhole throat and along the space-like 3-surface at the end of CD defining by
effective 2-dimensionality (strong form of holography) two space-time coordinates playing the
role of time coordinate in the field equations for preferred extremals. Note that the information
about the presence of covering would be carried at partonic 2-surfaces by the tangent space data
characterized by the ni-valued normal derivatives.

5. The simplest option is that Hilbert space dimension corresponds to Planck constant for a given
line of generalized Feynman diagram. This would predict that in the multiplicative vertex also
the values of Planck constants characterizing the numbers of sheets for many-sheeted coverings
would satisfy the condition n3 = n1n2. The assumption that the multiplicative vertex corre-
sponds to the gluing of incoming lines of generalized Feynman diagram together along their
ends seems however to require n1 = n2 = n3. Furthermore, the identification of Hilbert space
dimension as Planck constant is also inconsistent with the vision about book like structure of the
imbedding space explaining the darkness as relative darkness due to the fact that only particles
with the same value of Planck constant can appear in the same vertex [K26].

The way out of the difficulty is to assume that the value of Planck constant ~ = n~0 corresponds
to n = n3 = n1n2 or has n3 as a factor. For n = n3 the states with Hilbert space dimensions
n1 and n2 are invariant under cyclic groups Zn2

and Zn1
respectively. For n containing n3 as a

genuine divisor analogous conditions would hold true.

6. p-Adic prime p would make itself manifest in the further decomposition of the l-dimensional
Hilbert spaces to a direct sum of sub-Hilbert spaces with dimensions given by the terms ln,qp

n

in the expression of l as quantum integer. The fact that the only prime ideal for p-adic integers
is pQp should relate to this. It is quite possible that this decomposition occurs only for the
p-adic sectors of the Hilbert adelic imbedding space.

What suggests itself is symmetry breaking implying the decomposition of the covering An of
braid strand to subsets An,m with numbers of elements given by #n,m = lmp

m with lm divisible
only by primes p1 < p. Wave functions would be localized to the sets An,m, and inside An,m
one would have tensor product of wave functions localized into the sets Al with l < p and l|lm.

Hilbert space dimensions would be now quantum dimensions associated with the quantum phase
exp(iπ/l): this should be due to the finite measurement resolution and relate to the fact that
one has divided away the hyper-finite factor N from the factor M ⊃ N .

The index characterizing Jones inclusion [A178] [K26] is given by [M : N ] = 4cos2(2π/n) and
corresponds to quantum dimension of 2q × 2q quantum matrices. TGD suggest that a series
of more general quantum matrix dimensions identifiable as indices of inclusions and given by
[M : N ] = l2q , l < p prime and q = exp(iπ/n), corresponding to prime Hilbert spaces and q = n-
adicity. Note that lq < l is in accordance with the idea about finite measurement resolution and
for large values of p one would have lq ' l.

If the above identification is correct, the conservation laws in ×q and +q vertices would give rather
precise information about what can happen for the values of Planck constants in thes vertices. In
×q co-vertices Hilbert space-timensions would combine multiplicatively to give the common value of
Planck constant and in ⊕q co-vertices additively. The phase transitions changing Planck constant,
for instance for photons, are central for quantum TGD and the selection rules would not allow them
only if they correspond to a formation of a Bose-Einstein condensate like state or its decay by ×q- or
+q-vertex.

Could one identify the Hilbert space dimension as value of Planck constant?

It has been already seen that the identification of Hilbert space dimension with Planci constant it is
not consistent with the idea that product vertex means that the lines of generalized Feynman graph
are glued along their 2-D ends together. I did not however realize this when I wrote the first version of
this section and I decided to keep the earlier discussion about the option for which Planck constants
correspond to Hilbert space dimensions so that n3 = n1n2 holds true for Planck constants. The
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question was whether it could be consistent with the idea of dark matter as matter with non-standard
value of Planck constant. By replacing ”Planck constant” with ”Hilbert space dimension” below one
obtains a discussion giving information about the selection rules for Hilbert space dimensions.

1. In ×q-vertex the Planck constants for the outgoing particles would be smaller and factors of
incoming Planck constant. In ×q co-vertex Planck constant would increase. I have considered
analogous selection rules already earlier. ×q vertex does not allow the fusion of photons with
the ordinary value of Planck constant to fuse to photons with larger value of Planck constant.

By conservation of energy the frequency of a photon like state resulting in the fusion is given
by f =

∑
nkfk/Nout

∏
k nk for ~k = nk~0, where Nin and Nout are the numbers of quanta

in the initial and final state. For a common incoming frequency fk = f0 this gives f/f0 =∑
k nk/(Nout

∏
k nk). If one assumes that spin unit for photon increases to

∏
k nk~0 and spins

are parallel one obtains from angular momentum conservation Nout
∏
k nk = Nin

∑
nk giving

Nout =
∏
k nkNin/

∑
nk = nNin/Ninn, which in turn gives f/f0 = 1/Nin. This looks rather

natural.

In the presence of a feed of r = ~/~0¿1 particles ×q vertex could lead to a phase transition
generating particles with large values of Planck constant. Large values of Planck constant are
in a key role in TGD based model of living matter since Compton lengths and other quantum
scales are proportional to ~ so that large values of ~ make possible macroscopic quantum phases.
The phase transition leading to living matter could be this kind of phase transition in presence
of feed of r > 1 particles.

2. For +q co-vertex r = ~/~0 could be additive and for incoming photons with same frequency
and Planck constants ~k the outgoing state with Planck constant

∑
k ~k energy conservation is

guaranteed if the frequency stays same. This vertex would allow the transformation of ordinary
photons to photons with large Planck constant, and one could say that effectively the photons
fuse to form single photon. This is consistent with the quantization of spin since the unit of spin
increases. For this option the presence of particles with ordinary value of Planck constant would
be enough to generate particles with r > 1 and this in turn could lead to a the phase transition
generation living matter.

3. One can of course ask whether it should be r − 1 = ~/~0 + 1, which corresponds to the integer
n. For this option the third particle of +q vertex with two incoming particles with ordinary
Planck constant would have ordinary Planck constant. For ×q vertex containing two incoming
particles with r = n, n = 1 (n = 2), also the third particle would have n = 1 (n = 2). ×q and
+q vertices could not generate n > 1 particles from particles with ordinary Planck constant.
The phase transition leading from inanimate to living matter would require n > 1 states as a
seed (one has 2 + 2→ 3 for +q vertex). A quantum jump generating a CD containing this kind
of particles could lead to this kind of situation.

4. These selection rules would mean a deviation of the earlier proposal that only particles with same
values of Planck constant can appear in a given vertex [K26]. This assumption explains nicely
why dark matter identified as phases with non-standard value of Planck constant decouples from
ordinary matter at vertices. Now this explanation would be modidifed. If ×q vertex contains
two particles with r = n + 1 for r = n option (r = 1 or 2 for r = n + 1 option), also the third
particle has ordinary value of Planck constant so that ordinary matter effectively decouples from
dark matter. For +q vertex the decoupling of the ordinary from dark matter occurs for r = n+1
option but not for r = n option. Hence r = n + 1 could explain the virtual decoupling of dark
and ordinary matter from each other. The assumption that Planck constant is same for all
incoming lines and corresponds to n3 = n1n2 defines however much more plausible option.

What happens in phase transitions changing the value of Planck constant?

The phase transitions changing the value of Planck constant are in a central role in TGD inspired
quantum biology. The typical phase transition of this kind would change the Planck constant of
photon. This phase transition would formally correspond to a 2-vertex changing the value of Planck
constant. Can one pose selection rules to the change of Planck constant? By the above assumptions
both the incoming and outgoing line correspond to Hilbert space dimension which is a factor of the
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integer defining Planck constant. If the value of the Hilbert space dimension is not changed in the
process, theincoming and outgoing Planck constants must have this dimension as a common factor.

13.4.4 What is the relation to infinite primes?

Already quantum p-adics would mean a dramatic generalization of number concept by assigning to
rationals ane even algebraic numbers Hilbert spaces and their states. Quantum adeles would mean a
further generalization of number concept by gluing together reals and Hilbert space variants of p-adic
number fields.

TGD leads also to another generalization of number concept based on the hierarchy of infinite
primes [K76]. This generalization also leads to a generalization of real number in the sense that one
can construct infinite number of real units as infinite rationals which reduce to units in real sense.
This would mean that space-time point has infinitely complex number theoretic anatomy not visible
at the level of real physics [K78].

The possibly existing relationship between these generalizations is of course interesting. Infinite
primes can be mapped to polynomial primes and this means that one can assign to them algebraic
extensions of rationals and corresponding Galois groups and in [K89] I discussed a conjecture that the
elements of these Galois groups could be represented as symplectic flows assignable to braids which
emerge naturally as counterparts of partonic 2-surfaces in finite measurement resolution. This would
suggest a possible relationship.

The construction of infinite primes relies on the product X =
∏
p p of finite primes interpreted

physical as analog of Dirac vacuum with all negative energy states filled. Simplest infinite primes are
constructed by kicking away fermions from this vacuum and by adding also bosons labeled by primes.
One obtains also the analogs of bound states as infinite primes which can be mapped to irreducible
polynomials. The roots of the polynomial code for the infinite prime and the algebraic extension. The
infinite primes corresponding to nth order polynomials decompose to products of n simplest infinite
primes of algebraic extension so that the corresponding Galois group emerges naturally.

The construction can be repeated endlessly by taking the infinite primes of the existing highest
level and forming the product X of them and repeating the process. What these means that the
many-particle states of the previous level define single particle states of the new level. One can map
these infinite primes to polynomial primes for polynomials of several variables. Also this hierarchy
might allow generalization obtained by assigning to infinite primes the orbits of their Galois groups.
The earlier considerations [K50] suggest strongly a reduction of the description to the lowest level and
involving only algebraic numbers.

What do we understand about infinite primes?

Let us first try to summarize what we understand about infinite primes. What seems very natural
is the postulate that arithmetic QFT associated with infinite primes conserves multiplicative number
theoretic momenta defined by ordinary primes with separate conservation law for each prime. This
law would hold for ×q vertices very naturally whereas for +q vertices it would be broken. Recall
that these two vertices correspond to the TGD counterparts of 3-vertices for Feynman diagrams and
stringy diagrams respectively and also to tensor product and direct sum.

1. What seems clear is that infinite prime characterizes an algebraic extension of rationals (or of
its extension) in the case that infinite primes is defined in terms of finite primes of extension.
Infinite prime dictates also the p-adic primes which are possible and appear in the quantum
adele assignable to infinite prime.

2. The integer exponents of ordinary primes appearing in the infinite and finite part of the simplest
lowest level infinite prime could define infinite number of conserved number theoretic momenta,
one for each prime p and having log(p), p prime, as a unit. Separate conservation follows from the
algebraic independence. These number theoretic momenta do not make sense p-adically, which
means that in p-adic context the multiplicative form of the conservation law is the appropriate
one. Therefore it is appropriate to speak of multiplicative momenta. Therefore the relationship
with ordinary additively conserved momenta does not lok plausible.

Arithmetic QFT interpretation allows also to interpret the numbers np in pnp as particle numbers
assignable to bosonic quanta and fermionic quanta in the case of the simplest infinite primes
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with ”small part” representing fermions kicked out from the Dirac sea possibly accompanied by
bosonic quanta. The conservation law at ×q vertices would mean conservation of total particle
numbers assignable to primes p.

3. For the simplest primes at the lowest level identifiable as linear polynomials with integer coef-
ficients there are two separate integers defining number theoretic momenta. The first integer
corresponds to the finite part of infinite prime and the second one to the finite part of the
infinite prime to which one assigns number theoretic fermions. These two parts are separately
conserved. Since the integers have no common prime factors, one can also speak about rational
valued multiplicative number theoretic momentum. The physical interpretation for the absence
of common factors would be that given mode cannot simultaneously containing and not con-
tain fermionic excitation. For higher irreducible polynomials of order n interpreted in terms of
bound states there are n+1 integers defining a collection of number theoretic momenta. For the
representation as a monic polynomial one has a collection of n rational valued number theoretic
momenta.

4. The notion of multiplicative number theoretic momentum generalizes.

(a) At the second level of the hierarchy ordinary primes are replaced with prime polynomials
Pn(x) of single variable. At the nth level they are prime polynomials Pn(x1, ..., xn−1) of
n− 1 variables. The value of the number theoretic momentum at nth s level can be said to
be a polynomial Pn(x1, ..., xn−1) rather than integer.

(b) This looks very abstract but can be concretized. For instance, each coefficient of Pn(x, y)
at second level as polynomial of y defines a polynomial Pk(x) at the first level and Pk(x) is
characterized by a collection of number theoretic momenta defined by its integer coefficients
in the representation as a polynomial with integer coefficients. Therefore Pk(x) can be
identified as the collection of k+1 integer coefficients or k rational coefficients in the monic
representation identified as number theoretic momenta for a k-particle state. Pn(x, y)
in turn corresponds to a collection of n many-particles states with ith one containing ki
particles, i = 1, ...n. The interpretation in terms of n-braid with braid strands decomposing
to ki braid strands is natural and conforms with the fractality of TGD Universe.

(c) This example allows to deduce the number theoretic interpretation of the polynomial at
the nth level and one can continue this abstraction hierarchy ad infinitum. Eventually each
prime at a given level of hierarchy reduces to a collection of number theoretic momenta
defined by ordinary integers grouped in a manner characterized by the infinite prime.
Physically this would characterize how these number theoretic elementary particles group
to particles at the first level, these to particles at second level, and so on.

(d) The possibility to express the irreducible polynomial as a product of first order polynomials
with zeros which algebraic numbers gives for the bound state a representation as free many-
particle state but with number theoretic momenta which are algebraic rationals in algebraic
extension of rationals. These number theoretic momenta can be also complex and therefore
do not allow interpretation as Hilbert space dimensions. This decomposition is analogous
to a decomposition of hadron to quarks. The rational coefficients expressible in terms of the
roots of the polynomial code for Galois invariants analogous to the observables assignable
to hadrons and accessible to the experimenter.

5. The basic conservation law of arithmetic QFT and of TGD would be that the multiplicative
number theoretic momenta labelled by finite primes are separately conserved in ×q vertices but
not in +q vertices. The conservation number theoretic quantum numbers allows the interpreta-
tion of Hilbert space dimensions in terms of the hierarchy of Planck constants, and this leads to a
proposal that infinite primes code the pairs of finite integers with no common factors assignable
to the pairs of time-like and space-like braid strands.

If one takes seriously the notion of number theoretic fermion, one could assign to space-like braid
strands only bosonic excitations and to time-like braid strands fermion and possibly also bosonic
excitations. The interpretation could be in terms of the super-conformal algebras containing
both fermionic and bosonic generators. The hierarchy of infinite primes would correspond to
a hierarchy of braids containing lower level braids as their strands as suggested already earlier

http://tgdtheory.com/public_html/tgdnumber/tgdnumber.html#infmotives
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[K89]. What would be new would be a concrete assignment of primes to braid strands and
detailed identification in terms of time-like and space-like braids.

This kind of assignment would mean a rather dramatic step of progress in the understanding of
the complexities of generalized Feynman diagrams. One not completely settled old question is
what selects the p-adic prime assignable to given partonic 2-surface.

This is the stable looking part of the vision about infinite primes, and any attempt to relate it to
quantum p-adics and quantum adeles should respect this picture.

Hyper-octonionic primes correspond to p-adic primes in extension of rationals

The earlier interpretation hyper-complex and appropriately defined quaternionic and octonionic gener-
alizations is in terms of standard model quantum numbers [K27]. It seems that also this identification
survives under the selective pressures by new ideas but that one cannot replace hyper-complex primes
with their infinite counterparts. Rather, hyper-complex prime generalizes p-adic prime as a preferred
prime by replacing ordinary integers with hyper-complex integers. The definition of infinite primes
in quaternionic and octonionic context is plagued by the problems caused by non-commutativity and
associativity so that the conclusion is well-come.

1. The solutions of modified Dirac equation suggest the interpretation of the M2 projections of
four-momenta as ”hyper-complex” primes or perhaps more realistically. their integer multiples.
These momenta are conserved additively rather than multiplicatively at vertices to which ×q is
assigned and only their exponents - naturally phase factors - would be conserved multiplicatively.

2. Could this identification generalize from hyper-octonionic primes to hyper-octonionic infinite
primes? This does not seem to be the case. The multiplicative conservation in ×q vertices
for number theoretic momenta is in conflict with additive conservation for ordinary quantum
numbers. Additive conservation is also in conflict with interpretation in terms Hilbert space
dimensions allowing concretization in terms of the hierarchy of Planck constants. Of course,
hyper-complex Hilbert space dimension does not make sense either.

3. One must remember that there are many kinds of primes involved and a little list helps to see
what the correct interpretation for hyper-complex primes could be.

(a) There are the primes l appearing in the decomposition of infinite primes and having inter-
pretation in terms of Hilbert space dimensions. The conservation of multiplicative number
theoretical momenta is natural at ×q vertices.

(b) There are the p-adic primes p, and on basis of p-adic mass calculations it is this prime to
which it is natural to assign additively conserved momenta. p characterizes the ”active”
sector of adeles and therefore also the various quantum variants of the prime l in which
quantum primes p1 < p appear as factors. p characterizes partonic 2-surface.

(c) The Abelizanization of the quantum Galois group assignable to prime l decomposes into
prime factors Zp2 and the phases exp(i2π/p1) might provide cognitive representations in
finite measurement resolution for various standard model quantum numbers.

4. The only reasonable interpretation seems to be that the hyper-complex momenta and possible
other quantum numbers assignable to them correspond to p-adic prime p for rationals or for an
algebraic extension of rationals to the ring hyper-complex rationals. The failure of field property
implies that the inverse of hyper-complex number fails to exist when it defines a light-like
vector of M2. This has however a concrete physical interpretation and light-like hyper-complex
momentum for a massless state is massless only when the momentum of the state transverse to
M2 vanishes so that also propagator defined by M2 momentum diverges.

What the identification of M2 momenta as hyper-complex integers really means, deserves some
comments.

http://tgdtheory.com/public_html/tgdgeom/tgdgeom.html#Dirac
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1. Suppose that particle’s p-adic mass squared is of form m2 = np as predicted by p-adic mass
calculations. Assume that m2 corresponds to M2 momentum squared with preferred M2 char-
acterizing given causal diamond CD. Assume also that total M4 mass squared vanishes in
accordance with the idea that all states - even those representing virtual particles - carried by
wormhole throats are massless. In accordance with the adelic vision, assume that the prime p
does not split in the algebraic extension of rationals used (simplest extension would be Q[

√
−1]).

This requires p mod 4 = 3 in accordance with Mersenne prime hypothesis. The idea is that p
does not split for ordinary algebraic extension but splits in the ring of hyper-complex numbers.

2. The preferred plane M2 ⊂ M4 corresponds to a preferred hyper-complex plane of complexified
(by commuting imaginary unit i) hyper-octonionic space M8. M2-momentum has therefore
purely number theoretic interpretation being due to the slitting of M2 = np to a product of
hypercomplex integer N = N0+eNz and its conjugate N0−eNz). The hyper-complex imaginary
unit e = iI satisfying e2 = 1 and I2 = −i2 = −1 would correspond to z-axes of M2. Here is
I is the preferred octonionic imaginary unit and i an imaginary unit commuting with it. One
could say that 2-D particle momentum emerges via the emergence of hyper-complex extension
of rationals of their extension. This would also generalize to quaternions and one could say that
M4 momentum emerges via extension of rationals to hyper-quaternions.

3. M2 momentum squared would satisfy P 2
0 − P 2

z = (P0 − ePz)(P0 + ePz) = np. The prime p
does not split in the algebraic extension of rationals used but splits in the ring of hyper-complex
numbers. Assume first n = 1. In this case the splitting of p mod = 3 (p mod = 1) to
p = (p0 + epz)(p0 − epz) implies p0 is even (odd) and pz is odd (even). For n > 1 one must
have (n0− en1)(n0 + en1) = n and similar conditions apply to n so that one would have for M2

momentum P0 + ePz = (n0 ± enz)(p0 ± epz).

4. Momentum components are hyper-complex integer multiples of hyper-complex prime so that that
the allowed momenta would form an ideal of hyper-complex numbers. This is mathematically
very nice but might be quite too strong a condition physically although it is typically encountered
in systems in which particle is enclosed in box. Now the box would correspond to CD with
periodic boundary conditions at the ends of CD for the modified Dirac equation. One could
consider also a weaker condition for with the integer n is replaced with a rational (m/n) such
that neither m nor n contains p as a prime factor.

5. The peculiar looking prediction would be that M2 momentum cannot be purely time-like. In
other words, the particle cannot be at rest M2. Observer for which CD defines the rest system
could not perform a state function reduction leading to a situation in which the particle is at
rest with respect to the observer! In fact, this kind of situation is encountered also for particle
in box since boundary conditions do not allow constant mode. If one recalls that all particles
would be massless in M4 sense, this condition does not look so strange.

Infinite primes and Hilbert space dimensions

Arithmetic QFT picture would strongly suggests that the number theoretic momenta at the lowest
level are conserved in ×q vertices at least. For +q vertices the conservation cannot hold true. The
conservation could mean that the total number of powers of given prime in state is same for positive
and negative energy states.

Of course, much richer spectrum of conservation laws can be imagined since one could require
similar conservation laws also at the higher levels of hierarchy, where various number theoretic mo-
menta correspond to numbers prime polynomials at lower level present in the state. The physical
interpretation would be that the numbers of bound states particles are conserved meaning that these
particles can be regarded as stable. On physical grounds this kind of conservation laws can be only
approximate.

1. Could infinite primes label infinite-dimensional prime Hilbert spaces as finite primes do? Could
the interpretation for the object X =

∏
p p be in terms of a tensor product of all prime-

dimensional Hilbert spaces. Infinite primes with positive finite part would have interpretation
as direct sums of this space and finite integer-dimensional Hilbert space. When the finite part of
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the infinite prime is negative the interpretation would not be so straightforward, and this option
does not look attractive.

2. A much more plausible option is that infinite prime at the first level defines an algebraic exten-
sion of rationals (or of its extension) and that this gives rise to a collection of norm for algebraic
extension induced by complex norm. As a matter fact, these points at which this norm vanishes
might have interpretation as complex coordinates for a corresponding braid strand in n-strand
bound state braid in preferred complex coordinates for the partonic 2-surface. A possible ge-
ometric interpretation for these points inspired by the notion of dessins d’enfant is that the
partonic 2-surface as an abstract Riemann surface representable as a covering of sphere becomes
singular at these points as several sheets of covering co-incide.

3. The infinite primes of the lowest level of the hierarchy formally representing Fock states of free
bosons and fermions can be mapped to rationals. These rationals could define pairs of Hilbert
space dimensions assignable to bosonic and fermionic parts of the state and could this allow
identification as quantum p-adic integer in each sector of the adele and the identification in
terms of integer dimension in the real sector of quantum adeles. The fact that the two integers
have no common factors would only mean that given mode cannot both contain and not contain
fermionic excitation.

One could even consider the possibility of concrete assignment of the first dimension in terms
of fermionic braid strands with bosonic excitations and second dimension in terms of purely
bosonic braid strands. This interpretation is very natural since the super-conformal algebras
creating states have both purely bosonic and purely fermionic generators. These braids could
correspond to space-like and time-like (actually light-like) braids having their ends at partonic
2-surfaces.

The Galois groups associated with primes appearing as factors of the primes would correspond
naturally to additional internal degrees of freedom. This identification makes sense also for the
infinite primes represented by irreducible polynomials since the coefficients of the polynomial
representable in terms of the roots of polynomials define rationals having interpretation as
number theoretic momenta. Therefore the interpretation in terms of Hilbert space dimensions
makes sense when rationals are interpreted as pairs of dimensions for Hilbert spaces.

4. What about the infinite primes representing bound states and mappable to irreducible polyno-
mials with rational coefficients and defining polynomial primes characterized by a collection of
roots [K50]. These roots define an algebraic extension of rationals and this suggests that the
quantum adele associated with the infinite prime in question is defined accordingly. The infinite
primes mappable to nth order monic polynomials would have interpretation as many particle
states consisting of single particle states which correspond to algebraic number rather than ra-
tional. The rational coefficients of the monic polynomial would define the rationals defining
pairs of Hilbert space dimensions.

5. The natural identification for the Hilbert spaces in question would be in terms of the singular
local coverings of imbedding space associated with the hierarchy of Planck constants suggested
to emerge from the vacuum degeneracy of Kähler action. The integer n decomposing to primes
would correspond to sub-braids labeled by prime factors l of n and consisting of l strands in the
l-fold sub-covering.

The consistency with the quantum adeles would force the following highly speculative picture.
Main justification comes from its internal consistency and consistency with generalize Feynman graphs.

1. Infinite prime (integer, rational) defines the algebraic extension used and the allowed quantum
p-adic number fields contributing as factors to the corresponding quantum adele. p-Adic primes,
which can be also algebraic primes if one starts from extension of rationals, by definition do not
split in the algebraic extension. Infinite primes assignable to particle states obey the conser-
vation of multiplicative number theoretic momenta and define naturally collections of pairs if
Hilbert space dimensions assignable to the particles and decomposing to primes l assignable to
braid strands. The integers characterizing the rational defining number theoretic momentum
correspond to time-like and space-like braid strands and only the time- or space-like strand
carries fermionic quantum numbers.

http://tgdtheory.com/public_html/tgdnumber/tgdnumber.html#infsur
http://tgdtheory.com/public_html/tgdnumber/tgdnumber.html#infsur
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2. These Hilbert spaces have a natural interpretation in terms of the hierarchy of Planck constants
realizable in terms of local singular coverings of the imbedding space forced by the enormous
vacuum degeneracy of Kähler action.

3. Hyper-complex primes are identifiable as generalizations of p-adic primes and have nothing to
do with infinite primes. They could code for standard model quantum number.

4. The quantum Galois quantum numbers assignable to primes l for given p-adic prime p and
appearing in the infinite prime characterizing the state would provide a cognitive representation
of the standard model quantum numbers.

5. Mersenne primes and primes near powers of 2 and p = 2 also should be selected as a p-adic
prime in this manner.

6. The basic uncertain aspect of the scenario is whether the notion of quantum p-adic with coef-
ficients in quantum pinary expansion satisfying only the condition xn < pN for N > 1, with
N dictated by the pinary cutoff, makes sense. Physically N > 1 is very natural generalization.
Most of the preceding considerations remain intact even if N = 1 is the only internally consistent
option. What is lost is the representation of quantum numbers using quantum Galois group and
the crazy proposal that quantum Galois group could be isomorphic to AGG.

This is only the simplest possibility that I can imagine now and reader is encouraged to imagine
something better!

The relationship between the infinite primes of TGD and of algebraic number theory

While preparing this chapter I experienced quite a surprise as I learned that something called infinite
primes emerges in algebraic number theory [A5]. Infinite primes in this sense looked first to me like
a heuristic concept characterizing norms for algebraic extensions of rationals induced by the complex
norm for the imbeddings of the extension to complex plane. The nomenclature is motivated by the
analogy with p-adic norms defined by algebraic primes. It however turns out that there is a close
connection with infinite primes at the first level of the hierarchy.

1. The embeddings (ring homomorphisms) of Galois extension to complex plane induce a collection
of norms induced by the complex norm. The analogy with p-adic norms labelled by primes serves
as a partial motivation for calling these norms infinite primes. The imbeddings are induced by
the imbeddings of the roots of an irreducible monic polynomials Pn(x) = xn + ... with rational
coefficients, which defines a polynomial prime so that infinite primes in the sense of algebraic
number theory correspond to a polynomial primes.

2. The imbeddings (ring homomorphisms) of the extension ofK in C an be defined to those reducing
to imbeddings in R and those not. The imbeddings to R correspond in one-one manner to real
roots and complex imbeddings come in pairs corresponding to complex root and its conjugate.
The norm is defined as |z − zk|, where zk is the root. The number of imbeddings and therefore
of norms is r = r1 + 2r2, where r is the the degree of the extension K/Q and also the degree of
its Galois group for Galois extensions (defined by polynomials with rational coefficients).

3. Also in TGD framework the infinite primes at the lowest level of hierarchy can be mapped
to irreducible monic polynomials of single variable: at nth level polynomials of n variables is
required. Now however also polynomials P1(x), whose roots are rationals and have interpretation
in terms of free Fock states, are included. Note that the replacement of the variable z with
z − m/n shifts the roots of a monic polynomial by m/n so that the corresponding algebraic
extension is not modified. For the simplest infinite primes the norm would correspond to |z −
m/n|. Therefore infinite prime indeed characterizes the algebraic extension and its imbeddings
and the ”real” factor of quantum adeles is identifiable with this algebraic extension endowed
with any of these norms.

http://en.wikipedia.org/wiki/Algebraic_number_theory
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13.4.5 What selects preferred primes in number theoretical evolution?

Preferred p-adic length scales seem to correspond to primes near powers of two, in particular Mersenne
primes. The proposed explanation is that number theoretic evolution as emergence of higher-dimensional
extensions of rationals and also of p-adics somehow selects Mersenne primes as fittest. But what fit-
ness could mean? This is the question. The answer to the question might be banally simple. The
fittest primes could be stable in the process of generation of algebraic extensions! Stability means
very concretely that primes do not split into products of primes of the extension and therefore can
define p-adic primes for quantum adeles! Number theoretic evolution by algebraic extensions would
gradually kill p-adic primes.

The splitting to primes need not be unique (if it is one speaks of principal ideal domain). For
instance, in Q[

√
−5] for which factorization to algebraic primes is not unique (but is unique to prime

ideals): 6 = 2 × 3 = (1 +
√
−5)(1 −

√
−5). In this kind of situation it is better to speak about

prime ideals since this makes the splitting unique for what is known as Dedekind domains. The ideal
class group characterizes the non-uniqueness of splitting to primes and consists of equivalence classes
of fractional ideals (essentially integers defined by some fixed integer) under equivalence defined by
multiplication by a rational of extension. The non-uniqueness of the factorization is characterized by
so called ideal class group [A51].

Are Mersenne primes especially stable against splitting to algebraic primes? Generally, for an
especially large set of algebraic extensions, or for some special but physically important extensions?
The cautious guess is that Mersenne primes could be special in the sense that the set of (physically
relevant) algebraic extensions for which they do not split is especially large. This in turn would raise
the infinite primes defining these special algebraic extensions in a special physical role. A possible
physical interpretation for these infinite primes would be in terms of bound states. Therefore the
stability of Mersenne primes could be translate to the stability of the bound states for which Mersenne
primes are stable.

quadratic fields Q[
√
d] are the simplest algebraic extensions of rationals since they correspond to

second order prime polynomials and are also relatively well-studied so that one can look them at first.
For Q[

√
d] there are general results about the splitting of primes.

1. Quite generally, given prime p can be inert, split to a product of two distinct prime ideals, or
can be ramified. The so called discriminant D characterizes the situation: for d mod 4 = 1
equals to D = d and otherwise to D = 4d.

2. If p - say Mk - is an odd prime not dividing d, p splits only if one has

D mod p = x2

In this case one has (D/p) = 1, where (D/p) is Legendre symbol having values in the set
{0, 1,−1}. (D/p) = −1 means stability of p against slitting.

Legendre symbol is a multiplicative function in the set of integers D meaning that if p splits
under D1 and D2 it splits also under D1D2 , and if p does not split under D1 nor under D2 it
splits under D1D2. The multiplicative property implies (4p1/p) = (2/p)2 × (p1/p) = (p1/p). It
is obviously enough to check whether the splitting occurs for primes p1. Non-splitting prime p1

gives rise to a set of non-splitting integers obtained by multiplying p1 with any splitting prime.
Also odd powers of non-splitting p1 define this kind of sets.

3. Also the following properties of Legendre symbol are useful. One has (D/p) = (p/D) if either
D mod 4 = 1 or p mod 4 = 1 holds true. D mod 4 = 3 and p mod 4 = 3 one has (D/p) =

−(p/D). One has also (−1/p) = (−1)(p−1)/2 and (2/p) = (−1)(p2−1)/8.

4. If the p-adic number fields, which do not allow
√
−1 as ordinary p-adic number are in special

role then there might be hopes about the understanding of the special role of Mersenne primes.
Mersenne primes are also stable for Gaussian integers and quadratic extensions Q[

√
±d] of

rationals defined by positive integers d, which are products d = d1d2 of two integers. d1 factorizes
to a product of primes p1 mod 4 = 1 splitting Mk, and d2 is a product of an odd number of
primes p1 mod 4 = 1 not splitting Mk.

http://en.wikipedia.org/wiki/Ideal_class_group
http://en.wikipedia.org/wiki/Quadratic_field
http://en.wikipedia.org/wiki/Legendre_symbol


684 Chapter 13. Quantum Adeles

5. One must also distinguish between the algebraic extensions of rationals and finite dimensional
extensions of p-adic numbers (also powers ek, k < p define finite-dimensional extension). For
instance, one can consider a quadratic extension Q[

√
−1] for rationals defining similar extension

for the allowed p-adic primes p mod 4 = 3 and fuse it with a quadratic extension Q[
√
d] for

which d mod 4 = 1 holds true. For adeles the extension of rationals and the extensions of
p-adic numbers can be said to separate.

Some special examples are in order to make the situation more concrete.

1. A good example about physically very relevant quadratic extension is provided by Gaussian
integers, which correspond to Galois extension Q[

√
−1] [A39]. p = 2 splits as 2 = (1+ i)(1− i) =

−i(1 + i)2 = i(1− i)2 and the splitting to primes is non-unique. The splitting to prime ideals is
however unique so that p = 2 is not ramified.

The primes p mod 4 = 1 split also as stated by Fermat’s theorem of two squares. Mersenne
primes satisfy p mod 4 = 3 but some additional criterion is needed to select them. Primes
p mod 4 = 3 do not and cannot define p-adic primes appearing in quantum adele for Gaussian
rationals. Note that for p mod 4 = 1

√
−1 exists as p-adic number, which might cause problems

in the p-adic formulation of quantum mechanics. These observations suggest that p-adic primes
p mod4 = 1 suffer extinction when

√
−1 emerges in the number theoretic evolution and only

the primes p mod4 = 3 remain. One could also start from the extension Q[
√
−1] rather than

rationals as the role of
√
−1 in quantum theory suggests so that the primes p mod4 = 3 would

be the only allowed quantum p-adic primes.

2. for Q[
√

2] for which 2-adicity would not be possible. What happens for Mersenne primes? One
can write M3 = 7 = (

√
2 + 3)(−

√
2 + 3) where 3 ±

√
2 is an algebraic integer as a root of a

monic polynomial P (x) = x2 − 6x + 7 so that the splitting of M3 occurs in Q[
√

2]. Therefore
it seems that the absence of

√
2 and allowance of 2-adicity is necessary for Mersenne-adicity.

This conforms with the naive physical picture that the p-adic scales defined by Mersennes are
in excellent approxiation n-ary 2-adic length scales.

One should check whether the extension defined by
√

2 is somehow special as compared to the
extensions defined by odd primes. Certainly the fact that this prime is the only even prime
makes it rather special. It allows extension with

√
−1 and p-adic extension allowing all square

roots except those of 2 is spanned by four square roots unlike similar extensions for other p-adic
numbers fields which require only two square roots.

3. Suppose D = p1 with p1 mod 4 = 1. For p = Mk quadratic resiprocity implies that the
condition is equivalent with Mk mod p1 = x2. Neither the extensions Q[

√
p1] nor Q[

√
−p1]

induce splitting of Mk for p1 mod 4 = 1. For M3 = 7 and p1 ∈ {5, 13, 17} no splitting of
M3 takes place but for p1 = 29 splitting occurs. This suggests that there is no general rule
guaranteing the stability of Mersenne primes in this case.

4. Suppose D = p1 mod 4 = 3. One has (4p1,Mk) = (p1,Mk) by the multiplicative character of
the Legendre symbol. Quadratic resiprocity gives now (p1,Mk) = −(Mk, p1) so that splitting
occurs for Mk only if it does not occur for p1. If splitting occurs for p1 it does not occur for
−p1 and vice versa. p1 = 7 and M2 = 3 serve as a testing sample. One has (3, 7) = 1 so that
the splitting of M2 = 3 takes place for Q[

√
7] but not for Q(

√
−7) and the splitting of M3 = 7

takes place for Q[
√
−3] but not for Q(

√
3).No obvious general rule seems to hold.

13.4.6 Generalized Feynman diagrams and adeles

The notion of Hilbert adeles seems to fit nicely with the recent view about generalized Feynman
diagrams. The basic heuristic idea is the idea about fusion of physics in various number fields. p-Adic
mass calculations lead to the conclusion that elementary particles are characterize by p-adic primes
and inside hadron quarks obeying different effective or real p-adic topologies are present. One can
speak about real and p-adic space-time sheets and real and p-adic spinors and also WCW has real and
p-adic sectors. There is a hierarchy of algebraic extensions of rationals and presumably of also p-adic
numbers. Even more general finite-dimensional extensions containing for instance Neper number e
and its roots are also possible and involve extensions of p-adic numbers.

http://en.wikipedia.org/wiki/Splitting_of_prime_ideals_in_Galois_extensions
http://en.wikipedia.org/wiki/Quadratic_reciprocity
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At the level of Feynman graphs this means that different lines correspond to different p-adic
topologies and I have already proposed how this could give rise p-adic length scale hypothesis when
the Feynman amplitudes in the tensor product of quantum variants p-adic number fields are mapped to
reals by canonical identification [K33]. Rational or even more general entanglement between different
number fields would be essential.

The vertices of generalized Feynman diagrams for different incoming p-adic number fields could be
multi-p p-adic objects in quantum sense involving powers expansions in powers of integer n decomposed
to product of powers of quantum primes associated with its factors with coefficients not divisible by
the factors. An alternative option is that vertices are rational numbers common to all number fields
serving as entanglement coefficients. A third option is that they are real numbers in corresponding
tensor factor. One should also formulate symmetries in p-adic sectors and the simplest option is
that symmetries represented as affine transformations simply reduce to products of the symmetries in
various p-adic sectors of the imbedding space.

The challenge is to formulate all this in a concise and elegant manner. It seems that adeles
generalized to Hilbert adeles might indeed provide this formulation. The naive basic recipe would
be extremely simple: whenever you have a real number, replace it with Hilbert adele. You can even
replace the points of Hilbert spaces involved with corresponding Hilbert spaces! One could replace
imbedding space, space-time surfaces, and WCW as well as imbedding space spinors and spinor fields
and WCW spinors and spinor fields with the hierarchy of their Hilbert adelic counterparts obtaining
in this manner what might be interpreted as cognitive representations.

13.5 Quantum Mathematics and Quantum Mechanics

Quantum Mathematics (QM) suggests that the basic structures of Quantum Mechanics (QM) might
reduce to fundamental mathematical and metamathematical structures, and that one even consider the
possibility that Quantum Mechanics reduces to Quantum Mathematics with mathematician included
or expressing it in a concice manner: QM=QM!

The notes below were stimulated by an observation raising a question about a possible connection
between multiverse interpretation of quantum mechanics and quantum mathematics. The heuristic
idea of multiverse interpretation is that quantum state repeatedly branches to quantum states which
in turn branch again. The possible outcomes of the state function reduction would correspond to
different branches of the multiverse so that one could save keep quantum mechanics deterministic if
one can give a well-defined mathematical meaning to the branching. Could quantum mathematics
allow to somehow realize the idea about repeated branching of the quantum universe? Or at least
to identify some analog for it? The second question concerns the identification of the preferred state
basis in which the branching occurs.

Quantum Mathematics replaces numbers with Hilbert spaces and arithmetic operations + and ×
with direct sum ⊕ and tensor product ⊗.

1. The original motivation comes from quantum TGD where direct sum and tensor product are
naturally assigned with the two basic vertices analogous to stringy 3-vertex and 3-vertex of
Feynman graph. This suggests that generalized Feynman graphs could be analogous to sequences
of arithmetic operations allowing also co-operations of ⊕ and ⊗.

2. One can assign to natural numbers, integers, rationals, algebraic numbers, transcendentals and
their p-adic counterparts for various prime p Hilbert spaces with formal dimension given by the
number in question. Typically the dimension of these Hilbert spaces in the ordinary sense is
infinite. Von Neuman algebras known as hyper-finite factors of type II1 assume as a convention
that the dimension of basic Hilbert space is one although it is infinite in the standard sense of
the word. Therefore this Hilbert space has sub-spaces with dimension which can be any number
in the unit interval. Now however also negative and even complex, quaternionic and octonionic
values of Hilbert space dimension become possible.

3. The decomposition to a direct sum matters unlike for abstract Hilbert space as it does also
in the case of physical systems where the decomposition to a direct sum of representations of
symmetries is standard procedure with deep physical significance. Therefore abstract Hilbert
space is replaced with a more structured objects. For instance, the expansion

∑
n xnp

n of a
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p-adic number in powers of p defines decomposition of infinite-dimensional Hilbert space to a
direct sum ⊕nxn ⊗ pn of the tensor products xn ⊗ pn. It seems that one must modify the
notion of General Coordinate Invariance since number theoretic anatomy distinguishes between
the representations of space-time point in various coordinates. The interpretation would be in
terms of cognition. For instance, the representation of Neper number requires infinite number
of pinary digits whereas finite integer requires onlya finite number of them so that at the level
of cognitive representations general coordinate invariance is broken.

Note that the number of elements of the state basis in pn factor is pn and m ∈ {0, ..., p− 1} in
the factor xn. Therefore the Hilbert space with dimension pn > xn is analogous to the Hilbert
space of a large effectively classical system entangled with the microscopic system characterized
by xn. p-Adicity of this Hilbert space in this example is for the purpose of simplicity but raises
the question whether the state function reduction is directly related to cognition.

4. On can generalize the concept of real numbers, the notions of manifold, matrix group, etc... by
replacing points with Hilbert spaces. For instance, the point (x1, .., xn) of En is replaced with
Cartesian product of corresponding Hilbert spaces. What is of utmost importance for the idea
about possible connection with the multiverse idea is that also this process can be also repeated
indefinitely. This process is analogous to a repeated second quantization since intuitively the
replacement means replacing Hilbert space with Hilbert space of wave functions in Hilbert space.
The finite dimension and its continuity as function of space-time point must mean that there are
strong constraints on these wave functions. What does this decomposition to a direct sum mean
at the level of states? Does one have super-selection rules stating that quantum inteference is
possible only inside the direct summands?

5. Could one find a number theoretical counterpart for state function reduction and preparation
and unitary time evolution? Could zero energy ontology have a formulation at the level of the
number theory as earlier experience with infinite primes suggest? The proposal was that zero
energy states correspond to ratios of infinite integers which as real numbers reduce to real unit.
Could zero energy states correspond to states in the tensor product of Hilbert spaces for which
formal dimensions are inverses of each other so that the total space has dimension 1?

13.5.1 Unitary process and state function reduction in ZEO

The minimal view about unitary process and state function reduction is provided by ZEO [K6].

1. Zero energy states correspond to a superposition of pairs of positive and negative energy states.
The M-matrix defining the entanglement coefficients is product of Hermitian square root of
density matrix and unitary S-matrix, and various M-matrices are orthogonal and form rows of
a unitary U-matrix. Quantum theory is square root of thermodynamics. This is true even at
single particle level. The square root of the density matrix could be also interpreted in terms of
finite measurement resolution.

2. It is natural to assume that zero energy states have well-defined single particle quantum numbers
at the either end of CD as in particle physics experiment. This means that state preparation
has taken place and the prepared end represents the initial state of a physical event. Since either
end of CD can be in question, both arrows of geometric time identifiable as the Minkowski time
defined by the tips of CD are possible.

3. The simplest identification of the U-matrix is as the unitary U-matrix relating to each other
the state basis for which M-matrices correspond to prepared states at two opposite ends of CD.
Let us assume that the preparation has taken place at the ”lower” end, the initial state. State
function reduction for the final state means that one measures the single particle observables for
the ”upper” end of CD. This necessarily induces the loss of this property at the ”lower” end.
Next preparation in turn induces localization in the ”lower” end. One has a kind of time flip-flop
and the breaking of time reversal invariance would be absolutely essential for the non-triviality
of the process.

The basic idea of Quantum Mathematics is that M-matrix is characterized by Feynman diagrams
representing sequences of arithmetic operations and their co-arithmetic counterparts. The latter ones

http://tgdtheory.com/public_html/tgdconsc/tgdconsc.html#timenature
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give rise to a superposition of pairs of direct summands (factors of tensor product) giving rise to same
direct sum (tensor product). This vision would reduce quantum physics to generalized number theory.
Universe would be calculating and the consciousness of the mathematician would be in the quantum
jumps performing the state function reductions to which preparations reduce.

Note that direct sum, tensor product, and the counterpart of second quantization for Hilbert
spaces in the proposed sense would be quantum mathematics counterpart for set theoretic operations,
Cartesian product and formation of the power set in set theory.

13.5.2 ZEO, state function reduction, unitary process, and quantum math-
ematics

State function reduction acts in a tensor product of Hilbert spaces. In the p-adic context to be
discussed n the following xn ⊗ pn is the natural candidate for this tensor product. One can assign a
density matrix to a given entangled state of this system and calculate the Shannon entropy. One can
also assign to it a number theoretical entropy if entanglement coefficients are rationals or even algebraic
numbers, and this entropy can be negative. One can apply Negentropy Maximization Principle to
identify the preferred states basis as eigenstates of the density matrix. For negentropic entanglement
the quantum jump does not destroy the entanglement.

Could the state function reduction take place separately for each subspace xn⊗pn in the direct sum
⊕nxn⊗pn so that one would have quantum parallel state function reductions? This is an old proposal
motivated by the many-sheeted space-time. The direct summands in this case would correspond to
the contributions to the states localizable at various space-time sheets assigned to different powers
of p defing a scale hierarhcy. The powers pn would be associated with zero modes by the previous
argument so that the assumption about independent reduction would reflect the super-selection rule
for zero modes. Also different values of p-adic prime are present and tensor product between them
is possible if the entanglement coefficients are rationals or even algebraics. In the formulation using
adeles the needed generalization could be formulated in a straightforward manner.

How can one select the entangled states in the summands xn ⊗ pn? Is there some unique choice?
How do unitary process and state function reduction relate to this choice? Could the dynamics of
Quantum Mathematics be a structural analog for a sequence of state function reductions taking place
at the opposite ends of CD with unitary matrix U relating the state basis for which single particle
states have well defined quantum numbers either at the upper or lower end of CD? Could the unitary
process and state function reduction be identified solely from the requirement that zero energy states
correspond to tensor products Hilbert spaces, which correspond to inverses of each other as numbers?
Could the extension of arithmetics to include co-arithmetics make the dynamics in question unique?

13.5.3 What multiverse branching could mean?

Could QM allow to identify a mathematical counterpart for the branching of quantum states to quan-
tum states corresponding to preferred basis? Could one can imagine that a superposition of states∑
cnΨn in a direct summand xn⊗pn is replaced by a state for which Ψn belong to different direct sum-

mands and that branching to non-intefering sub-universes is induced by the proposed super-selection
rule or perhaps even induces state function reduction? These two options seem to be equivalent ex-
perimentally. Could this decoherence process perhaps correspond to the replacement of the original
Hilbert space characterized by number x with a new Hilbert space corresponding to number y induc-
ing the splitting of xn ⊗ pn? Could the interpretation of finite integers xn and pn as p-adic numbers
p1 6= p induce the decoherence?

This kind of situation is encountered also in symmetry breaking. The irreducible representation of
a symmetry group reduces to a direct sum of representations of a sub-group and one has in practice
super-selection rule: one does not talk about superpositions of photon and Z0. In quantum measure-
ment the classical external fields indeed induce symmetry breaking by giving different energies for the
components of the state. In the case of the factor xn ⊗ pn the entanglement coefficients define the
density matrix characterizing the preferred state basis. It would seem that the process of branching
decomposes this state space to a direct sum 1-D state spaces associated with the eigenstates of the
density matrix. In symmetry breaking superposition principle holds true and instead of quantum
superposition for different orientations of ”Higgs field” or magnetic field a localization selecting single
orientation of the ”Higgs field” takes place. Could state function reduction be analogous process?
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Could non-quantum fluctuating zero modes of WCW metric apper as analogs of ”Higgs fields”. In
this picture quantum superposition of states with different values of zero modes would not be possible,
and state function reduction might take place only for entanglement between zero modes and non-zero
modes.

13.5.4 The replacement of a point of Hilbert space with Hilbert space as
a second quantization

The fractal character of the Quantum Mathematics is what makes it a good candidate for under-
standing the self-referentiality of consciousness. The replacement of the Hilbert space with the direct
sum of Hilbert spaces defined by its points would be the basic step and could be repeated endlessly
corresponding to a hierarchy of statements about statements or hierarchy of nth order logics. The
construction of infinite primes leads to a similar structure.

What about the step leading to a deeper level in hierarchy and involving the replacement of
each point of Hilbert space with Hilbert space characterizing it number theoretically? What could it
correspond at the level of states?

1. Suppose that state function reduction selects one point for each Hilbert space xn⊗ pn. The key
step is to replace this direct sum of points of these Hilbert spaces with direct sum of Hilbert
spaces defined by the points of these Hilbert spaces. After this one would select point from
this very big Hilbert space. Could this point be in some sense the image of the Hilbert space
state at previous level? Should one imbed Hilbert space xn ⊗ pn isometrically to the Hilbert
space defined by the preferred state xn⊗ pn so that one would have a realization of holography:
part would represent the whole at the new level. It seems that there is a canonical manner to
achieve this. The interpretation as the analog of second quantization suggest the identification
of the imbedding map as the identification of the many particle states of previous level as single
particle states of the new level.

2. Could topological condensation be the counterpart of this process in many-sheeted space-time
of TGD? The states of previous level would be assigned to the space-time sheets topologically
condensed to a larger space-time sheet representing the new level and the many-particle states
of previous level would be the elementary particles of the new level.

3. If this vision is correct, second quantization performed by theoreticians would not be a mere
theoretical operation but a fundamental physical process necessary for cognition! The above
proposed unitary imbedding would imbed the states of the previous level as single particle states
to the new level. It would seem that the process of second quantization, which is indeed very
much like self-reference, is completely independent from state function reduction and unitary
process. This picture would conform with the fact that in TGD Universe the theory about the
Universe is the Universe and mathematician is in the quantum jumps between different solutions
of this theory.

Returning to the motivating question: it seems that the endless branching of the states in multiverse
interpretation cannot correspond to a repeated second quantization but could have interpretation as a
decoherence identifiable as delocalization in zero modes. If state function is allowed, it corresponds to
a localization in zero modes analogous to Higgs mechanism. The Quantum Mathematics realization
for a repeated second quantization would represent a genuinely new kind of process which does not
reduce to anything already known.

13.6 Speculations related to Hilbert adelization

This section contains further speculations related to realization of number theoretical universality in
terms of Hilbert adeles and to the notion of number theoretic emergence. One can construct infinite
hierarchy of Hilbert adeles by replacing the points of Hilbert spaces with Hilbert spaces repeatedly:
this generalizes the repeated second quantization used to construct infinite primes and realizes also
algebraic holography since the points of space have infinitely complex structure. There are strong
restrictions on the values of coordinates of Hilbert space for the p-adic sectors of the adele and the



13.6. Speculations related to Hilbert adelization 689

number of state basis satisfying orthonormality conditions is very restricted: a good guess is that
unitary transformations reduce to a permutation group and that its cyclic subgroup defines quantum
Galois group. Also the Hilbert counterpart of real factor of adeles is present and in this case there
are no such restrictions.

A logical use of terms is achieved if one refers by term ”quantum Hilbert adele” to the adele
obtained by replacing the Hilbert space coefficients an < p of pinary expansions with their quantum
Hilbert spaces. On the other hand the hierarchy of Hilbert adeles is very qunalta since it is analogous
to a hierarchy of second quantizations so that Hilbert adeles could be also called quantum adeles.
Reader can decide.

13.6.1 Hilbert adelization as a manner to realize number theoretical uni-
versality

Hilbert adelization is highly suggestive realization of the number theoretical universality. The very
construction of adeles and their Hilbert counterparts is consistent with the idea that rational numbers
are common to all completions of rationals. This suggests a generalization of the formalism of physics
allowing to realize number theoretical universality in terms of adeles and their Hilbert counterparts.
What this would mean the replacement of real numbers everywhere by adeles containing real numbers
as one Cartesian factor. Field equations make sense for the adeles separately in each Cartesian factor.

If one can define differential calculus for the Hilbert reals and p-adics as seems to be the case,
this abstraction might make sense. There seems to be no obvious objection for field property and the
entire hierarchy of n-Hilbert spaces could be seen as a cognitive self-referential representation of the
mathematical structure allowing perhap also physical realization if the structure is consistent with
the general axioms.

Field equations would thus make sense also for an infinite hierarchy formed by Hilbertn adeles.
The fascinating conjecture is that quantum physics reduces to quantum mathematics and one might
hope that TGD provides a realization for this physics because of its very strong ties with number
theory.

Hilbert adelication at imbedding space level

The Hilbert adelization at the level of imbedding space makes senses if adelization works so that one
can consider only adelization.

1. Could imbedding space coordinates regarded as adeles? In the p-adic sectors general coordinate
invariance would require some preferred coordinate choices maybe unique enough by symmetry
considerations. One can also consider a spontaneous breaking of GCI by cognitive represen-
tations. Adelization would code field equations in various p-adic number fields to single field
equation for adeles and would not bring anything new.

2. What could field equations mean for Hilbert adeles? One could imagine that ordinary field
equations as local algebraic statements are expressed separately at each point of space-time
surface giving infinite number of equations of form F k(x) = 0, where k labels imbeding space
coordinates. Moving to the first level of hierarchy would mean that one replaces the points of
Hilbert spaces involved with Hilbert spaces. The connection with the first order logic would
suggest that the points of the Hilbert spaces representing points of imbedding space and space-
time - in general infinite-dimensional for real and p-adic numbers - represent points of imbedding
space and of space-time. This second quantization would transform infinite number of statements
of predicate logic to a statement of first order logic.

This certainly sounds hopelessly abstract and no-one would seriously consider solving field equa-
tions in this manner. But maybe mathematical thinking relying on quantum physics could indeed
do it like this? At the next level of hierarchy one might dream of combining field equations for
entire families of solutions of field equations to single equation and so on. Maybe these families
could correspond to supports of WCW spinor fields in WCW. At the next level statements would
be about families of WCW spinors fields and so on - ad infinitum. In fact, WCW spinors can be
seen as quantum superpositions of logical statements in fermionic Fock space and WCW spinor
fields would assign to WCW a direct sum of this kind of statements, one to each point of WCW.
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This sounds infinitely infinite but one must remember that the sub-WCW consisting of surfaces
expressible in terms of rational functions is discrete.

3. The conjecture that field equations reduce to octonion real-analyticity requires that octonions
and quaternions make sense also p-adically. The problem is that the p-adic variants of octonions
and quaternions do not form a field: the reason is that even the equation x2 + y2 = 0 can have
solutions in p-adic number fields so that the inverses of quaternions and octonions, and even
p-adic complex numbers need not make sense. The p-adic counterparts of quaternions and
octonions however exist as a ring so that one could speak about polynomials and Taylor series
whereas the definition of rationals and therefore rational functions would involve problems.
Octonion real-analyticity and quaternion real-analyticity and therefore also space-time surfaces
defined by polynomials or even by infinite Taylor series could make sense also for the p-adic
variants of octonions and quaternions.

Could imbedding space spinors be regarded as adelic and even Hilbert adelic spinors? Again the
problems reduce to the adelic level.

1. Adelization could be perhaps seen as a convenient book keeping device allowing to encapsulate
the infinite number of physics in various quantum p-adic number fields to single physics. Hilbert
adelic structures could however provide much deeper realization of physics as generalized number
theory. One can indeed ask whether the action of the p-adic quantum counterparts of various
symmetries could representable in the quantum quantum Galois groups for Hilbert adeles: these
groups might reduce to cyclic groups and might relate to cyclic coverings of imbedding space at
the level of physics.

The minimal interpretation would be as a cognitive representation of quantum numbers of
physical states at the first ”material” level of hierarchy using the number theoretic Hilbert space
anatomy of the point to achieve the representation. The representative capacity would be infinite
for transcendental numbers with infinite number of pinary digits and finite for rational numbers.
For real unit if would be miminal and zero could not represent anything. Quantum entanglement
would be possible for tensor product coefficients and quantum superposition would be possible
due to direct sum of pinary digits.

2. Imbedding space spinor fields could be regarded as Cartesian products (direct sums) of spinor
fields in real and various p-adic imbedding spaces having values in the same number field. Also
the induced metric and spinor connection would correspond to Cartesian product rather than
tensor product. The isometries of the imbedding space would have matrix representation in
terms of adeles on the adelic omponents of spinors and imbedding space coordinates.

Hilbert adelication at the level of WCW

What about quantum TGD at the level of WCW? Could Hilbert adelication apply also at this level?
Could one use the same general recipes to adelize? The step from adele to the hierarchy of Hilbert
adeles does not seem to be a conceptual problem and the basic problem is to understand what adele
means.

1. Could WCW described in terms of generalized number theory? Could adelic WCW be defined
as the Cartesian product of real WCW and p-adic WCWs? The observations about dessins
d’enfant [A24] [K91] suggest that the description of WCW could be reduced to the description
in terms of orbits of algebraic 2-surfaces identified as partonic 2-surfaces at the boundaries of
CDs (also the 4-D tangent space data at them codes for physics).

2. For a Cartesian product of finite-dimensional spaces spinors are formed as tensor products
associated with with the Cartesian factors. Adelic WCW is Cartesian sum of real and p-adic
variants. Could Hilbert adelic WCW spinors be identified as a tensor product of WCW spinors
defined in the Hilbert adelic variant of WCW. This would conform with the physical vision that
real and p-adic physics (matter and cognition) correspond to tensor factors of a larger state
space. Furthermore, spinos generalizes scalar functions and the function space for adele valued
functions with adelic argument forms in a natural manner tensor product of function spaces for
various completions of reals. Note that one can speak about rational quantum entanglement
since rational numbers are common to all the Cartesian factors.
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3. Could also the moduli space of conformal equivalence classes of partonic 2-surfaces be regarded as
adele in the sense that Teichmueller parameters from adele. This requires that the Teichmueller
space of conformal equivalence classes of Riemann surfaces corresponds to the p-adic version of
real Teichmueller space: this has been actually assumed in p-adic mass calculations [K18, K44].

One could start from the observation that algebraic Riemann surfaces are dense in the space
of all Riemann surfaces. This means that the algebraic variant of Teichmueller space is able
to characterize the conformal equivalence classes. What happens when one adds the Riemann
surfaces for which the coefficients of the Belyi function and rational functions defining are allowed
to be in real or p-adic completion of rationals. A natural guess is that completion of the algebraic
variant of Teichmueller space results in this manner. If this is argument makes sense then adelic
moduli space makes sense too.

There are however technical delicacies involved. Teichmueller parameters are defined as values of
1-forms for the homology generators of Riemann surface. What does one mean with the values
of these forms when one has a surface containing only algebraic points and ordinary integral is
not well-defined? Also in the p-adic context the definition of the integral is problematic and
I have devoted a lot of time and energy to this problem (see for instance [K89]). Could the
holomorphy of these forms help to define them in terms of residue calculus? This option looks
the most plausible one.

What about the partial well-ordering of p-adic numbers induced by the map n→ nq combined
with canonical identification: could this allow an elegant notion of integration by using the partial
well-ordering. Note that one cannot say which of the numbers 1 and −(p − 1)

∑
n = 1∞pn is

bigger in this ordering, and this induces similar problem for all p-adic integers which have finite
number of pinary digits.

Problems to solutions and new questions

Usually one becomes fully conscious of a problem only after one has found the solution of the problem.
The vision about Hilbert adeles - as a matter fact, already adeles- solves several nasty nuisances of
this kind and I have worked hardly to prevent these problems from running off under the rug.

1. What one means with integer -1 is not a problem for p-adic mathematics. It becomes a problem
for physical interpretation when one must relate real and p-adic physics to each other since
canonical identification maps p-adic numbers to non-negative reals. This leads to problems with
Hilbert space inner product but algebraic extensions of p-adic numbers by roots of unity allow to
define p-adic Hilbert spaces but it seems that the allowed state basis are very restricted since the
number of unitary isometries of Hilbert space is restricted dramatically by number theoretical
existence requirement. The optimistic interpretation would that full quantum superposition is
highly restricted in cognitive sectors by the condition of number theoretic existence.

2. What one means with complex p-adics is second problem.
√
−1 exists p-adically for p mod 4 =

1 so that one cannot introduce it via algebraic extension of p-adics in this case. This is a
problem of p-adic quantum mechanics. Allowance of only p-adic primes p which do not split for
the extension containing imaginary unit seems to be a general solution of the problem.

3. p-Adic counterparts of quaternions, and octonions do not exist for the simple reason that the
p-adic norm can be vanishing even for p-adic complex number for p-adic fields allowing

√
−1.

This problem can be circumvented by giving up the requirement that one has number field.

4. The norm for adeles exist as a product of real and norm and p-adic norms but is not physical.
Also the assignment of Hilbert space structure to adeles is problematic. Canonical identification
combined with n→ nq allows the mapping p-adic components of adele to real numbers and this
allows to define natural inner product and norm analogous to Hilbert space norm for adeles and
their Hilbert counterparts.

5. p-Adic numbers are not well ordered. This implies that difficulties with the definition of integral
since definite integral relies heavily on well-orderness of reals. Canonical identification suggests
that quantum p-adics are well ordered: a < b holds true if it holds true for the images under
canonical identification. This gives hopes about defining also definite integral. For integrable
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functions the natural definition of quantum p-adic valued integral would be by using substitution
for integral function. One - and rather ugly - option is to define the integral as ordinary real
integral for the canonical image of the quantum p-adic valued function. This because this image
is not expected to be smooth in real sense even if p-adic function is smooth.

6. p-Adic integration is plagued also by the problem that already for rational integrals one obtains
numbers like log(n) and π and is forced to introduce infinite-dimensional extension of p-adic
numbers. For log(n) one could restrict the consideration to p-adic primes p satisfying n mod p =
1 but this looks like a trick. Could this difficulty be circumvented somehow for p-adic numbers?
The only possibility that one can imagine would be canonical identification map combined with
n→ nq and the interpretation of integral as a real number.

This could provide also the trick to interpret the integrals involving powers of π possible emerging
from Feynman diagrams in sensible manner. All integrals can be reduced with the use of Laurent
series to integrals of powers of x so that integral calculus would exist in analytic sense for analytic
functions of quantum p-adic numbers.

7. What does one mean with the p-adic counterpart of CP2 or more generally, with the p-adic
counterpart of any non-linear manifold? What does one mean with the complex structure of p-
adic CP2 for p mod 4 = 1? Should one restrict the consideration to p mod 4 = 3? What does
one mean with groups and coset spaces? One can inceed have a satisfactory looking definition
based on algebraic extensions and effective discretization by introducing roots of unity replacing
complex phases as continuous variables [K89].

One could consider two options.

(a) Could the p-adic counterpart of real M4 × CP2 be M8? The objection is that alge-
braic groups are however fundamental for mathematics and typically non-linear manifolds.
Therefore there are excellent motivations for their (Hilbert) adelic existence. Projective
spaces are in turn central in algebraic geometry and in this spirit one might hope that CP2

could have non-trivial p-adic counterpart defined as quantum p-adic projective space.

(b) Another option accepts that adeles contain only those p-adic number fields as Cartesian
factors for which the prime does not split. This excludes automatically p mod 4 = 1
if
√
−1 is present from the beginning in the algebraic extension of rationals defining the

adeles. What happens if one does not assume this. Does CP2 degenerate to real projective
spae RP2? What happens to M4 if regarded as a Cartesian product of hyper-complex
numbers and complex numbers. Does it reduce to M2. Could the not completely well
understood role of M2 in quantum TGD relate to this kind of reduction?

The new view raises also questions challenging previous basic assumptions.

1. Could adeles and their octonionic counterpart allow to understand the origin of commutative
complexification for quaternions and octonions in number theoretic vision about TGD? How
could the commutative imaginary unit emerge number theoretically?

2. One must also reconsider M8−M4×CP2 duality. For instance, could M8 be the natural choice
in p-adic sectors and M4 × CP2 in the real sector?

3. The preferred extremals of Kähler action are conjectured to be quaternionic in some sense.
There are two proposals for what this means. Could it be that the sense in which the space-time
surfaces are quaternionic depends on whether the surface is real or quantum p-adic?

4. The idea that rationals are in the intersection of reals and p-adics is central in the applications
of TGD. How does this vision change? For p = 2 quantum rationals in the sense that pinary
coefficients are quantum integer, are ordinary rational numbers. For p > 2 the pinary coefficients
are in general mapped to algebric numbers involving lq, 0 < l < p. The common points with
reals would in general algebraic numbers.
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Do basic notions require updating in the Hilbert adelic context?

In the adelic context one must take a fresh look to what one means with phrases like ”imbedding space”
and ”space-time surfaces”. The phrase ”space-time surface as a preferred extremal of Kähler action”
might be quite too strong a statement in adelic context and could actually make sense only in the real
sector of the quantum adelic imbedding space. Also the phrase ”p-adic variant of M4 × CP2” might
involve un-necessarily strong implicit assumptions since for p-adic integers one has automatically the
counterparts of compactness even for M8. The proposed identification of the quantum p-adic numbers
as Hilbert p-adic quantum numbers reduces the question to whether p-adic counterparts of various
structures exist or are needed as such.

1. We ”know” that the real imbedding space must be M4 ×CP2. What about p-adic counterpart
of the imbedding space? Is it really possible to have a p-adic counterpart of CP2 or could non-
linearity destroy this kind of hopes? Are there any strong reasons for having the counterpart
of M4 × CP2 in p-adic sectors? Could one have M4 × CP2 only in real sector and M8 in
p-adic sectors. Complex structure of CP2 requires p mod 4 = 3. This is not a problem if
one assumes that adeles contain only the p-adic primes which do not split in the extension of
rationals containing imaginary unit. Definition as coset space CP2 = SU(3)/U(2) is one possible
manner to proceed and seems to work also.

One can also wonder whether octonion real-analyticity really makes sense for M4 × CP2 and
its p-adic variants. The fact that real analyticity makes sense for S2 suggests that it does. In
any case, octonion real-analyticity would make life very easy for p-adic sectors if regarded as
octonionic counterpart of M8 rather than M4 × CP2.

2. If the p-adic factors are identified as linear spaces with M8 regarded as sub-space of the ring of
complexified p-adic octonions, octonion real-analyticity for polynomial functions with rational
coefficients could replace field equations in the ring formed by Zp. Note however that octonion
real-analyticity requires the Wick rotation mapping to ordinary octonions, the identification of
the 4-surface from the vanishing of the imaginary part of the octonion real-analytic function, and
map back to Minkowski space by Wick rotation. This is well-defined procedure used routinely in
quantum field theories but could be criticized as mathematically somewhat questionable. One
could consider also the definition of Minkowski space inner product as real part of z1z2 for
quaternions and use similar formula for octonions. This would give Minkowski norm squared
for z1 = z2.

Linear space would also allow to realize the idea that partonic 2-surfaces are in some sense trivial
in most sectors reducing to points represented most naturally by the tips of causal diamonds
(CDs). For p-adic sectors CP2 would be replaced with E4 and for most factors M8

p the partonic
2-surfaces would reduce to the point s = 0 of E4 representing the origin of coordinates in which
E4 rotations act linearly.

3. The conjecture is that preferred extremals correspond to loci for the zeros of the imaginary or
real part of octonion real-analytic function. Is this identification really necessary? Could it
be that in the real sector the extremals correspond to quaternionic 4-surfaces in the sense that
they have quaternionic tangent spaces? And could the identification as loci for the zeros of the
imaginary or real part of oction real-analytic function be the sensible option in the p-adic sectors
of the adelic imbedding space: in particular if these sectors correspond to octonionic M8. If this
were the case, M8−M4×CP2 duality would have a meaning differing from the original one and
would relate the real sector of adelic imbedding space to its p-adic sectors in manner analogous
to the expression of real rational as a Cartesian product of powers of p-adic primes in various
sectors of adele.

My cautious conclusion is that the earlier vision is correct: M4 × CP2 makes sense in all sectors.

13.6.2 Could number theoretic emergence make sense?

The observations made in this and previous sections encourage to ask whether some kind of number
theoretic emergence could make sense. One would end up step by step from rationals to octonions by
performing algebraic extensions and completions. At some step also the attribute ”Hilbert” would lead
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to a further abstraction and relate closely to the evolution of cognition. This would mean something
like follows.

Rationals → algebraic extensions → algebraic numbers → completions of rationals to reals and
p-adics → completions of algebraic 2-surfaces to real and p-adic ones in algebraic extensions reals and
classical number fields→ hierarchy of Hilbert variants of these structures as their cognitive reprsenta-
tions.

The Maximal Abelian Galois group (MAGG) for rationals is isomorphic to the multiplicative group
of ideles and involves reals and various p-adic number fields. How could one interpret the Hilbert
variant of this structure. Could some kind of physical and cognitive evolution lead from rationals to
octonions and eventually to Universe according to TGD? Could it be that the gradual emergence of
algebraic numbers and AGG (Absolute Galois Group defined as Galois group of algebraic numbers as
extension of rationals) brings in various completions of rationals and further extensions to quaternions
and octonions and symmetry groups like SU(2) acting as automorphisms of quaternions as extension
of reals and SU(3) ⊂ G2 where G2 acts as Galois for the extension of octonions as extension of reals?

Objections against emergence

The best manner to develop a new idea is by inventing objections against it. This applies also to
the notion of algebraic emergence. The objections actually allow to see the basic conjectures about
preferred extremals of Kähler action in new light.

1. Algebraic numbers emerge via extensions of rationals and complex numbers via completion of
algebraic numbers. But can higher dimensions really emerge? This is possible but only when
they correspond to those of classical number fields: reals, quaternions, and octonions. This is
enough in TGD framework. Adelization could lead to the emergence of real space-time and its
p-adic variants. Completion of solutions of algebraic equations to p-adic and real number fields
is natural. Also the extensions of reals and complex numbers to quaternions and octonions are
natural and could be seen as emergence.

2. All algebraic Riemann surfaces are compact but the reverse of this does not hold true. Partonic
2-surfaces are fundamental in TGD framework. Once the induced metric of the compact partonic
2-surface is known, one can regard it as a Riemann surface. Only if it is algebraic surface, the
action of Galois group on it is well-defined as an action on the algebraic coefficients appearing
in rational functions defining the surface. This is consistent with the basic vision about life
as something in the intersection of real and p-adic worlds and therefore having as correlates
algebraic partonic 2-surfaces. The non-algebraic partonic 2-surfaces are naturally present and if
they emerge they must do so via completion to reals occurring also at adelic level.

All partonic 2-surfaces allow a representation as projective varieties in CP3 which forces again
the question about possible connection with twistors.

Representation as algebraic projective varieties in say CP3 does not imply this kind of repre-
sentation in δCD × CP2. This kind of representation can make sense for 3-surfaces consisting
of light like geodesics emanating from the tip of the CD. If one wants to obtain 2-surfaces one
must restrict light-like radial coordinate r to be a real function of complex variables so that the
2-surface cannot be algebraic surface defined as a null locus of holomorphic functions unless r is
taken to be a constant equal to algebraic number. Note that the light rays of 3-D light-cone are
parametrized by S2, which corresponds to CP1 ⊂ CP3. This kind of partonic 2-surfaces might
correspond to maxima for Kähler function.

3. Could one do without the non-algebraic partonic 2-surfaces? This is not the case if one believes
on the notion of number theoretic entanglement entropy which can be negative for rational
or even algebraic entanglement and presumably also for its quantum variant. Non-algebraic
partonic 2-surfaces would naturally correspond to reals as a Cartesian factor of adeles. All
partonic 2-surfaces which do not allow a representation as algebraic surfaces would belong to
this factor of adelic imbedding space. The ordinary real number based physics would prevail
in this sector and entanglement in this sector would be in generic case real so that ordinary
definition of entropy would work. In quantum p-adic sectors entanglement probabilities would
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be quantum rational (in the sense of n → nq) and the generalization of number theoretic
entanglement entropy should make sense. Completion must be taken as would be part of the
emergence.

Could imbedding space spinors really emerge? The dimension of the space of imbedding space
spinors is dictated by the dimension of the imbedding space. Therefore it is difficult to image how
8+8-complex-dimensional spinors could emerge from spinors in the set of algebraic numbers since
these spinors are naturally 2-dimensional for algebraic numbers which are geometrically 2-dimensional.
Does this mean that one must introduce algebraic octonions and their complexifications from the very
beginning? Not necessarily.

1. The idea that also the imbedding space spinors emerge algebraically suggests that imbedding
space spinors in p-adic sectors are octonionic (p-adic octonions form a ring but this might be
enough). In real sector both interpretations might make sense and have been considered [K86].
For octonionic spinors ordinary gamma matrices are replaced with the analogs of gamma ma-
trices obtained as tensor products of sigma matrices having quaternionic interpretation and of
octonionic units. For these gamma matrices SO(1,7) as vielbein group is replaced with G2.
Physically this corresponds to the presence of a preferred time direction defined by the line
connecting the tips of CD. It would seem that SO(1, 7) must be assigned with the ordinary
imbedding space spinors assignable to the reals as a factor of quantum adeles. The relationship
between the ordinary and octonionic imbedding space spinors is unclear. One can however ask
whether the p-adic spinors in various factors of adelic spinors could correspond to the octo-
nionic modification of gamma matrices so that these spinors would be 1-D spinors algebraically
extended to octonionic spinors.

2. Also quaternionic spinors make sense and could emerge in a well-defined sense. The basic
conjecture is that the preferred extremals of Kähler action are quaternionic surfaces in some
sense. This could mean that the octonionic tangent space reduces to quaternionic one at each
point of the space-time surface. This condition involves partial derivatives and these make sense
for p-adic number fields . The ”real” gamma matrices would be ordinary gamma matrices.
In p-adic sectors at least octonion real-analyticity would be the natural condition allowing to
identify quaternionic 4-surfaces [K78] if one allows only Taylor series expansions.

Emergence of reals and p-adics via quantum adeles?

MAGG (Maximal Abelian Galois Group) brings in reals and various p-adic number fields although one
starts from algebraic numbers as maximal abelian extension of rationals. Does this mean emergence?

1. Could one formulate the theory by starting from algebraic numbers? The proposal that octonion
real-analytic functions can be used to define what quaternionicity looks sensible for quantum
p-adic space-time surfaces. For real space-time surfaces octonion real-analyticity might be an
unrealistic condition and quaternionicity as the condition that octonionic gamma matrices gener-
ate quaternionic algebra in the tangent space looks more plausible alternative. Quantum p-adic
space-time surfaces would be naturally algebraic but in real context also non-algebraic space-
time surfaces and partonic 2-surfaces are possibe. In real sector partial differential equations
would prevail and in quantum p-adic sectors algebraic equations would dictate the dynamics.

2. The p-adic variants of quaternions and octonions do not exist as fields. The vanishing of the sum
of Euclidian norm for quaternions and octonions for p-adic octonions and quaternions makes it
impossible to define p-adic quaternion and octonionic fields. There are also problems due to the
fact that

√
−1 exists as p-adic number for p mod 4 = 1.

3. The notion of quaternionic space-time surface requires complexified octonions with additional
imaginary unit i commuting with octonionic imaginary units Ik. Space-time surfaces are identi-
fied as surfaces in the sub-space of complexified octonions of form o0 + i

∑
okI

k. Could i relate
to the algebraic extensions of rationals and could complexified quantum p-adic imbedding spaces
have complex coordinates x+ iy?
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4. Polynomial equations with real algebraic coefficients make sense even if adeles where not a
field and one can assign to the roots of polynomials with quaternionic and octonionic argument
Galois group if one restricts to solution which reduce to complex solutions in some complex
plane defined by preferred imaginary unit. For quaternions Galois group consist of rotations in
SO(3) acting via adjoint action combined with AAG. For octonions Galois group consists of G2

elements combined with AAG. SU(3) leaves the preferred imaginary unit invariant and U(2)
the choice of quaternionic plane. Are there any other solutions of polynomial equations than
those reducing to complex plane?

Is it really necessary to introduce p-adic space-time sheets?

The (Hilbert) adelization of imbedding space, space-time, and WCW as well as spinors fields of imbed-
ding space and WCW would be extremely elegant manner to realize number theoretic universality.
One must however keep the skeptic attitude. The definition of p-adic imbedding space and space-
time surfaces is not free of technical problems. The replacement of M4 × CP2 with M8 in p-adic
sectors could help solve these problems. The conservative approach would be based on giving up
p-adicization in imbedding space degrees of freedom. It is certainly not an imaginative option but
must be considered as a manner to gain additional insights.

1. p-Adic mass calculations do not mention anything about the p-adicization of space-time sheets
unless one wants to answer the question what is the concrete realizations of various conformal
algebras. Only p-adic and adelic interpretation of conformal weights would be needed. Adelic
interpretation of conformal weights makes sense. The replacement n→ nq (interpreted originally
as quantum p-adicization) brings in only O(p2) corrections which are typically extremely small
in elementary particle scales.

2. Is the notion of p-adic or Hilbert p-adic (Hilbert adelic) spinor field in imbedding space abso-
lutely necessary? If one has p-adic spinors one must have also p-adic spinor connection. This
does not require p-adic imbedding space and space-time surface if one restricts the consideration
to algebraic points and if the components of connection are algebraic numbers or even ratio-
nal numbers and allow p-adic interpretation. This assumption is however in conflict with the
universality of adelization.

3. What about Hilbert adelic WCW spinor fields. They are needed to give both p-adic and real
quantum states. These fields should have adelic values. Their arguments could be algebraic
partonic surfaces. There would be no absolute need to perform completions of algebraic partonic
2-surfaces although this would be very natural on basis of number theoretical universality.

4. p-Adic space-time sheets are identified as correlates of intention and cognition. Transformation
of intention to action as leakage from p-adic to real sector of imbedding space. This idea provides
strong support for p-adic space-time. But could one assume only that the quantum states are
p-adic or quantum p-adic but that space-time is real? Does it mean only that the WCW spinor
field or zero energy state assignable to light-like 3-surface or partonic 2-surface is Hilbert adelic.
Quantum transitions between states for which initially WCW spinor field is pi-adic and in the
final state pf -adic. Only the number field for WCW spinors would change in the transition. One
could say that partonic 2-surface is p-adic if the value of WCW spinor field assigned with it is
p-adic. This idea does not look attractive and is in complete conflict with the adelization idea.

5. The vision about life in the intersection of real and p-adic worlds is very attractive. The p-
adicization of algebraic surfaces is very natural as completion meaning that one just solves the
algebraic equations using series in powers of p. Imaginary unit is key number of quantum
theory and the fact that

√
−1 exists for p mod 4 = 1 is potential problem for p-adic quantum

mechanics. For these primes also splitting occurs in the ring of Gaussian integers. For quantum
adeles this problem disappears if one allows only the p-adic number fields for which p does not
slit in algebraic extension (now Gaussian rationals).
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13.7 Appendix: Some possibly motivating considerations

The path to the idea that quantum adeles could represent algebraic numbers originated from a question
having no obvious relation to quantum p-adics or quantum adeles and I will proceed in the following
by starting from this question.

Function fields are much simpler objects to handle than rationals and their algebraic extensions.
In particular, the objects of function fields have inverses and inverse is well defined also for sum of
elements. This is not true in the ring of adeles. This is the reason why geometric Langlands is easier
than the number theoretic one. Also the basic idea of Langlands correspondence is that it is possible
to translate problems of classical number theory (rationals and their extensions) to those involving
functions fields. Could it be possible to represent the field of rationals as a function field in some
sense? Quantum arithmetics gives a slight hope that this might be possible.

13.7.1 Analogies between number theoretic and function field theoretic
ramification

Consider first the analogies between number theoretic and geometric ramification (probably trivialities
for professionals but not for a physicist like me!). The relationship between number theoretic and
geometric ramification is interesting and mathematician could of course tell a lot about it. My
comments are just wonderings of a novice.

1. The number theoretic ramification takes place for the primes of number field when it is extended.
If one knows the roots of the polynomials involved with the rational function f(z) defining Belyi
function one knows the coefficient field F of polynomial and its algebraic extension K and can
deduce the representations of ordinary primes as products of those of F and of the primes of
the coefficient field F as products of those of K. In particular, one can find the ramified primes
of ordinary integers and of integers of F .

2. The ramification however occurs also for ordinary integers and means that their decomposition
to primes involves higher powers of some primes: n =

∏
l l
el with el > 1 for some primes l

dividing n. Could one introduce an extension of some ring structure in which ordinary primes
would be analogous to the primes in the extension of rationals?

3. Geometric ramification takes place for polynomials decomposing to products of first order mono-
mials P (z) = z− zk with roots which are in algebraic extension of coefficients. The polynomials
can however fail to be irreducible meaning that they have multiple roots. For multiple roots
one obtains a ramified zero of a root and for Belyi functions these critical points correspond to
zeros which are ramified when the degree is larger than zero. The number theoretic ramification
implies that the polynomials involved have several algebraic roots and when they coincide, a
geometric ramification takes place. Degeneration of roots of polynomial implies ramification.

4. Ordinary integers clearly correspond to the space of polynomials and the integers, which are not
square free are analogous to polynomials with multiple roots. The ramification of prime in the
extension of rationals and also the appearance of higher powers of p in non-square free integer
is analogous to the degeneration of roots of polynomial.

13.7.2 Could one assign analog of function field to integers and analogs
prime polynomials to primes?

Could one assign to integer (prime) a map analogous to (prime) polynomial? Prime polynomial can
be labeled by its zero and polynomial by its zeros. What kind of maps could represent ordinary primes
and integers. What could be the argument of this kind of maps and do zeros of these map label them?
What could be the ring in which the counterparts of polynomials are defined?

Could quantum arithmetics [K90] help to answer these questions?

1. Quantum arithmetics involves the map fq : n =
∏
l|n l

el → nq =
∏
l|n l

el
q , where l are primes

in the prime decomposition of n and quantum primes s lq = (ql − q−ln)/(q − q−1) are defined
by the phase q = exp(iπ/p), where p is the preferred prime. Note that one has pq = 0 and
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(p + 1)q = −1. Note also that one has q = exp(iπ/p) rather than q = exp(i2π/p) (as in the
earlier version of article). This is necessary to get the denominator correctly also for p = 2 and
to make quantum primes lq non-negative for l < p . Under n → nq all integers n divisible by
p are mapped to zero. This would suggest that the counterparts of prime polynomials are the
maps fq, q = qp and that the analogs of polynomials are products

∏
p fqp defined in some sense.

2. The more conventional view about quantum integers defines analogous map as n → nq =
(qn − q−n)/(q − q−1). Choosing q = exp(iπ/p) one finds also now that integers divisible by p
are mapped to zero. By finding the primes for which n is mapped to zero one finds the prime
decomposition of n. Now one does not however have a decomposition to a product of quantum
primes as above. Similar statement is of course true also for the above definition of quantum
decomposition: the maps n→ nq are analogous to polynomials and primes are analogous to the
zeros of these polynomials.

3. One can also consider q = exp(iπ/m) and used decomposition primes which are smaller than m.
This would give non-vanishing quantum integers. They would correspond to quantum q-adicity
with q = m integer: q-adic numbers do not form a field. q could be even rational. As a special
case these numbers give rise to multi-p p-adicity. The Jones inclusions of hyperfinite factors
of type II1 [K26] suggests that also these quantum phases should be considered. The index
[M : N ] = 4cos2(2π/n) of the inclusion would correspond to quantum matrix dimension 22

q,
for q = exp(iπ/n) corresponding to quantum 2-spinors so that quantum dimension pq could be
interpreted as dimension of p-dimensional quantum Hilbert space.



Chapter 14

What p-adic icosahedron could
mean? And what about p-adic
manifold?

14.1 Introduction

This chapter was originally meant to be a summary of what I understoond about the article ”The
p-Adic Icosahedron” in Notices of AMS [A136]. The original purpose was to summarize the basic ideas
and discuss my own view about more technical aspects - in particular the generalization of Riemann
sphere to p-adic context which is rather technical and leads to the notion of Bruhat Tits tree and
Berkovich space.

About Bruhat-Tits tree there is a nice web article titled p-Adic numbers and Bruhat-Tits tree [A71]
describing also basics of p-adic numbers in a very concise form. The Wikipedia article about Berkovich
space is written with a jargon giving no idea about what is involved. There are video lectures [A105]
about Berkovich spaces. The web article about Berkovich spaces by Temkin [A219] seems too technical
for a non-specialist. The slides [A224] however give a concise bird’s eye of view about the basic idea
behind Berkovich spaces.

The notion of p-adic icosahedron leads to the challenge of constructing p-adic sphere, and more
generally p-adic manifolds and this extended the intended scope of the chapter and led to consider
the fundamental questions related to the construction of TGD.

Quite generally, there are two approaches to the construction of manifolds based on algebra resp.
topology.

1. In algebraic geometry manifolds - or rather, algebraic varieties - correspond to solutions of
algebraic equations. Algebraic approach allows even a generalization of notions of real topology
such as the notion of genus.

2. Second approach relies on topology and works nicely in the real context. The basic building brick
is n-ball. More complex manifolds are obtained by gluing n-balls together. Here inequalities
enter the game. Since p-adic numbers are not well-ordered they do not make sense in purely
p-adic context unless expressed using p-adic norm and thus for real numbers. The notion of
boundary is also one of the problematic notions since in purely p-adic context there are no
boundaries.

14.1.1 The attempt to construct p-adic manifolds by mimicking topological
construction of real manifolds meets difficulties

The basic problem in the application of topological method to manifold construction is that p-adic
disks are either disjoint or nested so that the standard construction of real manifolds using partially
overlapping n-balls does not generalize to the p-adic context. The notions of Bruhat-Tits tree [A71],
building, and Berkovich disk [A224] and Berkovich space [A219] represent attempts to overcome this
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problem. Berkovich disk is a generalization of the p-adic disk obtained by adding additional points so
that the p-adic disk is a dense subset of it. Berkovich disk allows path connected topology which is
path connected. The generalization of this construction is used to construct p-adic manifolds using the
modification of the topological construction in the real case. This construction provides also insights
about p-adic integration.

The construction is highly technical and complex and pragmatic physicist could argue that it
contains several un-natural features due to the forcing of the real picture to p-adic context. In
particular, one must give up the p-adic topology whose ultra-metricity has a nice interpretation in the
applications to both p-adic mass calculations and to consciousness theory.

I do not know whether the construction of Bruhat-Tits tree, which works for projective spaces
but not for Qnp (!) is a special feature of projective spaces, whether Bruhat-Tits tree is enough so
that no completion would be needed, and whether Bruhat-Tits tree can be deduced from Berkovich
approach. What is however remarkable that for M4 × CP2 p-adic S2 and CP2 are projective spaces
and allow Bruhat-Tits tree. This not true for the spheres associated with the light-cone boundary of
D 6= 4-dimensional Minkowski spaces.

14.1.2 Two basic philosophies concerning the construction of p-adic man-
ifolds

There exists two basic philosophies concerning the construction of p-adic manifolds: algebraic and
topological approach. Also in TGD these approaches have been competing: algebraic approach relates
real and p-adic space-time points by identifying common rationals. Finite pinary cutoff is however
required to avoid totally wild behavior and has interpretation in terms of finite measurement resolution.
Canonical identification maps p-adics to reals and vice versa in a continuous manner but is not
consistent with field equations without pinary cutoff.

1. One can try to generalize the theory of real manifolds to p-adic context. Since p-adic balls
are either disjoint or nested, the usual constuction by gluing partially overlapping balls fails.
This leads to the notion of Berkovich disk obtained as a completion of p-adic disk having path
connected topology (non-ultrametric) and containing p-adic disk as a dense subset. This plus
the complexity of the construction is heavy price to be paid for path-connectedness. A related
notion is Bruhat-Tits tree defining kind of skeleton making p-adic manifold defining its boundary
path connected. The notion makes sense for the p-adic counterparts of projective spaces, which
suggests that p-adic projective spaces (S2 and CP2 in TGD framework) are physically very
special.

2. Second approach is algebraic and restricts the consideration to algebraic varieties for which
also topological invariants have algebraic counterparts. This approach is very natural in TGD
framework, where preferred extremals of Kähler action can be characterized purely algebraically
- even in a manner independent of the action principle - so that they make sense also p-adically.

At the level of WCW algebraic approach combined with symmetries works: the mere existence
of Kähler geometry implies infinite-D group of isometries and fixes the geometry uniquely. One
can say that infinite-D geometries are the final victory of Erlangen program. At space-time level
it however seems that one must have correspondence between real and p-adic worlds since real
topology is the ”lab topology”.

14.1.3 Number theoretical universality and the construction of p-adic man-
ifolds

Construction of p-adic counterparts of manifolds is also one of the basic challenges of TGD. Here the
basic vision is that one must take a wider perspective. One must unify real and various p-adic physics
to single coherent whole and to relate them. At the level of mathematics this requires fusion of real
and p-adic number fields along common rationals and the notion of algebraic continuation between
number fields becomes a basic tool.

The number theoretic approach is essentially algebraic and based on the gluing of reals and various
p-adic number fields to a larger structure along rationals and also along common algebraic numbers. A
strong motivation for the algebraic approach comes from the fact that preferred extremals [K10, K94]
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are characterized by a generalization of the complex structure to 4-D case both in Euclidian and
Minkowskian signature. This generalization is independent of the action principle. This allows a
straightforward identification of the p-adic counterparts of preferred extremals. The algebraic exten-
sions of p-adic numbers play a key role and make it possible to realize the symmetries in the same
manner as they are realized in the construction of p-adic icosahedron.

The lack of well-ordering of p-adic numbers poses strong constraints on the formulation of number
theoretical universality.

1. The notion of set theoretic boundary does not make sense in purely p-adic context. Quite
generally, everything involving inequalities can lead to problems in p-adic context unless one is
able to define effective Archimedean topology in some natural manner. Canonical identifcation
inducing real topology to p-adic context would allow to achieve this.

2. The question arises about whether real topological invariants such as genus of partonic 2-surface
make sense in the p-adic sector: for algebraic varieties this is the case. One would however like
to have a more general definition and again Archimedean effective topology is suggestive.

3. Integration poses problems in p-adic context and algebraic continuation from reals to p-adic
number fields seems to be the only possible option making sense. The continuation is however not
possible for all p-adic number fields for given surface. This has however a beautiful interpretation
explaining why real space-time sheets (and elementary particles) are characterized by some p-
adic prime or primes. The p-adic prime determining the mass scale of the elementary particle
could be fixed number theoretically rather than by some dynamical principle formulated in real
context (number theoretic anatomy of rational number does not depend smoothly on its real
magnitude!). A more direct approach to integration could rely on canonical integration as a
chart map allowing to define integral on the real side.

4. Only those discrete subgroups of real symmetries, which correspond matrices with elements in
algebraic extension of p-adic numbers can be realized so that a symmetry breaking to discrete
subgroup consistent with the notion of finite measurement resolution and quantum measurement
theory takes place. p-Adic symmetry groups can be identified as unions of elements of discrete
subgroup of the symmetry group (making sense also in real context) multiplied by a p-adic
variant of the continuous Lie group. These genuinely p-adic Lie groups are labelled by powers
of p telling the maximum norm of the Lie-algebra parameter. Remarkably, effective values of
Planck constant come as powers of p. Whether this interpretation for the hierarchy of effective
Planck constants is consistent with the interpretation in terms of n-furcations of space-time
sheet remains an open question.

14.1.4 How to achieve path connectedness?

The basic problem in the construction of p-adic manifolds is the total disconnectedness of the p-adic
topology implied by ultrametricity. This leads also to problems with the notion of p-adic integration.
Physically it seems clear that the notion of path connectedness should have some physical counterpart.

The notion of open set makes possible path connectedness possible in the real context. In p-adic
context Bruhat-Tits tree [A71] and completion of p-adic disk to Berkovich disk [A224] are introduced
to achieve the same goal. One can ask whether Berkovich space could allow to achieve a more rigorous
formulation for the p-adic counterparts of CP2, of partonic 2-surfaces, their light-like orbits, preferred
extremals of Kähler action, and even the ”world of classical worlds” (WCW) [K36, K17]. To me this
construction does not look promising in TGD framework but I could of course be wrong.

TGD suggests two alternative approaches to the problem of path connectedness. They should be
equivalent.

p-Adic manifold concept based on canonical identification

The TGD inspired solution to the construction of path connectd p-adic topology relies on the notion
of canonical identification mapping reals to p-adics and vice versa in a continuous manner.

1. Canonical identification is used to map the values of p-adic mass squared predicted by p-adic
mass calculations to their real counterparts [K44]. It makes also sense to map p-adic probabilities
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to their real counterparts by canonical identification. In TGD inspired theory of consciousness
canonical identification is a good candidate for defining cognitive representations as representa-
tions mapping real preferred extremals to p-adic preferred extremals as also for the realization of
intentional action as a quantum jump replacing p-adic preferred extremal representing intention
with a real preferred extremal representing action. Could these cognitive representations and
their inverses actually define real coordinate charts for the p-adic ”mind stuff” and vice versa?

2. The trivial but striking observation was that it satisfies triangle inequality and thus defines an
Archimedean norm allowing to induce real topology to p-adic context. Canonical identification
with finite measurement resolution defines chart maps from p-adics to reals (rather than p-
adics!) and vice versa and preferred extremal property allows to complete the discrete image to
a space-time surface unique apart from finite measurement resolution so that topological and
algebraic approach are combined. Without preferred extremal property one can complete to
smooth real manifold (say) but the completion is much less unique.

3. Also the notion of integration can be defined. If the integral for - say- real curve at the map leaf
exists, its value on the p-adic side for its pre-image can be defined by algebraic continuation in
the case that it exists. Therefore one can speak about lengths, volumes, action integrals, and
similar things in p-adic context. One can also generalize the notion of differential form and its
holomomorphic variant and their integrals to the p-adic context. These generalizations allow
a generalization of integral calculus required by TGD and also provide a justification for some
basic assumptions of p-adic mass calculations.

Could path connectedness have a quantal description?

The physical content of path connectedness might also allow a formulation as a quantum physical
rather than primarily topological notion, and could boil down to the non-triviality of correlation
functions for second quantized induced spinor fields essential for the formulation of WCW spinor
structure. Fermion fields and their n-point functions could become part of a number theoretically
universal definition of manifold in accordance with the TGD inspired vision that WCW geometry -
and perhaps even space-time geometry - allow a formulation in terms of fermions.

The natural question of physicist is whether quantum theory could provide a fresh number theo-
retically universal approach to the problem. The basic underlying vision in TGD framework is that
second quantized fermion fields might allow to formulate the geometry of ”world of classical worlds”
(WCW) (for instance, Kähler action for preferred extremals and thus Kähler geometry of WCW
would reduce to Dirac determinant [K27]). Maybe even the geometry of space-time surfaces could be
expressed in terms of fermionic correlation functions.

This inspires the idea that second quantized fermionic fields replace the K-valued (K is algebraic
extension of p-adic numbers) functions defined on p-adic disk in the construction of Berkovich. The
ultrametric norm for the functions defined in p-adic disk would be replaced by the fermionic correlation
functions and different Berkovich norms correspond to different measurement resolutions so that one
obtains also a connection with hyper-finite factors of type II1. The existence of non-trivial fermionic
correlation functions would be the counterpart for the path connectedness at space-time level. The
3-surfaces defining boundaries of a connected preferred extremal are also in a natural manner ”path
connected” with ”path” being defined by the 4-surface. At the level of WCW and in zero energy
ontology (ZEO) [K92] WCW spinor fields are analogous to correlation functions having collections of
these disjoint 3-surfaces as arguments. There would be no need to complete p-adic topology to a path
connected topology in this approach.

This apporach is much more speculative that the first option and should be consistent with it.

14.1.5 Topics of the chapter

The chapter was originally meant to discuss p-adic icosahedron. Although the focus was re-directed to
the notion of p-adic manifold - especially in TGD framework - I decided to keep the original starting
point since it provides a concrete manner to end up with the deep problems of p-adic manifold theory
and illustrates the group theoretical ideas.
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• In the first section icosahedron is described in the real context. In the second section the ideas
related to its generalization to the p-adic context are introduced. After that I discuss how to
define sphere in p-adic context.

• In the section about algebraic universality I consider the problems related to the challenge of
defining p-adic manifolds TGD point of view, which is algebraic and involves the fusion of various
number fields and number theoretical universality as additional elements.

• The key section of the chapter describes the construction of p-adic space-time topology relying on
chart maps of p-adic preferred extremals defined by canonical identification in finite measurement
resolution and on the completion of discrete chart maps to real preferred extremals of Kähler
action. The needed path-connected topology is the topology induced by canonical identification
defining real chart maps for p-adic space-time surface. Canonical identification allows also the
definition of p-adic valued integrals and definition of p-adic differential forms crucial in quqantum
TGD.

• Last section discusses in rather speculative spirit the possibility of defining space-time surfaces
in terms of correlation functions of induced fermion fields.

14.2 Real icosahedron and its generalization to p-adic context

I summarize first the description of icosahedron in real context allowing a generalization to the p-adic
context and consider the the problems related to the precise definition of p-adic icosahedron.

14.2.1 What does one mean with icosahedron in real context?

The notion of icosahedron [A50] is a geometric concept involving the notion of distance. In p-adic
context this notion does not make sense since one cannot calculated distances, between points using
standard formulas. Same applies to areas and volumes. The reason is that Riemann integral does
not generalize and this is due to the fact that p-adic numbers are not well-ordered: one cannot say
whether for two p-adic numbers of same norm a < b or b < a holds true.

Platonic solids [A72] are however characterized by their isometry groups and group theory makes
sense also in p-adic context. The idea is therefore to characterize the icosahedron or any Platonic
solid solely by its isometry group.

In practice this means following. Platonic solid is described as a collection of points. Vertices,
midpoints of edges, and barycenters of faces. These points are fixed points for discrete subgroups of the
Platonic solid. In the case of icosahedron the isometry group is A5 the group of even permutations
of 5 letters. There are are 6 cyclic subgroups of order 5, 10 cyclic subgroups of order 3, and 15
cyclic subgroups of order 2. The respective fixed points are the 12 vertices, 20 barycenters, and 30
midpoints of edges. Thus icosahedron becomes a collection of points with a label telling which is the
cyclic subgroup associated with the point. This is something which might be able to generalize to
p-adic context since there would be no need to talk about distances. One should however describe
also the ”solid” aspect of icosahedron.

14.2.2 What does one mean with ordinary 2-sphere?

In order to construct p-adic analog of icosahedron one must construct a space in which the isometry
group A5 of icosahedron acts and is imbedded to a group defining the analog of rotation group.

One could consider two options. The first option would be 3-D Euclidian space E3 ≡ R3 replaced
with its p-adic counterpart Q3

p. The action of SO(3) however leaves the distance from origin invariant
and one can restrict the consideration to 2-sphere. The challenge is to define the counterpart of
2-sphere p-adically.

Before one can say anything about p-adic 2-sphere, one must understand what means with the
ordinary 2-sphere identified now as sphere in metric sphere.

1. Riemann sphere is compactification of complex plane and can be regarded as complex projective
space CP1 = P 1(C) is taken as starting point. This space is obtained from C2 by identified
points (z1, z2) which differ by a complex scaling: (z1, z2) = λ(z1, z2). One can say that points of
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P 1(C) are complex lines, which are nothing but Riemann spheres. This manifold requires two
coordinate patches corresponding to patch containing North resp. South pole but not South
resp. North pole. The coordinates in a patch containing Northern hemisphere can be taken to
be (u = z1/z2, 1) by projective equivalence allowing to select point (z1/z2, 1) from the projective
line with z2 6= 0. In the region containing Southern hemisphere one can take v = z2/z1). In
the overlap region around equator the coordinates are related by v = 1/u. One can think also
P 1(C) as plane with single point ∞ (south pole) added.

2. The group PGL(2, C) and also the Lorentz group SL(2, C) acts at Riemann sphere as Möbius
transformations. The complex matrix (

a b
c d

)
is represented as a Möbius transformation

u→ au+ b

cu+ d
.

Note that the matrix elements are complex: what this means in p-adic context is not at all clear!

One can regard the coordinates z1 and z2 as spinor components and the action of SO(3) is lifted
to the action of covering group SU(2) for which 2π rotation is represented by -1. The group
A5 can be lifted to its covering group have twice as many elements as the original one but the
action of SU(2) resp. overing of A5 reduces to that of SO(3) resp. A5 since one considers the
action on the ratio z1/z2 of the spinor components.

3. S2 = P 1(C) is a good structure to generalize to p-adic context since one can define it purely
algebraically, and one realize the action of isometries in it.

14.2.3 Icosahedron in p-adic context

What does one mean with p-Adic numbers?

The article about p-icosahedron [A136] gives also a concise summary of p-adic numbers. p-Adic
number fields define a hierarchy of number fields Qp labeled by prime p = 2, 3, 5, .... They are
completions of rationals so that rationals can be said to be common to reals and p-adics. Each Qp
allows an infinite number of algebraic extensions whereas reals allow only one - complex numbers.

Local topology of p-adic numbers is what distinguishes them from reals. Two points of Qp are near
to each other if they differ by a very large positive power of p. As real numbers these numbers would
differ very much. Most p-adic numbers have infinite number pinary digits in the pinary expansion
and are infinite as real numbers.

The p-adic norm defining the p-adic topology is defined by p-adic number fixed completely by the
lowest pinary digit in the expansion and is therefore very rough and obtains only values pn for Qp.
The resulting topology is very rough. Indeed all p-adic points define open sets: one says that p-adic
topology is totally disconnected. p-Adic norm is non-Archimedean. It satisfies |x − y| ≤ Max{x, y}
whereas real norm satisfies |x| − |y| ≤ |x − y| ≤ |x| + |y|. This property of p-adic topology is known
as ultrametricity.

p-Adic differential calculus exists and differentiation rules are same as for the real calculus. It
is however not at all clear whether given real Taylor series with rational coefficients generalizes to
its p-adic counterpart since the series need not converge p-adically. Exponential and trigonometric
functions have p-adic counterparts but they do not have the properties of their real counterparts:
for instance, p-adic trigonometric functions are not periodic. This is a problem when one tries to
generalize Fourier analysis.

p-Adic integral calculus is problematic. The reason is that p-adic numbers are not well-ordered.
As a consequence, the ordering crucial for Riemann integral does not exist. In fact, formal definition
of Riemann integral gives as a limit vanishing integral. The generalization of Fourier analysis based
on the integration of plane wave factors exp(ikx) as roots of unity appearing in algebraic extension
of p-adic numbers seems to be the only manner to overcome the problem. Algebraic continuation
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of integrals depending on parameters (such as integration limits) from real to p-adic context is in a
central role in TGD framework but requires the fusion of reals and various p-adic number fields to
bigger structure along common rationals: each number field would be like one page in a big book.

