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Negation of Atanassov’s intuitionistic fuzzy sets
from the perspective of maximum entropy

Xiangjun Mi, Chongru Huang, Bingyi Kang

Abstract—In fuzzy systems, how to represent uncertainty is a
crucial research topic. Negation is an inherent characteristic of
knowledge, and it provides a brand-new perspective of solving
problems from the opposite of the events. Intuitionistic fuzzy
sets (IFSs), as a generalization of the fuzzy sets, have the ability
to better express fuzzy information. However, since the existing
methods have not completely broken through the constraints
of the first (classical) negation and inconsistent calculation
standards, IFSs still have limitations in expressing uncertainty.
To address this issue, and strengthen the performance of fuzzy
systems to represent uncertain information, this paper proposed
a novel method to obtain the negation of the IFS from the
perspective of maximum entropy. Some desired theorems and
properties are investigated to denote the nature of the negative
IFS. Moreover, entropy is used to describe the connection between
the IFS and uncertainty in the negation process. Futhermore,
based on the negation, this paper designed a new approach to
measure the uncertainty of the IFS. Then, a new pattern classifi-
cation algorithm is developed. Finally, the practical applications
show the effectiveness of the negation method.

Index Terms—Intuitionistic fuzzy sets, negation, uncertainty,
pattern classification.

I. INTRODUCTION

In the field of information science, fuzzy is an important
property characteristic of information. In fact, fuzzy infor-
mation inevitably exists in social and practical applications.
Then, how to characterize and deal with uncertain information
becomes very important. By reviewing the literatures, exist-
ing research can be divided into two main categories. The
first category deals with uncertain information in a specific
knowledge framework, which includes evidence theory [1]–
[3], fuzzy sets [4], [5], Z-numbers [6]–[8], D-numbers [9],
[10], etc. The second category is to process and predict
uncertain information in different fields of research through
mathematical models, such as soft likelihood function (SLF)
[11]–[13], entropy algorithms [14]–[16], distance algorithms
[14], [17], and divergence algorithms [18], [19], correlation
coefficient [20]–[22], and so on.

It is worth noting that, no matter in any of the above
categories, negation is a general problem-solving rule. For an
objective problem, the solution method is generally derived
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from the front. However, when the event is difficult to solve
from the front, a strategy worthy of being adopted is to solve
it by finding the opposite of the event (i.e., negation). For
instance, when a theorem is difficult to prove to be true, if
we can find a counterexample, at least we can show that it
is not true. Moreover, when the cost of solving the positive
problem is greater, the value of obtaining the results of the
event from the negation is higher. In order to determine the
negation of the probabilistic events, Professor Zadeh first
formally formulated a calculation method in his BISC blog.
After that, this issue has attracted widespread attention from
researchers. In particular, Yager proposed the negation of a
probability distribution of maximum entropy in 2015 [23].
Later, some Bayes-based properties [24], [25] and extended
methods [26], [27] are studied. In recent years, there has been
more and more research on negation in different fields, e.g.,
evidence theory [28]–[32], Z-numbers theory [33]. As a result,
the expression performance of uncertainty in these fields has
been greatly enriched and is still evolving [34].

In particular, IFSs [35], [36], as an extension of fuzzy sets,
provides a better framework for the representation of fuzzy
information, and many fields have been used as the main
driving force to apply this theory to practice, such as medical
diagnosis [37], decision making [38]–[41], pattern recognition
[42], etc. However, the uncertainty expression performance
of the IFSs is still not perfect enough. On the one hand,
because of the limitation of the IFSs structure framework.
In order to expand the knowledge representation range and
performance of the IFSs, some technical methods have been
adopted, including interval-valued IFSs [43], [44], membership
performance improvement [45], and extended algorithms [46],
[47]. On the other hand, it lacks a universal negation operation
method. Actually, the research on IFSs negation started very
early, in order to break through the classic negation behavior
defined on IFSs and to defend the IFSs name [48], [49]. In
the process of advancement of this type of research, first some
negation operations were generated for different implications
[50]–[53]. And then Atanassov and some scholars spent a lot
of effort to verify whether they met the Law for Excluded
Middle (LEM) and De Morgan’s Laws (DMLs) to illustrate
the non-classical behavioral characteristics of negation [54]–
[58]. However, it is very likely that due to complexity and
the lack of a unified calculation standard, this will limit the
development of the IFSs negation to a certain extent. Frankly
speaking, in the past ten years, the realization of the negation
of IFSs has not attracted widespread attention from scholars.
Last but not least, the discussion on the negation of IFSs is
still an open issue, and there is still room for improvement in
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order to enhance the ability to represent fuzzy information.
Next, let us consider an simple example in a knowledge-

based system. Assume that two experts are invited to provide
opinions on a decision problem. The final decision-making
results of the first expert is 70% support, 20% against, and
10% neutral, marked as R1. However, the results of the other
expert are exactly the opposite of the first expert, marked as
R2. Apparently, there is R2 = ¬R1. For R1, it is not difficult
to generate a possible IFS, A1 = {< x, 0.7, 0.2 > | x ∈ X},
according to the IFSs theory. However, for R2, we cannot
directly obtain the corresponding IFS, only A2 = ¬A1, that
is, A2 is the negation of A1. It can be seen that negation
is very important for processing uncertain information, which
is expected to further enhance the reasoning ability of IFSs.
Therefore, the research motivation of this parper is to find a
general method to characterize the negative IFS information.

