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  Abstract 

 

In this paper we will try to find a solution for the Riemann Zeta function for odd 

integers.  

 

We will start with ζ(3) (the Riemann Zeta function with s=3) emulating the “Basel 

problem”. But instead of using a sine or cosine function, using functions similar to 

these: 

𝑓(𝑥) = 1 −
𝑥3

3!
+

𝑥6

6!
−

𝑥9

9!
+ ⋯ 

𝑓(𝑥) =
1

3
(𝑒−𝑥·𝑒

1
3

(2𝜋𝑖)

+𝑒−𝑥·𝑒
2
3

(2𝜋𝑖)

+ 𝑒−𝑥·𝑒
3
3

(2𝜋𝑖)

) 

 

We will discover that the process itself seems ok, but with a problem. The solutions 

of the above functions are not periodic, so we cannot emulate the “Basel problem” 

perfectly, obtaining the following value: 

 

𝜁(3) =

𝜋3

3!(√3)
3

1 −
1

23

= 1.1366020 ≠ 1.202056903 

With a small correction, we arrive to: 

𝜁(3) =

𝜋3

3!(√3)
3

1 −
1

23

𝑒
2

√3

3
= 1.202173775 ≈ 1.202056903 [7] 

But not getting the correct value anyhow. The only way of obtaining the correct value 

would be to find a function of the form: 

𝑔(𝑥) = 1 − 𝑟(3) ·
𝑥3

3!
+ 𝑟(6) ·

𝑥6

6!
− 𝑟(9) ·

𝑥9

9!
+ ⋯ 

That has periodic zeros. Where r(n) is an unknown function to be calculate/discovered. 

We have also generalized this study to calculate a general 𝜁(𝑘) where k can be higher 

odd numbers, or even numbers. Having 𝜁(𝑘) for even numbers would lead to obtain-

ing a closed equation for the Bernoulli numbers.  

If a generalization for k as a general complex number was possible, we could even 

consider k=½+it, obtaining a closed function for the zeros of the Riemann Zeta func-

tion. 
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1. Introduction  

In this paper we will try to find a solution for the Riemann Zeta function for odd integers.  

 

We will start with ζ(3) (the Riemann Zeta function with s=3) emulating the “Basel prob-

lem”. But instead of using a sine or cosine function, using a different type of function that 

we will develop in chapter 5. 

 

In chapters 2-4 we will make some previous calculations to understand the following chap-

ters. 

 

In chapters 5, 6 and 7 we will try to find the solution for ζ(3), ζ(5) and a general ζ(k) 

respectively. And in the chapter 8 we will comment the conclusions of the study. 

 

2. Sum of the odd elements of the Riemann Zeta function 

The first thing we will make is to calculate the sum of the odd integers of the Riemann zeta 

function [1]. This is: 

𝜁𝑜𝑑𝑑(𝑠) = 1−𝑠 + 3−𝑠 + 5−𝑠 + 7−𝑠 … 

To do it, we start with the definition of the Riemann zeta function [1]: 

𝜁(𝑠) = 1−𝑠 + 2−𝑠 + 3−𝑠 + 4−𝑠 + 5−𝑠 + 6−𝑠 + ⋯ 

We can separate the even and the odd numbers this way: 

𝜁(𝑠) = 2−𝑠 + 4−𝑠 + 6−𝑠 … + 1−𝑠 + 3−𝑠 + 5−𝑠 + ⋯ 

𝜁(𝑠) = 𝜁𝑒𝑣𝑒𝑛(𝑠) + 𝜁𝑜𝑑𝑑(𝑠) 

We continue operating: 

𝜁(𝑠) = 2−𝑠(1−𝑠 + 2−𝑠 + 3−𝑠 … ) + 1−𝑠 + 3−𝑠 + 5−𝑠 + ⋯ 

𝜁(𝑠) = 2−𝑠𝜁(𝑠) + 1−𝑠 + 3−𝑠 + 5−𝑠 + ⋯ 

𝜁(𝑠) = 2−𝑠𝜁(𝑠) + 𝜁𝑜𝑑𝑑(𝑠) 

𝜁(𝑠) − 2−𝑠𝜁(𝑠) = 𝜁𝑜𝑑𝑑(𝑠) 

So, we get: 

𝜁𝑜𝑑𝑑(𝑠) = 𝜁(𝑠)(1 − 2−𝑠) 

And therefore: 

𝜁(𝑠) =
𝜁𝑜𝑑𝑑(𝑠)

1 − 2−𝑠
 

3. Calculation of ζ(2) using the Cosine instead of the Sine 

We will remake the Basel problem [2] by Euler, but using the cosine instead of the sine. 

We will see later why. 

We know that the Taylor expansion series [3][6] of the cosine is: 
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𝑐𝑜𝑠(𝑥) = 1 −
𝑥2

2!
+

𝑥4

4!
−

𝑥6

6!
+ ⋯ 

We also know that the polynomial of the series should correspond to the product of the 

solutions of the function [4] (in this case, the points where the cosine is zero). This is: 

𝑐𝑜𝑠(𝑥) = ⋯ (1 −
𝑥

5𝜋

2

) (1 −
𝑥

3𝜋

2

) (1 −
𝑥
𝜋

2

) (1 −
𝑥

(−
𝜋

2
)

) (1 −
𝑥

(−
3𝜋

2
)

) (1 −
𝑥

(−
5𝜋

2
)

) … 

𝑐𝑜𝑠(𝑥) = ⋯ (1 −
𝑥

5𝜋

2

) (1 −
𝑥

3𝜋

2

) (1 −
𝑥
𝜋

2

) (1 +
𝑥
𝜋

2

) (1 +
𝑥

3𝜋

2

) (1 +
𝑥

5𝜋

2

) … 

Now, we apply the law that the product of a sum and a difference is the difference of 

squares. We do this by pairs of elements: 

𝑐𝑜𝑠(𝑥) = (1 − (
𝑥
𝜋

2

)

2

) (1 − (
𝑥

3𝜋

2

)

2

) (1 − (
𝑥

5𝜋

2

)

2

) … 

𝑐𝑜𝑠(𝑥) = (1 −
𝑥2

𝜋2

22

) (1 −
𝑥2

32𝜋2

22

) (1 −
𝑥2

52𝜋2

22

) … 

𝑐𝑜𝑠(𝑥) = (1 −
22𝑥2

𝜋2
·

1

12
) (1 −

22𝑥2

𝜋2
·

1

32
) (1 −

22𝑥2

𝜋2
·

1

52
) … 

We can check that the product of elements that do not include x (the constant part of the 

polynomial is: 

1 · 1 · 1 · 1 · 1 · ···= 𝟏 

And it is ok with the first element of the polynomial that is 1. 

𝑐𝑜𝑠(𝑥) = 𝟏 −
𝑥2

2!
+

𝑥4

4!
−

𝑥6

6!
+ ⋯ 

So, no escalation factor is needed to adjust the results. 

Then we check the second element. The one that has x2. 

𝑐𝑜𝑠(𝑥) = 1 −
𝒙𝟐

𝟐!
+

𝑥4

4!
−

𝑥6

6!
+ ⋯ 

This should correspond with following sum: 

−
22𝑥2

𝜋2
·

1

12
−

22𝑥2

𝜋2
·

1

32
−

22𝑥2

𝜋2
·

1

52
− ⋯ = −

𝒙𝟐

𝟐!
 

The reason, is because the only way of obtaining a polynomial in x2, is multiplying each 

element that contains x2 in the product by an infinite product of 1s. The moment you mul-

tiply by another element you get at least an element with x4. 

So, operating: 
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−
22𝑥2

𝜋2
(1 +

1

32
+

1

52
+ ⋯ ) = −

𝑥2

2!
 

−
22𝑥2

𝜋2
𝜁𝑜𝑑𝑑(2) = −

𝑥2

2!
 

𝜁𝑜𝑑𝑑(2) =
𝜋2

2! 22
=

𝜋2

8
 

And now we apply the equation we obtained in the chapter 2 regarding the odd elements 

of the Riemann zeta function: 

𝜁(𝑠) =
𝜁𝑜𝑑𝑑(𝑠)

1 − 2−𝑠
 

𝜁(2) =
𝜁𝑜𝑑𝑑(2)

1 − 2−2
=

𝜋2

8

1 −
1

4

=

𝜋2

8
4−1

4

=

𝜋2

8
3

4

=
4𝜋2

24
=

𝜋2

6
 

If you are familiar with the Basel problem, you will check that the result is correct. The 

way to arrive to the result is similar but more complicated than using the sine function.  

The reason I have used the cosine function is because it is easier to check that the element 

without x in the polynomial (in this case, 1) is coherent with the infinite product of solutions. 

You will understand why later. 

4. Generalization of the product of a sum and a difference but using 
more than two elements 

In the previous chapter, we have used the property of multiplying a sum by a difference to 

get the difference of squares. A specific example could have this form: 

(1 +
𝐴

𝐵
) (1 −

𝐴

𝐵
) = 1 − (

𝐴

𝐵
)

2

= 1 −
𝐴2

𝐵2
 

If we put it using complex numbers, one of the possible ways will be the following: 

(1 +
𝐴

𝐵
) (1 −

𝐴

𝐵
) = (1 −

𝐴

𝑒𝜋𝑖𝐵
) (1 −

𝐴

𝑒2𝜋𝑖𝐵
) = (1 −

𝐴

𝑒
1

2
(2𝜋𝑖)

𝐵
) (1 −

𝐴

𝑒
2

2
(2𝜋𝑖)

𝐵
) 

So, we will have: 

(1 −
𝐴

𝑒
1

2
(2𝜋𝑖)

𝐵
) (1 −

𝐴

𝑒
2

2
(2𝜋𝑖)

𝐵
) = 1 −

𝐴2

𝐵2
 

And this leads, to the following question. Can we generalize this for more than two ele-

ments? For example, the next expression is true? 