What does one mean with p-adic complex projective space?

The question is what one should do for the projective space P 1(C) to get its p-adic counterpart? The
basic condition is that A5 acts transitively in the p-adic analog of P 1(C).

1. The first guess would be the replacement of P 1(C) with P 1(Qp). This is however the p-adic
analog of real projective line, not complex projective line and one cannot imbed the complex
matrices representing the action of the covering group of A5 of PGL(2, Qp).

2. What one should do? The basic observation is that complex numbers C define the only possible
algebraic extension of real numbers. Generalizing this, one should consider algebraic extension of
Qp. There is infinite number of these extensions and one must choose that of minimal algebraic
dimensions. This means that the phases exp(iπ/5) (10:th root of unity), exp(iπ/3) (6:th root of
unity), and exp(iπ/2) = i (4:th root of unity) must be contained by the extension. The reason
why one must have exp(iπ/5) rather than exp(2π/5) representing rotation of 2π/5 generating
the cyclic group Z5 is due the fact that one has two fold covering. Same applies to other roots of
unity. The solutions of equation x60 = 1 give the needed roots of unity since 60 = 6×10 = 4×3×5
contains all the needed roots of unity needed in the representation matrices.

The extension ofQp containing those roots of unity which do not reduce to -1 (existing p-adically)
would define the extension used. One can calculate the algebraic dimension of this extension but
certainly it is much larger than 2 as in the case of complex numbers. The extension - call it K -
is not unique but is minimal. There is infinite number of extensions containing this extension.

To define things precisely one must replace the notions of p-adic integer, prime, and rational p
applying in K but this is a technicality. This means that p - the only prime in Qp - is replaced
with π, the only prime in K.

I will leave the detailed construction of the projective space P 1(Qp) later because it is rather
technical procedure. Some comments are however in order:

1. For p mod 4 = 1 (say p = 5 or 17) i ≡
√
−1 belongs to the p-adic number field. Therefore the

dimension of algebraic extension is considerably smaller than for p mod 4 = 3 (say p = 3 or 7)
.

2. The naive question is whether for p mod 4 = 3 a considerably simpler approach could make
sense. Use 2-D algebraic extension of p-adic numbers consisting of numbers x+iy: call this space
Cp. Naive non-specialist might think that in this case the rather intricate complex construction
of the projective space P 1(Qp) based on Bruhat-Tits tree might not be needed. This simpler
construction however fails for p mod 4 = 1. It fails also more generally. The reason is that the
exp(iπ/n), n = 3, 5 are algebraic numbers and do not belong to Cp. Therefore one must extend
Cp to included also the phase factors and it seems that one ends up to the same situation as in
general case.

3. Side track to TGD.

(a) In TGD one encounters the problem ”What could be the p-adic counterpart of S2 and
CP2 = P 2(C)?”. The above general recipe applies to this problem: replace C with an
algebraic extension K of Qp allowing the imbedding of some discrete subgroup of SU(2)
resp. SU(3) represented as matrices in PGL(2,K) resp. PGL(3,K). The interpretation
would be that due to finite measurement resolution the Lie group SU(2) resp. SU(3) is
replaced with its discrete counterpart.

This has a direct connection to the inclusions of hyperfinite factors of type II1 (HFF) [K87],
where all discrete subgroups of SU(2) appear also those of SU(3), whose interpretation is in
terms of finite measurement resolution with included HFF creating states which cannot be
distinguished from the original state in the resolution used. General inclusions correspond
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to discrete subgroups of rotation group and by McKay correspondence [A199] to Lie groups
of ADE type. The isometry groups of Platonic solids are the only simple groups in this
hierarchy and correspond to exceptional Lie groups E6, E7, E8.

(b) One could criticize the approach since the algebraic extension K containing the isometry
group is not unique. In TGD framework one however interprets the algebraic extensions in
terms of finite measurement resolution. One cannot measure all possible angles p-adically-
actually one cannot measure angles at all but only discrete set of phase factors coming as
roots exp(ik2π/n) of unity. The large the value of n, the better the measurement resolution.

What does one mean with p-adic icosahedron?

Once the projective space P 1(K) generalizing P 1(C) = S2 is constructed such that it allows the action
of A5 (it does not allow the action of entire rotation group!) one can identify the points which remain
fixed by the action of various subgroups of A5 (6 cyclic subgroups of order 5, 10 cyclic subgroups
of order 3, and 15 cyclic subgroups of order 2. The respective fixed points are the 12 vertices, 20
barycenters, and 30 midpoints of edges). This is a purely algebraic procedure and there is no need to
define what edges and faces are.

To obtain a more concrete picture about the situation one must define precisely what P 1(Q) means
and here the notion of Bruhat-Tits tree [A71] seems to be unavoidable.

14.3 Trying to explain what P 1(Qp) could mean technically

The naive approach to the construction of P 1(Qp) would be following. Do the same things as in the
case of P 1(C) or P 1(R). The point pairs (q1, q2) in Q2

p are identified with pairs λ×(q1, q2) where λ 6= 0
is p-adic number. For some reason this simple approach is not adopted in the article [A136]. The
reason is that one cannot introduce the notion of Bruhat-Tits tree [A71] in this approach. Bruhat-
Trits tree is needed to obtain path-connectedness - that is connect the fixed points of icosahedron to
form a ”solid” and to give a more geometric meaning to the notion of icosahedron. One can regard
P 1(Qp) as boundary of Bruhat-Tits tree somewhat like sphere is a boundary of ball in real context.

I am not not sure whether this approach on P 1(Qp) is equivalent with that of Berkovich [A224]
based on the idea of adding some points to P 1(Qp) to make it path connected space containing P 1(Qp)
as a dense subset. The outcome has rather frightening complexity.

The alternative approach would be purely algebraic. I will discuss later the problem of introducing
the counterpart of path connectedness without giving up p-adic topology and by introducing induced
real topology as effective topology having the desired path-connectedness.

14.3.1 Generalization of P 1(C) making possible to introduce Bruhat-Tits
tree

The following construction looks somewhat artificial but its purpose is to make possible the introduc-
tion of Bruhat-Tits tree allowing to realize path-connectedness.

1. The point pairs (q1, q2) Q2
p are replaced with Zp lattices in Q2

p. For given lattices the points are
of form (n1u, n2v), where u and v are linearly independent (in Qp) vectors of Q2

p. Note that

the p-adic integers ni =
∑
k≥0 ni,kp

k can be and typically are infinite as real integers. This is
how the lattice differs from the real lattice. Also the p-adic distances between lattices points for
which ni differ by a large power of p are very small.

Note: Q2
p is the p-adic analog of space of 2-spinors. The pairs (u, v) are indeed in 1-1 correspon-

dence with pairs (q1, q2).

2. Projective equivalence is realized as for point pairs (q1, q2). This means that lattices for which
base vectors (u, v) differ by a p-adic scaling are equivalent (u, v) ≡ (λu, λv). Only the ratio u/v
defining the ”direction” of point of Q2

p matters.

Note: In the complex case one would have two complex vectors and their ratio defines the
conformal equivalence class of the plane compactified to torus by identifying the opposite edges
of the polygon defined by u/v.
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Note: In the article one speaks about homothety classes: homothety means scaling which in
p-adic context need not change p-adic norm.

This is not quite enough yet. Real icosahedron is in a well defined sense a connected coherent
structure. Not just a collection of points. p-Adic topological is however totally disconnected. This
suggests that one must introduce additional structure making possible to speak about icosahedron
as ”solid”. Bruhat-Tits tree is one possible manner to achieve this. Also TGD inspired view about
p-adic manifolds makes this possible.

14.3.2 Why Bruhat-Tits tree?

One introduces Bruhat-Tits tree [A71] as an additional structure having P 1(Qp) as its boundary in a
well-defined sense (one needs its counterpart also in P 1(K)). In [A136] it is stated that this relates to a
proper global definition of p-adic analytic structure in terms of Berkovich disks. As already explained,
the basic problem for introducing analytic manifold structure is the total disconnectedness of p-adic
topology. In p-adic topology each point is open set and all p-adic open sets are also compact. Moreover,
two p-adic balls are either disjoint or nested. Therefore one cannot have partially overlapping p-adic
spheres and the basic construction recipe for real manifolds fails. One can overcome this problem
for algebraic varieties defined by algebraic equations but they are much less general objects than
manifolds in real context.

1. There are no problems in defining p-adic differential calculus (a local aspect of the analytic
structure) and field equations associated with action principles make sense although the defi-
nition of action as integral is problematic. p-Adic differential equations are non-deterministic:
integration constants are replaced by piecewise constant functions depending on finite number
of pinary digits. This has a nice interpretation in TGD inspired consciousness, where this non-
determinism would be correlate for non-determinism of imagination - one aspect of cognition.
Therefore I am not at all sure whether the reinforcement of real number based notions to p-adic
context is a good idea.

2. p-Adic integration (a global aspect of the analytic structure) is the problem in p-adic calculus
and the total disconnectedness relates to the absence of well-ordering. An obvious guess is that
Bruhat-Tits tree could help in the definition of p-adic integral by defining the allowed integration
paths.

Note: TGD approach on integration relies on algebraic continuation from real context and is
based on what might ge regarded fusion of reals and p-adics along common rationals.

3. Intuitively the Bruhat-Tits tree builds up a ”skeleton” connecting points by edges and thus
curing the total disconnectedness. This requires some non-locality and the replacement of point
pairs (q1, q2) with integer lattices spanned by q1 and q2 would introduce this non-locality.

4. In any case, what one obtains is a graph with vertices and edges. Vertices are identified as
homothety classes [M ] of the lattices and are just the points of P 1(Qp). Two vertices [M ] and
[N ] are connected by an edge iff one can find representatives M and N such that pM ⊂ N ⊂M .
The representative N is in some sense between pM and M . Note that one has pM ≡ M by
homothety so that the use of representatives in the definition is necessary.

The resulting graph is also a regular p + 1-valent tree, the number of Fp-rational points of
P 1(Fp),which is projective space associated with finite field. One can check this in case of
p = 2. The points (f1, f2) are (1, 0), (1, 1), (0, 1), (1, 1) and by projective equivalence one has
just p = 1 + 2 = 3 points in corresponding projective space. The transitive action of Gl(2,K)
means that all vertices are p + 1-valent and this fixes the structure of the graph completely. I
will consider this point in more detail later on basis of the web article [A71].

Bruhat-Tits tree can be seen as a skeleton of the ”full” P 1(K) containing also the additional points
making it a path connected Berkovich space. The ”naive” P 1(K) can be regarded as boundary of the
Bruhat-Tits tree.

Bruhat-Tits tree looks very nice notion but there is objection against its construction in the
proposed manner. Ordinary p-adic numbers- the simplest possible situation - are not in 1-1 corre-
spondence with the Zp lattices as will be demonstrated later but with powers of p. Same applies to

http://www.math.mcgill.ca/goren/667.2010/Atefeh.pdf
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Q2
p where the lattices correspond to Sl(2, Zp) equivalence classes of elements of Q2

p. One can of course
ask whether projective spaces are p-adically and maybe also physically very special for this reason.

14.3.3 Berkovich disk

Bruhat-Tits tree is not enough for p-adicizing real topologist. Also Berkovic disk is required as the
analog of open ball in real context. The slides of Emmy Noether Lecture by Annette Werner [A224]
give a concise representation of the basic idea behind Berkovich disk serving as a basic building brick
of p-adic manifolds just like real n-disk does in the case of real n-manifolds and also also explains its
construction. I must admit that I do not understand well enough the connection between Berkovich
disk and Bruhat-Tits tree.

One can motivate the construction with the completion of rationals to reals. By adding all irra-
tionals (algebraic numbers and transcendentals) one obtains reals and these additional numbers glue
the rationals to form a continuum so that one can defined calculus and many other nice things. The
idea is to mimic this construction.

1. In the example one restricts to the unit disk for an non-archimedean field assumed for simplicity
be algebraically closed, which means algebraic completion containing all algebraic numbers con-
sidered also by Khrennikov. This notion is very formal and unpractical. The idea is to form a
completion of the unit disk for a non-archimedean field K (algebraic extension of Qp) containing
thus K as a dense subset with the property that the resulting topology is path connected and
not anymore ultrametric (somewhat artificial!).

For this purpose one constructs what is called the space of bounded multiplicative non-Archimedean
norms for formal K-valued power series defined in the unit disk reducing to the norm of K for
constant functions. It is possible to characterize rather explicitly this space and with topology
defined by a pointwise convergence (point is now the K-valued function) of the norm one obtains
uniquely path connected topology. The additional points can be said to glue the points of the
K-disk to a continuum as its dense subset just as the addition of irrationals glues rationals to
form a continuum.

2. The construction generalizes to the construction of the counterparts of p-adic projective spaces
and symmetric spaces. Berkovich has also proposed an approach to p-adic integration and
harmonic analysis relying on the notion of Berkovic space.

Note: In TGD framework integration is defined by algebraic continuation in the structure defined
by the fusion of real and various p-adic numbers fields and their extensions to form a book like
structure. One could perhaps say that this fusion defines a kind of ”super-completion”: all
possible completions of rationals are fused to single book like structure and rationals indeed
defined a dense subset of this structure.

The construction is rather technical. From unit disk to a function space defined in it to the space of
multiplicative seminorms defined in this function space! For the simple brain of physicist desperately
crying for some concreteness this looks hopelessly complicated. Physicists would be happy in finding
some concrete physical interpretation for all this.

14.3.4 Bruhat-Tits tree allows to ”connect” the points of p-adic icosahe-
dron as a point set of P 1(K)

The notion of p-adic icosahedron can be defined also in terms of Bruhat-Tits tree since the PLG(2,K)
acts transitively on the homothety class so that one obtains all homothety classes from the one
associated with (u, v) = (1, 1) and one can speak about orbit of this basic homothety class. This
means that one can connect the vertices, mid-points of edges, and barycenters of faces to common
origin by edge paths in Bruhat-Tits tree and therefore to each other. This is what path-connectedness
means.

How Bruhat-Tits tree allows to build from a set of totally disconnected fixed points a ”solid”?
One answer is that the addition points of completion make this possible.

http://www.uni-frankfurt.de/fb/fb12/mathematik/ag/personen/werner/talks/dmvmuench10.pdf
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1. Bruhat-Tits tree allows to define what is called an end of the Bruhat-Tits tree as an equivalence
class of infinite half line with two half lines identified if they differ by a finite number of edges.
These ends are in one-one corresponds with the K-rational points of P 1(K) (these are not the
only points of P 1(K)). One can say that P 1(K) represents the boundary of Bruhat-Tits tree as
a p-adic manifold.

Note: Could this finite number of different edges corresponds to a finite number of pinary digits
appearing in p-adic integration ”constants”)? The identification could mean that all choices of
pseudo constants in p-adic differential equations are regarded as equivalent. Physicist might
speak about the analog of gauge invariance: the values of pseudoconstants do not matter.

2. For a finite set of points of totally disconnectd P 1(K) there exists a unique minimal subtree
of the entire Bruhat-Tits tree containing the points of this set as its ends [A136]. This subtree
is what connects the points of this point set to a coherent structure in the set that one can
construct paths connecting the points to single point. There are of course several manners to
achieve this but one can define even the analog of the geodesic line as a path with a minimal
number of edges so that it becomes possible to speak also about the edges of icosahedron. The
length of the geodesic could be simply the number of edges for this minimal edge path.

3. The p-adic counterpart of Platonic solid must be also ”solid”. This is achieved if the fixed
points for the subgroups of the isometry group of Platonic solid (in particular for those of the
A5) defining the Platonic are identified as ends of a unique minimal subtree of Bruhat-Tits tree.

For higher-dimensional projective spaces Pn(K) Bruhat-Tits tree generalizes from 1-D discrete
homogenous space PGl(2,K)/Gl2, ZK) to n-dimensional discrete homogenous space. The reason is
that the edges of tree develop higher-dimensional cycles having interpretation as simplexes. One can
also define homology groups for this structure. Also now Pn(K) can be regarded as a boundary of
the resulting structure.

14.4 Algebraic universality in TGD framework

In TGD framework the algebraic approach looks very promising one - at the first glance perhaps
even the only possible one - since the field equations for preferred extremals [K10, K94] reduce to
purely algebraic ones and do not even refer to action principle explicitly. The point is that the
preferred extremal property means a generalization of complex structure to 4-D situation and is a
notion independent of action and the preferred extremals are solutions to field equations of very many
general coordinate invariant variational principles (Einstein-Maxwell equations with cosmological term
and minimal surface equations hold true). p-Adic variants of these conditions are purely algebraic
and make sense so that one can hope that even space-time surfaces might have p-adic counterparts.

As already noticed, one can consider a compromise between topological and algebraic approach to
the definition of p-adic manifolds by using a variant of canonical identification to map rational points
of the p-adic preferred extremal to rational points of its real counterpart and completing this skeleton
to a preferred extremal in the real context. This mapping need not be one-to-one. In the intersection
of real and p-adic worlds the expression for real preferred extremal makes sense also in p-adic number
field, and a direct identification makes sense and is unique.

In the real sector the preferred extremal property would boil down to to the existence of complex
structure in Euclidian regions and what I call Hamilton-Jacobi structure in Minkowskian regions.
Also the conjecture that preferred extremals are quaternionic surfaces in certain sense [K78] implies
independence on action principle. The challenge is to prove that these two algebraic characteriza-
tions of preferred extremals are equivalent. These two purely algebraic conditions might make sense
also in p-adic context with complex and hypercomplex numbers replaced with appropriate algebraic
extensions of p-adic numbers.

The p-adicization program based on the notion of algebraic continuation involves many open
questions to be discussed first.
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14.4.1 Should one p-adicize entire space-time surfaces or restrict the p-
adicization to partonic 2-surfaces and boundaries of string world
sheets?

One of the many open questions concerns the objects for which one should be able to find p-adic coun-
terparts. The arguments based on canonical identification and universality of the preferred extremal
property support the view that p-adicization can be carried out at 4-D level for space-time surfaces
and also at the level of WCW. Later a detailed proposal for how p-adic preferred extremals can be
mapped to real preferred extremals with the uniqueness of this correspondence restricted by the finite
measurement resolution realized as pinary cutoff will be described.

One can however consider also an alternative approach in which one restricts the p-adicization to
3- or even 2-dimensional objects of some special classes of these objects and this possibility is discussed
below.

1. Should one p-adicize only boundaries?

A grave objection against p-adicizing only partonic 2-surfaces and braid strands is that one loses
the very powerful constraints provided by the preferred extremal property and coordinate maps defined
by the canonical identification in preferred coordinates. Therefore the algebraic continuation of the
partonic 2-surface can become highly non-unique ( xn+yn = zn, n > 2, is the basic counter example: in
higher dimensions one expects that this kind of situations are very rare!). Furthermore, the restriction
to partonic 2-surfaces and braid strands is artificial since imbedding space must be p-adicized in any
case. The replacement of the p-adicization of the partonic surface plus 4-D tangent space data with
that of the preferred extremal containing it increases the number of constraints dramatically so that
holography might even make the p-adicization unique.

Despite this objection one can try to invent arguments for restricting the p-adicization to some
subset of objects since this would simplify the situation enormously.

1. The basic underlying idea of homology theory is that the boundary of a boundary is empty. p-
Adic manifolds in turn have no boundaries because of the properties of p-adic topology. Should
p-adicization in TGD framework be carried only for boundaries? Light-like 3-surfaces define
boundaries between Minkowskian and Euclidian regions of space-time surface. The space-like
3-surfaces defining the ends of space-time surfaces at the boundaries of CD are boundaries.
Also 2-D partonic surfaces and boundaries of string world sheets can be considered. One must
consider also the boundaries of string world sheets as this kind of objects.

2. Strong form of General Coordinate Invariance implies strong form of holography. Either the
data at light-like 3-surfaces (at which the signature of induced metric changes) or space-like
3-surfaces at the ends of CD codes for physics, which implies that partonic 2-surfaces and 4-D
tangent space data at them code for physics.

What 2-D tangent space data could include? The tangent space data are dictated partially by the
weak form of electric magnetic duality [K20] stating that the electric component of the induced
Kähler field component is proportional to its magnetic component at light-like 3-surfaces. Also
the boundaries of string world sheets contribute to 4-D tangent space data and at the end of
braid strands at partonic 2-surfaces both light-like and space-like direction are involved.

If space-time interior is not p-adicized (somewhat un-natural option), the p-adicization reduces to
the algebraic continuation of Kähler function and Morse function to p-adic sectors of WCW. Both
functions reduce to 3-D Chern-Simons terms for selected 3-surfaces. p-Adicization should reduce to
algebraic continuation of various geometric parameters appearing as arguments of Kähler action.

In the minimal situation only partonic 2-surfaces and the boundaries of string world sheets - briefly
braid strands - need to be p-adicized and the existing results - such as the results of Mumford derived
from the existence of p-adic uniformization - could give powerful contraints. One can also ask whether
the p-adic string world sheet in some sense is equivalent with the generalization of Bruhat-Tits tree
allowing also loops.

Besides the string world sheet boundary and partonic 2-surface also for ”4-D tangent space data”
fixed at least partially by weak form of electric magnetic duality and string world sheets is needed.
There are several open questions.
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1. Does weak form of electric-magnetic duality have any meaning if one cannot speak about space-
time interior in p-adic sense? This condition would apply only at partonic 2-surfaces. Same
question applies in the case of braid strands. Can one effectively reduce space-time interior and
string world sheet to their tangent spaces at partonic 2-surface/braid strands.

2. It is not even clear whether the dynamics of light-like 3-surfaces and space-like 3-surfaces is
deterministic. Strong form of holography requires either determinism or non-determinism real-
ized as gauge invariance, which could correspond to Kac-Moody type symmetries. Kac-Moody
symmetry would favor the idea that p-adicization takes place only for partonic 2-surfaces and
for the braid strands. Gauge symmetry would also give hopes that the integral of Chern-Simons
term depends only on the data at the end points of braid strands at partonic 2-surfaces and
maybe on data at braid strands: this would however require p-adic integration not possible in
purely p-adic context. These data should remain invariant under Kac-Moody symmetries.

3. Should one p-adicize the weak form of electric magnetic duality? The duality involves the dual
of Kähler form of the partonic surface with respect to the induced four-metric: the normal
component of Kähler electric field at partonic surface and/or at string world sheet boundary
equals to Kähler magnetic form at the partonic surface at particular point of its orbit (most
naturally light-like curve). The induced 4-metric becomes degenerate at the light-like 4-surface
and the component of electric field is finite only if weak form of electric-magnetic duality can be
satisfied. Should the duality hold true for entire 3-surfaces, for partonic 2-surfaces, or perhaps
only for for the braid strands? The purpose of the condition is to guarantee that Kähler electric
charge as eletric flux is proportional to Kähler magnetic charge: therefore it should hold along
entire 3-surfaces and if these are regarded as real surfaces there are no problems with the p-
adicization of the condition.

2. What kind of algebraic 2-surfaces can have p-adic counterparts?

There is no need for a generic algebraic surface to have direct algebric p-adic counterpart for all
p-adic primes. If one uses as preferred coordinates a subset of preferred coordinates of the imbedding
space and accepts only imbedding space isometries as general coordinate transformations, the algebraic
surfaces in the intersection of real and p-adic worlds must satisfy very strong conditions. For instance,
a representation in terms of polynomials cannot involve real transcendentals. Even rational coefficients
can force algebraic extension of Qp, when the remaining imbedding space coordinates are expressed
in terms of the coordinates of the partonic two-surface.

Mumford is one of the pioneers of p-adicization of the algebraic geometry and has demonstrated
that only a restricted set of p-adic algebraic surfaces allow interpretation as p-adic Riemann surfaces
if one requires that a generalization of so called uniformization theorem holds true for them [A103].
This theorem says that Riemann surfaces are constructible as factor spaces of either sphere, complex
plane, or complex upper plane (hyperbolic space H2 with the subgroup Γ identified as the finitely
generated free subgroup of the isometries of the space in question. The construction does not work
for all algebraic surfaces but only for the surfaces satisfying certain additional conditions. This is not
a problem in TGD framework in the intersection of real and p-adic worlds since the p-adicization is
not expected to be possible always but only in the intersection of real and p-adic worlds.

According to the article Multiloop Calculations in p-Adic String Theory and Bruhat-Tits Trees by
Chekhov et al [A151] the construction of higher genus Riemann surfaces as so called Mumford surfaces
takes place by starting from Bruhat-Tits tree representing g = 0 surface and by taking subgraphs
having interpretation as representations for an orbit of so called Schottky group characterizing the
higher genus Riemann surface and gluing these graphs together by transversal connections. This
indeed represents the genus homologically as a loop of the resulting tree.

Note: The article of Chekhov et al describes a proposal for the construction of complex scattering
amplitudes for p-adic strings in real imbedding space so that the situation is not relevant for TGD
as such. The amplitudes are constructed in terms of p-adic characteristics and this means that the
amplitudes can be interpreted also as numbers in p-adic number fields extended by roots of unity. The
characteristics q = exp(i2piτ) exist only for the values of q which are of form q = pnexp(x)exp(i2π/m),
|x| < 1 so that discretization of the p-adic norm and phase of τ is necessary.

3. Should one really restrict the p-adicization to algebraic surfaces?

http://www.math.harvard.edu/~chaoli/doc/MumfordCurves.html
http://en.wikipedia.org/wiki/Uniformization_theorem
http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?view=body&id=pdf_1&handle=euclid.cmp/1104179635
http://en.wikipedia.org/wiki/Schottky_group
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One could also consider the possibility of restricting p-adicization to algebraic surfaces (they could
be also 4-D). Practicing physicist would argue that the restriction of p-adicization to algebraic surfaces
is quite too heavy an idealization. In the real world spheres are topological rather than algebraic.

Luckily, if the construction recipe for p-adic manifolds to be discussed later really works, canonical
identification with pinary cutoff allows to generalize p-adic algebraic surfaces to p-adic manifolds, and
to achieve very close correspondence with the real manifold theory. Given real preferred extremal can
correspond to not necessarily unique p-adic preferred extremal for some values of p. Also two p-adic
preferred extremals with different values of p-adic prime which correspond to the same real preferred
extremal correspond to each other. This provides an elegant solution to all problems discussed hitherto
and there is not need to restrict the p-adicization in any manner.

Finite measurement resolution would be a prerequisite for algebraic continuation in the sense that
subset of rational and algebraic points defined by pinary cutoff and algebraic extension would be
common to the real and p-adic preferred extremals. Therefore finite measurement resolution would
make it possible to realize both number theoretical universality and p-adic manifold topology.

14.4.2 Should one p-adicize at the level of WCW?

One can of course challenge the idea about p-adicization at the level of WCW and WCW spinor
fields and ask what this procedure gives. One motivation for the p-adicization would be p-adic
thermodynamics. p-Adic thermodynamics should emerge at the level of M -matrix which indeed can
be regarded as a ”complex square root” of hermitian density matrix in zero energy ontology and
therefore expressible as a product of hermitian square root of density matrix and unitary S-matrix.
Hence it would seem that the p-adicization at the level of WCW is natural and the representability as
a union of symmetric spaces constructible as factor groups of symplectic group of δM4

± × CP2 gives
hopes that algebraic approach works also in infinite-dimensional case. Finite measurement resolution
and the properties of hyper-finite factors of type II1 are expecetd to reduce the situation to finite-
dimensional case effectively.

14.4.3 Possible problems of p-adicization

The best manner to clarify one’s thoughts is to invent all possible objections and in the following I
do my best in this respect. The basic point is following. If one accepts the purely algebraic approach
without no reference to canonical identification, one must check that everything in TGD - as I recently
understand it - can be expressed without inequalities! Boundaries are defined by inequalities and one
must check that they can be avoided. If this is not the case, the notion of p-adic manifold relying on
the notion of canonical identification seems to remain the only manner to avoid problems.

Wormhole throats are causal rather than topological boundaries

The notion of boundary does not have any counterpart in purely p-adic context since its definition
involves inequalities. The original vision was that space-time sheets possess boundaries and the
boundaries carry quantum numbers - in particular family replication phenomenon for fermions would
have explanation in terms of the genus of 2-dimensional boundary component of 3-surface [K18]. It
however turned out that boundary conditions require that the space-time sheet approaches vacuum
extremals at boundary and this does not seem to make sense. This led to the view that one must allow
only closed space-time ”sheets” which can be thought of as being obtained by gluing real space-time
sheets together along boundaries.

Also the notion of elementary particle involves preferred extremals - massless extremals in the
simplified model [?] connected by wormhole contact structure defining the elementary particle. These
preferred extremals must combine to form a closed space-time surface and this is quite possible: the
minimal situation corresponds to two space-time sheets glued together as in the model of elementary
particles.

Genuine boundaries are replaced by the light-like 3-surfaces -orbits of wormhole throats - at which
the signature of the induced metric changes from Minkowskian to Euclidian and four-metric degener-
ates effectively to 3-D metric locally. These can be defined by purely algebraic conditions and there
is no need for inequalities.
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Partonic 2-surfaces are identified as intersections of the space-like 3-surfaces at the ends of CD:
the ends of CD are defined by purely algebraic equation t2 − r2 = 0 and (t− T )2 − r2 = 0 and once
the equations of space-time surface are known one can solve the equations for space-like 3-surfaces.
The equations defining what light-like 3-surfaces at which the induced four-metric is degenerate are
algebraic and express just the degeneracy of the induced four-metric. The condition that algebraic
equations for light-like 3-surfaces and space-like 3-surfaces hold true simultaneously define partonic
2-surfaces. Hence it seems that the surfaces can be expressed algebraically.

This approach might look a little bit artificial. Also the idea that only boundaries should be
p-adicized should be be p-adicized looks artificial. The best looking option is the use of canonical
identification to define p-adic manifolds since it allows to transfer real topological notions to the p-adic
context. In particular, the well-ordering of reals induces that of p-adics so that inequalities cease to
be a problem and boundaries can be defined.

What about the notion of causal diamond and Minkowski causality?

A possible problem for purely p-adic approach allowing no in-equalities is caused by the notion of
causal diamond (CD) defined as intersection of future and past directed light cones (as a matter fact,
CP2 is included to CD as Cartesian factor but I do not bother to mention it again and again). CD
has light-like boundaries.

It is not quite clear whether space-time surface must be always localized inside CD. The notion of
generalized Feynman diagram indeed suggests that the space-time surfaces can continue also outside
the CDs and that CD could be seen as an imbedding space correlate for what might be called spot-
light of consciousness. If this were the case quite generally, the p-adicization of space-time sheets
would not produce problems even if one does not use canonical identification.

In purely p-adic context, one should however give some meaning for the statement that space-time
surface is contained inside CD and this seems to require the notion of boundary for CD. Does this
notion of CD make sense in the p-adic context or is the fusion of real and p-adic number fields along
common rationals required? The resolution of the problem seems to require the fusion. In the case of
algebraic extensions also common algebraics are present.

The first questions concern the notion of Minkowski causality, which relies on light-cone and its
complement expressed in terms of inequalities.

1. The first reason of worry is that in purely p-adic context also the equation t2 + r2 = 0 has a
lot of solutions! The reason is that the notion of positive and negative do not make sense for
p-adic numbers without some constraints. If one restricts the p-adic numbers to those having
finite number of pinary digits - this happens always when one has finite pinary resolution - all p-
adic numbers included rationals reduces to finite positive integers as real numbers. Therefore in
finite pinary resolution the problems disappear. The condition that rationals points of Minkowski
space are common with its p-adic variant, makes finite pinary resolution natural, and one could
say that all p-adic numbers - including negatives of finite integers - can be said to be infinitely
large positive integers in real sense. Here one must of course be very cautious.

2. The condition s = t2 − r2 < 0 for the complement of future light-cone has no meaning in the p-
adic context for general p-adic numbers. If rational values of Minkowski coordinates correspond
to same point in real and p-adic sense, finite pinary resolution means that all pinary cutoffs have
s ≥ 0 and t ≥ 0 in real sense. This is also true for a =

√
t2 − r2 so that one remains inside future

light-cone unavoidably. Anything outside future light-cone is unexpressible in finite measurement
resolution p-adically.

Finite temporal and spatial resolution suggest integer quantization of t and r in suitable units
and one could say whether s has finite of infinite number of pinary digits - that is are positive or
negative. Finite real integer values of t and r have finite number of pinary digits. Their negatives
have infinite number of pinary digits and one could argue they correspond to infinite future if
they are interpreted as real numbers. The values of s in future light-cone have finite number of
pinary digits and correspond to finite real values. Outsider the future light cone the values of s
are negative in real sense and have infinite number of pinary digits and thus interpreted as real
numbers are in future infinity.
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One can consider also rational values of t and s if one keeps also p-adically track that rational
is in question. Rationality means that pinary expansion is periodic after some pinary digit.
Therefore it would seem to be possible to distinguish between s ≥ 0 and s ≤ 0 also p-adically
for finite measurement resolution purely algebraically.

3. Causal diamond is defined as the intersection of future and past directed light cones. The lower
light-cone in the intersection decomposes to pieces of hyperplanes t ≥ 0 with r ≤ t and upper
light-cone to pieces T − t ≥ 0, r ≤ T − t. If these variables are quantized as integer multiples
of suitable unit and if these integer multiples can be interpreted in both real and p-adic sense,
there is no need for inequalities in p-adic context. Also now rational values can be allowed.

If only boundaries are p-adicized, p-adicization would apply only to the light-like boundaries of
CDs, and one would avoid possible problems related the sign of s = t2− r2. This would conform with
the strong form of holography and allow p-adicization of WCW.

Again one might argue that the number theoretical game above is artificial. The safest alternative
seems to be canonical identification with pinary cutoff used to map real preferred extremal to its
p-adic counterpart.

Definition of integrals as the basic technical problem

Physicist wants to perform integrals, and the problems related to the notion of integral is what any
novice of p-adic physics is doomed to encounter sooner or later. As will be described the definition of
p-adic manifold based on canonical identification solves these problems by inducing real integration
to the p-adic realm by algebraic continuation.

Before continuing about integration it is however good to summarize the general TGD based view
about the relationship between real and p-adic worlds.

1. Intersection of real and p-adic worlds as key concept

In TGD framework the basic notion is the intersection of real and p-adic worlds generalizing the
idea that rationals are common to reals and p-adics. Algebraic continuation between real and p-adic
worlds takes place through this intersection, in which real formulas allow interpretation as p-adic ones.
The notions of intersection and algebraic continuation apply both at space-time level and WCW level.

1. At the space-time level rational (and even some algebraic) points of real surfaces are contained by
p-adic surfaces. One can identify these rationals and say that real and p-adic surfaces intersect
at these points and define discrete cognitive representation. Among other things this would
explain why numerics is necessarily discrete and possible only using rationals with cutoff.

2. One can abstract this idea to the level of WCW. Instead of number fields one considers surfaces
(partonic 2-surfaces, 3-surfaces, or space-time surfaces) in various number fields. If the represen-
tation of the surface (say in terms of rational functions) makes sense both for reals and p-adic
number field in question, one can identify the real and p-adic variants of surfaces. These surfaces
can be said to belong to the intersection of real and p-adic worlds (worlds of classical worlds, to
be more precise). In TGD inspired theory of consciousness one would say that they belong to
the intersection of material/sensory world and the world of cognition. In TGD inspired quantum
biology life is identified as something residing in the intersection of realities and p-adicities.

2. Algebraic continuation as a basic tool

With this philosophical background one an consider the algebraic continuation of real integrals
from the intersection of real and p-adic worlds defined by surfaces, whose representations in preferred
coordinates make sense in real number field and in the p-adic number field to which one wants to
continue.

1. Harmonic analysis in coset spaces with discretization defined by the algebraic extension of Qp
might make possible to avoid the problems by reducing the integrals to sums over the discrete
points of the coset space. Algebraic continuation is of course central element in the program.
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2. The recent progress in the calculation of planar scattering amplitudes inN = 4 SYMs gives hopes
that M-matrix could be defined in number theoretically universal manner. The reason is that
in TGD framework the fermions defining building bricks of elementary particles are massless - a
basic prerequisite for the twistor approach - also when they appear as virtual particles. This gives
enormously powerful kinematical constraints reducing the number of diagrams dramatically, and
allows to express amplitude in terms of on-mass shell amplitudes just as one does in the twistor
Grassmannian approach.

ForN = 4 SYM (and also more general theories) planar Feynman diagrams boil down to integrals
over Grassmannians, which are coset spaces associated with Gl(n,C)/Gl(n−m,C)×Gl(m,C)
allowing the already described generalization to p-adic context. The integrals reduce to multiple
residue integrals, which could make sense also in the p-adic context because of the very weak
dependence on integration region. The algebraic continuation of the resulting amplitudes to
p-adic context replacing C with an appropriate extension of p-adic numbers might well make
sense.

3. Two problems as solutions of each other

Unfortunately, the algebraic continuation of integrals is not free of technical problems. Even in
the case of rational functions the algebraic continuation of the real integrals is susceptible to p-adic
existence problems.

1. The basic problem with definition of ordinary 1-D integrals of rational functions is that the
integral function of 1/x is log(x) rather than rational function as for other powers. Unless
the limits are very special (of form x = 1 + O(p)), the algebraic continuation requires infinite-
dimensional extension of p-adic numbers containing all powers of log(x) for some 1 ≤ x < p.
Can one allow infinite-D extensions, which are not algebraic?

2. The appearance of 2π in residue integral formulas which could otherwise make sense in p-adic
context provides a second reason for worries: should one also transcendental extension containing
powers of 2π?

Often two quite unrelated looking problems turn out to have a common solution. Now the second
problem is purely physical: why a given particle should correspond to a particular p-adic prime? At
this moment one must be satisfied with the p-adic length scale hypothesis stating that these primes
are near powers of 2 and Mersenne primes are favored. I have not been able to identify any convincing
dynamical principle explaining why primes near powers of two seem to be favored. It deserves however
to be mentioned that the preferred p-adic length scale as a fixed point of p-adic coupling constant
evolution (discrete) is one possible explanation meaning vanishing of beta functions, something very
natural taking into account the quantum criticality of TGD Universe.

Could this problem define the solution of the first problem and vice versa! Maybe one must just
accept that algebraic continuation to given p-adic number field is not always possible!

1. This criterion could strongly constrain the p-adic primes assignable to a given elementary par-
ticle. Consider as an example Kähler function defined as Kähler action for Euclidian portion
of space-time (generalized Feynman graph) and Morse function defined as Kähler action for
Minkowskian portion of space-time. The existence of the p-adic variant of Kähler function (or
its real exponent) and Morse function (or its imaginary exponent) would allow to assign to a
given space-time surface a highly restricted set of p-adic primes, and the allowed quantum su-
perpositions of space-time surfaces could contain only those for which at least one of the allowed
primes is same.

2. For massless particles Kähler action would vanish and algebraic continuation of Kähler action
would be possible to all p-adic primes in accordance with the scale invariance of massless par-
ticles. Also the breaking of scale invariance and conformal invariance meaning selection of a
particular p-adic length scale could be basically a number theoretical phenomenon. This would
provide a totally new approach to the mystery of mass scales which in standard model frame-
work requires fine tuning of Higgs mass with a totally unrealistic accuracy (one must avoid
both the Landau pole meaning infinite self-coupling of Higgs and vacuum instability preventing
massivation by Higgs vacuum expectation).
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3. For instance, a function of form log(m/n) can be algebraically continued only to those p-adic
number fields for which m and n have form m = k+O(p), and n = k+O(p), 0 < k < p so that
one has m/n = 1 + O(p). The exponent of Kähler function in turn can be continued to Qp if
it is proportional to power of corresponding prime p. The exponential decay of Kähler function
would have p-adic counterpart as decay of p-adic norm (just like Boltzmann weight exp(−E/T )
corresponds to pn in thermodynamics). This could partially answer the question why the space-
time surfaces assignable to electron seem correspond to Mersenne prime M127 = 2127 − 1 as
suggested by p-adic mass calculations.

4. Number theoretic criterion might also mean that the p-adic prime characterizing particle state
is extremely sensitive to the details of the particle state in real sense. The point is that a
small modification of rational number in real sense changes its prime decomposition dramati-
cally! Number theoretic anatomy is not continuous in real sense! An extremely small symmetry
breaking in real sense modifying the value of Kähler function as function of quantum numbers
might modify the value of the p-adic prime dramatically by affecting profoundly the number
theoretic anatomy of some rational parameter appearing in the formula for Kähler function. For
instance, in the standard framework it is very difficult to imagine any breaking for the SUSY
assignable to right-handed neutrinos since they interact only gravitationally. The addition of
right handed neutrino transforming particle to sparticle might however modify the p-adic prime
(and thus mass scale) assigned to the particle dramatically.

4. What should one achieve?

It is a long way from this heuristic number theoretic vision to the calculation of p-adic valued
integrals at space-time level, say to a formula for the p-adic action integral defined by Kähler action
density (if needed at all).

1. The reduction to integral of Abelian Chern-Simons form over preferred 3-surfaces would be
the first step and the definition of p-adic integral of Chern-Simons form second step. The
special properties of preferred extremals give hopes about the reduction of the value of the
Kähler action to local data given at discrete points at partonic 2-surfaces. The braid picture
for many-fermion states forced by the modified Dirac equation [K94] and motivated by the
notion of finite measurement resolution having discretization as a space-time correlate, suggests
a reduction of real action integral to a sum of contributions from the ends of braid strands
defining the boundaries of string world sheets. The optimistic hope would be that this data
allows a continuation to the p-adic realm.

Note: This kind of reduction might be quite too strong a conditon. All that is required in
the approach based on canonical identification is that the values of Kähler function and Morse
function exist in the given p-adic number field or its algebraic extension.

2. p-Adic valued functional integral is unavoidable at the level of WCW.

(a) Algebraic continuation in the framework provided by the fusion of reals and various p-adic
number fields looks the only reasonable approach to the p-adic functional integral.

(b) Second element is Fourier/harmonic analysis in symmetric spaces: WCW is indeed a union
of infinite-dimensional symmetric spaces over zero modes which do not contribute to WCW
metric. One can hope that one can define the symmetric spaces algebraically in terms of
their maximal symmetries since the metric reduces to that in single point of the symmetric
space.

(c) Canonical identification is the third element: p-adic functional integral for given p should be
real functional integral restricted to preferred extremals allowing canonical identification
map to the p-adic preferred extremal for that value of p. This would mean that real
functional integral decomposes into a sum of contributions labelled by p-adic number fields
and their algebraic extensions. This decomposition would be analogous to the formula
obtained as a logarithm of the adelic formula for the rational as the inverse of the product
of its p-adic norms.
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Do the topological invariants of real topology make sense in the p-adic context?

In p-adic context the direct construction of topological invariants is not possible. For instance, the
homology theory formulated in terms of simplexes fails since the very notion of simplex requires
inequalities and well-ordering of the number system to define orientation for the simplex.

Also the notion of boundary is lacking since p-adic sets do not possess boundaries in topological
sense. There however exists refined theories of p-adic homology allowing to circumvent this difficulty
and the problem is that there are too many theories of this kind. A single universal theory would be
needed and this was the dream of Grothendieck.

p-Adic mass calculations assume that the genus of the partonic 2-surface makes sense also in the
p-adic context. For algebraic varieties the genus can be defined algebraically. There should be no
problems if the partonic 2-surfaces are defined by algebraic equations which make sense for both reals
and p-adic numbers. This is true for polynomial equations with rational coefficients and for algebraic
extensions with coefficients in algebraic extension. By continuity algebraic continuation should allow
to extend the notion of genus to surfaces for which rational coefficients are replaced with general
p-adic numbers.

One expects that also more refined topological invariants making sense in the real context make
sense also p-adically for algebraic varieties. A possible objection is that in the case of 3-manifolds
allowing hyperbolic geometry (constant sectional curvatures) the volume of 3-manifold serves as a
topological invariant. Volume is defined as an integral but in purely p-adic context volume inte-
gral is ill-defined. Is this a reason for worries? Hyperbolic n-manifolds have purely group theoretic
formulation as coset spaces Hn/Γ, where Γ is discrete subgroup of the isometry group SO(1, n) of
n-dimensional hyperboloid Hn of n + 1-D Minkowski space satisfying some additional conditions.
Maybe this could allow to overcome the problem.

If canonical identification is used to map real preferred extremals to p-adic ones, boundaries and
real topological invariants are mapped to p-adic ones both by algebraic continuation and in topological
sense within finite measurement resolution. This even in the case that the real surface is not algebraic
surfaces. This applies also to conformal moduli of the partonic 2-surfaces, whose p-adic variants play
a key role in p-adic mass calculations.

What about p-adic symmetries?

A further objection relates to symmetries. It has become already clear that discrete subgroups of Lie-
groups of symmetries cannot be realized p-adically without introducing algebraic extensions of p-adics
making it possible to represent the p-adic counterparts of real group elements. Therefore symmetry
breaking is unavoidable in p-adic context: one can speak only about realization of discrete sub-groups
for the direct generalizations of real symmetry groups. The interpretation for the symmetry breaking
is in terms of discretization serving as a correlate for finite measurement resolution reflecting itself
also at the level of symmetries.

1. Definition of p-adic Lie groups

The above observation has led to TGD inspired proposal for the realization of the p-adic coun-
terparts symmetric spaces resembling the construction of P 1(K) in many respects but also differing
from it.

1. For TGD option one considers a discrete subgroup G0 of the isometry group G making sense both
in real context and for extension of p-adic numbers. One combines G0 with a p-adic counterpart
of Lie group Gp obtained by exponentiating the Lie algebra by using p-adic parameters ti in the
exponentiation exp(tiTi).

2. One obtains actually an inclusion hierarchy of p-adic Lie groups. The levels of the hierarchy
are labelled by the maximum p-adic norms |ti|p = p−ni , ni ≥ 1 and in the special case ni = n
- strongly suggested by group invariance - one can write Gp,1 ⊃ Gp,2 ⊂ ...Gp,n.... Gp,i defines
the p-adic counterpart of the continuous group which gets the smaller the larger the value of n
is. The discrete group cannot be obtained as a p-adic exponential (although it can be obtained
as real exponential), and one can say that group decomposes to a union of disconnected parts
corresponding to the products of discrete group elements with Gp,n.
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This decomposition to totally uncorrelated disjoint parts is of course worrying from the point
of view of algebraic continuation. The construction of p-adic manifolds by using canonical
identification to define coordinate charts as real ones allows a correspondence between p-adic
and real groups and also allows to glue together the images of the disjoint regions at real side:
this induces gluing at p-adic side. The procedure will be discussed later in more detail.

3. A little technicality is needed. The usual Lie-algebra exponential in the matrix representation
contains an imaginary unit. For p mod 4 = 3 this imaginary unit can be introduced as a unit in
the algebraic extension. For p mod 4 = 1 it can be realized as an algebraic number. It however
seems that imaginary unit or its p-adic analog should belong to an algebraic extension of p-adic
numbers. The group parameters for algebraic extension of p-adic numbers belong to the algebraic
extension. If the algebraic extension contains non-trivial roots of unity Um,n = exp(i2πm/n),
the differences Um,n − U∗m,n are proportional to imaginary unit as real numbers and one can
replace imaginary unit in the exponential with Um,n − U∗m,n. In real context this means only
a rescaling of the Lie algebra generator and Planck constant by a factor (2sin(2πm/n))−1. A
natural imaginary unit is defined in terms of U1,pn .

4. This construction is expected to generalize to the case of coset spaces and give rise to a coset
space G/H identified as the union of discrete coset spaces associated with the elements of the
coset G0/H0 making sense also in the real context. These are obtained by multiplying the
element of G/H0 by the p-adic factor space Gp,n/Hp,n.

One has two hierarchies corresponding to the hierarchy of discrete subgroups of G0 requiring each
some minimal algebraic extension of p-adic numbers and to the hierarchy of Gp:s defined by the powers
of p. These two hierarchies can be assigned to angles (actually phases coming as roots of unity) and
p-adic length scales in the space of group parameters.

2. Does the hierarchy of Planck constants emerge p-adically?

The Lie algebra of the rotation group spanned by the generators Lx, Ly, Lz provides a good example
of the situation and leads to the question whether the hierarchy of Planck constants [K26] could be
understood p-adically.

1. Ordinary commutation relations are [Lx, Ly] = i~Lz. For the hierarchy of Lie groups it is

convenient to extend the algebra by introducing the generators L
n)
i = pnLi and one obtains

[L
m)
x , L

n)
y ] = i~Lm+n)

z . This resembles the commutation relations of Kac-Moody algebra struc-
turally. Since p-adic integers one the replacement of ~ = pk → npk, n mod p = 6= 0 produces
same Lie-algebra.

2. For the generators of Lie-algebra generated by L
m)
i one has [L

m)
x , L

m)
y ] = ipm~Lm)

z . One can say
that Planck constant is scaled from ~ to pm~. It is important to realize that ~eff = mpk~ for
m mod p 6= 0 (p-adic unit property) is equivalent with ~eff = pk~ in the sense that p-adically
the resulting Lie-algebras are same.

3. The earlier proposal assigns the origin of the effective hierarchy of Planck constants ~eff = n~ to
n-furcations of space-time sheets. Recall that n-furcations are assigned with the non-determinism
of Kähler action. In n-furcation the solution becomes n-valued meaning the presence of n
alternative branches in the usual interpretation. The proposal is that a space-time counterpart
of second quantization occurs. Single branch is in the role of single particle state and ”classically”
the only possible one. ”Quantally” also m-branch states, 1 ≤ m ≤ n, are allowed. This makes
sense in zero energy ontology if the branching occurs either at the space-like ends of the space-
time surface inside CD or at light-like wormhole throats. Otherwise one has problem with
conservation laws allowing only single branch. The Kähler action for m-branch state would be
roughly m times that for single branch states as a sum of the Kähler actions for branches so that
one would have ~eff = m~. This prediction is inconsistent with p-adic Lie-algebra prediction
unless m = pk holds true.

Can these two views about the effective hierarchy of Planck constants be consistent with each
other? The connection between p-adic length scale hierarchy and hierarchy of Planck constants has
been conjectured already earlier but the recent form of the conjecture is the most quantitive one found
hitherto.
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1. It a connection exists, it could be due to a relationship between the inherent non-determinism
of Kähler action and the generic p-adic non-determinism of differential equations. Skeptic could
of course counter-argue that in p-adic context both non-determinisms are present. One can
however argue that by the condition that p-adic space-time sheets are maps of real ones and
vice versa, these non-determinisms must be equivalent for preferred extremals.

2. Also p-adic non-determinism induces multi-furcations of preferred extremals. These two kinds
of multi-furcations should be consistent with each other. Also in p-adic context one can consider
”second quantization” allowing simultaneously several branches of multi-furcation. Suppose that
the p-adic non-determinism is characterized by integration pseudo-constants (functions with
vanishing derivatives), and that the first pk digits for these functions can be chosen freely. For
each integration pseudo-constant involved one would have pk branches so that for m independent
variables there would be pmk branches altogether.

(a) The argument based on the sum of Kähler actions for n-branch states would suggests
~eff = n~, 1 ≤ n ≤ pkm not consistent with ~eff = pmk~. Consistency between the
two pictures is achieved if all pmk branches are realized simultaneously so that the state is
analogous to a full Fermi sphere. This option looks admittedly artificial.

(b) An alternative possibility is following. Suppose that the p-adic Planck constant is pr~,r ≤
km, and thus equivalent with kpr~ for all k mod p 6= 0, and that the allowed numbers for
branches satisfy n = n1p

r ≤ pmk, n1 mod p 6= 0 so that Planck constant in p-adic sense is
equivalent with pr~. This would realize a correspondence between the number of branches
of multofurcation and the Planck constant associated with p-adic Lie algebras.

3. Note that also n-adic and even q = m/n-adic topology is possible with norms given by powers
of integer or rational. Number field is however obtained only for primes. This suggests that
if also integer - and perhaps even rational valued scales are allowed for causal diamonds, they
correspond to effective n-adic or q-adic topologies and that powers of p are favored.

3. Integration again as the problem

The difficult questions concern again integration. The integrals reduce to sums over the discrete
subgroup of G multiplied with an integral over the p-adic variant Gp,n of the continuous Lie group.
The first integral - that is summation - is number theoretically universal. The latter integral is the
problematic one.

1. The easy way to solve the problem is to interpret the hierarchy of continuous p-adic Lie groups
Gp,n as analogs of gauge groups. But if the wave functions are invariant under Gp,n, what is
the situation with respect to Gp,m for m < n? Infinitesimally one obtains that the commutator
algebras [Gp,k, Gp,l] ⊂ Gp, k + l must annihilate the functions for k + l ≥ n. Does also Gp,m,
m < n annihilate the functions for as a direct calculation demonstrates in the real case. If this is
the case also p-adically the hierarchy of groups Gp,n would have no physical implications. This
would be disappointing.

2. One must however be very cautious here. Lie algebra consists of first order differential operators
and in p-adic context the functions annihilated by these operators are pseudo-constants. It
could be that the wave functions annihilated by Gp,n are pseudo-constants depending on finite
number of pinary digits only so that one can imagine of defining an integral as a sum. In the
recent case the digits would naturally correspond to powers pm, m < n. The presence of these
functions could be purely p-adic phenomenon having no real counterpart and emerge when one
leaves the intersections of real and p-adic worlds. This would be just the non-determinism of
imagination assigned to p-adic physics in TGD inspired theory of consciousness.

Is there any hope that one could define harmonic analysis in Gp,n in a number theoretically univer-
sal manner? Could one think of identifying discrete subgroups of Gp,n allowing also an interpretation
as real groups?

1. Exponentiation implies that in matrix representation the elements of Gp,n are of form g =
Id+png1: here Id represents real unit matrix. For compact groups like SU(2) or CP2 the group
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elements in real context are bounded above by unity so that this kind of sub-groups do not exist
as real groups. For non-compact groups like SL(2, C) and T 4 this kind of subgroups make sense
also in real context.

2. Zero energy ontology suggests that discrete but infinite sub-groups Γ of SL(2, C) satisfying
certain additional conditions define hyperbolic spaces as factor spaces H3/Γ (H3 is hyperboloid
of M4 lightcone). These spaces have constant sectional curvature and very many 3-manifolds
allow a hyperbolic metric with hyperbolic volume defining a topological invariant. The moduli
space of CDs contains the groups Γ defining lattices of H3 replacing it in finite measurement
resolution. One could imagine hierarchies of wave functions restricted to these subgroups or H3

lattices associated with them. These wave functions would have the same form in both real and
p-adic context so that number theoretical universality would make sense and one could perhaps
define the inner products in terms of ”integrals” reducing to sums.

3. The inclusion hierarchy Gp,n ⊃ Gp,n+1 would in the case of SL(2, C) have interpretation in terms
of finite measurement resolution for four-momentum. If Gp,n annihilate the physical states or
creates zero norm states, this inclusion hierarchy corresponds to increasing IR cutoff (note that
short length scale in p-adic sense corresponds to long scale in real sense!). The hierarchy of
groups Gp,n makes sense also in the case of translation group T 4 and also now the interpretation
in terms of increasing IR cutoff makes sense. This picture would provide a group theoretic
realization for with the vision that p-adic length scale hierarchies correspond to hierarchies of
length scale measurement resolutions in M4 degrees of freedom.

What about general coordinate invariance?

In purely algebraic approach one must introduce some preferred coordinate system in which the action
of various symmetry transformations is simple: typically induced from linear transformations as in the
case of projective spaces. This requires physically preferred coordinate system if one hopes to avoid
problems with general coordinate invariance. This approach applies also to more general space-time
surfaces. A more general approach would assume general coordinate invariance only modulo finite
measurement resolution.

For H = M4×CP2 preferred coordinate systems indeed exist but are determined only apart from
the isometries of H. For M4 the preferred coordinates correspond most naturally to linear Minkowsksi
coordinates having simple behavior under isometries. Spherical coordinates are not favored since
angles cannot be represented p-adically without infinite-dimensional algebraic extension. For CP2

complex coordinates in which U(2) ⊂ SU(3) is represented linearly are preferred. The great virtue
of sub-manifold gravity is that preferred space-time coordinates can be chosen as a suitable subset
of these coordinates depending on the region of the space-time surface. This reduces the general
coordinate transformations to the isometries of the imbedding space but does yet not mean breaking
of general coordinate invariance.

Suppose that one accepts the notion of preferred coordinates and assumes that partonic two-
surfaces (at least) can be expressed in terms of rational equations (for algebraic extensions rationals
are generalized rationals). General coordinate transformations must preserve this state of affairs. GCI
must therefore preserve the property of being a ratio of polynomials with rational coefficients. Only
those isometries of H are allowed, which respect the algebraic extensions of p-adic numbers used. This
means that only a discrete subgroup of isometries can induce general coordinate transformations in
p-adic context.

There is however a continuum of choices of preferred coordinates induced by isometries of H so that
one obtains a continuum of choices not equivalent under allowed general coordinate transformations.
It would seem that general coordinate invariance is broken. The world containing a conscious observer
who has chosen coordinate system M1 differs from the world in which this coordinate system is M2!

TGD inspired quantum measurement theory leads to this kind of symmetry breaking also in real
sector induced by a selection of quantization axis. In TGD framework this choice has a correlate at
the level of moduli space of CDs. For instance, the choice of a preferred rest frame forced also by
number theoretical vision and construction of preferred extremals would reflect itself in the properties
of the interior of the space-time surface even if it need not affect partonic 2-surfaces.

One can argue that it must be possible to realize general coordinate invariance in more general
manner than defining physics using preferred coordinates and simple cubic lattice structures for the
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imbedding space. Maybe also general coordinate invariance should be defined in finite measurement
resolution. The lattice structures defining the discretization for imbedding space with non-preferred
coordinates would look deformed lattice structures in the preferred coordinates but difference would
be vanishing in the pinary resolution used.

14.5 How to define p-adic manifolds?

What p-adic manifolds are? This is the basic question also in TGD. What p-adic CP2 could mean,
and can one speak about p-adic space-time sheets and about solutions of p-adic field equations in
p-adic M4 × CP2? Does WCW have p-adic counterpart?

The TGD inspired vision about p-adic space-time sheets as correlates for cognition suggests an
approach based on the identification of cognitive representations mapping real preferred extremal to
its p-adic counterpart and vice versa in finite pinary resolution so that one would map discrete set of
rational points to rational points (rational in algebraic extension of p-adic numbers). One would have
real chart leafs for p-adic preferred extremals instead of p-adic ones.

14.5.1 Algebraic and topological approaches to the notion of manifold

There are two approaches to the notion of manifold and they correspond to the division of mathematics
to algebra and topology: some-one has talked about the devil of algebra and angel of topology. In the
case of infinite-D WCW geometry and p-adic manifolds the roles of devil and angle seem to however
change.

1. In the algebraic approach manifolds are regarded as purely algebraic objects - algebraic varieties
- and thus number theoretically universal: only algebraic equations are allowed. Inequalities are
not accepted. This notion of manifold is not so general as the topological notion and symmetries
play a crucial role. The homogenous spaces associated with pairs of groups and subgroups for
which all points are metrically equivalent is a good example about the power of the algebraic
approach made possible by maximal symmetries formulated by Klein as Erlangen program. In
the construction of WCW geometry this approach seems to be the only possible one, and gives
hopes that infinite-D geometric existence - and thus physics - is unique [K17].

Standard sphere is this approach defined by condition x2 + y2 + z2 = R2 and makes sense in
all number fields for rational values of R. Purely algebraic definition is especially suited for
defining sub-varieties. Linear spaces and projective spaces are however definable as manifolds
purely algebraically. The natural topology for algebraic varieties is so called Zariski topology
[A113] in which closed sets correspond to lower-dimensional sub-varieties. TGD can be seen
as sub-manifold gravity in M4 ×CP2 with space-time surfaces identified as preferred extremals
characterized purely algebraically: this strongly favors algebraic approach. Algebraic definition
of the imbedding space as a manifold and induction of space-time manifold structure from that
for imbedding space is also necessary if one wants to define TGD so that it makes sense in
all number fields (p-adic space-time sheets are interpreted as correlates for cognition, ”thought
bubbles”).

A correspondence between p-adics and reals is however required and this suggests that purely
algebraic approach is not enough.

2. Second - extremely general - approach is topological but works as such nicely only in the real
context. Manifolds are constructed by gluing together open n-balls. Here the inequality so
dangerous in p-adic context enters the game: open ball consists of points with distance smaller
than R from center. Real sphere in this approach is obtained by gluing two disks having overlap
around equator.

In p-adic context this approach fails since p-adic balls are either disjoint or nested. In fact,
single point is open ball p-adically so that one can decompose a candidate for a p-adic manifold
with p-adic coordinate charts to dust. It turns out that the replacement of p-adic norm with
canonical identification resolves the problem and one can induce real topology to p-adic context
by using canonical identification to define coordinate charts of the p-adic space-time surface as
regions of real space-time surface. The essentially new elements are the use of real coordinate

http://en.wikipedia.org/wiki/Zariski_topology
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charts instead of p-adic ones and the notion of finite measurement resolution characterized by
pinary cutoffs.

14.5.2 Could canonical identification allow construction of path connected
topologies for p-adic manifolds?

The Berkovich approach [A219, A224] is an attempt to overcome the difficulty caused by the weird
properties of p-adic balls by adding some points to p-adic balls so that its topology becomes path
connected and the original p-adic ball is dense set in the Berkovich ball. Idea is same as in the
completion of rationals to reals: new points make rationals a continuum and one can build calculus.
I do not understand how Berkovich disks can be glued to manifolds - presumably the path connected
topology implies that they can have overlaps without being identical or nested: the overlaps should
be through the added points.

The problem of the Berkovich construction is that from physics point of view it looks rather
complex: it is difficult to imagine physical realizations for the auxiliary spaces involved with the
construction. Also giving up the p-adic topology seems strange since non-Archimedean topology has
- to my opinion - a nice interpretation if one considers it as a correlate for cognition.

The Bruhat-Tits tree working for projective spaces does not seem to require completion. Path
connectedness is implied by the tree having in well-defined sense projective space as boundary. Points
of the p-adic projective space are represented by projective equivalence classes of lattices: this allows
to connect the points of p-adic manifold by edge paths and even the notion of geodesic line can be
defined.

In the following TGD inspired topological approach to the construction of p-adic manifolds is
discussed. The proposal relies on the notion of canonical identification playing central role in TGD
and means that one makes maps about p-adic preferred extremal using - not p-adic but real coordinate
charts defined using canonical identification obeying the crucial triangle inequality. This approach
allows also to make p-adic chart maps about real preferred extremals for some values of p-adic prime.
The ultrametric norms of Berkovich for formal power series are replaced by Archimedean norms
defining coordinate functions and their information content is huge as compared to the Berkovich
norms. The hierarchy of length scale resolutions gives rise to a hierarchy of canonical identifications
in finite pinary resolution and preferred extremal property allows to complete the discrete image set
consisting of rational points to a continuous surface. One can say that path-connectedness at the
p-adic side is realized by using discretized paths using induced real topology defined by the canonical
identification. This gives a resemblance with Bruhat-Tits tree.

Basic facts about canonical identification

In TGD framework one of the basic physical problems has been the connection between p-adic num-
bers and reals. Algebraic and topological approaches have been competing also here. The notion of
canonical identification solves the conflict between algebra (in particular symmetries) and continuity.
Canonical identification combined with the identification of common rationals in finite pinary resolu-
tion suggests also a natural replacement of p-adic topology with a path connected effective topology
defined as real topology induced to p-adic context by canonical identification used to build real chart
leafs.

1. In TGD inspired theory of consciousness canonical identification or some of its variants is a
good candidate for defining cognitive representations as representations mapping real preferred
extremals to p-adic preferred extremals as also for the realization of intentional action as a
quantum jump replacing p-adic preferred extremal representing intention with a real preferred
extremal representing action. Could these cognitive representations and their inverses actually
define real coordinate charts for the p-adic ”mind stuff” and vice versa?

2. In its basic form canonical identification I maps p-adic numbers
∑
xnp

n to reals and is defined
by the formula I(x) =

∑
xnp

−n. I is a continuous map from p-adic numbers to reals. Its inverse
is also continuous but two-valued for a finite number of pinary digits since the pinary expansion
of real number is not unique (1 = .999999.. is example of this in 10-adic case). For a real number
with a finite number of pinary digits one can always choose the p-adic representative with a finite
number of pinary digits.
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3. Canonical identification has several variants. Assume that p-adic integers x are represented as
expansion of powers of pk as x = prk

∑
xnp

kn with x0 6= 0. One can map p-adic rational number
prkm/n with m and n satisfying the analog of x0 6= 0 regarded as a p-adic number to a real

number using IQk,l: I
Q
k,l(p

rkm/n) ≡ p−rkIk,l(m)/Ik,l(n).

In this case canonical identification respects rationality but is ill-defined for p-adic irrationals.
This is not a catastrophe if one has finite measurement resolution meaning that only rationals
for which m < pl, n < pl are mapped to the reals (real rationals actually). One can say that

IQk,l identifies p-adic and real numbers along common rationals for p-adic numbers with a pinary
cutoff defined by k and maps them to rationals for pinary cutoff defined by l. Discrete subset of
rational points on p-adic side is mapped to a discrete subset of rational points on real side by
this hybrid of canonical identification and identification along common rationals. This form of
canonical identification is the one needed in TGD framework.

4. Canonical identification does not commute with rational symmetries unless one uses the map
IQk,l(p

rkm/n) = p−rkIk,l(m)/Ik,l(n) and also now only in finite resolution defined by k. For the
large p-adic primes associated with elementary particles this is not a practical problem (electron
corresponds to M127 = 2127 − 1). The generalization to algebraic extensions makes also sense.
Canonical identification breaks general coordinate invariance unless one uses group theoretically
preferred coordinates for M4 and CP2 and subset of these for the space-time region considered.

The resolution of the conflict between symmetries and continuity

Consider now the resolution of the conflict between algebra and topology in more detail.

1. Algebraic approach suggests the identification of reals and various p-adic numbers along common
rationals defined by IQ∞,∞ but this correspondence is completely dis-continuous. Therefore one

must introduce a finite pinary cutoff pk so that one maps only integers smaller than pk to
themselves. Since IQk,l does not make sense for p-adic irrationals, one must introduce also second

pinary cutoff pl and use IQk,l so that only a finite subset of rational points is mapped to their
real counterparts.

2. Topological approach relies on canonical identification and its variants mapping p-adic numbers
to reals in a continuous manner. Ik,∞ applied to p-adics expressed as x = pku, u =

∑
xnp

n,
where u has unit norm, defines such a correspondence. This correspondence does not however
commute with the basic symmetries as correspondence along common rationals would do for
subgroups of the symmetries represented in terms of rational matrices. Canonical identification
fails also to commute with the field equations and the real image fails to be differentiable.

Finite pinary cutoff (IQk,∞ → IQk,l) saves the situation. Below the lower pinary cutoff pk the
pseudo-constants of p-adic differential equations would naturally relate to the identification of
p-adics and reals along common rationals (plus common algebraics in the case of algebraic
extensions).

The notion of finite measurement resolution allows therefore to find a compromise between the
symmetries and continuity (that is, algebra and topology). IQk,l maps rationals to themselves only
up to k pinary digits and the remaining points up to l digits are mapped to rationals but not to
themselves. Canonical identification thus maps only a skeleton of manifold formed by discrete point
set from real to p-adic context and the preferred extremals on both sides would contain this skeleton.
There are many manners to select this rational skeleton, which can also define a decomposition of the
real manifold to simplices or more general objects allowing to define homology theory in real context
and to induce it to p-adic context so that real homology would be inherited to p-adic context.

Definition of p-adic manifold in terms of canonical identification with pinary cutoff

What is remarkable is that canonical identification can be seen as a continuous generalization of
the p-adic norm defined as Np(x) ≡ Ik,l(x) having the highly desired Archimedean property. Ik,l is
the most natural variant of canonical identification for defining the chart maps from regions p-adic
manifold to regions of corresponding real mani-fold ( in particular, p-adic preferred extremals to their
real counterparts).
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1. As already mentioned, one must restrict the p-adic points mapped to real rationals since IQk,l(x)
is not well-defined for p-adic irrationals having non-unique expression as ratios of p-adic integers.
For the restriction to finite rationals the chart image on the real side would consist of rational
points. The cutoff means that these rationals are not dense in the set of reals. Preferred
extremal property could however allow to identify the chart leaf as a piece of preferred extremal
containing the rational points in the measurement resolution used. This would realize the
dream of mapping p-adic p-adic preferred extremals to real ones playing a key role in number
theoretical universality. When one cannot use preferred extremal property some other constraint
would restrict the number of different chart leafs.

2. Canonical identification for the various coordinates defines a chart map mapping regions of p-
adic manifold to Rn+. That each coordinate is mapped to a norm Np(x) means that the real
coordinates are always non-negative. If real spaces Rn+ would provide only chart maps, it is
not necessary to require approximate commutativity with symmetries. Also Berkovich considers
norms but for a space of formal power series assigned with the p-adic disk: in this case however
the norms have extremely low information content.

3. IQk,l indeed defines the analog of Archimedean norm in the sense that one has Nk,l
p (x + y) ≤

Nk,l
p (x)+Nk,l

p (y). This follows immediately from the fact that the sum of pinary digits can vanish

modulo p. The triangle inequality holds true also for the rational variant of I. Nk,l
p (x) is however

not multiplicative: only a milder condition Nk,l
p (pnkx) = Nk,l

p (pnk)Nk,l
p ((x) = p−nkNk,l

p (x) holds
true.

4. Archimedean property gives excellent hopes that p-adic space provided with chart maps for the
coordinates defined by canonical identification inherits within pinary resolutions real topology
and its path connectedness as a discretized version. In purely topological approach forgetting
algebra and symmetries, a hierarchy of induced real topologies would be obtained as induced real
topologies and characterized by various norms defined by Ik,∞. When symmetries and algebra

are brought in, IQk,l gives a correspondence discretizing the connecting paths. This would give a
very close connection with physics.

5. The mapping of p-adic manifolds to real manifolds would make the construction of p-adic man-
ifolds very concrete. For instance, one can map real preferred subset of rational points of a real
preferred extremal to a p-adic one by the inverse of canonical identification by mapping the real
points with finite number of pinary digits to p-adic points with a finite number of pinary digits.
This does not of course guarantee that the p-adic preferred extremal is unique. One could how-
ever say that p-adic preferred extremals possesses the topological invariants of corresponding
real preferred extremal.

6. The maps between different real charts would be induced by the p-adically analytic maps between
the inverse images of these charts. At the real side the maps would be consistent with the p-adic
maps only in the discretization below pinary cutoff and could be also smooth.

7. An objection against this approach is the loss of general coordinate invariance. One can however
argue that one can require this only within the limits of finite measurement resolution. In TGD
framework the symmetries of imbedding space provide a very narrow set of preferred coordinates.

The idea that the discretized version of preferred extremal could lead to preferred extremal by
adding new points in iterative manner is not new. I have proposed assuming that preferred ex-
tremals can be also regarded as quaternionic surfaces (tangent spaces are in well-defined sense hyper-
quaterionic sub-space of complexified octonionic space containing hyper-complex octonions as a pre-
ferred sub-space) [K94].

What about p-adic coordinate charts for a real preferred extremal and for p-adic extremal
in different p-adic number field?

What is remarkable that one can also build p-adic coordinate charts about real preferred extremal
using the inverse of the canonical identification assuming that finite rationals are mapped to finite
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rationals. There are actually good reasons to expect that coordinate charts make sense in both
directions.

Furthermore, if real preferred extremal can be mapped to to p-adic extremals corresponding to
two different primes p1 and p2, then p1-adic preferred extremals serves as a chart for p2-adic preferred
extremal and vice versa (one can compose canonical identifications and their inverses to construct the
chart maps).

Clearly, real and p-adic extremals define in this manner a category. Preferred extremals are the
objects. The arrows are the composites of canonical identification and its inverses mapping to each
other preferred extremals belonging to different number fields. This category would be very natural
and have profound physical meaning: usually the notion of category tends to be quite too general for
the needs of physicist. Category theoretical thinking suggests that full picture of physics is obtained
only through this category: this is certainly the case if physics is extended to include physical correlates
of cognition and intentionality.

Algebraic continuation from real to p-adic context is one good reason for p-adic chart maps. At the
real side one can calculate the values of various integrals like Kähler action. This would favor p-adic
regions as map leafs. One can require that Kähler action for Minkowskian and Euclidian regions (or
their appropriate exponents) make sense p-adically and define the values of these functions for the
p-adic preferred extremals by algebraic continuation. This could be very powerful criterion allowing
to assign only very few p-adic primes to a given real space-time surface. This would also allow to
define p-adic boundaries as images of real boundaries in finite measurement resolution. p-Adic path
connectedness would be induced from real path-connectedness.

In the intersection of real and p-adic worlds the correspondence is certainly unique and means that
one interprets the equations defining the p-adic space-time surface as real equations. The number of
rational points (with cutoff) for the p-adic preferred extremal becomes a measure for how unique the
chart map in the general case can be. For instance, for 2-D surfaces the surfaces xn + yn = zn allow
no nontrivial rational solutions for n > 2 for finite real integers. This criterion does not distinguish
between different p-adic primes and algebraic continuation is needed to make this distinction. The
basic condition selecting preferred p-adic primes is that the value of real Kähler/Morse function or its
real/imaginary exponent (or both) makes sense also p-adically in some finite-dimensional extension
of p-adic numbers.

Some examples about chart maps of p-adic manifolds

The real map leafs must be mutually consistent so that there must be maps relating coordinates used
in the overlapping regions of coordinate charts on both real and p-adic side. On p-adic side chart maps
between real map leafs are naturally induced by identifying the canonical image points of identified
p-adic points on the real side. For discrete chart maps IQk,l with finite pinary cutoffs one one must
complete the real chart map to - say diffeomorphism. That this completion is not unique reflects the
finite measurement resolution.

In TGD framework the situation is dramatically simpler. For sub-manifolds the manifold structure
is induced from that of imbedding space and it is enough to construct the manifold structure M4×CP2

in a given measurement resolution (k, l). Due to the isometries of the factors of the imbedding space,
the chart maps in both real and p-adic case are known in preferred imbedding space coordinates.
As already discussed, this allows to achieve an almost complete general coordinate invariance by
using subset of imbedding space coordinates for the space-time surface. The breaking of GCI has
interpretation in terms of presence of cognition and selection of quantization axes.

For instance, in the case of Riemann sphere S2 the holomorphism relating the complex coordinates
in which rotations act as Möbius tranformations and rotations around preferred axis act as phase
multiplications - the coordinates z and w at Northern and Southern hemispheres are identified as
w = 1/z restricted to rational points at both side. For CP2 one has three poles instead of two but the
situation is otherwise essentially the same.

14.5.3 Could canonical identification make possible definition of integrals
in p-adic context?

The notion of p-adic manifold using using real chart maps instead of p-adic ones allows an attractive
approach also to p-adic integration and to the problem of defining p-adic version of differential forms
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and their integrals.

1. If one accepts the simplest form of canonical identification I(x) :
∑
n xnp

n →
∑
xnp

−n, the
image of the p-adic surface is continuous but not differentiable and only integers n < p are
mapped to themselves. One can define integrals of real functions along images of the p-adically
analytic curves and define the values of their p-adic counterparts as their algebraic continuation
when it exists.

In TGD framework this does not however work. If one wants to define induced quantities - such
as metric and Kähler form - on the real side one encounters a problem since the image surface
is not smooth and the presence of edges implies that these quantities containing derivatives of
imbedding space coordinates possess delta function singularities. These singularities could be
even dense in the integration region so that one would have no-where differentiable continuous
functions and the real integrals would reduce to a sum which do not make sense.

2. In TGD framework finite measurement resolution realized in terms of pinary cutoffs saves the
situation. IQk,l is a compromise between the direct identification along common rationals favored
by algebra and symmetries but being totally discontinuous without the cutoff l. This cutoff
breaks symmetries slightly but guarantees continuity in finite measurement resolution defined by
the pinary cutoff l. Symmetry breaking can be made arbitrarily small and has interpretation in
terms of finite measurement resolution. Due to the pinary cutoff the chart map applied to various
p-adic coordinates takes discrete set of rationals to discrete set of rationals and preferred extremal
property can be used to make a completion to a real space-time surface. Uniqueness is achieved
only in finite measurement resolution and is indeed just what is needed. Also general coordinate
invariance is broken in finite measurement resolution. In TGD framework it is however possible
to find preferred coordinates in order to minimize this symmetry breaking.

3. The completion of the discrete image of p-adic preferred extremal under IQk,l to a real preferred
extremal is very natural. This preferred extremal can be said to be unique apart from a finite
measurement resolution represented by the pinary cutoffs k and l. All induced quantities are
well defined on both sides.

p-Adic integrals can be defined as pullbacks of real integrals by algebraic continuation when this
is possible. The inverse image of the real integration region in canonical identification defines
the p-adic integration region.

4. The integrals of p-adic differential forms can be defined as pullbacks of the real integrals. The
integrals of closed forms, which are typically integers, would be the same integers but interpreted
as p-adic integers.

It is interesting to study the algebraic continuation of Kähler action from real sector to p-adic
sectors.

1. Kähler action for both Euclidian and Minkowskian regions reduces to the algebraic continuation
of the integral of Chern-Simons-Kähler form over preferred 3-surfaces. The contributions from
Euclidian and Minkowskian regions reduce to integrals of Chern-Simons form over 3-surfaces.

The contribution from Euclidian regions defines Kähler function of WCW and the contribution
from Minkowskian regions giving imaginary exponential of Kähler action has interpretation as
Morse function, whose stationary points are expected to select special preferred extremals. One
would expect that both functions have a continuous spectrum of values. In the case of Kähler
function this is necessary since Kähler function defines the Kähler metric of WCW via its second
derivatives in complex coordinates by the well-known formula.

2. The algebraic continuation of the exponent of Kähler function for a given p-adic prime is expected
to require the proportionality to pn so that not all preferred extremals are expected to allow a
continuation to a given p-adic number field. This kind of assumption has been indeed made in
the case of deformations of CP2 type extremals in order to derive formula for the gravitational
constant in terms of basic parameters of TGD but without real justification [K57].
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3. The condition that the action exponential in the Minkowskian regions is a genuine phase factor
implies that it reduces to a root of unity (one must have an algebraic extension of p-adic num-
bers). Therefore the contribution to the imaginary exponent Kähler action from these regions
for the p-adicizable preferred extremals should be of form 2π(k +m/n).

If all preferred real extremals allow p-adic counterpart, the value spectrum of the Morse function
on the real side is discrete and could be forced by the preferred extremal property. If this were
the case the stationary phase approximation around extrema of Kähler function on the real side
would be replaced by sum with varying phase factors weighted by Kähler function.

An alternative conclusion is that the algebraic continuation of Kähler action to any p-adic
number field is possible only for a subset of preferred extremals with a quantized spectrum of
Morse function. One the real side stationary phase approximation would make sense. It however
seems that the stationary phases must obey the above discussed quantization rule.

Also holomorphic forms allow algebraic continuation and one can require that also their integrals
over cycles do so. An important example is provided by the holomorphic one-forms integrals over cycles
of partonic 2-surface defining the Teichmueller parameters characterizing the conformal equivalence
class of the partonic 2-surfaces as Riemann surface. The p-adic variants of these parameters exist if
they allow an algebraic continuation to a p-adic number. The algebraic continuation from the real
side to the p-adic side would be possible on for certain p-adic primes p if any: this would allow to
assign p-adic prime or primes to a given real preferred extremal. This justifies the assumptions of
p-adic mass calculations concerning the contribution of conformal modular degrees of freedom to mass
squared [K18].

14.5.4 Canonical identification and the definition of p-adic counterparts of
Lie groups

For Lie groups for which matrix elements satisfy algebraic equations, algebraic subgroups with rational
matrix elements could be regarded as belonging to the intersection of real and p-adic worlds, and
algebraic continuation by replacing rationals by reals or p-adics defines the real and p-adic counterparts
of these algebraic groups. The challenge is to construct the canonical identification map between these
groups: this map would identify the common rationals and possible common algebraic points on both
sides and could be seen also a projection induced by finite measurement resolution.

A proposal for a construction of the p-adic variants of Lie groups was discussed in previous section.
It was found that the p-adic variant of Lie group decomposes to a union of disjoint sets defined by
a discrete subgroup G0 multiplied by the p-adic counterpart Gp,n of the continuous Lie group G.
The representability of the discrete group requires an algebraic extension of p-adic numbers. The
disturbing feature of the construction is that the p-adic cosets are disjoint. Canonical identification
Ik,l suggests a natural solution to the problem. The following is a rough sketch leaving a lot of details
open.

1. Discrete p-adic subgroup G0 corresponds as such to its real counterpart represented by ma-
trices in algebraic extension of rationals. Gp,n can be coordinatized separately by Lie algebra
parameters for each element of G0 and canonical identification maps each Gp,n to a subset
of real G. These subsets intersect and the chart-to-chart identification maps between Lie al-
gebra coordinates associated with different elements of G0 are defined by these intersections.
This correspondence induces the correspondence in p-adic context by the inverse of canonical
identification.

2. One should map the p-adic exponentials of Lie-group elements of Gp,n to their real counterparts
by some form of canonical identification.

(a) Consider first the basic form I = I1,∞ of canonical identification mapping all p-adics to
their real counterparts and maps only the p-adic integers 0 ≤ k < p to themselves.

The gluing maps between groups Gp,n associated with elements gm and gn of G0 would be
defined by the condition gmI(exp(itaT

a) = gnI(exp(ivaT
a). Here ta and va are Lie-algebra

coordinates for the groups at gm and gn. The delicacies related to the identification of p-
adic analog of imaginary unit have been discussed in the previous section. It is important
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that Lie-algebra coordinates belong to the algebraic extension of p-adic numbers containing
also the roots of unity needed to represent gn. This condition allows to solve va in terms
of ta and va = va(tb) defines the chart map relating the two coordinate patches on the real
side. The inverse of the canonical identification in turn defines the p-adic variant of the
chart map in p-adic context. For I this map is not p-adically analytic as one might have
guessed.

(b) The use of IQk,l instead of I = I1,∞ gives hopes about analytic chart-to chart maps on both

sides. One must however restrict IQk,l to a subset of rational points (or generalized points
in algebraic extension with generalized rational defined as ratio of generalized integers in
the extension). Canonical identification respects group multiplication only if the integers
defining the rationals m/n appearing in the matrix elements of group representation are
below the cutoff pk. The points satisfying this condition do not in general form a rational
subgroup. The real images of rational points however generate a rational sub-group of the
full Lie-group having a manifold completion to the real Lie-group.

One can define the real chart-to chart maps between the real images of Gp,k at different

points of G0 using IQk,l(exp(ivaT
a) = g−1

n gm × IQk,l(exp(itaT a). When real charts intersect,
this correspondence should allow solutions va, tb belonging to the algebraic extension and
satisfying the cutoff condition. If the rational point at the other side does not correspond
to a rational point it might be possible to perform pinary cutoff at the other side.

Real chart-to-chart maps induce via common rational points discrete p-adic chart-to-chart
maps between Gp,k. This discrete correspondence should allow extension to a unique chart-
to-chart map the p-adic side. The idea about algebraic continuation suggests that an
analytic form for real chart-to-chart maps using rational functions makes sense also in the
p-adic context.

3. p-Adic Lie-groups Gp,k for an inclusion hierarchy with size characterized by p−k. For large
values of k the canonical image of Gp,k for given point of G0 can therefore intersect its copies
only for a small number of neighboring points in G0, whose size correlates with the size of the
algebraic extension. If the algebraic extension has small dimension or if k becomes large for
a given algebraic extension, the number of intersection points can vanish. Therefore it seems
that in the situations, where chart-to-chart maps are possible, the power pk and the dimension
of algebraic extension must correlate. Very roughly, the order of magnitude for the minimum
distance between elements of G0 cannot be larger than p−k+1. The interesting outcome is that
the dimension of algebraic extension would correlate with the pinary cutoff analogous to the IR
cutoff defining measurement resolution for four-momenta.

14.5.5 Cut and project construction of quasicrystals from TGD point of
view

Cut and project [?] method is used to construct quasicrystals (QCs) in sub-spaces of a higher-
dimensional linear space containing an ordinary space filling lattice, say cubic lattice. For instance,
2-D Penrose tiling is obtained as a projection of part of 5-D cubic lattice - known as Voronyi cell -
around 2-D sub-space imbedded in five-dimensional space. The orientation of the 2-D sub-space must
be chosen properly to get Penrose tiling. The nice feature of the construction is that it gives the entire
2-D QC. Using local matching rules the construction typically stops.

Sub-manifold gravity and generalization of cut and project method

The representation of space-time surfaces as sub-manifolds of 8-D H = M4 × CP2 can be seen as a
generalization of cut and project method.

1. The space-time surface is not anymore a linear 4-D sub-space as it would be in cut and project
method but becomes curved and can have arbitrary topology. The imbedding space ceases to
be linear M8 = M4 × E4 since E4 is compactified to CP2. Space-time surface is not a lattice
but continuum.

http://tilings.math.uni-bielefeld.de/glossary/cut_and_project
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2. The induction procedure geometrizing metric and gauge fields is nothing but projection for H
metric and spinor connection at the continuum limit. Killing vectors for CP2 isometries can be
identified as classical gluon fields. The projections of the gamma matrices of H define induced
gamma matrices at space-time surface. The spinors of H contain additional components allowing
interpretation in terms of electroweak spin and hyper-charge.

Finite measurement resolution and construction of p-adic counterparts of preferred ex-
tremals forces ”cut and project” via discretization

In finite measurement resolution realized as discretization by finite pinary cutoff one can expect to
obtain the analog of cut and project since 8-D imbedding space is replaced with a lattice structure.

1. The p-adic/real manifold structure for space-time is induced from that for H so that the con-
struction of p-adic manifold reduces to that for H.

2. The definition of the manifold structure for H in number theoretically universal manner requires
for H discretization in terms of rational points in some finite region of M4. Pinary cutoffs- two
of them - imply that the manifold structures are parametrized by these cutoffs charactering
measurement resolution. Second cutoff means that the lattice structure is piece of an infinite
lattice. First cutoff means that only part of this piece is a direct imagine of real/p-adic lattice
on p-adic/real side obtained by identifying common rationals (now integers) of real and p-adic
number fields. The mapping of this kind lattice from real/p-adic side to p-adic/real side defines
the discrete coordinate chart and the completion of this discrete structure to a preferred extremal
gives a smooth space-time surface also in p-adic side if it is known on real side (and vice versa).

3. Cubic lattice structures with integer points are of course the simplest ones for the purposes of
discretization and the most natural choice for M4. For CP2 the lattice is completely analogous
to the finite lattices at sphere defined by orbits of discrete subgroups of rotation group and the
analogs of Platonic solids emerge. Probably some mathematician has listed the Platonic solids
in CP2.

4. The important point is that this lattice like structure is defined at the level of the 8-D imbedding
space rather than in space-time and the lattice structure at space-time level contains those points
of the 8-D lattice like structure, which belong to the space-time surface. Finite measurement
resolution suggests that all points of lattice, whose distance from space-time surface is below the
measurement resolution for distance are projected to the space-time surface. Since space-time
surface is curved, the lattice like structure at space-time level obtained by projection is more
general than QC.

The lattice like structure results as a manifestation of finite measurement resolution both at real
and p-adic sides and can be formally interpreted in terms of a generalization of cut and project but
for a curved space-time surface rather than 4-D linear space, and for H rather than 8-D Minkowski
space. It is of course far from clear whether one can obtain anything looking like say 3-D or 4-D
version of Penrose tiling.

1. The size scale of CP2 is so small (104 Planck lengths) that space-time surfaces with 4-D M4

projection look like M4 in an excellent first approximation and using M4 coordinates the pro-
jected lattice looks like cubic lattice in M4 except that the distances between points are not
quite the M4 distances but scaled by an amount determined by the difference between induced
metric and M4 metric. The effect is however very small if one believes on the general relativistic
intuition.

In TGD framework one however can have so called warped imbeddings of M4 for which the
component of the induced metric in some direction is scaled but curvature tensor and thus
gravitational field vanishes. In time direction this scaling would imply anomalous time dilation
in absence of gravitational fields. This would however cause only a the compression or expansion
of M4 lattice in some direction.

2. For Euclidian regions of space-time surface having interpretation as lines of generalized Feynman
diagrams M4 projection is 3-dimensional and at elementary particle level the scale associated
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with M4 degrees of freedom is roughly the same as CP2 scale. If CP2 coordinates are used
(very natural) one obtains deformation of a finite lattice-like structure in CP2 analogous to a
deformation of Platonic solid regarded as point set at sphere. Whether this lattice like structure
could be seen as a subset of infinite lattice is not clear.

3. One can consider also string like objects X2 × Y 2 ⊂ M4 × CP2 with 2-D M4 projection and
their deformations. In this case the projection of M4 lattice to X2 - having subset of two M4

coordinates as coordinates - can differ considerably from a regular lattice since X2 can be locally
tilted with respect to M4 lattice. This cannot however give rise to Penrose tiling requiring 5-D
flat imbedding space. This argument applies also to 2-D string world sheets carrying spinor
modes. In the idealized situation that string world sheet is plane in M4 one might obtain an
analog of Penrose tiling but with 4-D imbedding space.

The above quasi lattice like structures (QLs) are defined by a gravitational deformation of the
cubic lattice of M4. Is there any hope about the 4-D QLs in M4 so that gravitation would give rise to
the analogs of phason waves deforming them? Could cut and project method be generalized to give
QL in M4 as projection of 8-D cubic lattice in M8?

M8 −H duality

Before considering an explicit proposal I try to describe what I call M8−H duality (H = M4×CP2).

1. What I have christened M8 −H duality is a conjecture stating that TGD can be equivalently
defined in M8 or M4×CP2. This is the number theoretic counterpart of spontaneous compactifi-
cation of string models but has nothing to do with dynamics: only two equivalent representations
of dynamics would be in question.

2. Space-time surfaces (preferred extremals) in M8 are postulated to be quaternionic sub-manifolds
of M8 possessing a fixed M2 ⊂M4 ⊂M8 as sub-space of tangent space. ”Quaternionic” means
that the tangent space of M4 is quaternionic and thus associative. Associativity conditions
would thus determine classical dynamics. More generally, these subspaces M2 ⊂ M8 can form
integrable distribution and they define tangent spaces of a 2-D sub-manifold of M4. If this
duality really holds true, space-time surfaces would define a lattice like structure projected from
a cubic M8 lattice. This of course does not guarantee anything: M8 −H duality itself suggests
that these lattice like structures differ from regular M4 crystals only by small gravitational
effects.

3. The crucial point is that quaternionic sub-spaces are parametrized by CP2. Quaternionic 4-
surfaces of M8 = M4×CP2 containing the fixed M2 ⊂M8 can be mapped to those of M4×CP2

by defining M4 coordinates as projections to preferred M4 ⊂M8 and CP2 coordinates as those
specifying the tangent space of 4-surface at given point.

4. A second crucial point is that the preferred subspace M4 ⊂ M8 can be chosen in very many
manners. This imbedding is a complete analog of the imbedding of lower-D subspace to higher-D
one in cut and project method. M4 can be identified as any 4-D subspace imbedded in M4 and
the group SO(1, 7) of 8-D Lorentz transformations defines different imbeddings of M4 to M8.
The moduli space of different imbeddings of M4 is the Grassmannian SO(1, 7)/SO(1, 3)×SO(4)
and has dimension D = 28− 6− 6 = 16.

When one fixes two coordinate axes as the real and one imaginary direction (physical in-
terpretation is as an identification of rest system and spin quantization axes), one obtains
SO(1, 7)/SO(2) × SO(4) with higher dimension D = 28 − 1 − 6 = 21. When one requires
also quaternionic structure one obtains the space SO(1, 7)/SU(1) × SU(2) with dimension
D = 28− 4 = 24. Amusingly, this happens to be the number of physical degrees of freedom in
bosonic string model.

How to obtain quasilattices and quasi-crystals in M4?

Can one obtain quasi-lattice like structures (QLs) at space-time level in this framework? Consider
first the space-time QLs possibly associated with the standard cubic lattice L4

st of M4 resulting as
projections of the cubic lattice structure L8

st of M8.
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1. Suppose that one fixes a cubic crystal lattice in M8, call it L8
st. Standard M4 cubic lattice L4

st is
obtained as a projection to some M4 sub-space of M8 by simply putting 4 Euclidian coordinates
for lattice points o constant. These sub-spaces are analogous to 2-D coordinate planes of E3 in
fixed Cartesian coordinates. There are 7!/3!4! = 35 choices of this kind.

One can consider also E8 lattice is an interesting identification for the lattice of M8 since E8

is self-dual and defines the root lattice of the exceptional group E8. E8 is union of Z8 and
(Z + 1/2)8 with the condition that the sum of all coordinates is an even integer. Therefore all
lattice coordinates are either integers or half-integers. E8 is a sub-lattice of 8-D cubic lattice
with 8 generating vectors ei/2, with ei unit vector. Integral octonions are obtained from E8 by
scaling with factor 2. For this option one can imbed L4

st as a sub-lattice to Z8 or (Z + 1/2)8.

2. Although SO(1, 3) leaves the imbedded 4-plane M4 invariant, it transforms the 4-D crystal
lattice non-trivially so that all 4-D Lorentz transforms are obtained and define different dis-
cretizations of M4. These are however cubic lattices in the Lorentz transformed M4 coordinates
so that this brings nothing new. The QLs at space-time surface should be obtained as gravita-
tional deformations of cubic lattice in M4.

3. L4
st indeed defines 4-D lattice at space-time surface apart from small gravitational effects in

Minkowskian space-time regions. Elementary particles are identified in TGD a Euclidian space-
time regions - deformed CP2 type vacuum extremals. Also black-hole interiors are replaced with
Euclidian regions: black-hole is like a line of a generalized Feynman diagram, elementary particle
in some sense in the size scale of the black-hole. More generally, all physical objects, even in
everyday scales, could possess a space-time sheet with Euclidian metric signature characterizing
their size (AdS5/CFT correspondence could inspire this idea). At these Euclidian space-time
sheets gravitational fields are strong since even the signature of the induced metric is changed
at their light-like boundary. Could it be that in this kind of situation lattice like structures,
even QCs, could be formed purely gravitationally? Probably not: an interpretation as lattice
vibrations for these deformations would be more natural.

It seems that QLs are needed already at the level of M4. M8−H duality indeed provides a natural
manner to obtain them.

1. The point is that the projections of L8
str to sub-spaces M4 defined as the SO(1, 7) Lorentz

transforms of L4
st define generalized QLs parametrized by 16-D moduli space SO(1, 7)/SO(1, 3)×

SO(4). These QLs include also QCs. Presumably QC is a QL possessing a non-trivial point
group just like Penrose tiling has the isometry group of dodecagon as point group and 3-D analog
of Penrose tiling has the isometries of icosahedron as point group.

This would allow to conclude that the discretization at the level of M8 required by the definition
of p-adic variants of preferred extremals as cognitive representations of their real counterparts
would make possible 4-D QCs. M8 formulation of TGD would explain naturally the QL lattices
as discretizations forced by finite measurement resolution and cognitive resolution.

A strong number theoretical constraint on these discretizations come from the condition that the
4-D lattice like structure corresponds to an algebraic extension of rationals. Even more, if this
algebraic extension is 8-D (perhaps un-necessarily strong condition), there are extremely strong
constraints on the 22-parameters of the imbedding. Note that in p-adic context the algebraic
extension dictates the maximal isometry group identified as subgroup of SO(1, 7) assignable to
the imbedding as the discussion of p-adic icosahedron demonstrates.

2. What about the physical interpretation of these QLs/QCs? As such QLs define only natural
discretizations rather than physical lattices. It is of course quite possible to have also physical
QLs/QCs such that the points - rather time like edge paths - of the discretization contain
real particles. What about a ”particle” localized to a point of 4-D lattice? In positive energy
ontology there is no obvious answer to the question. In zero energy ontology the lattice point
could correspond to a small causal diamond containing a zero energy state. In QFT context one
would speak of quantum fluctuation. In p-adic context it would correspond to ”though bubble”
lasting for a finite time.

http://en.wikipedia.org/wiki/E8_lattice
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3. It is also possible to identify physical particles as edge paths of the 4-D QC, and one can consider
time= constant snapshots as candidates for 3-D QCs. It is quite conceivable that the non-trivial
point group of QCs favors them as physical QLs.

Expanding hyperbolic tesselations and quasi-tesselations obtained by imbedding H3 ⊂M4

to H7 ⊂M8

M8-M4 × CP2 duality and the discretization required by the notion of p-adic manifold relates in
an interesting manner to expanding hyperbolic tesselations and quasi tesselations in H7 ⊂ M8, and
possible expanding quasi-tesselations in obtained by imbedding H3 ⊂M4 to H7 ⊂M8

1. Euclidian lattices E8, E7, E6

I have already considered E8 lattice in M8. The background space has however Minkowskian
rather than Euclidian metric natural for the carrier space of the E8 lattice. If one assigns some
discrete subgroup of isometries to it, it is naturally subgroup of SO(8) rather than SO(1, 7). Both
these groups have SO(7) as a subgroup meaning that preferred time direction is chosen as that
associated with the real unit and considers a lattice formed from imaginary octonions.

E8 lattice scaled up by a factor 2 to integer lattice allows octonionic integer multiplication besides
sums of points so that the automorphism group of octions: discreted subgroups of G2 ⊂ SO(7) would
be the natural candidates for point groups crystals or lattice like structures.

If one assumes also fixed spatial direction identified as a preferred imaginary unit, G2 reduces to
SU(3) ⊂ SO(6) = SU(4) identifiable physically as color group in TGD framework. From this one ends
up with the idea about M8 −M4 ×CP2 duality. Different imbeddings of M4 ⊂M8 are quaternionic
sub-spaces containing fixed M2 are labelled by points of CP2.

All this suggests that E7 lattice in time=constant section of even E6 lattice is a more natural
object lattice to consider. Kind of symmetry breaking scenario E8 → E7 → E6 → G2 → SU(3) is
suggestive. This Euclidian lattice would be completely analous to a slicing of 4-D space-time by 3-D
lattices labelled by the value of time coordinate and is of course just what physical considerations
suggest.

2. Hyperbolic tesselations

Besides crystals defined by a cubic lattice or associated with E6 or E7, one obtains an infinite
number of hyperbolic tesselations in the case of M8. These are much more natural in Minkowskian
signature and could be also cosmologically very interesting. Quite generally, one can say that hy-
perbolic space is ideal for space-filling packings defined by hyperbolic manifolds Hn/Γ: they are
completely analogous to space-filling packings of E3 defined by discrete subgroups of translation
group producing packings of E3 by rhombohedra. One only replaces discrete translations with dis-
crete Lorentz transformations. This is what makes these highly interesting from the point of view of
quantum gravity.

1. In Mn+1 one has tesselations of n-dimensional hyperboloid Hn defined by t2 − x12 − ...− x2
n =

a2 > 0, where a defines Lorentz invariant which for n = 4 has interpretation as cosmic time
in TGD framework. Any discrete subgroup Γ of the Lorentz group SO(1, n) of Mn+1 with
suitable additional conditions (finite number of generators at least) allows a tesselation of Hn

by basic unit Hn/Γ. These tesselations come as 1-parameter families labelled by the cosmic
time parameter a. These 3-D tesselations participate cosmic expansion. Of course, also ordinary
crystals are crystals only in spatial directions. One can of course discretize the values of a or
some function of a in integer multiples of basic unit and assign to each copy of Hn/Γ a ”center
point” to obtain discretization of Mn+1 needed for p-adicization.

2. For n = 3 one has M4 and H3, and this is very relevant in TGD cosmology. The parameter a
defines a Lorentz invariant cosmic time for the imbeddings of Robertson-Walker cosmologies to
M4 × CP2. The tesselations realized as physical lattices would have natural interpretation as
expanding 3-D lattice like structures in cosmic scales. What is new is that discrete translations
are replaced by discrete Lorentz boosts, which correspond to discrete velocities and observation-
ally to discrete red shifts for distant objecst. Interestingly, it has been found that red shift is
quantized along straight lines [E4]: ”God’s fingers” is the term used. I proposed for roughly two
decades ago an explanation based on closed orbits of photons around cosmic strings [K21]. but
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explanation in terms of tesselations would also give rise to periodicity. A fascinating possibility
is that these tesselation have defined macroscopically quantum coherent structures during the
very early cosmology the the size scale of H3/Γ was very small. One can also ask whether the
macroscopic quantum coherence could still be there.

Hyperbolic manifold property has purely local signatures such as angle surplus: the very fact
that there are infinite number of hyperbolic tesselations is in conflict with the the fact that we
have Euclidian 3-geometry in every day length scales. In fact, for critical cosmologies, which
allow a one-parameter family of imbeddings to M4×CP2 (parameter characterizes the duration
of the cosmology) one obtains flat 3-space in cosmological scales. Also overcritical cosmologies
for which a = constant section is 3-sphere are possible but only with a finite duration. Many-
sheeted space-time picture also leads to the view that astrophysical objects co-move but do not
co-expand so that the geometry of time=constant snapshot is Euclidian in a good approximation.

3. Does the notion of hyperbolic quasi-tesselation make sense?

Can one construct something deserving to be called quasi tesselations (QTs)? For QCs translational
invariance is broken but in some sense very weakly: given lattice point has still an infinite number of
translated copies. In the recent case translations are replaced by Lorentz transformations and discrete
Lorentz invariance should be broken in similar weak manner.

If cut and project generalizes, QTs would be obtained using suitably chosen non-standard imbed-
ding M4 ⊂ M8. Depending on what one wants to assume, M4 is now image of M4

st by an element
of SO(1, 7), SO(7), SO(6) or G2. The projection - call it P - must take place to M4 sliced by scaled
copies of H3 from M8

st sliced by scaled copies of H7/Γ tesselation. The natural option is that P is
directly from H7 to H3 ⊂ H7 and is defined by a projecting along geodesic lines orthogonal to H3.
One can choose always the coordinates of M4 and M8 in such a manner that the coordinates of points
of M4 are (t, x, y, z, 0, 0, 0, 0) with t2 − r2 = a2

4 whereas for a general point of H7 the coordinates
are (t, x, y, z, x4, ...x7) with t2 − r2 − r2

4 = a2
8 for H3 ⊂ H7. The projection is in this case simply

(t, x, y, z, x4, ..., x7)→ (t, x, y, z, 0, ..., 0). The projection is non-empty only if one has a2
4 − a2

8 ≥ 0 and
the 3-sphere S3 with radius r4 =

√
a2

4 − a2
8 is projected to single point. The images of points from

different copies of H7/Γ are identical if S3 intersects both copies. For r4 much larger than the size
of the projection P (H7/Γ) of single copy overlaps certainly occurs. This brings strongly in mind the
overlaps of the dodecagons of Penrose tiling and icosahedrons of 3-D icosahedral QC. The point group
of tesselation would be Γ.