A. Contributions

The main contributions of this paper are as follows. First,
we propose a general approach to obtain the negation of
the IFS, by drawing inspiration from the Yager model and
uncertainty measures. Moreover, the proposed method focuses
on the number of core elements in the IFS while considering
probability, and the negation of core elements is independent
of other elements. Second, we investigate the nature and
properties of the negation operation, and study the process
of the IFS negation through some cases. Experimental results
show that the IFS negation method is usually irreversible due
to the uncertainty of the IFS. Third, based on this interesting
discovery, through distance and negation, we design a novel
mathematical model to measure the uncertainty of the IFS.
Fourth, in order to reflect the actual utility, we provide a new
pattern classification algorithm based on the negation method.
The application results show that the proposed method is
effective for solving practical problems, which also reflects the
huge potential of the proposed negation method in practice.

B. Paper outline

The remainder of the paper is organized as follows. Section
II introduces the background knowledge of this research.
Section III proposes the negation method of IFSs and two
important theorems. Section IV defines some properties of the
negation operation. Section V shows the process of negation
operation through several cases. Section VI evaluates the
proposed negation method theoretically and experimentally,
and proposes an IFS uncertainty measure model. Section
VII designs an algorithm for pattern classification based on
the negation, and illustrates the effectiveness of the method
through two application cases. Finally, Section VIII concludes
this paper and points out future work.

II. PRELIMINARIES

A. Atanassov’s intuitionistic fuzzy sets

In the following, we shall introduce some concepts related
to IFSs.

DEFINITION 1. (Fuzzy set [4]). Let X be a universe of
discourse (UOD), a fuzzy set F is defined by

F = {< x, µF (x) > | x ∈ X} , (1)

with
µF (x) : X → [0, 1] , (2)

where µF (x) represents the membership level of the element
x to F.

Atanassov extended the fuzzy sets and defined the following
IFSs.

DEFINITION 2. (Intuitionistic fuzzy set [35]). Let X be a UOD,
an IFS F on X is given by

F = {< x, µF (x), υF (x) > | x ∈ X} , (3)

in which

µF (x) : X → [0, 1] and υF (x) : X → [0, 1] , (4)

subjected to

0 ≤ µF (x) + υF (x) ≤ 1, ∀x ∈ X. (5)

In the above formulas, µF (x) and υF (x) are the mem-
bership and nonmembership degrees of the element x to F,
respectively.

For each IFS F in X, the degree of indeterminacy of x to F
is defined by

πF (x) = 1− µF (x)− υF (x), ∀x ∈ X. (6)

B. Distance measure for IFSs
In IFSs theory, distance measurement, used to express the

difference between two IFSs, is a key mathematical tool. In
recent years, this subject is receiving more and more attention
from scholars. Recently, a novel distance formula based on
Jensen–Shannon divergence was proposed by xiao [59], which
is briefly introduced as follows.

DEFINITION 3. Suppose there are two IFSs A and B
in a UOD Y, where A = {< y, µA(y), υA(y) > | y ∈ Y }
with πA(y) = 1 − µA(y) − υA(y), and B =
{< y, µB(y), υB(y) > | y ∈ B} with πB(y) = 1 − µB(y) −
υB(y). A divergence measure between A and B, indicated by

JSIFS(A,B) =
1

2

[
KL

(
A,

A+B

2

)
+KL

(
B,

B +A

2

)]
,

(7)
with

KL(A,B) = µA(y)log
µA(y)

µB(y)
+υA(y)log

υA(y)

υB(y)
+πA(y)log

πA(y)

πB(y)
,

(8)
in which KL(A,B) is called Kullback-Leibler (K-L) diver-
gence.

Then, a distance measure, denoted as dx(A,B), is defined
by

dX(A,B) =
√
JSIFS(A,B) (9)

The distance measure is intuitively understood as, the larger
the dX(A,B), the greater the difference between IFSs A and
B.
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PROPERTY 1. The properties satisfied by dX(A,B) are listed
as follows:
(P1.1) Nondegeneracy: dX(A,B) = 0, if and only if A = B,
for A,B ∈ Y ;
(P1.2) Symmetry: dX(A,B) = dX(B,A), for A,B ∈ Y ;
(P1.3) Inequality: dX(A,B) + dX(B,C) ≥ dX(A,C), for
A,B,C ∈ Y ;
(P1.4) Boundedness: 0 ≤ dX(A,B) ≤ 1, for A,B ∈ Y .

C. Shannon entropy measure

Shannon entropy [60], named after Claude Shannon, was
first proposed in 1948. Since then, Shannon entropy has been
widely used in information science. Shannon entropy is an
uncertainty measure about a random variable.

DEFINITION 4. Consider a discrete random variable X with
possible values (x1, · · · , xi, · · · , xm), the Shannon entropy is
defined as

H(X) = H(p1, · · · , pi, · · · , pm) = −
m∑
i=1

pi logq pi, (10)

where
pi = Prod(X = xi). (11)

In Eq. (10), when q = 2, the unit of information entropy is
bit.

PROPERTY 2. In addition, Shannon entropy attains, but is not
limited to, the following properties:
(P2.1) Boundedness: 0 ≤ H(X) ≤ log2m;
(P2.2) Symmetry: H(p1, p2, ...) = H(p2, p1, ...) = ...;
(P2.3) Grouping: H(p1, p2, ..., pm) = H(p1+p2, p3, ..., pm)+
(p1 + p2)H(p1/(p1 + p2), p2/(p1 + p2)).

III. PROPOSED NEGATION OF IFSS

In many knowledge-based systems, a fact that has been
demonstrated is that rare events may seriously affect the
performance of the system in some cases, so rare events
are very important for research [61]. The proposed negation
method provides IFSs with the ability to derive negative
information from the positive of knowledge, which is also
the first modeling of the rare events in IFSs. Before formally
proposing the negative concept of IFSs, below, we shall first
define the core elements of an IFS.