(1 −
𝐴

𝐵𝑒
1

3
(2𝜋𝑖)

) (1 −
𝐴

𝐵𝑒
2

3
(2𝜋𝑖)

) (1 −
𝐴

𝐵𝑒
3

3
(2𝜋𝑖)

) = 1 −
𝐴3

𝐵3
 

We can check that it is correct. Just operating: 
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(1 −
𝐴

𝐵𝑒
1

3
(2𝜋𝑖)

) (1 −
𝐴

𝐵𝑒
2

3
(2𝜋𝑖)

) (1 −
𝐴

𝐵𝑒
3

3
(2𝜋𝑖)

)

= (1 −
𝐴

𝐵𝑒
2

3
(2𝜋𝑖)

−
𝐴

𝐵𝑒
1

3
(2𝜋𝑖)

+
𝐴2

𝐵2𝑒
3

3
(2𝜋𝑖)

) (1 −
𝐴

𝐵𝑒
3

3
(2𝜋𝑖)

)

= 1 −
𝐴

𝐵𝑒
3

3
(2𝜋𝑖)

−
𝐴

𝐵𝑒
2

3
(2𝜋𝑖)

+
𝐴2

𝐵2𝑒
5

3
(2𝜋𝑖)

−
𝐴

𝐵𝑒
1

3
(2𝜋𝑖)

+
𝐴2

𝐵2𝑒
4

3
(2𝜋𝑖)

+
𝐴2

𝐵2𝑒
3

3
(2𝜋𝑖)

−
𝐴3

𝐵3𝑒
6

3
(2𝜋𝑖)

= 1 + (−
𝐴

𝐵𝑒
1

3
(2𝜋𝑖)

−
𝐴

𝐵𝑒
2

3
(2𝜋𝑖)

−
𝐴

𝐵𝑒
3

3
(2𝜋𝑖)

)

+ (
𝐴2

𝐵2𝑒
3

3
(2𝜋𝑖)

+
𝐴2

𝐵2𝑒
4

3
(2𝜋𝑖)

+
𝐴2

𝐵2𝑒
5

3
(2𝜋𝑖)

) −
𝐴3

𝐵3𝑒
6

3
(2𝜋𝑖)

= 1 + (−
𝐴𝑒−

1

3
(2𝜋𝑖)

𝐵
−

𝐴𝑒−
2

3
(2𝜋𝑖)

𝐵
−

𝐴𝑒−
3

3
(2𝜋𝑖)

𝐵
)

+ (
𝐴2𝑒−

3

3
(2𝜋𝑖)

𝐵2
+

𝐴2𝑒−
4

3
(2𝜋𝑖)

𝐵2
+

𝐴2𝑒−
5

3
(2𝜋𝑖)

𝐵2
) −

𝐴3

𝐵3𝑒
6

3
(2𝜋𝑖)

= 1 + (−
𝐴 (−

1

2
− 𝑖

√3

2
)

𝐵
−

𝐴 (−
1

2
+ 𝑖

√3

2
)

𝐵
−

𝐴 · 1

𝐵
)

+ (
𝐴2 · 1

𝐵2
+

𝐴2 (−
1

2
− 𝑖

√3

2
)

𝐵2
+

𝐴2 (−
1

2
+ 𝑖

√3

2
)

𝐵2
) −

𝐴3

𝐵3𝑒
6

3
(2𝜋𝑖)

= 1 + (0) + (0) −
𝐴3

𝐵3𝑒
6

3
(2𝜋𝑖)

= 1 −
𝐴3

𝐵3
 

So, yes, the expression is true: 

(1 −
𝐴

𝐵𝑒
1

3
(2𝜋𝑖)

) (1 −
𝐴

𝐵𝑒
2

3
(2𝜋𝑖)

) (1 −
𝐴

𝐵𝑒
3

3
(2𝜋𝑖)

) = 1 −
𝐴3

𝐵3
 

And it is valid for any number of elements. The following is for 5 elements: 

(1 −
𝐴

𝐵𝑒
1

5
(2𝜋𝑖)

) (1 −
𝐴

𝐵𝑒
2

5
(2𝜋𝑖)

) (1 −
𝐴

𝐵𝑒
3

5
(2𝜋𝑖)

) (1 −
𝐴

𝐵𝑒
4

5
(2𝜋𝑖)

) (1 −
𝐴

𝐵𝑒
5

5
(2𝜋𝑖)

) = 1 −
𝐴5

𝐵5
 

And this is the general case: 

(1 −
𝐴

𝐵𝑒
1

𝑛
(2𝜋𝑖)

) (1 −
𝐴

𝐵𝑒
2

𝑛
(2𝜋𝑖)

) (1 −
𝐴

𝐵𝑒
3

𝑛
(2𝜋𝑖)

) … (1 −
𝐴

𝐵𝑒
𝑛

𝑛
(2𝜋𝑖)

) = 1 −
𝐴𝑛

𝐵𝑛
 

∏ (1 −
𝐴

𝐵𝑒
𝑘

𝑛
(2𝜋𝑖)

)

𝑛

𝑘=1

= 1 −
𝐴𝑛

𝐵𝑛
 

Again, we will see later why we have done this. 
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5. Using a specific function to try to calculate the value of ζ(3) 

In the chapter 3, we calculated ζ(2), the value of the Riemann zeta function for s=2 using 

the cosine function. The question is, can we use another function to calculate the value of 

ζ(3)? 

To be able to obtain an exponent of 3 in the numbers, we will need a function of this form 

as we will see later: 

𝑓(𝑥) = 1 −
𝑥3

3!
+

𝑥6

6!
−

𝑥9

9!
+ ⋯ 

This function is the same as the following function, as we will demonstrate now: 

𝑓(𝑥) =
1

3
(𝑒−𝑥·𝑒

1
3

(2𝜋𝑖)

+𝑒−𝑥·𝑒
2
3

(2𝜋𝑖)

+ 𝑒−𝑥·𝑒
3
3

(2𝜋𝑖)

) 

To demonstrate it, we can obtain the Taylor series of above function at x=0 (McLaurin 

series). First we calculate the value of the series at the point x=0. 

𝑓(0) =
1

3
(𝑒−0·𝑒

1
3

(2𝜋𝑖)

+𝑒−0·𝑒
2
3

(2𝜋𝑖)

+ 𝑒−0·𝑒
3
3

(2𝜋𝑖)

) 

𝑓(0) =
1

3
(1 + 1 + 1) =

1

3
(3) = 1 

Now, we take the first derivative of the series: 

𝑓′(𝑥) =
1

3
(−𝑒

1

3
(2𝜋𝑖)

· 𝑒−𝑥·𝑒
1
3

(2𝜋𝑖)

−𝑒
2

3
(2𝜋𝑖)

· 𝑒−𝑥·𝑒
2
3

(2𝜋𝑖)

− 𝑒
3

3
(2𝜋𝑖)

𝑒−𝑥·𝑒
3
3

(2𝜋𝑖)

) 

And, again, we calculate its value for x=0. 

𝑓′(0) =
1

3
(−𝑒

1

3
(2𝜋𝑖)

− 𝑒
2

3
(2𝜋𝑖)

− 𝑒
3

3
(2𝜋𝑖)

) =
1

3
(− (−

1

2
+ 𝑖

√3

2
) − (−

1

2
− 𝑖

√3

2
) − 1)

=
1

3
(

1

2
− 𝑖

√3

2
+

1

2
+ 𝑖

√3

2
− 1) = 0 

Now, we take the second derivative and its value at x=0. 

𝑓′′(𝑥) =
1

3
(−𝑒

2

3
(2𝜋𝑖)

· 𝑒−𝑥·𝑒
1
3

(2𝜋𝑖)

−𝑒
4

3
(2𝜋𝑖)

· 𝑒−𝑥·𝑒
2
3

(2𝜋𝑖)

− 𝑒
6

3
(2𝜋𝑖)

𝑒−𝑥·𝑒
3
3

(2𝜋𝑖)

) 

𝑓′′(0) =
1

3
(−𝑒

2

3
(2𝜋𝑖)

− 𝑒
4

3
(2𝜋𝑖)

− 𝑒
6

3
(2𝜋𝑖)

) =
1

3
(− (−

1

2
− 𝑖

√3

2
) − (−

1

2
+ 𝑖

√3

2
) − 1)

=
1

3
(

1

2
+ 𝑖

√3

2
+

1

2
− 𝑖

√3

2
− 1) = 0 

Now, the third derivative and its value for x=0. 

𝑓′′′(𝑥) =
1

3
(−𝑒

3

3
(2𝜋𝑖)

· 𝑒−𝑥·𝑒
1
3

(2𝜋𝑖)

−𝑒
6

3
(2𝜋𝑖)

· 𝑒−𝑥·𝑒
2
3

(2𝜋𝑖)

− 𝑒
9

3
(2𝜋𝑖)

𝑒−𝑥·𝑒
3
3

(2𝜋𝑖)

) 

𝑓′′′(0) =
1

3
(−𝑒

3

3
(2𝜋𝑖)

− 𝑒
6

3
(2𝜋𝑖)

− 𝑒
9

3
(2𝜋𝑖)

) =
1

3
(−1 − 1 − 1) =

1

3
(−3) = −1 
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If we continue with the next derivatives and we use the Taylor series definition we obtain, 

the expected: 

𝑓(𝑥) = 1 −
𝑥3

3!
+

𝑥6

6!
−

𝑥9

9!
+ ⋯ 

We can again obtain the derivatives and their value at x=0 to check that everything hold. 