4. Does one obtain ordinary H3 tesselations as limits of quasi tesselations?

Could one construct expanding 3-D hyperbolic tesselations H3/Γ3 from expanding 7-D hyperbolic
tesselations having H7/Γ7 as a basic building brick? This seems indeed to be the outcome at at the
limit r4 → 0. The only projected points are the points of H3 itself in this case. The counterpart
of the group Γ7 ⊂ SO(1, 7) is the group obtained as the intersection Γ3 = Γ7 ∩ SO(1, 3): this tells
that the allowed discrete symmetries do not lead out from H3. This seems to mean that the 3-D
hyperbolic manifold is H3/Γ3, and one obtains a space-filling 3-tesselation in complete analogy for
what one obtains by projecting cubic lattice of E7 to E3 imbedded in standard manner. Note that Γ3 =
Γ7∩SO(1, 3), where SO(1, 3) ⊂ SO(1, 7), depends on imbedding so that one obtains an infinite family
of tesselations also from different imbeddings parametrized by the coset space SO(1, 7)/SO(1, 3). Note
that if Γ3 contains only unit element H3 ⊂ H7/Γ7 holds true and tesselation trivializes.

p-Adic variant of the Grassmannian SO(1, 7)/SO(1, 3)× SO(4) and Bruhat-Tits tree

p-Adicization requires also to consider the p-adic variants of the Grassmannian SO(1, 7)/SO(1, 3) ×
SO(4). Grassmannians define a generalization of projective spaces and appear in twistor Grassman-
nian program. According to the article [A136], the construction of the Bruhat-Tits tree generalizes
for them. This gives excellent hopes for generalizing the twistor Grassmannian program to p-adic
context. Bruhat-Tits tree for S2 = SO(3)/SO(2) = P 1(C) generalized to P 1(K) (K is any algebraic
extension of Qp) is constructed in terms of projective equivalence classes of integer lattices in K2 with
inclusion relation defining the notion of edge path making possible path connectedness.

In the recent p-adic manifold structure forces 8-D lattices in K8 and they seem to to take the role
of the 2-D lattices K2. Therefore TGD view about p-adic manifold structure might well be equivalent
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to the standard view in the case of Grassmannians. For the Grassmannian in question the projective
equivalence is replaced with equivalence under SO(1, 3) × SO(4). Therefore one expects that the
generalization of Bruhat-Tits tree in 8-D case and its projections to sub-spaces assignable to algebraic
extensions K of Qp appear and correspond to discrete subgroups Γ of SO(1, 7). With some additional
restrictions on Γ the spaces H7/Γ define hyperbolic manifolds (H7 is 7-D hyperboloid in M8).

This argument makes sense if the counterpart of projective space P 1(K) can be defined also as the
analog of SO(3)/SO(2). What looks like a problem is that the ”Cartesian” dimension of this space
is 2 whereas P 1(K) is 1-D in this sense. The analog of SO(3)/SO(2) can be indeed defined as the
Grassmannian SO(1, 2)/Z1

p × SO(2) with dimension 1. Z1
p denotes the group of p-adic integers with

unit norm defining p-adic units analogous to complex phases: they have their inverse as conjugate.
What this says that p-adic unit vector 1 is equivalent to any element of Z1

p . In real context the group
of units contains only the real unit so that one obtains Cartesian dimension 2.

14.6 What the notion of path connectedness could mean from
quantum point of view?

The notions of open set and path connectedness express something physical but perhaps in a highly
idealized form. Canonical identification for preferred extremals provides one promising approach to
the challenge of defining path connected topology and at the same time achieving a compromise with
symmetries and approximate correspondence via common rationals. The variant IQk for the canonical
identification with pinary cutoff can be used to map rational points of the real/p-adic preferred
extremal to p-adic/real space-time points to define a skeleton completed to a preferred extremal,
which of course need not be unique. In particular, real paths are mapped to p-adic paths in finite
pinary cutoff so that the images are always discrete paths consisting of rational points so that the
notion of finite pinary resolution is un-avodable.

One could also try to formulate path connectness more microscopically and physically using the
tools of quantum physics.

1. The basic point is that there are correlations between different points or physical events associ-
ated with different points of manifold. Manifold is more like liquid than dust: one cannot pick
up single point from it. In the idealistic description based on real topology one can pick up only
open ball. This relates also to finite measurement resolution for lengths: it is not possible to
specify single point.

2. Quantum physicist would formulate this in terms of physical correlations. The correlation func-
tions for two fields defined in the manifold are non-vanishing even when the two fields are
evaluated at different points.

If one takes the suggestion of quantum physicist seriously, one should reformulate the notion of
manifold by bringing in quantum fields and their correlation functions. This approach is alternative to
the formulation of p-adic (real) manifold based on real (p-adic) coordinate charts defined by canonical
identification.

14.6.1 Could correlation functions for fermion fields code data about geo-
metric objects?

Quantum TGD suggests another approach to the notion of path connectedness. What could the
quantum fields needed to formulate the notion of manifold be in TGD framework? In TGD framework
there are only very few choices to consider. Only the induced second quantized fermion fields can be
considered in both real and p-adic context. Their correlation functions defined as vacuum expectations
of bi-local bilinears are indeed well-defined in both real and p-adic context.

One can define classical bosonic correlation functions for the invariants formed from induce bosonic
field but this requires integration over the space-time surface and this might be problematic in p-adic
context unless one is able to algebraically continue the real correlation functions to p-adic context.
Quantum ergodicity states that these correlation functions characterizing sub-manifold geometry sta-
tistically are identical for the space-time surfaces which can appear in the quantum superposition
defining WCW spinor field.
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1. One could perhaps say:

Two points are ”connected by path!” / have ”edge connecting them” as Bruhat and Tits would say
/ belong to same space-time sheet/partonic 2-surface / belog to two distinct 3-surfaces forming
part of a boundary of the same connected space-time surface ↔ there are non-vanishing fermion-
antifermion correlation functions for the point pair in question.

2. Note that one must consider separately pure right-handed neutrino modes and the remaining
spinor modes. For the modified Dirac equation pure right-handed neutrino fields are covariantly
constant in CP2 degrees of freedom and delocalized along entire space-time sheet. In space-time
interior the correlation functions for right-handed neutrinos should code for the geometry of the
space-time sheet.

The modes which do not represent pure right-handed neutrinos are restricted to 2-D string world
sheets. The conformal correlation functions for the spinor fields restricted to string world sheets
should code for the geometry of string world sheets.

3. Everything would reduce to fermionic correlation functions, which in principle are measurable
in particle physics experiments. This is in accordance with the general vision of TGD that
fermion fields provide all possible information about geometric objects. This would generalize
the idea that one can hear the shape of the drum that is deduce the geometry of drum from the
correlation functions for sound waves.

4. Real space-time topology would be only a highly idealized description of this physical connected-
ness, in more physical approach it would be described in terms of fermionic correlation functions
allowing to decide whether two points belong to same geometric object or not.

14.6.2 p-Adic variant of WCW and M-matrix

In zero energy ontology (ZEO) the unitary U-matrix having non-unitary M-matrices are rows and
allowing interpretation as ”complex” square roots of hermitian density matrices are in key role. The
unitary S-matrix appears as a ”phase factor” of the ”complex” square root and its modulus corresponds
to Hermitian square roots of density matrix. What is essential is that M-matrices are multi-local
functionals of 3-surfaces defining boundary components of connected space-time surface at the light-
like boundaries of causal diamond.

By strong form of holography the information about three-surfaces reduces to data given at partonic
2-surfaces (and their tangent space data). The 3-D boundary components of space-time surface at
the boundaries of CD define a coherent unit. The space-time surface takes the role of the path
connecting two disjoint 3-surfaces in zero energy ontology and WCW is more like a space formed
by multi-points (unions of several disjoint 3-surfaces). Hence the basic difficulty of p-adic manifold
theory is circumvented.

Although WCW spinor fields are formally purely classical, the analogs of correlation functions
as n-point functions in WCW make sense since the notion of 3-surface is generalized in the manner
described above. M-matrix elements serve as building bricks of WCW spinor fields and they are
are functionals about the data at partonic 2-surfaces at the boundaries of CD and could have an
interpretation as correlation function in WCW giving rise to ”path connectedness” in WCW in a
number theoretically universal manner.

14.6.3 A possible analog for the space of Berkovich norms in the approach
based on correlation functions

The idea about real preferred extremal as a coordinate chart for p-adic preferred extremal (and vice
versa) suggest that canonical identification with cutoff could define naturally p-adic preferred extremal
as a path connected space. It would also allow to map preferred real preferred extremals to their p-adic
counterparts for some preferred primes and at the same time algebraically continue various quantities
such as Kähler action. The hierarchies of pinary cutoffs and resolutions in phase degrees of freedom
define a hierarchy of resolutions and the resulting Archimedean norms defined by the the hierarchy of
canonical identifications define the analog of the norm space of Berkovich.
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Also the idea about correlation functions as counterpart for path connectedness suggests that the
ultrametric norm of K-valued field needed to defined Berkovich disk might be replaced with fermionic
correlation functions. Could the space of the Berkovich norms have as an analog in this more general
approach? The notion of finite measurement resolution seems to lead naturally to this analog also for
this option.

One can define the correlation functions in various resolutions. This means varying angle resolution
and length scale resolution. Angle resolution -or rather phase resolution in p-adic context - means a
hierarchy of algebraic extensions for p-adic number fields bringing in roots of unity exp(i2π/n) with
increasing values of n. Length scale resolution means increasing number of p-adic primes and CDs
with scales given by integer multiples of CP2 scale.

Fermionic Fock space defines a canonical example about hyper-finite factor of type II1 (HFF) [K87]
and the inclusions of HFFs having interpretation in terms of finite measurement resolution should be
involved in the construction. The space of Berkovich norms is replaced with the correlation functions
assignable to HFF having fractal structure containing infinite inclusion hierarchies of HFFs.

14.7 Appendix: Technical aspects of Bruhat-Tits tree and
Berkovich disk

In the following more technical aspects of Bruhat-Tits tree and Berkovich disk are discussed.

14.7.1 Why notions like Bruhat-Tits tree and Berkovich disk?

The constructions like Bruhat-Tits tree and Berkovich disk remain totally incomprehensible unless
one understands the underlying motivations. If I have understood correctly, the motivation behind
all these strange and complicated looking structures is the attempt to generalize the notion of real
manifold to p-adic context using topological approach based on p-adic coordinate maps to p-adic disks
which must be completed to Berkovich disks (”disk” could quite well be replaced with ”ball”).

In the real context manifolds have open balls of Rn defining real topology as building bricks. One
glues these balls together along their intersection suitably and obtains global differential structures
with various topologies and manifold structures. For instance, sphere can be obtained by gluing two
disks having overlap around equator.

In the p-adic context the topology is however totally disconnected meaning that single point is
the smallest open set. One cannot build anything coherent from points: they are disjoint or identical
unlike the open balls in the real case. More generally: two p-adic balls are either disjoint or either
one is contained by another one! No gluing by overlap is possible!

This difficulty has stimulated various theories and Bruhat-Tits tree relates to the theory of
Berkovich generalizing the notion of open ball to Berkovich disk [A219, A224] serving as a build-
ing brick of p-adic manifolds. The naive p-adic disk is contained as a dense subset to Berkovich
disk so that this is like replacing rationals with reals and in this manner gluing them to continuum.
Pragmatic physicist is not too enthusiastic about this kind of completions, especially so because the
original p-adic topology is replaced with a new one in the completion.

14.7.2 Technical aspects of Bruhat-Tits tree

The construction of Bruhat-Tits tree for P 1(Qp) and its generalizations to algebraic extensions can
be understood as follows.

1. One must be able to connect any pair of points of P 1(Qp) by and edge path. The basic building
brick of edge path is single edge connecting nearby points of P 1(Qp). One can start from a
simpler situtation first by considering Q2

p consisting of points (a, b). If one treats these points
just as pairs of p-adic numbers, one cannot do anything. One must represent these pairs as
geometric objects in order to define the notion of edge purely set theoretically. The Zp lattice
generated having the pair (a, b) as basis vectors is indeed an object labelled by the pair (a, b). If
one wants projective space one must assume that the lattices different by scaling of (a, b) by a
non-vanishing p-adic number are equivalent but this is not absolutely essential for the argument.
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Note: Also in TGD one has a space whose points are geometric objects. The geometric object
is now 3-surface and the space is the ”world of classical worlds” - the space formed by these
3-surfaces.

2. The projective space P 1(C) = S2 has a representation as a coset space PGl(2, C)/PGl(1, C)×
PGl(2, Z). This algebraic relation must generalize by replacing C with Qp. This means that
PGl(2, Qp) must act transitively in the set of the geometric objects associated with pairs (a, b).
The action on lattices is indeed well-defined and transitive and one can generate all lattices from
single lattice defined by the lattice characterized by (a, b) = (1, 1). One has a discrete analog
of homogeneous space in the sense that its all points are geometrically equivalent because of
the transitive action of Gl(2, Qp). This reduces the construction to single point, which is an
enormous simplification.

Note: Also the construction of the geometry of WCW [K17] in TGD relies on symmetric/homogeneous
space property (actually the property of being a union of infinite-dimensional symmetric spaces)
making the hopeless task managable by reducing the construction to that at single point of
WCW and forcing infinite-dimensional symmetries (symplectic invariance imherited from the
boundary of CD × CP2 and generalization of conformal invariance for light-like 3-surfaces and
light-like boundaries of CD). Already in the case of loop spaces [A60] Kähler geometry exists
only because of these infinite-dimensional symmetries and is also unique [A153]. One can say
that infinite-dimensional Kähler geometric existence is unique.

3. The really important idea is that the internal structure of the point pairs (a, b) allows to define
what the existence of ”edge” between two nearby points of P 1(Qp) could mean. The definition
is following. Two projective lattices [M ] and [N ] (projective equivalence classes of lattices) are
connected by an edge if there exist representatives M and N such that M ⊃ N ⊂ pM . Note
that this relation holds true only for some representatives, not all. It is also purely set-theoretic.

4. By reducing the situation to the simplest possible case M ↔ (a, b) = (1, 1) one can easily find
the lattices N connected to M. The calculations reduce to the finite field Fp since the inclusion
condition implies that M/pM ⊃ N/pM ⊃ pM/pM = {0} and M/pM is just F 2

p . The allowed
N correspond are in one-one correspondence with the Fp subspaces of F 2

p and there are p + 1
of them corresponding to space generated by Fp multiples of (a, 1), a = 0, ...p − 1 and (1, 0).
Therefore the point (a, b) = (1, 1) is connected to p+1 neighbours by single edge. By symmetric
space property this is true for all points of P 1(Qp). The conclusion is that edge paths correspond
to a regular tree with valence p+ 1.

5. P 1(Qp) is still totally disconnected in p-adic topology. The edge paths however provide P 1(Qp)
with a path-connected topology. The example of Berkovich disk would suggest that one must
add to P 1(Qp) something so that P 1(Qp) remains a dense subset of this larger structure. The
situation would be same as for rationals: rationals become a path connected continuum if one
adds all irrational numbers to obtain reals. Rationals define a dense subset of reals and numerics
uses only them. In particular, integration becomes possible when irrationals are added. It is
however not clear to me whether this kind of completion is needed.

One can wonder what must be added to the set of Zp lattices in Q2
p or to the set of their projective

equivalence classes to build the global differentiable structure. The answer perhaps comes from
the observation that the ends of Bruhat-Tits tree correspond to K-rationals expressible as ratios
of two K-integers - something that numerics can catch at least in real case. Could the completion
mean adding also the ends which are K-irrationals? If so then the situation would be very similar
to that in TGD inspired definition of p-adic manifolds.

6. Every pair of points in the completion P 1(Qp) is connected by an edge path consisting of some
minimal number nmin of edges and this edge path defines the analog of geodesic with length nmin.
This number is p-adic integer and could be infinite as a real integer for the completion of the p-
adic manifold to a path connected manifold. Here the canonical identification

∑
xnp

n → znp
−n

mapping p-adic integers to real numbers and playing a key role in p-adic mass calculations could
come into play and allow to obtain a real valued finite distance measure. Real distances have
continuous spectrum in the interval [0, p). The objection is that this definition is not consistent
with the idea of algebraic continuation of integrals from real context.

http://en.wikipedia.org/wiki/Loop_space
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This construction generalizes to algebraic extensions K of Qp and also to higher-dimensional
projective spaces and symmetric spaces. In particular, the construction of the p-adic counterpart of
CP2 becomes possible. Now one replaces Q2

p with Q3
p or K3 allowing the action of some discrete

subgroup of the isometry group SU(3) of CP2. Lattices in K3 replace the points of Q3
p and defines

the counterpart of Bruhat-Tits tree in exactly the same manner as for P 1(K).

Physically the highly interesting point is that only a discrete subgroup of CP2 can be represented
in the algebraic extension so that symmetry breaking to discrete subgroup is un-avoidable. In TGD
framework the interpretation is in terms of finite measurement resolution forcing discretization and
therefore also symmetry breaking. This symmetry breaking is quite different from that defined by
Higgs mechanism or symmetry breaking taking place for the solutions of field equations for a variational
principle characterized by the unbroken symmetry group.

14.7.3 The lattice construction of Bruhat-Tits tree does not work for Kn

but works for P n(K): something deep?

The naive expectation is that the construction of Bruhat-Tits tree should work also in the simplest
possible case that one can imagine: for p-adic numbers Qp themselves. The naive guess is that the
tree for p-adic numbers with norm bounded by pn the tree is just the p+1-valent tree with trunk and
representing all possible pinary expansions of these p-adic numbers. The lattice construction does not
however give this correspondence.

Zp lattices M in Qp are parameterized by non-vanishing elements a of Qp in this case. The
multiplication by p-adic integer n of unit norm does not affect a given lattice M a since one has
nka = k1a where n, k, k1 are p-adic integers. Therefore these lattices are not in one-one correspondence
with Qp but with powers pn: |q|p ≤ pn for a given lattice. Therefore the lattice construction fails. It
is essential that one considers projective space P 1(Q) instead of Qp. For Q2

p the construction however
seems to work.

Note: The condition M ⊃ N ⊃ pM for the existence of an edge between two lattices allows only
two solutions: the trivial solution N = M and the solution N = pM . The counterpart of Bruhat-Tits
tree is now 1-valent tree with edges labelled by powers of p.

Also in the case of Qnp the correspondence between lattices and points of Qnp is 1-to-many since
the multiplication by an element of Zp with unit norm does not affect the lattice. As a matter fact,
all elements of Qpn related by Sl(n,Qp) correspond to same lattice. Hence the replacement of points
with lattices must be restricted to the case of projective spaces.

Physicist might argue that the use of lattices is un-natural and quite too complicated from the
point of view of practical physics. I am not sure: it might be that the lattices have some nice physical
interpretation and perhaps the outcome - the tree - is more important than the lattices used to achieve
it. The fact is that p-adic projective spaces have this kind of ”skeleton”, and one might well argue
that there is no need for the ugly looking completion to a bigger space with path connected and
non-ultrametric topology.

In TGD framework the p-adic variants of S2 and CP2 are central and the existence of the ”skeleton”
might be of fundamental significance from the point of view of p-adic TGD and number theoretical
universality. Note that S2 emerges naturally for the light-cone boundary in the case of M4 (δM4

+ =
S2×R+, where R+ represents light-like radial direction). For Mn, n 6= 4, one obtains Sk=n−2, k 6= 2,
and this space is not projective space. Also in twistor Grassmannian approach to scattering amplitudes
utilizing residue integrals in projective spaces Gl(n,C)/Gl(n−m,C)×Gl(m,C) this property for the
p-adic counterparts of these spaces might be of primary importance.

14.7.4 Some technicalities about Berkovich disk

Berkovich disk is a p-adic generalization of open ball and meant to serve as a building brick of p-adic
manifolds in the same manner as open ball is the building brick of real manifolds. The first guess is
that ordinary open ball for p-adic numbers defined by |x−a| < r could work. As a matter fact, p-adic
distance is quantized: |x − a| = pn holds true. The basic outcome of total disconnectedness of the
ultrametic topology is that two p-adic balls are either disjoint of the other one is contained by another
one. One cannot build manifolds by taking p-adic balls and allowing them to partially overlap to get
global differentiable structures and various topologies.
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The construction of Berkovich disk - call it B - is motivated by the need to generalize the standard
approach to the construction of real manifolds. I do not know whether it is equivalent with the
approach based on Bruhat-Tits tree. The explicit realization of Berkovich disk as a completion of
ultrametric unit disk is something which one cannot guess easily but when one has understood that
the basic premises are satisfied for it, it begins to look less artificial.

I try to explain this construction described briefly in the lecture notes Buildings and Berkovich
spaces [A224] by Annette Werner. I neglect all technical issues (I do not even understand them
properly!). The basic idea is to imbed ultrametric unit disk as a dense subset to some space possessing
path connected topology. The challenge is to guess what this space is.

1. One starts from p-adic unit disk D: |x|p ≤ 1, which one wants to complete to Berkovich disk B
containing D as a dense subset and possessing path connected topology. One could also replace
Qp with Qnp or Kn, where K is any algebraic extension Qp. In the explanation provided in
the lecture notes one considers for simplicity K, which is algebraically complete: this requires
an algebraic extension allowing containing all algebraic numbers. This is unrealistic but the
construction is possible also for general K but involves more technicalities.

2. One introduces the space of formal K-valued power series f(z) =
∑
fnz

n in D(0, 1) ≡ D. One
can define for the an ultrametric norm as ||f || = Max{|fn|K}. This is actually the supremum
of p-adic norm |f(x)|K in D(0, 1). The p-adically largest coefficient fn defines the norm known
as Gauss norm. This norm is multiplicative. For constant functions, which are in one-one
correspondence with points of K, this norm reduces to K-norm.

3. One considers also more general norms. In fact, the space of norms with attributes ultrametric,
bounded, and multiplicative and reducing for constant functions to K-norm ||K defines the
Berkovich unit disk B, which turns out to be a completion of the unit disk D containing D as
a dense subset. Furthermore, B turns out to have have path connected topology as required
making possible global differentiable structure and even hopes about p-adic integration.

4. Berkovich manages to construct these norms explicitly. The simplest norms of this kind are de-
fined by points a of D. The norm is simply |f(a)|K . These norms are in one-one correspondence
with points of D and should define a dense subset of the entire space of norms. The points of
K are therefore mapped to subspace of the space of norms: this is absolutely essential.

5. There are also other multiplicative, ultrametric norms reducing to ||K for constant functions in
D. They are defined in terms of disks |x− a|K ≤ r ≤ 1. The Gauss norm corresponds to r = 1
and the norm described in previous item to r = 0. These norms are analogous to irrationals
numbers in the case of completion of rationals to reals. The Berkovich disk B contains points
of four different types.

• Points of type 1: |fa| = |f(a)|K (imbedding of D to Berkovich disk B.

• Points of type 2: |f |a,r = sup|f(x)|K for D(a, r) ⊂ D(0, 1) and r ∈ |K ∗ |, the value
spectrum of K-norms (powers of p for Qp). The Gauss norm corresponds to r = 1.

• Points of type 3: |f |a,r = sup|f(x)|K for D(a, r) ⊂ D(0, 1) and r /∈ |K ∗ |. There is a
delicate difference between types 2 and 3 which I fail to understand.

• Points of type 4: |f |a,r = limn→∞|f |an,rn for a nested sequence D(a1, r1) ⊃ D(a2, r2).... of
closed disks in D(0, 1).

6. The topology in Berkovich disk is defined by a pointwise convergence of the norm in the space
of functions f in D. This topology makes Berkovich disk path connected.

The above construction is rather complicated although and also assumes algebraic completeness.
For finite-dimensional algebraic extensions the construction is expected to be even more complicated.
I do not understand the possible connection between Bruhat-Tits tree and Berkovich construction:
does Bruhat-Tits tree follow from Berkovich construction or not?

http://www.uni-frankfurt.de/fb/fb12/mathematik/ag/personen/werner/talks/dmvmuench10.pdf
http://www.uni-frankfurt.de/fb/fb12/mathematik/ag/personen/werner/talks/dmvmuench10.pdf
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14.7.5 Could the construction of Berkovich disk have a physical meaning?

For the physicist the obvious question is whether the function space associated with the K-disk D
could have some some physical interpretation? And what about the interpretation of the space of
bounded multiplicative ultrametric norms for this function space? Could these norms have some
physical interpretation?

Consider first basic criticism what might be represented by a physicist.

1. The ultrametric multiplicative norms in the function space carry extremely scarce information
about the functions. Just the norm of the value of the function at single point. If one wants
information in several points on must have a manifold consisting of large minimal number of
Berkovich disks. An alternative manner to get information about the function space is to combine
the information about all norms.

2. Physicists could also wonder what these K-valued functions are physically. Are they physical
fields perhaps? If so, why not consider p-adic variants of correlation functions instead of p-adic
norms scalars formed from these fields at single point. This forces however to ask whether the
non-vanishing of these physical correlation functions for these fields could code for the existence
of ”connections” between points of the p-adic manifold so that there would be no need for the
completion to Berkovich disk after all. Could the solution of the problem be achieved by bringing
quantum physics a part of the definition of the manifold structure.

It seems that in TGD framework there is no natural counterpart for the K-valued formal power
series and their norms. One must perform a stronger generalization and this leads to the use of
canonical identification mapping p-adic coordinate variables to their Archimedean norms defined
by canonical identification and serving as real coordinates. Another, very speculative approach
would be based on correlation functions of fermion fields as a possible manner to code the
physical counterpart of path connectedness.
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Chapter 15

Category Theory, Quantum TGD,
and TGD Inspired Theory of
Consciousness

15.1 Introduction

Goro Kato has proposed an ontology of consciousness relying on category theory [A182, A183] .
Physicist friendly summary of the basic concepts of category theory can be found in [A175] ) whereas
the books [A196, A212] provide more mathematically oriented representations. Category theory has
been proposed as a new approach to the deep problems of modern physics, in particular quantization of
General Relativity. To mention only one example, C. J. Isham [A175] has proposed that topos theory
could provide a new approach to quantum gravity in which space-time points would be replaced by
regions of space-time and that category theory could geometrize and dynamicize even logic by replacing
the standard Boolean logic with a dynamical logic dictated by the structure of the fundamental
category purely geometrically [A162] .

Although I am an innocent novice in this field and know nothing about the horrible technicalities
of the field, I have a strong gut feeling that category theory might provide the desired systematic
approach to quantum TGD proper, the general theory of consciousness, and the theory of cognitive
representations [K56] .

15.1.1 Category theory as a purely technical tool

Category theory could help to disentangle the enormous technical complexities of the quantum TGD
and to organize the existing bundle of ideas into a coherent conceptual framework. The construction
of the geometry of the configuration space (”world of classical worlds”) [K8, K7, K36, K17] , of
classical configuration space spinor fields [K15] , and of S-matrix [K19] using a generalization of the
quantum holography principle are especially natural applications. Category theory might also help
in formulating the new TGD inspired view about number system as a structure obtained by ”gluing
together” real and p-adic number fields and TGD as a quantum theory based on this generalized
notion of number [K8, K7, K77, K78, K76] .

15.1.2 Category theory based formulation of the ontology of TGD Uni-
verse

It is interesting to find whether also the ontology of quantum TGD and TGD inspired theory of
consciousness based on the trinity of geometric, objective and subjective existences [K83] could be
expressed elegantly using the language of the category theory.

There are indeed natural and non-trivial categories involved with many-sheeted space-time and
the geometry of the configuration space (”the world of classical worlds”); with configuration space
spinor fields; and with the notions of quantum jump, self and self hierarchy. Functors between these
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categories could express more precisely the quantum classical correspondences and self-referentiality
of quantum states allowing them to express information about quantum jump sequence.

i) Self hierarchy has a structure of category and corresponds functorially to the hierarchical struc-
ture of the many-sheeted space-time.
ii) Quantum jump sequence has a structure of category and corresponds functorially to the category
formed by a sequence of maximally deterministic regions of space-time sheet.
iii) Even the quantum jump could have space-time correlates made possible by the generalization of
the Boolean logic to what might be space-time correlate of quantum logic and allowing to identify
space-time correlate for the notion of quantum superposition.
iv) The category of light cones with inclusion as an arrow defining time ordering appears naturally in
the construction of the configuration space geometry and realizes the cosmologies within cosmologies
scenario. In particular, the notion of the arrow of psychological time finds a nice formulation unifying
earlier two different explanations.

15.1.3 Other applications

One can imagine also other applications.

1. Categories posses inherent logic [A162] based on the notion of sieves relying on the notion of
presheaf which generalizes Boolean logic based on inclusion. In TGD framework inclusion is
naturally replaced by topological condensation and this leads to a two-valued logic realizing
space-time correlate of quantum logic based on the notions of quantum sieve and quantum
topos.

This suggests the possibility to geometrize the logic of both geometric, objective and subjective
existences and perhaps understand why ordinary consciousness experiences the world through
Boolean logic and Zen consciousness experiences universe through logic in which the law of
excluded middle is not true. Interestingly, the p-adic logic of cognition is naturally 2-valued
whereas the real number based logic of sensory experience allows excluded middle (is the person
at the door in or out, in and out, or neither in nor out?). The quantum logic naturally associated
with spinors (in the ”world of classical worlds”) is consistent with the logic based on quantum
sieves.

2. Simple Boolean logic of right and wrong does not seem to be ideal for understanding moral rules.
Same applies to the beauty-ugly logic of aesthetic experience. The logic based on quantum sieves
would perhaps provide a more flexible framework.

3. Cognition is categorizing and category theory suggests itself as a tool for understanding cognition
and self hierarchies and the abstraction processes involved with conscious experience. Here the
new elements associated with the ontology of space-time due to the generalization of number
concept would be central. Category theory could be also helpful in the modelling of conscious
communications, in particular the telepathic communications based on sharing of mental images
involving the same mechanism which makes possible space-time correlates of quantum logic and
quantum superposition.

15.2 What categories are?

In the following the basic notions of category theory are introduced and the notion of presheaf and
category induced logic are discussed.

15.2.1 Basic concepts

Categories [A196, A212, A175] are roughly collections of objects A, B, C... and morphisms f(A→ B)
between objects A and B such that decomposition of two morphisms is always defined. Identity
morphisms map objects to objects. Topological/linear spaces form a category with continuous/linear
maps acting as morphisms. Also algebraic structures of a given type form a category: morphisms
are now homomorphisms. Practically any collection of mathematical structures can be regarded as a



15.2. What categories are? 745

category. Morphisms can can be very general: for instance, partial ordering a ≤ b can define morphism
f(A→ B).

Functors between categories map objects to objects and morphisms to morphisms so that a product
of morphisms is mapped to the product of the images and identity morphism is mapped to identity
morphism. Group representation is example of this kind of a functor: now group action in group is
mapped to a linear action at the level of the representations. Commuting square is an easy visual
manner to understand the basic properties of a functor, see Fig. 15.2.1.

The product C = AB for objects of categories is defined by the requirement that there are
projection morphisms πA and πB from C to A and B and that for any object D and pair of morphisms
f(D → A) and g(D → B) there exist morphism h(D → C) such that one has f = πAh and g = πBh.
Graphically (see Fig. 15.2.1) this corresponds to a square diagram in which pairs A,B and C,D
correspond to the pairs formed by opposite vertices of the square and arrows DA and DB correspond
to morphisms f and g, arrows CA and CB to the morphisms πA and πB and the arrow h to the
diagonal DC.

Examples of product categories are Cartesian products of topological and linear spaces, of dif-
ferentiable manifolds, groups, etc. Also tensor products of linear spaces satisfies these axioms. One
can define also more advanced concepts such as limits and inverse limits. Also the notions of sheafs,
presheafs, and topos are important.

/Users/mattipitkanen/Desktop/tgd/figuresold/commute.png

Figure 15.1: Commuting diagram associated with the definition of a) functor, b) product of objects
of category, c) presheaf K as sub-object of presheaf X (”two pages of book”.)
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15.2.2 Presheaf as a generalization for the notion of set

Presheafs can be regarded as a generalization for the notion of set. Presheaf is a functor X that assigns
to any object of a category C an object in the category Set (category of sets) and maps morphisms
to morphisms (maps between sets for C). In order to have a category of presheafs, also morphisms
between presheafs are needed. These morphisms are called natural transformations N : X(A)→ Y (A)
between the images X(A) and Y (A) of object A of C. They are assumed to obey the commutativity
property N(B)X(f) = Y (f)N(A) which is best visualized as a commutative square diagram. Set
theoretic inclusion i : X(A) ⊂ Y (A) is obviously a natural transformation.

An easy manner to understand and remember this definition is commuting diagram consisting of
two pages of book with arrows of natural transformation connecting the corners of the pages: see Fig.
15.2.1.

As noticed, presheafs are generalizations of sets and a generalization for the notion of subset
to a sub-object of presheaf is needed and this leads to the notion of topos [A162, A175] . In the
classical set theory a subset of given sets X can be characterized by a mapping from set X to the set
Ω = {true, false} of Boolean statements. Ω itself belongs to the category C. This idea generalizes
to sub-objects whose objects are collections of sets: Ω is only replaced with its Cartesian power. It
can be shown that in the case of presheafs associated with category C the sub-object classifier Ω can
be replaced with a more general algebra, so called Heyting algebra [A162, A175] possessing the same
basic operations as Boolean algebra (and, or, implication arrow, and negation) but is not in general
equivalent with any Boolean algebra. What is important is that this generalized logic is inherent to
the category C so that many-valued logic ceases to be an ad hoc construct in category theory.

In the theory of presheafs sub-object classifier Ω, which belongs to Set, is defined as a particular
presheaf. Ω is defined by the structure of category C itself so that one has a geometrization of the
notion of logic implied by the properties of category. The notion of sieve is essential here. A sieve for
an object A of category C is defined as a collection of arrows f(A → ...) with the property that if
f(A→ B) is an arrow in sieve and if g(B → C) is any arrow then gf(A→ C) belongs to sieve.

In the case that morphism corresponds to a set theoretic inclusion the sieve is just either empty
set or the set of all sets of category containing set A so that there are only two sieves corresponding
to Boolean logic. In the case of a poset (partially ordered set) sieves are sets for which all elements
are larger than some element.

15.2.3 Generalized logic defined by category

The presheaf Ω : C→ Set defining sub-object classifier and a generalization of Boolean logic is defined
as the map assigning to a given object A the set of all sieves on A. The generalization of maps X → Ω
defining subsets is based on the the notion of sub-object K. K is sub-object of presheaf X in the
category of presheaves if there exist natural transformation i : K → X such that for each A one has
K(A) ⊂ X(A) (so that sub-object property is reduced to subset property).

The generalization of the map X → Ω defining subset is achieved as follows. Let K be a sub-object
of X. Then there is an associated characteristic arrow χK : X → Ω generalizing the characteristic
Boolean valued map defining subset, whose components χKA : X(A)→ Ω(A) in C is defined as

χKA (x) = {f(A→ B)|X(f)(x) ∈ K(B)} .

By using the diagrammatic representation of Fig. 15.2.1 for the natural transformation i defining sub-
object, it is not difficult to see that by the basic properties of the presheaf K χKA (x) is a sieve. When
morphisms f are inclusions in category Set, only two sheaves corresponding to all sets containing X
and empty sheaf result. Thus binary valued maps are replaced with sieve-valued maps and sieves
take the role of possible truth values. What is also new that truths and logic are in principle context
dependent since each object A of C serves as a context and defines its own collection of sieves.

The generalization for the notion of point of set X exists also and corresponds to a selection of
single element γA in the set X(A) for each A object of C. This selection must be consistent with the
action of morphisms f(A→ B) in the sense that the matching condition X(f)(γA) = γB is satisfied.
It can happen that category of presheaves has no points at all since the matching condition need not
be satisfied globally.

It turns out that TGD based notion of subsystem leads naturally to what might be called quantal
versions of topos, presheaves, sieves and logic.
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15.3 Category theory and consciousness

Category theory is basically about relations between objects, rather than objects themselves. Category
theory is not about Platonic ideas, only about relations between them. This suggests a possible
connection with TGD and TGD inspired theory of consciousness where the sequences quantum jumps
between quantum histories defining selves have a role similar to morphisms and quantum states
themselves are like Platonic ideas not conscious as such. Also the fact that it is not possible to write
any formula for the contents of conscious experience although one can say a lot about its general
structure bears a striking similarity to the situation in category theory.

15.3.1 The ontology of TGD is tripartistic

The ontology of TGD involves a trinity of existences.

1. Geometric existence or existence in the sense of classical physics. Objects are 3-surfaces in
8-D imbedding space, matter as res extensa. Quantum gravitational holography assigns to a
3-surface X3 serving as a causal determinant space-time sheet X4(X3) defining the classical
physics associated with X3 as a generalization of Bohr orbit. X3 can be seen as a 3-D hologram
representing the information about this 4-D space-time sheet

The geometry of configuration space of 3-surfaces, ”the world of classical worlds” corresponds
to a higher level geometric existence serving as the fixed arena for the quantum dynamics. The
basic vision is that the existence requirement for Kähler geometry in the infinite-dimensional
context fixes the infinite-dimensional geometric existence uniquely.

2. Quantum states defined as classical spinor fields in the world of classical worlds, and provide the
quantum descriptions of possible physical realities that the probably never-reachable ultimate
theory gives as solutions of field equations. The solutions are the objective realities in the sense
of quantum theory: theory and theory about world are one and the same thing: there is no
separate ’reality’ behind the solutions of the field equations.

3. Subjective existence corresponds to quantum jumps between the quantum states identified as
moment of consciousness. Just as quantum numbers characterize physical states, the increments
of quantum numbers in quantum jump are natural candidates for qualia, and this leads to a
concrete quantum model for sensory qualia and sensory perception [K32] .

Quantum jump has a complex anatomy: counterpart for the unitary U process of Penrose followed
by a counterpart of the state function reduction followed by a counterpart of the state preparation
process yielding a classical state in Boolean and geometrical sense. State function preparation and
reduction are nondeterministic processes and preparation is analogous to analysis since it decomposes
at each step the already existing unentangled subsystems to unentangled subsystems if possible.

Quantum jump is the elementary particle of consciousness and selves are like atoms, molecules,...
built from these. Self is by definition a system able to not develop bound state quantum entanglement
with environment and loses consciousness when this occurs. Selves form a hierarchy very much
analogous to the hierarchy of states formed from elementary particles. Self experiences its sub-selves
as mental images. Selves form objects of a category in which arrows connect sub-selves to selves.

Macro-temporal and macroscopic quantum coherence corresponds to the formation of bound states
[K39] : in this process state function reduction and preparation effective cease in appropriate degrees of
freedom. In TGD framework one can assign to bound state entanglement negative entropy identifiable
as a genuine measure for information [K47] . The bound state entanglement stable against state
function preparation would thus serve as a correlate for the experience of understanding, and one
could compare quantum jump to a brainstorm followed by an analysis leading to an experience of
understanding.

Quantum classical correspondence relates the three levels of existence to each other. It states that
both quantum states and quantum jump sequences have space-time correlates. This is made possible
by p-adic and classical non-determinism, which are characteristic features of TGD space-time. p-Adic
non-determinism makes it possible to map quantum jump sequences to p-adic space-time sheets: this
gives rise to cognitive representations. The non-determinism of Kähler action makes possible symbolic
sensory representations of quantum jump sequences of which language is the basic example.
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The natural identification of the correlates of quantum states is as maximal deterministic regions
of space-time sheet. The final states of quantum jump define a sequence of quantum states so that
quantum jump sequence (contents of consciousness) has the decomposition of space-time sheet to
maximal deterministic regions as a space-time correlate. Thus space-time surface can be said to
define a symbolic (and unfaithful) representation for the contents of consciousness. Since configuration
space spinor field is defined in the world of classical worlds, this means that quantum states carry
information about quantum jump sequence and self reference becomes possible. System can become
conscious about what it was (not ”is”) conscious of.

The possibility to represent quantum jump sequences at space-time level is what makes possible
practical mathematics, cognition, and symbolic representations. The generation of these representa-
tions in turn means generation of reflective levels of consciousness and thus explains self-referential
nature of consciousness. This feedback makes also possible the evolution of mathematical conscious-
ness: mathematician without paper and pencil (or computer keyboard!) cannot do very much.

Category theory might help to formulate more precisely the quantum classical correspondence
and self referentiality as structure respecting functors from the categories associated with subjective
existence to the categories of quantum and classical existence and from the category of quantum
existence to that of classical existence.

15.3.2 The new ontology of space-time

Classical worlds are space-time surfaces and have much richer ontology than the space-time of general
relativity. Space-time is many-sheeted possessing a hierarchy of parallel space-time sheets topologically
condensed at larger space-time sheets and identifiable as geometric correlates for physical objects in
various length scales (see Fig. 15.3.3). Topological field quantization allows to assign to any material
system ”field body”: this has important implications for quantum biology in TGD Universe [K83] .

TGD leads to a generalization of the notion of real numbers obtained by gluing real number field
and p-adic number fields Rp, labelled by primes p = 2, 3, 5, ... and their extensions together along
common rationals (very roughly) to form a ”book like” structure [K8, K7, K77, K76, K83] . p-
Adic space-time sheets are interpreted as space-time correlates of cognition and intentionality. The
transformation of intention to action corresponds to a quantum jump replacing p-adic space-time
sheet with a real one.

The p-adic notion of distance differs dramatically from its real counterpart. Two rationals in-
finitesimally near p-adically are infinitely distance in real sense. This means that p-adic space-time
sheets have literally infinite size in the real sense and cognition and intentionality cannot be localized
in brain. Biological body serves only as a sensory receptor and motor instrument utilizing symbolic
representations built by brain.

The notion of infinite numbers (primes, rationals, reals, complex numbers and also quaternions
and [A69] [K76] inspired by TGD inspired theory of consciousness leads to a further generalization.
One can form ratios of infinite rationals to get ordinary rational numbers in the real sense and
division by its inverse gives numbers which are units in the real sense but not in various p-adic senses
(p = 2, 3, 5, ...).

This means that each space-time point is infinitely structured (note also that configuration space
points are 3-surfaces and infinitely structure too!) but this structure is not seen at the level of real
physics. The infinite hierarchy of infinite primes implies that single space-time point is in principle
able to represent the physical quantum state of the entire universe in its structure cognitively. There
are several interpretations: space-time points are algebraic holograms realizing Brahman=Atman
identity; the Platonia of mathematical ideas resides at every space-time point, space-time points are
the monads of Leibniz or the nodes of Indra’s web...

One might hope that category theory could be of help in formulating more precisely this intuitive
view about space-time which generalizes also to the other two levels of ontology.

15.3.3 The new notion of sub-system and notions of quantum presheaf and
”quantum logic” of sub-systems

TGD based notion subsystem differs from the standard one already at the classical level [K47] . The
relationship of having wormhole contacts to a larger space-time sheet would correspond to the basic
morphism and would correspond to inclusion in category Set. Note that same space-time sheet can
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have wormhole contacts to several larger space-time sheets (see Fig. 15.3.3). The wormhole contacts
are surrounded by light like 3-surfaces somewhat analogous to black hole horizons. They act as
causal determinants and define 3-dimensional quantum gravitational holograms. Also other causal
determinants are possible but light-likeness seems to a common feature of them.

/Users/mattipitkanen/Desktop/tgd/figuresold/contacts.png

Figure 15.2: a) Wormhole contacts connect interiors space-time parallel space-time sheets (at a dis-
tance of about 104 Planck lengths) and join along boundaries bonds of possibly macroscopic size
connect boundaries of space-time sheets. b) Wormhole contacts connecting space-time sheet to sev-
eral space-time sheets could represent space-time correlate of quantum superposition. c) Space-time
correlate for bound state entanglement making possible sharing of mental images.

Subsystem does not correspond to a mere subset geometrically as in standard physics and the
functors mapping quantum level to space-time level are not maps to the category of sets but to that
of space-time sheets, and thus pre-sheafs are replaced with what might be called quantum pre-sheafs.
Boolean algebra and also Heyting algebra are replaced with their quantum variants.

1. The set theoretic inclusion ⊂ in the definition of Heyting algebra is replaced by the arrow A→ B
representing a sequence of topological condensations connecting the space-time sheet A to B.
The arrow from A to B is possible only if A is smaller than B, more precisely: if the p-adic
prime p(A) characterizing A is larger (or equal) than p(B). The relation ∈ of being a point of
the space-time sheet A is not utilized at all.

2. Sieves at A are defined, not in terms of arrow sequences f(A → B), but as arrow sequences
f(B → A): the wormhole contact roads leading from sheet B down to A. If there is a road from
B to A then all roads to C → B combine with roads B → A to give roads C → A and thus
define elements of the sieve.
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3. X is quantum presheaf if it is a functor from the a category C to the category of space-time
sheets. A sub-object of X is presheaf K such that for every A there is a road from K(A) to
X(A).

4. Let K be a sub-object of the pre-sheaf X. The elements of the corresponding quantum Heyting
algebra at A are defined as the collections of roads f(B,A) leading via K(A) to K(X). This
collection is either empty or contains all the roads via K(A) to K(X). A two-valued logic results
trivially.

5. The difference with respect to Boolean logic comes from the fact space-time sheet can condense
simultaneously to several disjoint space-time sheets whereas a given set cannot be a subset of
two disjoint sets (see Fig. 15.3.3).

One can ask whether this property of ”quantum logic” allows a space-time correlate even for
the superposition of orthogonal quantum states as simultaneous topological condensation at several
space-time sheets. This interpretation would be consistent with the hypothesis that bound state
entanglement has the formation of join along boundaries bonds (JABs) as a space-time correlate.
Topologically condensed JAB-connected space-time sheets could indeed condense simultaneously on
several space-time sheets. It however seems that this interpretation is not consistent with quantum
superpositions.

The new notion of sub-system at space-time level forces to modify the notion of sub-system at
quantum level. The subsystem defined by a smaller space-time sheet is not describable as a simple
tensor factor but the relation is given by the morphism representing the property of being sub-
system. In the chapter ”Was von Neumann Right After All” [K87] a mathematical formulation for
this relationship is proposed in terms of so called Jones inclusions of von Neumann algebras of type
II1, which seem to provide the proper mathematical framework for quantum TGD. Wormhole contacts
would represent space-time correlate for inclusion as a generalized tensor factor rather than inclusion
as a direct summand as in quantum superposition.

Space-time correlate for ordinary quantum logic

The proposed ”quantum logic” for subsystems based on topological condensation by the formation of
wormhole contacts does not seem to correspond to the formation of quantum superpositions and the
usual quantum logic. The most non-intuitive aspect of quantum logic is represented by the quantum
superposition of mutually exclusive options represented by orthogonal quantum states.

In the double-slit experiment this corresponds to the possibility of single photon to travel along the
paths going through the two slits simultaneously and to interfere on the screen. In TGD framework
this would correspond quite literally to the decay of the 3-surface describing photon to two pieces
which travel through the slits and fuse together before the screen. More generally, the space-time
correlate for this aspect of quantum logic would be splitting of 3-surface to several pieces. In string
models where the splitting of string means creation of 2-particle state (2-photon state in the case
of double slit experiment), which at state space-level corresponds to a tensor product product state.
Therefore the ontologies of string models and TGD differ in a profound manner.

In quantum measurement the projection to an eigen state of observables means that a quantum
jump in which all branches except one become vacuum extremal occurs. What is also new that by the
classical non-determinism space-time surface can also represent a quantum jump sequence. For in-
stance, the states before and after the reduction correspond to space-time regions. This picture allows
to understand the recent findings of Afshar [K83] , [D2] , which challenge Copenhagen interpretation.

15.3.4 Does quantum jump allow space-time description?

Quantum jump consists of a unitary process, state function reduction and state preparation. The
geometrical realization of ”quantum logic” suggests that simultaneous topological condensation to
several space-time sheets could be a space-time correlate for the maximally entangled superposition
of quantum states created in the U -process. Quantal multi-verse states would functorially correspond
to classical multi-verse states: something which obviously came in my mind for long time ago but
seemed stupid. State function reduction would lead to the splitting of the wormhole contacts and as a
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result maximally reduced state would result: one cannot however exclude bound state entanglement
due to interactions mediated by wormhole contacts.

State function preparation would correspond to a sequence of splittings for join along boundaries
bonds serving as prerequisites for entanglement in the degrees of freedom associated with second
quantized induced spinor fields at space-time sheets. An equivalent process is the decay of 3-sheet to
two pieces interpretable as de-coherence. For instance, the splitting of photon beam in the modified
double slit experiment by Afshar [K83] , [D2] , which challenges the existing interpretations of quantum
theory and provides support for TGD based theory of quantum measurement relying on classical non-
determinism, would correspond to this process.

State preparation yields states in which no dissipation occurs. The space-time correlates are
asymptotic solutions of field equations for which classical counterpart of dissipation identified as
Lorentz 4-force vanishes: this hypothesis indeed leads to very general solutions of field equations [K10]
. The non-determinism at quantum level would correspond to the non-determinism for the evolution
of induced spinor fields at space-time level.

15.3.5 Brief summary of the basic categories relating to the self hierarchy

Category theory suggests the identification of space-time sheets as basic objects of the space-time
category. Space-time sheets are natural correlates for selves and the arrow describing sub-self property
is mapped to the arrow of being topologically condensed space-time sheet. Category theoretically this
would mean the existence of a functor from the the category defined by self hierarchy to the hierarchy
of space-time sheets.

The highly non-trivial implication of the new notion of sub-system is that same sub-self can be
sub-self of several selves: mental images can be shared so that consciousness would not be so private
as usually believed. Sharing involves also fusion of mental images. Sub-selves of different selves form
a bound state and fuse to single sub-self giving rise to stereo consciousness (fusion of right and left
visual fields is the basic example).

The formation of join along boundaries bonds connecting the boundaries of a sub-self space-time
sheets is the space-time correlate for this process. The ability of subsystems to entangle when systems
remain un-entangled is completely new and due to the new notion of subsystem (subsystem is separated
by elementary particle horizon from system). Sharing of mental images and the possibility of time-like
entanglement also possible telepathic quantum communications: for instance, TGD based model of
episodal memories relies on this mechanism [K83] .

The hierarchy of space-time sheets functorially replicates itself at the level of quantum states and of
subjective existence. Quantum states have a hierarchical structure corresponding to the decomposition
of space-time to space-time sheets. The sequence of quantum jumps decomposes into parallel sequences
of quantum jumps occurring at different parallel space-time sheets characterized by p-adic length
scales. The possibility of quantum parallel dissipation (quarks inside hadrons) is one important
implication: although dissipation and de-coherence occur in short length and time scales, quantum
coherence is preserved in longer length and time scales. This is of utmost importance for understanding
how wet and hot brain can be macroscopic quantum system [K39] .

The self hierarchy has also counterpart at the level of Platonia made possible by infinitely struc-
tured points of space-time. The construction of infinite primes is analogous to a repeated second
quantization of an arithmetic quantum field theory such that the many particle states of previous level
representing infinite primes at that level become elementary particles at the next level of construc-
tion. This hierarchy reflect itself as the hierarchy of units and as a hierarchy of levels of mathematical
consciousness.

The steps in quantum jump, or equivalently the sequence of final states of individual steps would
define the objects of the category associated with the quantum jump. The first step would be the
formation of a larger number of wormhole contacts during U process followed by their splitting to
minimum in the state function reduction. Formation and splitting of contacts would define arrows
now. During the state preparation each decay to separate 3-sheets would define arrow from connecting
initial state to both final states.
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15.3.6 The category of light cones, the construction of the configuration
space geometry, and the problem of psychological time

Light-like 7-surfaces of imbedding space are central in the construction of the geometry of the world
of classical worlds. The original hypothesis was that space-times are 4-surfaces of H = M4

+ × CP2,
where M4

+ is the future light cone of Minkowski space with the moment of big bang identified as its
boundary δH = δM4

+ × CP2: ”the boundary of light-cone”. The naive quantum holography would
suggest that by classical determinism everything reduces to the light cone boundary. The classical
non-determinism of Kähler action forces to give up this naive picture which also spoils the full Poincare
invariance.

The new view about energy and time forces to conclude that space-time surfaces approach vacua
at the boundary of the future light cone. The world of classical worlds, call it CH, would consist of
classical universes having a vanishing inertial 4-momentum and other conserved quantities and being
created from vacuum: big bang would be replaced with a ”silent whisper amplified to a big bang”.
The net gravitational mass density can be non-vanishing since gravitational momentum is difference
of inertial momenta of positive and negative energy matter: Einstein’s Equivalence Principle is exact
truth only at the limit when the interaction between positive and negative energy matter can be
neglected [K71] .

Poincare invariant theory results if one replaces CH with the union of its copies CH(a) associated
with the light cones M4

+(a) with a specifying the position of the dip of M4
+(a) in M4. Also past

directed light-cones M4
−(a) are allowed. The unions and intersections of the light cones with inclusion

as a basic arrow would form category analogous to the category Set with inclusion defining the arrow
of time. This category formalizes the ideas that cosmology has a fractal Russian doll like structure,
that the cosmologies inside cosmologies are singularity free, and that cosmology is analogous to an
organic evolution and organic evolution to a mini cosmology [K71] .

The view also unifies the proposed two explanations for the arrow of psychological time [K83] .

1. The mind like space-time sheets representing conscious self drift quantum jump by quantum
jump towards geometric future whereas the matter like space-time sheets remain stationary.
The self of the organism presumably consisting mostly of topological field quanta, would be
like a passenger in a moving train seeing the changing landscape. The organism would be a
mini cosmology drifting quantum jump to the geometric future. Also selves living in the reverse
direction of time are possible.

2. Psychological time corresponds to a phase transition front in which intentions represented by
p-adic space-time sheets transform to actions represented by real space-time sheets moving to
the direction of geometric future. The motion would be due to the drift of M4

+(a). The very
fact that the mini cosmology is created from vacuum, implies that space-time sheets of both
negative and positive field energy are abundantly generated as realizations of intentions. The
intentional resources are richest near the boundary of M4

+(a) and depleted during the ageing with
respect to subjective time as asymptotic self-organization patterns are reached. Interestingly,
mini cosmology can be seen as a fractally scaled up variant of quantum jump. The realization
of intentions as negative energy signals (phase conjugate light) sent to the geometric past and
inducing a positive energy response (say neural activity) is consistent with the TGD based
models for motor action and long term memory [K83] .

15.4 More precise characterization of the basic categories and
possible applications

In the following the categories associated with self and quantum jump are discussed in more precise
manner and applications to communications and cognition are considered.

15.4.1 Intuitive picture about the category formed by the geometric cor-
relates of selves

Space-time surface X4(X3) decomposes into regions obeying either real or p-adic topology and each
region of this kind corresponds to an unentangled subsystem or self lasting at least one quantum jump.
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By the localization in the zero modes these decompositions are equivalent for all 3-surfaces X3 in the
quantum superposition defined by the prepared configuration space spinor fields resulting in quantum
jumps. There is a hierarchy of selves since selves can contain sub-selves. The entire space-time surface
X4(X3) represents the highest level of the self hierarchy.

This structure defines in a natural manner a category. Objects are all possible sub-selves contained
in the self hierarchy: sub-self is set consisting of lower level sub-selves, which in turn have a further
decomposition to sub-selves, etc... The naive expectation is that geometrically sub-self belongs to a
self as a subset and this defines an inclusion map acting as a natural morphism in this category. This
expectation is not quite correct. More natural morphisms are the arrows telling that self as a set of
sub-selves contains sub-self as an element. These arrows define a structure analogous to a composite
of hierarchy trees.

To be more precise, for a single space-time surface X4(X3) this hierarchy corresponds to a sub-
jective time slice of the self hierarchy defined by a single quantum jump. The sequence of hierarchies
associated with a sequence of quantum jumps is a natural geometric correlate for the self hierarchy.
This means that the objects are now sequences of submoments of consciousness. Sequences are not
arbitrary. Self must survive its lifetime although sub-selves at various levels can disappear and reap-
pear (generation and disappearance of mental images). Geometrically this means typically a phase
transition transforming real or p1-adic to p2-adic space-time region with same topology as the envi-
ronment. Also sub-selves can fuse to single sub-self. The constraints on self sequences must be such
that it takes these processes into account. Note that these constraints emerge naturally from the fact
that quantum jumps sequences define the sequences of surfaces X4(X3).

By the rich anatomy of the quantum jump there is large number of quantum jumps leading from a
given initial quantum history to a given final quantum history. One could envisage quantum jump also
as a discrete path in the space of configuration space spinor fields leading from the initial state to the
final state. In particular, for given self there is an infinite number of closed elementary paths leading
from the initial quantum history back to the initial quantum history and these paths in principle give
all possible conscious information about a given quantum history/idea: kind of self morphisms are in
question (analogous to, say, group automorhisms). Information about point of space is obtained only
by moving around and coming back to the point, that is by studying the surroundings of the point.
Self in turn can be seen as a composite of elementary paths defined by the quantum jumps. Selves can
define arbitrarily complex composite closed paths giving information about a given quantum history.

15.4.2 Categories related to self and quantum jump

The categories defined by moments of consciousness and the notion of self

Since quantum jump involves state reduction and the sequence of self measurement reducing all
entanglement except bound state entanglement, it defines a hierarchy of unentangled subsystems
allowing interpretation as objects of a category. Arrows correspond to subsystem-system relationship
and the two subsystems resulting in self measurement to the system. What subsystem corresponds
mathematically is however not at all trivial and the naive description as a tensor factor does not work.
Rather, a definition relying on the notion of p-adic length scale cutoff identified as a fundamental
aspect of nature and consciousness is needed.

It is not clear what the statement that self corresponds to a subsystem which remains unentan-
gled in subsequent quantum jump means concretely since subsystem can certainly change in some
limits. What is clear that bound state entanglement between selves means a loss of consciousness.
Category theory suggests that there should exist a functor between categories defined by two subse-
quent moments of consciousness. This functor maps submoments of consciousness to submoments of
consciousness and arrows to arrows. Two subsequent submoments of consciousness belong to same
sub-self is the functor maps the first one to the latter one. Thus category theory would play essential
role in the precise definition of the notion of self.

The sequences of moments of consciousness form a larger category containing sub-selves as se-
quences of unentangled subsystems mapped to each other by functor arrows functoring subsequent
quantum jumps to each other.

What might then be the ultimate characterizer of the self-identity? The theory of infinite primes
suggests that space-time surface decomposes into regions labelled by finite p-adic primes. These primes
must label also real regions rather than only p-adic ones, and one could understand this as resulting
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from a resonant transformation of intention to action. A p-adic space-time region characterized by
prime p can transform to a real one or vice versa in quantum jump if the sizes of real and p-adic
regions are characterized by the p-adic length scale Lp (or n-ary p-adic length scale Lp(n). One can
also consider the possibility that real region is accompanied by a p-adic region characterized by a
definite prime p and providing a cognitive self-representation of the real region.

If this view is correct, the p-adic prime characterizing a given real or p-adic space-time sheet is
the ultimate characterizer of the self-identity. Self identity is lost in bound state entanglement with
another space-time sheet (at least when a space-time sheet with smaller value of the p-adic prime
joins by join along boundaries bond to a one with a higher value of the p-adic prime). Self identity is
also lost if a space-time sheet characterized by a given p-adic prime disappears in quantum jump.

The category associated with quantum jump sequences

There are several similarities between the ontologies and epistemologies of TGD and of category
theory. Conscious experience is always determined by the discrete paths in the space of configuration
space spinor fields defined by a quantum jump connecting two quantum histories (states) and is never
determined by single quantum history as such (quantum states are unconscious). Also category theory
is about relations between objects, not about objects directly: self-morphisms give information about
the object of category (in case of group composite paths would correspond to products of group
automorphisms). Analogously closed paths determined by quantum jump sequences give information
about single quantum history. The point is however that it is impossible to have direct knowledge
about the quantum histories: they are not conscious.

One can indeed define a natural category, call it QSelf , applying to this situation. The objects of
the category QSelf are initial quantum histories of quantum jumps and correspond to prepared quan-
tum states. The discrete path defining quantum jump can be regarded as an elementary morphism.
Selves are composites of elementary morphisms of the initial quantum history defined by quantum
jumps: one can characterize the morphisms by the number of the elementary morphisms in the prod-
uct. Trivial self contains no quantum jumps and corresponds to the identity morphism, null path.
Thus the collection of all possible sequences of quantum jumps, that is collections of selves allows a
description in terms of category theory although the category in question is not a subcategory of the
category Set.

Category QSelf does not possess terminal and initial elements (for terminal (initial) element T
there is exactly one arrow A → T (T → A) for every A: now there are always many paths between
quantum histories involved).

15.4.3 Communications in TGD framework

Goro Kato identifies communications between conscious entities as natural maps between them whereas
in TGD natural maps bind submoments of consciousness to selves. In TGD framework quantum mea-
surement and the sharing of mental images are the basic candidates for communications. The problem
is that the identification of communications as sharing of mental images is not consistent with the
naive view about subsystem as a tensor factor. Many-sheeted space-time however forces length scale
dependent notion of subsystem at space-time level and this saves the situation.

What communications are?

Communication is essentially generation of desired mental images/sub-selves in receiver. Communica-
tion between selves need not be directly conscious: in this case communication would generate mental
images at some lower level of self hierarchy of receiver: for instance generate large number of sub-sub-
selves of similar type. This is like communications between organizations. Communication can be
also vertical: self can generate somehow sub-self in some sub-sub....sub-self or sub-sub...sub-self can
generate sub-self of self somehow. This is communication from boss to the lower levels organization
or vice versa.

These communications should have direct topological counterparts. For instance, the communi-
cation between selves could correspond to an exchange of mental image represented as a space-time
region of different topology inside sender self space-time sheet. The sender self would simply throw
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this space-time region to a receiver self like a ball. This mechanism applies also to vertical communi-
cations since the ball could be also thrown from a boss to sub...sub-self at some lower level of hierarchy
and vice versa.

The sequence of space-time surfaces provides a direct topological counterpart for communication as
throwing balls representing sub-selves. Quantum jump sequence contains space-time surfaces in which
the regions corresponding to receiver and sender selves are connected by a join along boundaries bond
(perhaps massless extremal) representing classically the communication: during the communication
the receiver and sender would form single self. The cartoon vision about rays connecting the eyes of
communication persons would make sense quite concretely.

More refined means of communication would generate sub-selves of desired type directly at the
end of receiver. In this case it is not so obvious how the sequence X(X3) of space-time surfaces could
represent communication. Of course, one can question whether communication is really what happens
in this kind of situation. For instance, sender can affect the environment of receiver to be such that
receiver gets irritated (computer virus is good manner to achieve this!) but one can wonder whether
this is real communication.

Communication as quantum measurement?

Quantum measurement generates one-one map between the states of the entangled systems resulting
in quantum measurement. Both state function reduction and self measurement give rise to this kind
of map. This map could perhaps be interpreted as quantum communication between unentangled
subsystems resulting in quantum measurement. For the state reduction process the space-time corre-
lates are the values of zero modes. For state preparation the space-time correlates should correspond
to classical spinor field modes correlating for the two subsystems generated in self measurement.

Communication as sharing of mental images

It has become clear that the sharing of mental images induced by quantum entanglement of sub-selves
of two separate selves represents genuine conscious communication which is analogous telepathy and
provides general mechanism of remote mental interactions making possible even molecular recognition
mechanisms.

1. The sharing of mental images is not possible unless one assumes that self hierarchy is defined
by using the notion of length scale resolution defined by p-adic length scale. The notion of
scale of resolution is indeed fundamental for all quantum field theories (renormalization group
invariance) for all quantum field theories and without it the practical modelling of physics would
not be possible. The notion reflects directly the length scale resolution of conscious experience.
For a given sub-self of self the resolution is given by the p-adic length scale associated with the
sub-self space-time sheet.

2. Length scale resolution emerges naturally from the fact that sub-self space-time sheets having
Minkowskian signature of metric are separated from the one representing self by wormhole
contacts with Euclidian signature of metric. The signature of the induced metric changes from
Minkowskian signature to Euclidian signature at ’elementary particle horizons’ surrounding the
throats of the wormhole contacts and having degenerate induced metric. Elementary particle
horizons are thus metrically two-dimensional light like surfaces analogous to the boundary of the
light cone and allow conformal invariance. Elementary particle horizons act as causal horizons.
Topologically condensed space-time sheets are analogous to black hole interiors and due to the
lack of the causal connectedness the standard description of sub-selves as tensor factors of the
state space corresponding to self is not appropriate.

Hence systems correspond, not to the space-time sheets plus entire hierarchy of space-time sheets
condensed to it, but rather, to space-time sheets with holes resulting when the space-time sheets
representing subsystems are spliced off along the elementary particle horizons around wormhole
contacts. This does not mean that all information about subsystem is lost: subsystem space-
time sheet is only replaced by the elementary particle horizon. In analogy with the description
of the black hole, some parameters (mass, charges,...) characterizing the classical fields created
by the sub-self space-time sheet characterize sub-self.



756
Chapter 15. Category Theory, Quantum TGD, and TGD Inspired Theory of

Consciousness

One can say that the state space of the system contains ’holes’. There is a hierarchy of state
spaces labelled by p-adic primes defining length scale resolutions. This picture resolves a long-
standing puzzle relating to the interpretation of the fact that particle is characterize by both clas-
sical and quantum charges. Particle cannot couple simultaneously to both and this is achieved
if quantum charge is associated with the lowest level description of the particle as CP2 extremal
and classical charges to its description at higher levels of hierarchy.

3. The immediate implication indeed is that it is possible to have a situation in which two selves
are unentangled although their sub-selves (mental images) are entangled. This corresponds
to the fusion and sharing of mental images. The sharing of the mental images means that
union of disjoint hierarchy trees with levels labelled by p-adic primes p is replaced by a union
of hierarchy threes with horizontal lines connecting subsystems at the same level of hierarchy.
Thus the classical correspondence defines a category of presheaves with both vertical arrows
replaced by sub-self-self relationship, horizontal arrows representing sharing of mental images,
and natural maps representing binding of submoments of consciousness to selves.

Comparison with Goro Kato’s approach

It is of interest to compare Goro Kato’s approach with TGD approach. The following correspondence
suggests itself.

1. In TGD each quantum jumps defines a category analogous to the Goro Kato’s category of open
sets of some topological space but set theoretic inclusion replaced by topological condensation.
The category defined by a moment of consciousness is dynamical whereas the category of open
sets is non-dynamical.

2. The assignment of a 3-surface acting as a causal determinant to each unentangled subsystem
defined by a moment of consciousness defines a unique ”quantum presheaf” which is the coun-
terpart of the presheaf in Goro Kato’s theory. The conscious entity of Kato’s theory corresponds
to the classical correlate for a moment of consciousness.

3. Natural maps between the causal determinants correspond to the space-time correlates for the
functor arrows defining the threads connecting submoments of consciousness to selves. In Goro
Kato’s theory natural maps are interpreted as communications between conscious entities. The
sharing of mental images by quantum entanglement between subsystems of unentangled systems
defines horizontal bi-directional arrows between subsystems associated with same moment of
consciousness and is counterpart of communication in TGD framework. It replaces the union
of disjoint hierarchy trees associated with various unentangled subsystems with hierarchy trees
having horizontal connections defining the bi-directional arrows. The sharing of mental images
is not possible if subsystem is identified as a tensor factor and thus without taking into account
length scale resolution.

15.4.4 Cognizing about cognition

There are close connections with basic facts about cognition.

1. Categorization means classification and abstraction of common features in the class formed by
the objects of a category. Already quantum jump defines category with hierarchical structure and
can be regarded as consciously experienced analysis in which totally entangled entire universe
UΨi decomposes to a product of maximally unentangled subsystems. The sub-selves of self are
like elements of set and are experienced as separate objects whereas sub-sub-selves of sub-self
self experiences as an average: they belong to a class or category formed by the sub-self. This
kind of averaging occurs also for the contributions of quantum jumps to conscious experience of
self.

2. The notions of category theory might be useful in an attempt to construct a theory of cognitive
structures since cognition is indeed to high degree classification and abstraction process. The
sub-selves of a real self indeed have p-adic space-time sheets as geometric correlates and thus
correspond to cognitive sub-selves, thoughts. A meditative experience of empty mind means in
case of real self the total absence of thoughts.
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3. Predicate logic provides a formalization of the natural language and relies heavily on the notion
of n-ary relation. Binary relations R(a, b) corresponds formally to the subset of the product
set A× B. For instance, statements like ’A does something to B’ can be expressed as a binary
relation, particular kind of arrow and morphism (A ≤ B is a standard example). For sub-
selves this relation would correspond to a dynamical evolution at space-time level modelling the
interaction between A and B. The dynamical path defined by a sequence of quantum jumps is
able to describe this kind of relationships too at level of conscious experience. For instance, ’A
touches B’ would involve the temporary fusion of sub-selves A and B to sub-self C.

15.5 Logic and category theory

Category theory allows naturally more general than Boolean logics inherent to the notion of topos
associated with any category. Basic question is whether the ordinary notion of topos algebra based on
set theoretic inclusion or the notion of quantum topos based on topological condensation is physically
appropriate. Starting from the quasi-Boolean algebra of open sets one ends up to the conclusion that
quantum logic is more natural. Also configuration space spinor fields lead naturally to the notion of
quantum logic.

15.5.1 Is the logic of conscious experience based on set theoretic inclusion
or topological condensation?

The algebra of open sets with intersections and unions and complement defined as the interior of the
complement defines a modification of Boolean algebra having the peculiar feature that the points at
the boundary of the closure of open set cannot be said to belong to neither interior of open set or of
its complement. There are two options concerning the interpretation.

1. 3-valued logic could be in question. It is however not possible to understand this three-valuedness
if one defines the quasi-Boolean algebra of open sets as Heyting algebra. The resulting logic
is two-valued and the points at boundaries of the closure do not correspond neither to the
statement or its negation. In p-adic context the situation changes since p-adic open sets are
also closed so that the logic is strictly Boolean. That our ordinary cognitive mind is Boolean
provides a further good reason for why cognition is p-adic.

2. These points at the boundary of the closure belong to both interior and exterior in which case a
two-valued ”quantum logic” allowing superposition of opposite truth values is in question. The
situation is indeed exactly the same as in the case of space-time sheet having wormhole contacts
to several space-time sheets.

The quantum logic brings in mind Zen consciousness [J8] (which I became fascinated of while
reading Hofstadter’s book ”Gödel, Escher,Bach” [A172] ) and one can wonder whether selves having
real space-time sheets as geometric correlates and able to live simultaneously in many parallel worlds
correspond to Zen consciousness and Zen logic. Zen logic would be also logic of sensory experience
whereas cognition would obey strictly Boolean logic.

The causal determinants associated with space-time sheets correspond to light like 3-surfaces which
could elementary particle horizons or space-time boundaries and possibly also 3-surfaces separating
two maximal deterministic regions of a space-time sheet. These surfaces act as 3-dimensional quantum
holograms and have the strange Zen property that they are neither space-like nor time-like so that
they represent both the state and the process. In the TGD based model for topological quantum
computation (TQC) light-like boundaries code for the computation so that TQC program code would
be equivalent with the running program [K85] .

15.5.2 Do configuration space spinor fields define quantum logic and quan-
tum topos

I have proposed already earlier that configuration space spinor fields define what might be called
quantum logic. One can wonder whether configuration space spinors could also naturally define what
might be called quantum topos since the category underlying topos defines the logic appropriate to
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the topos. This question remains unanswered in the following: I just describe the line of though
generalizing ordinary Boolean logic.

Finite-dimensional spinors define quantum logic

Spinors at a point of an 2N -dimensional space span 2N -dimensional space and spinor basis is in one-
one correspondence with Boolean algebra with N different truth values (N bits). 2N=2-dimensional
case is simple: Spin up spinor= true and spin-dow spinor=false. The spinors for 2N -dimensional
space are obtained as an N-fold tensor product of 2-dimensional spinors (spin up,spin down): just like
in the case of Cartesian power of Ω.

Boolean spinors in a given basis are eigen states for a set N mutually commuting sigma matrices
providing a representation for the tangent space group acting as rotations. Boolean spinors define N
Boolean statements in the set ΩN so that one can in a natural manner assign a set with a Boolean
spinor. In the real case this group is SO(2N) and reduces to SU(N) for Kähler manifolds. For pseudo-
euclidian metric some non-compact variant of the tangent space group is involved. The selections of
N mutually commuting generators are labelled by the flag-manifold SO(2N)/SO(2)N in real context
and by the flag-manifold U(N)/U(1)N in the complex case. The selection of these generators defines
a collection of N 2-dimensional linear subspaces of the tangent space.

Spinors are in general complex superpositions of spinor basis which can be taken as the product
spinors. The quantum measurement of N spins representing the Cartan algebra of SO(2N) (SU(N))
leads to a state representing a definite Boolean statement. This suggests that quantum jumps as
moments of consciousness quite generally make universe classical, not only in geometric but also in
logical sense. This is indeed what the state preparation process for the configuration space spinor field
seems to do.

Quantum logic for finite-dimensional spinor fields

One can generalize the idea of the spinor logic also to the case of spinor fields. For a given choice of
the local spinor basis (which is unique only modular local gauge rotation) spinor field assigns to each
point of finite-dimensional space a quantum superposition of Boolean statements decomposing into
product of N statements.

Also now one can ask whether it is possible to find a gauge in which each point corresponds to
definite Boolean statement and is thus an eigen state of a maximal number of mutually commuting
rotation generators Σij . This is not trivial if one requires that Dirac equation is satisfied. In the case
of flat space this is certainly true and constant spinors multiplied by functions which solve d’Alembert
equation provide a global basis.

The solutions of Dirac equation in a curved finite-dimensional space do not usually possess a
definite spin direction globally since spinor curvature means the presence of magnetic spin-flipping
interaction and since there need not exist a global gauge transformation leading to an eigen state
of the local Cartan algebra everywhere. What might happen is that the local gauge transformation
becomes singular at some point: for instance, the direction of spin would be radial around given point
and become ill defined at the point. This is much like the singularities for vector fields on sphere. The
spinor field having this kind of singularity should vanish at singularity but the local gauge rotation
rotating spin in same direction everywhere is necessarily ill-defined at the singularity.

In fact, this can be expressed using the language of category theory. The category in question
corresponds to a presheaf which assigns to the points of the base space the fiber space of the spinor
bundle. The presence of singularity means that there are no global section for this presheaf, that is
a continuous choice of a non-vanishing spinor at each point of the base space. The so called Kochen-
Specker theorem discussed in [A175] is closely related to a completely analogous phenomenon involving
non-existence of global sections and thus non-existence of a global truth value.

Thus in case of curved spaces is not necessarily possible to have spinor field basis representing
globally Boolean statements and only the notion of locally Boolean logic makes sense. Indeed, one
can select the basis to be eigen state of maximal set of mutually commuting rotation generators in
single point of the compact space. Any such choice does.
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Quantum logic and quantum topos defined by the prepared configuration space spinor
fields

The prepared configuration space spinor fields occurring as initial and final states of quantum jumps
are the natural candidates for defining quantum logic. The outcomes of the quantum jumps resulting
in the state preparation process are maximally unentangled states and are as close to Boolean states
as possible.

Configuration space spinors correspond to fermionic Fock states created by infinite number of
fermionic (leptonic and quarklike) creation and annihilation operators. The spin degeneracy is replaced
by the double-fold degeneracy associated with a given fermion mode: given state either contains
fermion or not and these two states represent true and false now. If configuration space were flat, the
Fock state basis with definite fermion and anti-fermion numbers in each mode would be in one-one
correspondence with Boolean algebra.

Situation is however not so simple. Finite-dimensional curved space is replaced with the fiber
degrees of freedom of the configuration space in which the metric is non-vanishing. The precise analogy
with the finite-dimensional case suggests that if the curvature form of the configuration space spinor
connection is nontrivial, it is impossible to diagonalize even the prepared maximally unentangled
configuration space spinor fields Ψi in the entire fiber of the configuration space (quantum fluctuating
degrees of freedom) for given values of the zero modes. Local singularities at which the spin quantum
numbers of the diagonalized but vanishing configuration space spinor field become ill-defined are
possible also now.

In the infinite-dimensional context the presence of the fermion-anti-fermion pairs in the state
means that it does not represent a definite Boolean statement unless one defines a more general
basis of configuration space spinors for which pairs are present in the states of the state basis: this
generalization is indeed possible. The sigma matrices of the configuration space appearing in the
spinor connection term of the Dirac operator of the configuration space indeed create fermion-fermion
pairs. What is decisive, is not the absence of fermion-anti-fermion pairs, but the possibility that the
spinor field basis cannot be reduced to eigen states of the local Cartan algebra in fiber degrees of
freedom globally.

Also for bound states of fermions (say leptons and quarks) it is impossible to reduce the state to
a definite Boolean statement even locally. This would suggest that fermionic logic does not reduce to
a completely Boolean logic even in the case of the prepared states.

Thus configuration space spinor fields could have interpretation in terms of non-Boolean quantum
logic possessing Boolean logics only as sub-logics and define what might be called quantum topos.
Instead of ΩN -valued maps the values for the maps are complex valued quantum superpositions of
truth values in ΩN .

An objection against the notion of quantum logic is that Boolean algebra operations AND and
OR do not preserve fermion number so that quantum jump sequences leading from the product state
defined by operands to the state representing the result of operation are therefore not possible. One
manner to circumvent the objection is to consider the sub-algebra spanned by fermion and anti-fermion
pairs for given mode so that fermion number conservation is not a problem. The objection can be
also circumvented for pairs of space-time sheets with opposite time orientations and thus opposite
signs of energies for particles. One can construct the algebra in question as pairs of many fermion
states consisting of positive energy fermion and negative energy anti-fermion so that all states have
vanishing fermion number and logical operations become possible. Pairs of MEs with opposite time
orientations are excellent candidates for carries of these fermion-anti-fermion pairs.

Quantum classical correspondence and quantum logic

The intuitive idea is that the global Boolean statements correspond to sections of Z2 bundle. Möbius
band is a prototype example here. The failure of a global statement would reduce to the non-existence
of global section so that true would transforms to false as one goes around full 2π rotation.

One can ask whether fermionic quantum realization of Boolean logic could have space-time coun-
terpart in terms of Z2 fiber bundle structure. This would give some hopes of having some connection
between category theoretical and fermionic realizations of logic. The following argument stimulated
by email discussion with Diego Lucio Rapoport suggests that this might be the case.

1. The hierarchy of Planck constants realized using the notion of generalized imbedding space
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involves only groups Zna ×Znb , na, nb 6= 2 if one takes Jones inclusions as starting point. There
is however no obvious reason for excluding the values na = 2 and nb = 2 and the question
concerns physical interpretation. Even if one allows only ni ≥ 3 one can ask for the physical
interpretation for the factorization Z2n = Z2 × Zn. Could it perhaps relate to a space-time
correlates for Boolean two-valuedness?

2. An important implication of fiber bundle structure is that the partonic 2-surfaces have Zna ×
Znb = Znanb as a group of conformal symmetries. I have proposed that na or nb is even for
fermions so that Z2 acts as a conformal symmetry of the partonic 2-surface. Both na and nb
would be odd for truly elementary bosons. Note that this hypothesis makes sense also for ni ≥ 3.

3. Z2 conformal symmetry for fermions would imply that all partonic 2-surfaces associated with
fermions are hyper-elliptic. As a consequence elementary particle vacuum functionals defined
in modular degrees of freedom would vanish for fermions for genus g > 2 so that only three
fermion families would be possible in accordance with experimental facts. Since gauge bosons
and Higgs correspond to pairs of partonic 2-surfaces (the throats of the wormhole contact) one
has 9 gauge boson states labelled by the pairs (g1, g2) which can be grouped to SU(3) singlet
and octet. Singlet corresponds to ordinary gauge bosons.

super-symplectic bosons are truly elementary bosons in the sense that they do not consist of
fermion-antifermion pairs. For them both na and nb should be odd if the correspondence is
taken seriously and all genera would be possible. The super-conformal partners of these bosons
have the quantum numbers of right handed neutrino. Since both spin directions are possible,
one can ask whether Boolean Z2 must be present also now. This need not be the case, νR
generates only super-symmetries and does not define a family of fermionic oscillator operators.
The electro-weak spin of νR is frozen and it does not couple at all to electro-weak intersections.
Perhaps (only) odd values of ni are possible in this case.

4. If fermionic Boolean logic has a space-time correlate, one can wonder whether the fermionic
Z2 conformal symmetry might correspond to a space-time correlate for the Boolean true-false
dichotomy. If the partonic 2-surface contains points which are fixed points of Z2 symmetry,
there exists no everywhere non-vanishing sections. Furthermore, induced spinor fields should
vanish at the fixed points of Z2 symmetry since they correspond to singular orbifold points so
that one could not actually have a situation in which true and false are true simultaneously.
Global sections could however fail to exist since CP2 spinor bundle is non-trivial.

15.5.3 Category theory and the modelling of aesthetic and ethical judge-
ments

Consciousness theory should allow to model model the logics of ethics and aesthetics. Evolution
(representable as p-adic evolution in TGD framework) is regarded as something positive and is a good
candidate for defining universal ethics in TGD framework. Good deeds are such that they support this
evolution occurring in statistical sense in any case. Moral provides a practical model for what good
deeds are and moral right-wrong statements are analogous to logical statements. Often however the
two-valued right-wrong logic seems to be too simplistic in case of moral statements. Same applies to
aesthetic judgements. A possible application of the generalized logics defined by the inherent structure
of categories relates to the understanding of the dilemmas associated with the moral and aesthetic
rules.

As already found, quantum versions of sieves provide a formal generalization of Boolean truth
values as a characteristic of a given category. Generalized moral rules could perhaps be seen as sieve
valued statements about deeds. Deeds are either right or wrong in what might be called Boolean
moral code. One can also consider Zen moral in which some deeds can be said to be right and wrong
simultaneously. Some deeds could also be such that there simply exists no globally consistent moral
rule: this would correspond to the nonexistence of what is called global section assigning to each object
of the category consisting of the pairs formed by a moral agents and given deed) a sieve simultaneously.
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15.6 Platonism, Constructivism, and Quantum Platonism

During years I have been trying to understand how Category Theory and Set Theory relate to quan-
tum TGD inspired view about fundamentals of mathematics and the outcome section is added to
this chapter several years after its first writing. I hope that reader does not experience too unpleas-
ant discontinuity. I managed to clarify my thoughts about what these theories are by reading the
article Structuralism, Category Theory and Philosophy of Mathematics by Richard Stefanik [A216]
. Blog discussions and email correspondence with Sampo Vesterinen have been very stimulating and
inspired the attempt to represent TGD based vision about the unification of mathematics, physics,
and consciousness theory in a more systematic manner.

Before continuing I want to summarize the basic ideas behind TGD vision. One cannot understand
mathematics without understanding mathematical consciousness. Mathematical consciousness and its
evolution must have direct quantum physical correlates and by quantum classical correspondence these
correlates must appear also at space-time level. Quantum physics must allow to realize number as a
conscious experience analogous to a sensory quale. In TGD based ontology there is no need to postulate
physical world behind the quantum states as mathematical entities (theory is the reality). Hence
number cannot be any physical object, but can be identified as a quantum state or its label and its
number theoretical anatomy is revealed by the conscious experiences induced by the number theoretic
variants of particle reactions. Mathematical systems and their axiomatics are dynamical evolving
systems and physics is number theoretically universal selecting rationals and their extensions in a
special role as numbers, which can can be regarded elements of several number fields simultaneously.

15.6.1 Platonism and structuralism

There are basically two philosophies of mathematics.

1. Platonism assumes that mathematical objects and structures have independent existence. Nat-
ural numbers would be the most fundamental objects of this kind. For instance, each natural
number has its own number-theoretical anatomy decomposing into a product of prime numbers
defining the elementary particles of Platonia. For quantum physicist this vision is attractive,
and even more so if one accepts that elementary particles are labelled by primes (as I do)! The
problematic aspects of this vision relate to the physical realization of the Platonia. Neither
Minkowski space-time nor its curved variants understood in the sense of set theory have no
room for Platonia and physical laws (as we know them) do not seem to allow the realization of
all imaginable internally consistent mathematical structures.

2. Structuralist believes that the properties of natural numbers result from their relations to other
natural numbers so that it is not possible to speak about number theoretical anatomy in the Pla-
tonic sense. Numbers as such are structureless and their relationships to other numbers provide
them with their apparent structure. According to [A216] structuralism is however not enough
for the purposes of number theory: in combinatorics it is much more natural to use intensional
definition for integers by providing them with inherent properties such as decomposition into
primes. I am not competent to take any strong attitudes on this statement but my physicist’s
intuition tells that numbers have number theoretic anatomy and that this anatomy can be only
revealed by the morphisms or something more general which must have physical counterparts.
I would like to regard numbers are analogous to bound states of elementary particles. Just as
the decays of bound states reveal their inner structure, the generalizations of morphisms would
reveal to the mathematician the inherent number theoretic anatomy of integers.

15.6.2 Structuralism

Set theory and category theory represent two basic variants of structuralism and before continuing I
want to clarify to myself the basic ideas of structuralism: the reader can skip this section if it looks
too boring.

Set theory

Structuralism has many variants. In set theory [A89] the elements of set are treated as structureless
points and sets with the same cardinality are equivalent. In number theory additional structure must



762
Chapter 15. Category Theory, Quantum TGD, and TGD Inspired Theory of

Consciousness

be introduced. In the case of natural numbers one introduces the notion of successor and induction
axiom and defines the basic arithmetic operations using these. Set theoretic realization is not unique.
For instance, one can start from empty set Φ identified as 0, identify 1 as {Φ}, 2 as {0, 1} and so on.
One can also identify 0 as Φ, 1 as {0}, 2 as {{0}},.... For both physicist and consciousness theorist
these formal definitions look rather weird.

The non-uniqueness of the identification of natural numbers as a set could be seen as a problem.
The structuralist’s approach is based on an extensional definition meaning that two objects are re-
garded as identical if one cannot find any property distinguishing them: object is a representative for
the equivalence class of similar objects. This brings in mind gauge fixing to the mind of physicists.

Category theory

Category theory [A17] represents a second form of structuralism. Category theorist does not worry
about the ontological problems and dreams that all properties of objects could be reduced to the
arrows and formally one could identify even objects as identity morphisms (looks like a trick to me).
The great idea is that functors between categories respecting the structure defined by morphisms
provide information about categories. Second basic concept is natural transformation which maps
functors to functors in a structure preserving manner. Also functors define a category so that one can
construct endless hierarchy of categories. This approach has enormous unifying power since functors
and natural maps systemize the process of generalization. There is no doubt that category theory
forms a huge piece of mathematics but I find difficult to believe that arrows can catch all of it.

The notion of category can be extended to that of n-category: in [L4] I described a geometric
realization of this hierarchy in which one defines 1-morphisms by parallel translations, 2-morphisms
by parallel translations of parallel translations, and so on. In infinite-dimensional space this hierarchy
would be infinite. Abstractions about abstractions about.., thoughts about thoughts about, statements
about statements about..., is the basic idea behind this interpretation. Also the hierarchy of logics
of various orders corresponds to this hierarchy. This encourages to see category theoretic thinking
as being analogous to higher level self reflection which must be distinguished from the direct sensory
experience.

In the case of natural numbers category theoretician would identify successor function as the arrow
binding natural numbers to an infinitely long string with 0 as its end. If this approach would work,
the properties of numbers would reflect the properties of the successor function.

15.6.3 The view about mathematics inspired by TGD and TGD inspired
theory of consciousness

TGD based view might be called quantum Platonism. It is inspired by the requirement that both
quantum states and quantum jumps between them are able to represent number theory and that all
quantum notions have also space-time correlates so that Platonia should in some sense exist also at the
level of space-time. Here I provide a brief summary of this view as it is now. The articles ”TGD” [L6]
and ”TGD inspired theory of consciousness” [L7] provide an overview about TGD and TGD inspired
theory of consciousness.

Physics is fixed from the uniqueness of infinite-D existence and number theoretic uni-
versality

1. The basic philosophy of quantum TGD relies on the geometrization of physics in terms of
infinite-dimensional Kähler geometry of the ”world of classical worlds” (configuration space),
whose uniqueness is forced by the mere mathematical existence. Space-time dimension and
imbedding space H = M4 × CP2 are fixed among other things by this condition and allow
interpretation in terms of classical number fields. Physical states correspond to configuration
space spinor fields with configuration space spinors having interpretation as Fock states. Rather
remarkably, configuration space Clifford algebra defines standard representation of so called
hyper finite factor of II1, perhaps the most fascinating von Neumann algebra.

2. Number theoretic universality states that all number fields are in a democratic position. This
vision can be realized by requiring generalization of notions of imbedding space by gluing together
real and p-adic variants of imbedding space along common algebraic numbers. All algebraic
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extensions of p-adic numbers are allowed. Real and p-adic space-time sheets intersect along
common algebraics. The identification of the p-adic space-time sheets as correlates of cognition
and intentionality explains why cognitive representations at space-time level are always discrete.
Only space-time points belonging to an algebraic extension of rationals associated contribute
to the data defining S-matrix. These points define what I call number theoretic braids. The
interpretation in of algebraic discreteness terms of a physical realization of axiom of choice is
highly suggestive. The axiom of choice would be dynamical and evolving quantum jump by
quantum jump as the algebraic complexity of quantum states increases.

Holy trinity of existence

In TGD framework one would have 3-levelled ontology numbers should have representations at all
these levels [L7] .

1. Subjective existence as a sequence of quantum jumps giving conscious sensory representations
for numbers and various geometric structures would be the first level.

2. Quantum states would correspond to Platonia of mathematical ideas and mathematician- or if
one is unwilling to use this practical illusion- conscious experiences about mathematic ideas,
would be in quantum jumps. The quantum jumps between quantum states respecting the sym-
metries characterizing the mathematical structure would provide conscious information about
the mathematical ideas not directly accessible to conscious experience. Mathematician would
live in Plato’s cave. There is no need to assume any independent physical reality behind quantum
states as mathematical entities since quantum jumps between these states give rise to conscious
experience. Theory-reality dualism disappears since the theory is reality or more poetically:
painting is the landscape.

3. The third level of ontology would be represented by classical physics at the space-time level
essential for quantum measurement theory. By quantum classical correspondence space-time
physics would be like a written language providing symbolic representations for both quantum
states and changes of them (by the failure of complete classical determinism of the fundamental
variational principle). This would involve both real and p-adic space-time sheets corresponding
to sensory and cognitive representations of mathematical concepts. This representation makes
possible the feedback analogous to formulas written by mathematician crucial for the ability of
becoming conscious about what one was conscious of and the dynamical character of this process
allows to explain the self-referentiality of consciousness without paradox.

This ontology releases a deep Platonistic sigh of relief. Since there are no physical objects, there
is no need to reduce mathematical notions to objects of the physical world. There are only quantum
states identified as mathematical entities labelled naturally by integer valued quantum numbers; con-
scious experiences, which must represent sensations giving information about the number theoretical
anatomy of a given quantum number; and space-time surfaces providing space-time correlates for
quantum physics and therefore also for number theory and mathematical structures in general.

Factorization of integers as a direct sensory perception?

Both physicist and consciousness theorist would argue that the set theoretic construction of natural
numbers could not be farther away from how we experience integers. Personally I feel that neither
structuralist’s approach nor Platonism as it is understood usually are enough. Mathematics is a
conscious activity and this suggests that quantum theory of consciousness must be included if one
wants to build more satisfactory view about fundamentals of mathematics.

Oliver Sack’s book The man who mistook his wife for a hat [J7] (see also [K69] ) contains fascinating
stories about those aspects of brain and consciousness which are more or less mysterious from the view
point of neuroscience. Sacks tells in his book also a story about twins who were classified as idiots
but had amazing number theoretical abilities. I feel that this story reveals something very important
about the real character of mathematical consciousness.

The twins had absolutely no idea about mathematical concepts such as the notion of primeness
but they could factorize huge numbers and tell whether they are primes. Their eyes rolled wildly
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during the process and suddenly their face started to glow of happiness and they reported a discovery
of a factor. One could not avoid the feeling that they quite concretely saw the factorization process.
The failure to detect the factorization served for them as the definition of primeness. For them the
factorization was not a process based on some rules but a direct sensory perception.

The simplest explanation for the abilities of twins would in terms of a model of integers represented
as string like structures consisting of identical basic units. This string can decay to strings. If string
containing n units decaying into m > 1 identical pieces is not perceived, the conclusion is that a prime
is in question. It could also be that decay to units smaller than 2 was forbidden in this dynamics. The
necessary connection between written representations of numbers and representative strings is easy to
build as associations.

This kind theory might help to understand marvellous feats of mathematicians like Ramanujan
who represents a diametrical opposite of Groethendienck as a mathematician (when Groethendienck
was asked to give an example about prime, he mentioned 57 which became known as Groethendienck
prime!).

The lesson would be that one very fundamental representation of integers would be, not as objects,
but conscious experiences. Primeness would be like the quale of redness. This of course does not
exclude also other representations.

Experience of integers in TGD inspired quantum theory of consciousness

In quantum physics integers appear very naturally as quantum numbers. In quantal axiomatization
or interpretation of mathematics same should hold true.

1. In TGD inspired theory of consciousness [L7] quantum jump is identified as a moment of con-
sciousness. There is actually an entire fractal hierarchy of quantum jumps consisting of quantum
jumps and this correlates directly with the corresponding hierarchy of physical states and dark
matter hierarchy. This means that the experience of integer should be reducible to a certain
kind of quantum jump. The possible changes of state in the quantum jump would characterize
the sensory representation of integer.

2. The quantum state as such does not give conscious information about the number theoretic
anatomy of the integer labelling it: the change of the quantum state is required. The above
geometric model translated to quantum case would suggest that integer represents a multiplica-
tively conserved quantum number. Decays of this this state into states labelled by integers ni
such that one has n =

∏
i ni would provide the fundamental conscious representation for the

number theoretic anatomy of the integer. At the level of sensory perception based the space-time
correlates a string-like bound state of basic particles representing n=1.

3. This picture is consistent with the Platonist view about integers represented as structured ob-
jects, now labels of quantum states. It would also conform with the view of category theorist
in the sense that the arrows of category theorist replaced with quantum jumps are necessary to
gain conscious information about the structure of the integer.

Infinite primes and arithmetic consciousness

Infinite primes [K76] were the first mathematical fruit of TGD inspired theory of consciousness and
the inspiration for writing this posting came from the observation that the infinite primes at the lowest
level of hierarchy provide a representation of algebraic numbers as Fock states of a super-symmetric
arithmetic QFT so that it becomes possible to realize quantum jumps revealing the number theoretic
anatomy of integers, rationals, and perhaps even that of algebraic numbers.

1. Infinite primes have a representation as Fock states of super-symmetric arithmetic QFT and
at the lowest level of hierarchy they provide representations for primes, integers, rationals and
algebraic numbers in the sense that at the lowest level of hierarchy of second quantizations
the simplest infinite primes are naturally mapped to rationals whereas more complex infinite
primes having interpretation as bound states can be mapped to algebraic numbers. Conscious
experience of number can be assigned to the quantum jumps between these quantum states
revealing information about the number theoretic anatomy of the number represented. It would
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be wrong to say that rationals only label these states: rather, these states represent rationals
and since primes label the particles of these states.

2. More concretely, the conservation of number theoretic energy defined by the logarithm of the
rational assignable with the Fock state implies that the allowed decays of the state to a product of
infinite integers are such that the rational can decompose only into a product of rationals. These
decays could provide for the above discussed fundamental realization of multiplicative aspects
of arithmetic consciousness. Also additive aspects are represented since the exponents k in the
powers pk appearing in the decomposition are conserved so that only the partitions k =

∑
i ki

are representable. Thus both product decompositions and partitions, the basic operations of
number theorist, are represented.

3. The higher levels of the hierarchy represent a hierarchy of abstractions about abstractions bring-
ing strongly in mind the hierarchy of n-categories and various similar constructions including
n:th order logic. It also seems that the n+1:th level of hierarchy provides a quantum representa-
tion for the n:th level. Ordinary primes, integers, rationals, and algebraic numbers would be the
lowest level, -the initial object- of the hierarchy representing nothing at low level. Higher levels
could be reduced to them by the analog of category theoretic reductionism in the sense that
there is arrow between n:th and n+1:th level representing the second quantization at this level.
On can also say that these levels represent higher reflective level of mathematical consciousness
and the fundamental sensory perception corresponds the lowest level.

4. Infinite primes have also space-time correlates. The decomposition of particle into partons can
be interpreted as a infinite prime and this gives geometric representations of infinite primes and
also rationals. The finite primes appearing in the decomposition of infinite prime correspond to
bosonic or fermionic partonic 2-surfaces. Many-sheeted space-time provides a representation for
the hierarchy of second quantizations: one physical prediction is that many particle bound state
associated with space-time sheet behaves exactly like a boson or fermion. Nuclear string model is
one concrete application of this idea: it replaces nucleon reductionism with reductionism occurs
first to strings consisting of A ≤ 4 nuclei and which in turn are strings consisting of nucleons.
A further more speculative representation of infinite rationals as space-time surfaces is based on
their mapping to rational functions.

Number theoretic Brahman=Atman identity

The notion of infinite primes leads to the notion of algebraic holography in which space-time points
possess infinitely rich number-theoretic anatomy. This anatomy would be due to the existence of
infinite number of real units defined as ratios of infinite integers which reduce to unit in the real sense
and various p-adic senses. This anatomy is not visible in real physics but can contribute directly to
mathematical consciousness [K76] .

The anatomies of single space-time point could represent the entire world of classical worlds and
quantum states of universe: the number theoretic anatomy is of course not visible in the structure of
these these states. Therefore the basic building brick of mathematics - point- would become the Plato-
nia able to represent all of the mathematics consistent with the laws of quantum physics. Space-time
points would evolve, becoming more and more complex quantum jump by quantum jump. Configu-
ration space and quantum states would be represented by the anatomies of space-time points. Some
space-time points are more ”civilized” than others so that space-time decomposes into ”civilizations”
at different levels of mathematical evolution.

Paths between space-time points represent processes analogous to parallel translations affecting
the structure of the point and one can also define n-parallel translations up to n = 4 at level of
space-time and n = 8 at level of imbedding space. At level of world of classical worlds whose points
are representable as number theoretical anatomies arbitrary high values of n can be realized.

It is fair to say that the number theoretical anatomy of the space-time point makes it possible
self-reference loop to close so that structured points are able to represent the physics of associated
with with the structures constructed from structureless points. Hence one can speak about algebraic
holography or number theoretic Brahman=Atman identity.
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Finite measurement resolution, Jones inclusions, and number theoretic braids

In the history of physics and mathematics the realization of various limitations have been the royal
road to a deeper understanding (Uncertainty Principle, Gödel’s theorem). The precision of quantum
measurement, sensory perception, and cognition are always finite. In standard quantum measurement
theory this limitation is not taken into account but forms a corner stone of TGD based vision about
quantum physics and of mathematics too as I want to argue in the following.

The finite resolutions has representation both at classical and quantum level.

1. At the level of quantum states finite resolution is represented in terms of Jones inclusions N
subset M of hyper-finite factors of type II1 (HFFs) [K26] . N represents measurement resolution
in the sense that the states related by the action of N cannot be distinguished in the measure-
ment considered. Complex rays are replaced by N rays. This brings in noncommutativity via
quantum groups [K9] . Non-commutativity in TGD Universe would be therefore due to a finite
measurement resolution rather than something exotic emerging in the Planck length scale. Same
applies to p-adic physics: p-adic space-time sheets have literally infinite size in real topology!

2. At the space-time level discretization implied by the number theoretic universality could be seen
as being due to the finite resolution with common algebraic points of real and p-adic variant
of the partonic 3-surface chosen as representatives for regions of the surface. The solutions of
modified Dirac equation are characterized by the prime in question so that the preferred prime
makes itself visible at the level of quantum dynamics and characterizes the p-adic length scale
fixing the values of coupling constants. Discretization could be also understood as effective
non-commutativity of imbedding space points due to the finite resolution implying that second
quantized spinor fields anticommute only at a discrete set of points rather than along stringy
curve.

In this framework it is easy to imagine physical representations of number theoretical and other
mathematical structures.

1. Every compact group corresponds to a hierarchy of Jones inclusions corresponding to various
representations for the quantum variants of the group labelled by roots of unity. I would be sur-
prised if non-compact groups would not allow similar representation since HFF can be regarded
as infinite tensor power of n-dimensional complex matrix algebra for any value of n. Somewhat
paradoxically, the finite measurement resolution would make possible to represent Lie group
theory physically [K26] .

2. There is a strong temptation to identify the Galois groups of algebraic numbers as the infinite
permutation group S∞ consisting of permutations of finite number of objects, whose projective
representations give rise to an infinite braid group B∞. The group algebras of these groups are
HFFs besides the representation provided by the spinors of the world of classical worlds having
physical identification as fermionic Fock states. Therefore physical states would provide a direct
representation also for the more abstract features of number theory [K38] .

3. Number theoretical braids crucial for the construction of S-matrix provide naturally represen-
tations for the Galois groups G associated with the algebraic extensions of rationals as diagonal
imbeddings G×G×.... to the completion of S∞ representable also as the action on the completion
of spinors in the world of classical worlds so that the core of number theory would be represented
physically [K38] . At the space-time level number theoretic braid having G as symmetries would
represent the G. These representations are analogous to global gauge transformations. The el-
ements of S∞ are analogous to local gauge transformations having a natural identification as a
universal number theoretical gauge symmetry group leaving physical states invariant.

Hierarchy of Planck constants and the generalization of imbedding space

Jones inclusions inspire a further generalization of the notion of imbedding space obtained by gluing
together copies of the imbedding space H regarded as coverings H → H/Ga × Gb. In the simplest
scenario Ga × Gb leaves invariant the choice of quantization axis and thus this hierarchy provides
imbedding space correlate for the choice of quantization axes inducing these correlates also at space-
time level and at the level of world of classical worlds [K26] .
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Dark matter hierarchy is identified in terms of different sectors of H glued together along common
points of base spaces and thus forming a book like structure. For the simplest option elementary
particles proper correspond to maximally quantum critical systems in the intersection of all pages.
The field bodies of elementary particles are in the interiors of the pages of this ”book”.

One can assign to Jones inclusions quantum phase q = exp(i2π/n) and the groups Zn acts as exact
symmetries both at level of M4 and CP2. In the case of M4 this means that space-time sheets have
exact Zn rotational symmetry. This suggests that the algebraic numbers qm could have geometric
representation at the level of sensory perception as Zn symmetric objects. We need not be conscious
of this representation in the ordinary wake-up consciousness dominated by sensory perception of
ordinary matter with q = 1. This would make possible the idea about transcendentals like π, which
do not appear in any finite-dimensional extension of even p-adic numbers (p-adic numbers allow finite-
dimensional extension by since ep is ordinary p-adic number). Quantum jumps in which state suffers
an action of the generating element of Zn could also provide a sensory realization of these groups and
numbers exp(i2π/n).