For the IFS F on UOD X , we make the following definition.
Namely, if

µF (x), υF (x), πF (x) > 0, ∀x ∈ X, (12)

then we call it the core element.
Next, a simple intuitive example is given to illustrate the

construction ideas of the proposed method. In probability
theory, suppose pk represents the probability of event xk, then
what will its negative event be? Naturally speaking, consider
mathematical logic, that is, ¬xk = 1 − pk. However, we
cannot simply use this logic to get the negation of the IFS.
Furthermore, suppose that for this event, an IFS is given by
F = {xk, µF (x), υF (x) > | xk ∈ X}. According to the above
mathematical logic, for the negation of F (i.e., F̄ ), the result

is that µ̄F̄ (x) = ῡF̄ (x) = π̄F̄ (x) = 2
3 . However, this result

is obviously inappropriate, because the sum of all the core
elements of F is not equal to 1. Hence, for the negation of
the IFS, we should not only consider the probability, but also
the influence of the number of core elements in the modeling
process.

Below, we shall show how to get the negation of IFSs more
reasonably. Note that in this paper, the negation of an IFS F
is represented as F̄ , and the production flow of the negation
is listed as follows.
Step 1: For core elements µF (x), υF (x) and πF (x) in UOD,
we use 1 − µF (x), 1 − υF (x) and 1 − πF (x) to replace
the original probability assignment µF (x), υF (x) and πF (x)
respectively. Since for a possible event Prod(ei) = pi, 1− pi
can represent the complementary concept of pi. Thus we can
obtain

F̄ = {< x, µ̄F̄ (x), ῡF̄ (x) > | x ∈ X} , (13)

with
π̄F̄ (x) = 1− µ̄F̄ (x)− ῡF̄ (x), ∀x ∈ X, (14)

where µ̄F̄ (x) = 1−µF (x), ῡF̄ (x) = 1−υF (x) and π̄F̄ (x) =
1− µ̄F̄ (x)− ῡF̄ (x) = µF (x) + υF (x)− 1.
Step 2: Compute the sum ϕ of all core elements after negation,
i.e.,

ϕ = µ̄F̄ (x) + ῡF̄ (x) + π̄F̄ (x). (15)

Step 3: It can be inferred that the ϕ may not be equal to 1.
Hence, a necessary step is to normalize the negation of all
core elements. Namely,

µ̄F̄ (x) =
1− µF (x)

ϕ
; (16)

ῡF̄ (x) =
1− υF (x)

ϕ
; (17)

as well as

π̄F̄ (x) =
1− πF (x)

ϕ
=
µF (x) + υF (x)

ϕ
. (18)

Step 4: Finally, the general negation formula of IFS F is
defined by

F̄ = {< x, µ̄F̄ (x), ῡF̄ (x) > | x ∈ X} , (19)

with
π̄F̄ (x) = 1− µ̄F̄ (x)− ῡF̄ (x), ∀x ∈ X. (20)

And explicitly,

µ̄F̄ (x) =
1− µF (x)

m− 1
; (21)

ῡF̄ (x) =
1− υF (x)

m− 1
; (22)

and
π̄F̄ (x) =

1− πF (x)

m− 1
=
µF (x) + υF (x)

m− 1
. (23)

where m (1 ≤ m ≤ 3) is the number of core elements.
In fact, the proposed method makes use of the comple-

mentarity of each core element to generate negative elements.
Then, a necessary approach is used to normalize the proba-
bility of each core element so that their sum is equal to 1.
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The role of the negation method is to equally distribute the
probability to each core element. If and only if the IFS contains
only two core elements, the negation method will exchange
the probability of the two core elements after the negation
process. After Section IV, we shall use a few simple examples
to illustrate the negative execution flow. But before that, let
us introduce two general theorems for the proposed negation
method, where Theorem 1 shows the general formula of the
proposed negation, and Theorem 2 shows the convergence of
the method.

THEOREM 1. Assume the iterative negation is regarded as a
series of sequences, and let αk represent the IFS of the core
element after the k − th negation. Then, the general formula
of IFS negation is defined by

αk = − 1−mα0

m(m− 1)k−1
+

1

m
, (24)

where α0 is the initial core element value of the IFS, and
m (1 ≤ m ≤ 3) is the number of core elements.

PROOF. Consider an arbitrary IFS F in UOD X. For any
core element α, based on the previously proposed core element
negation formulas, we have

αk+1 =
1− αk
m− 1

. (25)

Since 1
m is a constant in the iterative process, subtracting the

fixed value on both sides of Eq. (25), we have

αk+1 −
1

m
=

1− αk
m− 1

− 1

m

=
1

m− 1
− (m− 1) +mαk

m(m− 1)

=
1− (m−1

m + αk)

m− 1

=
αi − 1

m

1−m
.

Integrating both sides of the equation, we finally have

αk+1 −
1

m
=
αi − 1

m

1−m
.

Next, we simplify the above equation as follows

αk+1 − 1
m

αk − 1
m

=
1

1−m
.

It can be observed that the αk − 1
m (marked as βk) is the

common formula of the geometric sequence. Moreover, the
first item β0 = α0 + 1

m and the ratio r = 1
1−m . Then, we can

easily deduce the general form of αk is given by

αk = βk +
1

m

= β1r
k−1 +

1

m

= (α1 +
1

m
)(

1

1− n
)i−1 +

1

m

=
mα0 − 1

m(m− 1)k−1
+

1

m

=
mα0 − 1

m(m− 1)k−1
+

1

m
.