You can skip, this part if you want as it is just a verification that both functions commente 

din the beginning of the chapter are the same: 

𝑓(0) = 1 

𝑓′(𝑥) = −
3𝑥2

3!
+

6𝑥5

6!
−

9𝑥8

9!
+ ⋯ 

𝑓′(𝑥) = −
3𝑥2

3 · 2!
+

6𝑥5

5 · 5!
−

9𝑥8

9 · 8!
+ ⋯ 

𝑓′(𝑥) = −
𝑥2

2!
+

𝑥5

5!
−

𝑥8

8!
+ ⋯ 

𝑓′(0) = 0 

𝑓′′(𝑥) = −
2𝑥

2!
+

5𝑥4

5!
−

8𝑥7

8!
+ ⋯ 

𝑓′′(𝑥) = −
2𝑥

2 · 1!
+

5𝑥4

5 · 4!
−

8𝑥7

8 · 7!
+ ⋯ 

𝑓′′(𝑥) = −
𝑥

1!
+

𝑥4

4!
−

𝑥7

7!
+ ⋯ 

𝑓′′(0) = 0 

𝑓′′′(𝑥) = −
1

1!
+

4𝑥3

4!
−

7𝑥6

7!
+ ⋯ 

𝑓′′′(𝑥) = −
1

1!
+

4𝑥3

4 · 3!
−

7𝑥6

7 · 6!
+ ⋯ 

𝑓′′′(𝑥) = −
1

1!
+

𝑥3

3!
−

𝑥6

6!
+ ⋯ 

𝑓′′′(𝑥) = −𝑓(𝑥) 

𝑓′′′(𝑥) = −1 

So, we have this function expressed in these following forms. And the question is, what do 

we do now? 

𝑓(𝑥) = 1 −
𝑥3

3!
+

𝑥6

6!
−

𝑥9

9!
+ ⋯ 

𝑓(𝑥) =
1

3
(𝑒−𝑥·𝑒

1
3

(2𝜋𝑖)

+𝑒−𝑥·𝑒
2
3

(2𝜋𝑖)

+ 𝑒−𝑥·𝑒
3
3

(2𝜋𝑖)

) 
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The theory tells us that if we calculate the zeros of above function and we make an infinite 

product of the solutions, as we made in chapter 3 with the cosine, we will be able to obtain 

ζ(3). 

The problem is that above statement is only true if the solutions to the function are periodic. 

And as we will check now, they are “almost” periodic but not “perfectly” periodic.  

To find the solutions, we will use the programs in Mathematica that you have in Annexes 

1 and 2. The program in Annex 1 obtains the solutions for: 

𝑓(𝑥) = 1 −
𝑥3

3!
+

𝑥6

6!
−

𝑥9

9!
+ ⋯ 

And the program in Annex 2, obtains the solutions for: 

𝑓(𝑥) =
1

3
(𝑒−𝑥·𝑒

1
3

(2𝜋𝑖)

+𝑒−𝑥·𝑒
2
3

(2𝜋𝑖)

+ 𝑒−𝑥·𝑒
3
3

(2𝜋𝑖)

) 

And, as expected, the solutions are the same, as the functions are the same (expressed in 

different forms). 

The solutions, expressed in polar way (modulus, argument) are: 

 

 

 
 

{{56.22778, -2.0943951}, {56.22778,  

  2.0943951}, {52.600182, -2.0943951}, {52.600182,  

  2.0943951}, {48.972583, -2.0943951}, {48.972583,  

  2.0943951}, {45.344984, -2.0943951}, {45.344984,  

  2.0943951}, {41.717385, -2.0943951}, {41.717385,  

  2.0943951}, {38.089787, -2.0943951}, {38.089787,  

  2.0943951}, {34.462188, -2.0943951}, {34.462188,  

  2.0943951}, {30.834589, -2.0943951}, {30.834589,  

  2.0943951}, {27.20699, -2.0943951}, {27.20699,  

  2.0943951}, {23.579392, -2.0943951}, {23.579392,  

  2.0943951}, {19.951793, -2.0943951}, {19.951793,  

  2.0943951}, {16.324194, -2.0943951}, {16.324194,  

  2.0943951}, {12.696596, -2.0943951}, {12.696596,  

  2.0943951}, {9.0689975, -2.0943951}, {9.0689975,  

  2.0943951}, {5.4412334, -2.0943951}, {5.4412334,  

  2.0943951}, {1.8498128, -2.0943951}, {1.8498128,  

  2.0943951}, {1.8498128, 0.}, {5.4412334, 0.}, {9.0689975,  

  0.}, {12.696596, 0.}, {16.324194, 0.}, {19.951793, 0.}, {23.579392,  

  0.}, {27.20699, 0.}, {30.834589, 0.}, {34.462188, 0.}, {38.089787,  

  0.}, {41.717385, 0.}, {45.344984, 0.}, {48.972583, 0.}} 

 

When the argument is 2.0943951 it corresponds to: 𝑒
1

3
(2𝜋𝑖) 

 and the argument -2.0943951 

corresponds to 𝑒−
1

3
(2𝜋𝑖) 

 which is the same as 𝑒
2

3
(2𝜋𝑖) 

. 

When the argument is 0, it corresponds to a real number. Which is the same as saying that 

it corresponds to 𝑒
3

3
(2𝜋𝑖) 

. 
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We can check that for each modulus, we have three solutions, with these three arguments. 

As we can see below for the first five modulus as an example: 

{1.8498128, 2.0943951}, {1.8498128, -2.0943951}, {1.8498128, 0.} 

{5.4412334, 2.0943951}, {5.4412334, -2.0943951}, {5.4412334, 0.} 

{9.0689975, 2.0943951}, {9.0689975, -2.0943951}, {9.0689975, 0.} 

{12.696596, 2.0943951}, {12.696596, -2.0943951}, {12.696596, 0.} 

{16.324194, 2.0943951}, {16.324194, -2.0943951}, {16.324194, 0.} 

This is the same as: 

1.8498128 · 𝑒
1

3
(2𝜋𝑖)

, 1.8498128 · 𝑒
2

3
(2𝜋𝑖)

, 1.8498128 · 𝑒
3

3
(2𝜋𝑖)

  

5.4412334 · 𝑒
1

3
(2𝜋𝑖)

, 5.4412334 · 𝑒
2

3
(2𝜋𝑖)

, 5.4412334 · 𝑒
3

3
(2𝜋𝑖)

  

9.0689975 · 𝑒
1

3
(2𝜋𝑖)

, 9.0689975 · 𝑒
2

3
(2𝜋𝑖)

, 9.0689975 · 𝑒
3

3
(2𝜋𝑖)

  

12.696596 · 𝑒
1

3
(2𝜋𝑖)

, 12.696596 · 𝑒
2

3
(2𝜋𝑖)

, 12.696596 · 𝑒
3

3
(2𝜋𝑖)

  

16.324194 · 𝑒
1

3
(2𝜋𝑖)

, 16.324194 · 𝑒
2

3
(2𝜋𝑖)

, 16.324194 · 𝑒
3

3
(2𝜋𝑖)

  

 

We can see that the solutions divide the complex plane in three equal parts, as we can see 

in the graph of the function. See Annex A1 and A2 for more details. 
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But are these solutions periodic? Let’s check it. If we subtract: 

16.324194 − 12.696596 = 3.627598 ≈
2𝜋

√3
 

12.696596 − 9.0689975 = 3.6275985 ≈
2𝜋

√3
 

9.0689975 − 5.4412334 = 3.6277641 ≈
2𝜋

√3
  

5.4412334 − 1.8498128 = 3.5914206 ≠
2𝜋

√3
   

Considering that 
2𝜋

√3
= 3.6275987 we can see that the solutions tend to have that period 

the larger they are. It will be periodic with that exact period of 
2𝜋

√3
 asymptotically at infin-

ity. 

Considering that: 

𝜋

√3
= 1.8137993 

3𝜋

√3
= 5.4413980 

5𝜋

√3
= 9.0689968 

7𝜋

√3
= 12.696596 

9𝜋

√3
= 16.324194 

A perfect periodic function will have these solutions: 

1.8137993 · 𝑒
1

3
(2𝜋𝑖)

, 1.8137993 · 𝑒
2

3
(2𝜋𝑖)

, 1.8137993 · 𝑒
3

3
(2𝜋𝑖)
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5.4413980 · 𝑒
1

3
(2𝜋𝑖)

, 5.4413980 · 𝑒
2

3
(2𝜋𝑖)

, 5.4413980 · 𝑒
3

3
(2𝜋𝑖)

  

9.0689968 · 𝑒
1

3
(2𝜋𝑖)

, 9.0689968 · 𝑒
2

3
(2𝜋𝑖)

, 9.0689968 · 𝑒
3

3
(2𝜋𝑖)

  

12.696596 · 𝑒
1

3
(2𝜋𝑖)

, 12.696596 · 𝑒
2

3
(2𝜋𝑖)

, 12.696596 · 𝑒
3

3
(2𝜋𝑖)

  

16.324194 · 𝑒
1

3
(2𝜋𝑖)

, 16.324194 · 𝑒
2

3
(2𝜋𝑖)

, 16.324194 · 𝑒
3

3
(2𝜋𝑖)

  

And the separation between all the solutions would be 
2𝜋

√3
= 3.6275987 as expected. In 

fact, we can check that the last two solutions correspond to the solutions of our function 

(with the number of decimals considered of course, in reality the complete numbers would 

not be the same). Putting the solutions in another way, it will be: 

𝜋

√3
· 𝑒

1

3
(2𝜋𝑖)

,
𝜋

√3
· 𝑒

2

3
(2𝜋𝑖)

,
𝜋

√3
· 𝑒

3

3
(2𝜋𝑖)

  

3𝜋

√3
· 𝑒

1

3
(2𝜋𝑖)