Planck constant is identified as the ratio na/nb of integers associated with M4 and CP2 degrees
of freedom so that a representation of rationals emerge again. The so called ruler and compass
rationals whose definition involves only a repeated square root operation applied on rationals are
cognitively the simplest ones and should appear first in the evolution of mathematical consciousness.
The successful [K23] quantum model for EEG is only one of the applications providing support for
their preferred role. Other applications are to Bohr quantization of planetary orbits interpreted as
being induced by the presence of macroscopically quantum coherent dark matter [K70] .

15.6.4 Farey sequences, Riemann hypothesis, tangles, and TGD

Farey sequences allow an alternative formulation of Riemann Hypothesis and subsequent pairs in
Farey sequence characterize so called rational 2-tangles. In TGD framework Farey sequences relate
very closely to dark matter hierarchy, which inspires ”Platonia as the best possible world in the sense
that cognitive representations are optimal” as the basic variational principle of mathematics. This
variational principle supports RH.

Possible TGD realizations of tangles, which are considerably more general objects than braids, are
considered. One can assign to a given rational tangle a rational number a/b and the tangles labelled
by a/b and c/d are equivalent if ad − bc = ±1 holds true. This means that the rationals in question
are neighboring members of Farey sequence. Very light-hearted guesses about possible generalization
of these invariants to the case of general N -tangles are made.

Farey sequences

Some basic facts about Farey sequences [A33] demonstrate that they are very interesting also from
TGD point of view.

1. Farey sequence FN is defined as the set of rationals 0 ≤ q = m/n ≤ 1 satisfying the conditions
n ≤ N ordered in an increasing sequence.

2. Two subsequent terms a/b and c/d in FN satisfy the condition ad− bc = 1 and thus define and
element of the modular group SL(2, Z).

3. The number |F (N)| of terms in Farey sequence is given by

|F (N)| = |F (N − 1)|+ φ(N − 1) . (15.6.1)

Here φ(n) is Euler’s totient function giving the number of divisors of n. For primes one has
φ(p) = 1 so that in the transition from p to p+ 1 the length of Farey sequence increases by one
unit by the addition of q = 1/(p+ 1) to the sequence.

The members of Farey sequence FN are in one-one correspondence with the set of quantum
phases qn = exp(i2π/n), 0 ≤ n ≤ N . This suggests a close connection with the hierarchy of
Jones inclusions, quantum groups, and in TGD context with quantum measurement theory with
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finite measurement resolution and the hierarchy of Planck constants involving the generalization
of the imbedding space. Also the recent TGD inspired ideas about the hierarchy of subgroups of
the rational modular group with subgroups labelled by integers N and in direct correspondence
with the hierarchy of quantum critical phases [K20] would naturally relate to the Farey sequence.

Riemann Hypothesis and Farey sequences

Farey sequences are used in two equivalent formulations of the Riemann hypothesis. Suppose the
terms of FN are an,N , 0 < n ≤ |FN |. Define

dn,N = an,N −
n

|FN |
.

In other words, dn,N is the difference between the n:th term of the N :th Farey sequence, and the n:th
member of a set of the same number of points, distributed evenly on the unit interval. Franel and
Landau proved that both of the following statements

∑
n=1,...,|FN |

|dn,N | = O(Nr) for any r > 1/2 ,

∑
n=1,...,|FN |

d2
n,N = O(Nr) for any r > 1 . (15.6.1)

are equivalent with Riemann hypothesis.
One could say that RH would guarantee that the numbers of Farey sequence provide the best

possible approximate representation for the evenly distributed rational numbers n/|FN |.

Farey sequences and TGD

Farey sequences seem to relate very closely to TGD.

1. The rationals in the Farey sequence can be mapped to the roots of unity by the map q →
exp(i2πq). The numbers 1/|FN | are in turn mapped to the numbers exp(i2π/|FN |), which are
also roots of unity. The statement would be that the algebraic phases defined by Farey sequence
give the best possible approximate representation for the phases exp(in2π/|FN |) with evenly
distributed phase angle.

2. In TGD framework the phase factors defined by FN corresponds to the set of quantum phases
corresponding to Jones inclusions labelled by q = exp(i2π/n), n ≤ N , and thus to the N lowest
levels of dark matter hierarchy. There are actually two hierarchies corresponding to M4 and
CP2 degrees of freedom and the Planck constant appearing in Schrödinger equation corresponds
to the ratio na/nb defining quantum phases in these degrees of freedom. Zna×nb appears as
a conformal symmetry of ”dark” partonic 2-surfaces and with very general assumptions this
implies that there are only in TGD Universe [K20, K18] .

3. The fusion of physics associated with various number fields to single coherent whole requires
algebraic universality. In particular, the roots of unity, which are complex algebraic numbers,
should define approximations to continuum of phase factors. At least the S-matrix associated
with p-adic-to-real transitions and more generally p1 → p2 transitions between states for which
the partonic space-time sheets are p1- resp. p2-adic can involve only this kind of algebraic
phases. One can also say that cognitive representations can involve only algebraic phases and
algebraic numbers in general. For real-to-real transitions and real-to-padic transitions U-matrix
might be non-algebraic or obtained by analytic continuation of algebraic U-matrix. S-matrix
is by definition diagonal with respect to number field and similar continuation principle might
apply also in this case.

4. The subgroups of the hierarchy of subgroups of the modular group with rational matrix elements
are labelled by integer N and relate naturally to the hierarchy of Farey sequences. The hierarchy
of quantum critical phases is labelled by integers N with quantum phase transitions occurring
only between phases for which the smaller integer divides the larger one [K20] .
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Interpretation of RH in TGD framework

Number theoretic universality of physics suggests an interpretation for the Riemann hypothesis in TGD
framework. RH would be equivalent to the statement that the Farey numbers provide best possible
approximation to the set of rationals k/|FN | or to the statement that the roots of unity contained
by FN define the best possible approximation for the roots of unity defined as exp(ik2π/|FN |) with
evenly spaced phase angles. The roots of unity allowed by the lowest N levels of the dark matter
hierarchy allows the best possible approximate representation for algebraic phases represented exactly
at |FN |:th level of hierarchy.

A stronger statement would be that the Platonia, where RH holds true would be the best possible
world in the sense that algebraic physics behind the cognitive representations would allow the best
possible approximation hierarchy for the continuum physics (both for numbers in unit interval and
for phases on unit circle). Platonia with RH would be cognitive paradise.

One could see this also from different view point. ”Platonia as the cognitively best possible
world” could be taken as the ”axiom of all axioms”: a kind of fundamental variational principle of
mathematics. Among other things it would allow to conclude that RH is true: RH must hold true
either as a theorem following from some axiomatics or as an axiom in itself.

Could rational N-tangles exist in some sense?

The article of Kauffman and Lambropoulou [A184] about rational 2-tangles having commutative sum
and product allowing to map them to rationals is very interesting from TGD point of view. The
illustrations of the article are beautiful and make it easy to get the gist of various ideas. The theorem
of the article states that equivalent rational tangles giving trivial tangle in the product correspond to
subsequent Farey numbers a/b and c/d satisfying ad− bc = ±1 so that the pair defines element of the
modular group SL(2,Z).

1. Rational 2-tangles

1. The basic observation is that 2-tangles are 2-tangles in both ”s- and t-channels”. Product and
sum can be defined for all tangles but only in the case of 2-tangles the sum, which in this case
reduces to product in t-channel obtained by putting tangles in series, gives 2-tangle. The so
called rational tangles are 2-tangles constructible by using addition of ±[1] on left or right of
tangle and multiplication by ±[1] on top or bottom. Product and sum are commutative for
rational 2-tangles but the outcome is not a rational 2-tangle in the general case. One can also
assign to rational 2-tangle its negative and inverse. One can map 2-tangle to a number which
is rational for rational tangles. The tangles [0], [∞], ±[1], ±1/[1], ±[2], ±[1/2] define so called
elementary rational 2-tangles.

2. In the general case the sum of M− and N−tangles is M +N − 2-tangle and combines various
N−tangles to a monoidal structure. Tensor product like operation giving M + N -tangle looks
to me physically more natural than the sum.

3. The reason why general 2-tangles are non-commutative although 2-braids obviously commute is
that 2-tangles can be regarded as sequences of N−tangles with 2-tangles appearing only as the
initial and final state: N is actually even for intermediate states. Since N > 2-braid groups are
non-commutative, non-commutativity results. It would be interesting to know whether braid
group representations have been used to construct representations of N−tangles.

2. Does generalization to N >> 2 case exist?

One can wonder whether the notion of rational tangle and the basic result of the article about
equivalence of tangles might somehow generalize to the N > 2 case.

1. Could the commutativity of tangle product allow to characterize the N > 2 generalizations
of rational 2-tangles. The commutativity of product would be a space-time correlate for the
commutativity of the S-matrices defining time like entanglement between the initial and final
quantum states assignable to the N -tangle. For 2-tangles commutativity of the sum would
have an analogous interpretation. Sum is not a very natural operation for N-tangles for N >
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2. Commutativity means that the representation matrices defined as products of braid group
actions associated with the various intermediate states and acting in the same representation
space commute. Only in very special cases one can expect commutativity for tangles since
commutativity is lost already for braids.

2. The representations of 2-tangles should involve the subgroups of N -braid groups of intermedi-
ate braids identifiable as Galois groups of N :th order polynomials in the realization as number
theoretic tangles. Could non-commutative 2-tangles be characterized by algebraic numbers in
the extensions to which the Galois groups are associated? Could the non-commutativity reflect
directly the non-commutativity of Galois groups involved? Quite generally one can ask whether
the invariants should be expressible using algebraic numbers in the extensions of rationals asso-
ciated with the intermediate braids.

3. Rational 2-tangles can be characterized by a rational number obtained by a projective identi-
fication [a, b]T → a/b from a rational 2-spinor [a, b]T to which SL(2(N-1),Z) acts. Equivalence
means that the columns [a, b]T and [c, d]T combine to form element of SL(2,Z) and thus defining
a modular transformation. Could more general 2-tangles have a similar representation but in
terms of algebraic integers?

4. Could N -tangles be characterized by N − 1 2(N − 1)-component projective column-spinors

[a1
i , a

2
i , .., a

2(N−1)
i ]T , i = 1, ...N − 1 so that only the ratios aki /a

2(N−1)
i ≤ 1 matter? Could

equivalence for them mean that the N − 1 spinors combine to form N − 1 +N − 1 columns of
SL(2(N −1), Z) matrix. Could N -tangles quite generally correspond to collections of projective
N−1 spinors having as components algebraic integers and could ad−bc = ±1 criterion generalize?
Note that the modular group for surfaces of genus g is SL(2g,Z) so that N−1 would be analogous
to g and 1 ≤ N ≥ 3- braids would correspond to g ≤ 2 Riemann surfaces.

5. Dark matter hierarchy leads naturally to a hierarchy of modular sub-groups of SL(2, Q) labelled
by N (the generator τ → τ +2 of modular group is replaced with τ → τ +2/N). What might be
the role of these subgroups and corresponding subgroups of SL(2(N − 1), Q). Could they arise
in ”anyonization” when one considers quantum group representations of 2-tangles with twist
operation represented by an N :th root of unity instead of phase U satisfying U2 = 1?

How tangles could be realized in TGD Universe?

The article of Kauffman and Lambropoulou stimulated the question in what senses N -tangles could
be be realized in TGD Universe as fundamental structures.

1. Tangles as number theoretic braids?

The strands of number theoretical N−braids correspond to roots of N:th order polynomial and if
one allows time evolutions of partonic 2-surface leading to the disappearance or appearance of real
roots N−tangles become possible. This however means continuous evolution of roots so that the
coefficients of polynomials defining the partonic 2-surface can be rational only in initial and final state
but not in all intermediate ”virtual” states.

2. Tangles as tangled partonic 2-surfaces?

Tangles could appear in TGD also in second manner.

1. Partonic 2-surfaces are sub-manifolds of a 3-D section of space-time surface. If partonic 2-
surfaces have genus g > 0 the handles can become knotted and linked and one obtains besides
ordinary knots and links more general knots and links in which circle is replaced by figure eight
and its generalizations obtained by adding more circles (eyeglasses for N−eyed creatures).

2. Since these 2-surfaces are space-like, the resulting structures are indeed tangles rather than only
braids. Tangles made of strands with fixed ends would result by allowing spherical partons
elongate to long strands with fixed ends. DNA tangles would the basic example, and are dis-
cussed also in the article. DNA sequences to which I have speculatively assigned invisible (dark)
braid structures might be seen in this context as space-like ”written language representations”
of genetic programs represented as number theoretic braids.
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15.7 Quantum Quandaries

John Baez’s [A120] discusses in a physicist friendly manner the possible application of category theory
to physics. The lessons obtained from the construction of topological quantum field theories (TQFTs)
suggest that category theoretical thinking might be very useful in attempts to construct theories of
quantum gravitation.

The point is that the Hilbert spaces associated with the initial and final state n-1-manifold of n-
cobordism indeed form in a natural manner category. Morphisms of Hilb in turn are unitary or possibly
more general maps between Hilbert spaces. TQFT itself is a functor assigning to a cobordism the
counterpart of S-matrix between the Hilbert spaces associated with the initial and final n-1-manifold.
The surprising result is that for n ≤ 4 the S-matrix can be unitary S-matrix only if the cobordism is
trivial. This should lead even string theorist to raise some worried questions.

In the hope of feeding some category theoretic thinking into my spine, I briefly summarize some
of the category theoretical ideas discussed in the article and relate it to the TGD vision, and after
that discuss the worried questions from TGD perspective. That space-time makes sense only relative
to imbedding space would conform with category theoretic thinking.

15.7.1 The *-category of Hilbert spaces

Baez considers first the category of Hilbert spaces. Intuitively the definition of this category looks
obvious: take linear spaces as objects in category Set, introduce inner product as additional structure
and identify morphisms as maps preserving this inner product. In finite-D case the category with
inner product is however identical to the linear category so that the inner product does not seem
to be absolutely essential. Baez argues that in infinite-D case the morphisms need not be restricted
to unitary transformations: one can consider also bounded linear operators as morphisms since they
play key role in quantum theory (consider only observables as Hermitian operators). For hyper-finite
factors of type II1 inclusions define very important morphisms which are not unitary transformations
but very similar to them. This challenges the belief about the fundamental role of unitarity and raises
the question about how to weaken the unitarity condition without losing everything.

The existence of the inner product is essential only for the metric topology of the Hilbert space.
Can one do without inner product as an inherent property of state space and reduce it to a morphism?
One can indeed express inner product in terms of morphisms from complex numbers to Hilbert space
and their conjugates. For any state Ψ of Hilbert space there is a unique morphisms TΨ from C to
Hilbert space satisfying TΨ(1) = Ψ. If one assumes that these morphisms have conjugates T ∗Ψ mapping
Hilbert space to C, inner products can be defined as morphisms T ∗ΦTΨ. The Hermitian conjugates of
operators can be defined with respect to this inner product so that one obtains *-category. Reader
has probably realized that TΨ and its conjugate correspond to ket and bra in Dirac’s formalism.

Note that in TGD framework based on hyper-finite factors of type II1 (HFFs) the inclusions of
complex rays might be replaced with inclusions of HFFs with included factor representing the finite
measurement resolution. Note also the analogy of inner product with the representation of space-times
as 4-surfaces of the imbedding space in TGD.

15.7.2 The monoidal *-category of Hilbert spaces and its counterpart at
the level of nCob

One can give the category of Hilbert spaces a structure of monoid by introducing explicitly the tensor
products of Hilbert spaces. The interpretation is obvious for physicist. Baez describes the details of this
identification, which are far from trivial and in the theory of quantum groups very interesting things
happen. A non-commutative quantum version of the tensor product implying braiding is possible
and associativity condition leads to the celebrated Yang-Baxter equations: inclusions of HFFs lead to
quantum groups [K9] too.

At the level of nCob the counterpart of the tensor product is disjoint union of n-1-manifolds. This
unavoidably creates the feeling of cosmic loneliness. Am I really a disjoint 3-surface in emptiness
which is not vacuum even in the geometric sense? Cannot be true!

This horrifying sensation disappears if n-1-manifolds are n-1-surfaces in some higher-dimensional
imbedding space so that there would be at least something between them. I can emit a little baby
manifold moving somewhere perhaps being received by some-one somewhere and I can receive radiation
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from some-one at some distance and in some direction as small baby manifolds making gentle tosses
on my face!

This consoling feeling could be seen as one of the deep justifications for identifying fundamental
objects as light-like partonic 3-surfaces in TGD framework. Their ends correspond to 2-D partonic
surfaces at the boundaries of future or past directed light-cones (states of positive and negative energy
respectively) and are indeed disjoint but not in the desperately existential sense as 3-geometries of
General Relativity.

This disjointness has also positive aspect in TGD framework. One can identify the color degrees
of freedom of partons as those associated with CP2 degrees of freedom. For instance, SU(3) analogs
for rotational states of rigid body become possible. 4-D space-time surfaces as preferred extremals
of Kähler action connect the partonic 3-surfaces and bring in classical representation of correlations
and thus of interactions. The representation as sub-manifolds makes it also possible to speak about
positions of these sub-Universes and about distances between them. The habitants of TGD Universe
are maximally free but not completely alone.

15.7.3 TQFT as a functor

The category theoretic formulation of TQFT relies on a very elegant and general idea. Quantum
transition has as a space-time correlate an n-dimensional surface having initial final states as its
n-1-dimensional ends. One assigns Hilbert spaces of states to the ends and S-matrix would be a
unitary morphism between the ends. This is expressed in terms of the category theoretic language by
introducing the category nCob with objects identified as n-1-manifolds and morphisms as cobordisms
and *-category Hilb consisting of Hilbert spaces with inner product and morphisms which are bounded
linear operators which do not however preserve the unitarity. Note that the morphisms of nCob cannot
anymore be identified as maps between n-1-manifolds interpreted as sets with additional structure so
that in this case category theory is more powerful than set theory.

TQFT is identified as a functor nCob → Hilb assigning to n-1-manifolds Hilbert spaces, and to
cobordisms unitary S-matrices in the category Hilb. This looks nice but the surprise is that for n ≤ 4
unitary S-matrix exists only if the cobordism is trivial so that topology changing transitions are not
possible unless one gives up unitarity.

This raises several worried questions.

1. Does this result mean that in TQFT sense unitary S-matrix for topology changing transitions
from a state containing ni closed strings to a state containing nf 6= ni strings does not exist?
Could the situation be same also for more general non-topological stringy S-matrices? Could
the non-converging perturbation series for S-matrix with finite individual terms matrix fail to
no non-perturbative counterpart? Could it be that M-theory is doomed to remain a dream with
no hope of being fulfilled?

2. Should one give up the unitarity condition and require that the theory predicts only the relative
probabilities of transitions rather than absolute rates? What the proper generalization of the
S-matrix could be?

3. What is the relevance of this result for quantum TGD?

15.7.4 The situation is in TGD framework

The result about the non-existence of unitary S-matrix for topology changing cobordisms allows new
insights about the meaning of the departures of TGD from string models.

Cobordism cannot give interesting selection rules

When I started to work with TGD for more than 28 years ago, one of the first ideas was that one
could identify the selection rules of quantum transitions as topological selection rules for cobordisms.
Within week or two came the great disappointment: there were practically no selection rules. Could
one revive this naive idea? Could the existence of unitary S-matrix force the topological selection
rules after all? I am skeptic. If I have understood correctly the discussion of what happens in 4-D
case [A206] only the exotic diffeo-structures modify the situation in 4-D case.
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Light-like 3-surfaces allow cobordism

In the physically interesting GRT like situation one would expect the cobordism to be mediated by a
space-time surface possessing Lorentz signature. This brings in metric and temporal distance. This
means complications since one must leave the pure TQFT context. Also the classical dynamics of
quantum gravitation brings in strong selection rules related to the dynamics in metric degrees of
freedom so that TQFT approach is not expected to be useful from the point of view of quantum
gravity and certainly not the limit of a realistic theory of quantum gravitation.

In TGD framework situation is different. 4-D space-time sheets can have Euclidian signature of the
induced metric so that Lorentz signature does not pose conditions. The counterparts of cobordisms
correspond at fundamental level to light-like 3-surfaces, which are arbitrarily except for the light-
likeness condition (the effective 2-dimensionality implies generalized conformal invariance and analogy
with 3-D black-holes since 3-D vacuum Einstein equations are satisfied). Field equations defined by
the Chern-Simons action imply that CP2 projection is at most 2-D but this condition holds true only
for the extremals and one has functional integral over all light-like 3-surfaces. The temporal distance
between points along light-like 3-surface vanishes. The constraints from light-likeness bring in metric
degrees of freedom but in a very gentle manner and just to make the theory physically interesting.

Feynmann cobordism as opposed to ordinary cobordism

In string model context the discouraging results from TQFT hold true in the category of nCob, which
corresponds to trouser diagrams for closed strings or for their open string counterparts. In TGD
framework these diagrams are replaced with a direct generalization of Feynman diagrams for which
3-D light-like partonic 3-surfaces meet along their 2-D ends at the vertices. In honor of Feynman one
could perhaps speak of Feynman cobordisms. These surfaces are singular as 3-manifolds but vertices
are nice 2-manifolds. I contrast to this, in string models diagrams are nice 2-manifolds but vertices
are singular as 1-manifolds (say eye-glass type configurations for closed strings).

This picture gains a strong support for the interpretation of fermions as light-like throats associated
with connected sums of CP2 type extremals with space-time sheets with Minkowski signature and of
bosons as pairs of light-like wormhole throats associated with CP2 type extremal connecting two
space-time sheets with Minkowski signature of induced metric. The space-time sheets have opposite
time orientations so that also zero energy ontology emerges unavoidably. There is also consistency
TGD based explanation of the family replication phenomenon in terms of genus of light-like partonic
2-surfaces.

One can wonder what the 4-D space-time sheets associated with the generalized Feynman diagrams
could look like? One can try to gain some idea about this by trying to assign 2-D surfaces to ordinary
Feynman diagrams having a subset of lines as boundaries. In the case of 2→2 reaction open string
is pinched to a point at vertex. 1→2 vertex, and quite generally, vertices with odd number of lines,
are impossible. The reason is that 1-D manifolds of finite size can have either 0 or 2 ends whereas
in higher-D the number of boundary components is arbitrary. What one expects to happen in TGD
context is that wormhole throats which are at distance characterized by CP2 fuse together in the
vertex so that some kind of pinches appear also now.

Zero energy ontology

Zero energy ontology gives rise to a second profound distinction between TGD and standard QFT.
Physical states are identified as states with vanishing net quantum numbers, in particular energy.
Everything is creatable from vacuum - and one could add- by intentional action so that zero energy
ontology is profoundly Eastern. Positive resp. negative energy parts of states can be identified as
states associated with 2-D partonic surfaces at the boundaries of future resp. past directed light-cones,
whose tips correspond to the arguments of n-point functions. Each incoming/outgoing particle would
define a mini-cosmology corresponding to not so big bang/crunch. If the time scale of perception is
much shorter than time interval between positive and zero energy states, the ontology looks like the
Western positive energy ontology. Bras and kets correspond naturally to the positive and negative
energy states and phase conjugation for laser photons making them indeed something which seems to
travel in opposite time direction is counterpart for bra-ket duality.
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Finite temperature S-matrix defines genuine quantum state in zero energy ontology

In TGD framework one encounters two S-matrix like operators.

1. There is U-matrix between zero energy states. This is expected to be rather trivial but very
important from the point of view of description of intentional actions as transitions transforming
p-adic partonic 3-surfaces to their real counterparts.

2. The S-matrix like operator describing what happens in laboratory corresponds to the time-like
entanglement coefficients between positive and negative energy parts of the state. Measurement
of reaction rates would be a measurement of observables reducing time like entanglement and
very much analogous to an ordinary quantum measurement reducing space-like entanglement.
There is a finite measurement resolution described by inclusion of HFFs and this means that
situation reduces effectively to a finite-dimensional one.

p-Adic thermodynamics strengthened with p-adic length scale hypothesis predicts particle masses
with an amazing success. At first the thermodynamical approach seems to be in contradiction with the
idea that elementary particles are quantal objects. Unitarity is however not necessary if one accepts
that only relative probabilities for reductions to pairs of initial and final states interpreted as particle
reactions can be measured.

The beneficial implications of unitarity are not lost if one replaces QFT with thermal QFT. Cate-
gory theoretically this would mean that the time-like entanglement matrix associated with the product
of cobordisms is a product of these matrices for the factors. The time parameter in S-matrix would
be replaced with a complex time parameter with the imaginary part identified as inverse temperature.
Hence the interpretation in terms of time evolution is not lost.

In the theory of hyper-finite factors of type III1 the partition function for thermal equilibrium
states and S-matrix can be neatly fused to a thermal S-matrix for zero energy states and one could
introduce p-adic thermodynamics at the level of quantum states. It seems that this picture applies
to HFFs by restriction. Therefore the loss of unitarity S-matrix might after all turn to a victory by
more or less forcing both zero energy ontology and p-adic thermodynamics.

15.8 How to represent algebraic numbers as geometric ob-
jects?

Physics blogs are also interesting because they allow to get some grasp about very different styles of
thinking of a mathematician and physicist. For mathematician it is very important that the result
is obtained by a strict use of axioms and deduction rules. Physicist is a cognitive opportunist: it
does not matter how the result is obtained by moving along axiomatically allowed paths or not, and
the new result is often more like a discovery of a new axiom and physicist is ever-grateful for Gödel
for giving justification for what sometimes admittedly degenerates to a creative hand-waving. For
physicist ideas form a kind of bio-sphere and the fate of the individual idea depends on its ability to
survive, which is determined by its ability to become generalized, its consistency with other ideas,
and ability to interact with other ideas to produce new ideas.

15.8.1 Can one define complex numbers as cardinalities of sets?

During few days before writing this we have had in Kea’s blog a little bit of discussion inspired by
the problem related to the categorification of basic number theoretical structures. I have learned that
sum and product are natural operations for the objects of category. For instance, one can define sum
as in terms of union of sets or direct sum of vector spaces and product as Cartesian product of sets
and tensor product of vector spaces: rigs [A115] are example of categories for which natural numbers
define sum and product.

Subtraction and division are however problematic operations. Negative numbers and inverses of
integers do not have a realization as a number of elements for any set or as dimension of vector
space. The naive physicist inside me asks immediately: why not go from statics to dynamics and take
operations (arrows with direction) as objects: couldn’t this allow to define subtraction and division? Is
the problem that the axiomatization of group theory requires something which purest categorification
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does not give? Or aren’t the numbers representable in terms of operations of finite groups not enough?
In any case cyclic groups would allow to realize roots of unity as operations (Z2 would give −1).

One could also wonder why the algebraic numbers might not somehow result via the representations
of permutation group of infinite number of elements containing all finite groups and thus Galois groups
of algebraic extensions as subgroups? Why not take the elements of this group as objects of the basic
category and continue by building group algebra and hyper-finite factors of type II1 isomorphic to
spinors of world of classical worlds, and so on.

After having written the first half of the section, I learned that something similar to the transition
from statics to dynamics is actually carried out but by manner which is by many orders of magnitudes
more refined than the proposal above and that I had never been able to imagine. The article Objects of
categories as complex numbers of Marcelo Fiore and Tom Leinster [A115] describes a fascinating idea
summarized also by John Baez [A106] about how one can assign to the objects of a category complex
numbers as roots of a polynomial Z = P (Z) defining an isomorphism of object. Z is the element of
a category called rig, which differs from ring in that integers are replaced with natural numbers. One
can replace Z with a complex number |Z| defined as a root of polynomial. |Z| is interpreted formally
as the cardinality of the object. It is essential to have natural numbers and thus only product and
sum are defined. This means a restriction: for instance, only complex algebraic numbers associated
with polynomials having natural numbers as coefficients are obtained. Something is still missing.

Note that this correspondence assumes the existence of complex numbers and one cannot say that
complex numbers are categorified. Maybe basic number fields must be left outside categorification.
One can however require that all of them have a concrete set theoretic representation rather than
only formal interpretation as cardinality so that one still encounters the problem how to represent
algebraic complex number as a concrete cardinality of a set.

15.8.2 In what sense a set can have cardinality -1?

The discussion in Kea’s blog led me to ask what the situation is in the case of p-adic numbers. Could it
be possible to represent the negative and inverse of p-adic integer, and in fact any p-adic number, as a
geometric object? In other words, does a set with −1 or 1/n or even

√
−1 elements exist? If this were

in some sense true for all p-adic number fields, then all this wisdom combined together might provide
something analogous to the adelic representation for the norm of a rational number as product of its
p-adic norms. As will be found, alternative interpretations of complex algebraic numbers as p-adic
numbers representing cardinalities of p-adic fractals emerge. The fractal defines the manner how one
must do an infinite sum to get an infinite real number but finite p-adic number.

Of course, this representation might not help to define p-adics or reals categorically but might help
to understand how p-adic cognitive representations defined as subsets for rational intersections of real
and p-adic space-time sheets could represent p-adic number as the number of points of p-adic fractal
having infinite number of points in real sense but finite in the p-adic sense. This would also give a
fundamental cognitive role for p-adic fractals as cognitive representations of numbers.

How to construct a set with -1 elements?

The basic observation is that p-adic -1 has the representation

−1 = (p− 1)/(1− p) = (p− 1)(1 + p+ p2 + p3....)

As a real number this number is infinite or -1 but as a p-adic number the series converges and has
p-adic norm equal to 1. One can also map this number to a real number by canonical identification
taking the powers of p to their inverses: one obtains p in this particular case. As a matter fact, any
rational with p-adic norm equal to 1 has similar power series representation.

The idea would be to represent a given p-adic number as the infinite number of points (in real
sense) of a p-adic fractal such that p-adic topology is natural for this fractal. This kind of fractals
can be constructed in a simple manner: from this more below. This construction allows to represent
any p-adic number as a fractal and code the arithmetic operations to geometric operations for these
fractals.

These representations - interpreted as cognitive representations defined by intersections of real and
p-adic space-time sheets - are in practice approximate if real space-time sheets are assumed to have a
finite size: this is due to the finite p-adic cutoff implied by this assumption and the meaning a finite
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resolution. One can however say that the p-adic space-time itself could by its necessarily infinite size
represent the idea of given p-adic number faithfully.

This representation applies also to the p-adic counterparts of algebraic numbers in case that they
exist. For instance, roughly one half of p-adic numbers have square root as ordinary p-adic number
and quite generally algebraic operations on p-adic numbers can give rise to p-adic numbers so that
also these could have set theoretic representation. For p mod 4 = 1 also

√
(− 1) exists: for instance,

for p = 5: 22 = 4 = −1 mod 5 guarantees this so that also imaginary unit and complex numbers
would have a fractal representation. Also many transcendentals possess this kind of representation.
For instance exp(xp) exists as a p-adic number if x has p-adic norm not larger than 1: also log(1+xp)
does so.

Hence a quite impressive repertoire of p-adic counterparts of real numbers would have represen-
tation as a p-adic fractal for some values of p. Adelic vision would suggest that combining these
representations one might be able to represent quite a many real numbers. In the case of π I do not
find any obvious p-adic representation (for instance sin(π/6) = 1/2 does not help since the p-adic
variant of the Taylor expansion of π/6 = arcsin(1/2) does not converge p-adically for any value of
p). It might be that there are very many transcendentals not allowing fractal representation for any
value of p.

Conditions on the fractal representations of p-adic numbers

Consider now the construction of the fractal representations in terms of rational intersections of real
real and p-adic space-time sheets. The question is what conditions are natural for this representation
if it corresponds to a cognitive representation is realized in the rational intersection of real and p-adic
space-time sheets obeying same algebraic equations.

1. Pinary cutoff is the analog of the decimal cutoff but is obtained by dropping away high positive
rather than negative powers of p to get a finite real number: example of pinary cutoff is −1 =
(p−1)(1 +p+p2 + ...)→ (p−1)(1 +p+p2). This cutoff must reduce to a fractal cutoff meaning
a finite resolution due to a finite size for the real space-time sheet. In the real sense the p-adic
fractal cutoff means not forgetting details below some scale but cutting out all above some length
scale. Physical analog would be forgetting all frequencies below some cutoff frequency in Fourier
expansion.

The motivation comes from the fact that TGD inspired consciousness assigns to a given biological
body there is associated a field body or magnetic body containing dark matter with large ~ and
quantum controlling the behavior of biological body and so strongly identifying with it so as
to belief that this all ends up to a biological death. This field body has an onion like fractal
structure and a size of at least order of light-life. Of course, also larger onion layers could be
present and would represent those levels of cognitive consciousness not depending on the sensory
input on biological body: some altered states of consciousness could relate to these levels. In any
case, the larger the magnetic body, the better the numerical skills of the p-adic mathematician.

2. Lowest pinary digits of x = x0+x1p+x2p
2+..., xn ≤ p must have the most reliable representation

since they are the most significant ones. The representation must be also highly redundant
to guarantee reliability. This requires repetitions and periodicity. This is guaranteed if the
representation is hologram like with segments of length pn with digit xn represented again and
again in all segments of length pm, m > n.

3. The TGD based physical constraint is that the representation must be realizable in terms of
induced classical fields assignable to the field body hierarchy of an intelligent system interested
in artistic expression of p-adic numbers using its own field body as instrument. As a matter,
sensory and cognitive representations are realized at field body in TGD Universe and EEG is in
a fundamental role in building this representation. By p-adic fractality fractal wavelets are the
most natural candidate. The fundamental wavelet should represent the p different pinary digits
and its scaled up variants would correspond to various powers of p so that the representation
would reduce to a Fourier expansion of a classical field.
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Concrete representation

Consider now a concrete candidate for a representation satisfying these constraints.

1. Consider a p-adic number

y = pn0x, x =
∑

xnp
n , n ≥ n0 = 0 .

If one has a representation for a p-adic unit x the representation of is by a purely geometric
fractal scaling of the representation by pn. Hence one can restrict the consideration to p-adic
units.

2. To construct the representation take a real line starting from origin and divide it into segments
with lengths 1, p, p2, .... In TGD framework this scalings come actually as powers of p1/2 but
this is just a technical detail.

3. It is natural to realize the representation in terms of periodic field patterns. One can use wavelets
with fractal spectrum pnλ0 of ”wavelet lengths”, where λ0 is the fundamental wavelength. Fun-
damental wavelet should have p different patterns correspond to the p values of pinary digit as
its structures. Periodicity guarantees the hologram like character enabling to pick n:th digit by
studying the field pattern in scale pn anywhere inside the field body.

4. Periodicity guarantees also that the intersections of p-adic and real space-time sheets can repre-
sent the values of pinary digits. For instance, wavelets could be such that in a given p-adic scale
the number of rational points in the intersection of the real and p-adic space-time sheet equals
to xn. This would give in the limit of an infinite pinary expansion a set theoretic realization of
any p-adic number in which each pinary digit xn corresponds to infinite copies of a set with xn
elements and fractal cutoff due to the finite size of real space-time sheet would bring in a finite
precision. Note however that p-adic space-time sheet necessarily has an infinite size and it is
only real world realization of the representation which has finite accuracy.

5. A concrete realization for this object would be as an infinite tree with xn + 1 ≤ p branches in
each node at level n (xn + 1 is needed in order to avoid the splitting tree at xn = 0). In 2-adic
case -1 would be represented by an infinite pinary tree. Negative powers of p correspond to the
of the tree extending to a finite depth in ground.

15.8.3 Generalization of the notion of rig by replacing naturals with p-adic
integers

Previous considerations do not relate directly to category theoretical problem of assigning complex
numbers to objects. It however turns out that p-adic approach allows to generalize the proposal
of [A115] by replacing natural numbers with p-adic integers in the definition of rig so that any algebraic
complex number can define cardinality of an object of category allowing multiplication and sum and
that these complex numbers can be replaced with p-adic numbers if they make sense as such so
that previous arguments provide a concrete geometric representation of the cardinality. The road
to the realization this simple generalization required a visit to the John Baez’s Weekly Finds (Week
102) [A106] .

The outcome was the realization that the notion of rig used to categorify the subset of algebraic
numbers obtained as roots of polynomials with natural number valued coefficients generalizes trivially
by replacing natural numbers by p-adic integers. As a consequence one obtains beautiful p-adicization
of the generating function F(x) of structure as a function which converges p-adically for any rational
x = q for which it has prime p as a positive power divisor.

Effectively this generalization means the replacement of natural numbers as coefficients of the
polynomial defining the rig with all rationals, also negative, and all complex algebraic numbers find a
category theoretical representation as ”cardinalities”. These cardinalities have a dual interpretation as
p-adic integers which in general correspond to infinite real numbers but are mappable to real numbers
by canonical identification and have a geometric representation as fractals.
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Mapping of objects to complex numbers and the notion of rig

The idea of rig approach is to categorify the notion of cardinality in such a manner that one obtains a
subset of algebraic complex numbers as cardinalities in the category-theoretical sense. One can assign
to an object a polynomial with coefficients, which are natural numbers and the condition Z = P (Z)
says that P (Z) acts as an isomorphism of the object. One can interpret the equation also in terms
of complex numbers. Hence the object is mapped to a complex number Z defining a root of the
polynomial interpreted as an ordinary polynomial: it does not matter which root is chosen. The
complex number Z is interpreted as the ”cardinality” of the object but I do not really understand
the motivation for this. The deep further result is that also more general polynomial equations
R(|Z|) = Q(|Z|) satisfied by the generalized cardinality Z imply R(Z) = Q(Z) as isomorphism.

I try to reproduce what looks the most essential in the explanation of John Baez and relate it to
my own ideas but take this as my talk to myself and visit This Week’s Finds [A106] , one of the many
classics of Baez, to learn of this fascinating idea.

1. Baez considers first the ways of putting a given structure to n-element set. The set of these
structures is denoted by Fn and the number of them by |Fn|. The generating function |F |(x) =∑
n |Fn|xn packs all this information to a single function.

For instance, if the structure is binary tree, this function is given by T (x) =
∑
n Cn−1x

n, where
Cn−1 are Catalan numbers and n¿0 holds true. One can show that T satisfies the formula

T = X + T 2 ,

since any binary tree is either trivial or decomposes to a product of binary trees, where two trees
emanate from the root. One can solve this second order polynomial equation and the power
expansion gives the generating function.

2. The great insight is that one can also work directly with structures. For instance, by starting
from the isomorphism T = 1 + T 2 applying to an object with cardinality 1 and substituting
T 2 with (1 + T 2)2 repeatedly, one can deduce the amazing formula T 7(1) = T (1) mentioned by
Kea, and this identity can be interpreted as an isomorphism of binary trees.

3. This result can be generalized using the notion of rig category [A115] . In rig category one can
add and multiply but negatives are not defined as in the case of ring. The lack of subtraction
and division is still the problem and as I suggested in previous posting p-adic integers might
resolve the problem.

Whenever Z is object of a rig category, one can equip it with an isomorphism Z = P (Z)
where P (Z) is polynomial with natural numbers as coefficients and one can assign to object
”cardinality” as any root of the equation Z = P (Z). Note that set with n elements corresponds
to P (|Z|) = n. Thus subset of algebraic complex numbers receive formal identification as
cardinalities of sets. Furthermore, if the cardinality satisfies another equation Q(|Z|) = R(|Z|)
such that neither polynomial is constant, then one can construct an isomorphism Q(Z) = R(Z).
Isomorphisms correspond to equations!

4. This is indeed nice that there is something which is not so beautiful as it could be: why should
we restrict ourselves to natural numbers as coefficients of P (Z)? Could it be possible to replace
them with integers to obtain all complex algebraic numbers as cardinalities? Could it be possible
to replace natural numbers by p-adic integers?

p-Adic rigs and Golden Object as p-adic fractal

The notions of generating function and rig generalize to the p-adic context.

1. The generating function F (x) defining isomorphism Z in the rig formulation converges p-adically
for any p-adic number containing p as a factor so that the idea that all structures have p-adic
counterparts is natural. In the real context the generating function typically diverges and must
be defined by analytic continuation. Hence one might even argue that p-adic numbers are more
natural in the description of structures assignable to finite sets than reals.
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2. For rig one considers only polynomials P (Z) (Z corresponds to the generating function F ) with
coefficients which are natural numbers. Any p-adic integer can be however interpreted as a
non-negative integer: natural number if it is finite and ”super-natural” number if it is infinite.
Hence can generalize the notion of rig by replacing natural numbers by p-adic integers. The
rig formalism would thus generalize to arbitrary polynomials with integer valued coefficients so
that all complex algebraic numbers could appear as cardinalities of category theoretical objects.
Even rational coefficients are allowed. This is highly natural number theoretically.

3. For instance, in the case of binary trees the solutions to the isomorphism condition T = p+ T 2

giving T = [1 ± (1 − 4p)1/2]/2 and T would be complex number [p ± (1 − 4p)1/2]/2. T (p)
can be interpreted also as a p-adic number by performing power expansion of square root in
case that the p-adic square root exists: this super-natural number can be mapped to a real
number by the canonical identification and one obtains also the set theoretic representations
of the category theoretical object T (p) as a p-adic fractal. This interpretation of cardinality is
much more natural than the purely formal interpretation as a complex number. This argument
applies completely generally. The case x = 1 discussed by Baez gives T = [1± (−3)1/2]/2 allows
p-adic representation if −3 == p− 3 is square mod p. This is the case for p = 7 for instance.

4. John Baez [A106] poses also the question about the category theoretic realization of ”Golden
Object”, his big dream. In this case one would have Z = G = −1+G2 = P (Z). The polynomial
on the right hand side does not conform with the notion of rig since -1 is not a natural number.
If one allows p-adic rigs, x = −1 can be interpreted as a p-adic integer (p−1)(1+p+ ...), positive
and infinite and ”super-natural”, actually largest possible p-adic integer in a well defined sense.

A further condition is that Golden Mean converges as a p-adic number: this requires that
√

5
must exist as a p-adic number: (5 = 1 + 4)1/2 certainly converges as power series for p = 2 so
that Golden Object exists 2-adically. By using [A77] of Euler, one finds that 5 is square mod p
only if p is square mod 5. To decide whether given p is Golden it is enough to look whether p
mod 5 is 1 or 4. For instance, p = 11, 19, 29, 31 (=M5) are Golden. Mersennes Mk, k = 3, 7, 127
and Fermat primes are not Golden. One representation of Golden Object as p-adic fractal is the
p-adic series expansion of [1/2 ± 51/2]/2 representable geometrically as a binary tree such that
there are 0 ≤ xn + 1 ≤ p branches at each node at height n if n:th p-adic coefficient is xn. The
”cognitive” p-adic representation in terms of wavelet spectrum of classical fields is discussed in
the previous posting.

5. It would be interesting to know how quantum dimensions of quantum groups assignable to Jones
inclusions [K87, K26, K9] relate to the generalized cardinalities. The root of unity property of
quantum phase (qn+1 = q) suggests Q = Qn+1 = P (Q) as the relevant isomorphism. For Jones
inclusions the cardinality q = exp(i2π/n) would not be however equal to quantum dimension
D(n) = 4cos2(π/n).

Is there a connection with infinite integers?

Infinite primes [K76] correspond to Fock states of a super-symmetric arithmetic quantum field theory
and there is entire infinite hierarchy of them corresponding to repeated second quantization. Also
infinite primes and rationals make sense. Besides free Fock states spectrum contains at each level also
what might be identified as bound states. All these states can be mapped to polynomials. Since the
roots of polynomials represent complex algebraic numbers and as they seem to characterize objects of
categories, there are reasons to expect that infinite rationals might allow also interpretation in terms
of say rig categories or their generalization. Also the possibility to identify space-time coordinate
as isomorphism of a category might be highly interesting concerning the interpretation of quantum
classical correspondence.

15.9 Gerbes and TGD

The notion of gerbes has gained much attention during last years in theoretical physics and there is
an abundant gerbe-related literature in hep-th archives. Personally I learned about gerbes from the
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excellent article of Jouko Mickelson [A193] (Jouko was my opponent in PhD dissertation for more
than two decades ago: so the time flows!).

I have already applied the notion of bundle gerbe in TGD framework in the construction of the
Dirac determinant which I have proposed to define the Kähler function for the configuration space of
3-surfaces (see [K15] ). The insights provided by the general results about bundle gerbes discussed
in [A193] led, not only to a justification for the hypothesis that Dirac determinant exists for the
modified Dirac action, but also to an elegant solution of the conceptual problems related to the
construction of Dirac determinant in the presence of chiral symmetry. Furthermore, on basis of the
special properties of the modified Dirac operator there are good reasons to hope that the determinant
exists even without zeta function regularization. The construction also leads to the conclusion that the
space-time sheets serving as causal determinants must be geodesic sub-manifolds (presumably light
like boundary components or ”elementary particle horizons”). Quantum gravitational holography is
realized since the exponent of Kähler function is expressible as a Dirac determinant determined by
the local data at causal determinants and there would be no need to find absolute minima of Kähler
action explicitly.

In the sequel the emergence of 2-gerbes at the space-time level in TGD framework is discussed and
shown to lead to a geometric interpretation of the somewhat mysterious cocycle conditions for a wide
class of gerbes generated via the ∧d products of connections associated with 0-gerbes. The resulting
conjecture is that gerbes form a graded-commutative Grassmman algebra like structure generated by
-1- and 0-gerbes. 2-gerbes provide also a beautiful topological characterization of space-time sheets
as structures carrying Chern-Simons charges at boundary components and the 2-gerbe variant of
Bohm-Aharonov effect occurs for perhaps the most interesting asymptotic solutions of field equations
especially relevant for anyonics systems, quantum Hall effect, and living matter [K85] .

15.9.1 What gerbes roughly are?

Very roughly and differential geometrically, gerbes can be regarded as a generalization of connection.
Instead of connection 1-form (0-gerbe) one considers a connection n + 1-form defining n-gerbe. The
curvature of n-gerbe is closed n + 2-form and its integral defines an analog of magnetic charge. The
notion of holonomy generalizes: instead of integrating n-gerbe connection over curve one integrates its
connection form over n+1-dimensional closed surface and can transform it to the analog of magnetic
flux.

There are some puzzling features associated with gerbes. Ordinary U(1)-bundles are defined in
terms of open sets Uα with gauge transformations gαβ = g−1

βα defined in Uα∩Uβ relating the connection
forms in the patch Uβ to that in patch Uα. The 3-cocycle condition

gαβgβγgγα = 1 (15.9.1)

makes it possible to glue the patches to a bundle structure.

In the case of 1-gerbes the transition functions are replaced with the transition functions gαβγ =
g−1
γβα defined in triple intersections Uα ∩ Uβ ∩ Uγ and 3-cocycle must be replaced with 4-cocycle:

gαβγgβγδgγδαgδαβ = 1 . (15.9.2)

The generalizations of these conditions to n-gerbes is obvious.

In the case of 2-intersections one can build a bundle structure naturally but in the case of 3-
intersections this is not possible. Hence the geometric interpretation of the higher gerbes is far from
obvious. One possible interpretation of non-trivial 1-gerbe is as an obstruction for lifting projective
bundles with fiber space CPn to vector bundles with fiber space Cn+1 [A193] . This involves the
lifting of the holomorphic transition functions gα defined in the projective linear group PGL(n+1, C)
to GL(n + 1, C). When the 3-cocycle condition for the lifted transition functions gαβ fails it can be
replaced with 4-cocycle and one obtains 1-gerbe.
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15.9.2 How do 2-gerbes emerge in TGD?

Gerbes seem to be interesting also from the point of view of TGD, and TGD approach allows a
geometric interpretation of the cocycle conditions for a rather wide class of gerbes.

Recall that the Kähler form J of CP2 defines a non-trivial magnetically charged and self-dual
U(1)-connection A. The Chern-Simons form ω = A ∧ J = A ∧ dA having CP2 Abelian instanton
density J ∧ J as its curvature form and can thus be regarded as a 3-connection form of a 2-gerbe.
This 2-gerbe is induced by 0-gerbe.

The coordinate patches Uα are same as for U(1) connection. In the transition between patches A
and ω transform as

A → A+ dφ ,

ω → ω + dA2 ,

A2 = φ ∧ J .

(15.9.0)

The transformation formula is induced by the transformation formula for U(1) bundle. Somewhat
mysteriously, there is no need to define anything in the intersections of Uα in the recent case.

The connection form of the 2-gerbe can be regarded as a second ∧d power of Kähler connection:

A3 ≡ A ∧ dA . (15.9.1)

The generalization of this observation allows to develop a different view about n-gerbes generated as
∧d products of 0-gerbes.

The hierarchy of gerbes generated by 0-gerbes

Consider a collection of U(1) connections Ai). They generate entire hierarchy of gerbe-connections
via the ∧d product

A3 = A1) ∧ dA2) (15.9.2)

defining 2-gerbe having a closed curvature 4-form

F4 = dA1) ∧ dA2) . (15.9.3)

∧d product is commutative apart from a gauge transformation and the curvature forms of A1) ∧ dA2)

and A2) ∧ dA1) are the same.

Quite generally, the connections Am of m − 1 gerbe and An of n − 1-gerbe define m + n + 1
connection form and the closed curvature form of m+ n-gerbe as

Am+n+1 = A1)
m ∧ dA2)

n ,

Fm+n+2 = dA1)
m ∧ dA2)

n . (15.9.3)

The sequence of gerbes extends up to n = D−2, where D is the dimension of the underlying manifold.
These gerbes are not the most general ones since one starts from 0-gerbes. One can of course start
from n > 0-gerbes too.

The generalization of the ∧d product to the non-Abelian situation is not obvious. The problems
stem from the that the Lie-algebra valued connection forms A1) and A2) appearing in the covariant
version D = d+A do not commute.
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15.9.3 How to understand the replacement of 3-cycles with n-cycles?

If n-gerbes are generated from 0-gerbes it is possible to understand how the intersections of the open
sets emerge. Consider the product of 0-gerbes as the simplest possible case. The crucial observation
is that the coverings Uα for A1) and Vβ for A2) need not be same (for CP2 this was the case). One can
form a new covering consisting of sets Uα ∩ Vα1 . Just by increasing the index range one can replace
V with U and one has covering by Uα ∩ Uα1

≡ Uαα1
.

The transition functions are defined in the intersections Uαα1 ∩ Uββ1 ≡ Uαα1ββ1 and cocycle
conditions must be formulated using instead of intersections Uαβγ the intersections Uαα1ββ1γγ1 . Hence
the transition functions can be written as gαα1ββ1

and the 3-cocycle are replaced with 5-cocycle
conditions since the minimal co-cycle corresponds to a sequence of 6 steps instead of 4:

Uαα1ββ1
→ Uα1ββ1γ → Uββ1γγ1 → Uβ1γγ1α → Uγγ1αα1

.

The emergence of higher co-cycles is thus forced by the modification of the bundle covering necessary
when gerbe is formed as a product of lower gerbes. The conjecture is that any even gerbe is expressible
as a product of 0-gerbes.

An interesting application of the product structure is at the level of configuration space of 3-surfaces
(”world of classical worlds”). The Kähler form of the configuration space defines a connection 1-form
and this generates infinite hierarchy of connection 2n+ 1-forms associated with 2n-gerbes.

15.9.4 Gerbes as graded-commutative algebra: can one express all gerbes
as products of −1 and 0-gerbes?

If one starts from, say 1-gerbes, the previous argument providing a geometric understanding of gerbes
is not applicable as such. One might however hope that it is possible to represent the connection
2-form of any 1-gerbe as a ∧d product of a connection 0-form φ of ”-1”-gerbe and connection 1-form
A of 0-gerbe:

A2 = φdA ≡ A ∧ dφ ,

with different coverings for φ and A. The interpretation as an obstruction for the modification of the
underlying bundle structure is consistent with this interpretation.

The notion of −1-gerbe is not well-defined unless one can define the notion of −1 form precisely.
The simplest possibility that 0-form transforms trivially in the change of patch is not consistent.
One could identify contravariant n-tensors as −n-forms and d for them as divergence and d2 as
the antisymmetrized double divergence giving zero. φ would change in a gauge transformation by
a divergence of a vector field. The integral of a divergence over closed M vanishes identically so
that if the integral of φ over M is non-vanishing it corresponds to a non-trivial 0-connection. This
interpretation of course requires the introduction of metric.

The requirement that the minimal intersections of the patches for 1-gerbes are of form Uαβγ would
be achieved if the intersections patches can be restricted to the intersections Uαβγ defined by Uα ∩Vγ
and Uβ ∩ Vγ (instead of Uβ ∩ Vδ), where the patches Vγ would be most naturally associated with
−1-gerbe. It is not clear why one could make this restriction. The general conjecture is that any
gerbe decomposes into a multiple ∧d product of −1 and 0-gerbes just like integers decompose into
primes. The ∧d product of two odd gerbes is anti-commutative so that there is also an analogy
with the decomposition of the physical state into fermions and bosons, and gerbes for a graded-
commutative super-algebra generalizing the Grassmann algebra of manifold to a Grassmann algebra
of gerbe structures for manifold.

15.9.5 The physical interpretation of 2-gerbes in TGD framework

2-gerbes could provide some insight to how to characterize the topological structure of the many-
sheeted space-time.

1. The cohomology group H4 is obviously crucial in characterizing 2-gerbe. In TGD framework
many-sheetedness means that different space-time sheets with induced metric having Minkowski
signature are separated by elementary particle horizons which are light like 3-surfaces at which
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the induced metric becomes degenerate. Also the time orientation of the space-time sheet can
change at these surfaces since the determinant of the induced metric vanishes.

This justifies the term elementary particle horizon and also the idea that one should treat
different space-time sheets as generating independent direct summands in the homology group
of the space-time surface: as if the space-time sheets not connected by join along boundaries
bonds were disjoint. Thus the homology group H4 and 2-gerbes defining instanton numbers
would become important topological characteristics of the many-sheeted space-time.

2. The asymptotic behavior of the general solutions of field equations can be classified by the
dimension D of the CP2 projection of the space-time sheet. For D = 4 the instanton den-
sity defining the curvature form of 2-gerbe is non-vanishing and instanton number defines a
topological charge. Also the values of the Chern-Simons invariants associated with the bound-
ary components of the space-time sheet define topological quantum numbers characterizing the
space-time sheet and their sum equals to the instanton charge. CP2 type extremals represent a
basic example of this kind of situation. From the physical view point D = 4 asymptotic solutions
correspond to what might be regarded chaotic phase for the flow lines of the Kähler magnetic
field. Kähler current vanishes so that empty space Maxwell’s equations are satisfied.

3. For D = 3 situation is more subtle when boundaries are present so that the higher-dimensional
analog of Aharonov-Bohm effect becomes possible. In this case instanton density vanishes but
the Chern-Simons invariants associated with the boundary components can be non-vanishing.
Their sum obviously vanishes. The space-time sheet can be said to be a neutral C-S multipole.
Separate space-time sheets can become connected by join along boundaries bonds in a quantum
jump replacing a space-time surface with a new one. This means that the cohomology group
H4 as well as instanton charges and C-S charges of the system change.

Concerning the asymptotic dynamics of the Kähler magnetic field, D = 3 phase corresponds to an
extremely complex but highly organized phase serving as an excellent candidate for the modelling of
living matter. Both the TGD based description of anyons and quantum Hall effect and the model for
topological quantum computation based on the braiding of magnetic flux tubes rely heavily on the
properties D = 3 phase [K85] .

The non-vanishing of the C-S form implies that the flow lines of the Kähler magnetic are highly
entangled and have as an analog mixing hydrodynamical flow. In particular, one cannot define non-
trivial order parameters, say phase factors, which would be constant along the lines. The interpretation
in terms of broken super-conductivity suggests itself. Kähler current can be non-vanishing so that
there is no counterpart for this phase at the level of Maxwell’s equations.

15.10 Appendix: Category theory and construction of S-matrix

The construction of configuration space geometry, spinor structure and of S-matrix involve difficult
technical and conceptual problems and category theory might be of help here. As already found, the
application of category theory to the construction of configuration space geometry allows to understand
how the arrow of psychological time emerges.

The construction of the S-matrix involves several difficult conceptual and technical problems in
which category theory might help. The incoming states of the theory are what might be called free
states and are constructed as products of the configuration space spinor fields. One can effectively re-
gard them as being defined in the Cartesian power of the configuration space divided by an appropriate
permutation group. Interacting states in turn are defined in the configuration space.

Cartesian power of the configuration space of 3-surfaces is however in geometrical sense more or
less identical with the configuration space since the disjoint union of N 3-surfaces is itself a 3-surface
in configuration space. Actually it differs from configuration space itself only in that the 3-surfaces of
many particle state can intersect each other and if one allows this, one has paradoxical self-referential
identification CH = CH2/S2 = ... = CHN/SN ..., where over-line signifies that intersecting 3-surfaces
have been dropped from the product.

Note that arbitrarily small deformation can remove the intersections between 3-surfaces and four-
dimensional general coordinate invariance allows always to use non-intersecting representatives. In
case of the spinor structure of the Cartesian power this identification means that the tensor powers
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SCHN of the configuration space spinor structure are in some sense identical with the spinor structure
SCH of the configuration space. Certainly the oscillator operators of the tensor factors must be
assumed to be mutually anti-commuting.

The identities CH = CH2/S2 = .. and corresponding identities SCH = SCH2 = ... for the space
SCH of configuration space spinor fields might imply very deep constraints on S-matrix. What comes
into mind are counterparts for the Schwinger-Dyson equations of perturbative quantum field theory
providing defining equations for the n-point functions of the theory [A176] . The isomorphism between
SCH2 and SCH is actually what is needed to calculate the S-matrix elements. Category theory might
help to understand at a general level what these self-referential and somewhat paradoxical looking
identities really imply and perhaps even develop TGD counterparts of Schwinger-Dyson equations.

There is also the issue of bound states. The interacting states contain also bound states not
belonging to the space of free states and category theory might help also here. It would seem that
the state space must be constructed by taking into account also the bound states as additional ’free’
states in the decomposition of states to product states.

A category naturally involved with the construction of the S-matrix (or U-matrix) is the space of
the absolute minima X4(X3) of the Kähler action which might be called interacting category. The
canonical transformations acting as isometries of the configuration space geometry act naturally as
the morphisms of this category. The group Diff4 of general coordinate transformations in turn acts
as gauge symmetries.

S-matrix relates free and interacting states and is induced by the classical long range interactions
induced by the criticality of the preferred extremals in the sense of having an infinite number of
deformations for which the second variation of Kähler action vanishes S-matrix elements are essentially
Glebch-Gordan coefficients relating the states in the tensor power of the interacting super-symplectic
representation with the interacting super-symplectic representation itself. More concretely, N -particle
free states can be seen as configuration space spinor fields in CHN obtained as tensor products of
ordinary CH spinor fields. Free states correspond classically to the unions of space-time surfaces
associated with the 3-surfaces representing incoming particles whereas interacting states correspond
classically to the space-time surfaces associated with the unions of the 3-surfaces defining incoming
states. These two states define what might be called free and interacting categories with canonical
transformations acting as morphisms.

The classical interaction is represented by a functor S : CHN/SN → CH mapping the classical free

many particle states, that is objects of the product category defined by CHN/SN to the interacting
category CH. This functor assigns to the union ∪iX4(X3

i ) of the absolute minima X4(X3
i ) of Kähler

action associated with the incoming, free states X3
i the absolute minimum X4(∪X3

i ) associated with
the union of three-surfaces representing the outgoing interacting state. At quantum level this functor
maps the state space SCHN associated with ∪iX4(X3

i ) to SCH in a unitary manner. An important
constraint on S-matrix is that it acts effectively as a flow in zero modes correlating the quantum
numbers in fiber degrees of freedom in one-to-one manner with the values of zero modes so that
quantum jump UΨi → Ψ0... gives rise to a quantum measurement.



Chapter 16

Riemann Hypothesis and Physics

16.1 Introduction

Riemann hypothesis states that the nontrivial zeros of Riemann Zeta function lie on the critical
line Re(s) = 1/2. Since Riemann zeta function allows a formal interpretation as thermodynamical
partition function for a quantum field theoretical system consisting of bosons labeled by primes, it
is interesting to look Riemann hypothesis from the perspective of physics. The complex value of
temperature is not however consistent with thermodynamics. In zero energy ontology one obtains
quantum theory as a square root of thermodynamics and this objection can be circumvented and a
nice argument allowing to interpret RH physically emerges.

Conformal invariance leads to a beautiful generalization of Hilbert-Polya conjecture allowing to
interpret RH in terms of coherent states rather than energy eigenstates of a Hamiltonian. In zero
energy ontology the interpretation is that the coherent states in question represent Bose-Einstein
condensation at criticality. Zeros of zeta correspond to coherent states orthogonal to the coherent
state characterized by s = 0, which has finite norm, and therefore does not represent Bose-Einstein
condensation.

Quantum TGD and also TGD inspired theory of consciousness provide additional view points to
the hypothesis and suggests sharpening of Riemann hypothesis, detailed strategies of proof of the
sharpened hypothesis, and heuristic arguments for why the hypothesis is true. These considerations
are however highly speculative and are represented at the end of the chapter.

16.1.1 Super-conformal invariance and generalization of Hilbert-Polya hy-
pothesis

Super-conformal invariance inspires a strategy for proving the Riemann hypothesis. The vanishing
of the Riemann Zeta reduces to an orthogonality condition for the eigenfunctions of a non-Hermitian
operator D+ having the zeros of Riemann Zeta as its eigenvalues. The construction of D+ is inspired
by the conviction that Riemann Zeta is associated with a physical system allowing super-conformal
transformations as its symmetries and second quantization in terms of the representations of the
super-conformal algebra. The eigenfunctions of D+ are analogous to coherent states of a harmonic
oscillator and in general they are not orthogonal to each other. The states orthogonal to a vacuum
state (having a negative norm squared) correspond to the zeros of Riemann Zeta. The physical
states having a positive norm squared correspond to the zeros of Riemann Zeta at the critical line.
Riemann hypothesis follows both from the hermiticity and positive definiteness of the metric in the
space of states corresponding to the zeros of ζ. Also conformal symmetry in appropriate sense implies
Riemann hypothesis and after one year from the discovery of the basic idea it became clear that one
can actually construct a rigorous twenty line long analytic proof for the Riemann hypothesis using a
standard argument from Lie group theory.

16.1.2 Zero energy ontology and RH

A further approach to RH is based on zero energy ontology and is consistent with the approach based
on the notion of coherent state. The postulate that all zero energy states for Riemann system are zeros

785
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of zeta and critical in the sense being non-normalizable (Bose-Einstein condensation) combined with
the fact that s = 1 is the only pole of ζ implies that the all zeros of ζ correspond to Re(s) = 1/2 so that
RH follows from purely physical assumptions. The behavior at s = 1 would be an essential element
of the argument. The interpretation as a zero energy counterpart of a coherent state seems to makes
sense also now. Note that in ZEO coherent state property is in accordance with energy conservation.
In the case of coherent states of Cooper pairs same applies to fermion number conservation. With this
interpretation the condition would state orthogonality with respect to the coherent zero energy state
characterized by s = 0, which has finite norm and does not represent Bose-Einstein condensation.
This would give a connection for the proposal for the strategy for proving Riemann Hypothesis by
replacing eigenstates of energy with coherent states.

16.1.3 Miscellaneous ideas

During years I have also considered several ideas about Riemann hypothesis which I would not call
miscellaneous. I have moved them to the end of the chapter because of the highly speculative nature.

Logarithmic waves for zeros of zeta as complex algebraic numbers?

The idea that the evolution of cognition involves the increase of the dimensions of finite-dimensional
extensions of p-adic numbers associated with p-adic space-time sheets emerges naturally in TGD
inspired theory of consciousness. A further input that led to a connection with Riemann Zeta was the
work of Hardmuth Mueller [B4] suggesting strongly that e and its p− 1 powers at least should belong
to the extensions of p-adics. The basic objects in Mueller’s approach are so called logarithmic waves
exp(iklog(u)) which should exist for u = n for a suitable choice of the scaling momenta k.

Logarithmic waves appear also as the basic building blocks (the terms ns = exp(log(n)(Re[s] +
iIm[s])) in Riemann Zeta. This inspires naturally the hypothesis that also Riemann Zeta function is
universal in the sense that it is defined at is zeros s = 1/2 + iy not only for complex numbers but also
for all p-adic number fields provided that an appropriate finite-dimensional extensions involving also
transcendentals are allowed. This allows in turn to algebraically continue Zeta to any number field.
The zeros of Riemann zeta are determined by number theoretical quantization and are thus universal

and should appear in the physics of critical systems. The hypothesis log(p) = q1(p)exp[q2(p)]
π explains

the length scale hierarchies based on powers of e, primes p and Golden Mean.
Mueller’s logarithmic waves lead also to an elegant concretization of the Hilbert Polya conjecture

and to a sharpened form of Riemann hypothesis: the phases q−iy for the zeros of Riemann Zeta belong
to a finite-dimensional extension of Rp for any value of primes q and p and any zero 1/2 + iy of ζ.
The question whether the imaginary parts of the Riemann Zeta are linearly independent (as assumed
in the previous work) or not is of crucial physical significance. Linear independence implies that the
spectrum of the super-symplectic weights is essentially an infinite-dimensional lattice. Otherwise a
more complex structure results. The numerical evidence supporting the translational invariance of
the correlations for the spectrum of zeros together with p-adic considerations leads to the working
hypothesis that for any prime p one can express the spectrum of zeros as the product of a subset
of Pythagorean phases and of a fixed subset U of roots of unity. The spectrum of zeros could be
expressed as a union over the translates of the same basic spectrum defined by the roots of unity
translated by the phase angles associated with a subset of Pythagorean phases: this is consistent with
what the spectral correlations strongly suggest. That decompositions defined by different primes p
yield the same spectrum would mean a powerful number theoretical symmetry realizing p-adicities at
the level of the spectrum of Zeta.

Universality Principle

A second strategy is based on, what I call, Universality Principle. The function, that I refer to as
ζ̂, is defined by the product formula for ζ and exists in the infinite-dimensional algebraic extension
Q∞ of rationals containing all roots of primes. ζ̂ is defined for all values of s for which the partition
functions 1/(1 − p−z) appearing in the product formula have value in Q∞. Universality Principle

states that |ζ̂|2, defined as the product of the p-adic norms of |ζ̂|2 by reversing the order of producting
in the adelic formula, equals to |ζ|2 and, being an infinite dimensional vector in Q∞, vanishes only if
it contains a rational factor which vanishes. This factor is present only provided an infinite number
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of partition functions appearing in the product formula of ζ̂ have rational valued norm squared: this
locates the plausible candidates for the zeros on the lines Re[s] = n/2.

Universality Principle implies the following stronger variant about sharpened form of the Riemann
hypothesis: the real part of the phase p−iy is rational for an infinite number of primes for zeros of ζ.
Universality Principle, even if proven, does not however yield a proof of the Riemann hypothesis. The
failure of the Riemann hypothesis becomes however extremely implausible. An important outcome
of this approach is the realization that super-conformal invariance is a natural symmetry associated
with ζ (not surprisingly, since the symmetry group of complex analysis is in question!).

These approaches reflect the evolution of the vision about TGD based physics as a generalized
number theory. Two new realizations of the super-conformal algebra result and the second realization
has direct application to the modelling of 1/f noise. The zeros of ζ would code for the states of an
arithmetic quantum field theory coded also by infinite primes: also the hierarchical structure of the
many-sheeted space-time would be coded.

16.2 General vision

Quantum TGD has inspired several strategies of proof of the Riemann hypothesis. The first strategy is
based on the modification of Hilbert Polya hypothesis by requiring that the physical system in question
has super-conformal transformations as its symmetries. Second strategy is based on considerations
based on TGD inspired quantum theory of cognition and a generalization of the number concept
inspired by it. Together with some physical inputs one ends up to a hypothesis that Riemann Zeta is
well defined in all number fields near its zeros provided finite-dimensional extensions of p-adic numbers
are allowed. This hypothesis generalizes the earlier hypothesis assuming that the extensions are trivial
or at most algebraic. Third strategy is based on, what I call, Universality Principle.

There are also strong physical motivations to say something explicit about the spectrum of zeros
and here p-adicization program inspires the hypothesis the numbers qiy, q prime, belong to a finite
algebraic extension of p-adic number field Rp for every prime p. The findings about the correlations
of the spectrum of zeros inspire very concrete hypothesis about the spectrum of zeros as a union of
translates of the same basic spectrum and this hypothesis is supported by the physical identification
of the zeros of Zeta as super-symplectic conformal weights.

16.2.1 Generalization of the number concept and Riemann hypothesis

The hypothesis about p-adic physics as physics of cognition leads to a generalization of the notion
of number obtained by gluing reals and various p-adic number fields together along rational numbers
common to all of them. This structure is visualizable as a book like structure with pages represented
by the number fields and the rim of the book represented by rationals. Even this structure can
be generalized by allowing all finite-dimensional extensions of p-adic numbers including also those
containing transcendental numbers and performing similar identification. Kind of fractal book might
serve as a visualization of this structure.

In TGD inspired theory of consciousness intentions are assumed to correspond to quantum jumps
involving the transformation of p-adic space-time sheets to real ones. An intuitive expectation is p-adic
and real space-time sheets to each other must have a maximum number of common rational points. The
building of idealized model for this transformation leads to the problem of defining functions having
Taylor series with rational coefficients and continuable to both real and p-adic functions from a subset
of rational numbers (or points of space-time sheet with rational coordinates). In this manner one ends
up with the hypothesis that p-adic space-time sheets correspond to finite-dimensional extensions of
p-adic numbers, which can involve also transcendental numbers such as e. This leads to a series of
number theoretic conjectures.

The idea that the evolution of cognition involves the increase of the dimensions of finite-dimensional
extensions of p-adic numbers associated with p-adic space-time sheets emerges naturally in TGD
inspired theory of consciousness. A further input that led to a connection with Riemann Zeta was
the work of Hardmuth Mueller [B4] suggesting strongly that e and its p − 1 powers at least should
belong to extensions of p-adics. The basic objects in Mueller’s approach are so called logarithmic
waves exp(iklog(u)) which should exist for u = n for a suitable choice of the scaling momenta k.
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Logarithmic waves appear also as the basic building blocks (the terms ns = exp(log(n)(Re[s] +
iIm[s])) in Riemann Zeta. This inspires naturally the hypothesis that also Riemann Zeta function is
universal in the sense that it is defined at is zeros s = 1/2 + iy not only for complex numbers but also
for all p-adic number fields provided that an appropriate finite-dimensional extensions involving also
transcendentals are allowed. This allows in turn to algebraically continue Zeta to any number field.
The zeros of Riemann zeta are determined by number theoretical quantization and are thus universal
and should appear in the physics of critical systems. A hierarchy of number theoretical conjectures
stating that a finite number of iterated logarithms about transcendentals appearing in the extension
forms a closed system under the operation of taking logarithms. Mueller’s logarithmic waves lead
also to an elegant concretization of the Hilbert Polya conjecture and to a sharpened form of Riemann
hypothesis: the complex numbers p−iy for the zeros of Riemann Zeta belong to a finite-dimensional
extension of Rp for any value of p and any zero 1/2 + iy of ζ.

16.2.2 Modified form of Hilbert-Polya hypothesis

Super-conformal invariance inspires a strategy for proving (not a proof of, as was the first over-
optimistic belief) the Riemann hypothesis. The vanishing of Riemann Zeta reduces to an orthogonal-
ity condition for the eigenfunctions of a non-Hermitian operator D+ having the zeros of Riemann Zeta
as its eigenvalues. The construction of D+ is inspired by the conviction that Riemann Zeta is associ-
ated with a physical system allowing super-conformal transformations as its symmetries and second
quantization in terms of the representations of super-conformal algebra. The eigenfunctions of D+

are analogous to the so called coherent states and in general not orthogonal to each other. The states
orthogonal to a vacuum state (having a negative norm squared) correspond to the zeros of Riemann
Zeta. The physical states having a positive norm squared correspond to the zeros of Riemann Zeta at
the critical line and possibly those having Re[s] > 1/2.

A possible proof of the Riemann hypothesis by reductio ad absurdum results if one assumes that the
states corresponding to zeros of ζ span a space with a hermitian metric. Riemann hypothesis follows
both from the hermiticity and positive definiteness of the metric in the space of states corresponding
to the zeros of ζ. Also conformal invariance in appropriate sense implies Riemann hypothesis. Indeed,
a rather rigorous proof of Riemann hypothesis results from the observation that certain generator of
conformal algebra permutes the two zeros located symmetrically with respect to the critical line. If
the action of this generator exponentiates, Riemann hypothesis follows since exponentiation would
imply the existence of infinite number of zeros along a line parallel to Re[s]-axis. One can formulate
this argument rigorously using first order differential equation, and if one forgets all the preceiding
refined philosophical arguments, one can prove Riemann hypothesis using twenty line long analytic
argument! Perhaps Ramajunan could have made this!

As already noticed, the state space metric can be made positive definite provided Riemann hy-
pothesis holds true. Thus the system in question might quite well serve as a concrete physical model
for quantum critical systems possessing super-conformal invariance as both dynamical and gauge
symmetry.

16.2.3 Riemann hypothesis in zero energy ontology

Zeta reduces to a product ζ(s) =
∏
p Zp(s) of partition functions Zp(s) = 1/[1 − p−s] over particles

labelled by primes p. This relates very closely also to infinite primes and one can talk about Riemann
gas with particle momenta/energies given by log(p). s is in general complex number and for the zeros
of the zeta one has s = 1/2+ iy. The imaginary part y is non-rational number. At s = 1 zeta diverges
and for Re(s) ≤ 1 the definition of zeta as product fails. Physicist would interpret this as a phase
transition taking place at the critical line s = 1 so that one cannot anymore talk about Riemann gas.
Should one talk about Riemann liquid? Or - anticipating what follows- about quantum liquid? What
the vanishing of zeta could mean physically? Certainly the thermodynamical interpretation as sum
of something interpretable as thermodynamical probabilities apart from normalization fails.

The basic problem with this interpretation is that it is only formal since the temperature parameter
is complex. How could one overcome this problem?

A possible answer emerged as I read the interview.

1. One could interpret zeta function in the framework of TGD - or rather in zero energy ontology
(ZEO) - in terms of square root of thermodynamics! This would make possible the complex
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analog of temperature. Thermodynamical probabilities would be replaced with probability am-
plitudes.

2. Thermodynamical probabilities would be replaced with complex probability amplitudes, and
Riemann zeta would be the analog of vacuum functional of TGD which is product of exponent
of Kähler function - Kähler action for Euclidian regions of space-time surface - and exponent of
imaginary Kähler action coming from Minkowskian regions of space-time surface and defining
Morse function. In QFT picture taking into account only the Minkowskian regions of space-time
would have only the exponent of this Morse function: the problem is that path integral does not
exist mathematically. In thermodynamics picture taking into account only the Euclidian regions
of space-time one would only the exponent of Kähler function and would lose interference effects
fundamental for QFT type systems. In quantum TGD both Kähler and Morse are present. With
rather general assumptions the imaginary part and real part of exponent of vacuum functional
are proportional to each other and to sum over the values of Chern-Simons action for 3-D
wormhole throats and for space-like 3-surfaces at the ends of CD. This is non-trivial.

3. Zeros of zeta would in this case correspond to a situation in which the integral of the vacuum
functional over the ”world of classical worlds” (WCW) vanishes. The pole of ζ at s = 1 would
correspond to divergence fo the integral for the modulus squared of Kähler function.

What the vanishing of the zeta could mean if one accepts the interpretation quantum theory as a
square root of thermodynamics?

1. What could the infinite value of zeta at s = 1 mean? The The interpretation in terms of
square root of thermodynamics implied following. In zero energy ontology zeta function function
decomposition to

∏
p Zp corresponds to a product of single particle partition functions for which

one can assigns probabilities p−s/Zp(s) to single particle states. This does not make sense
physically for complex values of s.

2. In ZEO one can however assume that the complex number p−sn define the entanglement co-
efficients for positive and negative energy states with energies nlog(p) and -nlog(p): n bosons
with energy log(p) just as for black body radiation. The sum over amplitudes over over all
combinations of these states with some bosons labelled by primes p gives Riemann zeta which
vanishes at critical line if RH holds.

3. One can also look for the values of thermodynamical probabilities given by |p−ns|2 = p−n at
critical line irrespective of zero. The sum over these gives for given p the factor p/(p − 1) and
the product of all these factors gives ζ(1) = ∞. Thermodynamical partition function diverges.
The physical interpretation is in terms of Bose-Einstein condensation.

4. What the vanishing of the trace for the matrix coding for zeros of zeta defined by the amplitudes
is physically analogous to the statement

∫
ΨdV = 0 and is indeed true for many systems such

as hydrogen atom. But what this means? Does it say that the zero energy state is orthogonal
to vacuum state defined by unit matrix between positive and negative energy states? In any
case, zeros and the pole of zeta would be aspects of one and same thing in this interpretation.
This is an something genuinely new and an encouraging sign. Note that in TGD based proposal
for a strategy for proving Riemann hypothesis, similar condition states that coherent state is
orthogonal to ”false” tachyonic vacuum.

5. RH would state in this framework that all zeros of ζ correspond to zero energy states for which
thermodynamical partition function diverges. Another manner to say this is that the system is
critical. (Maximal) Quantum Criticality is indeed the key postulate about TGD Universe and
fixes the Kähler coupling strength characterizing the theory uniquely (plus possible other free
parameters). Quantum Criticality guarantees that the Universe is maximally complex. Physics
as generalized number theory would suggest that also number theory is quantum critical! When
the sum over numbers proportional to propabilities diverges, the probabilities are considerably
different from zero for infinite number of states. At criticality the presence of fluctuations in
all scales implying fractality indeed implies this. A more precise interpretation is in terms of
Bose-Eisntein condensation.
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6. The postulate that all zero energy states for Riemann system are zeros of zeta and critical
in the sense being non-normalizable (Bose-Einstein condensation) combined with the fact that
s = 1 is the only pole of ζ implies that the all zeros of ζ correspond to Re(s) = 1/2 so that
RH follows from purely physical assumptions. The behavior at s = 1 would be an essential
element of the argument. The interpretation as a zero energy counterpart of a coherent state
seems to makes sense also now. Note that in ZEO coherent state property is in accordance with
energy conservation. In the case of coherent states of Cooper pairs same applies to fermion
number conservation. With this interpretation the condition would state orthogonality with
respect to the coherent zero energy state characterized by s = 0, which has finite norm and does
not represent Bose-Einstein condensation. This would give a connection for the proposal for
the strategy for proving Riemann Hypothesis by replacing eigenstates of energy with coherent
states.

16.3 Riemann hypothesis and super-conformal invariance

Hilbert and Polya [A144] conjectured a long time ago that the non-trivial zeroes of Riemann Zeta
function could have spectral interpretation in terms of the eigenvalues of a suitable self-adjoint differ-
ential operator H such that the eigenvalues of this operator correspond to the imaginary parts of the
nontrivial zeros z = x+ iy of ζ. One can however consider a variant of this hypothesis stating that the
eigenvalue spectrum of a non-hermitian operator D+ contains the non-trivial zeros of ζ. The eigen
states in question are eigen states of an annihilation operator type operator D+ and analogous to the
so called coherent states encountered in quantum physics [A176] . In particular, the eigenfunctions are
in general non-orthogonal and this is a quintessential element of the the proposed strategy of proof.

In the following an explicit operator having as its eigenvalues the non-trivial zeros of ζ is con-
structed.

1. The construction relies crucially on the interpretation of the vanishing of ζ as an orthogonality
condition in a hermitian metric which is is a priori more general than Hilbert space inner product.

2. Second basic element is the scaling invariance motivated by the belief that ζ is associated with
a physical system which has super-conformal transformations [A132] as its symmetries.

The core elements of the construction are following.

1. All complex numbers are candidates for the eigenvalues of D+ (formal hermitian conjugate of
D) and genuine eigenvalues are selected by the requirement that the condition D† = D+ holds
true in the set of the genuine eigenfunctions. This condition is equivalent with the hermiticity
of the metric defined by a function proportional to ζ.

2. The eigenvalues turn out to consist of z = 0 and the non-trivial zeros of ζ and only the eigen-
functions corresponding to the zeros with Re[s] = 1/2 define a subspace possessing a hermitian
metric. The vanishing of ζ tells that the ’physical’ positive norm eigenfunctions (in general
not orthogonal to each other), are orthogonal to the ’un-physical’ negative norm eigenfunction
associated with the eigenvalue z = 0.

The proof of the Riemann hypothesis by reductio ad absurdum results if one assumes that the
space V spanned by the states corresponding to the zeros of ζ inside the critical strip has a hermitian
induced metric. Riemann hypothesis follows also from the requirement that the induced metric in the
spaces subspaces Vs of V spanned by the states Ψs and Ψ1−s does not possess negative eigenvalues:
this condition is equivalent with the positive definiteness of the metric in V. Conformal invariance in
the sense of gauge invariance allows only the states belonging to V. Riemann hypothesis follows also
from a restricted form of a dynamical conformal invariance in V. This allows the reduction of the
proof to a standard analytic argument used in Lie-group theory.

16.3.1 Modified form of the Hilbert-Polya conjecture

One can modify the Hilbert-Polya conjecture by assuming scaling invariance and giving up the her-
miticity of the Hilbert-Polya operator. This means introduction of the non-hermitian operators D+
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and D which are hermitian conjugates of each other such that D+ has the nontrivial zeros of ζ as its
complex eigenvalues

D+Ψ = zΨ. (16.3.1)

The counterparts of the so called coherent states [A176] are in question and the eigenfunctions of D+

are not expected to be orthogonal in general. The following construction is based on the idea that
D+ also allows the eigenvalue z = 0 and that the vanishing of ζ at z expresses the orthogonality of
the states with eigenvalue z = x+ iy 6= 0 and the state with eigenvalue z = 0 which turns out to have
a negative norm.

The trial

D = L0 + V, D+ = −L0 + V

L0 = t ddt , V = dlog(F )
d(log(t)) = tdFdt

1
F

(16.3.2)

is motivated by the requirement of invariance with respect to scalings t→ λt and F → λF . The range
of variation for the variable t consists of non-negative real numbers t ≥ 0. The scaling invariance
implying conformal invariance (Virasoro generator L0 represents scaling which plays a fundamental
role in the super-conformal theories [A132] ) is motivated by the belief that ζ codes for the physics
of a quantum critical system having, not only super-symmetries [A124] , but also super-conformal
transformations as its basic symmetries.

16.3.2 Formal solution of the eigenvalue equation for operator D+

One can formally solve the eigenvalue equation

D+Ψz =

[
−t d
dt

+ t
dF

dt

1

F

]
Ψz = zΨz. (16.3.3)

for D+ by factoring the eigenfunction to a product:

Ψz = fzF. (16.3.4)

The substitution into the eigenvalue equation gives

L0fz = t
d

dt
fz = −zfz (16.3.5)

allowing as its solution the functions

fz(t) = tz. (16.3.6)

These functions are nothing but eigenfunctions of the scaling operator L0 of the super-conformal
algebra analogous to the eigen states of a translation operator. A priori all complex numbers z are
candidates for the eigenvalues of D+ and one must select the genuine eigenvalues by applying the
requirement D† = D+ in the space spanned by the genuine eigenfunctions.

It must be emphasized that Ψz is not an eigenfunction of D. Indeed, one has

DΨz = −D+Ψz + 2VΨz = zΨz + 2VΨz. (16.3.7)

This is in accordance with the analogy with the coherent states which are eigen states of annihilation
operator but not those of creation operator.
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16.3.3 D+ = D† condition and hermitian form

The requirement that D+ is indeed the hermitian conjugate of D implies that the hermitian form
satisfies

〈f |D+g〉 = 〈Df |g〉. (16.3.8)

This condition implies

〈Ψz1 |D+Ψz2〉 = 〈DΨz1 |Ψz2〉. (16.3.9)

The first (not quite correct) guess is that the hermitian form is defined as an integral of the
product Ψz1Ψz2 of the eigenfunctions of the operator D over the non-negative real axis using a
suitable integration measure. The hermitian form can be defined by continuing the integrand from
the non-negative real axis to the entire complex t-plane and noticing that it has a cut along the
non-negative real axis. This suggests the definition of the hermitian form, not as a mere integral over
the non-negative real axis, but as a contour integral along curve C defined so that it encloses the
non-negative real axis, that is C

1. traverses the non-negative real axis along the line Im[t] = 0− from t =∞+ i0− to t = 0+ + i0−,

2. encircles the origin around a small circle from t = 0+ + i0− to t = 0+ + i0+,

3. traverses the non-negative real axis along the line Im[t] = 0+ from t = 0+ + i0+ to t =∞+ i0+

.
Here 0± signifies taking the limit x = ±ε, ε > 0, ε→ 0.

C is the correct choice if the integrand defining the inner product approaches zero sufficiently fast at
the limit Re[t] → ∞. Otherwise one must assume that the integration contour continues along the
circle SR of radius R→∞ back to t =∞+ i0− to form a closed contour. It however turns out that
this is not necessary. One can deform the integration contour rather freely: the only constraint is
that the deformed integration contour does not cross over any cut or pole associated with the analytic
continuation of the integrand from the non-negative real axis to the entire complex plane.

Scaling invariance dictates the form of the integration measure appearing in the hermitian form
uniquely to be dt/t. The hermitian form thus obtained also makes possible to satisfy the crucial
D+ = D† condition. The hermitian form is thus defined as

〈Ψz1 |Ψz2〉 = −K(z12)

2πi

∫
C

Ψz1Ψz2

dt

t
. (16.3.10)

K(z12) is real from the hermiticity requirement and the behavior as a function of z12 = z1 + z2 by the
requirement that the resulting Hermitian form defines a positive definite inner product. The value
of K(1) can can be fixed by requiring that the states corresponding to the zeros of ζ at the critical
line have unit norm: with this choice the vacuum state corresponding to z = 0 has negative norm.
Physical intuition suggests that K(z12) is responsible for the Gaussian overlaps of the coherent states
and this suggests the behavior

K(z12) = exp(−α|z12|2), (16.3.11)

for which overlaps between states at critical line are proportional to exp(−α(y1 − y2)2) so that for
α > 0 Schwartz inequalities are certainly satisfied for large values of |y12|. Small values of y12 are
dangerous in this respect but since the matrix elements of the metric decrease for small values of y12

even for K(z12) = 1, it is possible to satisfy Schwartz inequalities for sufficiently large value of α.
It must be emphasized that the detailed behavior of K is not crucial for the arguments relating to
Riemann hypothesis.

The possibility to deform the shape of C in wide limits realizes conformal invariance stating that
the change of the shape of the integration contour induced by a conformal transformation, which
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is nonsingular inside the integration contour, leaves the value of the contour integral of an analytic
function unchanged. This scaling invariant hermitian form is indeed a correct guess. By applying
partial integration one can write

〈Ψz1 |D+Ψz2〉 = 〈DΨz1 |Ψz2〉 −
K(z12)

2πi

∫
C

dt
d

dt

[
Ψz1(t)Ψz2(t)

]
. (16.3.12)

The integral of a total differential comes from the operator L0 = td/dt and must vanish. For a non-
closed integration contour C the boundary terms from the partial integration could spoil the D+ = D†

condition unless the eigenfunctions vanish at the end points of the integration contour (t =∞+ i0±).
The explicit expression of the hermitian form is given by

〈Ψz1 |Ψz2〉 = −K(z12)

2πi

∫
C

dt

t
F 2(t)tz12 ,

z12 = z1 + z2. (16.3.12)

It must be emphasized that it is Ψz1Ψz2 rather than eigenfunctions which is continued from the
non-negative real axis to the complex t-plane: therefore one indeed obtains an analytic function as a
result.

An essential role in the argument claimed to prove the Riemann hypothesis is played by the crossing
symmetry

〈Ψz1 |Ψz2〉 = 〈Ψ0|Ψz1+z2〉 (16.3.13)

of the hermitian form. This symmetry is analogous to the crossing symmetry of particle physics
stating that the S-matrix is symmetric with respect to the replacement of the particles in the initial
state with their antiparticles in the final state or vice versa [A176] .

The hermiticity of the hermitian form implies

〈Ψz1 |Ψz2〉 = 〈Ψz2 |Ψz1〉. (16.3.14)

This condition, which is not trivially satisfied, in fact determines the eigenvalue spectrum.

16.3.4 How to choose the function F?

The remaining task is to choose the function F in such a manner that the orthogonality conditions for
the solutions Ψ0 and Ψz reduce to the condition that ζ or some function proportional to ζ vanishes
at the point −z. The definition of ζ based on analytical continuation performed by Riemann suggests
how to proceed. Recall that the expression of ζ converging in the region Re[s] > 1 following from the
basic definition of ζ and elementary properties of Γ function [A222] reads as

Γ(s)ζ(s) =

∫ ∞
0

dt

t

exp(−t)
[1− exp(−t)]

ts. (16.3.15)

One can analytically continue this expression to a function defined in the entire complex plane by
noticing that the integrand is discontinuous along the cut extending from t = 0 to t =∞. Following
Riemann it is however more convenient to consider the discontinuity for a function obtained by
multiplying the integrand with the factor

(−1)s ≡ exp(−iπs).

The discontinuity Disc(f) ≡ f(t)− f(texp(i2π)) of the resulting function is given by

Disc

[
exp(−t)

[1− exp(−t)]
(−t)s−1

]
= −2isin(πs)

exp(−t)
[1− exp(−t)]

ts−1. (16.3.16)
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The discontinuity vanishes at the limit t→ 0 for Re[s] > 1. Hence one can define ζ by modifying the
integration contour from the non-negative real axis to an integration contour C enclosing non-negative
real axis defined in the previous section.

This amounts to writing the analytical continuation of ζ(s) in the form

−2iΓ(s)ζ(s)sin(πs) =

∫
C

dt

t

exp(−t)
[1− exp(−t)]

(−t)s−1. (16.3.17)

This expression equals to ζ(s) for Re[s] > 1 and defines ζ(s) in the entire complex plane since the
integral around the origin eliminates the singularity.

The crucial observation is that the integrand on the righthand side of Eq. 16.3.17 has precisely
the same general form as that appearing in the hermitian form defined in Eq. 16.3.12 defined using
the same integration contour C. The integration measure is dt/t, the factor ts is of the same form as
the factor tz1+z2 appearing in the hermitian form, and the function F 2(t) is given by

F 2(t) =
exp(−t)

1− exp(−t)
.

Therefore one can make the identification

F (t) =

[
exp(−t)

1− exp(−t)

]1/2

. (16.3.18)

Note that the argument of the square root is non-negative on the non-negative real axis and that F (t)
decays exponentially on the non-negative real axis and has 1/

√
t type singularity at origin. From this

it follows that the eigenfunctions Ψz(t) approach zero exponentially at the limit Re[t] → ∞ so that
one can use the non-closed integration contour C.

With this assumption, the hermitian form reduces to the expression

〈Ψz1 |Ψz2〉 = −K(z12)

2πi

∫
C

dt

t

exp(−t)
[1− exp(−t]

(−t)z12

=
K(z12)

π
sin(πz12)Γ(z12)ζ(z12). (16.3.17)

Recall that the definition z12 = z1 + z2 is adopted. Thus the orthogonality of the eigenfunctions is
equivalent to the vanishing of ζ(z12) if K(z12) is positive definite.

16.3.5 Study of the hermiticity condition

In order to derive information about the spectrum one must explicitly study what the statement that
D† is hermitian conjugate of D means. The defining equation is just the generalization of the equation

A†mn = Anm. (16.3.18)

defining the notion of hermiticity for matrices. Now indices m and n correspond to the eigenfunctions
Ψzi , and one obtains

〈Ψz1 |D+Ψz2〉 = z2〈Ψz1 |Ψz2〉 = 〈Ψz2 |DΨz1〉 = 〈D+Ψz2 |Ψz1〉 = z2〈Ψz2 |Ψz1〉.

Thus one has

G(z12) = G(z21) = G(z12)

G(z12) ≡ 〈Ψz1 |Ψz2〉. (16.3.18)
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The condition states that the hermitian form defined by the contour integral is indeed hermitian. This
is not trivially true. Hermiticity condition obviously determines the spectrum of the eigenvalues of
D+.

To see the implications of the hermiticity condition, one must study the behavior of the function
G(z12) under complex conjugation of both the argument and the value of the function itself. To
achieve this one must write the integral

G(z12) = −K(z12)

2πi

∫
C

dt

t

exp(−t)
[1− exp(−t)]

(−t)z12

in a form from which one can easily deduce the behavior of this function under complex conjugation.
To achieve this, one must perform the change t → u = log(exp(−iπ)t) of the integration variable
giving

G(z12) = −K(z12)

2πi

∫
D

du
exp(−exp(u))

[1− exp(−(exp(u)))]
exp(z12u).

(16.3.18)

Here D denotes the image of the integration contour C under t → u = log(−t). D is a fork-like
contour which

1. traverses the line Im[u] = iπ from u =∞+ iπ to u = −∞+ iπ ,

2. continues from −∞ + iπ to −∞ − iπ along the imaginary u-axis (it is easy to see that the
contribution from this part of the contour vanishes),

3. traverses the real u-axis from u = −∞− iπ to u =∞− iπ.

The integrand differs on the line Im[u] = ±iπ from that on the line Im[u] = 0 by the factor
exp(∓iπz12) so that one can write G(z12) as integral over real u-axis

G(z12) = −K(z12)

π
sin(πz12)

∫ ∞
−∞

du
exp(−exp(u))

[1− exp(−(exp(u)))]
exp(z12u).

(16.3.18)

From this form the effect of the transformation G(z) → G(z) can be deduced. Since the integral is
along the real u-axis, complex conjugation amounts only to the replacement z21 → z12, and one has

G(z12) = −K(z21)

π
× sin(πz21)

∫ ∞
−∞

du
exp(−exp(u))

[1− exp(−(exp(u)))]
exp(z12u)

=
K(z21)

K(z12)
× sin(πz21)

sin(πz12)
G(z12). (16.3.18)

Thus the hermiticity condition reduces to the condition

G(z12) =
K(z21)

K(z12)
× sin(πz21)

sin(πz12)
×G(z12). (16.3.19)

The reality of K(z12) guarantees that the diagonal matrix elements of the metric are real.
For non-diagonal matrix elements there are two manners to satisfy the hermiticity condition.

1. The condition

G(z12) = 0 (16.3.20)
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is the only manner to satisfy the hermiticity condition for x1 +x2 6= n, y1−y2 6= 0. This implies
the vanishing of ζ:

ζ(z12) = 0 for 0 < x1 + x2 < 1. (16.3.21)

In particular, this condition must be true for z1 = 0 and z2 = 1/2 + iy. Hence the physical
states with the eigenvalue z = 1/2 + iy must correspond to the zeros of ζ.

2. For the non-diagonal matrix elements of the metric the condition

exp(iπ(x1 + x2)) = ±1 (16.3.22)

guarantees the reality of sin(πz12) factors. This requires

x1 + x2 = n. (16.3.23)

The highly non-trivial implication is that the the vacuum state Ψ0 and the zeros of ζ at the
critical line span a space having a hermitian inner product. Note that for x1 = x2 = n/2, n 6= 1,
the diagonal matrix elements of the metric vanish.

3. The metric is positive definite only if the function K(z12) decays sufficiently fast: this is due
to the exponential increase of the moduli of the matrix elements G(1/2 + iy1, 1/2 + iy2) for
K(z12) = 1 and for large values of |y1 − y2| (basically due to the sinh [π (y1 − y2)]-factor in the
metric) implying the failure of the Schwartz inequality for |y1−y2| → ∞. Unitarity, guaranteing
probability interpretation in quantum theory, thus requires that the parameter α characterizing
the Gaussian decay of K(z12) = exp(−α|z12|2) is above some minimum value.

16.3.6 Various assumptions implying Riemann hypothesis

As found, the general strategy for proving the Riemann hypothesis, originally inspired by super-
conformal invariance, leads to the construction of a set of eigen states for an operator D+, which is
effectively an annihilation operator acting in the space of complex-valued functions defined on the real
half-line. Physically the states are analogous to coherent states and are not orthogonal to each other.
The quantization of the eigenvalues for the operator D+ follows from the requirement that the metric,
which is defined by the integral defining the analytical continuation of ζ, and thus proportional to ζ
(〈s1, s2〉 ∝ ζ(s1 + s2)), is hermitian in the space of the physical states.

The nontrivial zeros of ζ are known to belong to the critical strip defined by 0 < Re[s] < 1.
Indeed, the theorem of Hadamard and de la Vallee Poussin [A7] states the non-vanishing of ζ on the
line Re[s] = 1. If s is a zero of ζ inside the critical strip, then also 1 − s as well as s and 1 − s are
zeros. If Hilbert space inner product property is not required so that the eigenvalues of the metric
tensor can be also negative in this subspace. There could be also un-physical zeros of ζ outside the
critical line Re[s] = 1/2 but inside the critical strip 0 < Re[s] < 1. The problem is to find whether
the zeros outside the critical line are excluded, not only by the hermiticity but also by the positive
definiteness of the metric necessary for the physical interpretation, and perhaps also by conformal
invariance posed in some sense as a dynamical symmetry. This turns out to be the case.

Before continuing it is convenient to introduce some notations. Denote by V the subspace spanned
by Ψs corresponding to the zeros s of ζ inside the critical strip, by Vcrit the subspace corresponding
to the zeros of ζ at the critical strip, and by Vs the space spanned by the states Ψs and Ψ1−s. The
basic idea behind the following proposals is that the basic objects of study are the spaces V, Vcrit and
Vs.
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How to restrict the metric to V?

One should somehow restrict the metric defined in the space spanned by the states Ψs labeled by a
continuous complex eigenvalue s to the space V inside the critical strip spanned by a basis labeled by
discrete eigenvalues. Very naively, one could try to do this by simply putting all other components
of the metric to zero so that the states outside V correspond to gauge degrees of freedom. This is
consistent with the interpretation of V as a coset space formed by identifying states which differ from
each other by the addition of a superposition of states which do not correspond to zeros of ζ.

An more elegant manner to realize the restriction of the metric to V is to Fourier expand states
in the basis labeled by a complex number s and define the metric in V using double Fourier integral
over the complex plane and Dirac delta function restricting the labels of both states to the set of zeros
inside the critical strip:

〈Ψ1)|Ψ2)〉 =

∫
dµ(s1)

∫
dµ(s2)Ψ

1)

s1Ψ2)
s2G(s2 + s1)δ(ζ(s1))δ(ζ(s2))

=
∑

ζ(s1)=0,ζ(s2)=0

Ψ
1)

s1Ψ2)
s2G(s2 + s1)

1√
det(s2)det(s1)

,

dµ(s) = dsds, det(s) =
∂(Re [ζ(s)] , Im [ζ(s)])

∂(Re [s] , Im [s])
. (16.3.21)

Here the integrations are over the critical strip. det(s) is the Jacobian for the map s→ ζ(s) at s. The
appearance of the determinants might be crucial for the absence of negative norm states. The result
means that the metric GV in V effectively reduces to a product

GV = DGD,

D(si, sj) = D(si)δ(si, sj),

D(si, sj) = D(si)δ(si, sj)

D(s) =
1√
det(s)

. (16.3.19)

In the sequel the metric G will be called reduced metric whereas GV will be called the full metric.
In fact, the symmetry D(s) = D(s) holds true by the basic symmetries of ζ so that one has D = D
and GV = DGD. This means that Schwartz inequalities for the eigen states of D+ are not affected in
the replacement of GV with G. The two metrics can be in fact transformed to each other by a mere
scaling of the eigen states and are in this sense equivalent.

Riemann hypothesis from the hermicity of the metric in V

The mere requirement that the metric is hermitian in V implies the Riemann hypothesis. This can
be seen in the simplest manner as follows. Besides the zeros at the critical line Re[s] = 1/2 also
the symmetrically related zeros inside critical strip have positive norm squared but they do not have
hermitian inner products with the states at the critical line unless one assumes that the inner product
vanishes. The assumption that the inner products between the states at critical line and outside it
vanish, implies additional zeros of ζ and, by repeating the argument again and again, one can fill the
entire critical interval (0, 1) with the zeros of ζ so that a reductio ad absurdum proof for the Riemann
hypothesis results. Thus the metric gives for the states corresponding to the zeros of the Riemann
Zeta at the critical line a special status as what might be called physical states.

It should be noticed that the states in Vs and Vs have non-hermitian inner products for Re[s] 6= 1/2
unless these inner products vanish: for Re[s] > 1/2 this however implies that ζ has a zero for Re[s] > 1.

Riemann hypothesis from the requirement that the metric in V is positive definite

With a suitable choice of K(z12) the metric is positive definite between states having y1 6= y2. For s
and 1 − s one has y1 = y2 implying K(z12) = 1 in Vs. Thus the positive definiteness of the metric
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in V reduces to that for the induced metric in the spaces Vs. This requirement implies also Riemann
hypothesis as following argument shows.

The explicit expression for the norm of a Re[s] = 1/2 state with respect to the full metric GindV
reads as

GindV (1/2 + iyn, 1/2 + iyn) = D2(1/2 + iy)Gind(1/2 + iyn, 1/2 + iyn),

Gind(1/2 + iyn, 1/2 + iyn) = −K(z12)

π
sin(π)Γ(1)ζ(1). (16.3.19)

Here Gind is the metric in Vs induced from the reduced metric G. This expression involves formally
a product of vanishing and infinite factors and the value of expression must be defined as a limit by
taking in Im[z12] to zero. The requirement that the norm squared defined by Gind equals to one fixes
the value of K(1):

K(1) = − π

sin(π)ζ(1)
= 1. (16.3.20)

The components Gind in Vs are given by

Gind(s, s) = −sin(2πRe[s])Γ(2Re[s])ζ(2Re[s])

π
,

Gind(1− s, 1− s) = −sin(2π(1−Re[s]))Γ(2− 2Re[s])ζ(2(1− [Re[s]))

π
,

Gind(s, 1− s) = Gind(1− s, s) = 1. (16.3.19)

The determinant of the metric GindV induced from the full metric reduces to the product

Det(GindV ) = D2(s))D2(1− s)×Det(Gind). (16.3.20)

Since the first factor is positive definite, it suffices to study the determinant of Gind. At the limit
Re[s] = 1/2 Gind formally reduces to (

1 1
1 1

)
.

This reflects the fact that the states Ψs and Ψ1−s are identical. The actual metric is of course positive
definite. For Re[s] = 0 the Gind is of the form(

−1 1
1 0

)
.

The determinant of Gind is negative so that the eigenvalues of both the full metric and reduced metric
are of opposite sign. The eigenvalues for Gind are given by (−1±

√
5)/2.