THEOREM 2. For an IFS F in UOD X, when the probability
is equally assigned to each core element, i.e.,

µF (x) = υF (x) = πF (x) =
1

m
, ∀x ∈ X. (26)

And then the proposed negation converges to a value, and the
value is equal to 1

n . Where m (1 ≤ m ≤ 3) is the number of
core elements.

PROOF. To simplify the representation, the notation is the
same as Theorem 1. That is the αk denotes the IFS of the core
element after the k − th negation. According to the Theorem
1, for αk, we know that

αk =
mα0 − 1

m(m− 1)k−1
+

1

m
. (27)

Next, we take the limit of k on both sides of Eq. (27), namely,

lim
k→+∞

αk = lim
k→+∞

(
mα0 − 1

m(m− 1)k−1
+

1

m
).

If restricted to |m− 1| > 1, we have

lim
k→+∞

αk =
1

n
.

In the above proof process, if |m− 1| ≤ 1 is mandatory, is
there a potential threat to the proposed negative algorithm?
This may cause confusion to readers. Along this line of
thought, we shall focus on the two special cases below.

Special case one: Assume that for any given IFS F in UOD
X , only one core element exists, e.g., α = 1 (α denotes the
core element). Then the negation of the F is defined by

α = 0, and ∅ = 1, with x ∈ ∅. (28)

In Eq. (28), ∅ is used to model the open world, which
denotes any set mutually exclusive with the X , and the set
does not contain core element α. The negation F (i.e., not F )
represents the membership grade of element x to ∅, and ∅ = 1
represents a complete membership relationship.

Due to the complexity of fuzzy systems and lack of com-
plete knowledge, in some cases, we cannot explain some
phenomena with existing knowledge. For example, for the
above problem, we don’t know which core elements exist,
but we at least know that it cannot be α, because it is the
negation of α. Moreover, if the prior information is known,
namely not α, we cannot store this type of information by
adding other more core elements in UOD. Because this simple
”addition operation” may lead to a change in the amount of
the IFS information, thereby posing a potential threat to the
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representation of knowledge. Eq. (28) shows that the empty set
can also represent the core element as a container for absorbing
unknown items. Hence, if we deny an IFS that contains only
one core element, the total probability will be assigned to the
empty set. In other words, we don’t know which specific core
element the probability will be assigned to, but at least it is
not α.

Excluding a kind of intuitive thinking, note that usually the
negation of the IFS does not change the probability assignment
of the core elements in the original IFS, but generates a new
IFS (different from the original IFS) in the process of negation.
Therefore, the above two special cases are reasonable.

Special case two: Assume an IFS F =
{< x, µF (x), υF (x) > | x ∈ X} with πF (x) =
1 − µF (x) − υF (x) in UOD X , which contains two
core elements. In the case, three cases are considered, e.g.,
µF (x) = 0, υF (x) = 0 or πF (x) = 0. Then let the probability
values assigned to the two core elements be δ and τ , and the
constraint δ + τ = 1 . And then for F , some possible forms
are listed as follows
• F = {< x, 0.5, 0.5 > | x ∈ X}, πF (x) = 0;
• F = {< x, 0.5, 0 > | x ∈ X}, πF (x) = 0.5;
• F = {< x, 0, 0.5 > | x ∈ X}, πF (x) = 0.5.

Correspondingly, the negation of F is
• F̄ = {< x, 0.5, 0.5 > | x ∈ X}, π̄F̄ (x) = 0;
• F̄ = {< x, 0.5, 0 > | x ∈ X}, π̄F̄ (x) = 0.5;
• F̄ = {< x, 0, 0.5 > | x ∈ X}, π̄F̄ (x) = 0.5.
In the above three cases, the negation of IFS will not pro-

duce any changes because the probability is evenly assigned to
each core element. That is, its negation has returned to itself.
This is the only state where IFS cannot be negated.

IV. SOME PROPERTIES OF THE PROPOSED NEGATION OF
IFSS

In this section, we show some properties satisfied by IFSs
negation through reasoning and proof.

Assume there are two finite UOD X and Y , and two IFSs
are respectively

P = {< x, µP (x), υP (x) > | x ∈ X} ,

with
πP (x) = 1− µP (x)− υP (x), ∀x ∈ X;

as well as

Q = {< y, µQ(y), υQ(y) > | y ∈ Y } ,

with
πQ(y) = 1− µQ(y)− υQ(y), ∀y ∈ Y.

Then for P , let m (1 ≤ m ≤ 3) denote the number of core
elements, and αi (1 ≤ i ≤ m) denote the i− th core element.
And then for Q, let n (1 ≤ n ≤ 3) denote the number of core
elements, and βj (1 ≤ j ≤ n) denote the j− th core element,
.

The properties of P and Q are deduced as follows.

PROPERTY 1. For P and Q, we have

αiβ̄j =

(
m− 1

n− 1

)
ᾱiβj +

αi − βj
n− 1

, ∀i, j. (29)

PROOF. We have

αiβ̄j = αi(
1− βj
n− 1

)

=
αi − βj
n− 1

+
βj(1− αi)
n− 1

=

(
m− 1

n− 1

)
βjᾱi +

αi − βj
n− 1

.

Moreover, for i = 1, 2, 3; j = 1, 2, 3, i.e., m = n, we can
deduce

αiβ̄j = βjᾱi +
αi − βj
m− 1

.

PROPERTY 2. For P and Q, we have

αi
¯̄βj =

(
m− 1

n− 1

)2

βj ¯̄αi +
αi(n− 2)− βj(m− 2)

(n− 1)2
, ∀i, j.