,
3𝜋

√3
· 𝑒

2

3
(2𝜋𝑖)

,
3𝜋

√3
· 𝑒

3

3
(2𝜋𝑖)

  

5𝜋

√3
· 𝑒

1

3
(2𝜋𝑖)

,
5𝜋

√3
· 𝑒

2

3
(2𝜋𝑖)

,
5𝜋

√3
· 𝑒

3

3
(2𝜋𝑖)

  

7𝜋

√3
· 𝑒

1

3
(2𝜋𝑖)

,
7𝜋

√3
· 𝑒

2

3
(2𝜋𝑖)

,
7𝜋

√3
6 · 𝑒

3

3
(2𝜋𝑖)

  

9𝜋

√3
· 𝑒

1

3
(2𝜋𝑖)

,
9𝜋

√3
· 𝑒

2

3
(2𝜋𝑖)

,
9𝜋

√3
· 𝑒

3

3
(2𝜋𝑖)

  

If we had this perfect function (let’s call it g(x)) with these solutions, we could do the same 

as in chapter 3 due to [4]: 

𝑔(𝑥) = (1 −
𝑥

𝜋

√3
𝑒

1
3

(2𝜋𝑖),
) (1 −

𝑥

𝜋

√3
𝑒

2
3

(2𝜋𝑖),
) (1 −

𝑥

𝜋

√3
𝑒

3
3

(2𝜋𝑖),
) (1 −

𝑥

3𝜋

√3
𝑒

1
3

(2𝜋𝑖),
) · 

· (1 −
𝑥

3𝜋

√3
𝑒

2
3

(2𝜋𝑖),
) (1 −

𝑥

3𝜋

√3
𝑒

3
3

(2𝜋𝑖),
) (1 −

𝑥

5𝜋

√3
𝑒

1
3

(2𝜋𝑖),
) (1 −

𝑥

5𝜋

√3
𝑒

2
3

(2𝜋𝑖),
) (1 −

𝑥

5𝜋

√3
𝑒

3
3

(2𝜋𝑖),
) … 

Now, applying the property commented in chapter 4 that said: 

(1 −
𝐴

𝐵𝑒
1

3
(2𝜋𝑖)

) (1 −
𝐴

𝐵𝑒
2

3
(2𝜋𝑖)

) (1 −
𝐴

𝐵𝑒
3

3
(2𝜋𝑖)

) = 1 −
𝐴3

𝐵3
 

We can apply it, leading to: 

𝑔(𝑥) = (1 −
𝑥3

(
𝜋

√3
)

3
,
) (1 −

𝑥3

(
3𝜋

√3
)

3
,
) (1 −

𝑥3

(
5𝜋

√3
)

3
,
) …

= (1 −
(√3)

3
𝑥3

𝜋3

1

13
) (1 −

(√3)
3

𝑥3

𝜋3

1

33
) (1 −

(√3)
3

𝑥3

𝜋3

1

53
) … 



J. Sánchez 

 

 

 12  

 

Now, as we made in chapter 4, if the function g(x) had the same Taylor polynomial expan-

sion [3] than f(x) (we know it hasn’t but let’s try): 

𝑓(𝑥) = 1 −
𝑥3

3!
+

𝑥6

6!
−

𝑥9

9!
+ ⋯ 

We can check that the product of the 1s in g(x) results in 1, as in the polynomial, so the 

scalation is ok. 

Now if we compare the elements with x3 similarly as we made in chapter 4 with the ele-

ments in x2: 

−
(√3)

3
𝑥3

𝜋3

1

13
−

(√3)
3

𝑥3

𝜋3

1

33
1 −

(√3)
3

𝑥3

𝜋3

1

53
− ⋯ = −

𝑥3

3!
 

−
(√3)

3
𝑥3

𝜋3 (
1

13
+

1

33
+

1

53
+ ⋯ ) = −

𝑥3

3!
 

−
(√3)

3
𝑥3

𝜋3
( 𝜁𝑜𝑑𝑑(3)) = −

𝑥3

3!
 

𝜁𝑜𝑑𝑑(3) =
𝜋3

3! (√3)
3 =

𝜋3

18√3
= 0.994526788 

Now, applying the equation in chapter 2: 

𝜁(𝑠) =
𝜁𝑜𝑑𝑑(𝑠)

1 − 2−𝑠
 

𝜁(3) =
𝜁𝑜𝑑𝑑(3)

1 − 2−3
=

𝜋3

3!(√3)
3

1 −
1

23

=

𝜋3

18√3

7

8

=
4𝜋3

63√3
= 1.1366020 ≠ 1.202056903 [7] 

We can see that the result does not correspond to the value of ζ(3). The reason for this is 

because we have cheated clearly. We have used the “perfect periodic” solutions of a hypo-

thetical function g(x) and we have compared it with the polynomial of the function f(x) that 

we know does not have those “perfect periodic” solutions. The function f(x) has “similar” 

solutions than g(x) at infinity but not the same solutions (and even more difference in the 

first solutions). They are not the same function; we are mixing apples with pears. 

The only way to obtain the correct result is to find the polynomial of the function g(x). This 

polynomial should be very similar than the polynomial of f(x) but with some changes in 

the coefficients. 

This is, we know f(x) is: 

𝑓(𝑥) = 1 −
𝑥3

3!
+

𝑥6

6!
−

𝑥9

9!
+ ⋯ 

𝑓(𝑥) =
1

3
(𝑒−𝑥·𝑒

1
3

(2𝜋𝑖)

+𝑒−𝑥·𝑒
2
3

(2𝜋𝑖)

+ 𝑒−𝑥·𝑒
3
3

(2𝜋𝑖)

) 

And g(x) probably has a form similar like one of the following, where h(x) or t(x,n) are 

unknown functions to be discovered/calculated: 
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𝑔(𝑥) =
1

3
(𝑒−ℎ(𝑥)𝑥·𝑒

1
3

(2𝜋𝑖)

+𝑒−ℎ(𝑥)𝑥·𝑒
2
3

(2𝜋𝑖)

+ 𝑒−ℎ(𝑥)𝑥·𝑒
3
3

(2𝜋𝑖)

) 

𝑔(𝑥) =
1

3
(𝑡(𝑥, 1) · 𝑒−𝑥·𝑒

1
3

(2𝜋𝑖)

+𝑡(𝑥, 2)𝑒−𝑥·𝑒
2
3

(2𝜋𝑖)

+ 𝑡(𝑥, 3)𝑒−𝑥·𝑒
3
3

(2𝜋𝑖)

) 

Once, we have discovered how g(x) is, we can use the Taylor series expansion [3] to cal-

culate its polynomial and use the real value of the element in x3. The form would be some-

thing like this (being r(n) an unknown function to be discovered/calculated): 

𝑔(𝑥) = 1 − 𝑟(3) ·
𝑥3

3!
+ 𝑟(6) ·

𝑥6

6!
− 𝑟(9) ·

𝑥9

9!
+ ⋯ 

And now, yes, we could calculate the real value of 𝜁𝑜𝑑𝑑(3): 

−
(√3)

3
𝑥3

𝜋3 ( 𝜁𝑜𝑑𝑑(3)) = −𝑟(3) ·
𝑥3

3!
 

And with: 

𝜁(3) =
𝜁𝑜𝑑𝑑(3)

1 − 2−3
 

We could calculate the desired value of ζ(3). 

The problem, we do not know which this g(x) is, or even if it exists. 

Just as help, I have discovered the following via trial-error. If we start from the incorrect 

value obtained before: 

𝜁(3) =

𝜋3

3!(√3)
3

1 −
1

23

=
4𝜋3

63√3
= 1.1366020 ≠ 1.202056903 [7] 

If we multiply by: 

𝜁(3) =

𝜋3

3!(√3)
3

1 −
1

23

𝑒
2

√3

3
=

4𝜋3

63√3

𝑒
2

√3

3
= 1.202173775 ≈ 1.202056903 [7] 

Where the 3 in the denominator can refer to the number of elements of the function or to s 

directly and the 
2

√3
 it could refer to 

1

𝑠𝑖𝑛(
1

3
2𝜋)

 or 
2

𝑡𝑎𝑛(
1

3
2𝜋)

 or related to the period we have 

obtained before 

2𝜋

√3

𝜋
=

2

√3
. There are different possibilities but the number 2 and the square 

root of three are clearly related with the complex plane divided in three parts by the function. 

This could be a hint of how g(x) should look like. 

 

6. Similar study regarding the value of ζ(5) 

In this chapter we will follow the same steps as in chapter 5, but with this function: 
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𝑓(𝑥) = 1 −
𝑥5

5!
+

𝑥10

10!
−

𝑥15

15!
+ ⋯ 

𝑓(𝑥) =
1

5
(𝑒−𝑥·𝑒

1
5

(2𝜋𝑖)

+𝑒−𝑥·𝑒
2
5

(2𝜋𝑖)

+ 𝑒−𝑥·𝑒
3
5

(2𝜋𝑖)

+ 𝑒−𝑥·𝑒
4
5

(2𝜋𝑖)

+ 𝑒−𝑥·𝑒
5
5

(2𝜋𝑖)

) 

Both expressions above correspond to the same function (similarly as the f(x) we defined 

in chapter 5). In Annex A3 and A4 you can find the Mathematica programs for these func-

tions. You can calculate their zeros and plot them. The problem is that the program in 

Annex 4 overflows (at least in my computer/software) so you do not get reliable graphs or 

results. In my case I have been obliged to use only the program in Annex A3. 