The determinant of Gind in Vs as a function of Re[s] is symmetric with respect to Re[s] = 1/2,
equals to −1 at the end points Re[s] = 0 and Re[s] = 1, and vanishes at Re[s] = 1/2. Numerical
calculation shows that the sign of the determinant of Gind inside the interval (0, 1) is negative for
Re[s] 6= 1/2. Thus the diagonalized form of the induced metric has the signature (1,−1) except at the
limit Re[s] = 1/2, when the signature formally reduces to (1, 0). Thus Riemann hypothesis follows
if one can show that the metric induced to Vs does not allow physical states with a negative norm
squared. This requirement is physically very natural. In fact, when the factor K(z12) represents
sufficiently rapidly vanishing Gaussian, this guarantees the metric to Vcrit has only non-negative
eigenvalues. Hence the positive-definiteness of the metric, natural if there is real quantum system
behind the model, implies Riemann hypothesis.
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Riemann hypothesis and conformal invariance

The basic strategy for proving Riemann hypothesis has been based on the attempt to reduce Riemann
hypothesis to invariance under conformal algebra or some subalgebra of the conformal algebra in V or
Vs. That this kind of algebra should act as a gauge symmetry associated with ζ is very natural idea
since conformal invariance is in a well-defined sense the basic symmetry group of complex analysis.

A physicist aware of the fundamental role of conformal invariance in modern fundamental physics
could even consider the possibility of giving for the conformal invariance the status of an axiom of
number theory and complex analysis in the sense that the spectrum of zeros of ζ is postulated to
be conformally invariant in some sense to be specified. This vision resonates with the vision about
physics as generalized number theory.

Consider now one particular strategy based on conformal invariance in the space of the eigen states
of D+.

1. Realization of conformal algebra as a spectrum generating algebra
The conformal generators are realized as operators

Lz = tzD+ (16.3.21)

act in the eigen space of D+ and obey the standard conformal algebra without central extension [A132]
. D+ itself corresponds to the conformal generator L0 acting as a scaling. Conformal generators
obviously act as dynamical symmetries transforming eigen states of D+ to each other. What is new is
that now conformal weights z have all possible complex values unlike in the standard case in which only
integer values are possible. The vacuum state Ψ0 having negative norm squared is annihilated by the
conformal algebra so that the states orthogonal to it (non-trivial zeros of ζ inside the critical strip)
form naturally another subspace which should be conformally invariant in some sense. Conformal
algebra could act as gauge algebra and some subalgebra of the conformal algebra could act as a
dynamical symmetry.

2. Realization of conformal algebra as gauge symmetries?
The definition of the metric in V involves in an essential manner the mapping s → ζ(s). This

suggests that one should define the gauge action of the conformal algebra as

Ψs → Ψζ(s) → LzΨζ(s) = ζ(s)Ψζ(s)+z

→ ζ(s)Ψζ−1(ζ(s)+z). (16.3.21)

Clearly, the action involves a map of the conformal weight s to ζ(s), the action of the conformal
algebra to ζ(s), and the mapping of the transformed conformal weight z + ζ(s) back to the complex
plane by the inverse of ζ. For s zero of zeta the action maps Ψs to zero.

The inverse image is in general non-unique but in case of V this does not matter since the action
annihilates automatically all states in V. Thus conformal algebra indeed acts as a gauge symmetry.
This symmetry does not however force Riemann hypothesis. It would only select zeros of zeta as
special conformal weights.

3. Realization of conformal algebra as dynamical symmetries
One can also study the action of the conformal algebra or its suitable sub-algebra in Vs as a

dynamical (as opposed to gauge) symmetry realized as

Ψs → LzΨs = sΨs+z. (16.3.22)

Note that this symmetry is different from the above described gauge symmetry. One could regard
this dynamical conformal symmetry as a basic axiom about the zeros of zeta and also about number
theory.

The states Ψs and Ψ1−s in Vs have non-vanishing norms and are obtained from each other by the
conformal generators L1−2Re[s] and L2Re[s]−1. For Re[s] 6= 1/2 the generators L1−2Re[s], L2Re[s]−1,
and L0 generate SL(2, R) algebra which is non-compact and generates infinite number of states from
the states of Vs. At the critical line this algebra reduces to the abelian algebra spanned by L0. The
requirement that the algebra naturally associated with Vs is a dynamical symmetry and thus generates
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only zeros of ζ leads to the conclusion that all points s + n(1 − 2Re[s]), n integer, must be zeros of
ζ. Clearly, Re[s] = 1/2 is the only possibility so that Riemann hypothesis follows. In this case the
dynamical symmetry indeed reduces to a gauge symmetry.

There is clearly a connection with the argument based on the requirement that the induced metric
in Vs does not possess negative eigenvalues. Since SL(2, R) algebra acts as the isometries of the
induced metric for the zeros having Re[s] 6= 1/2, the signature of the induced metric must be (1,−1).

4. Riemann hypothesis from the requirement that infinitesimal isometries exponentiate
One could even try to prove that the entire subalgebra of the conformal algebra spanned by the

generators with conformal weights n(1−2Re[s]) acts as a symmetry generating new zeros of ζ so that
corresponding states are annihilated by gauge conformal algebra. If this holds, Re[s] = 1/2 is the
only possibility so that Riemann hypothesis follows. In this case the dynamical conformal symmetry
indeed reduces to a gauge symmetry.

Since L1−2Re[s] acts as an infinitesimal isometry leaving the matrix element 〈Ψ0|Ψs〉 = 0 invariant,
one can in spirit of Lie group theory argue that also the exponentiated transformations exp(tL1−2Re[s])
have the same property for all values of t. The exponential action leaves Ψ0 invariant and generates
from Ψs a superposition of states with conformal weights s+n(1−2Re[s]), which all must be orthogonal
to Ψ0 since t is arbitrary. Since all zeros are inside the critical strip, Re[s] = 1/2 is the only possibility.

A more explicit formulation of this idea is based on a first order differential equation for the integral
representation of ζ. One can write the matrix element of the metric using the analytical continuation
of ζ(s):

G(s) = −2iΓ(s)ζ(s)sin(πs) = H(s, a)|a=0,

H(s, a) =

∫
C

dt

t

exp(−t+ a(−t)1−2x)

[1− exp(−t)]
(−t)x+iy−1. (16.3.22)

If s = x+ iy is zero of ζ then also 1− x+ iy is zero of ζ and its is trivial to see that this means the
both H(x+ iy, a) and its first derivative vanishes at a = 0:

H(s, a)|a=0 = 0,

d

da
H(s, a)|a=0 = 0. (16.3.22)

Suppose that H(s, a) satisfies a differential equation of form

d

da
H(x+ iy, a) = I(x,H(x+ iy, a)), (16.3.23)

where I(x,H) is some function having no explicit dependence on a so that the differential equation
defines an autonomous flow. If the initial conditions of Eq. 16.3.22 are satisfied, this differential
equation implies that all derivatives of H vanish which in turn, as it is easy to see, implies that the
points s+m(1−2x) are zeros of ζ. This leaves only the possibility x = 1/2 so that Riemann hypothesis
is proven. If I is function of also a, that is I = I(a, x,H), this argument breaks down.

The following argument shows that the system is autonomous. One can solve a as function a =
a(x,H) from the Taylor series of H with respect to a by using implicit function theorem, substitute
this series to the Taylor series of dH/da with respect to a, and by re-organizing the summation obtain
a Taylor series with respect to H with coefficients which depend only on x so that one has I = I(x,H).

5. Conclusions
To sum up, Riemann hypothesis follows from the requirement that the states in V can be assigned

with a conformally invariant physical quantum system. This condition reduces to three mutually
equivalent conditions: the metric induced to V is hermitian; positive definite; allows conformal sym-
metries as isometries. The hermiticity and positive definiteness properties reduce to the requirement
that the dynamical conformal algebra naturally spanned by the states in Vs reduces to the abelian
algebra defined by L0 = D+. If the infinitesimal isometries for the matrix elements 〈Ψ0|Ψs〉 = 0 gen-
erated by L1−2Re[s] can be exponentiated to isometries as Lie group theory based argument strongly
suggests, then Riemann hypothesis follows.
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It must be emphasized that all the arguments of this chapter produce Riemann hypothesis from
some physically natural looking assumption rather than proving it. Conformal invariance form the
spectrum of zeros of zeta in the proposed sense reducing to gauge invariance is perhaps the most
natural axiom implying Riemann hypothesis.

16.3.7 Does the Hermitian form define inner product?

Before considering the question whether the Hermitian form defined by G or GV defines a positive
definite Hilbert space inner product, a couple of comments concerning the general properties of the
Hermitian form G are in order.

1. The Hermitian form is proportional to the factor

sin(iπ(y2 − y1)) ,

which vanishes for y1 = y2. For y1 = y2 and x1 + x2 = 1 (x1 + x2 = 0) the diverging factor ζ(1)
(ζ(0)) compensates the vanishing of this factor. Therefore the norms of the eigenfunctions Ψz

with z = 1/2+iy must be calculated explicitly from the defining integral. Since the contribution
from the cut vanishes in this case, one obtains only an integral along a small circle around the
origin. This gives the result

〈Ψz1 |Ψz1〉 = K for z1 = 1
2 + iy , 〈Ψ0|Ψ0〉 = −K . (16.3.24)

Thus the norms of the eigenfunctions are finite. For K = 1 the norms of z = 1/2 + iy eigen-
functions are equal to one. Ψ0 has however negative norm −1 so that the Hermitian form in
question is not a genuine inner product in the space containing Ψ0.

2. For x1 = x2 = 1/2 and y1 6= y2 the factor is non-vanishing and one has

〈Ψz1 |Ψz2〉 = − 1

πi
ζ(1 + i(y2 − y1))Γ(1 + i(y2 − y1))sinh(π(y2 − y1)) .

(16.3.24)

The nontrivial zeros of ζ are known to belong to the critical strip defined by 0 < Re[s] < 1.
Indeed, the theorem of Hadamard and de la Vallee Poussin [A7] states the non-vanishing of ζ
on the line Re[s] = 1. Since the non-trivial zeros of ζ are located symmetrically with respect to
the line Re[s] = 1/2, this implies that the line Re[s] = 0 cannot contain zeros of ζ. This result
implies that the states Ψz=1/2+y are non-orthogonal unless Γ(1 + i(y2 − y1)) vanishes for some
pair of eigenfunctions.

It is not at all obvious that the Hermitian form in question defines an inner product in the space
spanned by the states Ψz, z = 1/2+iy having real and positive norm. Besides Hermiticity, a necessary
condition for this is that Schwartz inequality

|〈Ψz1 |Ψz2〉| ≤ |Ψz1 ||Ψz2 |

holds true. In case of eigen states of D+ this condition is not affected by the determinant factors and
one can apply it to the metric G. This gives

1

π
|ζ(1 + iy12)| × |Γ(1 + iy12)| × |sin(iπy12)| ≤ 1 , (16.3.25)

where the shorthand notation y12 = y2 − y1 has been used.
Numerical computation suggests that ζ(1 + iy12) varies in a finite range of values for large values

of y12 and that Γ(1 + iy) behaves essentially as exp(−πy/2) asymptotically so that the left hand side
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increases faster than exp(πy12/2) so that Schwartz inequality fails for the eigen states. It took a
considerable time do realize that the solution to this difficulty is trivial: the only thing that is needed
is to multiply the metric with the factor K(z12) introduced already earlier. K(z12) is expected to
behave like a sufficiently narrow Gaussian on basis of the intuition about the behavior of coherent
states.

Possible problems are also caused by the small values of y12 for which one might have |G(1+iy12)| >
1 implying the failure of the Schwartz inequality

|〈Ψz1 |Ψz2〉| ≤ |Ψz1 ||Ψz2 | (16.3.26)

characterizing positive definite metric. The direct calculation of G(1 + iy) at the limit y → 0 by using
ζ(1 + iy) ' 1/iy however gives

G(1) = 1 . (16.3.27)

By a straightforward calculation one can also verify that z = 1 is a local maximum of |G(z)|. Note
that the Jacobians do not affect the required inequality at all in case of eigen states.

It is easy to see that arbitrary small values of y12 are unavoidable. The estimate of Riemann for
the number of the zeros of ζ in the interval Im[s] ∈ [0, T ] along the line Re[s] = 1/2 reads as

N(T ) ' T

2π

[
log(

T

2π
)− 1

]
, (16.3.28)

and allows to estimate the average density dNT /dy of the zeros and to deduce an upper limit for the
minimum distance ymin12 between two zeros in the interval T :

dNT
dy

' 1

2π

[
log(

T

2π
)− 1

]
,

ymin12 ≤ 1
dNT
dy

=
2π[

log( T2π )− 1
] → 0 for T →∞ . (16.3.28)

This implies that arbitrary small values of y12 are unavoidable.

16.3.8 Super-conformal symmetry

Before considering super-conformal symmetry it is good to summarize the basic results obtained
hitherto.

1. Conformal invariance as a gauge symmetry is possible only in the space V spanned by the eigen
states associated with the zeros of ζ.

2. The hermiticity of the metric in the space spanned by the eigen states associated with the zeros
of ζ is possible only if the zeros are on the critical line.

3. The requirement that the algebra spanned by the generators L2Re[s]−1, L1−2Re[s] act as a dy-
namical symmetry algebra generating new zeros of ζ, forces the zeros to be on the critical line:
in this case the generators in question reduce to L0 and the dynamical symmetry reduces to a
gauge symmetry.

One can say that the relationship of the conformal invariance to Riemann hypothesis is understood.
Although super-conformal invariance does not seem to bring in anything new in this respect, it is still
interesting to look whether conformal symmetry could be generalized to super-conformal symmetry.
Certainly the basic idea about the action as gauge symmetry remains the same as well as the manner
how subalgebra of conformal algebra acts as a dynamical symmetry algebra.

In the following various approaches to the problem of finding a super-conformal generalization of
the dynamical system associated with the Riemann Zeta are discussed.
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Simplest variant of the super-conformal symmetry

One can indeed identify a conformal algebra naturally associated with the proposed dynamical system.
Note first that the generators of the ordinary conformal algebra

Lz = ΨzD
+ (16.3.29)

generate conformal algebra with commutation relations ([A,B] ≡ AB −BA)

[Lz1 , Lz2 ] = (z2 − z1)Lz1+z2 . (16.3.30)

Fermionic generators Gz satisfy the following anti-commutation and commutation relations:

{Gz1 , Gz2} = Lz1+z2 , [Lz1 , Gz2 ] = z2Gz1+z2 , .

(16.3.30)

An explicit representation for the generators of the algebra extended to a super-algebra is obtained
by introducing besides the bosonic coordinate t an anti-commuting coordinate θ. This means that
the ordinary complex function algebra is replaced by the function algebra consisting of functions
f(t) + θg(t).

It is easy to verify that the generators defined as

Lz = tz(D+ + zθdθ) , Gz = 1√
2
tz(dθ + θD+) .

(16.3.30)

satisfy the defining commutation and anti-commutation relations of the super conformal algebra.
Notice that the definition of the operator D+ = L0 is not affected at all by the generalization and
the eigenfunctions of D+ come as doubly degenerate pairs consisting of a bosonic state Ψz and its
fermionic partner Ψzθ. Vacuum state however corresponds to the bosonic state since Lz and Gz do
not annihilate the fermionic partner of the vacuum state.

The representation of this algebra as a gauge algebra is achieved in exactly the same manner
as in the case of the ordinary conformal algebra. The gauge conditions for Lz are satisfied only
by the bosonic eigen states so that actually nothing new seems to emerge from this generalization.
The counterpart of the algebra generated by L1−2Re[s], L2Re[s]−1 and L0 is obtained by adding the
generator G0. Since any Lz commutes with G0 the algebra closes. The requirement that this algebra
acts as a symmetry in V implies Riemann hypothesis since the algebra reduces to that generated
by L0 and G0 on the critical line. The super-symmetric variant of the theory is clearly somewhat
disappointing exercise since it does not seem to bring anything genuinely new: even the space of the
conformally invariant states remains the same.

Second quantized version of super-conformal symmetry

The following much more complex construction is essentially a construction of a second-quantized
super-conformal quantum field theory for the super-symmetric system associated with D+. It must be
emphasized that this construction contains un-necessary complexities. In particular, the introduction
of Kac Moody symmetry can be criticized since Kac Moody generators cannot annihilate physical
states in the representation of the super-conformal symmetries as gauge symmetries in the space V.
It is however perhaps wise to keep also this option since it turn out to be of some value.

The extension of this algebra to super-conformal algebra requires the introduction of the fermionic
generatorsGz andG†z. To avoid confusions it must be emphasized that following convention concerning
Hermitian conjugation is adopted to make notation more fluent:

(Ow)† = O†w . (16.3.31)

Fermionic generators Gz and G†z satisfy the following anti-commutation and commutation relations:
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{Gz1 , G†z2} = Lz1+z2 , [Lz1 , Gz2 ] = z2Gz1+z2 ,
[
Lz1 , G

†
z2

]
= −z2G

†
z1+z2 .

(16.3.31)

This definition differs from that used in the standard approach [A132] in that generators Gz and G†z
are introduced separately. Usually one introduces only the the generators Gn and assumes Hermiticity
condition G−n = G†n. The anti-commutation relations of Gz contain usually also central extension
term. Now this term is not present as will be found.

Conformal algebras are accompanied by Kac Moody algebra which results as a central extension
of the algebra of the local gauge transformations for some Lie group on circle or line [A132] . In the
standard approach Kac Moody generators are Hermitian in the sense that one has T−n = T †n [A132]
. Now this condition is dropped and one introduces also the generators T †z . In present case the
counterparts for the generators T †z of the local gauge transformations act as translations z1 → z1 + z
in the index space labeling eigenfunctions and geometrically correspond to the multiplication of Ψz1

with the function tz

T †z1Ψz2 = tz1Ψz2 = Ψz1+z2 . (16.3.32)

These transformations correspond to the isometries of the Hermitian form defined by G(z12) and are
therefore natural symmetries at the level of the entire space of the eigenfunctions.

The commutation relations with the conformal generators follow from this definition and are given
by

[Lz1 , Tz2 ] = z2Tz1+z2 ,
[
Lz1 , T

†
z2

]
= −z2T

†
z1+z2 , (16.3.33)

The central extension making this commutative algebra to Kac-Moody algebra is proportional to the
Hermitian metric

[Tz1 , Tz2 ] = 0 ,
[
T †z1 , T

†
z2

]
= 0 ,

[
T †z1 , Tz2

]
= (z1 − z2)G(z1 + z2) . (16.3.34)

One could also consider the central extension
[
T †z1 , Tz2

]
= G(z1 + z2), which is however not the

standard Kac-Moody central extension.
One can extend Kac Moody algebra to a super Kac Moody algebra by adding the fermionic

generators Qz and Q†z obeying the anti-commutation relations ({A,B} ≡ AB +BA)

{Qz1 , Qz2} = 0 , {Q†z1 , Q
†
z2} = 0 , {Qz1 , Q†z2} = G(z1 + z2) . (16.3.35)

Note that also Q0 has a Hermitian conjugate Q†0, and one has

{Q0, Q
†
0} = G(0) = −1

2
(16.3.36)

implying that also the fermionic counterpart of Ψ0 has negative norm. One can identify the fermionic
generators as the gamma matrices of the infinite-dimensional Hermitian space spanned by the eigen-
functions Ψz. By their very definition, the complexified gamma matrices Γz̄1 and Γz2 anti-commute
to the Hermitian metric 〈Ψz1 |Ψz2〉 = G(z1 + z2).

The commutation relations of the conformal and Kac Moody generators with the fermionic gen-
erators are given by

[Lz1 , Qz2 ] = z2Qz1+z2 ,
[
Lz1 , Q

†
z2

]
= −z2Q

†
z1+z2 ,[

Tz1 , Q
†
z2

]
= 0 , [Tz1 , Qz2 ] = 0 .

(16.3.37)

The non-vanishing commutation relations of Tz with Gz and non-vanishing anticomutation relations
of Qz with Gz are given by
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[
Gz1 , T

†
z2

]
= Qz1+z2 ,

[
G†z1 , Tz2

]
= −Q†z1+z2 ,

{Gz1 , Q†z2} = Tz1+z2 , {G†z1 , Qz2} = T †z1+z2 .
(16.3.38)

Super-conformal generators clearly transform bosonic and fermionic Super Kac-Moody generators to
each other.

The final step is to construct an explicit representation for the generators Gz and Lz in terms of
the Super Kac Moody algebra generators as a generalization of the Sugawara representation [A132] .
To achieve this, one must introduce the inverse G−1(zazb) of the metric tensor G(zazb) ≡ 〈Ψza |Ψzb〉,
which geometrically corresponds to the contravariant form of the Hermitian metric defined by G.
Adopting these notations, one can write the generalization for the Sugawara representation of the
super-conformal generators as

Gz =
∑
za

Tz+zaG
zazbQ†zb ,

G†z =
∑
za

T †z+zaG
zazbQzb . (16.3.38)

One can easily verify that the commutation and anti-commutation relations with the super Kac-Moody
generators are indeed correct. The generators Lz are obtained as the anti-commutators of the genera-
tors Gz and G†z. Due to the introduction of the generators Tz, T

†
z and Gz, G

†
z, the anti-commutators

{Gz1 , G†z2} do not contain any central extension terms. The expressions for the anti-commutators
however contains terms of form T †TQ†Q whereas the generators in the usual Sugawara representation
contain only bilinears of type T †T and Q†Q. The inspiration for introducing the generators Tz,Gz and
T †z , G†z separately comes from the construction of the physical states as generalized super-conformal
representations in quantum TGD [K44] . The proposed algebra differs from the standard super-
conformal algebra [A132] also in that the indices z are now complex numbers rather than half-integers
or integers as in the case of the ordinary super-conformal algebras [A132] . It must be emphasized
that one could also consider the commutation relations

[
T †z1 , Tz2

]
= iG(z1 + z2) and they might be

more the physical choice since z2 − z1 is now a complex number unlike for ordinary super-conformal
representations. It is not however clear how and whether one could construct the counterpart of the
Sugawara representation in this case.

Imitating the standard procedure used in the construction of the representations of the super-
conformal algebras [A132] , one can assume that the vacuum state is annihilated by all generators Lz
irrespective of the value of z:

Lz|0〉 = 0 , Gz|0〉 = 0 . (16.3.39)

That all generators Lz annihilate the vacuum state follows from the representation Lz = ΨzD+

because D+ annihilates Ψ0. If G0 annihilates vacuum then also Gz ∝ [Lz, G0] does the same.
The action of T †z on an eigenfunction is simply a multiplication by tz: therefore one cannot require

that Tz annihilates the vacuum state as is usually done [A132] . The action of T0 is multiplication by

t0 = 1 so that T 0 and T †0 act as unit operators in the space of the physical states. In particular,

T0|0〉 = T †0 |0〉 = |0〉 . (16.3.40)

This implies the condition

[
T0, T

†
z

]
= izG(z) = 0 (16.3.41)

in the space of the physical states so that physical states must correspond to the zeros of ζ and
possibly to z = 0. Thus one can generate the physical states from vacuum by acting using operators
Q†z and T †z with ζ(z) = 0. If one requires that the physical states also have real and positive norm
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squared, only the zeros of ζ on the line Re[s] = 1/2 are allowed. Hence the requirement that a unitary
representation of the super-conformal algebra is in question, forces Riemann hypothesis.

It is important to notice that T †z and Q†z cannot annihilate the vacuum: this would lead to the
condition G(z1 + z2) = 0 implying the vanishing of ζ(z1 + z2) for any pair z1 + z2. One can however
assume that Qz annihilates the vacuum state

Qz|0〉 = 0 . (16.3.42)

The realization of these conditions in case of super-conformal algebra is achieved by mapping the
eigen states Ψs to Ψζ(s), acting to these states by the generators of the algebra and mapping the
resulting state (which vanishes for zeros of ζ) back to a state proportional to Ψζ−1(ζ(s)+z). It must be
however emphasized that for Kac Moody generators not annihilating the vacuum state the action is
not well-defined.

This inspires the hypothesis that only the generators with conformal weights z = 1/2+ iy generate
physical states from vacuum realizable in the space of the eigenfunctions Ψz and their fermionic coun-
terparts. This means that the action of the bosonic generators T †1/2+iy and fermionic generators Q†0

and Q†1/2+iy, as well as the action of the corresponding super-conformal generators G†1/2+iy, generates

bosonic and fermionic states with conformal weight z = 1/2 + iy from the vacuum state:

|1/2 + iy〉B ≡ T †1/2+iy|0〉 , |1/2 + iy〉F ≡ Q†1/2+iy|0〉 . (16.3.43)

One can identify the states generated by the Kac Moody generators T †z from the vacuum as the eigen-
functions Ψz. The system as a whole represents a second quantized super-symmetric version of the
bosonic system defined by the eigenvalue equation for D+ obtained by assigning to each eigenfunction
a fermionic counterpart and performing second quantization as a free quantum field theory.

It should be noticed that the ordinary Super Kac-Moody and super-conformal algebras with gen-
erators On labeled by integers n > 0 generate zero norm states from any state |z〉 with Re[z] = 0
or Re[z] = 1/2 (G(n1 + n2) = 0). Thus ordinary super-conformal invariance holds true as gauge
invariance. It is possible (although perhaps not absolutely necessary) to restrict the real parts of the
conformal weights of the generators to be non-negative.

Is the proof of the Riemann hypothesis by reductio ad absurdum possible using second
quantized super-conformal invariance?

Riemann hypothesis is proven if all eigenfunctions for which the Riemann Zeta function vanishes,
correspond to the states having a real and positive norm squared. The expectation is that super-
conformal invariance realized in some sense excludes all zeros of ζ except those on the line Re[s] = 1/2.
The problem is to define precisely what one means with super-conformal invariance and one can
generate large number of reduction ad absurdum type proofs depending on how super-conformal
invariance is assumed to be realized. The following considerations are completely independent of the
already described and more recent realization of the super-conformal gauge invariance by applying ζ
and its inverse to the conformal weights of the eigen states. I have kept this material because I feel
that it might be unwise to to throw it way yet.

The most conservative option is that super-conformal invariance is realized in the standard sense.
The action of the ordinary super-conformal generators Ln, and Gn, n 6= 0 on the vacuum states
|0〉B/F or on any state |1/2 + iy〉B/F indeed creates zero norm states as is obvious from the vanishing
of the factor sin(πz12) = sin(π(x1 + x2)) associated with the inner inner products of these states.
Thus the zeros of ζ define an infinite family of ground states for the representations of the ordinary
super-conformal algebra. A generalization of this hypothesis is that the action of Ln and Gn, n 6= 0,
on any state |w〉B/F , ζ(w) = 0, creates states which are orthogonal zero norm states. This implies
ζ(n+ 2Re[w]) = 0 for all values of n 6= 0 and, since the real axis contains zeros of ζ only at the points
Re[s] = −2n, n > 0, leads to a reductio ad absurdum unless one has Re[w] = 1/2. Thus the proof
of the Riemann hypothesis would reduce to showing that the action of the ordinary super-conformal
algebra generates mutually orthogonal zero norm states from any state |w〉B/F with ζ(w) = 0. The
proof of this physically plausible hypothesis is not obvious.
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One can imagine also other strategies. The minimal requirement is certainly that some subalgebra
of the super-conformal algebra generates a space of states satisfying the Hermiticity condition. The
quantity

∆(w1 + w2) ≡ 〈w1|w2〉 − 〈w2|w1〉 = G(w1 + w2)−G(w2 + w1) (16.3.44)

must define the conformal invariant in question since this quantity must vanish in the space of the
physical states for which the metric is Hermitian. This requirement does not however imply anything
nontrivial for the ordinary conformal algebra having generators Ln and Gn: for Re[w] 6= 1/2 the
condition is indeed satisfied because G(n+ 2Re[w]) does not satisfy the Hermiticity condition for any
value of n.

One can try to abstract some property of the states associated with the zeros of ζ on the line Re[s] =
1/2. The generators L1/2−iy and G1/2−iy generate zero norm states from the states |1/2 + iy〉B/F ,
when 1/2 + iy corresponds to the zero of ζ on the line Re[s] = 1/2. One can try to generalize this
observation so that it applies to an arbitrary state |w〉B/F , ζ(w) = 0. The generators L1−w and
G1−w certainly generate zero norm states from the states |w〉B/F . Also the Hermiticity condition
holds true identically and does not have nontrivial implications. One can however consider alternative
generalizations by assuming that

1. either the generators Lw and Gw or

2. L1/2+iy and G1/2+iy generate from the states |w〉B/F , ζ(w) = 0 states satisfying the Hermiticity
condition.

These two hypothesis lead to two versions of a reductio ad absurdum argument. Suppose that w
is a zero of ζ. This means that the inner product of the states Q†0|0〉 and Q†w|0〉 and thus also ∆(w)
vanishes:

〈0|Q0Q
†
w|0〉 = 0 , ∆(w) = 0 . (16.3.45)

1. By acting on this matrix element by the conformal algebra generator Lw (which acts like deriva-
tive operator on the arguments of the should-be Hermitian form), and using the fact that Lw
annihilates the vacuum state, one obtains

〈0|Q0Q
†
w+w|0〉 = G(w + w) . (16.3.46)

The requirement ∆(w+w) = 0 implies the reality ofG(w+w) and thus the condition Re[w] = 1/2
leading to the Riemann hypothesis. Note that the argument implying the reality of G(w + w)
assumes only that Lw annihilates vacuum.

If this line of approach is correct, the basic challenge would be to show on the basis of the
super-conformal invariance alone that the condition ζ(w) = 0 implies that the generators Lw
and Gw generate new ground states satisfying the Hermiticity condition.

2. An alternative line of argument uses only the invariance under the generators L1/2+iy associated
with the zeros of ζ, and thus certainly belonging to the conformal algebra associated with the
physical states. By applying the generators L1/2+iyi to the the matrix element 〈0|Q0Q

†
w|0〉 = 0

and requiring that Hermiticity is respected, one can deduce that G(w + 1/2 + iyi) satisfies the
Hermiticity condition. Hence the line Re[s] = Re[w] + 1/2, and by the reflection symmetry also
the line Re[s] = 1/2 − Re[w], contain an infinite number of zeros of ζ if one has Re[w] 6= 1/2.
By repeating this process once for the zeros on the line Re[s] = 1/2−Re[w], one finds that the
lines Re[s] = 1 − Re[w] and Re[s] = Re[w] contain infinite number of the zeros of ζ of form
wij = w+ i(yi + yj), where yi and yj are associated with the zeros of ζ on the line Re[s] = 1/2.
By applying this two-step procedure repeatedly, one can fill the lines Re[s] = Re[w],1− Re[w],
1/2−Re[w], 1/2 +Re[w] with the zeros of ζ.
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16.3.9 What about p-adic version of the modified Hilbert-Polya hypothe-
sis?

The definition of a p-adic counterpart of Riemann zeta function is far from non-trivial. Both the
summands n−s of the product representation and factors (1 − p−s)−1 product representation fail to
make sense p-adically unless s is integer.

p-Adic analog of Riemann Zeta or more generally p-adic L-function (see http://en.wikipedia.

org/wiki/P-adic_L-function) defined as the analog of L-function (see http://en.wikipedia.org/
wiki/L-function) can be however defined.

Dirichlet’s L-function is defined as a meromorphic analytic continuation to entire complex plane
of Dirichlet’s L-series defined as a generalization of Riemann zeta:

L(n, χN ) =

∞∑
n=1

χN (n)

ns
. (16.3.47)

Here χN is Dirichlet character (see http://en.wikipedia.org/wiki/Dirichlet_character). Dirich-
let characters are multiplicative functions of integer arguments, which are periodic with period N ,
and satisfy χN (1) = 1 and χN (0) = 0 except for the trivial characterχ1 for which one has χ1(0) = 1.
For any a having no common divisors with N χ(a) is Φ(N):th root of unity, where Φ(N) is the totient
function (see http://en.wikipedia.org/wiki/Totient_function) counting the number of integers
1 ≤ n ≤ N having no common divisors with N .

Two Dirichlet characters are equivalent if they induce the same Dirichlet character: induction is
possible when M divides N and means simply the interpretation of a character χM as a character
χN . Dirichlet characters form a character group. The smallest integer M defining Dirichlet character
in a given equivalence class of Dirichlet characters is called conductor.

There are two definitions of the p-adic Riemann zeta due originally to Kubota and Leopoldt and
Iwasawa respectively and having quite different origins but they have been shown to be more or less
equivalent and only the simpler definition based on algebraic continuation will be summarized below.

Tomio Kubota and Heinrich-Wolfgang Leopoldt gave the first construction of p-adic zeta function
by algebraic continuation of the ordinary zeta function from its values for odd negative integers. These
values are expressible as in terms of generalized Bernoulli numbers, which are rationals and thus make
sense p-adically. The formula is

L(1− n, χ) = −Bn,χ
n

. (16.3.48)

HereBn,χ are the a generalized Bernoulli numbers (see http://en.wikipedia.org/wiki/Generalized_
Bernoulli_number) defined by

∞∑
n=0

Bn,χ
tn

n!
= −

f∑
a=1

χ(a)teat

eft − 1
. (16.3.49)

Here integer f is the above defined conductor.
KubotaLeopoldt p-adic L-function Lp(s, χ) interpolates the Dirichlet L-function with the Euler

factor at p removed so that for positive integers n divisible by p− 1, one has

Lp(1− n, χ) = (1− χ(p)pn−1)L(1− n, χ) . (16.3.50)

The removal of Euler factor at p is necessary to achieve p-adic continuity as is clear from the fact that
for n = n0 + rpk, 0 < r < p− 1, k →∞, the factor pn−1 approaches to zero rather than pn0 .

When n is not divisible by p− 1, one has a more complex formula

Lp(1− n, χ) = (1− χ(p)ω−npn−1)L(1− n, χ) . (16.3.51)

http://en.wikipedia.org/wiki/Riemann_zeta
http://en.wikipedia.org/wiki/P-adic_L-function
http://en.wikipedia.org/wiki/P-adic_L-function
http://en.wikipedia.org/wiki/P-adic_L-function
http://en.wikipedia.org/wiki/L-function
http://en.wikipedia.org/wiki/L-function
http://en.wikipedia.org/wiki/L-function
http://en.wikipedia.org/wiki/Dirichlet_character
http://en.wikipedia.org/wiki/Dirichlet_character
http://en.wikipedia.org/wiki/Totient_function
http://en.wikipedia.org/wiki/Totient_function
http://en.wikipedia.org/wiki/Totient_function
http://en.wikipedia.org/wiki/Generalized_Bernoulli_number
http://en.wikipedia.org/wiki/Generalized_Bernoulli_number
http://en.wikipedia.org/wiki/Generalized_Bernoulli_number
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ω(p) is so called Teichmueller character, (see http://en.wikipedia.org/wiki/Teichmuller_character)
which is the p-adic analog of Dirichlet character.

p-Adic L-functions define measures (p-adic distributions (on profinite Galois groups with totally
disconnected topology (p-adic topology is also totally disconnected)) and are therefore interesting also
from TGD point view and might play key role in the construction of p-adic counterparts of quantum
states.

Riemann hypothesis - or rather Hilbert-Polya conjecture generalizes to p-adic zeta in the sense
that the zeros of p-adic L-function can be regarded as eigenvalues of an operator (see http://en.

wikipedia.org/wiki/Riemann_hypothesis). An interesting question whether the coherent state
hypothesis generalizes also: in other words, can one regard the vanishing values of p-adic zeta function
as vanishing inner products between coherent states labelled by zero of zeta and tachyonic ground
state. This would require a definition of p-adic variant of inner product.

16.3.10 Riemann Hypothesis and quasicrystals

Freeman Dyson has represented a highly interesting speculation related to Riemann hypothesis and
1-dimensional quasicrystals (QCs). He discusses QCs and Riemann hypothesis briefly in his Einstein
lecture (see http://www.ams.org/notices/200902/rtx090200212p.pdf) [A143].

Dyson begins from the defining property of QC as discrete set of points of Euclidian space for which
the spectrum of wave vectors associated with the Fourier transform is also discrete. What this says
is that quasicrystal as also ordinary crystal creates discrete diffraction spectrum. This presumably
holds true also in higher dimensions than D = 1 although Dyson considers mostly D = 1 case. Thus
QC and its dual would correspond to discrete points sets. I will consider the consequences in TGD
framework below.

Dyson considers first QCs at general level. Dyson claims that QCs are possible only in dimensions
D = 1, 2, 3. I do not know whether this is really the case. In dimension D = 3 the known QCs have
icosahedral symmetry and there are only very few of them. In 2-D case (Penrose tilings) there is n-fold
symmetry, roughly one kind of QC associated with any regular polygon. Penrose tilings correspond
to n = 5. In 1-D case there is no point group (subgroup of rotation group) and this explains why the
number of QCs is infinite. For instance, so called PV numbers identified as algebraic integers, which
are roots of any polynomial with integer coefficients such that all other roots have modulus smaller
than unity. 1-D QCs is at least as rich a structure as PV numbers and probably much richer.

Dyson suggests that Riemann hypothesis and its generalisations might be proved by studying 1-D
quasi-crystals.

1. If Riemann Hypothesis is true, the spectrum for the Fourier transform of the distribution of
zeros of Riemann zeta is discrete. The calculations of Andrew Odlycko indeed demonstrate this
numerically, which is of course not a proof. From Dyson’s explanation I understand that it con-
sists of sums of integer multiples nlog(p) of logarithms of primes meaning that the non-vanishing
Fourier components are apart from overall delta function (number of zeros) proportional to

F (n) =
∑
sk

n−isk = ζ̂(isk) , sk = 1/2 + iyk ,

where sk are zeros of Zeta. ζ̂ could be called the dual of zeta with summation over integers
replaced with summation over zeros. For other ”energies” than E = log(n) the Fourier transform
would vanish. One can say that the zeros of Riemann Zeta and primes (or p-adic ”energy”
spectrum) are dual. Dyson conjectures that each generalized zeta function (or rather, L-function)
corresponds to one particular 1-D QC and that Riemann zeta corresponds to one very special
1-D QC.

There are also intriguing connections with TGD which inspire quaternionic generalization of Rie-
mann Zeta and Riemann hypothesis.

1. What is interesting that the same ”energy” spectrum (logarithms of positive integers) appears
in an arithmetic quantum field theory assignable to what I call infinite primes. An infinite
hierarchy of second quantizations of ordinary arithmetic QFT is involved. A the lowest level

http://en.wikipedia.org/wiki/Teichmuller_character
http://en.wikipedia.org/wiki/Teichmuller_character
http://en.wikipedia.org/wiki/Riemann_hypothesis
http://en.wikipedia.org/wiki/Riemann_hypothesis
http://www.ams.org/notices/200902/rtx090200212p.pdf
http://www.ams.org/notices/200902/rtx090200212p.pdf
http://www.ams.org/notices/200902/rtx090200212p.pdf
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the Fourier transform of the spectrum of the arithmetic QFT would consist of zeros of zeta
rotated by π/2! The algebraic extensions of rationals and the algebraic integers associated with
them define an infinite series of infinite primes and also generalized zeta functions obtained by
the generalization of the sum formula. This would suggest a very deep connection with zeta
functions, quantum physics, and quasicrystals. These zeta functions could correspond to 1-D
QCs.

2. The definition of p-adic manifold (in TGD framework) [K96] forces a discretisation of M4×CP2

having interpretation in terms of finite measurement resolution. This discretization induces also
dicretization of space-time surfaces by induction of the manifold structure. The discretisation
of M4 (or E3) is achieved by crystal lattices, by QCs, and perhaps also by more general discrete
structures. Could lattices and QCs be forced by the condition that the lattice like structures
defines a discrete distributions with discrete spectrum? But why this?

3. There is also another problem. Integration is a problematic notion in p-adic context and it has
turned out that discretization is unavoidable and also natural in finite measurement resolution.
The inverse of the Fourier transform however involves integration unless the spectrum of the
Fourier transform is discrete so that in both E3 and corresponding momentum space integration
reduces to a summation. This would be achieved if discretisation is by lattice or QC so that one
would obtain the desired constraint on discretizations. Thus Riemann hypothesis has excellent
mathematical motivations to be true in TGD Universe!

4. What could be the counterpart of Riemann Zeta in the quaternionic case? Quaternionic analog
of Zeta suggests itself: formally one can define quaternionic zeta using the same formula as for
Riemann zeta.

(a) Rieman zeta characterizes ordinary integers and s is in this case complex number, extension
of reals by adding a imaginary unit. A naive generalization would be that quaternionic zeta
characterizes Gaussian integers so that s in the sum ζ(s) =

∑
n−s should be replaced with

quaternion and n by Gaussian integer. In octonionic zeta s should be replaced with octonion
and n with a quaternionic integer. The sum is well-defined despite the non-commutativity
of quaternions (non-associativity of octonions) if the powers n−s are well-defined. Also the
analytic continuation to entire quaternion/octonion plane should make sense.

(b) Could the zeros sk of quaternionic zeta ζH(s) reside at the 3-D hyper-plane Re(q) = 1/2,
where Re(q) corresponds to E4 time coordinate (one must also be able to continue to M4)?
Could the duals of zeros in turn correspond to logarithms ilog(n), n Gaussian integer. The
Fourier transform of the 3-D distribution defined by the zeros would in turn be proportional
to the dual of ζ̂H(isk) of ζH . Same applies to the octonionic zeta.

(c) The assumption that n is ordinary integer in ζH trivializes the situation. One obtains the
distribution of zeros of ordinary Riemann zeta at each line s = 1/2+yI, I any quaternionic
unit and the loci of zeros would correspond to entire 2-spheres. The Fourier spectrum would
not be discrete since only the magnitudes of the magnitudes of the quaternionic imaginary
parts of ”momenta” would be imaginary parts of zeros of Riemann zeta but the direction
of momentum would be free. One would not avoid integration in the definition of inverse
Fourier transform although the integrand would be constant in angular degrees of freedom.

16.4 Miscellaneous ideas about Riemann hypothesis

This section contains ideas about Riemann hypothesis which I regard as miscellaneous. I took them
rather seriously for about more than decade ago but seeing them now makes me blush. I do not
however have heart to throw away all these pieces of text away so that ”miscellaneous” is a good
attribute serving as a warning for the reader.

16.4.1 Universality Principle

The function, what I call ζ̂, is defined by the product formula for ζ and exists in the infinite-dimensional
algebraic extension of rationals containing all roots of primes. ζ̂ is defined for all values of s for which
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the partition functions 1/(1 − p−s) appearing in the product formula have value in the algebraic

extension. Universality Principle states that |ζ̂|2, defined as the product of the p-adic norms of |ζ̂|2 by
reversing the order of producting in the adelic formula, equals to |ζ|2 and, being an infinite dimensional
vector in the algebraic extension of the rationals, vanishes only if it contains a rational factor which
vanishes. This factor is present only provided an infinite number of partition functions appearing in
the product formula of ζ̂ have rational valued norm squared: this locates the plausible candidates for
the zeros on the lines Re[s] = n/2.

Universality Principle generalizes the original sharpened form of the Riemann hypothesis: the real
parts of the phases p−iy are rational. Universality Principle, even if proven, does not however yield
a proof of the Riemann hypothesis. The failure of Riemann hypothesis becomes however extremely
implausible and one could consider the possibility of regarding Riemann Hypothesis as an axiom.

16.4.2 How to understand Riemann hypothesis

The considerations of the preceding subsection lead to the requirement that the logarithmic waves
eiKlog(u) exist in all number fields for u = n (and thus for any rational value of u) implying number
theoretical quantization of the scaling momenta K. Since the logarithmic waves appear also in Rie-
mann Zeta as the basic building blocks, there is an interesting connection with Riemann hypothesis,
which states that all non-trivial zeros of ζ(z) =

∑
n 1/nz lie at the line Re(z) = 1/2.

I have applied two basic strategies in my attempts to understand Riemann hypothesis. Both
approaches rely heavily on conformal invariance but being realized in a different manner. The univer-
sality of the scaling momentum spectrum implied by the number theoretical quantization allows to
understand the relationship between these approaches.

Some approaches to RH

It is appropriate to list various approaches to RH that I have considered during years.

1. Coherent state approach to RH

In this approach (see the preprint in [L1] in Los Alamos archives and the article published in Acta
Mathematica Universitatis Comeniae [H2] ) one constructs a simple conformally invariant dynamical
system for which the vanishing of Riemann Zeta at the critical line states that the coherent quantum
states, which are eigen states of a generalized annihilation operator, are orthogonal to a vacuum state
possessing a negative norm. This condition implies that the eigenvalues are given by the nontrivial
zeros of ζ. Riemann hypothesis reduces to conformal invariance and the outcome is an analytic
reductio ad absurdum argument proving Riemann hypothesis with the standards of rigor applied in
theoretical physics.

2. The approach based on number theoretical universality

The basic idea is that Riemann Zeta is in some sense defined for all number fields. The basic
question is what ”some” could mean. Since Riemann Zeta decomposes into a product of harmonic
oscillator partition functions Zp(z) = 1/(1 − pz) associated with primes p the natural guess is that
p1/2+iy exists p-adically for the zeros of Zeta. The first guess was that for every prime p (and hence
every integer n) and every zero of Zeta piy might define complex rational number (Pythagorean phase)
or perhaps a complex algebraic number.

The transcendental considerations that one should try to generalize this idea: for every p and y
appearing in the zero of Zeta the number piy belongs to a finite-dimensional extension of rationals
involving also rational roots of e. This would imply that also the quantities niy make sense for all
number fields and one can develop Zeta into a p-adic power series. Riemann Zeta would be defined
for any number field in the set linearly spanned by the integer multiples of the zeros y of Zeta and it
is easy to get convinced that this set is dense at the Y-axis. Zeta would therefore be defined at least
in the set X × Y where X is some subset of real axis depending on the extension used.

If log(p) = q1exp(q2)/π holds true, then y = q(y)π should hold true for the zeros of ζ. In this case
one would have

piy = exp [iq(y)q1(p)exp (q2(p))] .
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This quantity exists p-adically if the exponent has p-adic norm smaller than one. q1(p) is divisible by
finite number of primes p1 so that piy does not exist in a finite-dimensional extension of Rp1 unless
q(y) is proportional to a positive power of p1. Also in this case the multiplication of y by the units
defined by infinite primes (to be discussed later) would save the day and would be completely invisible
operation in real context.

3. Logarithmic plane waves and Hilbert-Polya conjecture

Logarithmic plane waves allow also a fresh insight on how to physically understand Riemann
hypothesis and the Hilbert-Polya conjecture stating that the imaginary parts of the zeros of Riemann
Zeta correspond to the eigenvalues of some Hamiltonian in some Hilbert space.

1. At the critical line Re(z) = 1/2 (z=x+iy) the numbers n−z = n−1/2−iy appearing in the
definition of the Riemann Zeta allow an interpretation as logarithmic plane waves Ψy(v) =
eiylog(v)v−1/2 with the scaling momentum K = 1/2 − iy estimated at integer valued points
v = n. Riemann hypothesis would follow from two facts. First, logarithmic plane waves form
a complete basis equivalent with the ordinary plane wave basis from which sub-basis is selected
by number theoretical quantization. Secondly, for all other powers vk other than v−1/2 in the
denominator the norm diverges due to the contributions coming from either short (k < −1/2)
or long distances (k > −1/2).

2. Obviously the logarithmic plane waves provide a concrete blood and flesh realization for the
conjecture of Hilbert and Polya and the eigenvalues of the Hamiltonian correspond to the uni-
versal scaling momenta. Note that Hilbert-Polya realization is based on mutually orthogonal
plane waves whereas the Approach 1 relies on coherent states orthogonal to the negative norm
vacuum state. That eigenvalue spectra coincide follows from the universality of the number
theoretical quantization conditions. The universality of the number theoretical quantization
predicts that the zeros should appear in the scaling eigenvalue spectrum of any physical system
obeying conformal invariance. Also the Hamiltonian generating by definition an infinitesimal
time translation could act as an infinitesimal scaling.

3. The vanishing of the Riemann Zeta could code the conditions stating that the extensions involved
are finite-dimensional: it would be interesting to understand this aspect more clearly.

4. The approach based on zero energy ontology

The approach based on zero energy ontology is the newest one and generalizes the thermodynamical
approach by replacing thermodynamics with its square root. The amplitudes ps define quantities
proportional to time-like entanglement coefficients between positive and negative energy parts of a
zero energy state having opposite energies given by ±log(p). The hypothesis that the sum over moduli
squared for the coefficients diverges states that the zero energy state is not normalizable and has a
physical interpretation as a critical state representing Bose-Einstein condensation. The additional
condition that zero of zeta is in question is analogous to the condition

∫
ΨdV = 0 and should be

given a better physical justification. The interpretation as a zero energy counterpart of a coherent
state seems to makes sense also now. Note that in ZEO coherent state property is in accordance with
energy conservation. In the case of coherent states of Cooper pairs same applies to fermion number
conservation. With this interpretation the condition would state orthogonality with respect to the
coherent zero energy state characterized by s = 0.

Connection with the conjecture of Berry and Keating

The idea that the imaginary parts y for the zeros of Riemann zeta function correspond to eigenvalues
of some Hermitian operator H is not new. Berry and Keating [A124] however proposed quite recently
that the Hamilton in question is super-symmetric and given by

H = xp− i

2
. (16.4.1)

Here the momentum operator p is defined as p = −id/dx and x has non-negative real values.
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H can be indeed expressed as a square H = Q2 of a Hermitian super symmetry generator Q:

Q =
√
i [ixσ1 + pσ2] +

√
i

2
σ3 ,

σ1 =

(
0 1
0 0

)
,

σ2 =

(
0 0
1 0

)
,

σ3 =

(
1 0
0 −1

)
. (16.4.-1)

By a direct calculation one finds that the following relationship holds true:

Q2 =

(
xp+ i

2 0
0 xp− i

2

)
.

The eigen spinors of Q can be written as

ψ =

(
u
v

)
= x−iy

(
x1/2√
y
i x
−1/2

)
.

The eigenvalues of Q are q =
√
y. For y ≥ 0 the eigenvalues are real so that Q is Hermitian when

inner product is defined appropriately. Obviously y is eigenvalue of Hamiltonian.
Orthogonality requirement for the solutions of the Dirac equation requires that the inner product

reduces to the inner product for plane waves exp(iu), u = log(x). This is achieved if inner product
for spinors ψi = (ui, vi) is defined as

〈ψ1|ψ2〉 =

∫ ∞
0

dx

x
[u1v2 + v1u2] . (16.4.-2)

In the basis formed by solutions of Dirac equation this inner product is indeed positive definite as one
finds by a direct calculation.

The actual spectrum assumed to give the zeros of the Riemann Zeta function however remains
open without additional hypothesis. An attractive hypothesis motivated by previous considerations is
that the sharpened form of Riemann hypothesis stating that niy exists for any number field provided
finite-dimensional extensions are allowed for the zeros of Riemann zeta function, holds true. This
implies that xiy satisfies the same condition for any rational value of x. x±1/2 in turn belongs to the
infinite-dimensional algebraic extension Q∞C of complex rationals, when x is rational. Therefore the
solutions of Dirac equation, being of form xiyx±1/2, exist for all number fields for rational values of
argument x.

Connection with arithmetic quantum field theory and quantization of time

There is also a very interesting connection with arithmetic quantum field theory and sharpened form
of Riemann hypothesis. The Hamiltonian for a bosonic/fermionic arithmetic quantum field theory is
given by

H =
∑
p

log(p)a†pap . (16.4.-1)

where a†p and ap satisfy standard bosonic/fermionic anti-commutation relations

{a†p1 , ap2}± = δ(p1, p2) . (16.4.0)
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Here ± refers to anti-commutator/commutator. The sum of Hamiltonians defines super-symmetric
arithmetic QFT. The states of the bosonic QFT are in one-one correspondence with non-negative
integers and the decomposition of a non-negative integer to powers or prime corresponds to the
decomposition of state to many boson states corresponding to various modes p. Analogous statement
holds true for fermionic QFT.

The matrix element for the time development operator U(t) ≡ exp(iHt) between states |m〉 and
|n〉 can be written as

〈m|U(t)|n〉 = δ(m,n)nit . (16.4.1)

Same form holds true both in bosonic and fermionic QFT:s. These matrix elements are defined for all
number fields allowing finite-dimensional extensions if this holds true for nit so that the allowed values
of t corresponds to zeros of Riemann Zeta if one accepts Universality Principle. Similar statement holds
in the case of fermionic QFT. One can say that the durations for the time evolutions are quantized
in a well defined sense and allowed values of time coordinate correspond to the zeros of Riemann zeta
function!

The result is very interesting from the point of view of quantum TGD since it would mean that
U(t) allows for the preferred values of the time parameter p-adicization (p mod 4 = 3) obtained by
mapping the diagonal phases to their p-adic counterparts by phase preserving canonical identification.
For phases this map means only the re-interpretation of the rational phase factor as a complexified
p-adic number. For these quantized values of the time parameter time evolution operator of the
arithmetic quantum field theory makes sense in all p-adic number fields besides complex numbers.

In the case of Berry’s super-symmetric Hamiltonian the assumption that piy exists in all number
fields with finite extensions allowed and the requirement that same holds true for the time evolution
operator implies that allowed time durations for time evolution are given by t = log(n). This means
that there is nice duality between Berry’s theory and arithmetic QFT. The allowed time durations
(energies) in Berry’s theory correspond to energies (allowed time durations) in arithmetic QFT.

16.4.3 Stronger variants for the sharpened form of the Riemann hypothesis

The previous form of the sharpened form of Riemann hypothesis was preceded by conjectures, which
were much stronger. The strongest variant of the sharpening is that the phases piy are complex
rational numbers for all primes and for all zeros ζ. A weaker form assumes that these phases belong
to the square root allowing infinite-dimensional extension of rationals. Although these conjectures are
probably unrealistic, they deserve a brief discussion.

Could the phases piy exist as complex rationals for the zeros of ζ?

The set z = n/2 + iy, n > 0 such that p−iy is Pythagorean phase, is the set in which both real
Riemann zeta function and the p-adic counterparts of Zp exist for p mod 4 = 3. They exists also for
p mod 4 = 1, if one defines exp(ix) ≡ cos(x) +

√
−1sin(x):

√
−1 would be ordinary p-adic number

for p mod 4 = 1. One could also allow phase factors in square root allowing algebraic extension of
p-adics.

What is important that x = 1/2 is the smallest value of x for which the p-adic counterpart of
ZB(p, xp) exists. Already Riemann showed that the nontrivial zeros of Riemann Zeta function lie
symmetrically around the line x = 1/2 in the interval 0 ≤ x ≤ 1.

If one assumes that the zeros of Riemann zeta belong to the set at which the p-adic counterparts
of Riemann zeta are defined, Riemann hypothesis follows in sharpened form.

1. Sharpened form of Riemann hypothesis does not necessarily exclude zeros with x = 0 or x = 1
as zeros of Riemann zeta unless they are explicitly excluded. It is however known that the lines
x = 0 and x = 1 do not contains zeros of Riemann Zeta so that sharpened form implies also
Riemann hypothesis.

2. The sharpening of the Riemann hypothesis following from p-adic considerations implies that the
phases piy exist as rational complex phases for all values of p mod 4 = 3 when y corresponds
to a zero of Riemann Zeta. Obviously the rational phases piy form a group with respect to
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multiplication isomorphic with the group of integers in case that y does not vanish. The same is
also true for the phases corresponding to integers continuing only powers of primes p mod 4 = 3
phase factor.

3. A stronger form of sharpened hypothesis is that all primes p and all integers are allowed. This
would mean that each zero of the Riemann Zeta would generate naturally group isomorphic
with the group of integers. Pythagorean phases form a group and should contain this group as a
subgroup. It might be that very simple number theoretic considerations exclude this possibility.
If not, one would have infinite number of conditions on each zero of Riemann function and much
sharper form of Riemann hypothesis which could fix the zeros of Riemann zeta completely:

The zeros of Riemann Zeta function lie on axis x = 1/2 and correspond to values of y such that
the phase factor piy is rational complex number for all values of prime p mod 4 = 3 or perhaps
even for all primes p.

Of course, the proposed condition might be quite too strong. A milder condition is that Up(xp)
is rational for single value of p only: this would mean that the zeros of Riemann Zeta would
correspond to Pythagorean angles labeled by primes. One can consider also the possibility that
piy is rational for all y but for some primes only and that these preferred primes correspond to
the p-adic primes characterizing the effective p-adic topologies realized in the physical world.

4. If this hypothesis is correct then each zero defines a subgroup of Pythagorean phases and also ze-
ros have a natural group structure. Pythagorean phases contain an infinite number of subgroups
generated by integer powers of phase. Each such subgroup has some number N of generators
such that the subgroup is generated as products of these phases. From the fact that Pythagorean
phases are in a one-one correspondence with rationals, it is obvious that there exists large num-
ber of subgroups of this kind. Every zero defines infinite number of Pythagorean phases and
there are infinite number of zeros. The entire group generated by the phases is in one-one
correspondence with the pairs (p, y).

5. If niy are rational numbers, there must exist imbedding map f : (n, y) → (r, s) from the set of
phases niy to Pythagorean phases characterized by rationals q = r/s:

(r, s) = (f1(n, y), f2(n, y)) .

The multiplication of Pythagorean phases corresponds to certain map g

(r1, s1) ◦ (r2, s2) = [g1(r1, s1; r2, s2), g2(r1, s1; r2, s2)]
= (r1r2 − s1s2, r1s2 + r2s1) ≡ (r, s)

such that the values of r and s associated with the product can be calculated. Thus the product
operation rise to functional equations giving constraints on the functional form of the map f .

i) Multiplication of niy1 and niy2 gives rise to a condition

f(n, y1) ◦ f(n, y2) = f(n, y1 + y2) .

ii) Multiplication of niy1 and niy2 gives rise to a condition

f(n1, y) ◦ f(n2, y) = f(n1n2, y) .

This variant of the sharpened form of the Riemann hypothesis has turned out to be un-necessarily
strong. Universality Principle requires only that the real parts of the factors p−xp−iy are rational
numbers: this means that allowed phases correspond to triangles whose two sides have integer-valued
length squared whereas the third side has integer-valued length.
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Sharpened form of Riemann hypothesis and infinite-dimensional algebraic extension of
rationals

The proposed variant for the sharpened form of Riemann hypothesis states that the zeros of Riemann
zeta are on the line x = 1/2 and that piy, where p is prime, are complex rational (Pythagorean)
phases for zeros. Furthermore, Riemann hypothesis is equivalent with the corresponding statement
for the fermionic partition function ZF . If the sharpened form of Riemann hypothesis holds true, the
value of ZF (z) in the set of zeros z = 1/2 + iy of ZF can be interpreted as a complex (vanishing)
image of certain function Z∞F (1/2 + iy) having values in the infinite-dimensional algebraic extension
of rationals defined by adding the square roots of all primes to the set of rational numbers.

1. The general element q of the infinite-dimensional extension Q∞C of complex rationals QC can be
written as

q =
∑
U

qUeU ,

eU =
∏
i∈U

√
pi . (16.4.1)

Here qU are complex rational numbers, U runs over the subsets of primes and eU are the units
of the algebraic extension analogous to the imaginary unit. One can map the elements of Q∞C
to reals by interpreting the generating units

√
p as real numbers. The real images (eU )R of eU

are thus real numbers:

eU → [eU ]R =
∏
i

√
pi .

2. The value of ZF (z) at z = 1/2 + iy can be written as

ZF (z = 1/2 + iy) =
∑
U

[
1

eU

]
R

× (e2
U )−iy . (16.4.2)

Here (eU )R means that eU are interpreted as real numbers.

3. If one restricts the set of values of z = 1/2 + iy to such values of y that piy is complex rational
for every value of p, then the value of ZF (1/2 + iy) can be also interpreted as the real image of
the value of a function ZF (Q∞|z = 1/2 + iy) restricted to the set of zeros of Riemann zeta and
having values at Q∞C :

ZF (1/2 + iy) = [ZF (Q∞|1/2 + iy)]R ,

ZF (Q∞|1/2 + iy) ≡
∑
U

1

eU
× (e2

U )−iy . (16.4.2)

Note that ZF (Q∞|z = 1/2 + iy) cannot vanish as element of Q∞. One can also define the Q∞C
valued counterparts of the partition functions ZF (p, 1/2 + iy)

ZF (Q∞|1/2 + iy) =
∏
p

ZF (Q∞|p, z = 1/2 + iy) ,

ZF (Q∞|1/2 + iy) ≡ 1 + p−1/2p−iy ,

ZF (p, 1/2 + iy) = [ZF (Q∞|p, 1/2 + iy)]R . (16.4.1)

ZF (Q∞|1/2+iy) and ZF (Q∞|p, 1/2+iy) belong to Q∞C only provided piy is Pythagorean phase.
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4. The requirement that piy is rational does not yet imply Riemann hypothesis. One can however
strengthen this condition. The simplest condition is that the real image of ZF (Q∞|1/2 + iy) is
complex rational number for any value of ZF . A stronger condition is that the complex images
of the functions

Z∞F∏
p∈U Z

∞
p

are complex rational and U is finite set of primes. The complex counterparts of these functions
are given by

[
Z∞F∏
p∈U Z

∞
p

]
R

=
ZF∏

p∈U ZF (p, ..)
. (16.4.2)

Obviously these conditions can be true only provided that ZF (1/2 + iy) vanishes identically for
allowed values of y. This implies that sharpened form of Riemann hypothesis is true. “Physi-
cally” this means that the fermionic partition function restricted to any subset of integers not
divisible by some finite set of primes, has real counterpart which is complex rational valued.

16.4.4 Are the imaginary parts of the zeros of Zeta linearly independent
of not?

Concerning the structure of the weight space of super-symplectic algebra the crucial question is
whether the imaginary parts of the zeros of Zeta are linearly independent or not. If they are in-
dependent, the space of conformal weights is infinite-dimensional lattice. Otherwise points of this
lattice must be identified. The model of the scalar propagator identified as a suitable partition func-
tion in the super-symplectic algebra for which the generators have zeros of Riemann Zeta as conformal
weights demonstrates that the assumption of linear independence leads to physically unrealistic results
and the the propagator does not exist mathematically for the entire super-symplectic algebra. Also
the findings about the distribution of zeros of Zeta favor a hypothesis about the structure of zeros
implying a linear dependence.

Imaginary parts of non-trivial zeros as additive counterparts of primes?

The natural looking (and probably wrong) working hypothesis is that the imaginary parts yi of the
nontrivial zeros zi = 1/2 + yi, yi > 0, of Riemann Zeta are linearly independent. This would mean
that yi define play the role of primes but with respect to addition instead of multiplication. If there
exists no relationship of form yi = n2π + yj , the exponents eiyi define a multiplicative representation
of the additive group, and these factors satisfy the defining condition for primeness in the conventional
sense. The inverses e−iyi are analogous to the inverses of ordinary primes, and the products of the
phases are analogous to rational numbers.

There would exist an algebra homomorphism from {yi} to ordinary primes ordered in the obvious
manner and defined as the map as yi ↔ pi. The beauty of this identification would be that the hierar-
chies of p-adic cutoffs identifiable in terms of the p-adic length scale hierarchy and y-cutoffs identifiable
in terms p-adic phase resolution (the higher the p-adic phase resolution, the higher-dimensional ex-
tension of p-adic numbers is needed) would be closely related. The identification would allow to see
Riemann Zeta as a function relating two kinds of primes to each other.

A rather general assumption is that the phases piyi are expressible as products of roots of unity
and Pythagorean phases:

piy = eiφP (p,y) × eiφ(p,y) ,

eiφP (p,y) =
r2 − s2 + i2rs

r2 + s2
, r = r(p, y) , s = s(p, y) ,

eiφ(p,y) = ei
2πm
n , m = m(p, y) , n = n(p, y) . (16.4.1)
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If the Pythagorean phases associated with two different zeros of zeta are different a linear independence
over integers follows as a consequence.

Pythagorean phases form a multiplicative group having ”prime” phases, which are in one-one
correspondence with the squares of Gaussian primes, as its generators and Gaussian primes which
are in many-to-one correspondence with primes p1 mod 4 = 1. If piy is a product of algebraic phase
and Pythagorean phase for any prime p, one should be able to decompose any zero y into two parts
y = y1(p) + yP (p) such that one has

log(p)y1(p) =
m2π

n
, log(p)yP (p) = ΦP = arctan

[
2rs

r2 + s2

]
. (16.4.2)

Note that the decomposition is not unique without additional conditions. The integers appearing in
the formula of course depend on p.

Does the space of zeros factorize to a direct sum of multiples Pythagorean prime phase
angles and algebraic phase angles?

As already noticed, the linear independence of the yi follows if the Pythagorean prime phases associated
with different zeros are different. The reverse of this implication holds also true. Suppose that there
are two zeros log(p)y1i = ΦP1

+ q1i2π, i = a, b and two zeros log(p)y2i = ΦP2
+ q2i2π, i = a, b, where

qij are rational numbers. Then the linear combinations n1y1a + n2y2a and n1y1b + n2y2b represent
same zeros if one has n1/n2 = (q2a − q2b)/(q1b − q1a).

One can of course consider the possibility that linear independence holds true only in the weaker
sense that one cannot express any zero of zeta as a linear combination of other zeros. For instance,
this guarantees that the super-symplectic algebra generated by generators labeled by the zeros has
indeed these generates as a minimal set of generating elements.

For instance, one can imagine the possibility that for any prime p a given Pythagorean phase angle
log(p)yPk corresponds to a set of zeros by adding to ΦPk = log(p)yPk rational multiples qk,i2π of 2π,
where Qp(k) = {qk,i|i = 1, 2, ..} is a subset of rationals so that one obtains subset {ΦPk + qk,i2π|qk,i ∈
Qp(k)}. Note that the definition of yP involves an integer multiple of 2π which must be chosen
judiciously: for instance, if yP is taken to be minimal possible (that is in the range (0, π/2), one
obviously ends up with a contradiction. The same is true if qk,i < 1 is assumed. Needless to say,
the existence of this kind of decomposition for every prime p is extremely strong number theoretic
condition.

The facts that Pythagorean phases are linearly independent and not expressible as a rational
multiple of 2π imply that no zero is expressible as a linear combination of other zeros whereas the
linear independence fails in a more general sense as already found. An especially interesting situation
results if the set Qp(k) for given p does not depend on the Pythagorean phase so that one can write
Qp(k) = Qp. In this case the set of zeros of Zeta would be obtained as a union of translates of the set
Qp by a subset of Pythagorean phase angles and approximate translational invariance realized in a
statistical sense would result. Note that the Pythagorean phases need not correspond to Pythagorean
prime phases: what is needed is that a multiple of the same prime phase appears only once.

An attractive interpretation for the existence of this decomposition to Pythagorean and algebraic
phases factors for every prime is in terms of the p-adic length scale evolution. The possibility to
express the zeros of Zeta in an infinite number of manners labeled by primes could be seen as a number
theoretic realization of the renormalization group symmetry of quantum field theories. Primes p define
kind of length scale resolution and in each length scale resolution the decomposition of the phases
makes sense. This assumption implies the following relationship between the phases associated with
y:

[
ΦP (p1) + q(p1)2π

]
log(p1)

=

[
ΦP (p2) + q(p2)2π

]
log(p2)

. (16.4.3)

In accordance with earlier number theoretical speculations, assume that log(p2)/log(p1) ≡ Q(p2, p1)
is rational. This condition allows to deduce how the phases piy1 transform in p1 → p2 transformation.

Let piy1 = UP,p1,yUq,p1,y be the representation of piy1 as a product of Pythagorean and algebraic phases.
Using the previous equation, one can write
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piy2 = UP,p2,yUq,p2,y = U
Q(p2,p1)
P,p1,y

UQ(p2,p1)
q,p1,y . (16.4.4)

This means that the phases are mapped to rational powers of phases. In the case of Pythagorean
phases this means that Pythagorean phase becomes a product of some Pythagorean and an algebraic
phase whereas algebraic phases are mapped to algebraic phases. The requirement that the set of phases

piy2 is same as the set of phases piy1 implies that the rational power U
Q(p2,p1)
P,p1,y

is proportional to some

Pythagorean phase UP,p1,y1 times algebraic phase Uq such that the the product of UqU
Q(p2,p1)
q,p1,y gives

an allowed algebraic phase. The map UP,p1,y → UP,p1,y1 from Pythagorean phases to Pythagorean
phases induced in this manner must be one-to one must be the map between algebraic phases. Thus
it seems that in principle the hypothesis might make sense.

The basic question is why the phases qiy should exist p-adically in some finite-dimensional extension
of Rp for every p. Obviously some function coding for the zeros of Zeta should exist p-adically. The
factors Gq = 1/(1− q−iy−1/2) of the product representation of Zeta obviously exist if this assumption
is made for every prime p but the product is not expected to converge p-adically.

Also the logarithmic derivative of Zeta codes for the zeros and can be written as

ζ ′

ζ
= −

∑
q

log(q)
q−1/2−iy

1− q−1/2−iy . (16.4.5)

As such this function does not exist p-adically but dividing by log(p) one obtains

1

log(p)

ζ ′

ζ
= −

∑
q

Q(q, p)
q−1/2−iy

1− q−1/2−iy . (16.4.6)

This function exists if the the p-adic norms rational numbers Q(q, p) approach to zero for q → ∞:
|Q(q, p)|p → 0 for q →∞. The p-adic existence of the logarithmic derivative would thus give hopes of
universal coding for the zeros of Zeta and also give strong constraints to the behavior of the factors
Q(q, p). The simplest guess would be Q(q, p) ∝ pq for q →∞.

Correlation functions for the spectrum of zeros favors the factorization of the space of
zeros

The idea that the imaginary parts of the zeros of Zeta are linearly independent is a very attractive
but must be tested against what is known about the distribution of the zeros of Zeta.

There exists numerical evidence for the linear independence of yi as well as for the hypothesis
that the zeros correspond to a union of translates of a basic set Q1 by subset of Pythagorean phase
angles. Lu and Sridhar have studied the correlation among the zeros of ζ [A190] . They consider the
correlation functions for the fluctuating part of the spectral function of zeros smoothed out from a
sum of delta functions to a sum of Lorentzian peaks. The correlation function between two zeros with
a constant distance K2−K1 + s with the first zero in the interval [K1,K1 + ∆] and second zero in the
interval [K2,K2 + ∆] is studied. The choice K1 = K2 assigns a correlation function for single interval
at K1 as a function of distance s between the zeros.

1. The first interesting finding, made already by Berry and Keating, is that the peaks for the
negative values of the correlation function correspond to the lowest zeros of Riemann Zeta
(only those contained in the interval ∆ can appear as minima of correlation function). This
phenomenon observed already by Berry and Keating is known as resurgence. That the anti-
correlation is maximal when the distance of two zeros corresponds to a low lying zero of zeta
can be understood if linear combinations of the zeros of Zeta are the least probable candidates
for zeros. Stating it differently, large zeros tend to avoid the points which represent linear
combinations of the smaller zeros.
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2. Direct numerical support the hypothesis that the correlation function is approximately transla-
tionally invariant, which means that it depends on K2 − K1 + s only. Correlation function is
also independent of the width of the spectral window ∆. In the special K1 = K2 the finding
means that correlation function does not depend at all on the position K1 of the window and
depends only on the variable s. Prophecy means that the correlation function between the in-
terval [K,K+ ∆] and its mirror image [−K−∆,−K] is the correlation function for the interval
[2K + ∆] and depends only on the variable 2K + s allowing to allows to deduce information
about the distribution of zeros outside the range [−K,K]. This property obviously follows from
the proposed hypothesis implying that the spectral function is a sum of translates of a basic
distribution by a subset of Pythagorean prime phase angles.

This hypothesis is consistent with the properties of the the smoothed out spectral density for the
zeros given by

〈ρ(k)〉 =
1

2π
log(

k

2π
) . (16.4.7)

This implies that the smoothed out number of zeros y smaller than Y is given by

N(Y ) =
Y

2π
(log(

Y

2π
)− 1) . (16.4.8)

N(Y ) increases faster than linearly, which is consistent with the assumption that the distribution of
zeros with positive imaginary part is sum over translates of a single spectral function ρQ0

for the
rational multiples qiXp, Xp = 2π/log(p), qi ∈ Qp, for every prime p.

If the smoothed out spectral function for qi ∈ Qp is constant:

ρQp =
1

Kp2π
, Kp > 0 , (16.4.9)

the number NP (Y, p) of Pythagorean prime phases increases as

NP (Y |p) = Kp(log(
Y

2π
)− 1) , (16.4.10)

so that the smoothed out spectral function associated with NP (Y |p) is given by the function

ρP (k|p) =
Kp

k
(16.4.11)

for sufficiently large values of k. Therefore the distances between subsequent zeros could quite well
correspond to the same Pythagorean phase for a given p and thus should allow to deduce information
about the spectral function ρQ0

. A convenient parametrization of Kp is as K = Kp,0/4π
2 since the

points of Qp are of form qi2π = (n(qi) + q1(qi))2π, q1 < 1, and n(qi) must in the average sense form
an evenly spaced subset of reals.

16.5 Universality Principle and Riemann hypothesis

The basic definition of ζ(s = x+iy) based on the product formula does not converge for Re[s] ≤ 1. One

can however define ’universal’ ζ, call it ζ̂, as the product of the partition functions Zp1(s) = 1/(1−p−s),
in the subset of complex plane, where the factors Zpi are complex algebraic numbers. The idea is

to regard the value of ζ̂ as an element of an infinite-dimensional algebraic extension of the rationals
containing all roots of primes. ζ̂ can be regarded as a vector with infinite number of components
and is completely well defined despite the fact that the product expansion does not converge as an
ordinary complex number unless one somehow specifies how the ’producting’ is done.
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In case that the factors |Zp1 |2 of the partition functions Zp1 = 1/(1− p−z) are complex rationals,
one can rewrite the product formula by applying adelic formula to the norm squared |Zp1 |2 appearing
in the product formula. The basic hypothesis is that the product of the p-adic norms of the complex
norm squared of the function ζ̂ defined by the product formula obtained by changing the order of
producting gives the norm squared of the analytically continued ζ in the region (Re[s] < 1 , Im[s] 6= 0)

at the points, where the factors |Zp1 |2 are algebraic numbers: |ζ̂|2 =
∏
pNp(|ζ̂|2) = |ζ|2. A milder

version of this hypothesis is that the product of the p-adic norms squared of |ζ̂|2 converges to some
function proportional to |ζ|2.

If this hypothesis is correct, the following vision giving good hopes about the proof of the Riemann
hypothesis, suggests itself.

1. |ζ̂|2 is a number in an infinite-dimensional algebraic extension of rationals and can vanish only
if it contains a rational factor which vanishes. The vanishing of this factor is possible if it is
a product of an infinite number of moduli squared |Zp1(z)|2 having a rational value. For the

values of y for which this is true on the line Re[s] = n + 1/2 correspond to the phases p−iy1

having the following general form.

p−iy = U1U =
(r1+is1

√
k(p1,y))

√
p1

× (r+is
√
k(p1,y))

n1
,

r2
1 + s2

1k(p1, y) = p1 ,
r2 + s2k(p1, y) = n2

1 .

r2
1 + s2

1k(p1, y) = p1 condition is solved by k(p1, y) =
√
p1 −m2, m <

√
p. r2 + s2k(p1, y) = n2

1

condition is satisfied if U is a product of even powers of the phases of type U1. Unless k(p1, y)
is not square, the phases correspond to orthogonal triangles with one short side having integer
valued length and the other sides having integer valued length squared.

2. If y defines rational value of |Zp1(z)|2, also its integer multiples ny do the same. If the values of
integers k(p1, y) do not depend on the value of y, the allowed values of y generate an additive
group having integers as a coefficient ring. Even powers of the phases guaranteing the rationality
of |Zp1(z)|2 on the line Re[s] = 1/2, guarantee rationality on the lines Re[s] = n.

3. Especially important subset of these phases correspond to the choice k1 = 1. These phases
correspond to Gaussian primes having the form G = r1 + is1, r2

1 + s2
1 = p1, p1 mod 4 = 1,

and can compensate the irrationality of the p
−n−1/2
1 factor only in this case. The products of

the squares of Gaussian primes define Pythagorean triangles and the corresponding phases are
rational. Rather interestingly, the linear superpositions y = n1y2+n2y2 of only two Pythagorean
values of yi form a dense subset of reals. Eisenstein primes having the general form r1 + s1w,
w = −1/2±

√
3/2, r2

1 + s2
1− r1s1 = p1, p1 mod 3 = 1, are second, probably very important class

of complex primes. They can compensate the irrationality of the p
−n−1/2
1 factor for p1 mod 3 = 1

(note that the 1/2 is not relevant for the phase). Also other phases are needed since for primes
satisfying p1 mod 4 = 3 and p1 mod 3 = 2 simultaneously neither Gaussian nor Eisenstein

primes can compensate the irrationality of the p
−1/2
1 p−iy1 factor.

4. The lines on which the real parts for an infinite number of factors Zp1 can be rational, correspond

to the lines Re[s] = n/2. This in turns leads to the conclusion that the norm squared of ζ̂ can

vanish only on the lines Re[s] = n/2. If the norm squared of the ζ̂ coincides with the norm
squared of the analytically continued ζ, Riemann hypothesis follows since it is known that the
lines Re[s] = n/2 , n 6= 1 do not contain zeros of ζ.

In the following this vision is developed in detail and it is shown that it survives the basic tests.

16.5.1 Detailed realization of the Universality Principle

Universality Principle states that ζ vanishes only if |ζ̂|2 understood as a number in an infinite-
dimensional algebraic extension of rationals vanishes and hence must contain a rational factor resulting
from an infinite number of rational factors Zp1 . This hypothesis alone makes Riemann hypothesis very
plausible. In this section an attempt to reduce the Universality Principle to something more concrete is
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made. Adelic formula and the hypothesis that the norm of |ζ̂|2 defined by the modified adelic formula
equals to |ζ|2 are described and shown to imply Universality Principle if the modified adelic formula
defines a norm in the infinite-dimensional algebraic extension of rationals. The conditions guaranteing
the rationality and the reduction of the p-adic norm of |Zp1 |2 are derived, and the connection between
Pythagorean phases and basic facts about Gaussian and Eisenstein primes are summarized.

Modified adelic formula and Universality Principle

Although the product representation of ζ does not converge absolutely for Re[s] ≤ 1, one can consider

the possibility that the convergence of the function ζ̂ defined by the product representation occurs
in some exceptional points in some natural sense. The points at which the value of ζ̂ belongs to
the infinite-dimensional algebraic extension of rationals are obviously excellent candidates for these
points. ζ̂ identified as an element of this algebraic extension certainly exists mathematically as a
vector with an infinite number of components. The convergence in the strong sense would mean that
the interpretation of the algebraic numbers of the algebraic extension as real numbers in the expression
of ζ̂ gives the analytically continued ζ somehow. In the weak sense the convergence would mean that
the complex norm squared for ζ̂, if defined in a suitable sense, equals or is proportional, to the norm
squared of the analytically continued ζ.

1. Modified Adelic formula and Universality Principle
The fact that the product formula for ζ at rational points converges only conditionally, suggests

that one should be able to device a natural method of ’producting’ giving rise to the norm squared of
the analytically continued ζ. Adelic formula provides very attractive approach to this problem (the
appearance of the norm squared instead of norm is motivated by the Adelic formula).

The adelic formula expresses the real norm of a rational number as a product of the inverses of
the p-adic norms

1

|x|R
=

∏
p

|x|p . (16.5.1)

This formula generalizes also to the norms of the complex rationals. How to generalize this formula
to the infinite-dimensional algebraic extension of rationals? The simplest possibility is to write the
complex norm squared as vector in the infinite-dimensional extension having rational coefficients and
to apply adelic formula to each factor separately.

|x|R =
∑
k

e
k)
R

∏
p

| 1

xk
|p ,

|x| =
∑
k

ek)xk . (16.5.1)

Here ek) denote the units of the infinite-dimensional algebraic extension (products of roots of primes

and analogous to imaginary unit) and e
k)
R denote the evaluations of these units identified as real

numbers. The resulting norm is indeed equal to the real norm when the resulting number is interpreted
as a real number.

In the case that the factors Zp1 of ζ are complex rationals, one can write the real norm of the real
ζ for Re[s] > 1 as a product

|ζ(z)|2 = =
∏
p1

[∏
p

Np(|
1

Zp1(z)
|2)

]
≡
∏
p1

[∏
p

Np(|Zp)p1(z)|2)

]
. (16.5.2)

Here Np(x) denotes the p-adic norm of number x. This formula explains why one must define the
p-adic zeta as an arithmetic inverse of the real ζ. The generalization of this formula to the case that
ζ̂2 has values in the set of the complex rationals is straightforward.

The problem with this representation is that the product over primes p1 does not converge in an
absolute sense for Re[s] ≤ 1. By a suitable rearrangement of a conditionally convergent product a



16.5. Universality Principle and Riemann hypothesis 823

convergence to any number can be achieved. This suggests that one could find some unique manner to
rearrange the terms to a convergent expression converging to |ζ|2. A unique definition indeed suggests
itself: the analytic continuation of ζ from the region Re[s] > 1 might be equivalent with the exchange
of the order of ’producting’ in the expression of ζ:

|ζ̂(z)|2 =
∏
p

Np(|
1

ζ(z)
|2 =

∏
p

[∏
p1

Np(|
1

Zp1(z)
|)

]

=
∏
p

Np(|
1

ζ
|2) =

∏
p

Np(|ζp)|)2 . (16.5.2)

The minimal working hypothesis is that |ζ̂|2 defined as the product its p-adic norms equals to |ζ|2
at points, where its values are rational:

∏
p

Np(|ζ̂|2) = |ζ|2 . (16.5.3)

The generalization to the algebraic extension of rationals is straightforward since the p-adic norm
squared is sum over the p-adic norms of the components of the algebraic extension with various units

ek) of the algebraic extension multiplying them interpreted as real numbers e
k)
R

∏
p

Np(|ζ̂|2) =
∑
k

e
k)
R

∏
p

Np(
1

|ζ̂|2k
) = |ζ|2 ,

|ζ̂|2 =
∑
k

ek)|ζ|2k . (16.5.3)

From this formula Universality Principle follows automatically. Since |ζ̂|2 can be regarded as a vector

having infinite number of components, the only manner to achieve the vanishing of
∏
pNp(|ζ̂|2) is

to require that it contains a vanishing rational factor. As will be found, the points at which infinite
number of the factors of |ζ̂|2 can be rational, very probably belong to the lines Re(s) = n/2. Thus the
Universality Principle, and as it seems, also Riemann hypothesis, reduces to the statement that the
modified Adelic formula defines a genuine norm which vanishes only when the vector is a null vector
and is equal to |ζ|2. Of course, one could consider also the possibility that this norm is proportional
to |ζ|2.

The conditions guaranteing the rationality of the factors |Zp1 |2

Universality Principle states that zeros of ζ correspond to zeros of |ζ̂|2. This quantity, when well-
defined, belongs to an infinite-dimensional real algebraic extension of rationals, and its vanishing is
possible if it contains a vanishing rational factor which is product of an infinite number of factors Zp1
which are rational. |ζ̂|2 is the product of the factors

1

Zp1(x+ iy)Zp1(x− iy)
= 1− 2p−x1 Re[piy1 ] + p−2x

1 . (16.5.4)

This expression equals to a rational number q, if one has

Re[piy1 ] =
qpx1 − p−x1

2
. (16.5.5)

In this case the integer multiples ny do not satisfy the rationality condition, to say nothing about the
superpositions of different values of y. It is also implausible that this condition would hold true for
an infinite number of primes p1 required by the vanishing of a rational factor of ζ̂.
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An alternative manner to achieve rationality is by requiring that the two terms are separately
rational. p−2x

1 factor is rational only if one has x = n/2. To achieve rationality Re[piy1 ] should contain

a factor compensating the irrationality of the p
−n/2
1 factor somehow. On the lines Re[s] = x = n/2

one has

1

Zp1(n/2 + iy)Zp1(n/2− iy)
= 1− 2p

−n/2
1 Re[piy1 ] + p−n1 .

It is of crucial importance that the moduli squared depend on the real part of piy1 only. If this is
rational, rationality is achieved for even values of n.

On the lines Re[s] = n + 1/2 rationality is achieved provided that piy1 factors contain the phase

factor (r1 + is1

√
k)/
√
p1 compensating the p

−1/2
1 factor and multiplying a factor which of the same

type:

piy1 = U1U =
(r1 + is1

√
k)

√
p1

× (r + is
√
k)2

r2 + s2k
,

r2
1 + s2

1k1 = p1 . (16.5.5)

The latter equation is satisfied if one has

k =
√
p1 −m2 , 0 < m <

√
p . (16.5.6)

On the lines Re[s] = n one must have

piy1 =
(r + is

√
k)2

r2 + s2k
. (16.5.7)

The overall conclusions are following.

1. The vanishing of |ζ̂|2 requires only the rationality of the real parts of Zp1 for infinite number of
values of p1. The basic ansatz allows rationality only on the lines Re[s] = n/2 and my subjective
feeling is that it is extremely implausible that exceptional ansatz gives rise to the rationality of
an infinite number of |Zp1 |2 factors. That this is really the case might turn out to be difficult part

in attempts to prove Riemann hypothesis even if one has proved the identity
∏
pNp(|ζ̂|2) = |ζ|2

and that this product defines a norm.

2. Rationality requirement allows p−iy1 to consist of the products of the phases of very general
algebraic numbers r + is

√
k. The products of these numbers are always of same form and their

norm squared is r2 + s2k. Geometrically these numbers correspond to orthogonal triangles with
one or two sides having integer valued length and remaining side having integer valued length
squared.

3. For given value of y all integer multiples ny of y provide a solution of the rationality conditions.
It is not necessary to require that the algebraic extensions r + is

√
k(p1, yi) associated with y1

and y2 satisfying the condition, are same for given value of p1: that is, one can have

k(p1, y1) 6= k(p1, y2) .

For k(p1, y1) = k(p1, y2) also the linear combinations m1y1 +n1y2 satisfy rationality conditions.
For the minimal solution to the rationality conditions, only multiples of each y solve the ratio-
nality conditions. For the maximal solution all solutions yi correspond to the same algebraic
extension for given p1 and unrestricted linear superposition of the yi holds true.

4. For p mod 4 = 1 rational phase factors p−iy1 defined by the powers of the Gaussian primes provide
the minimal manner to achieve rationality such that unrestricted superposition of solutions holds
true. For p1 mod 4 = 3 and p1 mod 3 = 1 the minimal manner to achieve compensation is by
using Eisenstein primes. For the primes p1 mod 4 = 3 and p1 mod 3 = 1 one cannot compensate√
p1 factor using Gaussian or Eisenstein primes and a more general algebraic extension of integers

is necessary. For given prime p1 there is finite number of possible algebraic extensions.
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The conditions guaranteing the reduction of the p-adic norm

The term p−iy1 appearing in the factors 1/Zp1 is inversely proportional to integers and thus have
p-adic norm which is larger than one for the primes appearing as factors of the integer n1. Some
mechanism guaranteing the reduction of the p-adic norm must be at work and this mechanism gives
strong conditions on the allowed phases piy1 .

The condition guaranteing the reduction is very general. What is required is the reduction of the
p-adic norm

|XX|p , X = 1− Upiy1 , U = (εp1)−n/2 . (16.5.8)

Here one has ε = 1 for even values of n whereas for for odd values of n one has ε = ±1 depending on
whether the square root exists or not p-adically: the sole purpose of this factor is to take care that
the p-adic counterpart of U is an ordinary p-adic number.

By writing

p−iy1 ≡ cos(φ) + isin(φ) ,

one obtains

|XX|p = |1− 2Ucos(φ) + U2|p .

Not surprisingly, the vanishing of the norm modulo p implies in modulo p accuracy

U = cos(φ)−
√
−1sin(φ) .

Since U must be real, the only possible manner to satisfy the condition is to require that

sin(φ) = 0 mod p , cos(φ) = 1 mod p . (16.5.9)

Clearly, φ must correspond to angle 0 or π in modulo p accuracy. What this condition says is that
partition functions Zp1 are real in order p. This is very natural condition on the line Re[s] = 1/2
where the ζ is indeed real.

The condition cos2(φ) = 1 mod p implies

pn1 mod p = 1 . (16.5.10)

p1 can be always written as a power p1 = ak of a primitive root a satisfying ap−1 = 1 modulo p such
that k divides p− 1. Thus pn1 mod p = 1 holds true only only if n mod (p− 1)/k = 0 is satisfied.

The conditions guaranteing modulo p reality of Zp1 for prime p dividing the denominator of p−iy1 ,
when written explicitly, give

Re[s] = n : r2 − s2k = r2 + s2k , 2rs
r2+s2k = 0 ,

Re[s] = n+ 1
2 : (r2 − s2k)r1 − 2rss1k = r2 + s2k , 2rsr1+(r2−s2k)s1

r2+s2k = 0 .

(16.5.10)

In the case of Gaussian primes (k = 1) also second option is possible since the multiplication with
±i yields new rational phase factor: this option corresponds simply the exchange of r2 − s2 and 2rs
factors in the formula above.

Rather general solution to the conditions can be written rather immediately. In both cases the
conditions

s mod p2 = 0 , r mod p = 0 (16.5.11)
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are satisfied. Note that s mod p2 = 0 is necessary since r2 + s2k mod p = 0 holds true. Besides this
the conditions

r2
1 + s2

1k mod p = 1 for Re[s] = n ,

s1 mod p = 0 & r1 mod p = 1 for Re[s] = n+ 1
2 ,

(16.5.12)

are satisfied.
If p−iy1 is inversely proportional to integer containing as factors powers of a prime p larger than

p1, the reduction of the norm cannot occur for Re[s] = 1/2 but is possible for sufficiently large values
of Re[s] = n/2. For p1 = 2 and p1 = 3 factors the reduction of the norm is certainly not possible on
the line Re[s] = 1/2 since the condition 2p+ 1 ≤ p1 cannot be satisfied for any prime in these cases.
The reduction of the p-adic norm of the ζ suggests strongly that the condition 2pi+ 1 ≤ p1 is satisfied
for large primes p1 and odd primes pi. The condition is satisfied always for pi = 2 and p1 ≥ 3. If it is
satisfied completely generally, the phase factors associated with Z3 must be of the general form

3−iy = (±1±
√

2i)√
3

× (r(y)+i
√

2s(y))2

r2(y)+2s2(y) , r2(y) + 2s2(y) = 3k or 2× 3k .

This condition and similar conditions associated with larger primes give very strong constraints on
the zeros.

The general conclusions are following.

1. The reduction of the p-adic norm and the related modulo p reality of Zp1 is the p-adic counterpart
for the reality of ζ on the critical line which suggests that it might occur completely generally.
It requires that pn1 mod p = 1 holds true for all primes appearing as factors of the denominator
n1 of the rational part of the phase p−iy1 .

2. If the denominator of p−iy1 is square-free integer, the p-adic norm of Zp1 is never larger than
unity except possibly in the diagonal case p = p1.

3. In the diagonal case the norm grows like pn+1
1 for Re[s] = n + 1/2 and pn1 for Re[s] = n. This

conforms with the fact that ζ has no zeros for Re[s] ≥ 1 but has zeros for Re[s] = −2n.

4. If rational points of ζ obey linear superposition, then the rational points on the lines Re[s] =
n contain an even number of yi:s needed to achieve the rationality of Re[p−iy]. Hence the
denominator tends to have larger p-adic norm than it can have on the line Re[s] = 1/2. This

means that the line Re[s] = 1/2 is optimal as far as zeros of |ζ̂|2 are considered. It can however
happen that in the product piy11 piy21 complex conjugates of factor phases can compensate each

other so that the p-adic norm of p
i(y1+y2)
1 is not always larger than the norms of the factors. In

particular, the factors (r1 + is1

√
k)/
√
p1 could cancel in the product piy11 p−iy21 This mechanism

could imply the emergence small values of ζ for yij = yi − yj on the line Re[s] = 1 required by
the inner product property of the Hermitian form defined by the super-conformal model for the
zeros of ζ.

Gaussian primes and Eisenstein primes

The general manner to satisfy the rationality requirement is to assume that the phases piy1 correspond
to orthogonal triangles with one or two sides with an integer valued length and one side with integer
valued length squared. A rather general and mathematically highly interesting manner to realize

the rationality of the the phases p
−n/2
1 piy1 is by choosing the phases to be products of Gaussian or

Eisenstein primes [A166] .
Gaussian primes consist of complex integers ei ∈ {±1,±i+}, ordinary primes p mod 4 = 3 mul-

tiplied by the units ei to give four different primes, and complex Gaussian primes r ± is multiplied
by the units ei to give 8 primes with the same modulus squared equal to prime p mod 4 = 1. Every
prime p mod 4 = 1 gives rise to 8 non-degenerate Gaussian primes. Pythagorean phases correspond to
the phases of the squares of complex Gaussian integers m+ in expressible as products of even powers
of Gaussian primes Gp = r + is:
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Gp = r + is , GG = r2 + s2 = p , p prime & p mod 4 = 1 . (16.5.13)

The general expression of a Pythagorean phase expressible as a product of even number of Gaussian
primes is

U =
r2 − s2 + i2rs

r2 + s2
. (16.5.14)

By multiplying this expression by a Gaussian prime i, one obtains second type of Pythagorean phase

U =
2rs+ i(r2 − s2)

r2 + s2
. (16.5.15)

Gaussian primes allow to achieve rationality of p
−n+1/2
1 p−iy factor for p1 mod 4 = 1. The generality

of the mechanism suggests that Gaussian primes should be very important. For Re[s] 6= n/2 it is not
possible to achieve complex rationality with any decomposition of piy1 to Gaussian primes.

Besides Gaussian primes also so called Eisenstein primes are known to exist [A166] and the fact
that only the rationality of the real parts of 1/Zp1 factors is necessary for the rationality of |Zp1 |2
means that they are also possible. Note however that now the multiplication the phase by ±i makes
the real part of the phase irrational, and is thus not allowed. Thus only four-fold degeneracy is present
now for ζ.

Whereas Gaussian primes rely on modulo 4 arithmetics for primes, Eisenstein primes rely on
modulo 3 arithmetics. Let w = exp(iφ), φ = ±2π/3, denote a nontrivial third root of unity. The
number 1-w and its associates obtained by multiplying this number by ±1 and ±i; the rational primes
p mod 3 = 2 and its associates; and the factors r + sw of primes p mod 3 = 1 together with their
associates, are Eisenstein primes. One can write Eisenstein prime in the form

w = r − s

2
+ is

√
3

2
. (16.5.16)

What might be called Eisenstein triangles correspond to the products of powers of the squares of
Eisenstein primes and have integer-valued long side. The sides of the orthogonal triangle associated
with a square of Eisenstein prime Ep have lengths

(r2 − rs− 3s2

2
, s

√
3

2
, p = r2 + s2 − rs) .

Eisenstein primes clearly span the ring of the complex integers having the general form z = (r +
i
√

3s)/2, r and s integers.

One can use Eisenstein prime Ep to achieve the replacement of the p
−1/2
1 -factor with 1/p1-factor

in the partition functions Zp1 the same effect for p1 mod 4 = 1 and p1 mod 3 = 1 with the net result
that i

√
3 term appears. This trick does not work for p1 mod 4 = 3 and p1 mod 3 = 2. Note that the

presence of both Gaussian and Eisenstein primes in the same factor Zp1 is not allowed since in this
case also the real part of Zp1 would contain

√
3. This suggests that quite generally p mod 4 = 1 resp.

p mod 4 = 3 ∧ p mod 3 = 1 parts of ζ̂ could correspond to Gaussian resp. Eisenstein primes.
For the factors Zp1 satisfying p1 mod 4 = 3 & p1 mod 3 = 2 simultaneously, neither Gaussian nor

Eisenstein primes can affect the rationalization of p−n+1/2−iy factor, and in this case more general
algebraic extension of complex numbers is necessary as already found.

The algebraic extensions of rational numbers allow the notion of algebraic integer and prime quite
generally [A148] . In the general case however the decomposition of an algebraic integer into primes
is not unique. In case of complex extensions of form r+

√
−ds unique prime factorization is obtained

only in nine cases corresponding to d = 1, 2, 3, 7, 11, 19, 46, 67, 163 [A148] .
√
−d corresponds to a root

of unity only for d = 1 and d = 3, which perhaps makes Gaussian and Eisenstein primes special.
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16.5.2 Tests for the |ζ̂|2 = |ζ|2 hypothesis

The fact that the phases piy1 correspond to non-vanishing values of y, suggests that |ζ̂|2 = |ζ|2 equality
holds on the real axis only in the sense of a limiting procedure y → 0. If the the values of y giving
rise to allowed phases obey linear superposition (that is k1(p1, y) defining the algebraic extension does
not depend on y), the allowed values of y form a dense set of the real axis, since arbitrarily small
differences yi − yj are possible for the zeros of ζ. Hence the limiting procedure y → 0 should be
well-defined and give the expected answer if the basic hypothesis is correct.

What happens on the real axis?

The simplest test for the basic hypothesis is to look what happens on the real axis at the points s = n.
Real ζ diverges at s = 1 and s = 0 and has trivial zeros are at the points s = −2n. The norm of ζ̂ is
given by

|ζ̂(n)|R =
∏
p

[∏
p1

|1− p−n1 |p

]
. (16.5.17)

For n = 0 a straightforward substitution to the formula implies that |ζ̂(0)| vanishes. For n > 0 one
has

|ζ̂(n)|R =
∏
p

[∏
p1

|p
n
1 − 1

pn1
|p

]
=
∏
p

pn

∏
k

∏
pn1 mod pk=1

p−k

 . (16.5.18)

Since the number of primes p1 satisfying the condition pn1 mod pk = 1 is infinite, the norm vanishes
for all values n > 0. For s = −n < 0 one has,

|ζ̂(n)|R =
∏
p

[∏
p1

|1− pn1 |p

]
. (16.5.19)

and also this product vanishes always.
How to understand these results?

1. The results are consistent with the view that |ζ|R on the real axis should be estimated by taking
the limit y → 0. Since the values of y in question involve necessarily differences of very large
values of y, it is conceivable that the limiting procedure does not yield zero. That the limiting
procedure can give zero for Re[s] < 0 could be partially due to the fact that for Re[s] = −n < 0
one has for the diagonal p1 = p contribution |Zp(−n+ iy)|p = 1 whereas for Re[s] = n > 0 one
has |Zp(n + iy)|p > 1 in general. Furthermore, for Re[s] = −n only pn1 mod pk = 1 condition
leads to the reduction of the p-adic norm of Zp1 6=p whereas for Re[s] = −2n also pn1 mod p

k = −1
condition has the same effect.

2. One cannot exclude the possibility that only the proportionality |ζ̂|2 ∝ |ζ|2 holds true. For
instance, in the super-conformal model predicting that the physical states of the model corre-
spond to the zeros of ζ on the critical line, the Hermitian form defining the ’inner product’ is
proportional to the product of sin(iπz)Γ(z)ζ(z). This function vanishes for Re[s] 6∈ {0, 1} and
the coefficient function of ζ is finite in the critical strip. For s = 0 this function however has
the value −1/2 and for s = 1 the value is 1, whereas the naively evaluated value of |ζ̂| vanishes
identically at these points. Thus something else is necessarily involved.

3. It could also be that the product representation for the norm squared of ζ̂ as a product of its p-
adic norms converges only in a restricted region. It would not be surprising if the negative values
of y were excluded from the region of convergence for the representation of |ζ̂|2 as a product of
its p-adic norms. Concerning the proof of the Riemann hypothesis, the minimal requirement is
that the region [1/2 ≤ Re[s] ≤ 1 , y 6= 0] is included in the region of convergence.
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One might think that |ζ|2 = |ζ̂|2 hypothesis is testable simply by comparing the norm squared

of the real zeta with the product of the p-adic norms of |ζ̂|2. The problems are that the value
for the product of p-adic norms is extremely sensitive to numerical errors since the p-adic norm of
Pythagorean triangles phases fluctuates wildly as a function of the phase angle, and that one does
not actually know what the values of piy1 actually are. One testable prediction, also following from
the super-conformal model of the Riemann Zeta, is that the superpositions of the zeros are probably
small values or minima of |ζ|R on the lines Re[s] = n/2. More precisely, it is the function G(1 + iy12)
which should have values smaller than one if the metric defined by G is Hermitian. One could also
try to understand whether the the norm of ζ̂ allows a continuation to a continuous function of the
complex argument identifiable as a modulus of an analytic function.

Can the imaginary part of ζ̂ vanish on the critical line?

Riemann Zeta is real on the critical line Re[s] = 1/2. A natural question is whether also ζ̂ has a

vanishing imaginary part on this line. This is certainly not necessary since ζ̂ has values in the infinite-
dimensional algebraic extension of rationals. It would be however highly desirable if this condition
would hold true.

One cannot formulate the vanishing condition for the imaginary part in terms of the norm squared
of any quantity defined by using the generalization of the adelic formula. The vanishing of the imag-
inary part of ζ̂ is however consistent with the Universality Principle. One can see this by expanding

the factors Zp1 = 1/(1− p−1/2−iy
1 ) to a geometric series in powers of the irrational imaginary part of

p
−1/2−iy
1 . Each odd term in this series is proportional to

√
k(p1, y). One can combine the product

of all these geometric series with the same value k(p1, y) = k to a sum of a rational part and an
irrational part proportional to

√
k. If the irrational parts vanish separately for all allowed values of k,

the imaginary part of ζ̂ indeed vanishes. This requires that the same value of k(p1, y) = k is associated
with an infinite number of factors Zp1 .

What is interesting is that the terms appearing in the sum over primes p1 with the same value of k
are proportional to 1/pn1 , n ≥ 1: n = 1 terms are on the borderline at which the absolute convergence
fails. If the number of primes p1 with the same value of k is sufficiently small, also the sum over n = 1
terms with given k converges. The allowed values of k are given by k =

√
p1 −m2, m ≤ √p1 and the

simplest hypothesis is that each value of k appears with same probability so that for a given prime p1

the probability for a k(p1, y) = k is P (k) ∼ 1/
√
p1. This would suggest that the lowest terms in the

sum defining the imaginary part behaves as 1/p
3/2
1 so that convergence is indeed achieved. Note that

convergence requirement does not support the special role of Gaussian or Eisenstein primes in the set
of algebraic numbers appearing in the expansion of ζ̂.

The general algebraic properties of ζ̂ must be consistent with the vanishing of Im[ζ] on the critical
line. The reality of ζ on the critical line follows from the symmetry with respect to the critical line
reducing on the critical line to the condition ζ(s) = ζ(1− s) implying the reality of ζ(s)ζ(1− s). This

condition makes sense also for ζ̂. In general case, one has

ζ̂(s)ζ̂(1− s) =
∏
p1

Zp1(x+ iy)Zp1(1− x− iy) =
∏
p1

1[
1− p−x1 p−iy1 − p−1+x

1 piy1 + 1
p1

] .