(30)

PROOF. We have

αi
¯̄βj = αi

(βj + n− 2)

(n− 1)2

= βj
(αi +m− 2)

(n− 1)2
+
αi(n− 2)− βj(m− 2)

(n− 1)2

=

(
m− 1

n− 1

)2

βj ¯̄αi +
αi(n− 2)− βj(m− 2)

(n− 1)2
.

Moreover, for i = 1, 2, 3; j = 1, 2, 3, i.e., m = n, we can
deduce

αi
¯̄βj = βj ¯̄αi +

(αi − βj)(m− 2)

(m− 1)2
.

PROPERTY 3. For P and Q, we have

(
αi + βi

2
) =

ᾱi + β̄i
2

, (31)

and(
αi + (2∂ − 1)βi

2∂

)
= ᾱi+β̄i−

(
(2∂ − 1)(αi + βi)

2∂

)
, (32)

in which ∂ = 0, 1, ... for ∀i.

PROOF. We have

(
αi + βi

2
) =

1− (
αi+βj

2 )

m− 1

=
(1− αi) + (1− βi)

2(m− 1)

=
ᾱi + β̄i

2
.

Moreover, we can deduce(
αi + (2∂ − 1)βi

2∂

)
=

1− (αi+(2∂−1)βi

2∂ )

m− 1

=
1− αi
m− 1

+
1− βi
m− 1

−
1−

(
βi+(2∂−1)αi

2∂

)
2∂(m− 1)

= ᾱi + β̄i −
(

(2∂ − 1)(αi + βi)

2∂

)
.
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PROPERTY 4. For P and Q, we have

max(ᾱi, β̄i) ≥
max(αi, βi)

m− 1
, ∀i; (33)

and
min(ᾱi, β̄i) ≥

min(αi, βi)

m− 1
, ∀i. (34)

PROOF. For ∀i, we have

max(ᾱi, β̄i) =
(ᾱi + β̄i) + |ᾱi − β̄i|

2

=

(
1−αi+1−βi

m−1

)
+ | ᾱi−β̄i

m−1 |

2

=

(
1−αi+1−βi

m−1

)
+ | ᾱi−β̄i

m−1 |

2

=
max(αi, βi)

m− 1
+
αi + βi

2
.

Thus, we can obtain

max(ᾱi, β̄i) ≥
max(αi, βi)

m− 1
.

In the same way, we can also prove

min(ᾱi, β̄i) ≥
min(αi, βi)

m− 1
.

PROPERTY 5. For P and Q, we have

∂ᾱi + (1− ∂)β̄i = (∂αi + (1− ∂)βi), 0 ≤ ∂ ≤ 1, ∀i. (35)

PROOF. For 0 ≤ ∂ ≤ 1, we have
m∑
i=1

(
∂ᾱi + (1− ∂)β̄i

)
= 1.

Then for ∀i, we can deduce

∂ᾱi + (1− ∂)β̄i =
∂(1− αi)
m− 1

+
(1− ∂)(1− βi)

m− 1

=
1− (∂αi + (1− ∂)βi)

m− 1

= (∂αi + (1− ∂)βi).

V. NUMERICAL EXAMPLES

In this section, several numerical examples are provided to
show how to obtain the IFS negation in accordance with the
proposed negation method. Moreover, these examples are also
used as the motivation for the follow up research of this paper,
and have a positive effect.

EXAMPLE 1. Consider a given UOD X, and an IFS F =
{< x, 0.3, 0.6 >} (x ∈ X). The negative F is calculated as
follows

µ̄F̄ (x) =
1− µF (x)

m− 1
= 0.35;

ῡF̄ (x) =
1− υF (x)

m− 1
= 0.20;

π̄F̄ (x) =
µF (x) + υF (x)

m− 1
= 0.45.

In the end we have

F̄ = {< x, 0.35, 0.20 >} with π̄F̄ (x) = 0.45.

EXAMPLE 2. Consider a given UOD X, and an IFS F ={
< x, 1

3 ,
1
3 >
}

(x ∈ X). The negative F is calculated by
follows

µ̄F̄ (x) =
1− µF (x)

m− 1
=

1

3
;

ῡF̄ (x) =
1− υF (x)

m− 1
=

1

3
;

π̄F̄ (x) =
µF (x) + υF (x)

m− 1
=

1

3
.

Finaly we have

F̄ =

{
< x,

1

3
,

1

3
>

}
with π̄F̄ (x) =

1

3
.

Obviously, the initial IFS F is exactly the same as the negative
one, since

µF (x) = υF (x) = πF (x) =
1

3
.

EXAMPLE 3. Consider a given UOD X, and an IFS F =
{< x, 0.2, 0.7 >} (x ∈ X). The negation of F is calculated
as follows

µ̄F̄ (x) =
1− µF (x)

m− 1
= 0.40;

ῡF̄ (x) =
1− υF (x)

m− 1
= 0.15;

π̄F̄ (x) =
µF (x) + υF (x)

m− 1
= 0.45.

Thus we have

F̄ = {< x, 0.40, 0.15 >} with π̄F̄ (x) = 0.45.

Comparing the original IFS F with its negative F̄ , we can
observe that the core elements with lower support get higher
support after being negated. Moreover, if we negate the IFS
F̄ again, i.e.,

¯̄µ ¯̄F (x) =
1− µ̄F̄ (x)

m− 1
= 0.30;

¯̄υ ¯̄F (x) =
1− ῡF̄ (x)

m− 1
= 0.425;

¯̄π ¯̄F (x) =
µ̄F̄ (x) + ῡF̄ (x)

m− 1
= 0.275.

We finally have
¯̄F = {< x, 0.30, 0.425 >} with ¯̄π ¯̄F (x) = 0.275.