The zeros (in polar (modulus, argument) format) obtained with the program in Annex A3 

for the function f(x) above are: 

 

 
 

{{18.706788, -2.5132741}, {18.706788,  

  2.5132741}, {13.361992, -2.5132741}, {13.361992,  

  2.5132741}, {8.0171451, -2.5132741}, {8.0171451,  

  2.5132741}, {2.6072512, -2.5132741}, {2.6072512,  

  2.5132741}, {2.6072512, -1.2566371}, {2.6072512,  

  1.2566371}, {8.0171451, -1.2566371}, {8.0171451,  

  1.2566371}, {2.6072512, 0.}, {13.361992, -1.2566371}, {13.361992,  

  1.2566371}, {18.706788, -1.2566371}, {18.706788,  

  1.2566371}, {8.0171451, 0.}, {13.361992, 0.}, {18.706788, 0.}} 

If we take the solutions with the lower modulus, we can see that they are: 

{2.6072512, -2.5132741}, {2.6072512, 2.5132741}, {2.6072512, -1.2566371}, 

{2.6072512,  1.2566371},  {2.6072512, 0.}, 

Where the arguments are distributed in five parts around the complex plane: 

1.2566371 =
1

5
(2𝜋) 

2.5132741 =
2

5
(2𝜋) 

−2.5132741 = −
2

5
(2𝜋) →

3

5
(2𝜋) 

−1.2566371 = −
1

5
(2𝜋) →

4

5
(2𝜋) 

0 →
5

5
(2𝜋) 

You can check it in the graph below (see Annex 3) which plots the function: 

𝑓(𝑥) = 1 −
𝑥5

5!
+

𝑥10

10!
−

𝑥15

15!
+ ⋯ 
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The Annex 4 graphs the equivalent following function. But the program overflows and 

does not graph it properly, as you can check in the annex. 

𝑓(𝑥) =
1

5
(𝑒−𝑥·𝑒

1
5

(2𝜋𝑖)

+𝑒−𝑥·𝑒
2
5

(2𝜋𝑖)

+ 𝑒−𝑥·𝑒
3
5

(2𝜋𝑖)

+ 𝑒−𝑥·𝑒
4
5

(2𝜋𝑖)

+ 𝑒−𝑥·𝑒
5
5

(2𝜋𝑖)

) 

Continuing with the solutions, again, we have: 

 

{{18.706788, -2.5132741}, {18.706788,  

  2.5132741}, {13.361992, -2.5132741}, {13.361992,  

  2.5132741}, {8.0171451, -2.5132741}, {8.0171451,  

  2.5132741}, {2.6072512, -2.5132741}, {2.6072512,  

  2.5132741}, {2.6072512, -1.2566371}, {2.6072512,  

  1.2566371}, {8.0171451, -1.2566371}, {8.0171451,  

  1.2566371}, {2.6072512, 0.}, {13.361992, -1.2566371}, {13.361992,  

  1.2566371}, {18.706788, -1.2566371}, {18.706788,  

  1.2566371}, {8.0171451, 0.}, {13.361992, 0.}, {18.706788, 0.}} 

 

Which correspond to: 
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2.6072512 · 𝑒
1

5
(2𝜋𝑖)

, 2.6072512 · 𝑒
2

5
(2𝜋𝑖)

, 2.6072512 · 𝑒
3

5
(2𝜋𝑖)

, 2.6072512

· 𝑒
4

5
(2𝜋𝑖)

, 2.6072512 · 𝑒
5

5
(2𝜋𝑖)

 

8.0171451 · 𝑒
1

5
(2𝜋𝑖)

, 8.0171451 · 𝑒
2

5
(2𝜋𝑖)

, 8.0171451 · 𝑒
3

5
(2𝜋𝑖)

, 8.0171451

· 𝑒
4

5
(2𝜋𝑖)

, 8.0171451 · 𝑒
5

5
(2𝜋𝑖)

  

13.361992 · 𝑒
1

5
(2𝜋𝑖)

, 13.361992 · 𝑒
2

5
(2𝜋𝑖)

, 13.361992 · 𝑒
3

5
(2𝜋𝑖)

, 13.3619921

· 𝑒
4

5
(2𝜋𝑖)

, 13.361992 · 𝑒
5

5
(2𝜋𝑖)

 

18.706788 · 𝑒
1

5
(2𝜋𝑖)

, 18.706788 · 𝑒
2

5
(2𝜋𝑖)

, 18.706788 · 𝑒
3

5
(2𝜋𝑖)

, 18.706788

· 𝑒
4

5
(2𝜋𝑖)

, 18.706788 · 𝑒
5

5
(2𝜋𝑖)

 

If we want to obtain the period of the solutions, we see: 

8.0171451 −  2.6072512 = 5.4098938 

13.361992 − 8.0171451 = 5.3438469 

18.706788 − 13.361992 = 5.344796 

We can see that the function tends to a periodicity of ~5.344 that very probably corresponds 

the number π multiplied by a coefficient, as we have seen in the previous chapter 5. Any-

how, we are not even interested in calculating this number as we have the same problem 

as in the previous chapter 5. The function is not periodic. It tends to a period of ~5.344 but 

it is not really periodic. 

So, we cannot apply the “Basel problem” we have seen in chapter 3. As we will have the 

same problem as in chapter 5, we will obtain a solution for ζ(5) “near” the real solution but 

not exact in any case. The only way to obtain the real solution would be to discover/calcu-

late a function g(x) similar to f(x) but perfectly periodic (not asymptotically periodic as 

f(x)).  

This g(x) would have a form similar to this (where r(n) is a function still to be calcu-

lated/discovered: 

𝑔(𝑥) = 1 − 𝑟(5) ·
𝑥5

5!
+ 𝑟(10) ·

𝑥10

10!
− 𝑟(15) ·

𝑥15

15!
+ ⋯ 

Check chapter 5 for more details of what I am talking about. 

 

7. General study regarding the values of the Riemann Zeta function at 
odd integers 

As you can imagine we could continue with different functions to try to find the result of a 

general ζ(k).But we would find the same problem as in the chapters 5 and 6. We need to 

find functions that not only “resemble” the cosine function with different elements but also 

that have periodic solutions. This is, to find something like: 

𝑔(𝑥) = 1 − 𝑟(1 · 𝑘) ·
𝑥(1·𝑘)

(1 · 𝑘)!
+ 𝑟(2 · 𝑘) ·

𝑥(2·𝑘)

(2 · 𝑘)!
− 𝑟(3 · 𝑘) ·

𝑥(3·𝑘)

(3 · 𝑘)!
+ ⋯ 
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Or equivalently: 

𝑔(𝑥) =
1

𝑘
(𝑒−ℎ(𝑥)𝑥·𝑒

1
𝑘

(2𝜋𝑖)

+𝑒−ℎ(𝑥)𝑥·𝑒
2
𝑘

(2𝜋𝑖)

+ ⋯ + 𝑒−ℎ(𝑥)𝑥·𝑒
𝑘
𝑘

(2𝜋𝑖)

) 

𝑔(𝑥) =
1

𝑘
(𝑡(𝑥, 1) · 𝑒−𝑥·𝑒

1
𝑘

(2𝜋𝑖)

+𝑡(𝑥, 2)𝑒−𝑥·𝑒
2
𝑘

(2𝜋𝑖)

+ ⋯ + 𝑡(𝑥, 3)𝑒−𝑥·𝑒
𝑘
𝑘

(2𝜋𝑖)

) 

Where r(n), h(x) and t(x,n) are functions to be calculated/discovered, so the g(x) function 

has “periodic” zeros. If we discovered them, we could calculate ζ(k) using the same method 

as in chapters 5 and 6.  

Until now I have always considered k as an odd integer. If we dream a little more, we could 

consider k as an even integer, and using above procedure would give as a closed equation 

of the ζ(k) when k is even.  

This is, we would have a closed equation for the Bernoulli numbers using the following 

expression [1] (having already calculated ζ(k) using above procedure):: 

𝜁(𝑘) = (−1)
𝑘

2
+1 (2𝜋)𝑘𝐵𝑛

2(𝑛!)
 

Dreaming even further, we could consider k even a general complex number. Specifically 

if we consider: 

𝑘 =
1

2
+ 𝑖𝑡 

We could even obtain an expression for the non-trivial zeros of the Riemann Zeta function. 

 

8. Conclusions 

The goal of this paper was to calculate ζ(3) (the Riemann Zeta function with s=3) emulating 

the “Basel problem”. But instead of using a sine or cosine function, using functions similar 

to these: 

𝑓(𝑥) = 1 −
𝑥3

3!
+

𝑥6

6!
−

𝑥9

9!
+ ⋯ 

𝑓(𝑥) =
1

3
(𝑒−𝑥·𝑒

1
3

(2𝜋𝑖)

+𝑒−𝑥·𝑒
2
3

(2𝜋𝑖)

+ 𝑒−𝑥·𝑒
3
3

(2𝜋𝑖)

) 

We have discovered that the process itself seems ok, but with a problem. The solutions of 

the above functions are not periodic, so we cannot emulate the “Basel problem” perfectly, 

obtaining the following value: 

𝜁(3) =

𝜋3

3!(√3)
3

1 −
1

23

= 1.1366020 ≠ 1.202056903 

With a small correction, we could arrive to: 
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𝜁(3) =

𝜋3

3!(√3)
3

1 −
1

23

𝑒
2

√3

3
= 1.202173775 ≈ 1.202056903 [7] 

But not getting the correct value anyhow. The only way of obtaining the correct value 

would be to find a function of the form: 

𝑔(𝑥) = 1 − 𝑟(3) ·
𝑥3

3!
+ 𝑟(6) ·

𝑥6

6!
− 𝑟(9) ·

𝑥9

9!
+ ⋯ 

That has periodic zeros. Where r(n) is an unknown function to be calculate/discovered. 

We have also generalized this study to calculate a general 𝜁(𝑘) where k can be higher odd 

numbers, or even numbers. Having 𝜁(𝑘) for even numbers would lead to obtaining a 

closed equation for the Bernoulli numbers.  