Due to the presence of p−x terms, the moduli squared for these factors are complex irrational numbers.
On the line Re[s] = 1/2, the product representation for this function reduces to the product of

real factors

1

Zp1(1/2 + iy)Zp1(1/2− iy)
= 1− p−1/2

1 (piy1 + p−iy1 ) +
1

p1
(16.5.20)

in the algebraic extension of rationals. Thus the reality and rationality of the function ζ̂(s)ζ̂(1 − s)
on the critical line corresponds in a very transparent manner the reality of ζ on the critical line. Note
also that the modulo p reality of the factors Zp1 implied by the reduction of the p-adic norm can be
regarded as the p-adic counterpart for the reality of ζ on the critical line.
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What about non-algebraic zeros of ζ?

In principle real ζ could also have non-algebraic zeros. The following argument however demonstrates
that they do not pose a problem. If Universality Principles holds true, and if the norm squared of ζ̂
defined as a product of its p-adic norms indeed equals to the norm squared of the real ζ in the set of
of complex plane in which the factors 1/(1 − p−s) are algebraic numbers, one obtains strict bounds
for the norm of the real ζ excluding the zeros in the dense set inside the critical strip. The continuity
of the real ζ in turn implies that it cannot vanish except on the critical line.

16.6 Could local zeta functions take the role of Riemann Zeta
in TGD framework?

The recent view about TGD leads to some conjectures about Riemann Zeta.

1. Non-trivial zeros should be algebraic numbers.

2. The building blocks in the product decomposition of ζ should be algebraic numbers for non-
trivial zeros of zeta.

3. The values of zeta for their combinations with positive imaginary part with positive integer
coefficients should be algebraic numbers.

These conjectures are motivated by the findings that Riemann Zeta seems to be associated with
critical systems and by the fact that non-trivial zeros of zeta are analogous to complex conformal
weights or perhaps more naturally, to complex square roots of real conformal weights [K26] . The
necessity to make such a strong conjectures, in particular conjecture c), is an unsatisfactory feature
of the theory and one could ask how to modify this picture. Also a clear physical interpretation of
Riemann zeta is lacking.

It was also found that there are good reasons for expecting that the zetas in question should have
only a finite number zeros. In the same section the self-referentiality hypothesis for ζ was proposed
on basis of physical arguments. In this section (written before the emergence of self-referentiality
hypothesis) the situation will be discussed from different view point.

16.6.1 Local zeta functions and Weil conjectures

Riemann Zeta is not the only zeta [A1, A114]. There is entire zoo of zeta functions and the natural
question is whether some other zeta sharing the basic properties of Riemann zeta having zeros at
critical line could be more appropriate in TGD framework.

The so called local zeta functions analogous to the factors ζp(s) = 1/(1 − p−s) of Riemann Zeta
can be used to code algebraic data about say numbers about solutions of algebraic equations reduced
to finite fields. The local zeta functions appearing in Weil’s conjectures [A108] associated with finite
fields G(p, k) and thus to single prime. The extensions G(p, nk) of this finite field are considered.
These local zeta functions code the number for the points of algebraic variety for given value of n.
Weil’s conjectures also state that if X is a mod p reduction of non-singular complex projective variety
then the degree for the polynomial multiplying the product ζ(s) × ζ(s − 1) equals to Betti number.
Betti number is 2 times genus in 2-D case.

It has been proven that the zetas of Weil are associated with single prime p, they satisfy functional
equation, their zeros are at critical lines, and rather remarkably, they are rational functions of p−s.
For instance, for elliptic curves zeros are at critical line [A108] .

The general form for the local zeta is ζ(s) = exp(G(s)), where G =
∑
gnp
−ns, gn = Nn/n, codes

for the numbers Nn of points of algebraic variety for nth extension of finite field F with nk elements
assuming that F has k = pr elements. This transformation resembles the relationship Z = exp(F )
between partition function and free energy Z = exp(F ) in thermodynamics.

The exponential form is motivated by the possibility to factorize the zeta function into a product
of zeta functions. Note also that in the situation when Nn approaches constant N∞, the division of
Nn by n gives essentially 1/(1 − N∞p−s) and one obtains the factor of Riemann Zeta at a shifted
argument s− logp(N∞). The local zeta associated with Riemann Zeta corresponds to Nn = 1.
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16.6.2 Local zeta functions and TGD

The local zetas are associated with single prime p, they satisfy functional equation, their zeros lie at
the critical lines, and they are rational functions of p−s. These features are highly desirable from the
TGD point of view.

Why local zeta functions are natural in TGD framework?

In TGD framework modified Dirac equation assigns to a partonic 2-surface a p-adic prime p and
inverse of the zeta defines local conformal weight. The intersection of the real and corresponding p-
adic parton 2-surface is the set containing the points that one is interested in. Hence local zeta sharing
the basic properties of Riemann zeta is highly desirable and natural. In particular, if the local zeta
is a rational function then the inverse images of rational points of the geodesic sphere are algebraic
numbers. Of course, one might consider a stronger constraint that the inverse image is rational. Note
that one must still require that p−s as well as s are algebraic numbers for the zeros of the local zeta
(conditions 1) and 2) listed in the beginning) if one wants the number theoretical universality.

Since the modified Dirac operator assigns to a given partonic 2-surface a p-adic prime p, one can
ask whether the inverse ζ−1

p (z) of some kind of local zeta directly coding data about partonic 2-surface
could define the generalized eigenvalues of the modified Dirac operator and radial super-symplectic
conformal weights so that the conjectures about Riemann Zeta would not be needed at all.

The eigenvalues of the modified Dirac operator would in a holographic manner code for information
about partonic 2-surface. This kind of algebraic geometric data are absolutely relevant for TGD
since U-matrix and probably also S-matrix must be formulated in terms of the data related to the
intersection of real and partonic 2-surfaces (number theoretic braids) obeying same algebraic equations
and consisting of algebraic points in the appropriate algebraic extension of p-adic numbers. Note that
the hierarchy of algebraic extensions of p-adic number fields would give rise to a hierarchy of zetas
so that the algebraic extension used would directly reflect itself in the eigenvalue spectrum of the
modified Dirac operator and super-symplectic conformal weights. This is highly desirable but not
achieved if one uses Riemann Zeta.

One must of course leave open the possibility that for real-real transitions the inverse of the zeta
defined as a product of the local zetas (very much analogous to Riemann Zeta defines the conformal
weights. This kind of picture would conform with the idea about real physics as a kind of adele formed
from p-adic physics.

Finite field hierarchy is not natural in TGD context

That local zeta functions are assigned with a hierarchy of finite field extensions do not look natural
in TGD context. The reason is that these extensions are regarded as abstract extensions of G(p, k)
as opposed to a large number of algebraic extensions isomorphic with finite fields as abstract number
fields and induced from the extensions of p-adic number fields. Sub-field property is clearly highly
relevant in TGD framework just as the sub-manifold property is crucial for geometrizing also other
interactions than gravitation in TGD framework.

The O(pn) hierarchy for the p-adic cutoffs would naturally replace the hierarchy of finite fields.
This hierarchy is quite different from the hierarchy of finite fields since one expects that the number
of solutions becomes constant at the limit of large n and also at the limit of large p so that powers in
the function G coding for the numbers of solutions of algebraic equations as function of n should not
increase but approach constant N∞. The possibility to factorize exp(G) to a product exp(G0)exp(G∞)
would mean a reduction to a product of a rational function and factor(s) ζp(s) = 1/(1−p−s1) associated
with Riemann Zeta with argument s shifted to s1 = s− logp(N∞).

What data local zetas could code?

The next question is what data the local zeta functions could code.

1. It is not at clear whether it is useful to code global data such as the numbers of points of
partonic 2-surface modulo pn. The notion of number theoretic braid occurring in the proposed
approach to S-matrix suggests that the zeta at an algebraic point z of the geodesic sphere S2 of
CP2 or of light-cone boundary should code purely local data such as the numbers Nn of points
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which project to z as function of p-adic cutoff pn. In the generic case this number would be
finite for non-vacuum extremals with 2-D S2 projection. The nth coefficient gn = Nn/n of the
function Gp would code the number Nn of these points in the approximation O(pn+1) = 0 for
the algebraic equations defining the p-adic counterpart of the partonic 2-surface.

2. In a region of partonic 2-surface where the numbers Nn of these points remain constant, ζ(s)
would have constant functional form and therefore the information in this discrete set of algebraic
points would allow to deduce deduce information about the numbers Nn. Both the algebraic
points and generalized eigenvalues would carry the algebraic information.

3. A rather fascinating self referentiality would result: the generalized eigen values of the mod-
ified Dirac operator expressible in terms of inverse of zeta would code data for a sequence of
approximations for the p-adic variant of the partonic 2-surface. This would be natural since
second quantized induced spinor fields are correlates for logical thought in TGD inspired the-
ory of consciousness. Even more, the data would be given at points ζ(s), s a rational value
of a super-symplectic conformal weight or a value of generalized eigenvalue of modified Dirac
operator (which is essentially function s = ζ−1

p (z) at geodesic sphere of CP2 or of light-cone
boundary).

16.6.3 Galois groups, Jones inclusions, and infinite primes

Langlands program [A58, A158] is an attempt to unify mathematics using the idea that all zeta
functions and corresponding theta functions could emerge as automorphic functions giving rise to
finite-dimensional representations for Galois groups (Galois group is defined as a group of automor-
phisms of the extension of field F leaving invariant the elements of F ). The basic example corresponds
to rationals and their extensions. Finite fields G(p, k) and their extensions G(p, nk) represents another
example. The largest extension of rationals corresponds to algebraic numbers (algebraically closed
set). Although this non-Abelian group is huge and does not exist in the usual sense of the word its
finite-dimensional representations in groups GL(n,Z) make sense.

For instance, Edward Witten is working with the idea that geometric variant of Langlands duality
could correspond to the dualities discovered in string model framework and be understood in terms
of topological version of four-dimensional N = 4 super-symmetric YM theory [A225] . In particular,
Witten assigns surface operators to the 2-D surfaces of 4-D space-time. This brings unavoidably in
mind partonic 2-surfaces and TGD as N = 4 super-conformal almost topological QFT.

This observation stimulates some ideas about the role of zeta functions in TGD if one takes the
vision about physics as a generalized number theory seriously.

Galois groups, Jones inclusions, and quantum measurement theory

The Galois representations appearing in Langlands program could have a concrete physical/cognitive
meaning.

1. The Galois groups associated with the extensions of rationals have a natural action on partonic 2-
surfaces represented by algebraic equations. Their action would reduce to permutations of roots
of the polynomial equations defining the points with a fixed projection to the above mentioned
geodesic sphere S2 of CP2 or δM4

+. This makes possible to define modes of induced spinor fields
transforming under representations of Galois groups. Galois groups would also have a natural
action on configuration space-spinor fields. One can also speak about configuration space spinors
invariant under Galois group.

2. Galois groups could be assigned to Jones inclusions having an interpretation in terms of a finite
measurement resolution in the sense that the discrete group defining the inclusion leaves invariant
the operators generating excitations which are not detectable.

3. The physical interpretation of the finite resolution represented by Galois group would be based
on the analogy with particle physics. The field extension K/F implies that the primes (more
precisely, prime ideals) of F decompose into products of primes (prime ideals) of K. Physically
this corresponds to the decomposition of particle into more elementary constituents, say hadrons
into quarks in the improved resolution implied by the extension F → K. The interpretation in
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terms of cognitive resolution would be that the primes associated with the higher extensions of
rationals are not cognizable: in other words, the observed states are singlets under corresponding
Galois groups: one has algebraic/cognitive counterpart of color confinement.

4. For instance, the system labeled by an ordinary p-adic prime could decompose to a system
which is a composite of Gaussian primes. Interestingly, the biologically highly interesting p-adic
length scale range 10 nm-5 µm contains as many as four Gaussian Mersennes (Mk = (1+ i)k−1,
k = 151, 157, 163, 167), which suggests that the emergence of living matter means an improved
cognitive resolution.

Galois groups and infinite primes

In particular, the notion of infinite prime suggests a manner to realize the modular functions as
representations of Galois groups. Infinite primes might also provide a new perspective to the concrete
realization of Langlands program.

1. The discrete Galois groups associated with various extensions of rationals and involved with
modular functions which are in one-one correspondence with zeta functions via Mellin transform
defined as

∑
xnn

−s →
∑
xnz

n [A64] . Various Galois groups would have a natural action in
the space of infinite primes having interpretation as Fock states and more general bound states
of an arithmetic quantum field theory.

2. The number theoretic anatomy of space-time points due to the possibility to define infinite
number of number theoretically non-equivalent real units using infinite rationals [L9] allows the
imbedding space points themselves to code holographically various things. Galois groups would
have a natural action in the space of real units and thus on the number theoretical anatomy of
a point of imbedding space.

3. Since the repeated second quantization of the super-symmetric arithmetic quantum field theory
defined by infinite primes gives rise to a huge space of quantum states, the conjecture that the
number theoretic anatomy of imbedding space point allows to represent configuration space (the
world of classical worlds associated with the light-cone of a given point of H) and configuration
space spinor fields emerges naturally [L9] .

4. Since Galois groups G are associated with inclusions of number fields to their extensions, this
inclusion could correspond at quantum level to a generalized Jones inclusion N ⊂M such that
G acts as automorphisms of M and leaves invariant the elements of N . This might be possible
if one allows the replacement of complex numbers as coefficient fields of hyper-finite factors of
type II1 with various algebraic extensions of rationals. Quantum measurement theory with a
finite measurement resolution defined by Jones inclusion N ⊂ M [L11] could thus have also a
purely number theoretic meaning provided it is possible to define a non-trivial action of various
Galois groups on configuration space spinor fields via the imbedding of the configuration space
spinors to the space of infinite integers and rationals (analogous to the imbedding of space-time
surface to imbedding space).

This picture allows to develop rather fascinating ideas about mathematical structures and their
relationship to physical world. For instance, the functional form of a map between two sets the points
of the domain and target rather than only its value could be coded in a holographic manner by
using the number theoretic anatomy of the points. Modular functions giving rise to generalized zeta
functions would emerge in especially natural manner in this framework. Configuration space spinor
fields would allow a physical realization of the holographic representations of various maps as quantum
states.

16.6.4 Connection between Hurwitz zetas, quantum groups, and hierarchy
of Planck constants?

The action of modular group SL(2,Z) on Riemann zeta [A87] is induced by its action on theta function
[A97] . The action of the generator τ → −1/τ on theta function is essential in providing the functional
equation for Riemann Zeta. Usually the action of the generator τ → τ + 1 on Zeta is not considered
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explicitly. The surprise was that the action of the generator τ → τ +1 on Riemann Zeta does not give
back Riemann zeta but a more general function known as Hurwitz zeta ζ(s, z) for z = 1/2. One finds
that Hurwitz zetas for certain rational values of argument define in a well defined sense representations
of fractional modular group to which quantum group can be assigned naturally. This could allow to
code the value of the quantum phase q = exp(i2π/n) to the solution spectrum of the modified Dirac
operator D.

Hurwitz zetas

Hurwitz zeta is obtained by replacing integers m with m+ z in the defining sum formula for Riemann
Zeta:

ζ(s, z) =
∑
m

(m+ z)−s . (16.6.1)

Riemann zeta results for z = n.

Hurwitz zeta obeys the following functional equation for rational z = m/n of the second argument
[A46] :

ζ(1− s, m
n

) =
2Γ(s)

2πn

s n∑
k=1

cos(
πs

2
− 2πkm

n
)ζ(s,

k

n
) . (16.6.2)

The representation of Hurwitz zeta in terms of θ [A46] is given by the equation

∫ ∞
0

[θ(z, it)− 1] ts/2
dt

t
= π(1−s)/2Γ(

1− s
2

) [ζ(1− s, z) + ζ(1− s, 1− z)] . (16.6.3)

By the periodicity of theta function this gives for z = n Riemann zeta.

The action of τ → τ + 1 transforms ζ(s, 0) to ζ(s, 1/2)

The action of the transformations τ → τ + 1 on the integral representation of Riemann Zeta [A87] in
terms of θ function [A97]

θ(z; τ)− 1 = 2

∞∑
n=1

[exp(iπτ)]n
2

cos(2πnz) (16.6.4)

is given by

π−s/2Γ(
s

2
)ζ(s) =

∫ ∞
0

[θ(0; it)− 1]ts/2
dt

t
. (16.6.5)

Using the first formula one finds that the shift τ = it → τ + 1 in the argument θ induces the shift
θ(0; τ) → θ(1/2; τ). Hence the result is Hurwitz zeta ζ(s, 1/2). For τ → τ + 2 one obtains Riemann
Zeta.

Thus ζ(s, 0) and ζ(s, 1/2) behave like a doublet under modular transformations. Under the sub-
group of modular group obtained by replacing τ → τ+1 with τ → τ+2 Riemann Zeta forms a singlet.
The functional equation for Hurwitz zeta relates ζ(1− s, 1/2) to ζ(s, 1/2) and ζ(s, 1) = ζ(s, 0) so that
also now one obtains a doublet, which is not surprising since the functional equations directly reflects
the modular transformation properties of theta functions. This doublet might be the proper object
to study instead of singlet if one considers full modular invariance.
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Hurwitz zetas form n-plets closed under the action of fractional modular group

The inspection of the functional equation for Hurwitz zeta given above demonstrates that ζ(s,m/n),
m = 0, 1, ..., n, form in a well-defined sense an n-plet under fractional modular transformations ob-
tained by using generators τ → −1/τ and τ → τ + 2/n. The latter corresponds to the unimodular
matrix (a, b; c, d) = (1, 2/n; 0, 1). These matrices obviously form a group. Note that Riemann zeta is
always one member of the multiplet containing n Hurwitz zetas.

These observations bring in mind fractionization of quantum numbers, quantum groups corre-
sponding to the quantum phase q = exp(i2π/n), and the inclusions for hyper-finite factors of type II1
partially characterized by these quantum phases. Fractional modular group obtained using generator
τ → τ + 2/n and Hurwitz zetas ζ(s, k/n) could very naturally relate to these and related structures.

16.6.5 Could Hurwitz zetas relate to dark matter?

These observations suggest a speculative application to quantum TGD.

Basic vision about dark matter

1. In TGD framework inclusions of HFFs of type II1 are directly related to the hierarchy of
Planck constants involving a generalization of the notion of imbedding space obtained by gluing
together copies of 8-D H = M4 × CP2 with a discrete bundle structure H → H/Zna × Znb
together along the 4-D intersections of the associated base spaces [K26] . A book like structure
results and various levels of dark matter correspond to the pages of this book. One can say
that elementary particles proper are maximally quantum critical and live in the 4-D intersection
of these imbedding spaces whereas their ”field bodies” reside at the pages of the Big Book.
Note that analogous book like structures results when real and various p-adic variants of the
imbedding space are glued together along common algebraic points.

2. The integers na and nb give Planck constant as ~/~0 = na/nb, whose most general value is
a rational number. In Platonic spirit one can argue that number theoretically simple integers
involving only powers of 2 and Fermat primes are favored physically. Phase transitions between
different matters occur at the intersection.

3. The inclusions N ⊂ M of HFFs relate also to quantum measurement theory with finite mea-
surement resolution with N defining the measurement resolution so that N-rays replace complex
rays in the projection postulate and quantum spaceM/N having fractional dimension effectively
replaces M.

4. Geometrically the fractional modular invariance would naturally relate to the fact that Riemann
surface (partonic 2-surface) can be seen as an na × nb-fold covering of its projection to the base
space of H: fractional modular transformations corresponding to na and nb would relate points
at different sheets of the covering of M4 and CP2. This means Znanb = Zna × Znb conformal
symmetry. This suggests that the fractionization could be a completely general phenomenon
happening also for more general zeta functions.

What about exceptional cases n = 1 and n = 2?

Also n = 1 and n = 2 are present in the hierarchy of Hurwitz zetas (singlet and doublet). They do
not correspond to allowed Jones inclusion since one has n > 2 for them. What could this mean?

1. It would seem that the fractionization of modular group relates to Jones inclusions (n > 2) giving
rise to fractional statistics. n = 2 corresponding to the full modular group Sl(2,Z) could relate
to the very special role of 2-valued logic, to the degeneracy of n = 2 polygon in plane, to the
very special role played by 2-component spinors playing exceptional role in Riemann geometry
with spinor structure, and to the canonical representation of HFFs of type II1 as fermionic Fock
space (spinors in the world of classical worlds). Note also that SU(2) defines the building block
of compact non-commutative Lie groups and one can obtain Lie-algebra generators of Lie groups
from n copies of SU(2) triplets and posing relations which distinguish the resulting algebra from
a direct sum of SU(2) algebras.
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2. Also n = 2-fold coverings M4 → M4/Z2 and CP2 → CP2/Z2 seem to make sense. One
can argue that by quantum classical correspondence the spin half property of imbedding space
spinors should have space-time correlate. Could n = 2 coverings allow to define the space-
time correlates for particles having half odd integer spin or weak isospin? If so, bosons would
correspond to n = 1 and fermions to n = 2. One could of course counter argue that induced
spinor fields already represent fermions at space-time level and there is no need for the doubling
of the representation.

The trivial group Z1 and Z2 are exceptional since Z1 does not define any quantization axis and
Z2 allows any quantization axis orthogonal to the line connecting two points. For n ≥ 3 Zn
fixes the direction of quantization axis uniquely. This obviously correlates with n ≥ 3 for Jones
inclusions.

Dark elementary particle functionals

One might wonder what might be the dark counterparts of elementary particle vacuum functionals.
Theta functions θ[a,b](z,Ω) with characteristic [a, b] for Riemann surface of genus g as functions of z
and Teichmueller parameters Ω are the basic building blocks of modular invariant vacuum functionals
defined in the finite-dimensional moduli space whose points characterize the conformal equivalence
class of the induced metric of the partonic 2-surface. Obviously, kind of spinorial variants of theta
functions are in question with g + g spinor indices for genus g.

The recent case corresponds to g = 1 Riemann surface (torus) so that a and b are g = 1-component
vectors having values 0 or 1/2 and Hurwitz zeta corresponds to θ[0,1/2]. The four Jacobi theta functions
listed in Wikipedia [A97] correspond to these thetas for torus. The values for a and b are 0 and 1 for
them but this is a mere convention.

The extensions of modular group to fractional modular groups obtained by replacing integers
with integers shifted by multiples of 1/n suggest the existence of new kind of q-theta functions with
characteristics [a, b] with a and b being g-component vectors having fractional values k/n, k = 0, 1...n−
1. There exists also a definition of q-theta functions working for 0 ≤ |q| < 1 but not for roots of
unity [A76] . The q-theta functions assigned to roots of unity would be associated with Riemann
surfaces with additional Zn conformal symmetry but not with generic Riemann surfaces and obtained
by simply replacing the value range of characteristics [a, b] with the new value range in the defining
formula

Θ[a, b](z|Ω) =
∑
n

exp [iπ(n+ a) · Ω · (n+ a) + i2π(n+ a) · (z + b)] .

(16.6.5)

for theta functions. If Zn conformal symmetry is relevant for the definition of fractional thetas it is
probably so because it would make the generalized theta functions sections in a bundle with a finite
fiber having Zn action.

This hierarchy would correspond to the hierarchy of quantum groups for roots of unity and Jones
inclusions and one could probably define also corresponding zeta function multiplets. These theta
functions would be building blocks of the elementary particle vacuum functionals for dark variants of
elementary particles invariant under fractional modular group. They would also define a hierarchy of
fractal variants of number theoretic functions: it would be interesting to see what this means from the
point of view of Langlands program [A58] discussed also in TGD framework [K38] involving ordinary
modular invariance in an essential manner.

This hierarchy would correspond to the hierarchy of quantum groups for roots of unity and Jones
inclusions and one could probably define also corresponding zeta function multiplets. These theta
functions would be building blocks of the elementary particle vacuum functionals for dark variants of
elementary particles invariant under fractional modular group.

Hierarchy of Planck constants defines a hierarchy of quantum critical systems

Dark matter hierarchy corresponds to a hierarchy of conformal symmetries Zn of partonic 2-surfaces
with genus g ≥ 1 such that factors of n define subgroups of conformal symmetries of Zn. By the
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decomposition Zn =
∏
p|n Zp, where p|n tells that p divides n, this hierarchy corresponds to an

hierarchy of increasingly quantum critical systems in modular degrees of freedom. For a given prime p
one has a sub-hierarchy Zp, Zp2 = Zp × Zp, etc... such that the moduli at n+1:th level are contained
by n:th level. In the similar manner the moduli of Zn are sub-moduli for each prime factor of n.
This mapping of integers to quantum critical systems conforms nicely with the general vision that
biological evolution corresponds to the increase of quantum criticality as Planck constant increases.

The group of conformal symmetries could be also non-commutative discrete group having Zn as
a subgroup. This inspires a very short-lived conjecture that only the discrete subgroups of SU(2)
allowed by Jones inclusions are possible as conformal symmetries of Riemann surfaces having g ≥ 1.
Besides Zn one could have tedrahedral and icosahedral groups plus cyclic group Z2n with reflection
added but not Z2n+1 nor the symmetry group of cube. The conjecture is wrong. Consider the orbit
of the subgroup of rotational group on standard sphere of E3, put a handle at one of the orbits such
that it is invariant under rotations around the axis going through the point, and apply the elements
of subgroup. You obtain a Riemann surface having the subgroup as its isometries. Hence all discrete
subgroups of SU(2) can act even as isometries for some value of g.

The number theoretically simple ruler-and-compass integers having as factors only first powers of
Fermat primes and power of 2 would define a physically preferred sub-hierarchy of quantum criticality
for which subsequent levels would correspond to powers of 2: a connection with p-adic length scale
hypothesis suggests itself.

Spherical topology is exceptional since in this case the space of conformal moduli is trivial and
conformal symmetries correspond to the entire SL(2, C). This would suggest that only the fermions of
lowest generation corresponding to the spherical topology are maximally quantum critical. This brings
in mind Jones inclusions for which the defining subgroup equals to SU(2) and Jones index equals to
M/N = 4. In this case all discrete subgroups of SU(2) label the inclusions. These inclusions would
correspond to fiber space CP2 → CP2/U(2) consisting of geodesic spheres of CP2. In this case the
discrete subgroup might correspond to a selection of a subgroup of SU(2) ⊂ SU(3) acting non-trivially
on the geodesic sphere. Cosmic strings X2×Y 2 ⊂M4×CP2 having geodesic spheres of CP2 as their
ends could correspond to this phase dominating the very early cosmology.

Fermions in TGD Universe allow only three families

What is nice that if fermions correspond to n = 2 dark matter with Z2 conformal symmetry as strong
quantum classical correspondence suggests, the number of ordinary fermion families is three without
any further assumptions. To see this suppose that also the sectors corresponding to M4 → M4/Z2

and CP2 → CP2/Z2 coverings are possible. Z2 conformal symmetry implies that partonic Riemann
surfaces are hyper-elliptic. For genera g > 2 this means that some theta functions of θ[a,b] appearing
in the product of theta functions defining the vacuum functional vanish. Hence fermionic elementary
particle vacuum functionals would vanish for g > 2 and only 3 fermion families would be possible for
n = 2 dark matter.

This results can be strengthened. The existence of space-time correlate for the fermionic 2-
valuedness suggests that fermions quite generally to even values of n, so that this result would hold
for all fermions. Elementary bosons (actually exotic particles belonging to Kac-Moody type repre-
sentations) would correspond to odd values of n, and could possess also higher families. There is a
nice argument supporting this hypothesis. n-fold discretization provided by covering associated with
H corresponds to discretization for angular momentum eigenstates. Minimal discretization for 2j + 1
states corresponds to n = 2j + 1. j = 1/2 requires n = 2 at least, j = 1 requires n = 3 at least,
and so on. n = 2j + 1 allows spins j ≤ n− 1/2. This spin-quantum phase connection at the level of
space-time correlates has counterpart for the representations of quantum SU(2).

These rules would hold only for genuinely elementary particles corresponding to single partonic
component and all bosonic particles of this kind are exotics (excitations in only ”vibrational” degrees
of freedom of partonic 2-surface with modular invariance eliminating quite a number of them.
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Chapter 17

Langlands Program and TGD

17.1 Introduction

Langlands program [A157, A58, A158, A156] is an attempt to unify number theory and representation
theory of groups and as it seems all mathematics. About related topics I know frustratingly little
at technical level. Zeta functions and theta functions [A114, A1, A108, A64] , and more generally
modular forms [A65] are the connecting notion appearing both in number theory and in the theory of
automorphic representations of reductive Lie groups. The fact that zeta functions have a key role in
TGD has been one of the reasons for my personal interest.

The vision about TGD as a generalized number theory [K20, K19, K77, K78, K76] gives good
motivations to learn the basic ideas of Langlands program. I hasten to admit that I am just a novice
with no hope becoming a master of the horrible technicalities involved. I just try to find whether
the TGD framework could allow new physics inspired insights to Langlands program and whether
the more abstract number theory relying heavily on the representations of Galois groups could have
a direct physical counterpart in TGD Universe and help to develop TGD as a generalized number
theory vision. After these apologies I however dare to raise my head a little bit and say aloud that
mathematicians might get inspiration from physics inspired new insights.

The basic vision is that Langlands program could relate very closely to the unification of physics
as proposed in TGD framework [L11, L9, L8] . TGD can indeed be seen both as infinite-dimensional
geometry, as a generalized number theory involving several generalizations of the number concept,
and as an algebraic approach to physics relying on the unique properties of hyper finite factors of
type II1 so that unification of mathematics would obviously fit nicely into this framework. The fusion
of real and various p-adic physics based on the generalization of the number concept, the notion of
number theoretic braid, hyper-finite-factors of type II1 and sub-factors, and the notion of infinite
prime, inspired a new view about how to represent finite Galois groups and how to unify the number
theoretic and geometric Langlands programs.

17.1.1 Langlands program very briefly

Langlands program [A58] states that there exists a connection between number theory and automor-
phic representations of a very general class of Lie groups known as reductive groups (groups whose all
representations are fully reducible). At the number theoretic side there are Galois groups character-
izing extensions of number fields, say rationals or finite fields. Number theory involves also so called
automorphic functions to which zeta functions carrying arithmetic information via their coefficients
relate via so called Mellin transform

∑
n ann

s →
∑
n anz

n [A64] .
Automorphic functions, invariant under modular group SL(2, Z) or subgroup Γ0(N) ⊂ SL(2, Z)

consisting of matrices (
a b
c d

)
, c mod N = 0 ,

emerge also via the representations of groups GL(2, R). This generalizes also to higher dimensional
groups GL(n,R). The dream is that all number theoretic zeta functions could be understood in terms

839
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of representation theory of reductive groups. The highly non-trivial outcome would be possibility to
deduce very intricate number theoretical information from the Taylor coefficients of these functions.

Langlands program relates also to Riemann hypothesis and its generalizations. For instance, the
zeta functions associated with 1-dimensional algebraic curve on finite field Fq, q = pn, code the
numbers of solutions to the equations defining algebraic curve in extensions of Fq which form a
hierarchy of finite fields Fqm with m = kn [A108] : in this case Riemann hypothesis has been proven.

It must be emphasized that algebraic 1-dimensionality is responsible for the deep results related
to the number theoretic Langlands program as far as 1-dimensional function fields on finite fields are
considered [A108, A158] . In fact, Langlands program is formulated only for algebraic extensions of
1-dimensional function fields.

One might also conjecture that Langlands duality for Lie groups reflects some deep duality on
physical side. For instance, Edward Witten is working with the idea that geometric variant of Lang-
lands duality could correspond to the dualities discovered in the framework of YM theories and string
models. In particular, Witten proposes that electric-magnetic duality which indeed relates gauge
group and its dual, provides a physical correlate for the Langlands duality for Lie groups and could
be understood in terms of topological version of four-dimensional N = 4 super-symmetric YM the-
ory [A180] . Interestingly, Witten assigns surface operators to the 2-D surfaces of 4-D space-time.
This brings unavoidably in mind partonic 2-surfaces and TGD as N = 4 super-conformal almost
topological QFT. In this chapter it will be proposed that super-symmetry might correspond to the
Langlands duality in TGD framework.

17.1.2 Questions

Before representing in more detail the TGD based ideas related to Langlands correspondence it is
good to summarize the basic questions which Langlands program stimulates.

Could one give more concrete content to the notion of Galois group of algebraic closure
of rationals?

The notion of Galois group for algebraic closure of rationals Gal(Q/Q) is immensely abstract and one
can wonder how to make it more explicit? Langlands program adopts the philosophy that this group
could be defined only via its representations. The so called automorphic representations constructed
in terms of adeles. The motivation comes from the observation that the subset of adeles consisting of
Cartesian product of invertible p-adic integers is a structure isomorphic with the maximal abelian sub-
group of Gal(Q/Q) obtained by dividing Gal(Q/Q) with its commutator subgroup. Representations
of finite abelian Galois groups are obtained as homomorphisms mapping infinite abelian Galois group
to its finite factor group. In this approach the group Gal(Q/Q) remains rather abstract and adeles
seem to define a mere auxiliary technical tool although it is clear that so called l-adic representations
for Galois groups are are natural also in TGD framework.

This raises some questions.

1. Could one make Gal(Q/Q) more concrete? For instance, could one identify it as an infinite
symmetric group S∞ consisting of finite permutations of infinite number of objects? Could one
imagine some universal polynomial of infinite degree or a universal rational function resulting
as ratio of polynomials of infinite degree giving as its roots the closure of rationals?

2. S∞ has only single normal subgroup consisting of even permutations and corresponding factor
group is maximal abelian group. Therefore finite non-abelian Galois groups cannot be repre-
sented via homomorphisms to factor groups. Furthermore, Sinfty has only infinite-dimensional
non-abelian irreducible unitary representations as a simple argument to be discussed later shows.

What is highly non-trivial is that the group algebras of S∞ and closely related braid group B∞
define hyper-finite factors of type II1 (HFF). Could sub-factors characterized by finite groups
G allow to realize the representations of finite Galois groups as automorphisms p HFF? The
interpretation would be in terms of ”spontaneous symmetry breaking” Gal(Q/Q) → G. Could
it be possible to get rid of adeles in this manner?

3. Could one find a concrete physical realization for the action of S∞? Could the permuted objects
be identified as strands of braid so that a braiding of Galois group to infinite braid group
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B∞ would result? Could the outer automorphism action of Galois group on number theoretic
braids defining the basic structure of quantum TGD allow to realize Galois groups physically
as Galois groups of number theoretic braids associated with subset of algebraic points defined
by the intersection of real and p-adic partonic 2-surface? The requirement that mathematics is
able to represent itself physically would provide the reason for the fact that reality and various
p-adicities intersect along subsets of rational and algebraic points only.

Could one understand the correspondences between the representations of finite Galois
groups and reductive Lie groups?

Langlands correspondence involves a connection between the representations of finite-dimensional
Galois groups and reductive Lie groups.

1. Could this correspondence result via an extension of the representations of finite groups in infinite
dimensional Clifford algebra to those of reductive Lie groups identified for instance as groups
defining sub-factors (any compact group can define a unique sub-factor)? If Galois groups and
reductive groups indeed have a common representation space, it might be easier to understand
Langlands correspondence.

2. Is there some deep difference between between general Langlands correspondence and that for
GL(2, F ) and could this relate to the fact that subgroups of SU(2) define sub-factors with
quantized index M : N ≤ 4.

3. McKay correspondence q [A178] relates finite subgroups of compact Lie groups to compact
Lie group (say finite sub-groups of SU(2) to ADE type Lie-algebras or Kac-Moody algebras).
TGD approach leads to a general heuristic explanation of this correspondence in terms of Jones
inclusions and Connes tensor product. Could sub-factors allow to understand Langlands cor-
respondence for general reductive Lie groups as both the fact that any compact Lie group can
define a unique sub-factor and an argument inspired by McKay correspondence suggest.

Could one unify geometric and number theoretic Langlands programs?

There are two Langlands programs: algebraic Langlands program and geometric one [A158, A156]
one corresponding to ordinary number fields and function fields. The natural question is whether and
how these approaches could be unified.

1. Could the discretization based on the notion of number theoretic braids induce the number
theoretic Langlands from geometric Langlands so that the two programs could be unified by the
generalization of the notion of number field obtained by gluing together reals with union of reals
and various p-adic numbers fields and their extensions along common rationals and algebraics.
Certainly the fusion of p-adics and reals to a generalized notion of number should be essential
for the unification of mathematics.

2. Could the distinction between number fields and function fields correspond to two kinds of
sub-factors corresponding to finite subgroups G ⊂ SU(2) and SU(2) itself leaving invariant
the elements of imbedded algebra? This would obviously generalize to imbeddings of Galois
groups to arbitrary compact Lie group. Could gauge group algebras contra Kac Moody algebras
be a possible physical interpretation for this. Could the two Langlands programs correspond
to two kinds of ADE type hierarchies defined by Jones inclusions? Could minimal conformal
field theories with finite number of primary fields correspond to algebraic Langlands and full
string theory like conformal field theories with infinite number of primary fields to geometric
Langlands? Could this difference correspond to sub-factors defined by disrete groups and Lie
groups?

3. Could the notion of infinite rational [L3] be involved with this unification? Infinite rationals
are indeed mapped to elements of rational function fields (also algebraic extensions of them) so
that their interpretation as quantum states of a repeatedly second quantized arithmetic super-
symmetric quantum field theory might provide totally new mathematical insights.
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Is it really necessary to replace groups GL(n, F ) with their adelic counterparts?

If the group of invertible adeles is not needed or allowed then a definite deviation from Langlands
program is implied. It would seem that multiplicative adeles (ideles) are not favored by TGD view
about the role of p-adic number fields. The l-adic representations of p-adic Galois groups corresponding
to single p-adic prime l emerge however naturally in TGD framework.

1. The 2 × 2 Clifford algebra could be easily replaced with its adelic version. A generalization
of Clifford algebra would be in question and very much analogous to GL(2, A) in fact. The
interpretation would be that real numbers are replaced with adeles also at the level of imbedding
space and space-time. This interpretation does not conform with the TGD based view about
the relationship between real and p-adic degrees of freedom. The physical picture is that H is
8-D but has different kind of local topologies and that spinors are in some sense universal and
independent of number field.

2. Configuration space spinors define a hyper-finite factor of type II1. It is not clear if this in-
terpretation continues to make sense if configuration space spinors (fermionic Fock space) are
replaced with adelic spinors. Note that this generalization would require the replacement of the
group algebra of Sinfty with its adelic counterpart.

17.2 Basic concepts and ideas related to the number theoretic
Langlands program

The basic ideas of Langlands program are following.

1. Gal(Q/Q) is a poorly understood concept. The idea is to define this group via its representations
and construct representations in terms of group GL(2, A) and more generally GL(n,A), where
A refers to adeles. Also representations in any reductive group can be considered. The so
called automorphic representations of these groups have a close relationship to the modular
forms [A65] , which inspires the conjecture that n-dimensional representations of Gal(Q/Q) are
in 1-1 correspondence with automorphic representations of GL(n,A).

2. This correspondence predicts that the invariants characterizing the n-dimensional representa-
tions of Gal(Q/Q) resp. GL(n,A) should correspond to each other. The invariants at Galois
sides are the eigenvalues of Frobenius conjugacy classes Frp in Gal(Q/Q). The non-trivial im-
plication is that in the case of l-adic representations the latter must be algebraic numbers. The
ground states of the representations of Gl(n,R) are in turn eigen states of so called Hecke opera-
tors Hp,k, k = 1, .., n acting in group algebra of Gl(n,R). The eigenvalues of Hecke operators for
the ground states of representations must correspond to the eigenvalues of Frobenius elements
if Langlands correspondence holds true.

3. The characterization of the K-valued representations of reductive groups in terms of Weil group
WF associated with the algebraic extension K/F allows to characterize the representations in
terms of homomorphisms of Weil group to the Langlands dual GL(F ) of G(F ).

17.2.1 Correspondence between n-dimensional representations of Gal(F/F )
and representations of GL(n,AF ) in the space of functions in GL(n, F )\GL(n,AF )

The starting point is that the maximal abelian subgroup Gal(Qab/Q) of the Galois group of algebraic
closure of rationals is isomorphic to the infinite product Ẑ =

∏
p Z
×
p , where Z×p consists of invertible

p-adic integers [A158] .
By introducing the ring of adeles one can transform this result to a slightly different form. Adeles

are defined as collections ((fp)p∈P , f∞), P denotes primes, fp ∈ Qp, and f∞ ∈ R, such that fp ∈ Zp for

all p for all but finitely many primes p. It is easy to convince oneself that one has AQ = (Ẑ⊗Z Q)×R
and Q×\AQ = Ẑ × (R/Z) . The basic statement of abelian class field theory is that abelian Galois
group is isomorphic to the group of connected components of F×\A×F .

This statement can be transformed to the following suggestive statement:
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1) 1-dimensional representations of Gal(F/F ) correspond to representations of GL(1, AF ) in the
space of functions defined in GL(1, F )\GL(1, AF ).

The basic conjecture of Langlands was that this generalizes to n-dimensional representations of
Gal(F/F ).

2) The n-dimensional representations of Gal(F/F ) correspond to representations of GL(n,AF ) in
the space of functions defined in GL(n, F )\GL(n,AF ).

This relation has become known as Langlands correspondence.
It is interesting to relate this approach to that discussed in this chapter.

1. In TGD framework adeles do not seem natural although p-adic number fields and l-adic repre-
sentations have a natural place also here. The new view about numbers is of course an essentially
new element allowing geometric interpretation.

2. The irreducible representations of Gal(F , F ) are assumed to reduce to those for its finite sub-
group G. If Gal(F , F ) is identifiable as S∞, finite dimensional representations cannot correspond
to ordinary unitary representations since, by argument to be represented later, their dimension
is of order order n→∞ at least. Finite Galois groups can be however interpreted as a sub-group
of outer automorphisms defining a sub-factor of Gal(Q,Q) interpreted as HFF. Outer automor-
phisms result at the limit n → ∞ from a diagonal imbedding of finite Galois group to its nth

Cartesian power acting as automorphisms in S∞. At the limit n→∞ the imbedding does not
define inner automorphisms anymore. Physicist would interpret the situation as a spontaneous
symmetry breaking.

3. These representations have a natural extension to representations of Gl(n, F ) and of general
reductive groups if also realized as point-wise symmetries of sub-factors of HFF. Continuous
groups correspond to outer automorphisms of group algebra of S∞ not inducible from outer
automorphisms of Sinfty. That finite Galois groups and Lie groups act in the same representation
space should provide completely new insights to the understanding of Langlands correspondence.

4. The l-adic representations of Gal(Q/Q) could however change the situation. The representations
of finite permutation groups in R and in p-adic number fields p < n are more complex and
actually not well-understood [A84] . In the case of elliptic curves [A158] (say y2 = x3 + ax +
b, a, b rational numbers with 4a3 + 27b2 6= 0) so called first etale cohomology group is Q2

l

and thus 2-dimensional and it is possible to have 2-dimensional representations Gal(Q/Q) →
GL(2, Ql). More generally, l-adic representations σ of of Gal(F/F )→ GL(n,Ql) is assumed to
satisfy the condition that there exists a finite extension E ⊂ Ql such that σ factors through a
homomorphism to GL(n,E).

Assuming Gal(Q/Q) = S∞, one can ask whether l-adic or adelic representations and the repre-
sentations defined by outer automorphisms of sub-factors might be two alternative manners to
state the same thing.

Frobenius automorphism

Frobenius automorphism is one of the basic notions in Langlands correspondence. Consider a field
extension K/F and a prime ideal v of F (or prime p in case of ordinary integers). v decomposes
into a product of prime ideals of K: v =

∏
wk if v is unramified and power of this if not. Consider

unramified case and pick one wk and call it simply w. Frobenius automorphisms Frv is by definition
the generator of the the Galois group Gal(K/w,F/v), which reduces to Z/nZ for some n.

Since the decomposition group Dw ⊂ Gal(K/F ) by definition maps the ideal w to itself and
preserves F point-wise, the elements of Dw act like the elements of Gal(OK/w,OF /v) (OX denotes
integers of X). Therefore there exists a natural homomorphism Dw : Gal(K/F )→ Gal(OK/w,OF /v)
(= Z/nZ for some n). If the inertia group Iw identified as the kernel of the homomorphism is trivial
then the Frobenius automorphism Frv, which by definition generates Gal(OK/w,OF /v), can be
regarded as an element of Dw and Gal(K/F ). Only the conjugacy class of this element is fixed since
any wk can be chosen. The significance of the result is that the eigenvalues of Frp define invariants
characterizing the representations of Gal(K/F ). The notion of Frobenius element can be generalized
also to the case of Gal(Q/Q) [A158] . The representations can be also l-adic being defined in GL(n,El)
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where El is extension of Ql. In this case the eigenvalues must be algebraic numbers so that they make
sense as complex numbers.

Two examples discussed in [A158] help to make the notion more concrete.

1. For the extensions of finite fields F = G(p, 1) Frobenius automorphism corresponds to x → xp

leaving elements of F invariant.

2. All extensions of Q having abelian Galois group correspond to so called cyclotomic extensions
defined by polynomials PN (x) = xN+1. They have Galois group (Z/NZ)× consisting of integers
k < n which do not divide n and the degree of extension is φ(N) = |Z/NZ×|, where φ(n) is Euler
function counting the integers n < N which do not divide N . Prime p is unramified only if it
does not divide n so that the number of ”bad primes” is finite. The Frobenius equivalence class
Frp in Gal(K/F ) acts as raising to pth power so that the Frp corresponds to integer p mod n.

Automorphic representations and automorphic functions

In the following I want to demonstrate that I have at least tried to do my home lessons by trying to
reproduce the description of [A158] for the route from automorphic adelic representations of GL(2, R)
to automorphic functions defined in upper half-plane.

1. Characterization of the representation

The representations ofGL(2, Q) are constructed in the space of smooth bounded functionsGL(2, Q)\GL(2, A)→
C or equivalently in the space of GL(2, Q) left-invariant functions in GL(2, A). A denotes adeles and
GL(2, A) acts as right translations in this space. The argument generalizes to arbitrary number field
F and its algebraic closure F .

1. Automorphic representations are characterized by a choice of compact subgroup K of GL(2, A).
The motivating idea is the central role of double coset decompositions G = K1AK2, where Ki are
compact subgroups and A denotes the space of double cosets K1gK2 in general representation
theory. In the recent case the compact group K2 ≡ K is expressible as a product K =

∏
pKp×

O2.

To my best understanding N =
∏
pekk in the cuspidality condition gives rise to ramified primes

implying that for these primes one cannot find GL2(Zp) invariant vectors unlike for others.
In this case one must replace this kind of vectors with those invariant under a subgroup of
GL2(Zp) consisting of matrices for which the component c satisfies c mod pnp = 0. Hence for
each unramified prime p one has Kp = GL(2, Zp). For ramified primes Kp consists of SL(2, Zp)
matrices with c ∈ pnpZp. Here pnp is the divisor of conductor N corresponding to p. K-finiteness
condition states that the right action of K on f generates a finite-dimensional vector space.

2. The representation functions are eigen functions of the Casimir operator C of gl(2, R) with eigen-
value ρ so that irreducible representations of gl(2, R) are obtained. An explicit representation
of Casimir operator is given by

C =
X2

0

4
+X+X −+X−X+ ,

where one has

X0

(
0 i
−i 0

)
,

(
1 ∓i
∓i −1

)
.

3. The center A× of GL(2, A) consists of A× multiples of identity matrix and it is assumed f(gz) =
χ(z)f(g), where χ : A× → C is a character providing a multiplicative representation of A×.

4. Also the so called cuspidality condition∫
Q\NA

f(

(
1 u
0 1

)
g)du = 0
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is satisfied [A158] . Note that the integration measure is adelic. Note also that the transforma-
tions appearing in integrand are an adelic generalization of the 1-parameter subgroup of Lorentz
transformations leaving invariant light-like vector. The condition implies that the modular func-
tions defined by the representation vanish at cusps at the boundaries of fundamental domains
representing copies Hu/Γ0(N), where N is so called conductor. The ”basic” cusp corresponds
to τ = i∞ for the ”basic” copy of the fundamental domain.

The groups gl(2, R), O(2) and GL(2, Qp) act non-trivially in these representations and it can
be shown that a direct sum of irreps of GL(2, AF ) × gl(2, R) results with each irrep occurring
only once. These representations are known as cuspidal automorphic representations.

The representation space for an irreducible cuspidal automorphic representation π is tensor product
of representation spaces associated with the factors of the adele. To each factor one can assign ground
state which is for un-ramified prime invariant under Gl2(Zp) and in ramified case under Γ0(N). This
ground states is somewhat analogous to the ground state of infinite-dimensional Fock space.

2. From adeles to Γ0(N)\SL(2, R)

The path from adeles to the modular forms in upper half plane involves many twists.

1. By so called central approximation theorem the group GL(2, Q)\GL(2, A)/K is isomorphic to
the group Γ0(N)\GL+(2, R), where N is conductor [A158]. This means enormous simplification
since one gets ride of the adelic factors altogether. Intuitively the reduction corresponds to
the possibility to interpret rational number as collection of infinite number of p-adic rationals
coming as powers of primes so that the element of Γ0(N) has interpretation also as Carteisian
product of corresponding p-adic elements.

2. The group Γ0(N) ⊂ SL(2, Z) consists of matrices(
a b
c d

)
, c mod N = 0.

+ refers to positive determinant. Note that Γ0(N) contains as a subgroup congruence subgroup
Γ(N) consisting of matrices, which are unit matrices modulo N . Congruence subgroup is a nor-
mal subgroup of SL(2, Z) so that also SL(2, Z)/Γ0(N) is group. Physically modular group Γ(N)
would be rather interesting alternative for Γ0(N) as a compact subgroup and the replacement
Kp = Γ0(pkp)→ Γ(pkp) of p-adic groups adelic decomposition is expected to guarantee this.

3. Central character condition together with assumptions about the action of K implies that the
smooth functions in the original space (smoothness means local constancy in p-adic sectors:
does this mean p-adic pseudo constancy?) are completely determined by their restrictions to
Γ0(N)\SL(2, R) so that one gets rid of the adeles.

3. From Γ0(N)\SL(2, R) to upper half-plane Hu = SL(2, R)/SO(2)

The representations of (gl(2, C), O(2)) come in four categories corresponding to principal series,
discrete series, the limits of discrete series, and finite-dimensional representations [A158] . For the
discrete series representation π giving square integrable representation in SL(2, R) one has ρ = k(k−
1)/4, where k > 1 is integer. As sl2 module, π∞ is direct sum of irreducible Verma modules with
highest weight −k and lowest weight k. The former module is generated by a unique, up to a scalar,
highest weight vector v∞ such that

X0v∞ = −kv∞ , X+v∞ = 0 .

The latter module is in turn generated by the lowest weight vector(
1 0
0 −1

)
v∞ .

This means that entire module is generated from the ground state v∞, and one can focus to the
function φπ on Γ0(N)\SL(2, R) corresponding to this vector. The goal is to assign to this function
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SO(2) invariant function defined in the upper half-plane Hu = SL(2, R)/SO(2), whose points can be
parameterized by the numbers τ = (a+ bi)/(c+ di) determined by SL(2, R) elements. The function
fπ(g) = φπ(g)(ci+ d)k indeed is SO(2) invariant since the phase exp(ikφ) resulting in SO(2) rotation
by φ is compensated by the phase resulting from (ci+ d) factor. This function is not anymore Γ0(N)
invariant but transforms as

fπ((aτ + b)/(cτ + d)) = (cτ + d)kfπ(τ)

under the action of Γ0(N) The highest weight condition X+v∞ implies that f is holomorphic function
of τ . Such functions are known as modular forms of weight k and level N . It would seem that the
replacement of Γ0(N) suggested by physical arguments would only replace Hu/Γ0(N) with Hu/Γ(N).

fπ can be expanded as power series in the variable q = exp(2πτ) to give

fπ(q) =

∞∑
n=0

anq
n . (17.2.1)

Cuspidality condition means that fπ vanishes at the cusps of the fundamental domain of the action of
Γ0(N) on Hu. In particular, it vanishes at q = 0 which which corresponds to τ = −∞. This implies
a0 = 0. This function contains all information about automorphic representation.

Hecke operators

Spherical Hecke algebra (which must be distinguished from non-commutative Hecke algebra associated
with braids) can be defined as algebra of GL(2, Zp) bi-invariant functions on GL(2, Qp) with respect
to convolution product. This algebra is isomorphic to the polynomial algebra in two generators H1,p

and H2,p and the ground states vp of automorphic representations are eigenstates of these operators.
The normalizations can be chosen so that the second eigenvalue equals to unity. Second eigenvalue
must be an algebraic number. The eigenvalues of Hecke operators Hp,1 correspond to the coefficients
ap of the q-expansion of automorphic function fπ so that fπ is completely determined once these
coefficients carrying number theoretic information are known [A158] .

The action of Hecke operators induces an action on the modular function in the upper half-plane
so that Hecke operators have also representation as what is known as classical Hecke operators. The
existence of this representation suggests that adelic representations might not be absolutely necessary
for the realization of Langlands program.

From TGD point of view a possible interpretation of this picture is in terms of modular invariance.
Teichmueller parameters of algebraic Riemann surface are affected by absolute Galois group. This
induces Sl(2g,Z) transformation if the action does not change the conformal equivalence class and a
more general transformation when it does. In the Gl2 case discussed above one has g = 1 (torus). This
change would correspond to non-trivial cuspidality conditions implying that ground state is invariant
only under subgroup of Gl2(Zp) for some primes. These primes would correspond to ramified primes
in maximal Abelian extension of rationals.

17.2.2 Some remarks about the representations of Gl(n) and of more gen-
eral reductive groups

The simplest representations of Gl(n,R) have the property that the Borel group B of upper diagonal
matrices is mapped to diagonal matrices consisting of character ξ which decomposes to a product of
characters χk associated with diagonal elements bk of B defining homomorphism

bk → sgn(b)m(k)|bk|iak

to unit circle if ak is real. Also more general, non-unitary, characters can be allowed. The representa-
tion itself satisfies the condition f(bg) = χ(b)f(g). Thus n complex parameters ak defining a reducible
representation of C× characterize the irreducible representation.

In the case of GL(2, R) one can consider also genuinely two-dimensional discrete series represen-
tations characterized by only single continuous parameter and the previous example represented just
this case. These representations are square integrable in the subgroup SL(2, R). Their origin is related
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to the fact that the algebraic closure of R is 2-dimensional. The so called Weil group WR which is
semi-direct product of complex conjugation operation with C× codes for this number theoretically.
The 2-dimensional representations correspond to irreducible 2-dimensional representations of WR in
terms of diagonal matrices of Gl(2, C) .

In the case of GL(n,R) the representation is characterized by integers nk:
∑
nk = n characterizing

the dimensions nk = 1, 2 of the representations of WR. For Gl(n,C) one has nk = 1 since Weil group
WC is obviously trivial in this case.

In the case of a general reductive Lie group G the homomorphisms of WR to the Langlands dual
GL of G defined by replacing the roots of the root lattice with their duals characterize the automorphic
representations of G.

The notion of Weil group allows also to understand the general structure of the representations
of GL(n, F ) in GL(n,K), where F is p-adic number field and K its extension. In this case Weil
group is a semi-direct product of Galois group of Gal(K/F ) and multiplicative group K×. A very
rich structure results since an infinite number of extensions exists and the dimensions of discrete series
representations.

The deep property of the characterization of representations in terms of Weil group is functoriality.
If one knows the homomorphisms WF → G and G → H then the composite homomorphism defines
an automorphic representation of H. This means that irreps of G can be passed to those of H by
homomorphism [A157] .

17.3 TGD inspired view about Langlands program

In this section a general TGD inspired vision about Langlands program is described. If is of course
just a bundle of physics inspired ideas represented in the hope that real professionals might find some
inspiration. The fusion of real and various p-adic physics based on the generalization of the number
concept, the notion of number theoretic braid, hyper-finite-factors of type II1 and their sub-factors,
and the notion of infinite prime, lead to a new view about how to represent finite Galois groups and
how to unify the number theoretic and geometric Langlands programs.

17.3.1 What is the Galois group of algebraic closure of rationals?

Galois group is essentially the permutation group for the roots of an irreducible polynomial. It is a
a subgroup of symmetric group Sn, where n is the degree of polynomial. One can also imagine the
notion of Galois group Gal(Q/Q) for the algebraic closure of rationals but the concretization of this
notion is not easy.

Gal(Q/Q) as infinite permutation group?

The maximal abelian subroup of Gal(Q/Q), which is obtained by dividing with the normal subgroup
of even permutations, is identifiable as a product of multiplicative groups Z×p of invertible p-adic
integers n = n0 + pZ, n0 ∈ {1, ..p− 1} for all p-adic primes and can be understood reasonably via its
isomorphism to the product Ẑ =

∏
p Zp of multiplicative groups Zp of invertible p-adic integers, one

factor for each prime p [A157, A58, A158] .
Adeles [A4] are identified as the subring of (Ẑ ⊗Z Q)× R containing only elements for which the

elements of Qp belong to Zp except for a finite number of primes so that the number obtained can be

always represented as a product of element of Ẑ and point of circle R/Z: A = Ẑ×R/Z. Adeles define
a multiplicative group A× of ideles and GL(1, A) allow to construct representations Gal(Qab/Q).

It is much more difficult to get grasp on Gal(Q/Q). The basic idea of Langlands program is that
one should try to understand Gal(Q/Q) through its representations rather than directly. The natural
hope is that n-dimensional representations of Gal(Q/Q) could be realized in GL(n,A).

1. Gal(Q/Q) as infinite symmetric group?

One could however be stubborn and try a different approach based on the direct identification
Gal(Q/Q). The naive idea is that Gal(Q/Q) could in some sense be the Galois group of a polynomial
of infinite degree. Of course, for mathematical reasons also a rational function defined as a ratio of
this kind of polynomials could be considered so that the Galois group could be assigned to both zeros
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and poles of this function. In the generic case this group would be an infinite symmetric group S∞
for an infinite number of objects containing only permutations for subsets containing a finite number
of objects. This group could be seen as the first guess for Gal(Q/Q).

S∞ can be defined by generators em representing permutation of mthand (m+1)th object satisfying
the conditions

emem = enem for |m− n| > 1,

enen+1en = enen+1enen+1 for n = 1, ..., n− 2 ,

e2
n = 1 . (17.3.-1)

By the definition S∞ can be expected to possess the basic properties of finite-dimensional per-
mutation groups. Conjugacy classes, and thus also irreducible unitary representations, should be in
one-one correspondence with partitions of n objects at the limit n → ∞. Group algebra defined by
complex functions in S∞ gives rise to the unitary complex number based representations and the
smallest dimensions of the irreducible representations are of order n and are thus infinite for S∞. For
representations based on real and p-adic number based variants of group algebra situation is not so
simple but it is not clear whether finite dimensional representations are possible.

Sn and obviously also S∞ allows an endless number of realizations since it can act as permutations
of all kinds of objects. Factors of a Cartesian and tensor power are the most obvious possibilities
for the objects in question. For instance, Sn allows a representation as elements of rotation group
SO(n) permuting orthonormalized unit vectors ei with components (ei)

k = δki . This induces also a
realization as spinor rotations in spinor space of dimension D = 2d/2.

2. Group algebra of S∞ as HFF

The highly non-trivial fact that the group algebra of S∞ is hyper-finite factor of type II1 (HFF)
[A49] suggests a representation of permutations as permutations of tensor factors of HFF interpreted as
an infinite power of finite-dimensional Clifford algebra. The minimal choice for the finite-dimensional
Clifford algebra is M2(C). In fermionic Fock space representation of infinite-dimensional Clifford

algebra ei would induce the transformation (b†m,i, b
†
m,i+1) → (b†m,i+1, b

†
m,i). If the index m is lacking,

the representation would reduce to the exchange of fermions and representation would be abelian.

3. Projective representations of S∞ as representations of braid group B∞

Sn can be extended to braid group Bn by giving up the condition e2
i = 1 for the generating

permutations of the symmetric group. Generating permutations are represented now as homotopies
exchanging the neighboring strands of braid so that repeated exchange of neighboring strands induces
a sequence of twists by π. Projective representations of S∞ could be interpreted as representations
of B∞. Note that odd and even generators commute mutually and for unitary representations either
of them can be diagonalized and are represented as phases exp(iφ) for braid group. If exp(iφ) is not
a root of unity this gives effectively a polynomial algebra and the polynomials subalgebras of these
phases might provide representations for the Hecke operators also forming commutative polynomial
algebras.

The additional flexibility brought in by braiding would transform Galois group to a group analogous
to homotopy group and could provide a connection with knot and link theory [A225] and topological
quantum field theories in general [A208] . Finite quantum Galois groups would generate braidings and
a connection with the geometric Langlands program where Galois groups are replaced with homotopy
groups becomes suggestive [A158, A156] .

4. What does one mean with S∞?

There is also the question about the meaning of S∞. The hierarchy of infinite primes suggests that
there is an entire infinity of infinities in number theoretical sense. After all, any group can be formally
regarded as a permutation group. A possible interpretation would be in terms of algebraic closure of
rationals and algebraic closures for an infinite hierarchy of polynomials to which infinite primes can
be mapped. The question concerns the interpretation of these higher Galois groups and HFFs. Could
one regard these as local variants of S∞ and does this hierarchy give all algebraic groups, in particular
algebraic subgroups of Lie groups, as Galois groups so that almost all of group theory would reduce
to number theory even at this level?
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The group algebra of Galois group of algebraic closure of rationals as hyper-finite factor
of type II1

The most natural framework for constructing unitary irreducible representations of Galois group is its
group algebra. In the recent case this group algebra would be that for S∞ or B∞ if braids are allowed.
What puts bells ringing is that the group algebra of S∞ is a hyper-finite factor of type II1 isomorphic
as a von Neumann algebra to the infinite-dimensional Clifford algebra [A49] , which in turn is the
basic structures of quantum TGD whose localized version might imply entire quantum TGD. The
very close relationship with the braid group makes it obvious that same holds true for corresponding
braid group B∞. Indeed, the group algebra of an infinite discrete group defines under very general
conditions HFF. One of these conditions is so called amenability [A6] . This correspondence gives hopes
of understanding the Langlands correspondence between representations of discrete Galois groups and
the representations of GL(n, F ) (more generally representations of reductive groups).

Thus it seems that configuration space spinors (fermionic Fock space) could naturally define a
finite-dimensional spinor representation of finite-dimensional Galois groups associated with the number
theoretical braids. Inclusions N ⊂M of hyper-finite factors realize the notion of finite measurement
resolution and give rise to finite dimensional representations of finite groups G leaving elements of N
invariant. An attractive idea is that these groups are identifiable as Galois groups.

The identification of the action of G onM as homomorphism G→ Aut(M) poses strong conditions
on it. This is discussed in the thesis of Jones [C2] which introduces three algebraic invariants for the
actions of finite group in hyperfinite-factors of type II1, denoted by M in the sequel. In general the
action reduces to inner automorphism of M for some normal subgroup H ⊂ G: this group is one of
the three invariants of G action. In general one has projective representation for H so that one has
uh1

uh2
= µ(h1, h2)uh1h2

, where µ(h1) is a phase factor which satisfies cocyle conditions coming from
associativity.

1. The simplest action is just a unitary group representation for which g ∈ G is mapped to a
unitary operator ug in M acting in M via adjoint action m→ ugmu

†
g = Ad(ug)m. In this case

one has H = G. In this case the fixed point algebra does not however define a factor and there
is no natural reduction of the representations of Gal(Q/Q) to a finite subgroup.

2. The exact opposite of this situation outer action of G mean H = {e} . All these actions are
conjugate to each other. This gives gives rise to two kinds of sub-factors and two kinds of
representations of G. Both actions of Galois group could be realized either in the group or
braid algebra of Gal(Q/Q) or in infinite dimensional Clifford algebra. In neither case the action
be inner automorphic action u → gug† as one might have naively expected. This is crucial
for circumventing the difficulty caused by the fact that Gal(Q/Q) identified as S∞ allows no
finite-dimensional complex representation.

3. The first sub-factor is MG ⊂ M corresponding, where the action of G on M is outer. Outer
action defines a fixed point algebra for all finite groups G. For D = M : N < 4 only finite
subgroups G ⊂ SU(2) would be represented in this manner. The index identifiable as the
fractal dimension of quantum Clifford algebra having N as non-abelian coefficients is D =
4cos2(π/n). One can speak about quantal representation of Galois group. The image of Galois
group would be a finite subgroup of SU(2) acting as spinor rotations of quantum Clifford algebra
(and quantum spinors) regarded as a module with respect to the included algebra invariant
under inner automorphisms. These representations would naturally correspond to 2-dimensional
representations having very special role for the simple reason that the algebraic closure of reals
is 2-dimensional.

4. Second sub-factor is isomorphic toMG ⊂ (M⊗L(H))G. Here L(H) is the space of linear opera-
tors acting in a finite-dimensional representation space H of a unitary irreducible representation
of G. The action of G is a tensor product of outer action and adjoint action. The index of the
inclusion is dim(H)2 ≥ 1 [A209] so that the representation of Galois group can be said to be
classical (non-fractal).

5. The obvious question is whether and in what sense the outer automorphisms represent Galois
subgroups. According to [C2] the automorphisms belong to the completion of the group of inner
automorphisms of HFF. Identifying HFF as group algebra of S∞, the interpretation would be
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that outer automorphisms are obtained as diagonal embeddings of Galois group to Sn×Sn× ....
If one includes only a finite number of these factors the outcome is an inner automorphisms so
that for all finite approximations inner automorphisms are in question. At the limit one obtains
an automorphisms which does not belong to S∞ since it contains only finite permutations.
This identification is consistent with the identification of the outer automorphisms as diagonal
embedding of G to an infinite tensor power of sub-Clifford algebra of Cl∞.

This picture is physically very appealing since it means that the ordering of the strands of braid
does not matter in this picture. Also the reduction of the braid to a finite number theoretical braid
at space-time level could be interpreted in terms of the periodicity at quantum level. From the point
of view of physicist this symmetry breaking would be analogous to a spontaneous symmetry breaking
above some length scale L. The cutoff length scale L would correspond to the number N of braids to
which finite Galois group G acts and corresponds also to some p-adic length scale.

One might hope that the emergence of finite groups in the inclusions of hyper-finite factors could
throw light into the mysterious looking finding that the representations of finite Galois groups and
unitary infinite-dimensional automorphic representations of GL(n,R) are correlated by the connection
between the eigenvalues of Frobenius element Frp on Galois side and eigenvalues of commuting Hecke
operators on automorphic side. The challenge would be to show that the action of Frp as outer
automorphism of group algebra of S∞ or B∞ corresponds to Hecke algebra action on configuration
space spinor fields or in modular degrees of freedom associated with partonic 2-surface.

Could there exist a universal rational function having Gal(Q/Q) as the Galois group of
its zeros/poles?

The reader who is not fascinated by the rather speculative idea about a universal rational function
having Gal(Q/Q) as a permutation group of its zeros and poles can safely skip this subsection since
it will not be needed anywhere else in this chapter.

1. Taking the idea about permutation group of roots of a polynomial of infinite order seriously, one
could require that the analytic function defining the Galois group should behave like a polynomial
or a rational function with rational coefficients in the sense that the function should have an
everywhere converging expansion in terms of products over an infinite number of factors z − zi
corresponding to the zeros of the numerator and possible denominator of a rational function.
The roots zi would define an extension of rationals giving rise to the entire algebraic closure of
rationals. This is a tall order and the function in question should be number theoretically very
special.

2. One can speculate even further. TGD has inspired the conjecture that the non-trivial zeros
sn = 1/2 + iyn of Riemann zeta [A114] (assuming Riemann hypothesis) are algebraic numbers
and that also the numbers psn , where p is any prime, and thus local zeta functions serving as
multiplicative building blocks of ζ have the same property [K68] . The story would be perfect if
these algebraic numbers would span the algebraic closure of rationals.

The symmetrized version of Riemann zeta defined as ξ(s) = π−s/2Γ(s/2)ζ(s) satisfying the
functional equation ξ(s) = ξ(1− s) and having only the trivial zeros could appear as a building
block of the rational function in question. The function

f(s) =
ξ(s)

ξ(s+ 1)
× s− 1

s

has non-trivial zeros sn of ζ as zeros and their negatives as −sn as poles. There are no other
zeros since trivial zeros as well as the zeros at s = 0 and s = 1 are eliminated. Using Stirling
formula one finds that ξ(s) grows as ss for real values of s→∞. The growths of the numerator
and denominator compensate each other at this limit so that the function approaches constant
equal to one for Re(s)→∞.

If f(s) indeed behaves as a rational function whose product expansion converges everywhere it
can be expressed in terms of its zeros and poles as
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f(s) =
∏
n>0

An(s) ,

An =
(s− sn)(s− sn)

(1 + s− sn)(1 + s− sn)
. (17.3.-1)

The product expansion seems to converge for any finite value of s since the terms An approach
unity for large values of |sn| = |1/2 + iyn|. f(s) has sn = 1/2 + iyn indeed has zeros and
sn = −1/2 + iyn as poles.

3. This proposal might of course be quite too simplistic. For instance, one might argue that
the phase factors piy associated with the non-trivial zeros give only roots of unity multiplied
by Gaussian integers. One can however imagine more complex functions obtained by forming
products of f(s) with its shifted variants f(s + ∆) with algebraic shift ∆ in, say, the interval
[−1/2, 1/2]. Some kind of limiting procedure using a product of this kind of functions might
give the desired universal function.

17.3.2 Physical representations of Galois groups

It would be highly desirable to have concrete physical realizations for the action of finite Galois
groups. TGD indeed provides two kinds of realizations of this kind. For both options there are
good hopes about the unification of number theoretical and geometric Galois programs obtained by
replacing permutations with braiding homotopies and by discretization of continuous situation to a
finite number theoretic braids having finite Galois groups as automorphisms.

Number theoretical braids and the representations of finite Galois groups as outer auto-
morphisms of braid group algebra

Number theoretical braids [K20, K19, K77] are in a central role in the formulation of quantum TGD
based on general philosophical ideas which might apply to both physics and mathematical cognition
and, one might hope, also to a good mathematics.

An attractive idea inspired by the notion of the number theoretical braid is that the symmetric
group Sn might act on roots of a polynomial represented by the strands of braid and could thus be
replaced by braid group.

The basic philosophy underlying quantum TGD is the notion of finite resolution, both the finite
resolution of quantum measurement and finite cognitive resolution [K20, K19] . The basic implication
is discretization at space-time level and finite-dimensionality of all mathematical structures which
can be represented in the physical world. At space-time level the discretization means that the
data involved with the definition of S-matrix comes from a subset of a discrete set of points in the
intersection of real and p-adic variants of partonic 2-surface obeying same algebraic equations. Note
that a finite number of braids could be enough to code for the information needed to reconstruct
the entire partonic 2-surface if it is given by polynomial or rational function having coefficients as
algebraic numbers. Entire configuration space of 3-surfaces would be discretized in this picture. Also
the reduction of the infinite braid to a finite one would conform with the spontaneous symmetry
breaking S∞ to diagonally imbedded finite Galois group imbedded diagonally.

1. Two objections

Langlands correspondence assumes the existence of finite-dimensional representations ofGal(Q/Q).
In the recent situation this encourages the idea that the restrictions of mathematical cognition allow
to realize only the representations of Gal(Q/Q) reducing in some sense to representations for finite
Galois groups. There are two counter arguments against the idea.

1. It is good to start from a simple abelian situation. The abelianization of G(A/Q) must give
rise to multiplicative group of adeles defined as Ẑ =

∏
p Z
×
p where Z×p corresponds to the mul-

tiplicative group of invertible p-adic integers consisting of p-adic integers having p-adic norm
equal to one. This group results as the inverse limit containing the information about subgroup
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inclusion hierarchies resulting as sequences Z×/(1 + pZ)× ⊂ Z×/(1 + p2Z)× ⊂ .. and expressed
in terms factor groups of multiplicative group of invertible p-adic integers. Z∞/A∞ must give
the group

∏
p Z
×
p as maximal abelian subgroup of Galois group. All smaller abelian subgroups

of S∞ would correspond to the products of subgroups of Ẑ× coming as Z×p /(1 + pnZ)×. Repre-
sentations of finite cyclic Galois groups would be obtained by representing trivially the product
of a commutator group with a subgroup of Ẑ. Thus one would obtain finite subgroups of the
maximal abelian Galois group at the level of representations as effective Galois groups. The
representations would be of course one-dimensional.

One might hope that the representations of finite Galois groups could result by a reduction of
the representations of S∞ to G = S∞/H where H is normal subgroup of S∞. Schreier-Ulam
theorem [A197] however implies that the only normal subgroup of S∞ is the alternating subgroup
A∞. Since the braid group B∞ as a special case reduces to S∞ there is no hope of obtaining
finite-dimensional representations except abelian ones.

2. The identification of Gal(Q/Q) = S∞ is not consistent with the finite-dimensionality in the
case of complex representations. The irreducible unitary representations of Sn are in one-one
correspondence with partitions of n objects. The direct numerical inspection based on the
formula for the dimension of the irreducible representation of Sn in terms of Yang tableau [A111]
suggests that the partitions for which the number r of summands differs from r = 1 or r = n
(1-dimensional representations) quite generally have dimensions which are at least of order n.
If d-dimensional representations corresponds to representations in GL(d,C), this means that
important representations correspond to dimensions d→∞ for S∞.

Both these arguments would suggest that Langlands program is consistent with the identification
Gal(F , F ) = S∞ only if the representations of Gal(Q,Q) reduce to those for finite Galois subgroups
via some kind of symmetry breaking.

2. Diagonal imbedding of finite Galois group to S∞ as a solution of problems

The idea is to imbed the Galois group acting as inner automorphisms diagonally to the m-fold
Cartesian power of Sn imbedded to S∞. The limit m → ∞ gives rise to outer automorphic action
since the resulting group would not be contained in S∞. Physicist might prefer to speak about number
theoretic symmetry breaking Gal(Q/Q) → G implying that the representations are irreducible only
in finite Galois subgroups of Gal(Q/Q). The action of finite Galois group G is indeed analogous to
that of global gauge transformation group which belongs to the completion of the group of local gauge
transformations. Note that G is necessarily finite.

About the detailed definition of number theoretic braids

The work with hyper-finite factors of type II1 (HFFs) combined with experimental input led to the
notion of hierarchy of Planck constants interpreted in terms of dark matter [K26] . The hierarchy
is realized via a generalization of the notion of imbedding space obtained by gluing infinite number
of its variants along common lower-dimensional quantum critical sub-manifolds. These variants of
imbedding space are characterized by discrete subgroups of SU(2) acting in M4 and CP2 degrees of
freedom as either symmetry groups or homotopy groups of covering. Among other things this picture
implies a general model of fractional quantum Hall effect.

The identification of number theoretic braids

To specify number theoretical criticality one must specify some physically preferred coordinates for
M4 × CP2 or at least δM4

± × CP2. Number theoretical criticality requires that braid belongs to the
algebraic intersection of real and p-adic variants of the partonic 2-surface so that number theoretical
criticality reduces to a finite number of conditions. This is however not strong enough condition and
one must specify further physical conditions.

1. What are the preferred coordinates for H?

What are the preferred coordinates of M4 and CP2 in which algebraicity of the points is required
is not completely clear. The isometries of these spaces must be involved in the identification as well
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as the choice of quantization axes for given CD. In [K53] I have discussed the natural preferred
coordinates of M4 and CP2.

1. For M4 linear M4 coordinates chosen in such manner that M2×E2 decomposition fixing quan-
tization axes is respected are very natural. This restricts the allowed Lorentz transformations to
Lorentz boosts in M2 and rotations in E2 and the identification of M2 as hyper-complex plane
fixes time coordinate uniquely. E2 coordinates are fixed apart from the action of SO(2) rotation.
The rationalization of trigonometric functions of angle variables allows angles associated with
Pythagorean triangles as number theoretically simplest ones.

2. The case of CP2 is not so easy. The most obvious guess in the case of CP2 the coordinates
corresponds to complex coordinates of CP2 transforming linearly under U(2). The condition
that color isospin rotations act as phase multiplications fixes the complex coordinates uniquely.
Also the complex coordinates transforming linearly under SO(3) rotations are natural choice for
S2 (rM = constant sphere at δM4

±).

3. Another manner to deal with CP2 is to apply number M8−H duality. In M8 CP2 corresponds to
E4 and the situation reduces to linear one and SO(4) isometries help to fix preferred coordinate
axis by decomposing E4 as E4 = E2 × E2. Coordinates are fixed apart the action of the
commuting SO(2) sub-groups acting in the planes E2. It is not clear whether the images of
algebraic points of E4 at space-time surface are mapped to algebraic points of CP2.

2. The identification of number theoretic braids

The identification of number theoretic braids is not by no means a trivial task [K15, K61] . As
a matter fact, there are several alternative identifications and it seems that all of them are needed.
Consider first just braids without the attribute ’number theoretical’.

1. Braids could be identified as lifts of the projections of X3
l to the quantum critical sub-manifolds

M2 or S2
I , i = I, II, and in the generic case consist of 1-dimensional strands in X3

l These sub-
manifolds are obviously in the same role as the plane to which the braid is projected to obtain
a braid diagram. This requires that a unique identification of the slicing of space-time surfaces
by 3-surfaces.

2. Braid points are always quantum critical against the change of Planck constant so that TQFT
like theory characterizes the freedom remaining intact at quantum criticality. Quantum crit-
icality in this sense need not have anything to do with the quantum criticality in the sense
that the second variation of Kähler action vanishes -at least for the variations representing dy-
namical symmetries in the sense that only the inner product

∫
(∂LD/∂h

k
α)δhkd4x (LD denotes

modified Dirac Lagrangian) without the vanishing of the integrand. This criticality leads to a
generalization of the conceptual framework of Thom’s catastrophe theory [K15] .

3. It is not clear whether these three braids form some kind of trinity so that one of them is enough
to formulate the theory or whether all of them are needed. Note also that one has quantum
superposition over CDs corresponding to different choices of M2 and the pair formed by S2

I and
S2
II (note that the spheres are not independent if both appear). Quantum measurement however

selects one of these choices since it defines the choice of quantization axes.

4. One can consider also more general definition. The extrema of Kähler magnetic field strength
εαβJαβ at X2 define in natural manner a discrete set of points defining the nodes of symplectic
triangulation. This set of extremals is same for all deformations of X3

l allowed in the functional
integral over symplectic group although the positions of points change. For preferred symplec-
tically invariant light-like coordinate of X3

l braid results. Also now geodesic spheres and M2

would define the counterpart of the plane to which the braids are projected.

5. A physically attractive realization of the braids - and more generally- of slicings of space-time
surface by 3-surfaces and string world sheets, is discussed in [K37] by starting from the obser-
vation that TGD defines an almost topological QFT of braids, braid cobordisms, and 2-knots.
The boundaries of the string world sheets at the space-like 3-surfaces at boundaries of CDs and
wormhole throats would define space-like and time-like braids uniquely.
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The idea relies on a rather direct translation of the notions of singular surfaces and surface
operators used in gauge theory approach to knots [A226] to TGD framework. It leads to the
identification of slicing by three-surfaces as that induced by the inverse images of r = constant
surfaces of CP2, where r is U(2) invariant radial coordinate of CP2 playing the role of Higgs field
vacuum expectation value in gauge theories. r =∞ surfaces correspond to geodesic spheres and
define analogs of fractionally magnetically charged Dirac strings identifiable as preferred string
world sheets. The union of these sheets labelled by subgroups U(2) ⊂ SU(3) would define the
slicing of space-time surface by string world sheets. The choice of U(2) relates directly to the
choice of quantization axes for color quantum numbers characterizing CD and would have the
choice of braids and string world sheets as a space-time correlate. r = ∞ points correspond to
three homologically non-trivial geodesic spheres S2 analogous to North and South poles of CP2

and the projections to M4 and S2 define braid projections.

The beauty of this identification is that one starts from braids at the ends of space-time surface
partonic 2-surfaces at boundaries of CD and from intersection of braid points and determines
space-time surface and string world sheets from this data in accordance with hologoraphy and
quantum classical correspondence. This picture conforms also with the recent view about mod-
ified Dirac equation for which the constructio of solutions leads to the notion of braid too.

Number theoretic braids would be braids which are number theoretically critical. This means that
the points of braid in preferred coordinates are algebraic points so that they can be regarded as being
shared by real partonic 2-surface and its p-adic counterpart obeying same algebraic equations. The
phase transitions between number fields would mean leakage via these 2-surfaces playing the role of
back of a book along which real and p-adic physics representing the pages of a book are glued together.
The transformation of intention to action would represent basic example of this kind of leakage and
number theoretic criticality could be decisive feature of living matter. For number theoretic braids at
X3
l whose real and p-adic variants obey same algebraic equations, only subset of algebraic points is

common to real and p-adic pages of the book so that discretization of braid strand is unavoidable.

Representation of finite Galois groups as outer automorphism groups of HFFs

Any finite group G has a representation as outer automorphisms of a hyper-finite factor of type II1

(briefly HFF in the sequel) and this automorphism defines sub-factor N ⊂ M with a finite value of
indexM : N [A152] . Hence a promising idea is that finite Galois groups act as outer automorphisms
of the associated hyper-finite factor of type II1.

More precisely, sub-factors (containing Jones inclusions as a special case) N ⊂M are characterized
by finite groups G acting on elements of M as outer automorphisms and leave the elements of N
invariant whereas finite Galois group associated with the field extension K/L act as automorphisms
of K and leave elements of L invariant. For finite groups the action as outer automorphisms is unique
apart from a conjugation in von Neumann algebra. Hence the natural idea is that the finite subgroups
of Gal(Q/Q) have outer automorphism action in group algebra of Gal(Q/Q) and that the hierarchies
of inclusions provide a representation for the hierarchies of algebraic extensions. Amusingly, the notion
of Jones inclusion was originally inspired by the analogy with field extensions [A152] !

It must be emphasized that the groups defining sub-factors can be extremely general and can
represent much more than number theoretical information understood in the narrow sense of the
word. Even if one requires that the inclusion is determined by outer automorphism action of group G
uniquely, one finds that any amenable, in particular compact [A6] , group defines a unique sub-factor
by outer action [A152] . It seems that practically any group works if uniqueness condition is given up.

The TGD inspired physical interpretation is that compact groups would serve as effective gauge
groups defining measurement resolution by determining the measured quantum numbers. Hence the
physical states differing by the action ofN elements which areG singlets would not be indistinguishable
from each other in the resolution used. The physical states would transform according to the finite-
dimensional representations in the resolution defined by G.

The possibility of Lie groups as groups defining inclusions raises the question whether hyper-
finite factors of type II1 could mimic any gauge theory and one might think of interpreting gauge
groups as Galois groups of the algebraic structure of this kind of theories. Also Kac-Moody algebras
emerge naturally in this framework as will be discussed, and could also have an interpretation as
Galois algebras for number theoretical dynamical systems obeying dynamics dictated by conformal
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field theory. The infinite hierarchy of infinite rationals in turn suggests a hierarchy of groups S∞ so
that even algebraic variants of Lie groups could be interpreted as Galois groups. These arguments
would suggest that HFFs might be kind of Universal Math Machines able to mimic any respectable
mathematical structure.

Number theoretic braids and unification of geometric and number theoretic Langlands
programs

The notion of number theoretic braid has become central in the attempts to fuse real physics and
p-adic physics to single coherent whole. Number theoretic braid leads to the discretization of quantum
physics by replacing the stringy amplitudes defined over curves of partonic 2-surface with amplitudes
involving only data coded by points of number theoretic braid. The discretization of quantum physics
could have counterpart at the level of geometric Langlands [B39] [A158, A180] , whose discrete version
would correspond to number theoretic Galois groups associated with the points of number theoretic
braid. The extension to braid group would mean that the global homotopic information is not lost.

1. Number theoretic braids belong to the intersection of real and p-adic partonic surface

The points of number theoretic braid belong to the intersection of the real and p-adic variant of
partonic 2-surface consisting of rationals and algebraic points in the extension used for p-adic numbers.
The points of braid have same projection on an algebraic point of the geodesic sphere of S2 ⊂ CP2

belonging to the algebraic extension of rationals considered (the reader willing to understand the
details can consult [K20] ).

The points of braid are obtained as solutions of polynomial equation and thus one can assign to
them a Galois group permuting the points of the braid. In this case finite Galois group could be
realized as left or right translation or conjugation in S∞ or in braid group.

To make the notion of number theoretic braid more concrete, suppose that the complex coordinate
w of δM4

± is expressible as a polynomial of the complex coordinate z of CP2 geodesic sphere and the
radial light-like coordinate r of δM4

± is obtained as a solution of polynomial equation P (r, z, w) = 0. By
substituting w as a polynomial w = Q(z, r) of z and r this gives polynomial equation P (r, z,Q(z, r)) =
0 for r for a given value of z. Only real roots can be accepted. Local Galois group (in a sense different
as it is used normally in literature) associated with the algebraic point of S2 defining the number
theoretical braid is thus well defined.

If the partonic 2-surface involves all roots of an irreducible polynomial, one indeed obtains a braid
for each point of the geodesic sphere S2 ⊂ CP2. In this case the action of Galois group is naturally a
braid group action realized as the action on induced spinor fields and configuration space spinors.

The choice of the points of braid as points common to the real and p-adic partonic 2-surfaces
would be unique so that the obstacle created by the fact that the finite Galois group as function of
point of S2 fluctuates wildly (when some roots become rational Galois group changes dramatically:
the simplest example is provided by y − x2 = 0 for which Galois group is Z2 when y is not a square
of rational and trivial group if y is rational).

2. Modified Dirac operator assigns to partonic 2-surface a unique prime p which could define l-adic
representations of Galois group

The overall scaling of the eigenvalue spectrum of the modified Dirac operator assigns to the partonic
surface a unique p-adic prime p which physically corresponds to the p-adic length scale which appears
in the discrete coupling constant evolution [K20, K4] . One can solve the roots of the the resulting
polynomial also in the p-adic number field associated with the partonic 2-surface by the modified
Dirac equation and find the Galois group of the extension involved. The p-adic Galois group, known
as local Galois group in literature, could be assigned to the p-adic variant of partonic surface and
would have naturally l-adic representation, most naturally in the p-adic variant of the group algebra
of S∞ or B∞ or equivalently in the p-adic variant of infinite-dimensional Clifford algebra. There
are however physical reasons to believe that infinite-dimensional Clifford algebra does not depend on
number field. Restriction to an algebraic number based group algebra therefore suggests itself. Hence,
if one requires that the representations involve only algebraic numbers, these representation spaces
might be regarded as equivalent.

3. Problems
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There are however problems.

1. The triviality of the action of Galois group on the entire partonic 2-surface seems to destroy the
hopes about genuine representations of Galois group.

2. For a given partonic 2-surface there are several number theoretic braids since there are several
algebraic points of geodesic sphere S2 at which braids are projected. What happens if the Galois
groups are different? What Galois group should one choose?

A possible solution to both problems is to assign to each braid its own piece X2
k of the partonic

2-surface X2 such that the deformations X2 can be non-trivial only in X2
k . This means separation

of modular degrees of freedom to those assignable to X2
k and to ”center of mass” modular degrees of

freedom assignable to the boundaries between X2
k . Only the piece X2

k associated with the kth braid
would be affected non-trivially by the Galois group of braid. The modular invariance of the conformal
field theory however requires that the entire quantum state is modular invariant under the modular
group of X2. The analog of color confinement would take place in modular degrees of freedom. Note
that the region containing braid must contain single handle at least in order to allow representations
of SL(2, C) (or Sp(2g, Z) for genus g).

As already explained, in the general case only the invariance under the subgroup Γ0(N) [A65]
of the modular group SL(2, Z) can be assumed for automorphic representations of GL(2, R) [A157,
A158, A82] . This is due to the fact that there is a finite set of primes (prime ideals in the algebra
of integers), which are ramified [A82] . Ramification means that their decomposition to a product of
prime ideals of the algebraic extension of Q contains higher powers of these prime ideals: p→ (

∏
k Pk)e

with e > 1. The congruence group is fixed by the integer N =
∏
k p

nk known as conductor coding the
set of exceptional primes which are ramified.

The construction of modular forms in terms of representations of SL(2, R) suggests that it is
possible to replace Γ0(N) by the congruence subgroup Γ(N), which is normal subgroup of SL(2, R) so
that G1 = SL(2, Z)/Γ is group. This would allow to assign to individual braid regions carrying single
handle well-defined G1 quantum numbers in such a manner that entire state would be G1 singlet.

Physically this means that the separate regions of the partonic 2-surface each containing one
braid strand cannot correspond to quantum states with full modular invariance. Elementary particle
vacuum functionals [K18] defined in the moduli space of conformal equivalence classes of partonic
2-surface must however be modular invariant, and the analog of color confinement in modular degrees
of freedom would take place.

Hierarchy of Planck constants and dark matter and generalization of imbedding space

Second hierarchy of candidates for Galois groups is based on the generalization of the notion of the
imbedding space H = M4×CP2, or rather the spaces H± = M4

±×CP2 defining future and past light-
cones inside H [K26] . This generalization is inspired by the quantization of Planck constant explaining
dark matter as a hierarchy of macroscopically quantum coherent phases and by the requirement
that sub-factors have a geometric representation at the level of the imbedding space and space-time
(quantum-classical correspondence).

Galois groups could also correspond to finite groups Ga×Gb ⊂ SU(2)×SU(2) ⊂SL(2,C)×SU(3).
These groups act as covering symmetries for the sectors of the imbedding space, which can be regarded
as singular H± = M4

±×CP2 → H±/Ga×Gb bundles containing orbifold points (fixed points of Ga×Gb
or either of them. The copies of H with same Ga or Gb are glued together along M4

± or CP2 factor
and along common orbifold points left fixed by Gb or Ga. The group Ga ×Gb plays both the role of
both Galois group and homotopy group.

There are good reasons to expect that both these Galois groups and those associated with number
theoretic braids play a profound role in quantum TGD based description of dark matter as macroscop-
ically quantum coherent phases. For instance, Ga would appear as symmetry group of dark matter
part of bio-molecules in TGD inspired biology [L8] .

Question about representations of finite groups

John Baez made an interesting question in n-Category-Cafe [A121] . The question reads as follows:
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Is every representation of every finite group definable on the field Qab obtained by taking the field
Q of rational numbers and by adding all possible roots of unity?

Since every finite group can appear as Galois group the question translates to the question whether
one can represent all possible Galois groups using matrices with elements in Qab.

This form of question has an interesting relation to Langlands program. By Langlands conjecture
the representations of the Galois group of algebraic closure of rationals can be realized in the space
of functions defined in GL(n, F )\GL(n,Gal(Qab/Q)), where Gal(Qab/Q) is the maximal Abelian
subgroup of the Galois group of the algebraic closure of rationals. Thus one has group algebra
associated with the matrix group for which matrix elements have values in Gal(Qab/Q). Something
by several orders of more complex than matrices having values in Qab.

Suppose that Galois group of algebraic numbers can be regarded as the permutation group S∞
of infinite number of objects generated by permutations for finite numbers of objects and that its
physically interesting representations reduce to the representations of finite Galois groups G with
element g ∈ G represented as infinite product g × g × ... belonging to the completion of S∞ and thus
to the completion of its group algebra identifiable as hyper-finite factor of type II1. This would mean
number theoretic local gauge invariance in the sense that all elements of S∞ would leave physical
states invariant whereas G would correspond to global gauge transformations. These tensor factors
would have as space-time correlates number theoretical braids allowing to represent the action of G.

What this has then to do with John’s question and Langlands program? S∞ contains any fi-
nite group G as a subgroup. If all the representations of finite-dimensional Galois groups could be
realized as representations in Gl(n,Qab), same would hold true also for the proposed symmetry break-
ing representations of the completion of S∞ reducing to the representations of finite Galois groups.
There would be an obvious analogy with Langlands program using functions defined in the space
Gl(n,Q)\Gl(n,Gal(Qab/Q)). Be as it may, mathematicians are able to work with incredibly abstract
objects! A highly respectful sigh is in order!

17.3.3 What could be the TGD counterpart for the automorphic repre-
sentations?

The key question in the following is whether quantum TGD could act as a general math machine
allowing to realize any finite-dimensional manifold and corresponding function space in terms of con-
figuration space spinor fields and whether also braided representations of Galois groups accompanying
the braiding could be associated naturally with this kind of representations.

Some general remarks

Before getting to the basic idea some general remarks are in order.

1. Configuration space spinor fields would certainly transform according to a finite-dimensional
and therefore non-unitary representation of SL(2, C) which is certainly the most natural group
involved and should relate to the fact that Galois groups representable as subgroups of SU(2)
acting as rotations of 3-dimensional space correspond to sub-factors with M : N ≤ 4.

2. Also larger Lie groups can be considered and diagonal imbeddings of Galois groups would be
naturally accompanied by diagonal imbeddings of compact and also non-compact groups acting
on the decomposition of infinite-dimensional Clifford algebra Cl∞ to an infinite tensor power of
finite-dimensional sub-Clifford algebra of form M(2, C)n.

3. The basic difference between Galois group representation and corresponding Lie group repre-
sentations is that the automorphisms in the case of discrete groups are automorphisms of S∞ or
B∞ whereas for Lie groups the automorphisms are in general automorphisms of group algebra
of S∞ or B∞. This could allow to understand the correspondence between discrete groups and
Lie groups naturally.

4. Unitary automorphic representations are infinite-dimensional and require group algebra ofGL(n, F ).
Therefore configuration space spinors - to be distinguished from configuration space spinor fields-
cannot realize them. Configuration space spinor field might allow the realization of these infinite-
dimensional representations if groups themselves allow a finite-dimensional geometric realization
of groups. Are this kind of realizations possible? This is the key question.
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Could TGD Universe act as a universal math machine?

The questions are following. Could one find a representations of both Lie groups and their linear and
non-linear representation spaces -and even more - of any manifold representable as a sub-manifold
of some linear space in terms of braid points at partonic 2-surfaces X2? What about various kinds
of projective spaces and coset spaces? Can one construct representations of corresponding function
spaces in terms of configuration space spinor fields? Can one build representations of parameter
groups of Lie groups as braided representations defined by the orbits of braid points in X3

l ? Note
that this would assign to the representations of closed paths in the group manifold a representation
of braid group and Galois group of the braid and might make it easier to understand the Langlands
correspondence.

A professional mathematician - if she still continues reading - might regard the following argument
as rather pathetic poor man’s argument but I want to be honest and demonstrate my stupidity openly.

1. The n braid points represent points of δH = δM4
± ×CP2 so that braid points represent a point

of 7n-dimensional space δHn/Sn. δM4
± corresponds to E3 with origin removed but E2n/Sn =

Cn/Sn can be represented as a sub-manifold of δM4
±. This allows to almost-represent both real

and complex linear spaces. E2 has a unique identification based on M4 = M2×E2 decomposition
required by the choice of quantization axis. One can also represent the spaces (CP2)n/Sn in
this manner.

2. The first - and really serious - problem is caused by the identification of the points obtained
by permuting the n coordinates: this is of course what makes possible the braiding since braid
group is the fundamental group of (X2)n. Could the quantum numbers at the braid points act
as markers distinguishing between them so that one would effectively have E2n? Could the fact
that the representing points are those of imbedding space rather than X2 be of significance?
Second - less serious - problem is that the finite size of CD allows to represent only a finite
region of E2. On the other hand, ideal mathematician is a non-existing species and even non-
ideal mathematician can imagine the limit at which the size of CD becomes infinite.

3. Matrix groups can be represented as sub-manifolds of linear spaces defined by the general linear
group Gl(n,R) and Gl(n,C). In the p-adic pages of the imbedding space one can realize also
the p-adic variants of general linear groups. Hence it is possible to imbed any real (complex)
Lie group to E2n (Cn), if n is chosen large enough.

4. Configuration space spinor fields restricted to the linear representations spaces or to the group
itself represented in this manner would allow to realize as a special case various function spaces,
in particular groups algebras. If configuration space spinor fields satisfy additional symmetries,
projective spaces and various coset spaces can be realized as effective spaces. For instance CP2

could be realized effectively as SU(3)/U(2) by requiring U(2) invariance of the configuration
space spinor fields in SU(3) or as C3/Z by requiring that configuration space spinor field is scale
invariant. Projective spaces might be also realized more concretely as imbeddings to (CP2)n.

5. The action of group element g = exp(Xt) belonging to a one-parameter sub-group of a non-
compact linear group in a real (complex) linear representation space of dimension m could be
realized in a subspace of E2n, m < 2n (Cn, m ≤ n), as a flow in X3

l taking the initial configu-
ration of points of representation space to the final configuration. Braid strands - the orbits of
points pi defining the point p of the representation manifold under the action of one-parameter
subgroup- would correspond to the points exp(Xu)(p) , 0 ≤ u ≤ t. Similar representation would
work also in the group itself represented in a similar manner.

6. Braiding in X3
l would induce a braided representation for the action of the one parameter

subgroup. This representation is not quite the same thing as the automorphic representation
since braiding is involved. Also trivial braid group representation is possible if the representation
can be selected freely rather than being determined by the transformation properties of fermionic
oscillator operator basis in the braiding.

7. An important prerequisite for math machine property is that the wave function in the space of
light-like 3-surfaces with fixed ends can be chosen freely. This is the case since the degrees of
freedom associate with the interior of light-like 3-surface X3

l correspond to zero modes assignable
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to Kac-Moody symmetries [K17, K77] . Dicretization seems however necessary since functional
integral in these degrees of freedom is not-well defined even in the real sense and even less so
p-adically. This conforms with the fact that real world mathematical representations are always
discrete. Quantum classical correspondence suggests the dynamics represented by X3

l correlates
with the quantum numbers assigned with X2 so that Boolean statements represented in terms
of Fermionic Fock states would be in one-one correspondence with these wave functions.

Besides representing mathematical structures this kind of math machine would be able to perform
mathematical deductions. The fermionic part of the state zero energy state could be interpreted as a
quantum super-position of Boolean statement Ai → Bi representing various instances of the general
rule A → B. Only the statements consistent with fundamental conservation laws would be possible.
Quantum measurements performed for both positive and negative energy parts of the state would
produce statements. Performing the measurement of the observable O(A → B) would produce from
a given state a zero energy state representing statement A → B. If the measurement of observable
O(C → D) affects this state then the statement (A → B) → (C → D) cannot hold true. For A = B
the situation reduces to simpler logic where one tests truth value of statements of form A → B. By
increasing the number of instances in the quantum states generalizations of the rule can be tested.

17.3.4 Super-conformal invariance, modular invariance, and Langlands pro-
gram

The geometric Langlands program [A158, A156] deals with function fields, in particular the field of
complex rational analytic functions on 2-dimensional surfaces. The sheaves in the moduli spaces of
conformal blocks characterizing the n-point functions of conformal field theory replaces automorphic
functions coding both arithmetic data and characterizing the modular representations of GL(n) in
number theoretic Langlands program [A158] . These moduli spaces are labelled both by moduli
characterizing the conformal equivalence class of 2-surface, in particular the positions of punctures,
in TGD framework the positions of strands of number theoretic braids, as well as the moduli related
to the Kac-Moody group involved.

Transition to function fields in TGD framework

According to [A158] conformal field theories provide a very promising framework for understanding
geometric Langlands correspondence.

1. That the function fields on 2-D complex surfaces would be in a completely unique role mathe-
matically fits nicely with the 2-dimensionality of partons and well-defined stringy character of
anticommutation relations for induced spinor fields. According to [A158] there are not even
conjectures about higher dimensional function fields.

2. There are very direct connections between hyper-finite factors of type II1 and topological QFTs
[A208, A225] , and conformal field theories. For instance, according to the review [H2] [A152]
Ocneacnu has show that Jones inclusions correspond in one-one manner to topological quantum
field theories and TGD can indeed be regarded as almost topological quantum field theory
(metric is brought in by the light-likeness of partonic 3-surfaces). Furthermore, Connes has
shown that the decomposition of the hierarchies of tensor powers M⊗N .... ⊗N M as left and
right modules to representations of lower tensor powers directly to fusion rules expressible in
terms of 4-point functions of conformal field theories [A152] .

In TGD framework the transition from number fields to function fields would not be very dramatic.

1. Suppose that the representations of SL(n,R) occurring in number theoretic Langlands program
can indeed be realized in the moduli space for conformal equivalence classes of partonic 2-surface
(or, by previous arguments, moduli space for regions of them with fixed boundaries). This means
that representations of local Galois groups associated with number theoretic braids would involve
global data about entire partonic 2-surface. This is physically very important since it otherwise
discretization would lead to a loss of the information about dimension of partonic 2-surfaces.
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2. In the case of geometric Langlands program this moduli space would be extended to the moduli
space for n-point functions of conformal field theory defined at these 2-surfaces containing the
original moduli space as a subspace. Of course, the extension could be present also in the number
theoretic case. Thus it seems that number theoretic and geometric Langlands programs would
utilize basic structures and would differ only in the sense that single braid would be replaced by
several braids in the geometric case.

3. In TGD Kac-Moody algebras would be also present as well as the so called super-symplectic
algebra [K20] related to the isometries of ”the world of classical worlds” (the space of light-like
3-surfaces) with generators transforming according to the irreducible representations of rotation
group SO(3) and color group SU(3). It must be emphasized that TGD view about conformal
symmetry generalizes that of string models since light-like 3-surfaces (orbits of partons) are the
basic dynamical objects [K20] .

What about more general reductive groups?

Langlands correspondence is conjectured to apply to all reductive Lie groups. The question is whether
there is room for them in TGD Universe. There are good hopes.

1. Pairs formed by finite Galois groups and Lie groups containing them and defining sub-factors

Any amenable (in particular compact Lie) group acting as outer automorphism of M defines a
unique sub-factor N ⊂ M as a group leaving the elements of N invariant. The representations of
discrete subgroups of compact groups extended to representations of the latter would define natural
candidates for Langlands correspondence and would expand the repertoire of the Galois groups rep-
resentable in terms of unique factors. If one gives up the uniqueness condition for the sub-factor, one
can expect that almost any Lie group can define a sub-factor.

2. McKay correspondences and Langlands correspondence

The so called McKay correspondence assigns to the finite subgroups of SU(2) extended Dynkin
diagrams of ADE type Kac-Moody algebras. McKay correspondence also generalizes to the discrete
subgroups of other compact Lie groups q [A178]. The obvious question is how closely this correspon-
dence between finite groups and Lie groups relates with Langlands correspondence.

The principal graphs representing concisely the fusion rules for Connes tensor products of M
regarded as N bi-module are represented by the Dynkin diagrams of ADE type Lie groups for M :
N < 4 (not all of them appear). For indexM : N = 4 extended ADE type Dynkin diagrams labelling
Kac-Moody algebras are assigned with these representations.

