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Abstract

The study of the free motion of the meson 7~ through the equation of Klein-Gordon, leads

to its antiparticle i.e. the meson 7.

1 The Klein-Gordon equation

Let us remember that the quantum-mechanical state of a non-relativistic particle of mass m and spin
0 is a solution of the Schrédinger equation which we write here in operational form:
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is the Hamiltonian operator, while ¢ (x,t) is the wave function of the particle. Let us quickly recall
the representation of the various operators in the coordinate base [I]
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so we find the well-known form of the Scrhédinger equation:
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In 1926 Klein, Gordon and Fok (and perhaps even Schrodinger himself before writing his famous
equation (3)) used the following device (E is energy):
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where for simplicity we are considering the one-dimensional case. From relativistic mechanics [3]:
E? = m2c + 2p?
It follows that substitution (4) returns
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The generalization to three-dimensional motion is immediate:

1 0%y mey 2
2
_ 27 _ (= =0 5)
A ®
known as Klein—Gordon equation. A notable difference from that of Schrodinger is that the K-G
is of the second order in the time derivative. And this will present probl



After some manipulation, we arrive at the continuity equation for magnitude
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We are tempted to call p <probability density>, but the presence of the second derivative with respect
to time in the K-G leads to an inconsistency. Precisely, since the second order equation ”resembles”
the D’Alembert one, we have that a Cauchy problem is characterized by initial conditions (with
obvious meaning of the symbols):
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where functions are assigned arbitrarily. This implies that the quantity p is not positive definite, so
it is not a probability density. A possible re-interpretation consists in redefining:
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being ¢ the electric charge (possibly zero) of the particle. We are interested in solutions of the
monochromatic plane wave type which, as is known, are quantum states with a defined momentum
value. Without violating generality, let’s consider the one-dimensional case:

% 1 0% me 2
a7 e (7)) v=0 ©)

We are looking for solutions like this
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Multiplying the first and second members by Planck’s reduced constant and remembering the rela-
tionship between pulsation and energy, and between wave number and impulse, we have

After simple steps:

E? = & + m2c,
that is, exactly what is expected. To remove ambiguity about the sign, we define
def 2.4 | 2,2
Ep = +v/m?ct + c?p (11)

so E = +FEp. It follows that the solutions (10) are written ¢ (z,¢) = Aes®*FEPD or in the form
more compact: .
Uy (2,t) = AenPT=AEPD )\ = 4] (12)
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Here an interpretative problem arises since we still have two progressive plane waves, but one of the
two has a “negative frequency”; precisely
EP
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which describes a progressive plane wave with frequency —w. Replacing the (12) in the first of the
(8)
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where we have redefined the electric charge as ¢ = e where e is the absolute value of the charge of
the electron. We can then interpret v, (z,t) as the wave function of a relativistic free particle of
momentum p and electric charge ¢, while ¢_ (z,t) is the wave function of a relativistic free particle
of momentum p and electric charge —q.

pa (z,1) = A? (13)

2 Covariant form of the Klein-Gordon equation

Since the Klein-Gordon equation is the relativistic extension of the Schrodinger equation for a particle
of spin 0, we must write it in four-dimensional notation. For this purpose, we recall that the generic
point-event of the spacetime of Special Relativity is determined by the 4-vector x# = (2°, 2!, 22, 23)
where (9 = ¢t is the time coordinate, while (z', 22, 2°) are the spatial coordinates which in many

cases coincide with the usual Cartesian coordinates(x,y, z). Here we have a metric tensor
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and therefore an element of ”distance”:
ds* = g datde” = Adt — (dz)’ — (dy)* — (dz)”

which is manifestly invariant under Lorentz transformations. The 4-momentum of a particle of mass
m is defined by the following 4-vector:
i E
P =\—-pP
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being p = (p', p?, p*) the usual 3-momentum, while F is the energy
E? = m2c* + p?