We could go further and consider k a general complex number. In this case, considering 

k=½+it we could obtain a closed function for the zeros of the Riemann Zeta function. 

 

Gorliz, 4th April 2024 (viXra-v1) 
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A1. Annex A1. Mathematica program for f(x) of three elements (1st 
version)  

 

This is the Mathematica program to solve and plot: 

 

𝑓(𝑥) = 1 −
𝑥3

3!
+

𝑥6

6!
−

𝑥9

9!
+ ⋯ 

(* Copyright by Jesus Sanchez © 2024 

f(x)=1-x^3/3!+x^6/6!-x^9/9!+... Zeros and graph 

Definition of the limits for the zeros and for the graph calculation*) 

max = 50; 

maxplot = 20; 

(*Definition of the function 

f(x)=1-x^3/3!+x^6/6!-x^9/9!+... 

*) 

 

f[x_] := Sum[(-1)^n*x^(3*n)/Factorial[3*n], {n, 0, Infinity}] 

 

(*Zeros in the complex plane. Real+i*imaginary format*) 

Print["Zeros in real+i*imaginary format:"]; 

zeros = NSolve[ 

  f[x] == 0 && -max <= Re[x] <= max && -max <= Im[x] <= max, x] 

 

(*Zeros in the complex plane. Polar format (modulus, argument) *) 

Print["Zeros in polar format(modulus, argument):"]; 

zerosPolar = {Abs[#], Arg[#]} & /@ (x /. zeros) 

 

(*Graph in the complex plane*) 

Plot3D[{Re[f[x + I*y]], Im[f[x + I*y]]}, {x, -maxplot,  

  maxplot}, {y, -maxplot, maxplot}, PlotLegends -> "Expressions",  

 AxesLabel -> {"Re(x)", "Im(x)", "f(x)"}, MeshFunctions -> {#3 &},  

 Mesh -> {{0}}, MeshShading -> {Red, Blue}] 

 

 

https://www.researchgate.net/profile/Arash-Majidian
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{{56.22778, -2.0943951}, {56.22778,  

  2.0943951}, {52.600182, -2.0943951}, {52.600182,  

  2.0943951}, {48.972583, -2.0943951}, {48.972583,  

  2.0943951}, {45.344984, -2.0943951}, {45.344984,  

  2.0943951}, {41.717385, -2.0943951}, {41.717385,  

  2.0943951}, {38.089787, -2.0943951}, {38.089787,  

  2.0943951}, {34.462188, -2.0943951}, {34.462188,  

  2.0943951}, {30.834589, -2.0943951}, {30.834589,  

  2.0943951}, {27.20699, -2.0943951}, {27.20699,  

  2.0943951}, {23.579392, -2.0943951}, {23.579392,  
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  2.0943951}, {19.951793, -2.0943951}, {19.951793,  

  2.0943951}, {16.324194, -2.0943951}, {16.324194,  

  2.0943951}, {12.696596, -2.0943951}, {12.696596,  

  2.0943951}, {9.0689975, -2.0943951}, {9.0689975,  

  2.0943951}, {5.4412334, -2.0943951}, {5.4412334,  

  2.0943951}, {1.8498128, -2.0943951}, {1.8498128,  

  2.0943951}, {1.8498128, 0.}, {5.4412334, 0.}, {9.0689975,  

  0.}, {12.696596, 0.}, {16.324194, 0.}, {19.951793, 0.}, {23.579392,  

  0.}, {27.20699, 0.}, {30.834589, 0.}, {34.462188, 0.}, {38.089787,  

  0.}, {41.717385, 0.}, {45.344984, 0.}, {48.972583, 0.}} 

 

 

 

A2. Annex A2. Mathematica program for f(x) of three elements 
(2nd version)  

 

This is the Mathematica program to solve and plot: 

 

𝑓(𝑥) =
1

3
(𝑒−𝑥·𝑒

1
3

(2𝜋𝑖)

+𝑒−𝑥·𝑒
2
3

(2𝜋𝑖)

+ 𝑒−𝑥·𝑒
3
3

(2𝜋𝑖)

) 

 

 

(* Copyright by Jesus Sanchez © 2024 

f(x)=1/3(e^(e^(-x*(1/3)*2pi.i))+e^(e^(-x*(2/3)*2pi.i))+e^(e^(-x*(3/3)*\ 

2pi.i))) 

Zeros and graph 

Definition of the limits for the zeros and for the graph calculation*) 

max = 50; 

maxplot = 20; 

(*Definition of the function 

 

f(x)=1/3(e^(e^(-x*(1/3)*2pi.i))+e^(e^(-x*(2/3)*2pi.i))+e^(e^(-x*(3/3)*\ 

2pi.i))) 

*) 

 

f[x_] :=  

 1/3 (Exp[Exp[2*Pi*I/3]*x*(-1)] + Exp[Exp[4*Pi*I/3]*x*(-1)] +  

    Exp[Exp[6*Pi*I/3]*x*(-1)]) 

 

(*Zeros in the complex plane. Real+i*imaginary format*) 

Print["Zeros in real+i*imaginary format:"]; 

zeros = NSolve[ 

  f[x] == 0 && -max <= Re[x] <= max && -max <= Im[x] <= max, x] 

 

(*Zeros in the complex plane. Polar format (modulus, argument) *) 

Print["Zeros in polar format(modulus, argument):"]; 

zerosPolar = {Abs[#], Arg[#]} & /@ (x /. zeros) 

 

(*Graph in the complex plane*) 

Plot3D[{Re[f[x + I*y]], Im[f[x + I*y]]}, {x, -maxplot,  

  maxplot}, {y, -maxplot, maxplot}, PlotLegends -> "Expressions",  

 AxesLabel -> {"Re(x)", "Im(x)", "f(x)"}, MeshFunctions -> {#3 &},  

 Mesh -> {{0}}, MeshShading -> {Red, Blue}] 
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A3. Annex A3. Mathematica program for f(x) of five elements (1st 
version)  

 

This is the Mathematica program to solve and plot: 

 

𝑓(𝑥) = 1 −
𝑥5

5!
+

𝑥10

10!
−

𝑥15

15!
+ ⋯ 

(* Copyright by Jesus Sanchez © 2024 

f(x)=1-x^5/5!+x^10/10!-x^15/15!+... Zeros and graph 

Definition of the limits for the zeros and for the graph calculation*) 

max = 50; 

maxplot = 50; 

(*Definición de la función 

f(x)=1-x^5/5!+x^10/10!-x^15/15!+... 

*) 

 

f[x_] := Sum[(-1)^n*x^(5*n)/Factorial[5*n], {n, 0, Infinity}] 

 

(*Zeros in the complex plane. Real+i*imaginary format*) 

Print["Zeros in real+i*imaginary format:"]; 

zeros = NSolve[ 

  f[x] == 0 && -max <= Re[x] <= max && -max <= Im[x] <= max, x] 

 

(*Zeros in the complex plane. Polar format (modulus, argument) *) 

Print["Zeros in polar format(modulus, argument):"]; 

zerosPolar = {Abs[#], Arg[#]} & /@ (x /. zeros) 

 

(*Graph in the complex plane*) 

Plot3D[{Re[f[x + I*y]], Im[f[x + I*y]]}, {x, -maxplot,  

  maxplot}, {y, -maxplot, maxplot}, PlotLegends -> "Expressions",  

 AxesLabel -> {"Re(x)", "Im(x)", "f(x)"}, MeshFunctions -> {#3 &},  

 Mesh -> {{0}}, MeshShading -> {Red, Blue}] 
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{{18.706788, -2.5132741}, {18.706788,  

  2.5132741}, {13.361992, -2.5132741}, {13.361992,  

  2.5132741}, {8.0171451, -2.5132741}, {8.0171451,  

  2.5132741}, {2.6072512, -2.5132741}, {2.6072512,  

  2.5132741}, {2.6072512, -1.2566371}, {2.6072512,  

  1.2566371}, {8.0171451, -1.2566371}, {8.0171451,  

  1.2566371}, {2.6072512, 0.}, {13.361992, -1.2566371}, {13.361992,  

  1.2566371}, {18.706788, -1.2566371}, {18.706788,  

  1.2566371}, {8.0171451, 0.}, {13.361992, 0.}, {18.706788, 0.}} 

 

 

A4. Annex A4. Mathematica program for f(x) of five elements (2nd 
version)  

 

This is the Mathematica program to solve and plot: 

 

𝑓(𝑥) =
1

5
(𝑒−𝑥·𝑒

1
5

(2𝜋𝑖)

+𝑒−𝑥·𝑒
2
5

(2𝜋𝑖)

+ 𝑒−𝑥·𝑒
3
5

(2𝜋𝑖)

+ 𝑒−𝑥·𝑒
4
5

(2𝜋𝑖)

+ 𝑒−𝑥·𝑒
5
5

(2𝜋𝑖)

) 

The program overflows, the solutions and the graph are not reliable: 

 

(* Copyright by Jesus Sanchez © 2024 

f(x)=1/5(e^(e^(-x*(1/5)*2pi.i))+e^(e^(-x*(2/5)*2pi.i))+e^(e^(-x*(3/5)*\ 

2pi.i))+e^(e^(-x*(4/5)*2pi.i))+e^(e^(-x*(5/5)*2pi.i))) 

Zeros and graph 

Definition of the limits for the zeros and for the graph calculation*) 

max = 50; 

maxplot = 50; 

(*Definition of the function*) 

(* f(x)=1/5(e^(e^(-x*(1/5)*2pi.i))+e^(e^(-x*(2/5)*2pi.i))+e^(e^(-x*(3/\ 

5)*2pi.i))+e^(e^(-x*(4/5)*2pi.i))+e^(e^(-x*(5/5)*2pi.i))) *) 