It is apparent that the initial IFS F does not equal to the
one after taking the negation twice. Generally speaking, the
process of getting IFS negation is irreversible, i.e.,

Fi 6= ¯̄Fi, ∀i. (36)

Note that the above equation is valid if and only if the number
of core elements in the IFS is greater than 2.

Now we review the above examples, we find that if the
probability of the IFS F is unevenly distributed, the probability
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assignment after negation is different, as in Example 1. If
the probability assignment of IFS F is completely uniform,
the probability assignment after negation is the same, as in
Example 2. In other words, in these two cases, the initial state
and the negative state of the IFS are consistent. Moreover, as in
Example 3, in the process of continuously obtaining negatives,
it is worth thinking about what has changed in the uncertainty
of the IFS, which led to this irreversible phenomenon. It can be
seen that the above numerical examples have produced many
interesting phenomena. In the next section, we shall focus on
exploring the possible causes of these problems.

VI. DISCUSSION AND ANALYSIS

Inevitably, uncertainty can be seen everywhere in fuzzy
systems. Therefore, how to effectively deal with uncertainty
is a crucial subject, which has important significance for the
development of fuzzy systems. To solve this problem, infor-
mation entropy is used to measure the uncertainty of IFSs. In
addition, it is worth savoring that previous studies by scholars
have shown a remarkable phenomenon, that is, the negation
of probability distribution will achieve the distribution of
maximum entropy in some form [23].

Now, let us return to where we are interested. In this section,
we shall discuss why the initial probability assignment of the
IFS is consistent with the state after negation, and why the
negation process is irreversible. Furthermore, how to use the
negation method to construct a new model to measure the
uncertainty of the IFS.

A. From the perspective of entropy

Recalling our previous settings, we define F̄ as the negation
of any IFS F . We observe that there are two special cases when
negating certain IFS. One of the interesting findings is that
when some IFSs contain only two core elements, the probabil-
ity of each core element is exchanged after the IFS is negated.
In general, after the negative operation, the uncertainty of the
IFS will be changed. Besides, in the negation process, the
number of negation iterations depends on the uncertainty of
the initial state of the IFS. In the following section, an example
is used to demonstrate the above characteristics.

EXAMPLE 4. Consider a given UOD X, and an IFS F =
{< x, 0.75, 0.2 >} (x ∈ X) with πF (x) = 0.05. A change in
the characteristics of the IFS is shown in Fig. 1.

Fig. 1(a) is used to illustrate the change of the IFS after
each negation process, and Fig. 1(b) is used to illustrate the
change of uncertainty after performing the same operation.
For Fig. 1(a), as a whole, we can observe that the probability
assignment of the IFS tends to converge as the number of
iterations increases. More specifically, the probabilities of
adjacent core elements are getting closer and closer, and finally
the IFS converges to a state where the probability is evenly
distributed to each core element. This phenomenon is also
consistent with Theorem 2. Correspondingly, from Fig. 1(b),
we can find that in the negation operation, as the number of
iterations increases, the uncertainty of the IFS also increases.
Finally, when each core element has the same probability
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negative iterations.
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(b) The change in the degree of uncertainty about the IFS with the number of
negative iterations.

Fig. 1. The graph about the IFS probability assignment and uncertainty
changes in Example 4.

assignment degree, the uncertainty of the IFS reaches the
maximum. It also shows that the proposed negation method
works in a way that changes the uncertainty. We can also infer
that if an initial IFS is a state with a large entropy, the number
of negation operations will also decrease in the process of
converging to a certain value.

Based on the results of our experiments, we find that the
negation process will change the IFS (no special cases are
considered). The IFS, which takes negation twice, is not
equal to the initial IFS. We believe that the reason why this
interesting phenomenon can be produced is due to the change
in the uncertainty of IFS (quantified by entropy).

We can also explain this phenomenon well from the perspec-
tive of physics. As we all know, things in the universe have a
tendency to spontaneously become more chaotic, which means
that entropy will continue to increase. This is the famous
entropy increase principle. The famous second law of thermo-
dynamics also shows that the entropy of an isolated system
never automatically decreases. Entropy does not change in the
reversible process and increases in the irreversible process.
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In addition, we know that energy is always in a state of
consumption, and energy becomes more and more inefficient
with the frequency of use. For instance, someone spend 100 J
of energy to get an object from ground A to ground B. In
this process, a lot of energy is not 100% transformed, but
part of it is lost in the universe. However, this energy is
irreversible, cannot be reused, and is always increasing. The
part of the energy that is difficult to reuse is represented, which
is represented by entropy. Through the inspiration drawn from
the laws of thermodynamics and simulation results, combined
with the background of fuzzy systems, we consider that
negation is another form of the IFS. We also believe that
information is similar to energy, which is constantly consumed.
In the process of negation iteration, part of the information is
lost and dissipated in the fuzzy systems.

B. Proposed the uncertainty measure of IFS based on distance
and negation

In the field of IFSs, existing studies are focusing on the
distance between two IFSs [59]. However, how to measure
the degree of uncertainty of an IFS is an unresolved subject.
To address this issue, based on the negation and the distance
function, to the best of our knowledge, a solution is provided
to enrich the vacancy of IFS on this subject. The distance
measure of IFS represents the difference in the probability
assignment of core elements at the same position in two
different UODs, and for two IFSs, the smaller the distance,
the more similar. The proposed uncertainty measure method
is inspired by the distance between two IFSs. As we proved
in Theorem 2, when the probability is evenly assigned to
each core element, the negation of the IFS will converge to a
certain value, namely 1

n . At this time, the initial IFS and its
negation are the same value, and the uncertainty of the IFS
has reached the maximum. Therefore, we can first calculate the
negative form of the IFS, and then use the distance between the
initial IFS and the negative IFS to characterize the uncertainty
of the initial IFS. The obtained distance measure represents
the relative uncertainty of the IFS elements, which is an
effective measurement method for sharing UOD between the
two IFSs (i.e., the initial IFS and the negative IFS). Logically
speaking, this modeling process is reasonable, because the
negative IFS still shares the same UOD with the initial IFS.
Therefore, measuring the difference between the initial IFS
and the negative IFS is also the correct way to express the
uncertainty of the IFS.