Performing the scalar product or the contraction of the 4-impulse vector:
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Given this, we need to write the differential equation
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in 4-dimensional notation. Let’s remember the 4-gradient operator:
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where g is the inverse metric tensor. We have
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Incidentally, passing from the individual physical quantities to the respective Hermitian operators:

It follows
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Ultimately, in 4-dimensional notation the Klein-Gordon equation is written:
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which is manifestly covariant.

3 Integration of the Klein-Gordon equation

After examining the covariant writing of the Klein - Gordon equation, let’s rewrite it in three-
dimensional notation:
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It is clear that the terms in brackets must cancel identically, obtaining:
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which is a system of two differential equations of the Schrodinger type.

4 Operational form of the Klein-Gordon equation

The mathematical device used in the previous number returns the sensational advantage of reducing
the order of the Klein-Gordon differential equation in the time derivative by one unit (reducing it
to a Schrodinger equation). The price you pay is the integration of a system of coupled differential



equations. The particular shape of this system suggests a matrix writing of the same. To do this,
we define the column vector
¥
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whose elements are the unknown functions that appear in the aforementioned system that we rewrite

here: 5 ,
K0P _ 1P X2 2
{ ror = an ¥ (p+2) + mey (1)
ihgy = 5, V™ (p +x) — mex
Let’s write a Schrodinger-type equation
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where
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whose matrix elements are second-order differential operators acting on the elements of the Hilbert
space L? (R3). Expliciting the product rows by columns, we obtain:

{ Xy + Xiax = ma—f
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from which
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where Y, Z are matrices (to be determined) of order 2 on the complex field. One possible determi-
nation is
Y:T3+iT2, Z:7'3

having introduced the matrices:
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which verify the following properties:
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We conclude that the operational form of the Klein - Gordon equation is:
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where the Hamiltonian operator is
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For a physical interpretation of the functions that make up ¥, we take the electric charge density
and the corresponding current density:
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The obvious result
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allows us to express the charge density as
pP= CI‘I’TT 3V

being
the conjugate Hermitian function of W. The electric charge in a volume of physical space represented
by a regular domain €2, is

Qo (t) = / p(x,t)d*r =q / (pp" = xx") d’x
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Density and current are related by the continuity equation

dp

5 tdivi=0 (25)

cwhich expresses the conservation of electric charge. Integrating over all physical space manifestly
results
aqQ
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with the normalization condition:
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5 Free motion. Particle and antiparticle

The free motion of a particle is described by a «wave function>
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being ¢, xo constant quantities. So
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assuming that (30) is a solution of (22) we obtain the system of equations:
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To write the normalization condition, we first observe that the constant quantities g, xo are dimen-
sionless. Since a wave function has the dimensions of V=2 where V' V is a volume, we must multiply
by a constant quantity A having this dimension. To normalize it is however convenient to refer to

the motion in a region €2 of volume V', so
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The normalization condition immediately follows
Po(+)Po(E) — Xo(£) Xox) = £1

We refer to the motion of the positively charged particle:
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So let’s define
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so W, describes the motion of a particle with negative charge and momentum —p. The reverse is

also true:
Ve = ( £ ) - T = ( X0 ) (37)
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Here W, describes the motion of a positively charged particle. We conclude that there is a solution
*

U = ( i the solution corresponds uniquely ¥, = ( 2;* ) which is called the solution of the
conjugated charge relative to W. Note that
\I/C = 7'1\1/ (38)

Definition 1 If the relativistic motion of a particle of mass m and spins = 0 is described by the

"wave function”
v ( > ’
X

the particle described by the conjugate charge function ¥, = 7V | it’s called antiparticle.

Example 2 The meson w7~ has zero spin and charge ¢ = —e. It follows that the meson ©t is the
antiparticle.

Definition 3 The transformation

@Z(i)—)@:(i) (39)

is called conjugation particle — antiparticle. The (39) transforms particles into antiparticles
and vice versa. If the state of motion is invariant with respect to (39), the particle is said to be
effectively neutral.

Example 4 The neutron and neutrino are electrically neutral particles but not actually neutral. The
photon is an electrically neutral and effectively neutral particle.
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