 

f[x_] :=  

 1/5 (Exp[Exp[2*Pi*I/5]*x*(-1)] + Exp[Exp[4*Pi*I/5]*x*(-1)] +  

    Exp[Exp[6*Pi*I/5]*x*(-1)] +  

    Exp[Exp[8*Pi*I/5]*x*(-1) + Exp[Exp[10*Pi*I/5]*x*(-1)]]) 

 

(*Zeros in the complex plane. Real+i*imaginary format*) 

Print["Zeros in real+i*imaginary format:"]; 

zeros = NSolve[ 

  f[x] == 0 && -max <= Re[x] <= max && -max <= Im[x] <= max, x] 

 

(*Zeros in the complex plane. Polar format (modulus, argument) *) 

Print["Zeros in polar format(modulus, argument):"]; 

zerosPolar = {Abs[#], Arg[#]} & /@ (x /. zeros) 

 

(*Graph in the complex plane*) 

Plot3D[{Re[f[x + I*y]], Im[f[x + I*y]]}, {x, -maxplot,  

  maxplot}, {y, -maxplot, maxplot}, PlotLegends -> "Expressions",  

 AxesLabel -> {"Re(x)", "Im(x)", "f(x)"}, MeshFunctions -> {#3 &},  

 Mesh -> {{0}}, MeshShading -> {Red, Blue}] 
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The program overflows, the solutions and the graph are not reliable: 

 

 

 
 

 

 

The program overflows, the solutions and the graph are not reliable. The graph should be 

equal to the graph in Annex 3. It should be symmetrical in fifth parts of the complex plane. 

And this graph is not. It is not correct. 
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A5. Annex A5. Infinite sums and products from -infinity to +infin-
ity  

We are accustomed to infinite series that start at one point and finish at infinity. The result 

of the series (the sum or the product) normally is a number that has a number related to the 

series.  

What it is not so common is to check series that start at -infinity and finished at +infinity. 

This means, they do not have a beginning and they do not have an end. We will see that 

the result of these series surprisingly is zero when it is a sum and 1 when it is a product. As 

we will see now. 
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We start with the geometric series [5]. The standard geometric series has the following 

form. It has a start at one point and then the series is infinite. This way:  

𝑆 = ∑ 𝑎𝑟𝑘

∞

𝑘=0

= 𝑎 + 𝑎𝑟 + 𝑎𝑟2 + 𝑎𝑟3 + ⋯ = 𝑎 + 𝑟(𝑎 + 𝑎𝑟 + 𝑎𝑟2 + ⋯ ) = 𝑎 + 𝑟𝑆 

The solution to this series is well known [5] and it can be found like this: 

𝑆 = 𝑎 + 𝑟𝑆 

𝑆 − 𝑟𝑆 = 𝑎 

𝑆(1 − 𝑟) = 𝑎 

𝑆 = ∑ 𝑎𝑟𝑘

∞

𝑘=0

=
𝑎

1 − 𝑟
 

But if instead of that, we find a geometric series that has no beginning and no end in the 

following way (it starts at -infinity and finished at +infinity): 

𝑆 = ∑ 𝑎𝑟𝑘

∞

𝑘=−∞

= ⋯ + 𝑎𝑟−3 + 𝑎𝑟−2 + 𝑎𝑟−1 + 𝑎 + 𝑎𝑟 + 𝑎𝑟2 + 𝑎𝑟3 + ⋯ = 

We can divide it in two series, one with the negative exponents (S_) and one with the zero 

and positive exponents (S+): 

𝑆− ≡ ∑ 𝑎𝑟𝑘

−1

𝑘=−∞

= ⋯ + 𝑎𝑟−3 + 𝑎𝑟−2 + 𝑎𝑟−1 = 𝑎𝑟−1 + 𝑎𝑟−2 + 𝑎𝑟−3 + ⋯ 

𝑆+ ≡ ∑ 𝑎𝑟𝑘

∞

𝑘=0

= 𝑎 + 𝑎𝑟 + 𝑎𝑟2 + 𝑎𝑟3 + ⋯ 

So, the sum of both is S: 

𝑆 = ∑ 𝑎𝑟𝑘

∞

𝑘=−∞

= ∑ 𝑎𝑟𝑘

−1

𝑘=−∞

+ ∑ 𝑎𝑟𝑘

∞

𝑘=0

= 𝑆− + 𝑆+ 

Calculating S_: 

𝑆− = 𝑎𝑟−1 + 𝑎𝑟−2 + 𝑎𝑟−3 + ⋯ = 𝑎𝑟−1 + 𝑟−1(𝑎𝑟−1 + 𝑎𝑟−2 + ⋯ ) =  𝑎𝑟−1 + 𝑟𝑆− 

𝑆− =
𝑎𝑟−1

1 − 𝑟−1
=

𝑎

𝑟

1 −
1

𝑟

=

𝑎

𝑟
𝑟−1

𝑟

=
𝑎

𝑟 − 1
 

And S+: 

𝑆+ ≡ 𝑎 + 𝑎𝑟 + 𝑎𝑟2 + 𝑎𝑟3 + ⋯ = 𝑎 + 𝑟(𝑎 + 𝑎𝑟 + 𝑎𝑟2 + ⋯ ) = 𝑎 + 𝑟𝑆+ 

𝑆+ = 𝑎 + 𝑟𝑆+ 

𝑆+ − 𝑟𝑆+ = 𝑎 
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𝑆+(1 − 𝑟) = 𝑎 

𝑆+ =
𝑎

1 − 𝑟
 

Now, if we sum both to get S: 

𝑆 = 𝑆− + 𝑆+ =
𝑎

𝑟 − 1
+

𝑎

1 − 𝑟
=

𝑎

𝑟 − 1
−

𝑎

𝑟 − 1
= 0 

𝑆 = ∑ 𝑎𝑟𝑘

∞

𝑘=−∞

= ⋯ + 𝑎𝑟−1 + 𝑎 + 𝑎𝑟 + 𝑎𝑟2 + ⋯ = 0 

We see that the result of geometric series that start at -infinity and finishes at +infinity is 

zero (independently of the r (ratio) and of a (the scalation). If the geometric series starts at 

-infinity and finishes at +infinity, its value is always zero. 

Now, let’s do another sum. If we sum all the 1s starting at one point (a first 1) and finishing 

at infinity, we have: 

𝑆 = 1 + 1 + 1 + 1 + ⋯ 

This is the Riemann Zeta Function [1] with s=0. And we know [1] that its value is -1/2. 

𝜉(0) = ∑ 𝑘0 =

∞

𝑘=1

∑ 1 =

∞

𝑘=1

1 + 1 + 1 + 1 + ⋯ = 𝑆 = −
1

2
 

𝑆 = ∑ 1 =

∞

𝑘=1

−
1

2
 

But now, we want to make the sum starting at -infinity and finishing at +infinity. 

𝑆 = ∑ 1 =

∞

𝑘=−∞

… + 1 + 1 + 1 + 1 + 1 + ⋯ 

To do this, we can define a 1 that is in the “middle” of the sum (let’s say it is in the position 

zero, we call it 10).  

𝑆 = ⋯ 1−3 + 1−2 + 1−1 + 10 + 11 + 12 + 13 … 

Let’s put it in green to visualize it better. This 10 is in the “middle” (in fact any 1 can be 

this 10, we just select one of them). The 1s at the right of it (blue ones) are a series of 1s 

that have a beginning and ends at infinity. And the ones at the left of 10 (red ones) are 

another series with a beginning and ends at -infinity. 

𝑆 = ⋯ 1−3 + 1−2 + 1−1 + 10 + 11 + 12 + 13 … 

𝑆 = ⋯ + 1 + 1 + 1 + 1 + 1 + 1 + 1 + ⋯ 

So, we have this: 

𝑆 = ∑ 1

−1

𝑘=−∞

+ 1 + ∑ 1

∞

𝑘=1
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Only for the red sum, let’s make a change of variable this way: 

𝑚 = −𝑘 

𝑘 = −1 → 𝑚 = 1 

𝑘 = −∞ → 𝑚 = ∞ 

Leading to: 

𝑆 = ∑ 1

∞

𝑚=1

+ 1 + ∑ 1

∞

𝑘=1

 

So, making the sum: 

𝑆 = 𝜉(0) + 1 + 𝜉(0) = −
1

2
+ 1 −

1

2
= 0 

We obtain the infamous zero. So, summing up, the sum of 1s when we start at -infinity and 

finish at +infinity is zero: 

𝑆 = ∑ 1 =

∞

𝑘=−∞

… + 1 + 1 + 1 + 1 + 1 + ⋯ = 0 

Knowing this, calculating an infinite product is trivial (we can use logarithms to convert 

any product into sums). We start with a standard infinite product that starts at one point 

and finishes at infinity: 

𝑃 = ∏ 𝑟 =

∞

𝑘=1

𝑟 · 𝑟 · 𝑟 · 𝑟 · 𝑟 · … 

ln 𝑃 = ln 𝑟 + ln 𝑟 + ln 𝑟 + ln 𝑟 + ⋯ = ln 𝑟 (1 + 1 + 1 + 1 + ⋯ ) = ln 𝑟 (𝜉(0)) 

ln 𝑃 = ln 𝑟 (𝜉(0)) = −
1

2
ln 𝑟 = ln 𝑟−

1

2 

𝑃 = 𝑟−
1

2 

We obtain this: 

𝑃 = ∏ 𝑟 =

∞

𝑘=1

𝑟 · 𝑟 · 𝑟 · 𝑟 · 𝑟 · … = 𝑟−
1

2 

But if we start the product at -infinity and finish at +infinity: 

𝑃 = ∏ 𝑟 =

∞

𝑘=−∞

. . .· 𝑟 · 𝑟 · 𝑟 · 𝑟 · 𝑟 · 𝑟 · … 

ln 𝑃 = ⋯ + ln 𝑟 + ln 𝑟 + ln 𝑟 + ln 𝑟 + ln 𝑟 + ⋯ = ln 𝑟 (… + 1 + 1 + 1 + 1 + ⋯ ) 

ln 𝑃 = ln 𝑟 (… + 1 + 1 + 1 + 1 + ⋯ ) = ln 𝑟 · (0) = 0 

𝑃 = 𝑒0 = 1 
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We obtain that the infinite product starting from -infinity to +infinity is 1 (independently 

of the value of r). 