According to the above discussion, for a given UOD X and
an IFS A = {< x, µA(x), υA(x) > | x ∈ X} with πA(x) =
1− µA(x)− υA(x), ∀x ∈ X , based on the distance formula,
the proposed uncertainty measure of the IFS is defined by

dUM (A, Ā) = 1−
√
JSIFS(A, Ā). (37)

And more specifically, dUM (A, Ā) can be written by

dUM (A, Ā) = 1−
[

1

2
( µA(x)log

2µA(x)

µA(x) + µ̄Ā(x)

+µ̄Ā(x)log
2µ̄Ā(x)

µA(x) + µ̄Ā(x)

+υA(x)log
2υA(x)

υA(x) + ῡĀ(x)

+ῡĀ(x)log
2ῡĀ(x)

υA(x) + ῡĀ(x)

+πA(x)log
2πA(x)

πA(x) + π̄Ā(x)

+π̄Ā(x)log
2π̄Ā(x)

πA(x) + π̄Ā(x)
)

] 1
2

.

(38)

First of all, reviewing the previous definitions, we know
that when the number of core elements in IFS is different,
the negation of IFS takes different forms. Specifically, when
the number of core elements is equal to 1, the probability
of the core element is assigned to the empty set, that is,
the open world. In addition, when the probability is equally
distributed to the core elements, the negation of IFS will
remain unchanged. Next, through experimental simulation
technology, we shall first discuss the properties satisfied by
the proposed IFS uncertainty measure when the number of
core elements is equal to 2 or 3. Before that, we first set up
some common restrictions for these two cases. The degree
of membership and degree of non-membership of the IFS A
(i.e., variables µA(x) and υA(x)) are limited to (0, 1), and
they are restricted to µP (x) + υP (x) < 1, shown in Fig. 2(a)
and Fig. 2(d). Then, through Eq. (38), when the number of
core elements is different, the uncertainty measure of the IFS
A is shown in Fig. 2(b) and Fig. 2(e).

From Figs. 2(a)-2(c), we can observe that when the number
of core elements of A is equal to 2, the change of µA(x) and
υA(x) is subjected to (0, 1), and dUM (A, Ā) is always greater
than 0.2 but less than 1. Only when µA(x) = υA(x) = 1

2 ,
the uncertainty measure of A is equal to 1. Similarly, when
the number of core elements contained in A is equal to 3,
we can also observe from Figs. 2(d)-2(f) that the change
of µA(x) and υA(x) is limited to (0, 1), and dUM (A, Ā)
is always greater than 0.2 but less than 1. Only when
µA(x) = υA(x) = πA(x) = 1

3 , the uncertainty measure
of A is equal to 1. Moreover, we can calculate that the
minimum value of the uncertainty measure of A in the above
cases. In particular, when the number of core elements is
equal to 2, the minimum value is equal to 0.1722; when
the number of core elements is equal to 3, the minimum
value equal to 0.1742. This is also an interesting finding,
since the negation of the IFS does not completely negate the
intersection between core elements (except a special case).
Hence, this is an intuitive result. In the following, we shall
discuss the possible changes of the uncertainty measure of
A in the special case mentioned above. When the number of
core elements contained in A is equal to 1, as discussed earlier,
the negation of A assigns probability 1 to the empty set. At
this time, we calculate dUM (A, Ā) by Eq. (38), and the result
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Figs. 2(a)-2(c) show the changes in variables and uncertainty measures
when the number of IFS core elements is equal to 2; Figs. 2(d)-2(f) show the
changes in variables and uncertainty measures when the number of IFS core
elements is equal to 3.

is equal to 0, which means that in this case, the uncertainty
measure of A has reached the minimum value. This result is
reliable, since the uncertainty of absolute events is minimal.
In summary, simulation experiments verify some desired basic
properties of the proposed IFS uncertainty measure, including
non-negativity, boundedness, and symmetry, and found some
interesting values. This may be the cornerstone of our follow
up research.

VII. ALGORITHM AND APPLICATIONS

Looking back at our previous analysis, based on the entropy
point of view, we discuss the reasons for the uncertainty of the
proposed negation method as the number of negation iterations
changes. And borrowed knowledge from the field of physical
sciences, we explain this interesting discovery by drawing
inspiration from it. Then, we define a new formula to measure
the uncertainty of IFS and verify some basic properties.
The simulation results show that the proposed method is an
effective mathematical tool to measure the uncertainty of IFS.
Naturally, another aspect that readers may be interested in
is that there are opposites to events, it stands to reason that
solving problems from the opposites of this event should also
be a common method. In order to answer this question, in the
following, combined with two practical application examples,
we shall illustrate the effectiveness of IFS negation in solving
the problem. But first, we need a general algorithm as a
carrier for application implementation. Based on this distance
measure, we propose a new algorithm for pattern classification.