I have proposed that TGD Universe is able to emulate almost any ADE type gauge theory and
conformal field theory involving ADE type Kac-Moody symmetry and represented somewhat misty
ideas about how to construct representations of ADE type gauge groups and Kac-Moody groups using
many particle states at the sheets of multiple coverings H → H/Ga × Gb realizing the idea about
hierarchy of dark matters already mentioned. Also vertex operator construction also distinguishes
ADE type Kac-Moody algebras in a special position.

It is possible to considerably refine this conjecture picture by starting from the observation that the
set of generating elements for Lie algebra corresponds to a union of triplets {J±i , J3

i }, i = 1, ..., n gener-
ating SU(2) sub-algebras. Here n is the dimension of the Cartan sub-algebra. The non-commutativity
of quantum Clifford algebra suggests that Connes tensor product can induce deformations of alge-
braic structures so that ADE Lie algebra could result as a kind of deformation of a direct sum of
commuting SU(2) Lie (Kac-Moody) algebras associated with a Connes tensor product. The physical
interpretation might in terms of a formation of a bound state. The finite depth of N would mean that
this mechanism leads to ADE Lie algebra for an n-fold tensor power, which then becomes a repetitive
structure in tensor powers. The repetitive structure would conform with the diagonal imbedding of
Galois groups giving rise to a representation in terms of outer automorphisms.

This picture encourages the guess that it is possible to represent the action of Galois groups
on number theoretic braids as action of subgroups of dynamically generated ADE type groups on
configuration space spinors. The connection between the representations of finite groups and reductive
Lie groups would result from the natural extension of the representations of finite groups to those of
Lie groups.
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3. What about Langlands correspondence for Kac-Moody groups?vm

The appearance of also Kac-Moody algebras raises the question whether Langlands correspondence
could generalize also to the level of Kac-Moody groups or algebras and whether it could be easier to
understand the Langlands correspondence for function fields in terms of Kac-Moody groups as the
transition from global to local occurring in both cases suggests.

Could Langlands duality for groups reduce to super-symmetry?

Langlands program involves dualities and the general structure of TGD suggests that there is a wide
spectrum of these dualities.

1. A very fundamental duality would be between infinite-dimensional Clifford algebra and group
algebra of S∞ or of braid group B∞. For instance, one can ask could it be possible to map this
group algebra to the union of the moduli spaces of conformal equivalence classes of partonic
2-surfaces. HFFs consists of bounded operators of a separable Hilbert space. Therefore they
are expected to have very many avatars: for instance there is an infinite number sub-factors
isomorphic to the factor. This seems to mean infinite number of manners to represent Galois
groups reflected as dualities.

2. Langlands program involves the duality between reducible Lie groups G and its Langlands dual
having dual root lattices. The interpretation for this duality in terms of electric-magnetic duality
is suggested by Witten [A180] . TGD suggests an alternative interpretation. The super symme-
try aspect of super-conformal symmetry suggests that bosonic and fermionic representations of
Galois groups could be very closely related. In particular, the representations in terms of con-
figuration space spinors and in terms of modular degrees of freedom of partonic 2-surface could
be in some sense dual to each other. Rotation groups have a natural action on configuration
space spinors whereas symplectic groups have a natural action in the moduli spaces of partonic
2-surfaces of given genus possessing symplectic and Kähler structure. Langlands correspondence
indeed relates SO(2g + 1, R) realized as rotations of configuration space spinors and Sp(2g, C)
realized as transformations in modular degrees of freedom. Hence one might indeed wonder
whether super-symmetry could be behind the Langlands correspondence.

17.3.5 What is the role of infinite primes?

Infinite primes primes at the lowest level of the hierarchy can be represented as polynomials and
as rational functions at higher levels. These in turn define rational function fields. Physical states
correspond in general to infinite rationals which reduce to unit in real sense but have arbitrarily
complex number theoretical anatomy [K76] , [L3, L11] .

Does infinite prime characterize the l-adic representation of Galois group associated with
given partonic 2-surface

Consider first the lowest level of hierarchy of infinite primes [K76] . Infinite primes at the lowest
level of hierarchy are in a well-defined sense composites of finite primes and correspond to states of
super-symmetric arithmetic quantum field theory. The physical interpretation of primes appearing as
composites of infinite prime is as characterizing of the p-adic prime p assigned by the modified Dirac
action to partonic 2-surfaces associated with a given 3-surface [K15, K20] .

This p-adic prime could naturally correspond to the possible prime associated with so called l-adic
representations of the Galois group(s) associated with the p-adic counterpart of the partonic 2-surface.
Also the Galois groups associated with the real partonic 2-surface could be represented in this manner.
The generalization of moduli space of conformal equivalence classes must be generalized to its p-adic
variant. I have proposed this generalization in context of p-adic mass calculations [K18] .

It should be possible to identify configuration space spinors associated with real and p-adic sectors
if anti-commutations relations for the fermionic oscillator operators make sense in any number field
(that is involve only rational or algebraic numbers). Physically this seems to be the only sensible
option.
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Could one assign Galois groups to the extensions of infinite rationals?

A natural question is whether one could generalize the intuitions from finite number theory to the
level of infinite primes, integers, and rationals and construct Galois groups and there representations
for them. This might allow alternative very number theoretical approach to the geometric Langlands
duality.

1. The notion of infinite prime suggests that there is entire hierarchy of infinite permutation groups
such that the N∞ at given level is defined as the product of all infinite integers at that level.
Any group is a permutation group in formal sense. Could this mean that the hierarchy of infinite
primes could allow to interpret the infinite algebraic sub-groups of Lie groups as Galois groups?
If so one would have a unification of group theory and number theory.

2. An interesting question concerns the interpretation of the counterpart of hyper-finite factors of
type II1 at the the higher levels of hierarchy of infinite primes. Could they relate to a hierarchy
of local algebras defined by HFF? Could these local algebras be interpreted in terms of direct
integrals of HFFs so that nothing essentially new would result from von Neumann algebra point
of view? Would this be a correlate for the fact that finite primes would be the irreducible
building block of all infinite primes at the higher levels of the hierarchy?

3. The transition from number fields to function fields is very much analogous to the replacement
of group with a local gauge group or algebra with local algebra. I have proposed that this
kind of local variant based on multiplication by of HFF by hyper-octonion algebra could be
the fundamental algebraic structure from which quantum TGD emerges. The connection with
infinite primes would suggest that there is infinite hierarchy of localizations corresponding to
the hierarchy of space-time sheets.

4. Perhaps it is worth of mentioning that the order of S∞ is formally N∞ = limn→∞ n!. This
integer is very large in real sense but zero in p-adic sense for all primes. Interestingly, the
numbers N∞/n + n behave like normal integers in p-adic sense and also number theoretically
whereas the numbers N∞/n + 1 behave as primes for all values of n. Could this have some
deeper meaning?

Could infinite rationals allow representations of Galois groups?

One can also ask whether infinite primes could provide representations for Galois groups. For instance,
the decomposition of infinite prime to primes (or prime ideals) assignable to the extension of rationals
is expected to make sense and would have clear physical interpretation. Also (hyper-)quaternionic
and (hyper-)octonionic primes can be considered and I have proposed explicit number theoretic in-
terpretation of the symmetries of standard model in terms of these primes. The decomposition of
partonic primes to hyper-octonionic primes could relate to the decomposition of parton to regions,
one for each number theoretic braid.

There are arguments supporting the view that infinite primes label the ground states of super-
conformal representations [K20, K76] . The question is whether infinite primes could allow to realize
the action of Galois groups. Rationality of infinite primes would imply that the invariance of ground
states of super-conformal representations under the braid realization of Gal(Q/Q) of finite Galois
groups. The infinite prime as a whole could indeed be invariant but the primes in the decomposition
to a product of primes in algebraic extension of rationals need not be so. This kind of decompositions
of infinite prime characterizing parton could correspond to the above described decomposition of
partonic 2-surface to regions X2

k at which Galois groups act non-trivially. It could also be that only
infinite integers are rational whereas the infinite primes decomposing them are hyper-octonionic. This
would physically correspond to the decomposition of color singlet hadron to colored partons [K76] .

17.3.6 Could Langlands correspondence, McKay correspondence and Jones
inclusions relate to each other?

The understanding of Langlands correspondence for general reductive Lie groups in TGD framework
seems to require some physical mechanism allowing the emergence of these groups in TGD based
physics. The physical idea would be that quantum dynamics of TGD is able to emulate the dynamics
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of any gauge theory or even stringy dynamics of conformal field theory having Kac-Moody type
symmetry and that this emulation relies on quantum deformations induced by finite measurement
resolution described in terms of Jones inclusions of sub-factors characterized by group G leaving
elements of sub-factor invariant. Finite measurement resolution would would result simply from the
fact that only quantum numbers defined by the Cartan algebra of G are measured.

There are good reasons to expect that infinite Clifford algebra has the capacity needed to realize
representations of an arbitrary Lie group. It is indeed known that that any quantum group charac-
terized by quantum parameter which is root of unity or positive real number can be assigned to Jones
inclusion [A152] . For q = 1 this would gives ordinary Lie groups. In fact, all amenable groups define
unique sub-factor and compact Lie groups are amenable ones.

It was so called McKay correspondence q [A178] which originally stimulated the idea about TGD
as an analog of Universal Turing machine able to mimic both ADE type gauge theories and theories
with ADE type Kac-Moody symmetry algebra. This correspondence and its generalization might also
provide understanding about how general reductive groups emerge. In the following I try to cheat the
reader to believe that the tensor product of representations of SU(2) Lie algebras for Connes tensor
powers of M could induce ADE type Lie algebras as quantum deformations for the direct sum of n
copies of SU(2) algebras This argument generalizes also to the case of other compact Lie groups.

About McKay correspondence

McKay correspondence q [A178] relates discrete finite subgroups of SU(2) ADE groups. A simple
description of the correspondences is as follows q [A178].

1. Consider the irreps of a discrete subgroup G ⊂ SU(2) which correspond to irreps of G and can
be obtained by restricting irreducible representations of SU(2) to those of G. The irreducible
representations of SU(2) define the nodes of the graph.

2. Define the lines of graph by forming a tensor product of any of the representations appearing
in the diagram with a doublet representation which is always present unless the subgroup is
2-element group. The tensor product regarded as that for SU(2) representations gives represen-
tations j − 1/2, and j + 1/2 which one can decompose to irreducibles of G so that a branching
of the graph can occur. Only branching to two branches occurs for subgroups yielding ex-
tended ADE diagrams. For the linear portions of the diagram the spins of corresponding SU(2)
representations increase linearly as .., j, j + 1/2, j + 1, ...

One obtains extended Dynkin diagrams of ADE series representing also Kac-Moody algebras
giving An, Dn, E6, E7, E8. Also A∞ and A−∞,∞ are obtained in case that subgroups are infinite.
The Dynkin diagrams of non-simply laced groups Bn (SO(2n+1)), Cn (symplectic group Sp(2n)
and quaternionic group Sp(n)), and exceptional groups G2 and F4 are not obtained.

ADE Dynkin diagrams labelling Lie groups instead of Kac-Moody algebras and having one node
less, do not appear in this context but appear in the classification of Jones inclusions for M : N < 4.
As a matter fact, ADE type Dynkin diagrams appear in very many contexts as one can learn from
John Baez’s This Week’s Finds [A98] .

1. The classification of integral lattices in Rn having a basis of vectors whose length squared equals
2

2. The classification of simply laced semisimple Lie groups.

3. The classification of finite sub-groups of the 3-dimensional rotation group.

4. The classification of simple singularities . In TGD framework these singularities could be as-
signed to origin for orbifold CP2/G, G ⊂ SU(2).

5. The classification of tame quivers.
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Principal graphs for Connes tensor powers M

The thought provoking findings are following.

1. The so called principal graphs characterizing M : N = 4 Jones inclusions for G = SU(2)
are extended Dynkin diagrams characterizing ADE type affine (Kac-Moody) algebras. Dn is
possible only for n ≥ 4.

2. M : N < 4 Jones inclusions correspond to ordinary ADE type diagrams for a subset of simply
laced Lie groups (all roots have same length) An (SU(n)), D2n (SO(2n)), and E6 and E8. Thus
D2n+1 (SO(2n + 2)) and E7 are not allowed. For instance, for G = S3 the principal graph is
not D3 Dynkin diagram.

The conceptual background behind principal diagram is necessary if one wants to understand the
relationship with McKay correspondence.

1. The hierarchy of higher commutations defines an invariant of Jones inclusion N ⊂M. Denoting
by N ′ the commutant of N one has sequences of horizontal inclusions defined as C = N ′ ∩N ⊂
N ′ ∩M ⊂ N ′ ∩M1 ⊂ ... and C = M′ ∩M ⊂ M′ ∩M1 ⊂ .... There is also a sequence of
vertical inclusions M′ ∩Mk ⊂ N ′ ∩Mk. This hierarchy defines a hierarchy of Temperley-Lieb
algebras [A220] assignable to a finite hierarchy of braids. The commutants in the hierarchy are
direct sums of finite-dimensional matrix algebras (irreducible representations) and the inclusion
hierarchy can be described in terms of decomposition of irreps of kth level to irreps of (k − 1)th

level irreps. These decomposition can be described in terms of Bratteli diagrams [A128] .

2. The information provided by infinite Bratteli diagram can be coded by a much simpler bi-partite
diagram having a preferred vertex. For instance, the number of 2k-loops starting from it tells
the dimension of kth level algebra. This diagram is known as principal graph.

Principal graph emerges also as a concise description of the fusion rules for Connes tensor powers
of M.

1. It is natural to decompose the Connes tensor powers q [A178]Mk =M⊗N ...⊗NM to irreducible
M−M, N −M,M−N , or N −N bi-modules. IfM : N is finite this decomposition involves
only finite number of terms. The graphical representation of these decompositions gives rise to
Bratteli diagram.

2. If N has finite depth the information provided by Bratteli diagram can be represented in nutshell
using principal graph. The edges of this bipartite graph connectM−N vertices to vertices de-
scribing irreducible N−N representations resulting in the decomposition ofM−N irreducibles.
If this graph is finite, N is said to have finite depth.

A mechanism assigning to tensor powers Jones inclusions ADE type gauge groups and
Kac-Moody algebras

The proposal made for the first time in [K26] is that in M : N < 4 case it is possible to construct
ADE representations of gauge groups or quantum groups and in M : N = 4 using the additional
degeneracy of states implied by the multiple-sheeted cover H → H/Ga × Gb associated with space-
time correlates of Jones inclusions. Either Ga or Gb would correspond to G. In the following this
mechanism is articulated in a more refined manner by utilizing the general properties of generators
of Lie-algebras understood now as a minimal set of elements of algebra from which the entire algebra
can be obtained by repeated commutation operator (I have often used ” Lie algebra generator” as an
synonym for ”Lie algebra element”). This set is finite also for Kac-Moody algebras.

1. Two observations

The explanation to be discussed relies on two observations.

1. McKay correspondence for subgroups of G (M : N = 4) resp. its variants (M : N < 4) and
its counterpart for Jones inclusions means that finite-dimensional irreducible representations of
allowed G ⊂ SU(2) label both the Cartan algebra generators and the Lie (Kac-Moody) algebra
generators of t+ and t− in the decomposition g = h ⊕ t+ ⊕ t−, where h is the Lie algebra of
maximal compact subgroup.
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2. Second observation is related to the generators of Lie-algebras and their quantum counterparts
(see Appendix for the explicit formulas for the generators of various algebras considered). The
observation is that each Cartan algebra generator of Lie- and quantum group algebras, corre-
sponds to a triplet of generators defining an SU(2) sub-algebra. The Cartan algebra of affine
algebra contains besides Lie group Cartan algebra also a derivation d identifiable as an infinites-
imal scaling operator L0 measuring the conformal weight of the Kac-Moody generators. d is
exceptional in that it does not give rise to a triplet. It corresponds to the preferred node added
to the Dynkin diagram to get the extended Dynkin diagram.

2. Is ADE algebra generated as a quantum deformation of tensor powers of SU(2) Lie algebras
representations?

The ADE type symmetry groups could result as an effect of finite quantum resolution described
by inclusions of HFFs in TGD inspired quantum measurement theory.

1. The description of finite resolution typically leads to quantization since complex rays of state
space are replaced as N rays. Hence operators, which would commute for an ideal resolution
cease to do so. Therefore the algebra SU(2)⊗...⊗SU(2) characterized by n mutually commuting
triplets, where n is the number of copies of SU(2) algebra in the original situation and identifiable
as quantum algebra appearing in M tensor powers with M interpreted as N module, could
suffer quantum deformation to a simple Lie algebra with 3n Cartan algebra generators. Also a
deformation to a quantum group could occur as a consequence.

2. This argument makes sense also for discrete groups G ⊂ SU(2) since the representations of G
realized in terms of configuration space spinors extend to the representations of SU(2) naturally.

3. Arbitrarily high tensor powers ofM are possible and one can wonder why only finite-dimensional
Lie algebra results. The fact that N has finite depth as a sub-factor means that the tensor prod-
ucts in tensor powers of N are representable by a finite Dynkin diagram. Finite depth could thus
mean that there is a periodicity involved: the kn tensor powers decomposes to representations
of a Lie algebra with 3n Cartan algebra generators. Thus the additional requirement would be
that the number of tensor powers of M is multiple of n.

3. Space-time correlate for the tensor powers M⊗N ...⊗N M

By quantum classical correspondence there should exist space-time correlate for the formation
of tensor powers of M regarded as N module. A concrete space-time realization for this kind of
situation in TGD would be based on n-fold cyclic covering of H implied by the H → H/Ga × Gb
bundle structure in the case of say Gb. The sheets of the cyclic covering would correspond to various
factors in the n-fold tensor power of SU(2) and one would obtain a Lie algebra, affine algebra or its
quantum counterpart with n Cartan algebra generators in the process naturally. The number n for
space-time sheets would be also a space-time correlate for the finite depth of N as a factor.

Configuration space spinors could provide fermionic representations of G ⊂ SU(2). The Dynkin
diagram characterizing tensor products of representations of G ⊂ SU(2) with doublet representation
suggests that tensor products of doublet representations associated with n sheets of the covering could
realize the Dynkin diagram.

Singlet representation in the Dynkin diagram associated with irreps of G would not give rise to an
SU(2) sub-algebra in ADE Lie algebra and would correspond to the scaling generator. For ordinary
Dynkin diagram representing gauge group algebra scaling operator would be absent and therefore also
the exceptional node. Thus the difference between (M : N = 4) and (M : N < 4) cases would be
that in the Kac-Moody group would reduce to gauge group M : N < 4 because Kac-Moody central
charge k and therefore also Virasoro central charge resulting in Sugawara construction would vanish.

4. Do finite subgroups of SU(2) play some role also in M : N = 4 case?

One can ask wonder the possible interpretation for the appearance of extended Dynkin diagrams in
(M : N = 4) case. Do finite subgroups G ⊂ SU(2) associated with extended Dynkin diagrams appear
also in this case. The formal analog for H → Ga×Gb bundle structure would be H → H/Ga×SU(2).
This would mean that the geodesic sphere of CP2 would define the fiber. The notion of number
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theoretic braid meaning a selection of a discrete subset of algebraic points of the geodesic sphere of
CP2 suggests that SU(2) actually reduces to its subgroup G also in this case.

5. Why Kac-Moody central charge can be non-vanishing only for M : N = 4?

From the physical point of view the vanishing of Kac-Moody central charge for M : N < 4 is
easy to understand. If parton corresponds to a homologically non-trivial geodesic sphere, space-time
surface typically represents a string like object so that the generation of Kac-Moody central extension
would relate directly to the homological non-triviality of partons. For instance, cosmic strings are
string like objects of form X2 × Y 2, where X2 is minimal surface of M2 and Y 2 is a holomorphic
sub-manifold of CP2 reducing to a homologically non-trivial geodesic sphere in the simplest situation.
A conjecture that deserves to be shown wrong is that central charge k is proportional/equal to the
absolute value of the homology (Kähler magnetic) charge h.

6. More general situation

McKay correspondence generalizes also to the case of subgroups of higher-dimensional Lie groups
q [A178]. The argument above makes sense also for discrete subgroups of more general compact Lie
groups H since also they define unique sub-factors. In this case, algebras having Cartan algebra with
nk generators, where n is the dimension of Cartan algebra of H, would emerge in the process. Thus
there are reasons to believe that TGD could emulate practically any dynamics having gauge group
or Kac-Moody type symmetry. An interesting question concerns the interpretation of non-ADE type
principal graphs associated with subgroups of SU(2).

7. Flavor groups of hadron physics as a support for HFF?

The deformation assigning to an n-fold tensor power of representations of Lie group G with k-
dimensional Cartan algebra a representation of a Lie group with nk-dimensional Cartan algebra could
be also seen as a dynamically generated symmetry. If quantum measurement is characterized by the
choice of Lie group G defining measured quantum numbers and defining Jones inclusion character-
izing the measurement resolution, the measurement process itself would generate these dynamical
symmetries. Interestingly, the flavor symmetry groups of hadron physics cannot be justified from the
structure of the standard model having only electro-weak and color group as fundamental symmetries.
In TGD framework flavor group SU(n) could emerge naturally as a fusion of n quark doublets to form
a representation of SU(n).

Conformal representations of braid group and a possible further generalization of McKay
correspondence

Physically especially interesting representations of braid group and associated Temperley-Lieb-Jones
algebras (TLJ) are representations provided by the n-point functions of conformal field theories stud-
ied in [A185] . The action of the generator of braid group on n-point function corresponds to a duality
transformation of old-fashioned string model (or crossing) represented as a monodromy relating cor-
responding conformal blocks. This effect can be calculated. Since the index r =M : N appears as a
parameter in TLJ algebra, the formulas expressing the behavior of n-point functions under the duality
transformation reveal also the value of index which might not be easy to calculate otherwise.

Note that in TGD framework the arguments of n-point function would correspond to the strands
of the number theoretic braid and thus to the points of the geodesic sphere S2 associated with the
light-cone boundary δM4

±. The projection to the geodesic sphere of CP2 projection would be same
for all these strands.

WZW model for group G and Kac-Moody central charge k quantum phase is discussed in [A185]
. The non-triviality of braiding boils to the fact that quantum group Gq defines the effect of braiding
operation. Quantum phase is given as q = exp(iπ/(k + C(G)), where C(G) is the value of Casimir
operator in adjoint representation. The action of the braid group generator reduces to the unitary
matrix relating the basis defined by the tensor product of representations of Gq to the basis obtained
by application of a generator of the braid group. For n-point functions of primary fields belonging
to a representation D of G, index is the square of the quantum dimension dq(D) of the correspond-
ing representation of Gq. Hence each primary field correspond to its own inclusion of HFF, which
corresponds to n→∞-point function.
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The result could have been guessed as the dimension of quantum Clifford algebra emerging nat-
urally in inclusion when HFF is represented as an infinite tensor power of M(d(D), C). For j = 1/2
representation of SU(2) standard Jones inclusions with r < 4 are obtained. The resulting inclusion is
irreducible (N ′ ∩M = C, where N ′ is the commutator of N ′). Using the representation of HFF as
infinite tensor power of M(2, C) the result would not be so easy to understand.

The mathematical challenge would be to understand how the representations HFF as an infinite
tensor power of M(n,C) relate to each other for different values of n. It might be possible to under-
stand the relationship between different infinite tensor power representations of HFF by representing
M(n1, C) as a sub-algebra of a tensor power of a finite tensor power of M(n2, C). Perhaps a detailed
construction of the maps between representations of HFF as infinite tensor power of M(n,C) for
various values of n could reveal further generalizations of McKay correspondence.

17.3.7 Technical questions related to Hecke algebra and Frobenius element

Frobenius elements

Frobenius element Frp is mapped to a conjugacy class of Galois group using the decomposition of
prime p to prime ideals in the algebraic extension K/F .

1. At the level of braid group Frobenius element Frp corresponds to some conjugacy class of Galois
group acting imbedded to Sn (only the conjugacy equivalence class is fixed) and thus can be
mapped to an element of the braid group. Hence it seems possible to assign to Frp an element
of infinitely cyclic subgroup of the braid group.

2. One can always reduce in given representation the element of given conjugacy class to a diagonal
matrix so that it is possible to chose the representatives of Frp to be commuting operators. These
operators would act as a spinor rotation on quantum Clifford algebra elements defined by Jones
inclusion and identifiable as element of some cyclic group of the group G defining the sub-factor
via the diagonal embedding.

3. Frp for a given finite Galois group G should have representation as an element of braid group
to which G is imbedded as a subgroup. It is possible to chose the representatives of Frp so that
they commute. Could one chose them in such a manner that they belong to the commuting
subgroup defined by even (odd) generators ei? The choice of representatives for Frp for various
Galois groups must be also consistent with the hierarchies of intermediate extensions of rationals
associated with given extension and characterized by subgroups of Galois group for the extension.

How the action of commutative Hecke algebra is realized in hyper-finite factor and braid
group?

One can also ask how to imbed Hecke algebra to the braid algebra. Hecke algebra for a given value
of prime p and group GL(n,R) is a polynomial algebra in Hecke algebra generators. There is a
fundamental difference between Hecke algebra and Frobenius element Frp in the sense that Frp has
finite order as an element of finite Galois group whereas Hecke algebra elements do not except possibly
for representations. This means that Hecke algebra cannot have a representation in a finite Galois
groups.

Situation is different for braid algebra generators since they do not satisfy the condition e2
i = 1 and

odd and even generators of braid algebra commute. The powers of Hecke algebra generators would
correspond to the powers of basic braiding operation identified as a π twist of neighboring strands.
For unitary representations eigenvalues of ei are phase factors. Therefore Hecke algebra might be
realized using odd or even commuting sub-algebra of braid algebra and this could allow to deduce the
Frobenius-Hecke correspondence directly from the representations of braid group. The basic questions
are following.

1. Is it possible to represent Hecke algebra as a subalgebra of braid group algebra in some natural
manner? Could the infinite cyclic group generated by braid group image of Frp belong represent
element of Hecke algebra fixed by the Langlands correspondence? If this were the case then the
eigenvalues of Frobenius element Frp of Galois group would correspond to the eigen values of
Hecke algebra generators in the manner dictated by Langlands correspondence.
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2. Hecke operators Hp,i, i = 1, .., n commute and expressible as two-side cosets in group GL(n,Qp).
This group acts in M and the action could be made rather explicit by using a proper represen-
tations of M (note however that physical situation can quite well distinguish between various
representations). Does the action of the Hecke sub-algebra fixed by Hecke-Frobenius corre-
spondence co-incide with the action of Frobenius element Frp identified as an element of braid
sub-group associated with some cyclic subgroup of the Galois group identified as a group defining
the sub-factor?

17.4 Langlands conjectures and the most recent view about
TGD

Langlands program [A58, A158, A156] relies on very general conjectures about a connection between
number theory and harmonic analysis relating the representations of Galois groups with the repre-
sentations of certain kinds of Lie groups to each other. Langlands conjecture has many forms and
it is indeed a conjecture and many of them are imprecise since the notions involved are not sharply
defined.

Peter Woit noticed that Edward Frenkel had given a talk with rather interesting title ”What do
Fermat’s Last Theorem and Electro-magnetic Duality Have in Common?” [A109]? I listened the talk
and found it very inspiring. The talk provides bird’s eye of view about some basic aspects of Langlands
program using the language understood by physicist. Also the ideas concerting the connection between
Langlands duality and electric-magnetic duality generalized to S-duality in the context of non-Abelian
gauge theories and string theory context and developed by Witten and Kapustin [A180] and followers
are summarized. In this context D = 4 and twisted version of N = 4 SYM familiar from twistor
program and defining a topological QFT appears.

For some years ago I made my first attempt to understand what Langlands program is about and
tried to relate it to TGD framework [K38]. At that time I did not really understand the motivations
for many of the mathematical structures introduced. In particular, I did not really understand the
motivations for introducing the gigantic Galois group of algebraic numbers regarded as algebraic
extension of rationals.

1. Why not restrict the consideration to finite Galois groups [A40] or their braided counterparts
(as I indeed effectively did [K38])? At that time I concentrated on the question what enormous
Galois group of algebraic numbers regarded as algebraic extension of rationals could mean,
and proposed that it could be identified as a symmetric group consisting of permutations of
infinitely many objects. The definition of this group is however far from trivial. Should one
allow as generators of the group only the permutations affecting only finite number of objects
or permutations of even infinite number of objects?

The analogous situation for the sequences of binary digits would lead to a countable set of
sequence of binary digits forming a discrete set of finite integers in real sense or to 2-adic
integers forming a 2-adic continuum. Something similar could be expected now. The physical
constraints coming the condition that the elements of symmetric group allow lifting to braidings
suggested that the permutations permuting infinitely many objects should be periodic meaning
that the infinite braid decomposes to an infinite number of identical N-braids and braiding is
same for all of them. The p-adic analog would be p-adic integers, which correspond to rationals
having periodical expansion in powers of p. Braids would be therefore like pinary digits. I
regarded this choice as the most realistic one at that time. I failed to realize the possibility of
having analogs of p-adic integers by general permutations. In any case, this observation makes
clear that the unrestricted Galois group is analogous to a Lie group in topology analogous to
p-adic topology rather than to discrete group. Neither did I realize that the Galois groups could
be finite and be associated with some other field than rationals, say a Galois group associated
with the field of polynomials of n-variable with rational coefficients and with its completion with
coefficients replaced by algebraic numbers.

2. The ring of adeles [A4] can be seen as a Cartesian product of non-vanishing real numbers R×
with the infinite Cartesian product

∏
Zp having as factors p-adic integers Zp for all values

of prime p. Rational adeles are obtained by replacing R with rationals Q and requiring that

http://en.wikipedia.org/wiki/Langlands_program
http://www.math.columbia.edu/~woit/wordpress/?p=3891
http://online.kitp.ucsb.edu/online/bblunch/frenkel/
http://online.kitp.ucsb.edu/online/bblunch/frenkel/
http://en.wikipedia.org/wiki/Adele_ring
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multiplication of rational by integers is equivalent with multiplication of any Zp with rational.
Finite number of factors in Zp can correspond to Qp: this is required in to have finite adelic
norm defined as the product of p-adic norms. This definition implicitly regards rationals as
common to all number fields involved. At the first encounter with adeles I did not realize that
this definition is in spirit with the basic vision of TGD.

The motivation for the introduction of adele is that one can elegantly combine the algebraic
groups assignable to rationals (or their extensions) and all p-adic number fields or even more
general function fields such as polynomials with some number of argument at the same time as a
Cartesian product of these groups as well as to finite fields. This is indeed needed if one wants to
realize number theoretic universality which is basic vision behind physics as generalized number
theory vision. This approach obviously means enormous economy of thought irrespective of
whether one takes adeles seriously as a physicist.

In the following I will discuss Taniyama-Shimura-Weil theorem and Langlands program from TGD
point view.

17.4.1 Taniyama-Shimura-Weil conjecture from the perspective of TGD

Taniyama-Shimura-Weil theorem

It is good to consider first the Taniyama-Shimura-Weil conjecture [A96] from the perspective provided
by TGD since this shows that number theoretic Langlands conjecture could be extremely useful for
practical calculations in TGD framework.

1. Number theoretical universality requires that physics in real number field and various p-adic
number fields should be unified to a coherent hole by a generalization of the notion of number:
different number fields would be like pages of book intersecting along common rationals. This
would hold true also for space-time surfaces and imbedding space but would require some pre-
ferred coordinates for which rational points would determined the intersection of real and p-adic
worlds. There are good reasons for the hypothesis that life resides in the intersection of real and
p-adic worlds.

The intersection would correspond at the level of partonic 2-surfaces rational points of these
surfaces in some preferred coordinates, for which a finite-dimensional family can be identified
on basis of the fundamental symmetries of the theory. Allowing algebraic extensions one can
also consider also some algebraic as common points. In any case the first question is to count
the number of rational points for a partonic 2-surface.

2-dimensional Riemann surfaces serve also as a starting point of number theoretic Langlands
problem and the same is true for the geometric Langlands program concentrating on Riemann
surfaces and function fields defined by holomorphic functions.

2. The number theoretic side of Taniyama-Shimura-Weil (TSW briefly) theorem for elliptic surfaces,
which is essential for the proof of Fermat’s last theorem, is about counting the integer (or
equivalently rational) points of the elliptic surfaces

y2 = x3 + ax+ b , a, b ∈ Z .

The theorem relates number theoretical problem to a problem of harmonic analysis, which is
about group representations. What one does is to consider the above Diophantine equation
modulo p for all primes p. Any solution with finite integers smaller than p defines a solution in
real sense if mod p operation does not affect the equations. Therefore the existence of a finite
number of solutions involving finite integers in real sense means that for large enough p the
number ap of solutions becomes constant.

3. On harmonic analysis one studies so called modular forms f(τ), where τ is a complex coordinate
for upper half plane defining moduli space for the conformal structures on torus. Modular forms
have well defined transformation properties under group Gl2(R): the action is defined by the
formula τ → (aτ+b)/(cτ+d). The action of Gl2(Z) or its appropriate subgroup is such that the

http://en.wikipedia.org/wiki/Taniyama-Shimura_conjecture
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modular form experiences a mere multiplication by a phase factor: D(hk) = c(h, k)D(h)D(k).
The phase factors obey cocycle conditions D(h, k)D(g, hk) = D(gh, k)D(g, h) guaranteeing the
associativity of the projective representation.

Modular transformations are clearly symmetries represented projectively as quantum theory
indeed allows to do. The geometric interpretation is that one has projective reprseentations
in the fundamental domain of upper plane defined by the identification of the points differing
by modular transformations. In conformally symmetric theories this symmetry is essential.
Fundamental domain is analogous to lattice cell. One often speaks of cusp forms: cusp forms
vanish at the boundary of the fundamental domain defined as the quotient of the upper half
plane by a subgroup -call it Γ of the modular group Sl2(Z). The boundary corresponds to
Im(τ)→∞ or equivalently q = exp(i2πτ)→ 0.

Remark: In TGD framework modular symmetry says that elementary particle vacuum function-
als are modular invariants. For torus one has the above symmetry but for Riemann surface with
higher genus modular symmetries correspond to a subgroup of Sl2g(Z).

4. One can expand the modular form as Fourier expansion using the variable q = exp(i2πτ) as

f(τ) =
∑
n>0

bnq
n .

b1 = 1 fixes the normalization. n > 0 in the sum means that the form vanishes at the boundary
of the fundamental domain associated with the group Γ. The TSW theorem says that for
prime values n = p one has bp = ap, where ap is the number of mod p integer solutions to the
equations defining the elliptic curve. At the limit p→∞ one obtains the number of real actual
rational points of the curve if this number is finite. This number can be also infinite. The other
coefficients bn can be deduced from their values for primes since bn defines what is known as a
multiplicative character in the ring of integers implying bmn = bmbn meaning that bn obeys a
decomposition analogous to the decomposition of integer into a product of primes.

The definition of the multiplicative character is extremely general: for instance it is possible
to define quantum counterparts of multiplicative characters and of various modular forms by
replacing integers with quantum integers defined as products of quantum primes for all primes
except one -call it p0, which is replaced with its inverse: this definition of quantum integer
appears in the deformation of distributions of integer valued random variable characterized by
rational valued parameters and is motivated by strange findings of Shnoll [K5]. The interpre-
tation could be in terms of TGD based view about finite measurement resolution bringing in
quantum groups and also preferred p-adic prime naturally.

5. TSW theorem allows to prove Fermat’s last theorem: if the latter theorem were wrong also
TSW theorem would be wrong. What also makes TSW theorem so wonderful is that it would
allow to count the number of rational points of elliptic surfaces just by looking the properties of
the automorphic forms in Gl2(R) or more general group. A horrible looking problem of number
theory is transformed to a problem of complex analysis which can be handled by using the magic
power of symmetry arguments. This kind of virtue does not matter much in standard physics but
in quantum TGD relying heavily on number theoretic universality situation is totally different.
If TGD is applied some day the counting of rational points of partonic surfaces is everyday
practice of theoretician.

How to generalize TSW conjecture?

The physical picture of TGD encourages to imagine a generalization of the Tanyama-Shimura-Weil
conjecture.

1. The natural expectation is that the conjecture should make sense for Riemann surfaces of arbi-
trary genus g instead of g = 1 only (elliptic surfaces are tori). This suggests that one should one
replace the upper half plane representing the moduli space of conformal equivalence classes of
toric geometries with the 2g-dimensional (in the real sense) moduli space of genus g conformal
geometries identifiable as Teichmüller space.

http://en.wikipedia.org/wiki/Teichmüller_space
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This moduli space has symplectic structure analogous to that of g + g-dimensional phase space
and this structure relates closely to the cohomology defined in terms of integrals of holomorphic
forms over the g + g cycles which each handle carrying two cycles. The moduli are defined
by the values of the holomorphic one-forms over the cycles and define a symmetric matrix
Ωij (modular parameters), which is modular invariant [K18]. The modular parameters related
Sp2g(Z) transformation correspond to same conformal equivalence class.

If Galois group and effective symmetry group G are representable as symplectic flows at the
light-like boundary of CD(×CP2), their action automatically defines an action in the moduli
space. The action can be realized also as a symplectic flow defining a braiding for space-like
braids assignable to the ends of the space-time surface at boundaries of CD or for time-like
braids assignable to light-like 3-surfaces at which the signature of the induced metric changes
and identified as orbits of partonic 2-surfaces analogous to black hole horizons.

2. It is possible to define modular forms also in this case. Most naturally they correspond to theta
functions used in the construction of elementary particle functionals in this space [K18]. Siegel
modular forms transform naturally under the symplectic group Sp2g(R) and are projectively
invariant Sp2g(Z). More general moduli spaces are obtained by allowing also punctures having
interpretation as the ends of braid strands and very naturally identified as the rational points
of the partonic 2-surface. The modular forms defined in this extended moduli space could carry
also information about the number of rational points in the same manner as the automorphic
representations of Gl2(R) carry information about the number of rational points of elliptic
curves.

3. How Tanyama-Shimura-Weil conjecture should be generalized? Also now one can consider power
series of modular forms with coefficients bn defining multiplicative characters for the integers of
field in question. Also now the coefficients ap could give the number of integer/rational points
of the partonic 2-surface in mod p approximation and at the limit p→∞ the number of points
ap would approach to a constant if the number of points is finite.

4. The only sensical interpretation is that the analogs of elementary particle vacuum functionals
[K18] identified as modular forms must be always restricted to partonic 2-surfaces having the
same number of marked points identifiable as the end points of braid strands rational points.
It also seems necessary to assume that the modular forms factorize to a products of two parts
depending on Teichmüller parameters and positions of punctures. The assignment of fermionic
and bosonic quantum numbers with these points conforms with this interpretation. As a special
case these points would be rational. The surface with given number or marked points would
have varying moduli defined by the conformal moduli plus the positions of the marked points.
This kind of restriction would be physically very natural since it would mean that only braids
with a given number of braid strands ending at fixed number of marked points at partonic 2-
surfaces are considered in given quantum state. Of course, superpositions of these basis states
with varying braid number would be allowed.

17.4.2 Unified treatment of number theoretic and geometric Langlands
conjectures in TGD framework

One can already now wonder what the relationship of the TGD view about number theoretic Langlands
conjecture to the geometric Langlands conjecture could be?

1. The generalization of Taniyama-Shinamure-Weil theorem to arbitrary genus would allow to
deduce the number of rational points already for finite but large enough values of p from the
Taylor coefficients of an appropriate modular form. Is this enough for the needs of TGD? The
answer is ”No”. One must be able to count also numbers of ”rational 2-surfaces” in the space
of 2-surfaces and the mere generalization of TSW conjecture does not allow this. Geometric
Langlands replacing rational points with ”rational” surfaces is needed.

If the geometric Langlands conjecture holds true in the spirit with TGD, it must allow to
deduce the number of rational variants of of partonic 2-surfaces assignable to given quantum
state defined to be a state with fixed number of braid strands for each partonic 2-surface of the

http://en.wikipedia.org/wiki/Siegel_modular_form
http://en.wikipedia.org/wiki/Siegel_modular_form
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collection. What is new is that collections of partonic 2-surfaces regarded as sub-manifolds of
M4 × CP2 are considered.

2. Finite measurement resolution conjectured to be definable in terms of effective symmetry group
G defined by the inclusion of hyper-finite factors of type II1 [K87](HFFs in the sequel) effectively
replaces partonic 2-surfaces with collections of braid ends and the natural idea is that the orbits of
these collections under finite algebraic subgroup of symmetry group defining finite measurement
resolution gives rise to orbit with finite number of points (point understood now as collection of
rational points). The TGD variant of the geometric Langlands conjecture would allow to deduce
the number of different collections of rational braid ends for the quantum state considered (one
particular WCW spinor field) from the properties of automorphic form.

3. Quantum group structure is associated with the inclusions of HFFs, with braid group represen-
tations, integrable QFTs, and also with the quantum Yangian symmetry [A191, A165] suggested
strongly by twistor approach to TGD. In zero energy ontology physical states define Lie-algebra
and the multil-ocality of the scattering amplitudes with respect to the partonic 2-surfaces (that is
at level of WCW) suggests also quantum Yangian symmetry. Therefore the Yangian of the Kac-
Moody type algebra defining measurement resolution is a natural candidate for the symmetry
considered. What is important is that the group structure is associated with a finite-dimensional
Lie group.

This picture motivates the question whether number theoretic and geometric Langlands conjecture
could be realized in the same framework? Could electric-magnetic duality generalized to S-duality
imply these dualities and bring in the TGD counterpart of effective symmetry group G in some
manner. This framework would be considerably more general than the 4-D QFT framework suggested
by Witten and Kapustin [A180] and having very close analogies with TGD view about space-time.

The following arguments support the view that in TGD Universe number theoretic and geometric
Langlands conjectures could be understood very naturally. The basic notions are following.

1. Zero energy ontology and the related notion of causal diamond CD (CD is short hand for the
cartesian product of causal diamond of M4 and of CP2). This notion leads to the notion of
partonic 2-surfaces at the light-like boundaries of CD and to the notion of string world sheet.

2. Electric-magnetic duality realized in terms of string world sheets and partonic 2-surfaces. The
group G and its Langlands dual LG would correspond to the time-like and space-like braidings.
Duality predicts that the moduli space of string world sheets is very closely related to that for
the partonic 2-surfaces. The strong form of 4-D general coordinate invariance implying electric-
magnetic duality and S-duality as well as strong form of holography indeed predicts that the
collection of string world sheets is fixed once the collection of partonic 2-surfaces at light-like
boundaries of CD and its sub-CDs is known.

3. The proposal is that finite measurement resolution is realized in terms of inclusions of hyperfinite
factors of type II1 at quantum level and represented in terms of confining effective gauge group
[K87]. This effective gauge group could be some associate of G: gauge group, Kac-Moody
group or its quantum counterpart, or so called twisted quantum Yangian strongly suggested by
twistor considerations (”symmetry group” hitherto). At space-time level the finite measurement
resolution would be represented in terms of braids at space-time level which come in two varieties
correspond to braids assignable to space-like surfaces at the two light-like boundaries of CD and
with light-like 3-surfaces at which the signature of the induced metric changes and which are
identified as orbits of partonic 2-surfaces connecting the future and past boundaries of CDs.

There are several steps leading from G to its twisted quantum Yangian. The first step replaces
point like particles with partonic 2-surfaces: this brings in Kac-Moody character. The second
step brings in finite measurement resolution meaning that Kac-Moody type algebra is replaced
with its quantum version. The third step brings in zero energy ontology: one cannot treat
single partonic surface or string world sheet as independent unit: always the collection of par-
tonic 2-surfaces and corresponding string worlds sheets defines the geometric structure so that
multilocality and therefore quantum Yangian algebra with multilocal generators is unavoidable.

In finite measurement resolution geometric Langlands duality and number theoretic Langlands
duality are very closely related since partonic 2-surface is effectively replaced with the punctures

http://arxiv.org/abs/hep-th/0604151
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representing the ends of braid strands and the orbit of this set under a discrete subgroup of G
defines effectively a collection of ”rational” 2-surfaces. The number of the ”rational” surfaces
in geometric Langlands conjecture replaces the number of rational points of partonic 2-surface
in its number theoretic variant. The ability to compute both these numbers is very relevant for
quantum TGD.

4. The natural identification of the associate of G is as quantum Yangian of Kac-Moody type group
associated with Minkowskian open string model assignable to string world sheet representing
a string moving in the moduli space of partonic 2-surface. The dual group corresponds to
Euclidian string model with partonic 2-surface representing string orbit in the moduli space
of the string world sheets. The Kac-Moody algebra assigned with simply laced G is obtained
using the standard tachyonic free field representation obtained as ordered exponentials of Cartan
algebra generators identified as transversal parts of M4 coordinates for the braid strands. The
importance of the free field representation generalizing to the case of non-simply laced groups
in the realization of finite measurement resolution in terms of Kac-Moody algebra cannot be
over-emphasized.

5. Langlands duality involves besides harmonic analysis side also the number theoretic side. Galois
groups (collections of them) defined by infinite primes and integers having representation as
symplectic flows defining braidings. I have earlier proposed that the hierarchy of these Galois
groups define what might be regarded as a non-commutative homology and cohomology. Also
G has this kind of representation which explains why the representations of these two kinds
of groups are so intimately related. This relationship could be seen as a generalization of the
MacKay correspondence between finite subgroups of SU(2) and simply laced Lie groups.

6. Symplectic group of the light-cone boundary acting as isometries of the WCW geometry [K17]
allowing to represent projectively both Galois groups and symmetry groups as symplectic flows
so that the non-commutative cohomology would have braided representation. This leads to
braided counterparts for both Galois group and effective symmetry group.

7. The moduli space for Higgs bundle playing central role in the approach of Witten and Kapustin to
geometric Landlands program [A180] is in TGD framework replaced with the conformal moduli
space for partonic 2-surfaces. It is not however possible to speak about Higgs field although
moduli defined the analog of Higgs vacuum expectation value. Note that in TGD Universe the
most natural assumption is that all Higgs like states are ”eaten” by gauge bosons so that also
photon and gluons become massive. This mechanism would be very general and mean that
massless representations of Poincare group organize to massive ones via the formation of bound
states. It might be however possible to see the contribution of p-adic thermodynamics depending
on genus as analogous to Higgs contribution since the conformal moduli are analogous to vacuum
expectation of Higgs field.

Number theoretic Langlands conjecture in TGD framework

Number theoretic Langlands conjecture generalizes TSW conjecture to a duality between two kinds
of groups.

1. At the number theoretic side of the duality one has an n-dimensional representation of Galois
group for the algebraic numbers regarded as algebraic extension of rationals. In the more general
case one can consider arbitrary number field identified as algebraic extension of rationals. One
can assign to the number field its rational adele. In the case of rationals this brings in both real
numbers and p-adic numbers so that huge amount of information can be packed to the formulas.
For anyone who has not really worked concretely with number theory it is difficult to get grasp
of the enormous generality of the resulting theory.

2. At the harmonic analysis side of the conjecture one has n-dimensional representation of possibly
non-compact Lie group G and its Langlands dual LG appearing also in the non-Abelian form
of electric-magnetic duality. The idea that electric-magnetic duality generalized to S-duality
could provide a physical interpretation of Langlands duality is suggestive. U(n) is self dual in
Langlands sense but already for G = SU(3) one has LG = SU(3)/Z3. For most Lie groups the

http://en.wikipedia.org/wiki/Langlands_dual
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Lie algebras of G and LG are identical but even the Lie algebras can be different. Gl2(R) is
replaced with any reductive algebraic group and in the matrix representation of the group the
elements of the group are replaced by adeles of the discrete number field considered.

3. Langlands duality relates the representations of the Galois group in question to the automorphic
representations of G. The action of the Lie group is on the argument of the modular form so that
one obtains infinite-dimensional representation of G for non-compact G analogous to a unitary
representation of Lorentz group. The automorphic forms are eigenstates of the Casimir operator
of G. Automorphy means that a subgroup Γ of the modular group leaves the automorphic form
invariant modulo phase factor.

4. The action of the modular transformation τ → −1/τ in the case of Gl2(R) replaces G with
LG. In the more general case (for the moduli space of Riemann surfaces of genus g possessing
n punctures) the definition of the modular transformation induce the change G→L G does not
look obvious. Even the idea that one has only two groups related by modular transformation
is not obvious. For electromagnetic duality with τ interpreted in terms of complexified gauge
coupling strength this interpretational problem is not encountered.

Geometric Langlands conjecture in TGD framework

Consider next the geometric Langlands conjecture from TGD view point.

1. The geometric variant of Langlands conjecture replaces the discrete number field F (rationals
and their algebraic extensions say) with function number field- say rational function with ratio-
nal coefficients- for which algebraic completion defines the gigantic Galois group. Witten and
Kapustin [A180] proposed a concrete vision about how electric-magnetic duality generalized to
S-duality could allow to understand geometric Langlands conjecture.

2. By strong form of general coordinate invariance implying holography the partonic 2-surfaces
and their 4-D tangent space data (not completely free probably) define the basic objects so that
WCW reduces to that for partonic 2-surfaces so that the formulation of geometric Langlands
conjecture for the local field defined by holomorphic rational functions with rational coefficients
at partonic 2-surface might make sense.

3. What geometric Langlands conjecture could mean in TGD framework? The transition from
space-time level to the level of world of classical worlds suggests that polynomials with rational
functions with rational coefficients define the analog of rational numbers which can be regarded
to be in the intersection real and p-adic WCWs. Instead of counting rational points of partonic
2-surface one might think of counting the numbers of points in the intersection of real and p-adic
WCWs in which life is suggested to reside. One might well consider the possibility that a kind
of volume like measure for the number of these point is needed. Therefore the conjecture would
be of extreme importance in quantum TGD. Especially so if the intersection of real and p-adic
worlds is dense subset of WCW just as rationals form a dense subset of reals and p-adic numbers.

Electric-magnetic duality in TGD framework

Consider first the ideas of Witten and Kapustin in TGD framework.

1. Witten and Kapustin suggest that electric-magnetic duality and its generalization to S-duality in
non-abelian is the physical counterpart of G↔L G duality in geometric Langlands. The model
is essentially a modification N = 4 SUSY to N = 2 SUSY allowing this duality with Minkowski
space replaced with a Cartesian product of two Riemann surfaces. In TGD framework M4 would
correspond naturally to space-time sheet allowing a slicing to string world sheets and partonic
2-surfaces. Witten and Kapustin call these 2-dimensional surfaces branes of type A and B
with motivation coming from M-theory. The generalization of the basic dimensional formulas
of S-duality to TGD framework implies that light-like 3-surfaces at which the signature of the
induced metric changes and space-like 3-surfaces at the boundaries of CDs are analogs of brane
orbits. Branes in turn would be partonic 2-surfaces. S-duality would be nothing but strong form
of general coordinate invariance.
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2. Witten and Kapustin introduce the notions of electric and magnetic eigen branes and formulate
the duality as a transformation permuting these branes with each other. In TGD framework
the obvious identification of the electric eigen branes are as string world sheets and these can
be indeed identified essentially uniquely. Magnetic eigen branes would correspond to partonic
2-surfaces.

3. Witten and Kapustin introduce gauge theory with given gauge group. In TGD framework there
is no need to introduce gauge theory description since the symmetry group emerges as the
effective symmetry group defining measurement resolution. Gauge theory is expected to be only
an approximation to TGD itself. In fact, it seems that the interpretation of G as Lie-group
associated with Kac-Moody symmetry is more appropriate in TGD framework. This would
mean generalization of 2-D sigma model to string model in moduli space. The action of G
would not be visible in the resolution used.

4. Edward Frenkel represents the conjecture that there is mysterious 6-dimensional theory behind
the geometric Langlands duality. In TGD framework this theory might correspond to twistorial
formulation of quantum TGD using instead of M4×CP2 the space CP3×CP3 with space-time
surfaces replaced by 6-D sphere bundles.

Finite measurement resolution realized group theoretically

The notion of finite measurement resolution allows to identify the effective symmetry groups G and LG
in TGD framework. The most plausible interpretation of G is as Lie group giving rise to Kac-Moody
type symmetry and assignable to a string model defined in moduli space of partonic 2-surfaces. By
electric magnetic duality the roles of the string world sheet and partonic 2-surface can be exchanged
provided the replacement G → GL is performed. The duality means a duality of closed Euclidian
strings and Minkowskian open strings.

1. The vision is that finite measurement resolution realized in terms of inclusions of HFFs cor-
responds to effective which is gauge or Kac-Moody type local invariance extended to quan-
tum Yangian symmetry. A given finite measurement resolution would correspond to effective
symmetry G giving rise to confinement so that the effective symmetry indeed remains invisi-
ble as finite measurement resolution requires. The finite measurement resolution should allow
to emulate almost any gauge theory or string model type theory. This theory might allow
super-symmetrization reducing to broken super-symmetries of quantum TGD generated by the
fermionic oscillator operators at partonic 2-surfaces and string world sheets.

2. Finite measurement resolution implies that the orbit of the partonic 2-surface reduces effectively
to a braid. There are two kinds of braids. Time-like braids have their ends at the boundaries of
CD consisting of rational points in the intersection of real and p-adic worlds. Space-like braids
are assignable to the space-like 3-surfaces at the boundaries of CD and their ends co-incide with
the ends of time-like braids. The electric-magnetic duality says that the descriptions based using
either kind of braids is all that is needed and that the descriptions are equivalent.

The counterpart of τ → −1/τ should relate these descriptions. This need not involve transfor-
mation of effective complex Kähler coupling strength although this option cannot be excluded. If
this view is correct the descriptions in terms of string world sheets and partonic 2-surfaces would
correspond to electric and magnetic descriptions, which is indeed a very natural interpretation.
This geometric transformation should replace G with LG.

3. Finite measurement resolution effectively replaces partonic 2-surface with a discrete set of points
and space-time surface with string world sheets or partonic 2-surfaces. The natural question
is whether finite measurement resolution also replaces geometric Langlands and the ”rational”
intersection of real and p-adic worlds with number theoretic Langlands and rational points of
the partonic 2-surface. Notice that the rational points would be common to the string world
sheets and partonic 2-surfaces so that the duality of stringy and partonic descriptions would be
very natural for fintie measurement resolution.

The basic question is how the symmetry group G emerges from finite measurement resolution. Are
all Lie groups possible? Here the theory of Witten and Kapustin suggests guidelines.
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1. What Witten and Kapustin achieve is a transformation of a twistedN = 4 SUSY in M4 = Σ×C,
where Σ is ”large” as compared to Riemann surface C SUSY to a sigma model in Σ with values
of fields in the moduli space of Higgs bundle defined in C. If one accepts the basic conjecture
that at least regions of space-time sheets allow a slicing by string world sheets and partonic
2-surfaces one indeed obtains M4 = Σ × C type structure such that Σ corresponds to string
world sheet and C to partonic 2-surface.

The sigma model -or more generally string theory- would have as a natural target space the
moduli space of the partonic 2-surfaces. This moduli space woudl have as coordinates its con-
formal moduli and the positions of the punctures expressible in terms of the imbedding space
coordinates. For M4 coordinates only the part transversal to Σ would represent physical degree
of freedom and define complex coordinate. Each puncture would give rise to two complex E2

coordinates and 2 pairs of complex CP2 coordinates. If one identifies the string world sheets
as an inverse image of a homologically non-trivial geodesic sphere as suggested in [K37]. This
would eliminate CP2 coordinates as dynamical variables and one would have just n complex
valued coordinates.

2. How to construct the Lie algebra of the effective symmetry group G defining the measurement
resolution? If G is gauge group there is no obvious guess for the recipe. If G defines Kac-Moody
algebra the situation is much better. There exists an extremely general construction allowing a
stringy construction of Kac-Moody algebra using only the elements of its Cartan algebra with
central extension defined by integer valued central extension parameter k. The vertex operators
defining the elements of the complement of the Cartan algebra of complexified Kac-Moody
algebra are ordered exponentials of linear combinations of the Cartan algebra generators with
coefficient given by the weights of the generators, which are essentially the quantum numbers
assignable to them as eigenvalues of Cartan algebra generators acting in adjoint representations.

The explicit expression for the Kac-Moody generator as function of complex coordinate of Rie-
mann sphere S2 is

Jα(z) =: exp(α · φ(z))) : .

Jα(z) represents a generator in the complement of Cartan algebra in standard Cartan basis
having quantum numbers α and φ(z) represents the Cartan algebra generator allowing decom-
position into positive and negative frequency parts. The weights α must have the same length
((α, α) = 2) meaning that the Lie group is simply laced. This representation corresponds to
central extension parameter k = 1. In bosonic string models these operators are problematic
since they represent tachyons but in the recent context this not a problem. The central extension
parameter c for the associated Virasoro representation is also non-vanishing but this should not
be a problem now.

3. What is remarkable that depending on choice of the weights α one obtains a large number of Lie
algebras with same dimension of Cartan algebra. This gives excellent hopes of realizing in finite
measurement resolution in terms of Kac-Moody type algebras obtained as ordered exponentials
of the operators representing quantized complex E2 coordinates. Any complexified simply laced
Lie group would define a Kac-Moody group as a chacterizer of finite measurement resolution.
Simply laced groups correspond by MacKay correspondence finite subgroups of SU(2), which
suggests that only Galois groups representable as subgroups of SU(2) can be realized using this
representation. It however seems that free field representations can be defined for an arbitrary
affine algebra: these representations are discussed by Edward Frenkel [A154].

4. The conformal moduli of the partonic 2-surface define part of the target space. Also they could
play the role of conformal fields on string world sheet. The strong form of holography poses
heavy constraints on these fields and the evolution of the conformal moduli could be completely
fixed once their values at the ends of string world sheets at partonic 2-suraces are known. Are
also the orbits of punctures fixed completely by holography from initial values for ”velocities”
at partonic 2-surfaces corresponding to wormhole throats at which the signature of the metric
changes? If this were the case, stringy dynamics would reduce to that for point like particles
defined by the punctures. This cannot be true and the natural expectation is that just the finite

http://en.wikipedia.org/wiki/Kac-Moody_algebra
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http://www.mathunion.org/ICM/ICM1994.2/Main/icm1994.2.1256.1269.ocr.pdf
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17.4. Langlands conjectures and the most recent view about TGD 877

spatial measurement resolution allows a non-trivial stringy dynamics as quantum fluctuations
below the measurement resolution.

Could the rational values of the coordinates represent the analog of gauge choice? Or could
braid ends be associated with partonic 2-surfaces which represent extrema of Kähler action
in Minkowskian region giving rise to a stationary phase? Kähler action and therefore Chern-
Simons action would depend on the positions of braid points. The condition that string world
sheet identified as the inverse image of homologically non-trivial geodesic sphere of CP2 [K37]
intersects partonic 2-surfaces at braid ends, should be enough to guarantee this. The Kähler
action contains also measurement interaction term [K27] but this term is not localized to braids.

5. The electric-magnetic duality induces S-duality permuting G and LG and the roles of string
world sheet as 2-D space-time and partonic 2-surface defining defining the target manifold of
string model. The moduli spaces of string world sheets and partonic 2-surfaces are in very close
correspondence as implied by the strong form of holography.

How Langlands duality relates to quantum Yangian symmetry of twistor approach?

The are obvious objections against the heuristic considerations represented above.

1. One cannot restrict the attention on single partonic 2-surface or string world sheet. It is the
collection of partonic 2-surfaces at the two light-like boundaries of CD and the string world
sheets which define the geometric structure to which one should assign both the representations
of the Galois group and the collection of world sheets as well as the groups G and LG. Therefore
also the group G defining the measurement resolution should be assigned to the entire structure
and this leaves only single option: G defines the quantum Yangian defining the symmetry of
the theory. If this were not complicated enough, note that one should be also able to take into
account the possibility that there are CDs within CDs.

2. The finite measurement resolution should correspond to the replacement of ordinary Lie group
with something analogous to quantum group. In the simplest situation the components of quan-
tum spinors cease to commute: as a consequence the components correlate and the dimension
of the system is reduced to quantum dimension smaller than the algebraic dimension d = 2.
Ordinary (p, q) wave mechanics is a good example about this: now the dimension of the system
is reduced by a factor two from the dimension of phase space to that of configuration space.

3. Quantum Yangian algebra is indeed an algebra analogous to quantum group and according to
MacKay did not receive the attention that it received as a symmetry of integrable systems be-
cause quantum groups became the industry [A191]. What can one conclude about the quantum
Yangian in finite measurement resolution. One can make only guesses and which can be defended
only by their internal consistency.

(a) Since the basic objects are 2-dimensional, the group G should be actually span Kac-Moody
type symplectic algebra and Kac-Moody algebra associated with the isometries of the
imbedding space: this conforms with the proposed picture. Frenkel has discussed the
relations between affine algebras, Langlands duality, and Bethe ansatz already at previous
millenium [A155].

(b) Finite measurement resolution reduces the partonic 2-surfaces to collections of braid ends.
Does this mean that Lie group defining quantum Yangian group effectively reduces to
something finite-dimensional? Or does the quantum Yangian property already characterize
the measurement resolution as one might conclude from the previous argument? The
simplest guess is that one obtains quantum Yangian containing as a factor the quantum
Yangian associated with a Kac-Moody group defined by a finite-D Lie group with a Cartan
algebra for which dimension equals to the total number of ends of braid strands involved.
Zero energy states would be singlets for this group. This identification conforms with the
general picture.

(c) There is however an objection against the proposal. Yangian algebra contains a formal
complex deformation parameter h but all deformations are equivalent to h = 1 deforma-
tion by a simple re-scaling of the generators labelled by non-negative integers trivial for
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n = 0 generators. Is Yangian after all unable to describe the finite measurement resolu-
tion. This problem could be circumvented by replacing Yangian with so called (twisted)
quantum Yangian characterized by a complex quantum deformation parameter q. The
representations of twisted quantum Yangians are discussed in [A165].

(d) The quantum Yangian group should have also as a factor the quantum Yangian assigned
to the symplectic group and Kac-Moody group for isometries of H with M4 isometries
extended to the conformal group of M4. Finite measurement resolution would be realized
as a q-deformation also in these degrees of freedom.

(e) The proposed identification looks consistent with the general picture but one can also
consider a reduction of continuous Kac-Moody type algebra to its discrete version obtained
by replacing partonic 2-surfaces with the ends of braid strands as an alternative.

4. The appearance of quantum deformation is not new in the context of Langlands conjecture.
Frenkel has proposed Langlands correspondence for both quantum groups [A159], and finite-
dimensional representations of quantum affine algebras [A160].

The representation of Galois group and effective symmetry group as symplectic flow

Langlands duality involves both the Galois group and effective gauge or Kac-Moody groups G and
LG extended to quantum Yangian and defining the automorphic forms and one should understand
how these groups emerge in TGD framework.

1. What is the counterpart of Galois group in TGD? It need not be the gigantic Galois group
of algebraic numbers regarded as an extension of rationals or algebraic extension of rationals.
Here the proposal that infinite primes, integers and rationals are accompanied by collections of
partonic 2-surfaces is very natural. Infinite primes can be mapped to irreducible polynomials
of n variables and one can construct a procedure which assigns to infinite primes a collection of
Galois groups. This collection of Galois groups characterizes a collection of partonic 2-surfaces.

2. How the Galois group is realized and how the symmetry group G realization finite measurement
resolution is realized. How the finite-dimensional representations of Galois group lift to the
finite-dimensional representations of G. The proposal is that Galois group is lifted to its braided
counterpart just like braid group generalizes the symmetric group. One can speak about space-
like and time-like braidings so that one would have two different kind of braidings corresponding
to stringy and partonic pictures and it might be possible to understand the emergence of G
and LG. The symplectic group for the boundary of CD define the isometries of WCW and by
its infinite-dimensionality it is unique candidate for realizing representation of any group as its
subgroup. he braidings are induced by symplectic flows.

3. Obviously also the symmetry groups G and LG should be realized as symplectic flows in ap-
propriate moduli spaces. There are two different symplectic flows corresponding to space-like
and time-like braids so that G and LG can be different and might differ even at the level of Lie
algebra. The common realization of Galois group and symmetry group defining measurement
resolution would imply Langlands duality automatically. The electric magnetic duality would
in turn correspond to the possibility of two kinds of braidings. It must be emphasized that
Langlands duality would be something independent of electric-magnetic duality and basically
due to the realization of group representations as projective representations realized in terms of
braidings. Note that also the automorphic forms define projective representations of G.

Why should the finite Galois group (possibly so!) correspond to Lie group G as it does in number
theoretic Langlands correspondence?

1. The dimension of the representation of Galois group is finite and this dimension would correspond
to the finite dimension for the representation of G defined by the finite-dimensional space in
which G acts. This space is very naturally the moduli space of partonic 2-surfaces with n
punctures corresponding to the n braid ends. A possible additional restriction is that the end
points of braids are only permuted under the action of G. If the representations of the Galois
group indeed automatically lift to the representations of the group defining finite measurement
resolution, then Langlands duality would follow automatically.
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2. The group G would correspond to the Galois group in very much the same manner as finite
subgroups of SU(2) correspond to simply laced Lie groups in MacKay correspondence [A61].
This would generalize Mc Kay correspondence to much more general theorem holding true for
the inclusions of HFFs.

An interesting open question is whether one should consider representations of the collection of
Galois groups assignable to the construction of zeros for polynomials associated with infinite prime
or the gigantic Galois group assignable to algebraic numbers. The latter group could allow naturally
p-adic topology. The notion of finite measurement resolution would strongly suggest that one should
consider the braided counterpart of the finite Galois group. This would give also a direct connection
with the physics in TGD Universe. Langlands correspondence would be basic physics of TGD Universe.

The practical meaning of the geometric Langlands conjecture

This picture seems to lead naturally to number theoretic Langlands conjecture. What geometric
Langlands conjecture means in TGD Universe?

1. What it means to replace the braids with entire partonic 2-surfaces. Should one keep the number
of braid strands constant and allow also non-rational braid ends? What does the number of
rational points correspond at WCW level? How the automorphic forms code the information
about the number of rational surfaces in the intersection?

2. Quantum classical correspondence suggests that this information is represented at space-time
level. Braid ends characterize partonic 2-surfaces in finite measurement resolution. The quantum
state involves a quantum super position of partonic 2-surfaces with the same number of rational
braid strands. Different collections of rational points are of course possible. These collections of
braid ends should be transformed to each other by a discrete algebraic subgroup of the effective
symmetry group G. Suppose that the orbit for a collection of n braid end points contains N
different collections of braid points.

One can construct irreps of a discrete subgroup of the symmetry group G at the orbit. Could
the number N of points at the orbit define the number which could be identified as the number
of rational surfaces in the intersection in the domain of definition of a given WCW spinor field
defined in terms of finite measurement resolution. This would look rather natural definition
and would nicely integrate number theoretic and geometric Langlands conjectures together. For
infinite primes which correspond to polynomials also the Galois groups of local number fields
would also entire the picture naturally.

3. One can of course consider the possibility of replacing them with light-like 3-D surfaces or
space-like 3- surfaces at the ends of causal diamonds but this is not perhaps not essential since
holography implies the equivalence of these identifications. The possible motivation would come
from the observations that vanishing of two holomoprhic functions at the boundary of CD defines
a 3-D surface.

How TGD approach differs from Witten-Kapustin approach?

The basic difference as compared to Witten-Kapustin approach [A180] is that the moduli space for
partonic 2-surfaces replaces in TGD framework the moduli space for Higgs field configurations. Higgs
bundle defined as a holomorphich bundle together with Higgs field is the basic concept. In the simplest
situations Higgs field is not a scalar but holomorphic 1-form at Riemann surface Y (analog of partonic
2-surface) related closely to the gauge potential of M4 = C × Y whose components become scalars
in spontaneous compactiifcation to C. This is in complete analogy with the fact that the values of
1-forms defining the basis of cohomology group for partonic 1-surface for cycles defining the basis of
1-homology define conformal moduli.

A possible interpretation is in terms of geometrization of all gauge fields and Higgs field in TGD
framework. Color and electroweak gauge fields are geometrized in terms of projections of color Killing
vectors and induced spinor connection. Conformal moduli space for the partoic 2-surface would define
the geometrization for the vacuum expectation value of the Higgs field.

One can even argue that dynamical Higgs is not consistent with the notion that the modulus
characterizes entire 2-surfaces. Maybe the introducing of the quantum fluctuating part of Higgs

http://en.wikipedia.org/wiki/ADE_classification
http://arxiv.org/pdf/hep-th/0604151v3
http://www.ams.org/notices/200708/tx070800980p.pdf
http://www.ams.org/notices/200708/tx070800980p.pdf
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field is not appropriate. Also the fact, that for Higgs bundle Higgs is actually 1-form suggests that
something might be wrong with the notion of Higgs field. Concerning Higgs the recent experimental
situation at LHC is critical: it might well turn out that Higgs boson does not exist. In TGD framework
the most natural option is that Higgs like particles exist but all of them are ”eaten” by gauge bosons
meaning that also photon, gluons possess a small mass. Something analogous to the space of Higgs
vacuum expectation values might be however needed and this something could correspond to the
conformal moduli space. In TGD framework the particle massivation is described in terms of p-adic
thermodynamics and the dominant contribution to the mass squared comes from conformal moduli.
It might be possible to interpret this contribution as an average of the contribution coming from
geometrized Higgs field.

One challenge is to understand whether the moduli spaces assignable to partonic 2-surfaces and
with string world sheets are so closely related that they allow the analog of mirror symmetry of
the super-string models relating 6-dimensional Calabi-Yau manifolds. For Calabi-Yau:s the mirror
symmetry exchanges complex and Kähler structures. Could also now something analogous make
sense.

1. Strong form of general coordinate invariance and the notion of preferred extremal implies that
the collection of partonic 2-surfaces fixes the collection of string world sheets (these might
define single connected sheet as a connected sum). This alone suggests that there is a close
correspondence between moduli spaces of the string world sheets and of partonic 2-surfaces.

2. One problem is that space-time sheets in the Minkowskian regions have hyper-complex rather
than complex structure. The analog of Kähler form must represent hypercomplex imaginary
unit and must be an antisymmetric form multiplied by the complex imaginary unit so that its
square equals to the induced metric representing real unit.

3. How the moduli defined by integrals of complex 1-forms over cycles generalize? What one means
with cycles now? How the handle numbers gi of handles for partonic 2-surfaces reveal themselves
in the homology and cohomology of the string world sheet? Do the ends of the string world
sheets at the orbits of a given partonic 2-surface define curves which rotate around the handles
and is the string would sheet a connected structure obtained as topological sum of this kind of
string world sheets. Does the dynamics for preferred extremals of Kähler dictate this?

In the simplest situation (abelian gauge theory) the Higgs bundle corresponds to the upper half
plane defined by the possible values of the inverse of the complexified coupling strength

τ =
θ

2π
+ i

4π

g2
.

Does the transformation for τ defined in this manner make sense?

1. The vacuum functional is the product of exponent of imaginary Kähler action from Minkowskian
regions and exponent of real Kähler action from Euclidian regions appears as an exponent pro-
portional to this kind of parameter. The weak form of electric-magnetic duality reduces Kähler
action to 3-D Chern-Simons terms at light-like wormhole throats plus possible contributions not
assignable to wormhole throats. This realizes the almost topological QFT property of quantum
TGD and also holography and means an enormous calculational simplification. The complexi-
fied Kähler coupling strength emerges naturally as the multiplier of Chern-Simons term if the
latter contributions are not present.

2. There is however no good reason to believe that string world sheets and partonic two-surface
should correspond to the values of τ and−1/τ for a moduli space somehow obtained by gluing the
moduli spaces of string worlds sheets and partonic 2-surfaces. More general modular symmetries
for τ seem also implausible in TGD framework. The weak form of electric magnetic duality leads
to the effective complexification of gauge coupling but there is no reason to give up the idea
about the quantum criticality implying quantization of Kähler coupling strength.

3. From the foregoing it is clear that the identification of G as a Kac-Moody type group extended to
quantum Yangian and assignable to string model in conformal moduli space is strongly favored
interpretation so that the representation of G−LG duality as a transformation of gauge coupling
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does not look plausible. A more plausible interpretation is as a duality between Minkowskian
open string model and Euclidian closed string model with target spaces defined by corresponding
moduli spaces.

4. The notion of finite measurement resolution suggesting strongly quantum group like structure
is what distinguishes TGD approach from Witten’s approach and from the foregoing it is clear
that the identification of G as a group defining Kac-Moody type group assignable to string
model in conformal moduli space and further extended to quantum Yangian is the strongly
favored interpretation so that the representation of G −L G duality as a transformation of
gauge coupling does not look plausible. A more plausible interpretation is as a duality between
Minkowskian open string model and Euclidian closed string model with target spaces defined
by corresponding moduli spaces.

5. In his lecture Edward Frenkel explains that the recent vision about the conformal moduli is as
parameters analogous to gauge coupling constants. It might well be that the moduli could take
the role of gauge couplings. This might allow to have a fresh view to the conjecture that the
lowest three genera are in special role physically because all these Riemann surfaces are hyper-
elliptic (this means global Z2 conformal symmetry) and because for higher genera elementary
particle vacuum functionals vanish for hyper-elliptic Riemann surfaces [K18].

To sum up, the basic differences seem to be due to zero energy ontology, finite measurement reso-
lution, and the identification of space-time as a 4-surface implying strong form of general coordinate
invariance implying electric-magnetic and S-dualities implying also the replacement of Higgs bundle
with the conformal moduli space.

17.4.3 About the structure of the Yangian algebra

The attempt to understand Langlands conjecture in TGD framework led to a completely unexpected
progress in the understanding of the Yangian symmetry expected to be the basic symmetry of quantum
TGD and the following vision suggesting how conformal field theory could be generalized to four-
dimensional context is a fruit of this work.

The structure of the Yangian algebra is quite intricate and in order to minimize confusion easily
caused by my own restricted mathematical skills it is best to try to build a physical interpretation for
what Yangian really is and leave the details for the mathematicians.

1. The first thing to notice is that Yangian and quantum affine algebra are two different quantum
deformations of a given Lie algebra. Both rely on the notion of R-matrix inducing a swap of braid
strands. R-matrix represents the projective representations of the permutation group for braid
strands and possible in 2-dimensional case due to the non-commutativity of the first homotopy
group for 2-dimensional spaces with punctures. The R-matrix Rq(u, v) depends on complex
parameter q and two complex coordinates u, v. In integrable quantum field theories in M2

the coordinates u, v are real numbers having identification as exponentials representing Lorenz
boosts. In 2-D integrable conformal field theory the coordinates u, v have interpretation as
complex phases representing points of a circle. The assumption that the coordinate parameters
are complex numbers is the safest one.

2. For Yangian the R-matrix is rational whereas for quantum affine algebra it is trigonometric.
For the Yangian of a linear group quantum deformation parameter can be taken to be equal
to one by a suitable rescaling of the generators labelled by integer by a power of the complex
quantum deformation parameter q. I do not know whether this true in the general case. For the
quantum affine algebra this is not possible and in TGD framework the most interesting values
of the deformation parameter correspond to roots of unity.

Slicing of space-time sheets to partonic 2-surfaces and string world sheets

The proposal is that the preferred extremals of Kähler action are involved in an essential manner the
slicing of the space-time sheets by partonic 2-surfaces and string world sheets. Also an analogous slicing
of Minkowski space is assumed and there are infinite number of this kind of slicings defining what I
have called Hamilton-Jaboci coordinates [K10]. What is really involved is far from clear. For instance,
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I do not really understand whether the slicings of the space-time surfaces are purely dynamical or
induced by special coordinatizations of the space-time sheets using projections to special kind of sub-
manifolds of the imbedding space, or are these two type of slicings equivalent by the very property
of being a preferred extremal. Therefore I can represent only what I think I understand about the
situation.

1. What is needed is the slicing of space-time sheets by partonic 2-surfaces and string world sheets.
The existence of this slicing is assumed for the preferred extremals of Kähler action [K10].
Physically the slicing corresponds to an integrable decomposition of the tangent space of space-
time surface to 2-D space representing non-physical polarizations and 2-D space representing
physical polarizations and has also number theoretical meaning.

2. In zero energy ontology the complex coordinate parameters appearing in the generalized con-
formal fields should correspond to coordinates of the imbedding space serving also as local
coordinates of the space-time surface. Problems seem to be caused by the fact that for string
world sheets hyper-complex coordinate is more natural than complex coordinate. Pair of hyper-
complex and complex coordinate emerge naturally as Hamilton-Jacobi coordinates for Minkowski
space encountered in the attempts to understand the construction of the preferred extremals of
Kähler action.

Also the condition that the flow lines of conserved isometry currents define global coordinates
lead to the to the analog of Hamilton-Jacobi coordinates for space-time sheets [K10]. The
physical interpretation is in terms of local polarization plane and momentum plane defined by
local light-like direction. What is so nice that these coordinates are highly unique and determined
dynamically.

3. Is it really necessary to use two complex coordinates in the definition of Yangian-affine conformal
fields? Why not to use hyper-complex coordinate for string world sheets? Since the inverse
of hyper-complex number does not exist when the hyper-complex number is light-like, hyper-
complex coordinate should appear in the expansions for the Yangian generalization of conformal
field as positive powers only. Intriguingly, the Yangian algebra is ”one half” of the affine algebra
so that only positive powers appear in the expansion. Maybe the hyper-complex expansion works
and forces Yangian-affine instead of doubly affine structure. The appearance of only positive
conformal weights in Yangian sector could also relate to the fact that also in conformal theories
this restriction must be made.

4. It seems indeed essential that the space-time coordinates used can be regarded as imbedding
space coordinates which can be fixed to a high degree by symmetries: otherwise problems with
general coordinate invariance and with number theoretical universality would be encountered.

5. The slicing by partonic 2-surfaces could (but need not) be induced by the slicing of CD by
parallel translates of either upper or lower boundary of CD in time direction in the rest frame
of CD (time coordinate varying in the direction of the line connecting the tips of CD). These
slicings are not global. Upper and lower boundaries of CD would definitely define analogs of
different coordinate patches.

Physical interpretation of the Yangian of quantum affine algebra

What the Yangian of quantum affine algebra or more generally, its super counterpart could mean in
TGD framework? The key idea is that this algebra would define a generalization of super conformal
algebras of super conformal field theories as well as the generalization of super Virasoro algebra.
Optimist could hope that the constructions associated with conformal algebras generalize: this includes
the representation theory of super conformal and super Virasoro algebras, coset construction, and
vertex operator construction in terms of free fields. One could also hope that the classification of
extended conformal theories defined in this manner might be possible.

1. The Yangian of a quantum affine algebra is in question. The heuristic idea is that the two R-
matrices - trigonometric and rational- are assignable to the swaps defined by space-like braidings
associated with the braids at 3-D space-like ends of space-time sheets at light-like boundaries
of CD and time like braidings associated with the braids at 3-D light-like surfaces connecting
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partonic 2-surfaces at opposite light-like boundaries of CD. Electric-magnetic duality and S-
duality implied by the strong form of General Coordinate Invariance should be closely related to
the presence of two R-matrices. The first guess is that rational R-matrix is assignable with the
time-like braidings and trigonometric R-matrix with the space-like braidings. Here one must or
course be very cautious.

2. The representation of the collection of Galois groups associated with infinite primes in terms
of braided symplectic flows for braid of braids of .... braids implies that there is a hierarchy of
swaps: swaps can also exchange braids of ...braids. This would suggest that at the lowest level of
the braiding hierarchy the R-matrix associated with a Kac-Moody algebra permutes two braid
strands which decompose to braids. There would be two different braided variants of Galois
groups.

3. The Yangian of the affine Kac-Moody algebra could be seen as a 4-D generalization of the 2-D
Kac-Moody algebra- that is a local algebra having representation as a power series of complex
coordinates defined by the projections of the point of the space-time sheet to geodesic spheres
of light-cone boundary and geodesic sphere of CP2.

4. For the Yangian the generators would correspond to polynomials of the complex coordinate of
string world sheet and for quantum affine algebra to Laurent series for the complex coordinate
of partonic 2-surface. What the restriction to polynomials means is not quite clear. Witten
sees Yangian as one half of Kac-Moody algebra containing only the generators having n ≥
0. This might mean that the positivity of conformal weight for physical states essential for
the construction of the representations of Virasoro algebra would be replaced with automatic
positivity of the conformal weight assignable to the Yangian coordinate.

5. Also Virasoro algebra should be replaced with the Yangian of Virasoro algebra or its quantum
counterpart. This construction should generalize also to Super Virasoro algebra. A gener-
alization of conformal field theory to a theory defined at 4-D space-time surfaces using two
preferred complex coordinates made possible by surface property is highly suggestive. The
generalization of conformal field theory in question would have two complex coordinates and
conformal invariance associated with both of them. This would therefore reduce the situation to
effectively 2-dimensional one rather than 3-dimensional: this would be nothing but the effective
2-dimensionality of quantum TGD implied by the strong form of General Coordinate Invariance.

6. This picture conforms with what the generalization of D = 4 N = 4 SYM by replacing point like
particles with partonic 2-surfaces would suggest: Yangian is replaced with Yangian of quantum
affine algebra rather than quantum group. Note that it is the finite measurement resolution
alone which brings in the quantum parameters q1 and q2. The finite measurement resolution
might be relevant for the elimination of IR divergences.

How to construct the Yangian of quantum affine algebra?

The next step is to try to understand the construction of the Yangian of quantum affine algebra.

1. One starts with a given Lie group G. It could be the group of isometries of the imbedding space
or subgroup of it or even the symplectic group of the light-like boundary of CD×CP2 and thus
infinite-dimensional. It could be also the Lie group defining finite measurement resolution with
the dimension of Cartan algebra determined by the number of braid strands.

2. The next step is to construct the affine algebra (Kac-Moody type algebra with central extension).
For the group defining the measurement resolution the scalar fields assigned with the ends of
braid strands could define the Cartan algebra of Kac-Moody type algebra of this group. The
ordered exponentials of these generators would define the charged generators of the affine algebra.

For the imbedding space isometries and symplectic transformations the algebra would be ob-
tained by localizing with respect to the internal coordinates of the partonic 2-surface. Note that
also a localization with respect to the light-like coordinate of light-cone boundary or light-like
orbit of partonic 2-surface is possible and is strongly suggested by the effective 2-dimensionality
of light-like 3-surfaces allowing extension of conformal algebra by the dependence on second real
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coordinate. This second coordinate should obviously correspond to the restriction of second
complex coordinate to light-like 3-surface. If the space-time sheets allow slicing by partonic
2-surfaces and string world sheets this localization is possible for all 2-D partonic slices of space-
time surface.

3. The next step is quantum deformation to quantum affine algebra with trigonometric R-matrix
Rq1(u, v) associated with space-like braidings along space-like 3-surfaces along the ends of CD. u
and v could correspond to the values of a preferred complex coordinate of the geodesic sphere of
light-cone boundary defined by rotational symmetry. It choice would fix a preferred quantization
axes for spin.

4. The last step is the construction of Yangian using rational R-matrix Rq2(u, v). In this case
the braiding is along the light-like orbit between ends of CD. u and v would correspond to
the complex coordinates of the geodesic sphere of CP2. Now the preferred complex coordinate
would fix the quantization axis of color isospin.

These arguments are of course heuristic and do not satisfy any criteria of mathematical rigor
and the details could of course change under closer scrutinity. The whole point is in the attempt to
understand the situation physically in all its generality.

How 4-D generalization of conformal invariance relates to strong form of general coor-
dinate invariance?

The basic objections that one can rise to the extension of conformal field theory to 4-D context come
from the successes of p-adic mass calculations. p-Adic thermodynamics relies heavily on the properties
of partition functions for super-conformal representations. What happens when one replaces affine
algebra with (quantum) Yangian of affine algebra? Ordinary Yangian involves the original algebra and
its dual and from these higher multilocal generators are constructed. In the recent case the obvious
interpretation for this would be that one has Kac-Moody type algebra with expansion with respect
to complex coordinate w for partonic 2-surfaces and its dual algebra with expansion with respect to
hyper-complex coordinate of string world sheet.

p-Adic mass calculations suggest that the use of either algebra is enough to construct single particle
states. Or more precisely, local generators are enough. I have indeed proposed that the multilocal
generators are relevant for the construction of bound states. Also the strong form of general coordinate
invariance implying strong form of holography, effective 2-dimensionality, electric-magnetic duality and
S-duality suggests the same. If one could construct the states representing elementary particles solely
in terms of either algebra, there would be no danger that the results of p-adic mass calculations are
lost. Note that also the necessity to restrict the conformal weights of conformal representations to be
non-negative would have nice interpretation in terms of the duality.

17.4.4 Summary and outlook

It is good to try to see the relationship between Langlands program and TGD from a wider perspective
and relate it to other TGD inspired views about problems of what I would call recent day physical
mathematics. I try also to become (and remain!) conscious about possible sources of inconsistencies
to see what might go wrong.

I see the attempt to understand the relation between Langlands program and TGD as a part of a
bigger project the goal of which is to relate TGD to physical mathematics. The basic motivations come
from the mathematical challenges of TGD and from the almost-belief that the beautiful mathematical
structures of the contemporary physical mathematics must be realized in Nature somehow.

The notion of infinite prime is becoming more and more important concept of quantum TGD and
also a common denominator. The infinite-dimensional symplectic group acting as the isometry group
of WCW geometry and symplectic flows seems to be another common denominator. Zero energy
ontology together with the notion of causal diamond is also a central concept. A further common
denominator seems to be the notion of finite measurement resolution allowing discretization. Strings
and super-symmetry so beautiful notions that it is difficult to imagine physics without them although
super string theory has turned out to be a disappointment in this respect. In the following I mention
just some examples of problems that I have discussed during this year.
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Infinite primes are certainly something genuinely TGD inspired and it is reasonable to consider
their possible role in physical mathematics.

1. The set theoretic view about the fundamentals of mathematics is inspired by classical physics.
Cantor’s view about infinite ordinals relies on set theoretic representation of ordinals and is
plagued by difficulties (say Russel’s paradox) [K76]. Infinite primes provide an alternative to
Cantor’s view about infinity based on divisility alone and allowing to avoid these problems.
Infinite primes are obtained by a repeated second quantization of an arithmetic quantum field
theory and can be seen as a notion inspired by quantum physics. The conjecture is that quantum
states in TGD Universe can be labelled by infinite primes and that standard model symmetries
can be understood in terms of octonionic infinite primes defined in appropriate manner.

The replacement of ordinals with infinite primes would mean a modification of the fundamentals
of physical mathematics. The physicists’s view about the notion set is also much more restricted
than the set theoretic view. Subsets are typically manifolds or even algebraic varieties and they
allow description in terms of partial differential equations or algebraic equations.

Boolean algebra is the quintessence of mathematical logic and TGD suggests that quantum
Boolean algebra should replace Boolean algebra [K76]. The representation would be in terms
of fermionic Fock states and in zero energy ontology fermionic parts of the state would define
Boolean states of form A → B. This notion might be useful for understanding the physical
correlates of Boolean cognition and might also provide insights about fundamentals of physical
mathematics itself. Boolean cognition must have space-time correlates and this leads to a space-
time description of logical OR resp. AND as a generalization of trouser diagram of string models
resp. fusion along ends of partonic 2-surfaces generalizing the 3-vertex of Feyman diagrammatics.
These diagrams would give rise to fundamental logic gates.

2. Infinite primes can be represented using polynomials of several variables with rational coefficients
[K76]. One can solve the zeros of these polynomials iteratively. At each step one can identify a
finite Galois group permuting the roots of the polynomial (algebraic function in general). The
resulting Galois groups can be arranged into a hierarchy of Galois groups and the natural idea
is that the Galois groups at the upper levesl act as homomorphisms of Galois groups at lower
levels. A generalization of homology and cohomology theories to their non-Abelian counterparts
emerges [K89]: the square of the boundary operation yields unit element in normal homology
but now an element in commutator group so that abelianization yields ordinary homology. The
proposal is that the roots are represented as punctures of the partonic 2-surfaces and that braids
represent symplectic flows representing the braided counterpars of the Galois groups. Braids of
braids of.... braids structrure of braids is inherited from the hierarchical structure of infinite
primes.

That braided Galois groups would have a representation as symplectic flows is exactly what
physics as generalized number theory vision suggests and is applied also to understand Langlands
conjectures. Langlands program would be modified in TGD framework to the study of the
complexes of Galois groups associated with infinite primes and integers and have direct physical
meaning.

The notion of finite measurement resolution realized at quantum level as inclusions of hyper-finite
factors and at space-time level in terms of braids replacing the orbits of partonic 2-surfaces - is also
a purely TGD inspired notion and gives good hopes about calculable theory.

1. The notion of finite measurement resolution leads to a rational discretization needed by both
the number theoretic and geometric Langlands conjecture. The simplest manner to understand
the discretization is in terms of extrema of Chern-Simons action if they correspond to ”rational”
surfaces. The guess that the rational surfaces are dense in the WCW just as rationals are
dense in various number fields is probably quite too optimistic physically. Algebraic partonic
2-surfaces containin typically finite number of rational points having interpretation in terms of
finite measurement resolution. Same might apply to algebraic surfaces as points of WCW in
given quantum state.

2. The charged generators of the Kac-Moody algebra associated with the Lie group G defining
measurement resolution correspond to tachyonic momenta in free field reprsesentation using
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ordered exponentials. This raises unpleasant question. One should have also a realization for
the coset construction in which Kac-Moody variant of the symplectic group of δM4

± and Kac-
Moody algebra of isometry group of H assignable to the light-like 3-surfaces (isometries at the
level of WCW resp. H) define a coset representation. Equivalence Principle generalizes to
the condition that the actions of corresponding super Virasoro algebras are identical. Now the
momenta are however non-tachyonic.

How these Kac-Moody type algebras relate? From p-adic mass calculations it is clear that the
ground states of super-conformal representations have tachyonic conformal weights. Does this
mean that the ground states can be organized into representations of the Kac-Moody algebra
representing finite measurement resolution? Or are the two Kac-Moody algebra like structures
completely independent. This would mean that the positions of punctures cannot correspond
to the H-coordinates appearing as arguments of sympletic and Kac-Moody algebra giving rise
to Equivalence Principle. The fact that the groups associated with algebras are different would
allow this.

TGD is a generalization of string models obtained by replacing strings with 3-surfaces. Therefore
it is not surprising that stringy structures should appear also in TGD Universe and the strong form of
general coordinate invariance indeed implies this. As a matter fact, string like objects appear also in
various applications of TGD: consider only the notions of cosmic string [K21] and nuclear string [L5].
Magnetic flux tubes central in TGD inspired quantum biology making possible topological quantum
computation [K25] represent a further example.

1. What distinguishes TGD approach from Witten’s approach is that twisted SUSY is replaced by
string model like theory with strings moving in the moduli space for partonic 2-surfaces or string
world sheets related by electric-magnetic duality. Higgs bundle is replaced with the moduli space
for punctured partonic 2-surfaces and its electric dual for string world sheets. The new element
is the possibility of trouser vertices and generalization of 3-vertex if Feynman diagrams having
interpretation in terms of quantum Boolean algebra.

2. Stringy view means that all topologies of partonic 2-surfaces are allowed and that also quantum
superpositions of different topologies are allowed. The restriction to single topology and fixed
moduli would mean sigma model. Stringy picture requires quantum superposition of different
moduli and genera and this is what one expects on physical grounds. The model for CKM
mixing indeed assumes that CKM mixing results from different topological mixings for U and D
type quarks [K55] and leads to the notion of elementary particle vacuum functional identifiable
as a particular automorphic form [K18].

3. The twisted variant of N = 4 SUSY appears as TQFT in many mathematical applications
proposed by Witten and is replaced in TGD framework by the stringy picture. Supersymmetry
would naturally correspond to the fermionic oscillator operator algebra assignable to the partonic
2-surfaces or string world sheet and SUSY would be broken.

When I look what I have written about various topics during this year I find that symplectic
invariance and symplectic flows appear repeatedly.

1. Khovanov homology provides very general knot invariants. In [?] rephrased Witten’s formulation
about Khovanov homology as TQFT in TGD framework. Witten’s TQFT is obtained by twisting
a 4-dimensional N = 4 SYM. This approach generalizes the original 3-D Chern-Simons approach
of Witten. Witten applies twisted 4-D N = 4 SYM also to geometric Langlands program and
to Floer homology.

TGD is an almost topological QFT so that the natural expectation is that it yields as a side
product knot invariants, invariants for braiding of knots, and perhaps even invariants for 2-knots:
here the dimension D = 4 for space-time surface is crucial. One outcome is a generalization of the
notion of Wilson loop to its 2-D variant defined by string world sheetw and a unique identification
of string world sheet for a given space-time surface. The duality between the descriptions based
on string world sheets and partonic 2-surfaces is central. I have not yet discussed the implications
of the conjectures inpired by Langlands program for the TGD inspired view about knots.

http://en.wikipedia.org/wiki/Khovanov_homology
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2. Floer homology generalizes the usual Morse theory and is one of the applications of topological
QFTs discussed by Witten using twisted SYM. One studies symplectic flows and the basic objects
are what might regarded as string world sheets referred to as pseudo-holomorphic surfaces. It
is now wonder that also here TGD as almost topological QFT view leads to a generalization of
the QFT vision about Floer homology [K89]. The new result from TGD point of view was the
realization that the naivest possible interpretation for Kähler action for a preferred extremal
is correct. The contribution to Kähler action from Minkowskian regions of space-time surface
is imaginary and has identification as Morse function whereas Euclidian regions give the real
contribution having interpretation as Kähler function. Both contributions reduce to 3-D Chern-
Simons terms and under certain additional assumptions only the wormhole throats at which the
signature of the induced metric changes from Minkowskian to Euclidian contribute besides the
space-like regions at the ends of the space-time surface at the light-like boundaries of CD.

3. Gromov-Witten invariants are closely related to Floer homology and their definition involves
quantum cohomology in which the notion of intersection for two varieties is more general taking
into account ”quantum fuzzines”. The stringy trouser vertex represent the basic diagram: the
incoming string world sheets intersect because they can fuse to single string world sheet. Amaz-
ingy, this is just that OR in quantum Boolean algebra suggested by TGD. Another diagram
would be and responsible for genuine particle reactions in TGD framework. There would be a
direct connection with quantum Boolean algebra.

Number theoretical universality is one of the corner stones of the vision about physics as generalized
number theory. One might perhaps say that a similar vision has guided Grothendieck and his followers.

1. The realization of this vision involves several challenges. One of them is definition of p-adic
integration. At least integration in the sense of comology is needed and one might also hope
that numerical approach to integration exists. It came as a surprise to me that something
very similar to number theoretical universality has inspired also mathematicians and that there
exist refined theories inspired by the notion of motive introduced by Groethendieck to to define
universal cohomology applying in all number fields. One application and also motivation for
taking motives very seriously is notivic integration which has found applications in in physics as
a manner to calculate twistor space integrals defining scattering amplitudes in twistor approach
to N = 4 SUSY. The essence of motivic integral is that integral is an algebraic operation
rather than defined by a measure. One ends up with notions like scissor group and integration
as processing of symbols. This is of course in spirit with number theoretical approach where
integral as measure is replaced with algebraic operation. The problem is that numerics made
possible by measure seems to be lost.

2. The TGD inspired proposal for the definition of p-adic integral relies on number theoretical
universality reducing the integral essentially to integral in the rational intersection of real and
p-adic worlds. An essential role is played at the level of WCW by the decomposition of WCW
to a union of symmetric spaces allowing to define what the p-adic variant of WCW is. Also this
would conform with the vision that infinite-dimensional geometric existence is unique just from
the requirement that it exists. One can consider also the possibility of having p-adic variant of
numerical integration [K89].

Twistor approach has led to the emergence of motives to physics and twistor approach is also what
gives hopes that some day quantum TGD could be formulated in terms of explicit Feynman rules or
their twistorial generalization [K86, K88].

1. The Yangian symmetry and its quantum counterpart were discovered first in integrable quantum
theories is responsible for the success fo the twistorial approach. What distinguishes Yangian
symmetry from standard symmetries is that the generators of Lie algebra are multilocal. Yangian
symmetry is generalized in TGD framework since point like particles are replaced by partonic
2-surfaces meaning that Lie group is replaced with Kac-Moody group or its generalization.
Finite measurement resolution however replaces them with discrete set of points definining braid
strands so that a close connection with twistor approach and ordinary Yangian symmetry is
suggestive in finite measurement resolution. Also the fact that Yangian symmetry relates closely
to topological string models supports the expectation that the proposed stringy view about
quantum TGD could allow to formulate twistorial approach to TGD.

http://en.wikipedia.org/wiki/Floer_homology
http://en.wikipedia.org/wiki/Gromov–Witten_invariant
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2. The vision about finite measurement resolution represented in terms of effective Kac-Moody
algebra defined by a group with dimension of Cartan algebra given by the number of braid strands
must be consistent with the twistorial picture based on Yangians and this requires extension to
Yangian algebra- as a matter to quantum Yangian. In this picture one cannot speak about single
partonic 2-surface alone and the same is true about the TGD based generalization of Langlands
probram. Collections of two-surfaces and possibly also string world sheets are always involved.
Multilocality is also required by the basic properties of quantum states in zero energy ontology.

3. The Kac-Moody group extended to quantum Yangian and defining finite measurement resolu-
tion would naturally correspond to the gauge group of N = 4 SUSY and braid points to the
arguments of N -point functions. The new element would be representation of massive particles
as bound states of massles particles giving hopes about cancellation of IR divergences and about
exact Yangian symmetry. Second new element would be that virtual particles correspond to
wormholes for which throats are massless but can have different momenta and opposite signs
of energies. This implies that absence of UV divergences and gives hopes that the number of
Feynman diagrams is effectively finite and that there is simple expression of twistorial diagrams
in terms of Feynman diagrams [K88].

17.5 Appendix

17.5.1 Hecke algebra and Temperley-Lieb algebra

Braid group is accompanied by several algebras. For Hecke algebra, which is particular case of braid
algebra, one has

en+1enen+1 = enen+1en ,

e2
n = (t− 1)en + t . (17.5.0)

The algebra reduces to that for symmetric group for t = 1.
Hecke algebra can be regarded as a discrete analog of Kac Moody algebra or loop algebra with

G replaced by Sn. This suggests a connection with Kac-Moody algebras and imbedding of Galois
groups to Kac-Moody group. t = pn corresponds to a finite field. Fractal dimension t = M : N
relates naturally to braid group representations: fractal dimension of quantum quaternions might
be appropriate interpretation. t=1 gives symmetric group. Infinite braid group could be seen as a
quantum variant of Galois group for algebraic closure of rationals.

Temperley-Lieb algebra assignable with Jones inclusions of hyper-finite factors of type II1 with
M : N < 4 is given by the relations

en+1enen+ 1 = en+1

enen+1en = en ,

e2
n = ten , , t = −

√
M : N = −2cos(π/n) , n = 3, 4, ... (17.5.-1)

The conditions involving three generators differ from those for braid group algebra since en are now
proportional to projection operators. An alternative form of this algebra is given by

en+1enen+ 1 = ten+1

enen+1en = ten ,

e2
n = en = e∗n , , t = −

√
M : N = −2cos(π/n) , n = 3, 4, ... (17.5.-2)

This representation reduces to that for Temperley-Lieb algebra with obvious normalization of
projection operators. These algebras are somewhat analogous to function fields but the value of coor-
dinate is fixed to some particular values. An analogous discretization for function fields corresponds
to a formation of number theoretical braids.
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17.5.2 Some examples of bi-algebras and quantum groups

The appendix summarizes briefly the simplest bi- and Hopf algebras and some basic constructions
related to quantum groups.

Simplest bi-algebras

Let k(x1, .., xn) denote the free algebra of polynomials in variables xi with coefficients in field k. xi
can be regarded as points of a set. The algebra Hom(k(x1, ..., xn), A) of algebra homomorphisms
k(x1, ..., xn) → A can be identified as An since by the homomorphism property the images f(xi)
of the generators x1, ...xn determined the homomorphism completely. Any commutative algebra A
can be identified as the Hom(k[x], A) with a particular homomorphism corresponding to a line in A
determined uniquely by an element of A.

The matrix algebra M(2) can be defined as the polynomial algebra k(a, b, c, d). Matrix multi-
plication can be represented universally as an algebra morphism ∆ from from M2 = k(a, b, c, d) to
M⊗2

2 = k(a′, a′′, b′, b′′, c′, c′′, d′, d′′) to k(a, b, c, d) in matrix form as

∆

(
a b
c d

)
=

(
a′ b′

c′ d′

)(
a′′ b′′

c′′ d′′

)
.

This morphism induces algebra multiplication in the matrix algebra M2(A) for any commutative
algebra A.

M(2), GL(2) and SL(2) provide standard examples about bi-algebras. SL(2) can be defined as
a commutative algebra by dividing free polynomial algebra k(a, b, c, d) spanned by the generators
a, b, c, d by the ideal det− 1 = ad− bc− 1 = 0 expressing that the determinant of the matrix is one.
In the matrix representation µ and η are defined in obvious manner and µ gives powers of the matrix

A =

(
a b
c d

)
.

∆, counit ε, and antipode S can be written in case of SL(2) as(
∆(a) ∆(b)
∆(c) ∆(d)

)
=

(
a b
c d

)
⊗
(
a b
c d

)
,

(
ε(a) ε(b)
ε(c) ε(d)

)
=

(
1 0
0 1

)
.

S

(
a b
c d

)
= (ad− bc)−1

(
d −b
−c a

)
.

Note that matrix representation is only an economical manner to summarize the action of ∆ on the
generators a, b, c, d of the algebra. For instance, one has ∆(a) = a → a ⊗ a + b ⊗ c. The resulting
algebra is both commutative and co-commutative.

SL(2)q can be defined as a Hopf algebra by dividing the free algebra generated by elements a, b, c, d
by the relations

ba = qab , db = qbd ,
ca = qac , dc = qcd ,
bc = cb , ad− da = (q−1 − 1)bc ,

and the relation

detq = ad− q−1bc = 1

stating that the quantum determinant of SL(2)q matrix is one.

µ, η,∆, ε are defined as in the case of SL(2). Antipode S is defined by

S

(
a b
c d

)
= det−1

q

(
d −qb

−q−1c a

)
.
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The relations above guarantee that it defines quantum inverse of A. For q an nth root of unity,
S2n = id holds true which signals that these parameter values are somehow exceptional. This result
is completely general.

Given an algebra, the R point of SLq(2) is defined as a four-tuple (A,B,C,D) in R4 satisfying
the relations defining the point of SLq(2). One can say that R-points provide representations of the
universal quantum algebra SLq(2).

Quantum group Uq(sl(2))

Quantum group Uq(sl(2)) or rather, quantum enveloping algebra of sl(2), can be constructed by
applying Drinfeld’s quantum double construction (to avoid confusion note that the quantum Hopf
algebra associated with SL(2) is the quantum analog of a commutative algebra generated by powers
of a 2× 2 matrix of unit determinant).