𝑃 = ∏ 𝑟 =

∞

𝑘=−∞

. . .· 𝑟 · 𝑟 · 𝑟 · 𝑟 · 𝑟 · 𝑟 · … = 1 

 

A6. Annex A6. Future developments  

 

I want to take this opportunity to say that very probably I will not publish papers during a 

time. Some pending studies from my side: 

• Weak interaction in Geometric Algebra Cl3,0. 

• In the paper “Embedding the Einstein tensor in the Klein-Gordon Equation using 

Geometric Algebra Cl 3,0” [8] the operations are calculated in an orthogonal basis 

to facilitate the calculations. Even if this option is ok in most of the cases (even 

Schwarzschild metric is orthogonal) it is not a general solution that should be 

found. 

• The Annex A1 of the paper “Energy-momentum relation in curved space-time” 

[9] is the beginning of a more detailed study. Normally it is considered that in the 

“quantum mechanics” world, 8 degrees of freedom apply (corresponding to the 

eight parameters of the Dirac spinors or the eight parameters of the Geometric 

Algebra created by three spatial dimensions- scalars, 3 vectors, 3 bivectors and 1 

trivector-). But in the “macro” world only 4 dimensions apply. This is not correct. 

The issue is that in a flat space-time when two spinors are multiplied (or one 

squared), the symmetries of the flat space-time make that four dimensions are 

cancelled due to symmetries (some terms are equal with different sign, so they are 

cancelled, you can check annexes A1 to A4 in [8] to check it). This does not hap-

pen in high curvature (big gravity) space-time areas, where these symmetries do 

not exist. So, in these areas the eight dimensions should be still considered, not 

only the 4 left that we normally experience in our “macro” world. The studies for 

high curvature space-time areas should be done considering the 8 dimensions (or 

8 degrees of freedom or 8 free parameters if you want -scalars, 3 vectors, 3 bivec-

tors and 1 trivector-) not only 4. To make this study in high curvature space-time 

areas considering all the 8 dimensions is still to be done. In fact, Arash Majidan 

[10] contacted me to make this study (specifically in black holes). I commented 

that was in my pending list, but of course, everyone is invited to do it, as far as 

they credit my work if it is based on it. 

• To be able to do the study regarding the two previous points, a program (in Math-

ematica, Matlab, Python or similar) should be done that can perform all these cal-

culations with the 8 dimensions (8 different elements: scalars, 3 vectors, 3 bivec-

tors and 1 trivector). If an analytical calculation is not possible, a program of finite 

element or solutions with polynomials should be considered for the calculations. 

But always considering all the 8 elements existing in the Geometric Algebra Cl3,0 

(scalars, 3 vectors, 3 bivectors and 1 trivector). 

• Try to justify that the 3 group of masses of each family of elemental particles is 

related to the 3 original linear dimensions that expand to Cl3,0. This is somehow 

“commented” in [8] and [9] but never demonstrated or justified. 

• Try to justify that that the universe has three linear dimensions, that expand to 8 

degrees of freedom in Cl3,0, is somehow the only solution (or one of the few pos-

sible solutions) that have the necessary symmetries to make the universe, its pro-

cesses, or contents stable. Justifying that this is the reason that our universe has 

three linear dimensions. 

• In this paper, try to find the equation g(x) for different cases with the goal of 

obtaining 𝜁(3), 𝜁(5) or even a 𝜁(𝑘) valid for certain k’s (odd, even, general 

etc…). 
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A7. Annex A7. Logarithm as a limit of an exponential  

 

In this annex we will demonstrate the following equation. This transforms the logarithm, 

which is normally a function difficult to deal with, in an exponential. The price to pay is 

that we have to take a limit of a parameter ε to 0:  

ln(𝑥) = lim
𝜀→0

(
𝑥𝜀 − 1

𝜀
) 

You can find attached the error we make with this equation with different parameters ε 

chosen. 

 

 

 

 

Epsilon

x Ln 0,00000001 Error

0,25 -1,386294361 -1,3862943 0,000%

0,5 -0,693147181 -0,6931472 0,000%

0,75 -0,287682072 -0,2876821 0,000%

1 0 0 0,000%

1,5 0,405465108 0,40546511 0,000%

2 0,693147181 0,69314718 0,000%

2,718281828 1 0,99999999 0,000%

3 1,098612289 1,09861229 0,000%

5 1,609437912 1,60943792 0,000%

10 2,302585093 2,30258512 0,000%

100 4,605170186 4,60517029 0,000%

1000 6,907755279 6,90775552 0,000%

10000 9,210340372 9,2103408 0,000%

100000 11,51292546 11,5129261 0,000%

1000000 13,81551056 13,8155115 0,000%

Epsilon

x Ln 0,0001 Error

0,25 -1,386294361 -1,3861983 0,007%

0,5 -0,693147181 -0,6931232 0,003%

0,75 -0,287682072 -0,2876779 0,001%

1 0 0 0,000%

1,5 0,405465108 0,40547333 0,002%

2 0,693147181 0,6931712 0,003%

2,718281828 1 1,00005 0,005%

3 1,098612289 1,09867264 0,005%

5 1,609437912 1,60956743 0,008%

10 2,302585093 2,30285021 0,012%

100 4,605170186 4,60623073 0,023%

1000 6,907755279 6,91014168 0,035%

10000 9,210340372 9,21458319 0,046%

100000 11,51292546 11,5195554 0,058%

1000000 13,81551056 13,8250584 0,069%
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The demonstration is as follows. First, we calculate the integral of 1/x that we know is the 

logarithm. 

∫
1

𝑥
𝑑𝑥 = ∫ 𝑥−1𝑑𝑥 = ln(𝑥) + 𝐶1 

Then, we take the following integral that is very similar to 1/x but with a parameter ε that 

later we will make it tend to zero. 

∫
1

𝑥1−𝜀
𝑑𝑥 = ∫ 𝑥−1+𝜀𝑑𝑥 =

𝑥−1+𝜀+1

−1 + 𝜀 + 1
+ 𝐶2 =

𝑥𝜀

𝜀
+ 𝐶2 

Now, we can make ε tend to zero and make the result equal between both integrals (as they 

should be equal). 

lim
𝜀→0

∫
1

𝑥1−𝜀
𝑑𝑥 = lim

𝜀→0
(

𝑥𝜀

𝜀
+ 𝐶2) = ln(𝑥) + 𝐶1 

lim
𝜀→0

(
𝑥𝜀

𝜀
+ 𝐶2) − 𝐶1 = ln(𝑥) 

As C1 does not depend on ε we can introduce it in the limit. 

lim
𝜀→0

(
𝑥𝜀

𝜀
+ 𝐶2 − 𝐶1) = ln(𝑥) 

We define a new constant C as: 

𝐶 ≡ 𝐶2 − 𝐶1 

lim
𝜀→0

(
𝑥𝜀

𝜀
+ 𝐶) = ln(𝑥) 

To calculate C, we take the specific case where x=1: 

Epsilon

x Ln 0,01 Error

0,25 -1,3862944 -1,3767296 0,690%

0,5 -0,6931472 -0,6907505 0,346%

0,75 -0,2876821 -0,2872687 0,144%

1 0 0 0,000%

1,5 0,40546511 0,40628823 0,203%

2 0,69314718 0,69555501 0,347%

2,71828183 1 1,00501671 0,502%

3 1,09861229 1,10466919 0,551%

5 1,60943791 1,62245913 0,809%

10 2,30258509 2,32929923 1,160%

100 4,60517019 4,71285481 2,338%

1000 6,90775528 7,15193052 3,535%

10000 9,21034037 9,64781961 4,750%

100000 11,5129255 12,2018454 5,984%

1000000 13,8155106 14,8153621 7,237%
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lim
𝜀→0

(
1𝜀

𝜀
+ 𝐶) = ln(1) 

lim
𝜀→0

(
1

𝜀
+ 𝐶) = 0 

For the limit to be zero, C has to be: 

𝐶 = −
1

𝜀
 

Now, returning to the general equation, we substitute the C with the obtained value: 

lim
𝜀→0

(
𝑥𝜀

𝜀
+ 𝐶) = ln(𝑥) 

lim
𝜀→0

(
𝑥𝜀

𝜀
−

1

𝜀
) = ln(𝑥) 

lim
𝜀→0

(
𝑥𝜀 − 1

𝜀
) = ln(𝑥) 

And we obtain the desired equation. 

ln(𝑥) = lim
𝜀→0

(
𝑥𝜀 − 1

𝜀
) 

Higher above you can find comparisons of the real value of the logarithm with this equation. 

You can check that for values of ε=0.00000001 and x<1000000 we are in levels of error of 

0.000%. 

As homework, you can demonstrate that if in the following expression, you expand the 

Newton binomial that is to the power of ε, and take the limit when ε tends to zero, you can 

obtain the Taylor expansion series of the Logarithm of (1+x): 

ln(1 + 𝑥) = lim
𝜀→0

(
(1 + 𝑥)𝜀 − 1

𝜀
) 