The commutation relations of sl(2) read as

[X+, X−] = H , [H,X±] = ±2X± . (17.5.-1)

Uq(sl(2)) allows co-algebra structure given by

∆(J) = J ⊗ 1 + 1⊗ J , S(J) = −J , ε(J) = 0 , J = X±, H ,

S(1) = 1 , ε(1) = 1 .
(17.5.0)

The enveloping algebras of Borel algebras U(B±) generated by {1, X+, H} {1, X−, hH} define the
Hopf algebra H and its dual H? in Drinfeld’s construction. h could be called Planck’s constant
vanishes at the classical limit. Note that H? reduces to {1, X−} at this limit. Quantum deformation
parameter q is given by exp(2h). The duality map ? : H → H? reads as

a→ a? , ab = (ab)? = b?a? ,
1→ 1 , H → H? = hH , X+ → (X+)? = hX− .

(17.5.1)

The commutation relations of Uq(sl(2) read as

[X+, X−] = qH−q−H
q−q−1 , [H,X±] = ±2X± . (17.5.2)

Co-product ∆, antipode S, and co-unit ε differ from those U(sl(2)) only in the case of X±:

∆(X±) = X± ⊗ qH/2 + q−H/2 ⊗X± ,

S(X±) = −q±1X± .
(17.5.3)

When q is not a root of unity, the universal R-matrix is given by

R = q
H⊗H

2

∑∞
n=0

(1−q−2)n

[n]q !
q
n(1−n)

2 q
nH
2 Xn

+ ⊗ q−
nH
2 Xn

− . (17.5.4)

When q is m:th root of unity the q-factorial [n]q! vanishes for n ≥ m and the expansion does not make
sense.

For q not a root of unity the representation theory of quantum groups is essentially the same
as of ordinary groups. When q is mth root of unity, the situation changes. For l = m = 2n nth

powers of generators span together with the Casimir operator a sub-algebra commuting with the
whole algebra providing additional numbers characterizing the representations. For l = m = 2n + 1
same happens for mth powers of Lie-algebra generators. The generic representations are not fully
reducible anymore. In the case of Uq(sl(2)) irreducibility occurs for spins n < l only. Under certain
conditions on q it is possible to decouple the higher representations from the theory. Physically the
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reduction of the number of representations to a finite number means a symmetry analogous to a
gauge symmetry. The phenomenon resembles the occurrence of null vectors in the case of Virasoro
and Kac Moody representations and there indeed is a deep connection between quantum groups and
Kac-Moody algebras [A131].

One can wonder what is the precise relationship between Uq(sl(2) and SLq(2) which both are
quantum groups using loose terminology. The relationship is duality. This means the existence of a
morphism x→ Ψ(x) Mq(2)→ U?q defined by a bilinear form 〈u, x〉 = Ψ(x)(u) on Uq ×Mq(2), which
is bi-algebra morphism. This means that the conditions

〈uv, x〉 = 〈u⊗ v,∆(x)〉 , 〈u, xy〉 = 〈∆(u), x⊗ y〉 ,

〈1, x〉 = ε(x) , 〈u, 1〉 = ε(u)

are satisfied. It is enough to find Ψ(x) for the generators x = A,B,C,D of Mq(2) and show that the
duality conditions are satisfied. The representation

ρ(E) =

(
0 1
0 0

)
, ρ(F ) =

(
0 0
1 0

)
, ρ(K = qH) =

(
q 0
0 q−1

)
,

extended to a representation

ρ(u) =

(
A(u) B(u)
C(u) D(u)

)
of arbitrary element u of Uq(sl(2) defines for elements in U?q . It is easy to guess thatA(u), B(u), C(u), D(u),
which can be regarded as elements of U?q , can be regarded also as R points that is images of the gen-
erators a, b, c, d of SLq(2) under an algebra morphism SLq(2)→ U?q .

General semisimple quantum group

The Drinfeld’s construction of quantum groups applies to arbitrary semi-simple Lie algebra and is
discussed in detail in [A131]. The construction relies on the use of Cartan matrix.

Quite generally, Cartan matrix A = {aij} is n× n matrix satisfying the following conditions:
i) A is indecomposable, that is does not reduce to a direct sum of matrices.
ii) aij ≤ 0 holds true for i < j.
iii) aij = 0 is equivalent with aij = 0.
A can be normalized so that the diagonal components satisfy aii = 2.
The generators ei, fi, ki satisfying the commutations relations

kikj = kjki , kiej = q
aij
i ejki ,

kifj = q
−aij
i ejki , eifj − fjei = δij

ki−k−1
i

qi−q−1
i

,
(17.5.5)

and so called Serre relations

∑1−aij
l=0 (−1)l

[
1− aij

l

]
qi

e
1−aij−l
i eje

l
i = 0, i 6= j ,∑1−aij

l=0 (−1)l
[

1− aij
l

]
qi

f
1−aij−l
i fjf

l
i = 0 , i 6= j .

(17.5.6)

Here qi = qDi where one has Diaij = aijDi. Di = 1 is the simplest choice in this case.
Comultiplication is given by

∆(ki) = ki ⊗ ki , (17.5.7)

∆(ei) = ei ⊗ ki + 1⊗ ei , (17.5.8)

∆(fi) = fi ⊗ 1 + k−1
i ⊗ 1 . (17.5.9)

(17.5.10)



892 Chapter 17. Langlands Program and TGD

The action of antipode S is defined as

S(ei) = −eik−1
i , S(fi) = −kifi , S(ki) = −k−1

i . (17.5.11)

Quantum affine algebras

The construction of Drinfeld and Jimbo generalizes also to the case of untwisted affine Lie algebras,
which are in one-one correspondence with semisimple Lie algebras. The representations of quantum
deformed affine algebras define corresponding deformations of Kac-Moody algebras. In the following
only the basic formulas are summarized and the reader not familiar with the formalism can consult a
more detailed treatment can be found in [A131].

1. Affine algebras

The Cartan matrix A is said to be of affine type if the conditions det(A) = 0 and aijaji ≥ 4 (no
summation) hold true. There always exists a diagonal matrix D such that B = DA is symmetric and
defines symmetric bilinear degenerate metric on the affine Lie algebra.

The Dynkin diagrams of affine algebra of rank l have l+ 1 vertices (so that Cartan matrix has one
null eigenvector). The diagrams of semisimple Lie-algebras are sub-diagrams of affine algebras. From
the (l + 1)× (l + 1) Cartan matrix of an untwisted affine algebra Â one can recover the l × l Cartan
matrix of A by dropping away 0:th row and column.

For instance, the algebra A1
1, which is affine counterpart of SL(2), has Cartan matrix aij

A =

(
2 −2
−2 2

)
with a vanishing determinant.

Quite generally, in untwisted case quantum algebra Uq(Ĝl) as 3(l + 1) generators ei, fi, ki (i =
0, 1, .., l) satisfying the relations of Eq. 17.5.6 for Cartan matrix of G(1). Affine quantum group is
obtained by adding to Uq(Ĝl) a derivation d satisfying the relations

[d, ei] = δi0ei , [d, fi] = δi0fi, [d, ki] = 0 . (17.5.12)

with comultiplication ∆(d) = d⊗ 1 + 1⊗ d.

2. Kac Moody algebras

The undeformed extension Ĝl associated with the affine Cartan matrix G(1)
l is the Kac Moody

algebra associated with the group G obtained as the central extension of the corresponding loop
algebra. The loop algebra is defined as

L(G) = G ⊗ C
[
t, t−1

]
, (17.5.13)

where C
[
t, t−1

]
is the algebra of Laurent polynomials with complex coefficients. The Lie bracket is

[x× P, y ⊗Q] = [x, y]⊗ PQ . (17.5.14)

The non-degenerate bilinear symmetric form (, ) in Gl induces corresponding form in L(Gl) as (x ⊗
P, y ⊗Q) = (x, y)PQ.

A two-cocycle on L(Gl) is defined as

Ψ(a, b) = Res(
da

dt
, b) , (17.5.15)

where the residue of a Laurent is defined as Res(
∑
n ant

n) = a−1. The two-cocycle satisfies the
conditions
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Ψ(a, b) = −Ψ(b, a) ,

Ψ([a, b] , c) + Ψ([b, c] , a) + Ψ([c, a] , b) = 0 . (17.5.15)

The two-cocycle defines the central extension of loop algebra L(Gl) to Kac Moody algebra L(Gl)⊗Cc,
where c is a new central element commuting with the loop algebra. The new bracket is defined as
[, ] + Ψ(, )c. The algebra L̃(Gl) is defined by adding the derivation d which acts as td/dt measuring
the conformal weight.

The standard basis for Kac Moody algebra and corresponding commutation relations are given by

Jxn = x⊗ tn ,

[Jxn , J
y
m] = J

[x,y]
n+m + nδm+n,0c . (17.5.15)

The finite dimensional irreducible representations of G defined representations of Kac Moody
algebra with a vanishing central extension c = 0. The highest weight representations are characterized
by highest weight vector |v〉 such that

Jxn |v〉 = 0, n > 0 ,

c|v〉 = k|v〉 . (17.5.15)

3. Quantum affine algebras

Drinfeld has constructed the quantum affine extension Uq(Gl) using quantum double construction.
The construction of generators uses almost the same basic formulas as the construction of semi-simple
algebras. The construction involves the automorphism Dt : Uq(G̃l)⊗ C

[
t, t−1

]
→ Uq(G̃l)⊗ C

[
t, t−1

]
given by

Dt(ei) = tδi0ei , Dt(fi) = tδi0fi ,
Dt(ki) = ki Dt(d) = d ,

(17.5.16)

and the co-product

∆t(a) = (Dt ⊗ 1)∆(a) , ∆op
t (a) = (Dt ⊗ 1)∆op(a) , (17.5.17)

where the ∆(a) is the co-product defined by the same general formula as applying in the case of
semi-simple Lie algebras. The universal R-matrix is given by

R(t) = (Dt ⊗ 1)R , (17.5.18)

and satisfies the equations

R(t)∆t(a) = ∆op
t (a)R ,

(∆z ⊗ id)R(u) = R13(zu)R23(u) ,

(id⊗∆u)R(zu) = R13(z)R12(zu) ,

R12(t)R13(tw)R23(w) = R23(w)R13(tw)R12(t) .

(17.5.19)

The infinite-dimensional representations of affine algebra give representations of Kac-Moody algebra
when one restricts the consideration to generations ei, fi, ki, i > 0.





Chapter 18

About Absolute Galois Group

18.1 Introduction

Langlands correspondence represents extremely abstract mathematics - perhaps too abstract for a
simple minded physicist with rather mundane thinking habits. It takes years to get just a grasp about
the basic motivations and notions, to say nothing about technicalities. Therefore I hope that my own
prattlings about Langlands correspondence could be taken with a merciful understanding attitude.
I cannot do anything for it: I just want desperately to understand what drives these mathematical
physicists and somehow I am convinced that this exotic mathematics could be extremely useful for
my attempts to develop the TGD view about Universe and everything. Writing is for me the only
manner to possibly achieve understanding - or at least a momentary illusion of understanding - and
I can only apologize if the reader has feeling of having wasted time by trying to understand these
scribblings.

Ed Frenkel lectured again about geometric Langlands correspondence and quantum field theories
and this inspired a fresh attempt to understand what the underlying notions could mean in TGD
framework. Frenkel has also article about the relationship between geometric Langlands program and
conformal field theories [A158]. My own attempt might be regarded as hopeless but to my view it is
worth of reporting.

The challenge of all challenges for a number theorist is to understand the Galois group of algebraic
numbers regarded as extension of rationals - by its fundamental importance this group deserves to
be called Absolute Galois Group (AGG, [A2]). This group is monstrously big since it is in some
sense union of all finite-D Galois groups. Another fundamental Galois group is the Maximal Abelian
Galois Group (MAGG) associated with maximal Abelian extension of rationals [A63]. This group is
isomorphic with a subgroup assignable to the ring of adeles [A4].

18.1.1 Could AGG act as permutation group for infinite number of ob-
jects?

My own naive proposal for years ago is that AGG could be identified as infinite-dimensional permuta-
tion group S∞ [K38]. What the subscript ∞ means is of course on non-trivial question. The set of all
finite permutations for infinite sequence of objects at integer positions (to make this more concrete)
or also of permutations which involve infinite number of objects? Do these object reside along integer
points of half-line or the entire real line? In the latter case permutations acting as integer shifts along
the real line are possible and bring in discrete translation group.

A good example is provided by 2-adic numbers. If only sequences consisting of a finite number
of non-vanishing bits are allowed, one obtains ordinary integers - a discrete structure. If sequences
having strictly infinite number of non-vanishing bits are allowed, one obtains 2-adic integers forming
a continuum in 2-adic topology, and one can speak about differential calculus. Something very similar
could take place in the case of AGG and already the example of maximal Abelian Galois group which
has been shown to be essentially Cartesian product of real numbers and all p-adic number fields Qp
divided by rationals suggests that Cartesian product of all p-adic continuums is involved.

What made this proposal so interesting from TGD point of view is that the group algebra of S∞
defined in proper manner is hyper-finite factor of II1 (HFF) [K38]. HFFs are fundamental in TGD:
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WCW spinors form as a fermionic Fock spaces HFF. This would bring in the inclusions of HFFs,
which could provide new kind understanding of AGG. Also the connection with physics might become
more concrete. The basic problem is to identify how AGG acts on quantum states and the obvious
guess is that they act on algebraic surfaces by affecting the algebraic number valued coefficients of the
polynomials involved. How to formulate this with general coordinate invariant (GCI) manner is of
course a challenge: one should be able to identify preferred coordinates or at least class of them related
by linear algebraic transformations if possible. Symmetries make possible to consider candidates for
this kind of coordinates but it is far from obvious that p-adic CP2 makes sense - or is even needed!

In [K38] I proposed a realization of AGG or rather- its covering replacing elements of permutation
group with flows - in terms of braids. Later I considered the possibility to interpret the mapping of the
Galois groups assignable to infinite primes to symplectic flows on braids [K89]. This group is covering
group of AGG with permutations being replaced with flows which in TGD framework could be realized
as symplectic flows. Again GCI is the challenge. I have discussed the symplectic flow representation
of generalized Galois groups assigned with infinite primes (allowing mapping to polynomial primes)
in [K89] speculating in the framework provided by the TGD inspired physical picture. Here the notion
of finite measurement resolution leading to finite Galois groups played a key role.

18.1.2 Dessins d’enfant

Any algebraic surface defined as a common zero locus of rational (in special case polynomial) func-
tions with algebraic coefficients defines a geometric representation of AGG. The action on algebraic
coefficients is induced the action of AGG on algebraic numbers appearing as coefficients and in the
roots of the polynomials involved. One can study many things: the subgroups of AGG leaving given
algebraic surface invariant, the orbits of given algebraic surface under AGG, the subgroups leaving
the elements at the orbit invariant, etc... . This looks simple but is extremely difficult to realize in
practice.

One working geometric approach of this kind to AGG relies on so called dessins d’enfant [A24] to
be discussed later. These combinatorial objects provide an amazingly simple diagrammatic approach
allowing to understand concretely what the action of AGG means geometrically at the level of alge-
braic Riemann surfaces. What is remarkable that every algebraic Riemann surface (with polynomials
involved having algebraic coefficients) is compact by Belyi’s theorem [A12] and bi-holomorphisms
generate non-algebraic ones from these.

In TGD partonic 2-surfaces are the basic objects and necessarily compact. This puts bells ringing
and suggests that the old idea about AGG as symmetry group of WCW might make sense in the
algebraic intersection of real and p-adic worlds at the level of WCW identifies as the seat of life in
TGD inspired quantum biology. Could this mean that AGG acts naturally on partonic 2-surfaces
and its representations assign number theoretical quantum numbers to living systems? An intriguing
additional result is that all compact Riemann surfaces can be representation as projective varities in
CP3 assigned to twistors. Could there be some connection?

18.1.3 Langlands program

Another approach to AGG is algebraic and relies on finite-dimensional representations of AGG. If one
manages to construct a matrix representation of AGG, one can identify AGG invariants as eigenvalues
of the matrices characterizing their AGG conjugacy class. Langlands correspondence [A158, A156] is
a conjecture stating that the representations of adelic variants of algebraic matrix groups [A3] .

Adelic representations are obtained by replacing the matrix elements with elements in the ring
of rational adeles which is tensor product of rationals with Cartesian product of real numbers and
all p-adic number fields with and they provide representations of AGG. Ideles represent elements of
abelianization of AGG. Various completions of rationals are simply collected to form single super
structure.

Number theoretic invariants - such as numbers for points of certain elliptic curves (polynomials with
integer coefficients) - correspond to invariants for the representations of algebraic groups assignable
to the automorphic functions defined in the upper plane H = SL(2, R)/O(2) and invariant under
certain subgroup Γ of modular group acting as modular symmetries in this space and defining in this
manner an algebraic Riemann surface as a coset space H/Γ with finite number of cusps in which the
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automorphic function vanishes. The vanishing conditions coded by Γ code also for number theoretic
information.

The conjecture is that number theoretic questions could allow translation to questions of harmonic
analysis and algebraic equations would be replaced by differential equations much simpler to handle.
Also a direct connection with subgroups of modular group Γ of SL(2, Z) emerges and number theoretic
functions like zeta and η functions emerge naturally in the complex analysis.

The notion of adeles generalizes. Instead of rationals one can consider any extension of rationals
and the MAGG and AGG associated with it. p-Adic number fields of the adele are replaced with
their extensions and algebraic extension of rationals appears as entanglement coefficients. This also
conforms with the TGD based vision about evolution and quantum biology based on a hierarchy of
algebraic extensions of rationals. For these reasons it seems that adeles or something akin to them is
tailor-made for the goals and purposes of TGD.

18.2 Langlands program

Langlands programs starts from the idea that finite-dimensional representations of AGG provide
information about AGG. If one manages to construct a matrix representation of AGG, one can identify
AGG invariants as eigenvalues of the matrices characterizing their AGG conjugacy class. Langlands
correspondence [A158, A156] is a conjecture stating that the representations of adelic variants of
algebraic matrix groups [A3] .

Adelic representations are obtained by replacing the matrix elements with elements in the ring
of adeles and they provide representations of AGG. Number theoretic invariants - such as numbers
for points of certain elliptic curves (polynomials with integer coefficients) - correspond to invariants
for the representations of algebraic groups assignable to the automorphic functions defined in the
upper plane H = SL(2, R)/O(2) and invariant under certain subgroup Γ of modular group acting as
modular symmetries in this space and defining in this manner an algebraic Riemann surface as a coset
space H/Γ with finite number of cusps in which the automorphic function vanishes. The vanishing
conditions coded by Γ code also for number theoretic information.

Langlands conjecture states that number theoretic questions could allow translation to questions of
harmonic analysis and algebraic equations would be replaced by differential equations much simpler to
handle. Also a direct connection with subgroups of modular group Γ of SL(2, Z) emerges and number
theoretic functions like zeta and η functions emerge naturally in the analysis. I hasten to admit that
I have failed to understand intuitively the deeper motivations for this conjecture but there is support
for it.

18.2.1 Adeles

This approach leads to adeles [A4].

1. AGG is extremely complex and the natural approach is to try something less ambitious first
and construct representations of the Maximal Abelian Galois Group of rationals (MAGG) [A63]
assigned to an extension containing all possible roots of unity. One can show that MAGG is
isomorphic to the group of invertible adeles divided by rationals. This is something concrete as
compared to AGG albeit still something extremely complex.

2. The ring of rational adeles [A4] discovered by Chevalley is formed by the Cartesian product of
all p-adic number fields and of reals and its non-vanishing elements have the property that only
finite number of p-adic numbers in (...., apn , ....)×a are not p-adic integers (that is possess norm
> 1). Algebraic operations are purely local: multiplications in every completion of rationals
involved. One can also understand this space as a tensor product of rationals with integer adeles
defined by the cartesian product of reals and various p-adic integers. One can say that adeles
organize reals and all p-adic number fields to infinite-dimensional Cartesian product and that
identified rational numbers as common to all of them so that multiplication by rational acts
just as it act in a finite dimensional Cartesian product. The idea that rationals are common to
all completions of rationals is fundamental for quantum TGD so that adeles are expected to be
important.
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3. The ring property of adeles makes possible to talk about polynomials of adele valued argument
having rational coefficients and one can extend algebraic geometry to adeles as long as one talks
about varieties defined by polynomials. Existence of polynomials makes it possible to talk about
matrices with adele valued elements. The notion of determinant is well-defined and one can also
define the inverse of adele matrix so that classical algebraic groups have also adele counterpart.
This is of utmost significance in Langlands program and means a breathtaking achievement in
book keeping: all the p-adic number fields would be caught under single symbol ”A”!

4. Ideles are rational adeles with inverse. Ideles form a group but sum of two ideles is not always
idele so that ideles do not form a number field and one cannot dream of constructing genuine
differential calculus of ideles or talking about rational functions of ideles. Also rational functions
fail to make sense. This means quite a strong constraint: if one wants adelic generalization of
physics the solutions of field equations must be representable in terms of polynomials or infinite
Taylor series.

The conjecture of Langlands is that the algebraic groups with matrix elements replaced with
adeles provide finite-dimensional representations of adeles in what can be loosely called group algebra
of adelic algebraic group.

The construction of representation uses complex valued functions defined in the ring of adeles.
This function algebra decomposes naturally to a tensor product of function algebras associated with
reals and various p-adic number fields and one can speak about rational entanglement between these
functions. From the TGD point of view this is very interesting since rational entanglement plays a
key role in TGD inspired quantum biology.

18.2.2 Construction of representations of adelic Gl2

I have explained some details about the construction of the representation of adelicGl2 in the Appendix
and earlier in [K38].

1. The basic idea is to start from the tensor product of representations in various completions of
rationals using the corresponding group algebras. It is natural to require that the functions are
invariant under the left multiplication by Gl2(Q) and eigenstates of Gl2(R) Casimir operator C
under the right multiplication. The functions are smooth in the sense that they are smooth in
Gl2(R) and locally constant in Gl2(Qp).

2. The diagonal subgroup Z(A) consists of products of diagonal matrices in Gl2(A). Characters are
defined in Z(A) as group homomorphisms to complex numbers. The maximal compact subgroup
K ⊂ Gl2(A) is the Cartesian product of Gl2(Zp) and O2(R) and finite-dimensionality under the
action of these groups is also a natural condition.

3. The representations functions satisfy various constraints described in detail in the appendix and
in the article of Frenkel [A158]. I just try to explain what I see as the basic ideas.

(a) Functions f form a finite-dimensional vector space under the action of elements of the
maximal compact subgroup K. Multiplication from left by diagonal elements reduces to
a multiplication with character. The functions are eigenstates of the Casimir operator of
Gl2(R) acting from left with a discrete spectrum of eigen values. they are bounded in
Gl2(A). These conditions are rather obvious.

(b) Besides this the functions satisfy also the so called cuspidality conditions, the content of
which is not obvious for a novice like me. These conditions imply that the functions are
invariant under the action for Gl2(Zp) apart from finite number of primes called ramified.
For these primes invariance holds true only under subgroup Γ0(pnk) of Sl2(Zp) consisting
of 2× 2-matrices for which the elements a21 ≡ c vanish modulo pn.

(c) What is non-trivial and looks like a miracle to a physicist is that one can reduce everything
to the study of so called automorphic functions [A11] defined in Γ0(N)/Sl(2, R), N =∏
pnk . Intuitively one might try to understand this from the idea that adeles for which

elements in Zp are powers of p represent rational numbers. That various p-adic physics
somehow factorize the real physics would be the misty idea which in TGD inspired theory
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of consciousness translates to the idea that various p-adic physics make possible cognitive
representations of real physics. Somehow the whole adele effectively reduces to a real
number. Automorphic functions have a number theoretic interpretation and this is certainly
one of the key motivations between Langlands program.

4. Automorphic functions reduce to complex analytic functions in the upper half plane H =
SL2(R)/O(2) transforming in a simple manner under Γ0(N) (modular form of weight k). What
one is left with are modular forms of weight k and level N in upper half plane.

(a) The overall important cuspidality conditions characterized by integer N imply that the
automorphic functions vanish at the cusp points of the algebraic Riemann surface defined
as H/Γ0(N). The modular form can be expanded in Fourier series f =

∑
anq

n in powers
of q = exp(i2πτ), where τ parameterizes upper half plane.

(b) The Fourier coefficients an satisfy the condition amn = aman and one ends up with the
conclusion that for each elliptic curve [A29] y2 = x3 + ax+ b (a and b are rational numbers
satisfying 4a3 + 27b2 6= 0 and reduce to integer is the recent case) there should exist a
modular form with the property that ap codes for the numbers of points of this elliptic
curve in finite field Fp for all but finite number of primes! This is really amazing and
mysterious looking result.

(c) τ can be interpreted as a complex coordinate parametrizing the conformal moduli of tori.
Is this a pure accident or could this relate to the fact that the coefficients turn out to give
numbers of roots for algebraic elliptic surfaces, which are indeed tori? Could cuspidality
conditions have interpretation as vanishing of the modular forms for tori with moduli corre-
sponding to cusps: could these be are somehow singular as elliptic surfaces? The objection
is that the elliptic surfaces as sub-manifolds of C2 have a unique induced metric and there-
fore correspond to a unique conformal modulus τ . But what about other Kähler metrics
than the standard metric for C2 and imbeddings to other complex spaces as algebraic sur-
faces? Could adelic Gl2 representations generalize to adelic representations of Gl2g acting
on Teichmueller parameters of Riemann surface with genus g?

The notion of adeles generalizes. Instead of rationals one can consider any extension of rationals
and the MAGG and AGG associated with it. p-Adic number fields of the adele are replaced with
their extensions and algebraic extension of rationals appears as entanglement coefficients. This also
conforms with the TGD based vision about evolution and quantum biology based on a hierarchy of
algebraic extensions of rationals. For these reasons it seems that adeles or something akin to them is
tailor-made for the goals and purposes of TGD.

18.3 Compactness is guaranteed by algebraicity: dessins d’enfant

”This discovery, which is technically so simple, made a very strong impression on me, and it represents
a decisive turning point in the course of my reflections, a shift in particular of my centre of interest in
mathematics, which suddenly found itself strongly focussed. I do not believe that a mathematical fact
has ever struck me quite so strongly as this one, nor had a comparable psychological impact. This is
surely because of the very familiar, non-technical nature of the objects considered, of which any childs
drawing scrawled on a bit of paper (at least if the drawing is made without lifting the pencil) gives a
perfectly explicit example. To such a dessin we find associated subtle arithmetic invariants, which are
completely turned topsy-turvy as soon as we add one more stroke.”

This piece of text was written by Grothendieck. He described here the profound impact of the
notion of dessins d’enfant [A24] on him. The translation of the notion to english is ”child’s drawings”.
These drawings are graphical representations of Riemann surfaces understood as pairs formed by an
algebraic Riemann surface and its universal covering space from which Riemann surface is obtained
as a projection which can be many-to-one one map. This diagram allows to construct the Riemann
surface modulo bi-holomorphism. Algebraic Riemann surface means that the equations defining it
involve only rational functions with coefficients which are algebraic numbers. This implies that the
action of AGG on the algebraic Riemann surface is well defined as action on the coefficients. One can
assign to the dessin d’enfant combinatorial invariants for the action of AGG.
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18.3.1 Dessins d’enfant

1. Dessin d’enfant is a bi-partite graph [A179] meaning that it is possible to label the nodes of the
graphs by black and white points in such a manner that the black and white points alternate
along edge paths. One can identify black and white nodes as sets U and V and every edge
of the graph connects points of U and V. For instance, bipartite graph does not posses any
odd edge cycles. Every tree is bipartite and every planar graphs with even number of edges is
bipartite. The vertices of the bipartite graph are topologically characterized by the number of
lines emerging to the vertex and also 2-vertices are possible. The surface and the embedding
can be described combinatorially using rotation system assigned with each vertex of the graph
and telling the order in which the edges would be crossed by a path that travels clockwise on
the surface around the vertex.

2. The notions of dessin d’enfant and counterpart for Belyi function [A12] defining the projection
from the covering of sphere to sphere dates back to the work of Felix Klein. A very deep and very
surprising theorem by Belyi states that all algebraic curves represent compact compact Riemann
surfaces. These surfaces are ramified coverings of the Riemann sphere ramified at three points
only which in suitable complex coordinates can be taken to be the rational points 0,1, ∞ of
real axis. Ramification means that the rational function f with algebraic number coefficients -
known as Belyi’s function - projecting the Riemann surface as covering of sphere to sphere has
critical points which are pre-images of these three points. In the neighborhood of the critical
points the projection map known as Belyi’s function is characterized by degree telling how many
points are mapped to single point of sphere. At the critical point itself these points coincide. A
simplified example of criticality is zn at origin.

The Riemann surface in question can be taken to be H/Γ compactified by finite number of cusp
points. Here H is upper half plane Γ a subgroup of modular group having finite index

3. Dessin d’enfant allows to code combinatorially the data about the Belyi function so that one can
construct both the surface and its Belyi function from this data apart from bi-holomorhism. The
interpretation as projection from covering allows to get grasp about the geometric meaning of
dessin d’enfant. Physicist reader is probably familiar with the graphical representation of cusp
catastrophe. The projection of the critical points and curves of cusp catastrophe as function of
the two control parameters to the control parameter plane replaced in the recent case by complex
plane is highly analogous to dessin d’enfant. The boundary of cusp catastrophe in which cusp
projection is three-to-one has V -shape and at the sides of V the covering of plane is 2-to-1 and
and at the vertex and outside cusp region 1-to-1. The edges of V correspond to the edges of the
dessin d’enfant and the vertex of V to a node of dessin d’enfant.

The number of edges entering given critical point tells the degree of the Belyi function at that
critical point. Dessin d’enfant is imbedded on an oriented surface - plane in the simplest situation
but also sphere and half plane can be considered. The lines of the graph correspond to curves
at which two branches of the covering coincide.

The Wikipedia article [A24] about dessin d’enfant discusses a nice example about the construc-
tion of dessin d’enfant and is recommended for the reader.

4. The Belyi function could be any holomorphic function from X to Riemann sphere having only
0,1, and ∞ as critical values and the function f is determined only up to bi-holomorphism. If X
is algebraic surface, f is rational function with algebraic coefficients.

5. What makes the dessin d’enfant so remarkable is that AGG has natural action on the algebraic
coefficients of the rational functions defining algebraic Riemann surfaces and therefore on dessin
d’enfant. For instance, the sequence of integers form by the degrees of the projection map at
the critical points is geometric Galois invariant. One can identify the stabilize of dessin as the
sub-group of AGG leaving dessin d’enfant invariant. One can identify the orbit of dessin d’enfant
under AGG and the subgroup of AGG leaving the points of orbit invariant.

http://en.wikipedia.org/wiki/Bipartite_graph
http://en.wikipedia.org/wiki/Belyi's_theorem
http://en.wikipedia.org/wiki/Belyi's_theorem
http://en.wikipedia.org/wiki/Dessins_d'enfant


18.3. Compactness is guaranteed by algebraicity: dessins d’enfant 901

18.3.2 Could one combine quantum adelic representations with dessin
d’enfant representations?

As already noticed, dessin d’enfant representation of AGG allows to have representations of AGG
at the orbits of dessins d’enfant. If the orbit consists of a finite number n of points, one obtains
representations of AGG in the finite-dimensional discrete Hilbert space spanned by the points, and
representation matrices are n× n matrices.

Suppose that the Galois group of quantum adeles is indeed isomorphic with the commutator group
of AGG. If this is the case then quantum adele valued amplitudes defined in the discrete space formed
by the orbits of dessins d’enfant would provide a representation of AGG with commutator group acting
on the fiber analogous to spin degrees of freedom and AGG on the base space having role analogous
to that of Minkowski space.

One can imagine an approach mimicking the construction of induced representations [A52] of
Mackey inspired by the representations of Poincare group. In this approach one identifies orbit of
group G as a space carrying the fields with spin. The subgroup H of G leaving a given point of
representation space invariant is same at all points of orbit apart from conjugation. The field would
have values in H or group algebra of H or in space in which H acts linearly. In the recent case H
could adelic Galois group of quantum adeles identified as AGG or the subgroup GI of AGG leaving
the dessins d’enfant invariant.

What can one say about GI . How large it is? Can one identify it or its abelization AGI and assign
it to the points of orbits to construct analogs of induced representations?

1. If the orbit of dessin d’enfant is finite as the fact that the number of its points is invariant under
the action of AGG suggests, GI must be infinite. This would suggests that also AGI is infinite.
Does AGI possess adele representation? Is this adele representation identifiable as a sub-adele
of AAGG in some sense? Could it be obtained by dropping some quantum variants of Zp:s from
the decomposition of adele? What the interpretation of these lacking primes could be? Could
these primes correspond to the primes which split in the extensions. If this is the case one could
consider the representations in which AGI forms the fiber space at each point of dessin d’enfant.

2. One can consider also weaker option for which only so called ramified primes are dropped from
the adele for rationals to obtain the adele for algebraic extension. In adele construction there are
problematic primes p. For rational primes (or corresponding ideals) the representation of p is
as a product of primes of extension as p =

∏
P eii ei are called degrees of ramification. For some

ei > 1 one has ramification analogous to the dependence of form (z−z0)n, n > 1 of holomorphic
function around critical point have interpretation as ramified primes and corresponding factors
Zp are dropped from the adele. To eliminate the problems cause by number theoretic ramification
one can t drop ramified primes from the adele in the extensions of algebraic numbers associated
with the roots of the polynomials appearing in the Belyi map. Could the resulting adele be the
counterpart for the reduced MGGA?

18.3.3 Dessins d’enfant and TGD

What might be the relevance of Belyi’s theorem and dessins d’enfant for TGD?

1. In TGD framework effective 2-dimensionality implies that basic objects are partonic 2-surfaces
together with their data related to the 4-D tangent space a them. I have already earlier proposed
that Absolute Galois group could have a natural action in the world of the classical worlds
(WCW). The horrible looking problem is how to achieve General Coordinate Invariance (GCI)
for this action.

Partonic 2-surfaces are compact so that they allow a representation as algebraic surfaces. The
notion of dessin d’enfant suggests that partonic 2-surfaces could be described as simple com-
binatorial objects defined by dessin d’enfant as far as the action of Galois group is considered.
This representation would be manifestly general coordinate invariant and would allow to con-
struct representations as Galois group in terms of discrete wave functions at the orbits of dessin
d’enfant. One can also expect that the representation reduces to those of finite Galois groups.
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2. Second central problem is the notion of braid which is proposed to provide a realization for
the notion of finite measurement resolution.The recent view is that time-like braids on light
like surfaces and space-like braids at the 3-surfaces defining the ends of space-time surfaces
contain braid strands as Legendrian knots for which the projection of Kähler gauge potential
has vanishing inner product with the tangent vector of the braid strand. For light-like 3-surfaces
this does not imply that the tangent vector of strand is orthogonal to the strand: if the tangent
vector is light-like the condition is automatically satisfied and light-like braid strands define a
good but - as it seems - not a unique guess for what the braid strands are. Note however that
the condition that braid strands correspond to boundaries of string world sheets gives additional
conditions. At space-like 3-surfaces orthogonality to induced Kähler gauge potential fixes the
direction of the tangent vector field only partially.

Suppose one manages to fix completely the equations for braid strands - say by the identification
as light-like strands. What about the end points of strands? How uniquely their positions
are determined? Number theoretical universality suggests that the end points are rational or
algebraic points as points of imbedding space but again GCI poses a problem. Symmetry
arguments suggest that one could use group theoretically preferred coordinates for M4 and CP2

and identify also the coordinates of partonic 2-surface as imbedding space coordinates for their
projections to geodesic spheres of δM4

± and geodesic sphere of CP2.

A possible resolution of this problem comes from the fact that partonic 2-surface allows an
interpretation as algebraic surface. Braid ends could correspond to the critical points of the
Belyi function defining the projection from the covering so that they would be algebraic points in
the complex coordinates of partonic 2-surfaces fixed apart from algebraic bi-holomorphism. One
would a concrete topological interpretation for why the braid ends are so special. I have already
earlier proposed that braid ends could correspond to singularities associated with coordinate
patches.

3. Is it possible to have compact Riemann which cannot be represented as algebraic surfaces?.
Belyi’s theorem does not deny this. For instance rational functions with real coefficients for
polynomials are possible and must give rise to compact surfaces. Inherently non-algebraic par-
tonic 2-surfaces are possible and for them one cannot define representations of AGG at the orbits
of dessin d’denfant since the action of AGG on f is not well defined now.

This relates in an interesting manner to the conjecture [K47] that life resides in the in the
intersection of real and p-adic worlds. At WCW level this would mean that the equations for the
partonic 2-surfaces makes sense in any completion of rationals. For algebraic partonic 2-surfaces
this is indeed the case if arbitrary high-dimensional algebraic extensions of p-adic numbers are
allowed. Taking this seriously one can ask whether the existence of the representations of Galois
group at the level of WCW is an essential aspect of what it is to be living. Could one assign
Galois quantum numbers to the quantum states of living system? These would be realized in
the discrete space provided by different quantum counterparts of a given integer and one would
have discrete wave functions in these discrete spaces.

4. One also learns from Wikipedia that any compact Riemann surface is a projective variety and
thus representable using polynomial equations in projective space. It also allows an imbedding as
as a surface n 3-dimensional complex projective space CP3. Wikipedia states that if compactness
condition is added the Riemann the surface is necessarily algebraic: here however algebraic
means rational functions with arbitrary real or complex coefficients. Above it means algebraic
coefficients. Whether this CP3 could have anything to do with the twistor space appearing in
Witten’s twistor string model [B44] and also in the speculated twistorial formulation of TGD
[K86] remains an open question.

5. Modular invariance plays central role in TGD [K18], and a natural additional condition on the
representations of AGG would be that the quantum states in WCW are modular invariant.
The action of AGG induces a well-defined action on the conformal moduli of the partonic 2-
surfaces and therefore on Teichmueller parameters. This discrete action need not be simple -
say linear- but it would be action in n-dimensional space. Modular invariance requires that the
action of AGG transformation induces a conformal scaling of the induced metric and changes
the conformal moduli by an action of modular group Sl(2g, Z). For torus topology this group
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is Sl(2,Z) appearing in modular invariant functions assigned to the representations of AGG in
the group algebra of adelic algebraic groups.

6. Could the combination of dessins d’enfant as a geometric representation and adelic matrix rep-
resentations for the abelianizer of the isotropy group GI of dessin d’enfant provide additional
insights in to Langlands conjecture? The problem is that AGG elements do not leave MGGA
invariant.

7. Bi-partite graphs appear also in the construction of inclusions of hyper-finite factors of type II1
(HFF). The TGD inspired proposal that AGG allows identification as S∞ and the group algebra
of permutation group S∞ is HFF. In optimistic mood one might see dessins d’enfant as a piece
of evidence for this identification of AGG and adele formed from the Galois group of quantum
p-adic integers as its commutator group.

18.4 Appendix: Basic concepts and ideas related to the num-
ber theoretic Langlands program

The following representation of the basic ideas of Langlands program reflects my very limited under-
standing of the extremely refined conceptual framework involved. This pieces of text can be found al-
most as such also in [K38] and Ed Frenkel provides more detailed discussion in his article [A158, A156].

18.4.1 Langlands correspondence and AGG

The representations of group carry information about the group and the natural question is how to
represent the AGG and deduce invariants of AGG in this manner. Eigenvalues for the representation
matrices are invariants characterizing conjugacy classes of the group. The generators of MAGG abelled
by primes define so called Frobenius elements and the eigenvalues and traces for their representation
matrics defined invariants of this kind. The big question is how to construct representations of the
AGG. Langlands program is an attempt to answer this question.

1. 1-D representations of AGG corresponds those of maximal Abelian Galois group which is the
factor group of AGG by its commutator group. The natural intuitive guess is that the n-
dimensional representations of AGG in the group algebra of adelic algebraic group Gl(n) could
provide higher-dimensional representations of AGG. Gl(n) would give rise to a kind of AGG spin.
The action of AGG commutator group would be mapped toGLn(A) action. Does this mean that
AGG is mapped homomorphically to adelic matrices in Gln(A) as one might first think? I am
not able to answer the question. From Wikipedia one learns that so called Langlands dual [A57]
extends AGG by the algebraic Lie group GL so that one obtains semi-direct product of complex
GL with the AGG which acts on the algebraic root data of GL. The adelic representations of GL
are said to control those of G. In this form the correspondence gives information about group
representations rather than number theory.

Remark: One naive guess would be that one could realize the representations of AGG by adjoint
action x → gxg−1 in the commutator subgroup of AGG, which is maximal normal subgroup
and closed with respect to this action. Also the adjoint action of the factor group defined my
maximal Abelian group in this group could define representation? The guess of the outsider is
that the practical problem is that the commutator group is not known.

2. Number theoretic Langlands program is however more than study of the relationships between
representations of G(F ) and its adelic variant GL(AF ). The basic conjecture is the existence
of duality between number theory and harmonic analysis. On number theoretical side one
typically studies algebraic curves. Typical question concerns the number of rational points in
modulo p approximation to the equations determining the algebraic curve. The conjecture about
number theoretic Langlands correspondence was inspired by the observation that Fourier series
expansions of automorphic forms code via their coefficients this kind of data and the proof of
Fermat’s theorem can be seen as application of this correspondence.

There is support for the conjecture that adelic representations carry purely number theoretic
information in the case of Gl(n). The number theoretical invariants defined by the trace for
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the representation matrix for the Frobenius element generating the Abelian Galois group would
corresponds to the trace of so called Hecke operator at the side of the harmonic analysis.

3. Intuitive motivations for the Langlands duality come from the fact the notion of algebraic surface
defined by a polynomials with integer coefficients is number theoretically universal: the argument
can belong to finite field, rational numbers or their extension, real numbers, or any p-adic number
field and can represent even element of function field. Function fields defined algebraic functions
at algebraic curves in finite fields are somehow between classical number fields and function
fields associated with Riemann surfaces to which one can apply the tools of harmonic analysis.

18.4.2 Abelian class field theory and adeles

The context leading to the discovery of adeles was so called Abelian class field theory. Typically
the extension of rationals means that the ordinary primes decompose to the primes of the extension
just like ordinary integers decompose to ordinary primes. Some primes can appear several times in
the decomposition of ordinary non-square-free integers and similar phenomenon takes place for the
integers of extension. If this takes place one says that the original prime is ramified. The simplest
example is provided Gaussian integers Q(i). All odd primes are unramified and primes p mod 4 = 1
they decompose as p = (a + ib)(a − ib) whereas primes p mos 4 = 3 do not decompose at all. For
p = 2 the decomposition is 2 = (1 + i)(1− i) = −i(1 + i)2 = i(1− i)2 and is not unique {±1,±i} are
the units of the extension. Hence p = 2 is ramified.

There goal of Abelian class field theory is to understand the complexities related to the factorization
of primes of the original field. The existence of the isomorphism between ideles modulo rationals -
briefly ideles - and maximal Abelian Galois Group of rationals (MAGG) is one of the great discoveries
of Abelian class field theory. Also the maximal - necessarily Abelian - extension of finite field Gp
has Galois group isomorphic to the ideles. The Galois group of Gp(n) with pn elements is actually
the cyclic group Zn. The isomorphism opens up the way to study the representations of Abelian
Galois group and also those of the AGG. One can indeed see these representations as special kind
of representations for which the commutator group of AGG is represented trivially playing a role
analogous to that of gauge group.

This framework is extremely general. One can replace rationals with any algebraic extension of
rationals and study the maximal Abelian extension or algebraic numbers as its extension. One can
consider the maximal algebraic extension of finite fields consisting of untion of all all finite fields
associated with given prime and corresponding adele. One can study function fields defined by the
rational functions on algebraic curve defined in finite field and its maximal extension to include Taylor
series. The isomorphisms applies in al these cases. One ends up with the idea that one can represent
maximal Abelian Galois group in function space of complex valued functions in GL(A) right invariant
under the action of GL(Q). A denotes here adeles.

Chevalley. Class field theory.
Abelian extensions of global fields. Classical number fields or functions on curves over finite fields.

Finite Abelian extensions–classes of ideals of the field (prime ideas for rationals- some primes do not
have unique factorization to primes of extension). Hilbert class field: maximal unramified extension:
primes split uniquely. Resiprocity homomorphism from idele class group of global field to the Galois
group of the maximal Abelian extension. Adelic algebraic group. Elements have values in adele ring.
Linear algebraic group nice. Idele group! Inverses exist. Sum of invertible ideles need not be idele??
Ideles is not a field!!!

Idele class group
Ring of integral adeles AZ = R× Ẑ. Ẑ =

∏
p Zp. Product of p-adic integers for all p.

The ring of rational adeles. AQ = Q⊗ AZ . Entanglement between Q and AZ and multiplication
by Z: all factors of AZ multiplied by Z. Interpretation as point of infinite-D linear space!!! Should be
correct.

Another definition for rational adles. R ×
∏′
pQp. All but finite number of Qp elements integers.

This looks physically natural definition. Multiplication by scalar in tensor product. Either factor.
Not both as in Cartesian product!!! On can take out negative powers of pi and if their number is not
finite the resulting number vanishes.

Does the multiplication by scalar have special consequences? Multiplication by rational as tensor
product. States the idea that rationals are common for all p-adic factors!!!

http://en.wikipedia.org/wiki/Class_field_theory
http://en.wikipedia.org/wiki/Class_field_theory
http://en.wikipedia.org/wiki/Idele_class_group
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Rational adeles ok and possibility to share the factors of the rational between the factors Qp. Just
what one naively expects. Be cautious with tensor products!!! Multiplication by 1/n: all factors.
Only for factors of n the multiplication means genuine division producing p-adic number which is not
an integer!!!!

The quotient of the multiplicative group of ideles by number field homomorphic to the maximal
Abelian Galois group!

1. Miten unifioida reaali- ja p-adiset sektorit teorialle. Voisiko ajatella etta adelet tai idelet korvaisi-
vat reaaliluvut teorian formuloinnissa. Voitaisiiko vaikutusperiaate formuloida naiden avulla.
Vaikutuksen exponentti tulona p-adisista ja reaalisesta ja p-adisista eksponenteista?

2. Spinorit adelisina spinoreina. Upotus- ja avaruusaikakoordinaatit adelisina koordinaatteina.
Algebrallisuus olisi olennaista. Rationaaliset kertoimet. Tastakin voidaan yleistaa algebrallisiin
kertoimiin. Mukana olisi reaalinen sektori integraalisten adelien tasolla. Mita rationaalisuus
adeleille merkitsee?

3. Saattaisiin automaattisesti teorian symmetrioille adeliset matriisi-esitykset ja yhteys Langlands
vastaavuuteen. Abelisen Galois ryhman esitykset automaattisesti. Frobenius generaattorin
identifiointi antaisi Galois invariantteja ko. esityksissa. Frobenius eigenvalues. Hecke oper-
aattori. Tata vastaavuutta en ymmarra kunnolla. Miten reaaliluvut ja theta/zeta functiot
tulevat mukaan.

4. Adeleihin liittyvat eri lukukunnat ovat riippumattomia siina mielessa etta kerto- ja yhteen lasku
ja naiden kaanteisoperaatiot ovat lokaaleja p:n suhteen.

5. Entapa algebralliset yhtalot avaruusaikapinnoille- vaikkapa partonisille pinnoille. Onko sama
yhtalo voimassa jokaisessa lukukunnassa jollain saataisiin algebrallisia kopioita. Pateeko tama
reaali- ja p-adisten maailmojen leikkauksessa. Enta yleisemmin. Onko jokaisessa sektorissa
voimassa omat yhtalonsa partonisille 2-pinnoille. Tata suosisi olemassa oleva kuva. Olisi ky-
seessa olennaisesti kirjanpidollinen kikka jossa koko valtaisa lukukuntien kirjo unifioitaisiin.

6. Adele-analyyttisyys mielekas? Voidaanko puhua algebrallisista pinnoista adeleleille? Adelen
potenssit ovat maariteltyja. Polynomit maariteltyja. Algebralliset ryhmat. Myos determinantti
ehto. Rationaalifunktiot eivat. Ideleilla kaanteis-idele mutta idelet eivat suljettuja summauksen
suhteen. Vain polynomien maarittelemat adele-analyyttiset pinnat saattaisivat olla mielekkaita.
Derivaatan kasite ei maaritelty koska inverssi ei ole yleisessa tapauksessa maaritelty.

7. Mita tarkoittaisi se, etta rationaalipisteet ovat yhteisia reaalisille ja p-adisille pinnoille? Ratio-
naalisen adelen kasite konstitentti taman vaatimuksen kanssa. Tama on se mika pitaisi ymmar-
taa. Onko pelkastaan yhteisista rationaalipisteista kyse. Kanoninen identifikaatio joka kuvaa
reaaliluvuille adelen tekijat. Kvanttirationaalit. Miten tama realisoitasiin adeleiden tasolla.
Kvantti-adelet. Mita kanoninen identifikaatio merkitsee naille. p-Adiset sektorit projisoidaan
reaaliseen sektoriin projektiolla jonka maarittelee kanoninen identifikaatio.

Minimaali-tulkinta: adelisessa kuvassa kootaan vain yhteen reaali- ja p-adiset fysiikat. Klas-
sisella tasolla ihan ok. Mahdollinen tulkinta Galois ryhman alkioina on kuitenkin uutta!!!
Lisana rengas ominaisuus multiplikatiivisen ryhma-ominaisuuden lisaksi. Tama on aarimmaisen
ei-triviaalia ja tekee mahdolliseksi lineaari-ryhmista ja niiden aliryhmista jotka maariteltava
polynomi-yhtaloiden avuilla jottei jouduta tekemisiin inverssien kanssa.

Mita merkitsivat adeliset algebralliset ryhmat. Onko tassa jotain.

18.4.3 Langlands correspondence and modular invariance

A strong motivation for Langlands correspondence is modular invariance - or rather its restricted
form - which emerges in both number theory and in the automorphic representations of Gl2 and
relates directly to the ramification of primes for Galois extensions- now maximal Abelian extension.
In TGD framework the restricted modular invariance could have interpretation in terms of concrete
representations of AGG involving the action of AGG on the adelic variants of Teichmueller parameters
characterizing the algebraic surfaces its variants in various number fields.
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It is not necessary to know the explicit action of AGG to modular parameters. What is however
needed is modular invariance in some sense. The first - and hard-to-realize - option is that allowed
subgroup of AGG leaves the conformal equivalence class of Riemann surface invariant. Second option
is that the action of both AGG and modular group Sl(2g, Z) or its subgroup leave the states of
representation invariant. This is the case if AGG induces Gl2g transformations in each Cartesian
factor of the adele and the states defined in the group algebra of Gl2g are invariant. For ramified
primes however modular invariance can break down to subgroup of Sl2g. These conditions lead to
automorphic modular forms.

These arguments are very heuristic and following arguments due to Frenkel give better view about
the situation.

1. Gal(Q/Q) is a poorly understood concept. The idea is to define this group via its representations
and construct representations in terms of group GL(2, A) and more generally GL(n,A), where
A refers to adeles. Also representations in any reductive group can be considered. The so
called automorphic representations of these groups have a close relationship to the modular
forms [A65] , which inspires the conjecture that n-dimensional representations of Gal(Q/Q) are
in 1-1 correspondence with automorphic representations of GL(n,A).

2. This correspondence predicts that the invariants characterizing the n-dimensional representa-
tions of Gal(Q/Q) resp. GL(n,A) should correspond to each other. The invariants at Galois
sides are the eigenvalues of Frobenius conjugacy classes Frp in Gal(Q/Q). The non-trivial im-
plication is that in the case of l-adic representations the latter must be algebraic numbers. The
ground states of the representations of Gl(n,R) are in turn eigen states of so called Hecke opera-
tors Hp,k, k = 1, .., n acting in group algebra of Gl(n,R). The eigenvalues of Hecke operators for
the ground states of representations must correspond to the eigenvalues of Frobenius elements
if Langlands correspondence holds true.

3. The characterization of the K-valued representations of reductive groups in terms of Weil group
WF associated with the algebraic extension K/F allows to characterize the representations in
terms of homomorphisms of Weil group to the Langlands dual GL(F ) of G(F ).

18.4.4 Correspondence between n-dimensional representations of Gal(F/F )
and representations of GL(n,AF ) in the space of functions in GL(n, F )\GL(n,AF )

The starting point is that the maximal abelian subgroup Gal(Qab/Q) of the Galois group of algebraic
closure of rationals is isomorphic to the infinite product Ẑ =

∏
p Z
×
p , where Z×p consists of invertible

p-adic integers [A158] .
By introducing the ring of adeles one can transform this result to a slightly different form. Adeles

are defined as collections ((fp)p∈P , f∞), P denotes primes, fp ∈ Qp, and f∞ ∈ R, such that fp ∈ Zp for

all p for all but finitely many primes p. It is easy to convince oneself that one has AQ = (Ẑ⊗Z Q)×R
and Q×\AQ = Ẑ × (R/Z) . The basic statement of abelian class field theory is that abelian Galois
group is isomorphic to the group of connected components of F×\A×F .

This statement can be transformed to the following suggestive statement:
1) 1-dimensional representations of Gal(F/F ) correspond to representations of GL(1, AF ) in the

space of functions defined in GL(1, F )\GL(1, AF ).
The basic conjecture of Langlands was that this generalizes to n-dimensional representations of

Gal(F/F ).
2) The n-dimensional representations of Gal(F/F ) correspond to representations of GL(n,AF ) in

the space of functions defined in GL(n, F )\GL(n,AF ).
This relation has become known as Langlands correspondence.
It is interesting to relate this approach to that discussed in this chapter.

1. In TGD framework adeles do not seem natural although p-adic number fields and l-adic repre-
sentations have a natural place also here. The new view about numbers is of course an essentially
new element allowing geometric interpretation.

2. The irreducible representations of Gal(F , F ) are assumed to reduce to those for its finite sub-
group G. If Gal(F , F ) is identifiable as S∞, finite dimensional representations cannot correspond
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to ordinary unitary representations since, by argument to be represented later, their dimension
is of order order n→∞ at least. Finite Galois groups can be however interpreted as a sub-group
of outer automorphisms defining a sub-factor of Gal(Q,Q) interpreted as HFF. Outer automor-
phisms result at the limit n → ∞ from a diagonal imbedding of finite Galois group to its nth

Cartesian power acting as automorphisms in S∞. At the limit n→∞ the imbedding does not
define inner automorphisms anymore. Physicist would interpret the situation as a spontaneous
symmetry breaking.

3. These representations have a natural extension to representations of Gl(n, F ) and of general
reductive groups if also realized as point-wise symmetries of sub-factors of HFF. Continuous
groups correspond to outer automorphisms of group algebra of S∞ not inducible from outer
automorphisms of Sinfty. That finite Galois groups and Lie groups act in the same representation
space should provide completely new insights to the understanding of Langlands correspondence.

4. The l-adic representations of Gal(Q/Q) could however change the situation. The representations
of finite permutation groups in R and in p-adic number fields p < n are more complex and
actually not well-understood [A84] . In the case of elliptic curves [A158] (say y2 = x3 + ax +
b, a, b rational numbers with 4a3 + 27b2 6= 0) so called first etale cohomology group is Q2

l

and thus 2-dimensional and it is possible to have 2-dimensional representations Gal(Q/Q) →
GL(2, Ql). More generally, l-adic representations σ of of Gal(F/F )→ GL(n,Ql) is assumed to
satisfy the condition that there exists a finite extension E ⊂ Ql such that σ factors through a
homomorphism to GL(n,E).

Assuming Gal(Q/Q) = S∞, one can ask whether l-adic or adelic representations and the repre-
sentations defined by outer automorphisms of sub-factors might be two alternative manners to
state the same thing.

Frobenius automorphism

Frobenius automorphism is one of the basic notions in Langlands correspondence. Consider a field
extension K/F and a prime ideal v of F (or prime p in case of ordinary integers). v decomposes
into a product of prime ideals of K: v =

∏
wk if v is unramified and power of this if not. Consider

unramified case and pick one wk and call it simply w. Frobenius automorphisms Frv is by definition
the generator of the Galois group Gal(K/w,F/v), which reduces to Z/nZ for some n.

Since the decomposition group Dw ⊂ Gal(K/F ) by definition maps the ideal w to itself and
preserves F point-wise, the elements of Dw act like the elements of Gal(OK/w,OF /v) (OX denotes
integers of X). Therefore there exists a natural homomorphism Dw : Gal(K/F )→ Gal(OK/w,OF /v)
(= Z/nZ for some n). If the inertia group Iw identified as the kernel of the homomorphism is trivial
then the Frobenius automorphism Frv, which by definition generates Gal(OK/w,OF /v), can be
regarded as an element of Dw and Gal(K/F ). Only the conjugacy class of this element is fixed since
any wk can be chosen. The significance of the result is that the eigenvalues of Frp define invariants
characterizing the representations of Gal(K/F ). The notion of Frobenius element can be generalized
also to the case of Gal(Q/Q) [A158] . The representations can be also l-adic being defined in GL(n,El)
where El is extension of Ql. In this case the eigenvalues must be algebraic numbers so that they make
sense as complex numbers.

Two examples discussed in [A158] help to make the notion more concrete.

1. For the extensions of finite fields F = G(p, 1) Frobenius automorphism corresponds to x → xp

leaving elements of F invariant.

2. All extensions of Q having abelian Galois group correspond to so called cyclotomic extensions
defined by polynomials PN (x) = xN+1. They have Galois group (Z/NZ)× consisting of integers
k < n which do not divide n and the degree of extension is φ(N) = |Z/NZ×|, where φ(n) is Euler
function counting the integers n < N which do not divide N . Prime p is unramified only if it
does not divide n so that the number of ”bad primes” is finite. The Frobenius equivalence class
Frp in Gal(K/F ) acts as raising to pth power so that the Frp corresponds to integer p mod n.
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Automorphic representations and automorphic functions

In the following I want to demonstrate that I have at least tried to do my home lessons by trying to
reproduce the description of [A158] for the route from automorphic adelic representations of GL(2, R)
to automorphic functions defined in upper half-plane.

1. Characterization of the representation

The representations ofGL(2, Q) are constructed in the space of smooth bounded functionsGL(2, Q)\GL(2, A)→
C or equivalently in the space of GL(2, Q) left-invariant functions in GL(2, A). A denotes adeles and
GL(2, A) acts as right translations in this space. The argument generalizes to arbitrary number field
F and its algebraic closure F .

1. Automorphic representations are characterized by a choice of compact subgroup K of GL(2, A).
The motivating idea is the central role of double coset decompositions G = K1AK2, where Ki are
compact subgroups and A denotes the space of double cosets K1gK2 in general representation
theory. In the recent case the compact group K2 ≡ K is expressible as a product K =

∏
pKp×

O2.

To my best understanding N =
∏
pekk in the cuspidality condition gives rise to ramified primes

implying that for these primes one cannot find GL2(Zp) invariant vectors unlike for others.
In this case one must replace this kind of vectors with those invariant under a subgroup of
GL2(Zp) consisting of matrices for which the component c satisfies c mod pnp = 0. Hence for
each unramified prime p one has Kp = GL(2, Zp). For ramified primes Kp consists of SL(2, Zp)
matrices with c ∈ pnpZp. Here pnp is the divisor of conductor N corresponding to p. K-finiteness
condition states that the right action of K on f generates a finite-dimensional vector space.

2. The representation functions are eigen functions of the Casimir operator C of gl(2, R) with eigen-
value ρ so that irreducible representations of gl(2, R) are obtained. An explicit representation
of Casimir operator is given by

C =
X2

0

4
+X+X −+X−X+ ,

where one has

X0

(
0 i
−i 0

)
,

(
1 ∓i
∓i −1

)
.

3. The center A× of GL(2, A) consists of A× multiples of identity matrix and it is assumed f(gz) =
χ(z)f(g), where χ : A× → C is a character providing a multiplicative representation of A×.

4. Also the so called cuspidality condition

∫
Q\NA

f(

(
1 u
0 1

)
g)du = 0

is satisfied [A158] . Note that the integration measure is adelic. Note also that the transforma-
tions appearing in integrand are an adelic generalization of the 1-parameter subgroup of Lorentz
transformations leaving invariant light-like vector. The condition implies that the modular func-
tions defined by the representation vanish at cusps at the boundaries of fundamental domains
representing copies Hu/Γ0(N), where N is so called conductor. The ”basic” cusp corresponds
to τ = i∞ for the ”basic” copy of the fundamental domain.

The groups gl(2, R), O(2) and GL(2, Qp) act non-trivially in these representations and it can
be shown that a direct sum of irreps of GL(2, AF ) × gl(2, R) results with each irrep occurring
only once. These representations are known as cuspidal automorphic representations.

The representation space for an irreducible cuspidal automorphic representation π is tensor product
of representation spaces associated with the factors of the adele. To each factor one can assign ground
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state which is for un-ramified prime invariant under Gl2(Zp) and in ramified case under Γ0(N). This
ground states is somewhat analogous to the ground state of infinite-dimensional Fock space.

2. From adeles to Γ0(N)\SL(2, R)

The path from adeles to the modular forms in upper half plane involves many twists.

1. By so called central approximation theorem the group GL(2, Q)\GL(2, A)/K is isomorphic to
the group Γ0(N)\GL+(2, R), where N is conductor [A158]. This means enormous simplification
since one gets ride of the adelic factors altogether. Intuitively the reduction corresponds to
the possibility to interpret rational number as collection of infinite number of p-adic rationals
coming as powers of primes so that the element of Γ0(N) has interpretation also as Carteisian
product of corresponding p-adic elements.

2. The group Γ0(N) ⊂ SL(2, Z) consists of matrices(
a b
c d

)
, c mod N = 0.

+ refers to positive determinant. Note that Γ0(N) contains as a subgroup congruence subgroup
Γ(N) consisting of matrices, which are unit matrices modulo N . Congruence subgroup is a nor-
mal subgroup of SL(2, Z) so that also SL(2, Z)/Γ0(N) is group. Physically modular group Γ(N)
would be rather interesting alternative for Γ0(N) as a compact subgroup and the replacement
Kp = Γ0(pkp)→ Γ(pkp) of p-adic groups adelic decomposition is expected to guarantee this.

3. Central character condition together with assumptions about the action of K implies that the
smooth functions in the original space (smoothness means local constancy in p-adic sectors:
does this mean p-adic pseudo constancy?) are completely determined by their restrictions to
Γ0(N)\SL(2, R) so that one gets rid of the adeles.

3. From Γ0(N)\SL(2, R) to upper half-plane Hu = SL(2, R)/SO(2)

The representations of (gl(2, C), O(2)) come in four categories corresponding to principal series,
discrete series, the limits of discrete series, and finite-dimensional representations [A158] . For the
discrete series representation π giving square integrable representation in SL(2, R) one has ρ = k(k−
1)/4, where k > 1 is integer. As sl2 module, π∞ is direct sum of irreducible Verma modules with
highest weight −k and lowest weight k. The former module is generated by a unique, up to a scalar,
highest weight vector v∞ such that

X0v∞ = −kv∞ , X+v∞ = 0 .

The latter module is in turn generated by the lowest weight vector(
1 0
0 −1

)
v∞ .

This means that entire module is generated from the ground state v∞, and one can focus to the
function φπ on Γ0(N)\SL(2, R) corresponding to this vector. The goal is to assign to this function
SO(2) invariant function defined in the upper half-plane Hu = SL(2, R)/SO(2), whose points can be
parameterized by the numbers τ = (a+ bi)/(c+ di) determined by SL(2, R) elements. The function
fπ(g) = φπ(g)(ci+ d)k indeed is SO(2) invariant since the phase exp(ikφ) resulting in SO(2) rotation
by φ is compensated by the phase resulting from (ci+ d) factor. This function is not anymore Γ0(N)
invariant but transforms as

fπ((aτ + b)/(cτ + d)) = (cτ + d)kfπ(τ)

under the action of Γ0(N) The highest weight condition X+v∞ implies that f is holomorphic function
of τ . Such functions are known as modular forms of weight k and level N . It would seem that the
replacement of Γ0(N) suggested by physical arguments would only replace Hu/Γ0(N) with Hu/Γ(N).

fπ can be expanded as power series in the variable q = exp(2πτ) to give
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fπ(q) =

∞∑
n=0

anq
n . (18.4.1)

Cuspidality condition means that fπ vanishes at the cusps of the fundamental domain of the action of
Γ0(N) on Hu. In particular, it vanishes at q = 0 which which corresponds to τ = −∞. This implies
a0 = 0. This function contains all information about automorphic representation.

Hecke operators

Spherical Hecke algebra (which must be distinguished from non-commutative Hecke algebra associated
with braids) can be defined as algebra of GL(2, Zp) bi-invariant functions on GL(2, Qp) with respect
to convolution product. This algebra is isomorphic to the polynomial algebra in two generators H1,p

and H2,p and the ground states vp of automorphic representations are eigenstates of these operators.
The normalizations can be chosen so that the second eigenvalue equals to unity. Second eigenvalue
must be an algebraic number. The eigenvalues of Hecke operators Hp,1 correspond to the coefficients
ap of the q-expansion of automorphic function fπ so that fπ is completely determined once these
coefficients carrying number theoretic information are known [A158] .

The action of Hecke operators induces an action on the modular function in the upper half-plane
so that Hecke operators have also representation as what is known as classical Hecke operators. The
existence of this representation suggests that adelic representations might not be absolutely necessary
for the realization of Langlands program.

From TGD point of view a possible interpretation of this picture is in terms of modular invariance.
Teichmueller parameters of algebraic Riemann surface are affected by absolute Galois group. This
induces Sl(2g,Z) transformation if the action does not change the conformal equivalence class and a
more general transformation when it does. In the Gl2 case discussed above one has g = 1 (torus). This
change would correspond to non-trivial cuspidality conditions implying that ground state is invariant
only under subgroup of Gl2(Zp) for some primes. These primes would correspond to ramified primes
in maximal Abelian extension of rationals.
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Appendix

A-1 Basic properties of CP2 and elementary facts about p-adic
numbers

A-1.1 CP2 as a manifold

CP2, the complex projective space of two complex dimensions, is obtained by identifying the points
of complex 3-space C3 under the projective equivalence

(z1, z2, z3) ≡ λ(z1, z2, z3) . (A-1.1)

Here λ is any non-zero complex number. Note that CP2 can be also regarded as the coset space
SU(3)/U(2). The pair zi/zj for fixed j and zi 6= 0 defines a complex coordinate chart for CP2. As
j runs from 1 to 3 one obtains an atlas of three oordinate charts covering CP2, the charts being
holomorphically related to each other (e.g. CP2 is a complex manifold). The points z3 6= 0 form a
subset of CP2 homoeomorphic to R4 and the points with z3 = 0 a set homeomorphic to S2. Therefore
CP2 is obtained by ”adding the 2-sphere at infinity to R4”.

Besides the standard complex coordinates ξi = zi/z3 , i = 1, 2 the coordinates of Eguchi and
Freund [A218] will be used and their relation to the complex coordinates is given by

ξ1 = z + it ,

ξ2 = x+ iy . (A-1.1)

These are related to the ”spherical coordinates” via the equations

ξ1 = rexp(i
(Ψ + Φ)

2
)cos(

Θ

2
) ,

ξ2 = rexp(i
(Ψ− Φ)

2
)sin(

Θ

2
) . (A-1.1)

The ranges of the variables r,Θ,Φ,Ψ are [0,∞], [0, π], [0, 4π], [0, 2π] respectively.
Considered as a real four-manifold CP2 is compact and simply connected, with Euler number Euler

number 3, Pontryagin number 3 and second b = 1.

A-1.2 Metric and Kähler structure of CP2

In order to obtain a natural metric for CP2, observe that CP2 can be thought of as a set of the orbits
of the isometries zi → exp(iα)zi on the sphere S5:

∑
ziz̄i = R2. The metric of CP2 is obtained

by projecting the metric of S5 orthogonally to the orbits of the isometries. Therefore the distance
between the points of CP2 is that between the representative orbits on S5.

The line element has the following form in the complex coordinates

911
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ds2 = gab̄dξ
adξ̄b , (A-1.2)

where the Hermitian, in fact Kähler metric gab̄ is defined by

gab̄ = R2∂a∂b̄K , (A-1.3)

where the function K, Kähler function, is defined as

K = log(F ) ,

F = 1 + r2 . (A-1.3)

The Kähler function for S2 has the same form. It gives the S2 metric dzdz/(1 + r2)2 related to its
standard form in spherical coordinates by the coordinate transformation (r, φ) = (tan(θ/2), φ).

The representation of the CP2 metric is deducible from S5 metric is obtained by putting the angle
coordinate of a geodesic sphere constant in it and is given

ds2

R2
=

(dr2 + r2σ2
3)

F 2
+
r2(σ2

1 + σ2
2)

F
, (A-1.4)

where the quantities σi are defined as

r2σ1 = Im(ξ1dξ2 − ξ2dξ1) ,

r2σ2 = −Re(ξ1dξ2 − ξ2dξ1) ,

r2σ3 = −Im(ξ1dξ̄1 + ξ2dξ̄2) . (A-1.3)

R denotes the radius of the geodesic circle of CP2. The vierbein forms, which satisfy the defining
relation

skl = R2
∑
A

eAk e
A
l , (A-1.4)

are given by

e0 = dr
F , e1 = rσ1√

F
,

e2 = rσ2√
F

, e3 = rσ3

F .
(A-1.5)

The explicit representations of vierbein vectors are given by

e0 = dr
F , e1 = r(sinΘcosΨdΦ+sinΨdΘ)

2
√
F

,

e2 = r(sinΘsinΨdΦ−cosΨdΘ)

2
√
F

, e3 = r(dΨ+cosΘdΦ)
2F .

(A-1.5)

The explicit representation of the line element is given by the expression

ds2/R2 =
dr2

F 2
+

r2

4F 2
(dΨ + cosΘdΦ)2 +

r2

4F
(dΘ2 + sin2ΘdΦ2) .

(A-1.5)

The vierbein connection satisfying the defining relation
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deA = −V AB ∧ eB , (A-1.6)

is given by

V01 = − e
1

r , V23 = e1

r ,

V02 = − e
2

r , V31 = e2

r ,
V03 = (r − 1

r )e3 , V12 = (2r + 1
r )e3 .

(A-1.7)

The representation of the covariantly constant curvature tensor is given by

R01 = e0 ∧ e1 − e2 ∧ e3 , R23 = e0 ∧ e1 − e2 ∧ e3 ,
R02 = e0 ∧ e2 − e3 ∧ e1 , R31 = −e0 ∧ e2 + e3 ∧ e1 ,
R03 = 4e0 ∧ e3 + 2e1 ∧ e2 , R12 = 2e0 ∧ e3 + 4e1 ∧ e2 .

(A-1.8)

Metric defines a real, covariantly constant, and therefore closed 2-form J

J = −igab̄dξadξ̄b , (A-1.9)

the so called Kähler form. Kähler form J defines in CP2 a symplectic structure because it satisfies
the condition

JkrJ
rl = −skl . (A-1.10)

The form J is integer valued and by its covariant constancy satisfies free Maxwell equations. Hence it
can be regarded as a curvature form of a U(1) gauge potential B carrying a magnetic charge of unit
1/2g (g denotes the gauge coupling). Locally one has therefore

J = dB , (A-1.11)

where B is the so called Kähler potential, which is not defined globally since J describes homological
magnetic monopole.

It should be noticed that the magnetic flux of J through a 2-surface in CP2 is proportional to its
homology equivalence class, which is integer valued. The explicit representations of J and B are given
by

B = 2re3 ,

J = 2(e0 ∧ e3 + e1 ∧ e2) =
r

F 2
dr ∧ (dΨ + cosΘdΦ) +

r2

2F
sinΘdΘdΦ .

(A-1.10)

The vierbein curvature form and Kähler form are covariantly constant and have in the complex
coordinates only components of type (1,1).

Useful coordinates for CP2 are the so called canonical coordinates in which Kähler potential and
Kähler form have very simple expressions

B =
∑
k=1,2

PkdQk ,

J =
∑
k=1,2

dPk ∧ dQk . (A-1.10)

The relationship of the canonical coordinates to the ”spherical” coordinates is given by the equations
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P1 = − 1

1 + r2
,

P2 =
r2cosΘ

2(1 + r2)
,

Q1 = Ψ ,

Q2 = Φ . (A-1.8)

A-1.3 Spinors in CP2

CP2 doesn’t allow spinor structure in the conventional sense [A198] . However, the coupling of the
spinors to a half odd multiple of the Kähler potential leads to a respectable spinor structure. Because
the delicacies associated with the spinor structure of CP2 play a fundamental role in TGD, the
arguments of Hawking are repeated here.

To see how the space can fail to have an ordinary spinor structure consider the parallel transport
of the vierbein in a simply connected space M . The parallel propagation around a closed curve with
a base point x leads to a rotated vierbein at x: eA = RABe

B and one can associate to each closed path
an element of SO(4).

Consider now a one-parameter family of closed curves γ(v) : v ∈ (0, 1) with the same base point x
and γ(0) and γ(1) trivial paths. Clearly these paths define a sphere S2 in M and the element RAB(v)
defines a closed path in SO(4). When the sphere S2 is contractible to a point e.g., homologically
trivial, the path in SO(4) is also contractible to a point and therefore represents a trivial element of
the homotopy group Π1(SO(4)) = Z2.

For a homologically nontrivial 2-surface S2 the associated path in SO(4) can be homotopically
nontrivial and therefore corresponds to a nonclosed path in the covering group Spin(4) (leading from
the matrix 1 to -1 in the matrix representation). Assume this is the case.

Assume now that the space allows spinor structure. Then one can parallel propagate also spinors
and by the above construction associate a closed path of Spin(4) to the surface S2. Now, however this
path corresponds to a lift of the corresponding SO(4) path and cannot be closed. Thus one ends up
with a contradiction.

From the preceding argument it is clear that one could compensate the non-allowed −1- factor
associated with the parallel transport of the spinor around the sphere S2 by coupling it to a gauge
potential in such a way that in the parallel transport the gauge potential introduces a compensating
−1-factor. For a U(1) gauge potential this factor is given by the exponential exp(i2Φ) , where Φ
is the magnetic flux through the surface. This factor has the value −1 provided the U(1) potential
carries half odd multiple of Dirac charge 1/2g. In case of CP2 the required gauge potential is half odd
multiple of the Kähler potential B defined previously. In the case of M4 × CP2 one can in addition
couple the spinor components with different chiralities independently to an odd multiple of B/2.

A-1.4 Geodesic sub-manifolds of CP2

Geodesic sub-manifolds are defined as sub-manifolds having common geodesic lines with the imbedding
space. As a consequence the second fundamental form of the geodesic manifold vanishes, which means
that the tangent vectors hkα (understood as vectors of H) are covariantly constant quantities with
respect to the covariant derivative taking into account that the tangent vectors are vectors both with
respect to H and X4.

In [A171] a general characterization of the geodesic sub-manifolds for an arbitrary symmetric space
G/H is given. Geodesic sub-manifolds are in 1-1-correspondence with the so called Lie triple systems
of the Lie-algebra g of the group G. The Lie triple system t is defined as a subspace of g characterized
by the closedness property with respect to double commutation

[X, [Y,Z]] ∈ t for X,Y, Z ∈ t . (A-1.9)

SU(3) allows, besides geodesic lines, two nonequivalent (not isometry related) geodesic spheres. This
is understood by observing that SU(3) allows two nonequivalent SU(2) algebras corresponding to
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subgroups SO(3) (orthogonal 3 × 3 matrices) and the usual isospin group SU(2). By taking any
subset of two generators from these algebras, one obtains a Lie triple system and by exponentiating
this system, one obtains a 2-dimensional geodesic sub-manifold of CP2.

Standard representatives for the geodesic spheres of CP2 are given by the equations

S2
I : ξ1 = ξ̄2 or equivalently (Θ = π/2,Ψ = 0) ,

S2
II : ξ1 = ξ2 or equivalently (Θ = π/2,Φ = 0) .

The non-equivalence of these sub-manifolds is clear from the fact that isometries act as holomorphic
transformations in CP2. The vanishing of the second fundamental form is also easy to verify. The
first geodesic manifold is homologically trivial: in fact, the induced Kähler form vanishes identically
for S2

I . S2
II is homologically nontrivial and the flux of the Kähler form gives its homology equivalence

class.

A-2 CP2 geometry and standard model symmetries

A-2.1 Identification of the electro-weak couplings

The delicacies of the spinor structure of CP2 make it a unique candidate for space S. First, the coupling
of the spinors to the U(1) gauge potential defined by the Kähler structure provides the missing U(1)
factor in the gauge group. Secondly, it is possible to couple different H-chiralities independently to
a half odd multiple of the Kähler potential. Thus the hopes of obtaining a correct spectrum for the
electromagnetic charge are considerable. In the following it will be demonstrated that the couplings
of the induced spinor connection are indeed those of the GWS model [B28] and in particular that the
right handed neutrinos decouple completely from the electro-weak interactions.

To begin with, recall that the space H allows to define three different chiralities for spinors. Spinors
with fixed H-chirality e = ±1, CP2-chirality l, r and M4-chirality L,R are defined by the condition

ΓΨ = eΨ ,

e = ±1 , (A-2.0)

where Γ denotes the matrix Γ9 = γ5×γ5, 1×γ5 and γ5×1 respectively. Clearly, for a fixed H-chirality
CP2- and M4-chiralities are correlated.

The spinors with H-chirality e = ±1 can be identified as quark and lepton like spinors respectively.
The separate conservation of baryon and lepton numbers can be understood as a consequence of
generalized chiral invariance if this identification is accepted. For the spinors with a definiteH-chirality
one can identify the vielbein group of CP2 as the electro-weak group: SO(4) = SU(2)L × SU(2)R.

The covariant derivatives are defined by the spinorial connection

A = V +
B

2
(n+1+ + n−1−) . (A-2.1)

Here V and B denote the projections of the vielbein and Kähler gauge potentials respectively and
1+(−) projects to the spinor H-chirality +(−). The integers n± are odd from the requirement of a
respectable spinor structure.

The explicit representation of the vielbein connection V and of B are given by the equations

V01 = − e
1

r , V23 = e1

r ,

V02 = − e
2

r , V31 = e2

r ,
V03 = (r − 1

r )e3 , V12 = (2r + 1
r )e3 ,

(A-2.2)

and

B = 2re3 , (A-2.3)
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respectively. The explicit representation of the vielbein is not needed here.
Let us first show that the charged part of the spinor connection couples purely left handedly.

Identifying Σ0
3 and Σ1

2 as the diagonal (neutral) Lie-algebra generators of SO(4), one finds that the
charged part of the spinor connection is given by

Ach = 2V23I
1
L + 2V13I

2
L , (A-2.4)

where one have defined

I1
L =

(Σ01 − Σ23)

2
,

I2
L =

(Σ02 − Σ13)

2
. (A-2.4)

Ach is clearly left handed so that one can perform the identification

W± =
2(e1 ± ie2)

r
, (A-2.5)

where W± denotes the charged intermediate vector boson.
Consider next the identification of the neutral gauge bosons γ and Z0 as appropriate linear com-

binations of the two functionally independent quantities

X = re3 ,

Y =
e3

r
, (A-2.5)

appearing in the neutral part of the spinor connection. We show first that the mere requirement that
photon couples vectorially implies the basic coupling structure of the GWS model leaving only the
value of Weinberg angle undetermined.

To begin with let us define

γ̄ = aX + bY ,

Z̄0 = cX + dY , (A-2.5)

where the normalization condition
ad− bc = 1 ,

is satisfied. The physical fields γ and Z0 are related to γ̄ and Z̄0 by simple normalization factors.
Expressing the neutral part of the spinor connection in term of these fields one obtains

Anc = [(c+ d)2Σ03 + (2d− c)2Σ12 + d(n+1+ + n−1−)]γ̄

+ [(a− b)2Σ03 + (a− 2b)2Σ12 − b(n+1+ + n−1−)]Z̄0 .

(A-2.4)

Identifying Σ12 and Σ03 = 1 × γ5Σ12 as vectorial and axial Lie-algebra generators, respectively, the
requirement that γ couples vectorially leads to the condition

c = −d . (A-2.5)

Using this result plus previous equations, one obtains for the neutral part of the connection the
expression
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Anc = γQem + Z0(I3
L − sin2θWQem) . (A-2.6)

Here the electromagnetic charge Qem and the weak isospin are defined by

Qem = Σ12 +
(n+1+ + n−1−)

6
,

I3
L =

(Σ12 − Σ03)

2
. (A-2.6)

The fields γ and Z0 are defined via the relations

γ = 6dγ̄ =
6

(a+ b)
(aX + bY ) ,

Z0 = 4(a+ b)Z̄0 = 4(X − Y ) . (A-2.6)

The value of the Weinberg angle is given by

sin2θW =
3b

2(a+ b)
, (A-2.7)

and is not fixed completely. Observe that right handed neutrinos decouple completely from the
electro-weak interactions.

The determination of the value of Weinberg angle is a dynamical problem. The angle is completely
fixed once the YM action is fixed by requiring that action contains no cross term of type γZ0. Pure
symmetry non-broken electro-weak YM action leads to a definite value for the Weinberg angle. One
can however add a symmetry breaking term proportional to Kähler action and this changes the value
of the Weinberg angle.

To evaluate the value of the Weinberg angle one can express the neutral part Fnc of the induced
gauge field as

Fnc = 2R03Σ03 + 2R12Σ12 + J(n+1+ + n−1−) , (A-2.8)

where one has

R03 = 2(2e0 ∧ e3 + e1 ∧ e2) ,

R12 = 2(e0 ∧ e3 + 2e1 ∧ e2) ,

J = 2(e0 ∧ e3 + e1 ∧ e2) , (A-2.7)

in terms of the fields γ and Z0 (photon and Z- boson)

Fnc = γQem + Z0(I3
L − sin2θWQem) . (A-2.8)

Evaluating the expressions above one obtains for γ and Z0 the expressions

γ = 3J − sin2θWR03 ,

Z0 = 2R03 . (A-2.8)

For the Kähler field one obtains

J =
1

3
(γ + sin2θWZ

0) . (A-2.9)
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Expressing the neutral part of the symmetry broken YM action

Lew = Lsym + fJαβJαβ ,

Lsym =
1

4g2
Tr(FαβFαβ) , (A-2.9)

where the trace is taken in spinor representation, in terms of γ and Z0 one obtains for the coefficient
X of the γZ0 cross term (this coefficient must vanish) the expression

X = − K

2g2
+
fp

18
,

K = Tr
[
Qem(I3

L − sin2θWQem)
]
, (A-2.9)

In the general case the value of the coefficient K is given by

K =
∑
i

[
− (18 + 2n2

i )sin
2θW

9

]
, (A-2.10)

where the sum is over the spinor chiralities, which appear as elementary fermions and ni is the integer
describing the coupling of the spinor field to the Kähler potential. The cross term vanishes provided
the value of the Weinberg angle is given by

sin2θW =
9
∑
i 1

(fg2 + 2
∑
i(18 + n2

i ))
. (A-2.11)

In the scenario where both leptons and quarks are elementary fermions the value of the Weinberg
angle is given by

sin2θW =
9

( fg
2

2 + 28)
. (A-2.12)

The bare value of the Weinberg angle is 9/28 in this scenario, which is quite close to the typical value
9/24 of GUTs [B45] .

A-2.2 Discrete symmetries

The treatment of discrete symmetries C, P, and T is based on the following requirements:
a) Symmetries must be realized as purely geometric transformations.
b) Transformation properties of the field variables should be essentially the same as in the conventional
quantum field theories [B15] .

The action of the reflection P on spinors of is given by

Ψ → PΨ = γ0 ⊗ γ0Ψ . (A-2.13)

in the representation of the gamma matrices for which γ0 is diagonal. It should be noticed that W
and Z0 bosons break parity symmetry as they should since their charge matrices do not commute
with the matrix of P.

The guess that a complex conjugation in CP2 is associated with T transformation of the physicist
turns out to be correct. One can verify by a direct calculation that pure Dirac action is invariant
under T realized according to

mk → T (Mk) ,

ξk → ξ̄k ,

Ψ → γ1γ3 ⊗ 1Ψ . (A-2.12)
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The operation bearing closest resemblance to the ordinary charge conjugation corresponds geo-
metrically to complex conjugation in CP2:

ξk → ξ̄k ,

Ψ → Ψ†γ2γ0 ⊗ 1 . (A-2.12)

As one might have expected symmetries CP and T are exact symmetries of the pure Dirac action.

A-3 Basic facts about induced gauge fields

Since the classical gauge fields are closely related in TGD framework, it is not possible to have space-
time sheets carrying only single kind of gauge field. For instance, em fields are accompanied by Z0 fields
for extremals of Kähler action. Weak forces is however absent unless the space-time sheets contains
topologically condensed exotic weakly charged particles responding to this force. Same applies to
classical color forces. The fact that these long range fields are present forces to assume that there
exists a hierarchy of scaled up variants of standard model physics identifiable in terms of dark matter.

Classical em fields are always accompanied by Z0 field and some components of color gauge field.
For extremals having homologically non-trivial sphere as a CP2 projection em and Z0 fields are the
only non-vanishing electroweak gauge fields. For homologically trivial sphere only W fields are non-
vanishing. Color rotations does not affect the situation.

For vacuum extremals all electro-weak gauge fields are in general non-vanishing although the net
gauge field has U(1) holonomy by 2-dimensionality of the CP2 projection. Color gauge field has U(1)
holonomy for all space-time surfaces and quantum classical correspondence suggest a weak form of color
confinement meaning that physical states correspond to color neutral members of color multiplets.

A-3.1 Induced gauge fields for space-times for which CP2 projection is a
geodesic sphere

If one requires that space-time surface is an extremal of Kähler action and has a 2-dimensional CP2

projection, only vacuum extremals and space-time surfaces for which CP2 projection is a geodesic
sphere, are allowed. Homologically non-trivial geodesic sphere correspond to vanishing W fields and
homologically non-trivial sphere to non-vanishing W fields but vanishing γ and Z0. This can be
verified by explicit examples.

r =∞ surface gives rise to a homologically non-trivial geodesic sphere for which e0 and e3 vanish
imply the vanishing of W field. For space-time sheets for which CP2 projection is r =∞ homologically
non-trivial geodesic sphere of CP2 one has

γ = (
3

4
− sin2(θW )

2
)Z0 ' 5Z0

8
.

The induced W fields vanish in this case and they vanish also for all geodesic sphere obtained by
SU(3) rotation.

Im(ξ1) = Im(ξ2) = 0 corresponds to homologically trivial geodesic sphere. A more general
representative is obtained by using for the phase angles of standard complex CP2 coordinates constant
values. In this case e1 and e3 vanish so that the induced em, Z0, and Kähler fields vanish but induced
W fields are non-vanishing. This holds also for surfaces obtained by color rotation. Hence one can
say that for non-vacuum extremals with 2-D CP2 projection color rotations and weak symmetries
commute.

A-3.2 Space-time surfaces with vanishing em, Z0, or Kähler fields

In the following the induced gauge fields are studied for general space-time surface without assuming
the extremal property. In fact, extremal property reduces the study to the study of vacuum extremals
and surfaces having geodesic sphere as a CP2 projection and in this sense the following arguments are
somewhat obsolete in their generality.
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Space-times with vanishing em, Z0, or Kähler fields

The following considerations apply to a more general situation in which the homologically trivial
geodesic sphere and extremal property are not assumed. It must be emphasized that this case is
possible in TGD framework only for a vanishing Kähler field.

Using spherical coordinates (r,Θ,Ψ,Φ) for CP2, the expression of Kähler form reads as

J =
r

F 2
dr ∧ (dΨ + cos(Θ)dΦ) +

r2

2F
sin(Θ)dΘ ∧ dΦ ,

F = 1 + r2 . (A-3.0)

The general expression of electromagnetic field reads as

Fem = (3 + 2p)
r

F 2
dr ∧ (dΨ + cos(Θ)dΦ) + (3 + p)

r2

2F
sin(Θ)dΘ ∧ dΦ ,

p = sin2(ΘW ) , (A-3.0)

where ΘW denotes Weinberg angle.
a) The vanishing of the electromagnetic fields is guaranteed, when the conditions

Ψ = kΦ ,

(3 + 2p)
1

r2F
(d(r2)/dΘ)(k + cos(Θ)) + (3 + p)sin(Θ) = 0 , (A-3.0)

hold true. The conditions imply that CP2 projection of the electromagnetically neutral space-time is
2-dimensional. Solving the differential equation one obtains

r =

√
X

1−X
,

X = D

[
| (k + u

C
|
]ε

,

u ≡ cos(Θ) , C = k + cos(Θ0) , D =
r2
0

1 + r2
0

, ε =
3 + p

3 + 2p
, (A-3.-1)

where C and D are integration constants. 0 ≤ X ≤ 1 is required by the reality of r. r = 0
would correspond to X = 0 giving u = −k achieved only for |k| ≤ 1 and r = ∞ to X = 1 giving
|u+ k| = [(1 + r2

0)/r2
0)](3+2p)/(3+p) achieved only for

sign(u+ k)× [
1 + r2

0

r2
0

]
3+2p
3+p ≤ k + 1 ,

where sign(x) denotes the sign of x.
The expressions for Kähler form and Z0 field are given by

J = − p

3 + 2p
Xdu ∧ dΦ ,

Z0 = −6

p
J . (A-3.-1)

The components of the electromagnetic field generated by varying vacuum parameters are proportional
to the components of the Kähler field: in particular, the magnetic field is parallel to the Kähler
magnetic field. The generation of a long range Z0 vacuum field is a purely TGD based feature not
encountered in the standard gauge theories.

b) The vanishing of Z0 fields is achieved by the replacement of the parameter ε with ε = 1/2
as becomes clear by considering the condition stating that Z0 field vanishes identically. Also the

relationship Fem = 3J = − 3
4
r2

F du ∧ dΦ is useful.
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c) The vanishing Kähler field corresponds to ε = 1, p = 0 in the formula for em neutral space-times.
In this case classical em and Z0 fields are proportional to each other:

Z0 = 2e0 ∧ e3 =
r

F 2
(k + u)

∂r

∂u
du ∧ dΦ = (k + u)du ∧ dΦ ,

r =

√
X

1−X
, X = D|k + u| ,

γ = −p
2
Z0 . (A-3.-2)

For a vanishing value of Weinberg angle (p = 0) em field vanishes and only Z0 field remains as a
long range gauge field. Vacuum extremals for which long range Z0 field vanishes but em field is
non-vanishing are not possible.

The effective form of CP2 metric for surfaces with 2-dimensional CP2 projection

The effective form of the CP2 metric for a space-time having vanishing em,Z0, or Kähler field is of
practical value in the case of vacuum extremals and is given by

ds2
eff = (srr(

dr

dΘ
)2 + sΘΘ)dΘ2 + (sΦΦ + 2ksΦΨ)dΦ2 =

R2

4
[seffΘΘdΘ2 + seffΦΦ dΦ2] ,

seffΘΘ = X ×
[
ε2(1− u2)

(k + u)2
× 1

1−X
+ 1−X

]
,

seffΦΦ = X ×
[
(1−X)(k + u)2 + 1− u2

]
, (A-3.-3)

and is useful in the construction of vacuum imbedding of, say Schwartchild metric.

Topological quantum numbers

Space-times for which either em, Z0, or Kähler field vanishes decompose into regions characterized by
six vacuum parameters: two of these quantum numbers (ω1 and ω2) are frequency type parameters,
two (k1 and k2 ) are wave vector like quantum numbers, two of the quantum numbers (n1 and n2)
are integers. The parameters ωi and ni will be referred as electric and magnetic quantum numbers.
The existence of these quantum numbers is not a feature of these solutions alone but represents a
much more general phenomenon differentiating in a clear cut manner between TGD and Maxwell’s
electrodynamics.

The simplest manner to avoid surface Kähler charges and discontinuities or infinities in the deriva-
tives of CP2 coordinates on the common boundary of two neighboring regions with different vacuum
quantum numbers is topological field quantization, 3-space decomposes into disjoint topological field
quanta, 3-surfaces having outer boundaries with possibly macroscopic size.

Under rather general conditions the coordinates Ψ and Φ can be written in the form

Ψ = ω2m
0 + k2m

3 + n2φ+ Fourier expansion ,

Φ = ω1m
0 + k1m

3 + n1φ+ Fourier expansion . (A-3.-3)

m0,m3 and φ denote the coordinate variables of the cylindrical M4 coordinates) so that one has
k = ω2/ω1 = n2/n1 = k2/k1. The regions of the space-time surface with given values of the vacuum
parameters ωi,ki and ni and m and C are bounded by the surfaces at which space-time surface becomes
ill-defined, say by r > 0 or r <∞ surfaces.

The space-time surface decomposes into regions characterized by different values of the vacuum
parameters r0 and Θ0. At r =∞ surfaces n2,ω2 and m can change since all values of Ψ correspond to
the same point of CP2: at r = 0 surfaces also n1 and ω1 can change since all values of Φ correspond
to same point of CP2, too. If r = 0 or r =∞ is not in the allowed range space-time surface develops
a boundary.

This implies what might be called topological quantization since in general it is not possible to
find a smooth global imbedding for, say a constant magnetic field. Although global imbedding exists
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it decomposes into regions with different values of the vacuum parameters and the coordinate u in
general possesses discontinuous derivative at r = 0 and r = ∞ surfaces. A possible manner to avoid
edges of space-time is to allow field quantization so that 3-space (and field) decomposes into disjoint
quanta, which can be regarded as structurally stable units a 3-space (and of the gauge field). This
doesn’t exclude partial join along boundaries for neighboring field quanta provided some additional
conditions guaranteing the absence of edges are satisfied.

For instance, the vanishing of the electromagnetic fields implies that the condition

Ω ≡ ω2

n2
− ω1

n1
= 0 , (A-3.-2)

is satisfied. In particular, the ratio ω2/ω1 is rational number for the electromagnetically neutral
regions of space-time surface. The change of the parameter n1 and n2 (ω1 and ω2) in general generates
magnetic field and therefore these integers will be referred to as magnetic (electric) quantum numbers.

A-4 p-Adic numbers and TGD

A-4.1 p-Adic number fields

p-Adic numbers (p is prime: 2,3,5,...) can be regarded as a completion of the rational numbers using
a norm, which is different from the ordinary norm of real numbers [A126] . p-Adic numbers are
representable as power expansion of the prime number p of form:

x =
∑
k≥k0

x(k)pk, x(k) = 0, ...., p− 1 . (A-4.1)

The norm of a p-adic number is given by

|x| = p−k0(x) . (A-4.2)

Here k0(x) is the lowest power in the expansion of the p-adic number. The norm differs drastically
from the norm of the ordinary real numbers since it depends on the lowest pinary digit of the p-adic
number only. Arbitrarily high powers in the expansion are possible since the norm of the p-adic
number is finite also for numbers, which are infinite with respect to the ordinary norm. A convenient
representation for p-adic numbers is in the form

x = pk0ε(x) , (A-4.3)

where ε(x) = k + .... with 0 < k < p, is p-adic number with unit norm and analogous to the phase
factor exp(iφ) of a complex number.

The distance function d(x, y) = |x − y|p defined by the p-adic norm possesses a very general
property called ultra-metricity:

d(x, z) ≤ max{d(x, y), d(y, z)} . (A-4.4)

The properties of the distance function make it possible to decompose Rp into a union of disjoint sets
using the criterion that x and y belong to same class if the distance between x and y satisfies the
condition

d(x, y) ≤ D . (A-4.5)

This division of the metric space into classes has following properties:
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a) Distances between the members of two different classes X and Y do not depend on the choice
of points x and y inside classes. One can therefore speak about distance function between classes.

b) Distances of points x and y inside single class are smaller than distances between different
classes.

c) Classes form a hierarchical tree.

Notice that the concept of the ultra-metricity emerged in physics from the models for spin glasses
and is believed to have also applications in biology [B38] . The emergence of p-adic topology as the
topology of the effective space-time would make ultra-metricity property basic feature of physics.

A-4.2 Canonical correspondence between p-adic and real numbers

The basic challenge encountered by p-adic physicist is how to map the predictions of the p-adic
physics to real numbers. p-Adic probabilities provide a basic example in this respect. Identification
via common rationals and canonical identification and its variants have turned out to play a key role
in this respect.

Basic form of canonical identification

There exists a natural continuous map I : Rp → R+ from p-adic numbers to non-negative real numbers
given by the ”pinary” expansion of the real number for x ∈ R and y ∈ Rp this correspondence reads

y =
∑
k>N

ykp
k → x =

∑
k<N

ykp
−k ,

yk ∈ {0, 1, .., p− 1} . (A-4.5)

This map is continuous as one easily finds out. There is however a little difficulty associated with
the definition of the inverse map since the pinary expansion like also decimal expansion is not unique
(1 = 0.999...) for the real numbers x, which allow pinary expansion with finite number of pinary digits

x =

N∑
k=N0

xkp
−k ,

x =

N−1∑
k=N0

xkp
−k + (xN − 1)p−N + (p− 1)p−N−1

∑
k=0,..

p−k .

(A-4.4)

The p-adic images associated with these expansions are different

y1 =

N∑
k=N0

xkp
k ,

y2 =

N−1∑
k=N0

xkp
k + (xN − 1)pN + (p− 1)pN+1

∑
k=0,..

pk

= y1 + (xN − 1)pN − pN+1 , (A-4.3)

so that the inverse map is either two-valued for p-adic numbers having expansion with finite pinary
digits or single valued and discontinuous and non-surjective if one makes pinary expansion unique by
choosing the one with finite pinary digits. The finite pinary digit expansion is a natural choice since
in the numerical work one always must use a pinary cutoff on the real axis.
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The topology induced by canonical identification

The topology induced by the canonical identification in the set of positive real numbers differs from
the ordinary topology. The difference is easily understood by interpreting the p-adic norm as a norm
in the set of the real numbers. The norm is constant in each interval [pk, pk+1) (see Fig. A-4.2) and is
equal to the usual real norm at the points x = pk: the usual linear norm is replaced with a piecewise
constant norm. This means that p-adic topology is coarser than the usual real topology and the higher
the value of p is, the coarser the resulting topology is above a given length scale. This hierarchical
ordering of the p-adic topologies will be a central feature as far as the proposed applications of the
p-adic numbers are considered.

Ordinary continuity implies p-adic continuity since the norm induced from the p-adic topology is
rougher than the ordinary norm. p-Adic continuity implies ordinary continuity from right as is clear
already from the properties of the p-adic norm (the graph of the norm is indeed continuous from
right). This feature is one clear signature of the p-adic topology.

Figure 1: The real norm induced by canonical identification from 2-adic norm.

The linear structure of the p-adic numbers induces a corresponding structure in the set of the non-
negative real numbers and p-adic linearity in general differs from the ordinary concept of linearity.
For example, p-adic sum is equal to real sum only provided the summands have no common pinary
digits. Furthermore, the condition x +p y < max{x, y} holds in general for the p-adic sum of the
real numbers. p-Adic multiplication is equivalent with the ordinary multiplication only provided that
either of the members of the product is power of p. Moreover one has x×p y < x× y in general. The
p-Adic negative −1p associated with p-adic unit 1 is given by (−1)p =

∑
k(p−1)pk and defines p-adic

negative for each real number x. An interesting possibility is that p-adic linearity might replace the
ordinary linearity in some strongly nonlinear systems so these systems would look simple in the p-adic
topology.

These results suggest that canonical identification is involved with some deeper mathematical
structure. The following inequalities hold true:

(x+ y)R ≤ xR + yR ,

|x|p|y|R ≤ (xy)R ≤ xRyR , (A-4.3)

where |x|p denotes p-adic norm. These inequalities can be generalized to the case of (Rp)
n (a linear

vector space over the p-adic numbers).

(x+ y)R ≤ xR + yR ,

|λ|p|y|R ≤ (λy)R ≤ λRyR , (A-4.3)

where the norm of the vector x ∈ Tnp is defined in some manner. The case of Euclidian space suggests
the definition



(xR)2 = (
∑
n

x2
n)R . (A-4.4)

These inequalities resemble those satisfied by the vector norm. The only difference is the failure of
linearity in the sense that the norm of a scaled vector is not obtained by scaling the norm of the
original vector. Ordinary situation prevails only if the scaling corresponds to a power of p.

These observations suggests that the concept of a normed space or Banach space might have a
generalization and physically the generalization might apply to the description of some non-linear
systems. The nonlinearity would be concentrated in the nonlinear behavior of the norm under scaling.

Modified form of the canonical identification

The original form of the canonical identification is continuous but does not respect symmetries even
approximately. This led to a search of variants which would do better in this respect. The modification
of the canonical identification applying to rationals only and given by

IQ(q = pk × r

s
) = pk × I(r)

I(s)
(A-4.5)

is uniquely defined for rationals, maps rationals to rationals, has also a symmetry under exchange
of target and domain. This map reduces to a direct identification of rationals for 0 ≤ r < p and
0 ≤ s < p. It has turned out that it is this map which most naturally appears in the applications.
The map is obviously continuous locally since p-adically small modifications of r and s mean small
modifications of the real counterparts.

Canonical identification is in a key role in the successful predictions of the elementary particle
masses. The predictions for the light elementary particle masses are within extreme accuracy same
for I and IQ but IQ is theoretically preferred since the real probabilities obtained from p-adic ones by
IQ sum up to one in p-adic thermodynamics.

Generalization of number concept and notion of imbedding space

TGD forces an extension of number concept: roughly a fusion of reals and various p-adic number fields
along common rationals is in question. This induces a similar fusion of real and p-adic imbedding
spaces. Since finite p-adic numbers correspond always to non-negative reals n-dimensional space Rn

must be covered by 2n copies of the p-adic variant Rnp of Rn each of which projects to a copy of Rn+
(four quadrants in the case of plane). The common points of p-adic and real imbedding spaces are
rational points and most p-adic points are at real infinity.

For a given p-adic space-time sheet most points are literally infinite as real points and the projection
to the real imbedding space consists of a discrete set of rational points: the interpretation in terms
of the unavoidable discreteness of the physical representations of cognition is natural. Purely local
p-adic physics implies real p-adic fractality and thus long range correlations for the real space-time
surfaces having enough common points with this projection.

p-Adic fractality means that M4 projections for the rational points of space-time surface X4 are
related by a direct identification whereas CP2 coordinates of X4 at these points are related by I, IQ
or some of its variants implying long range correlates for CP2 coordinates. Since only a discrete set
of points are related in this manner, both real and p-adic field equations can be satisfied and there
are no problems with symmetries. p-Adic effective topology is expected to be a good approximation
only within some length scale range which means infrared and UV cutoffs. Also multi-p-fractality is
possible.
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