A. Proposed the pattern classification algorithm

Notation and setting: Let a UOD set with m attributes be
A = {a1, · · · , ai, · · · , am}, and B = {B1, · · · , Bj , · · · , Bn}
denote a set of n patterns represented by IFS Bj ={
< ai, µBj

(ai), υBj
(ai) > | ai ∈ A

}
. For the given z sam-

ples C = {C1, · · · , Ck, · · · , Cz} represented by IFS Ck =
{< ai, µCk

(ai), υCk
(ai) > | ai ∈ A}, the goal of the algo-

rithm is to classify these samples according to the correspond-
ing patterns.

The execution steps of the algorithm are given as follows.
Step 1: Based on the proposed IFS negation, each pattern Bj
and sample Ck characterized by IFSs are calculated as negative
forms, namely

B̄j =
{
< ai, µ̄B̄j

(ai), ῡB̄j
(ai) > | ai ∈ A

}
, (39)

and

C̄k =
{
< ai, µ̄C̄k

(ai), ῡµ̄C̄k
(ai) > | ai ∈ A

}
. (40)

Step 2: The distance Eq. (9), is used to measure the difference
between the negation of pattern B̄j and the negation of sample
C̄k. For all i, the distance formula is given by

dAvgX (B̄j , C̄k) =
1

m

m∑
i=1

dX(B̄j , C̄k)

=
1

m

m∑
i=1

[
1

2
( µ̄B̄j

(ai)log
2µ̄B̄j

(ai)

µ̄B̄j
(ai) + µ̄C̄k

(ai)

+µ̄C̄k
(ai)log

2µ̄C̄k
(ai)

µ̄B̄j
(ai) + µ̄C̄k

(ai)

+ῡB̄j
(ai)log

2ῡB̄j
(ai)

ῡB̄j
(ai) + ῡC̄k

(ai)

+ῡC̄k
(ai)log

2ῡC̄k
(ai)

ῡB̄j
(ai) + ῡC̄k

(ai)

+π̄B̄j
(ai)log

2π̄B̄j
(ai)

π̄B̄j
(ai) + π̄C̄k

(ai)

+π̄C̄k
(ai)log

2π̄C̄k
(ai)

π̄B̄j
(ai) + π̄C̄k

(ai)
)

] 1
2

.

(41)
Step 3: If the distance between B̄j and C̄k is the minimum,
the following formula will be used to select this distance
combination, that is

dAvgX (B̄ξ, C̄k) = min
1≤j≤n

dAvgX (B̄j , C̄k). (42)

Step 4: Finally, sample Ck is classified into pattern Bξ, which
is calculated according to the following formula, i.e.

ξ = arg min
1≤j≤n

{
dAvgX (B̄j , C̄k)

}
, C̄k ← B̄ξ. (43)

A general pattern classification algorithm is provided as shown
in Algorithm 1.

B. Applications

Application one: A pattern classification problem is given,
which consists of three attributes A = {a1, a2, a3}, three
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Algorithm 1: The proposed pattern classification al-
gorithm.

Input: Attribute set: A = {a1, · · · , ai, · · · , am};
Pattern set: B = {B1, · · · , Bj , · · · , Bn};
Sample set: C = {C1, · · · , Ck, · · · , Cz}.

Output: The classification result Bξ.
1 % * Step 1 * %
2 for j = 1; 0 ≤ n do
3 Compute the negation of Bj by Eqs. (21) - (23) to get

B̄j ;
4 end
5 for k = 1; 0 ≤ z do
6 Calculate the negation of Ck by Eqs. (21) - (23) to get

C̄k;
7 end
8 for k = 1; k ≤ z do
9 % * Step 2 * %

10 for j = 1; j ≤ n do
11 Obtain the distance dAvgX (B̄j , C̄k) by Eq. (41);
12 end
13 % * Step 3 * %
14 Filter out the smallest distance dAvgX (B̄ξ, C̄k) by Eq.

(42);
15 Classify sample Ck into pattern Bξ by Eq. (43).
16 end

patterns P = {P1, P2, P3} and one test sample T . The
pattern and test data are described by IFSs as Pj ={
< ai, µPj

(ai), υPj
(ai) > | ai ∈ A

}
(1 ≤ i ≤ 3; 1 ≤ j ≤ 3)

and T = {< ai, µT (ai), υT (ai) > | ai ∈ A} (1 ≤ i ≤ 3)
respectively, which are shown in Table I. For this problem,
a desired result is to find a pattern corresponding to the T .

TABLE I
PATTERN CLASSIFICATION PROBLEM WITH THREE-CLASSES AND

THREE-ATTRIBUTES IN APPLICATION ONE.

Attributes

a1 a2 a3

Patterns

P1

µP1(a) 1.00 0.80 0.70

υP1(a) 0.00 0.00 0.10

P2

µP2(a) 0.90 1.00 0.90

υP2(a) 0.10 0.00 0.00

P3

µP3(a) 0.60 0.80 1.00

υP3(a) 0.20 0.00 0.00

Test sample T
µT (a) 0.50 0.60 0.80

υT (a) 0.30 0.20 0.10

Then, combined with the proposed pattern classification
algorithm, the recognition process is as follows.
Step 1: The negations P̄1, P̄2, P̄3 of patterns P1, P2, P3, and
the negation T̄1 of the test sample T are calculated. Then the
results are shown in Table II.

TABLE II
NEGATION OF IFSS IN APPLICATION ONE.

Attributes

a1 a2 a3

Patterns

P̄1

µ̄P̄1
(a) 0.00 0.20 0.15

ῡP̄1
(a) 0.00 0.00 0.45

P̄2

µ̄P̄2
(a) 0.10 0.00 0.10

ῡP̄2
(a) 0.90 0.00 0.00

P̄3

µ̄P̄3
(a) 0.20 0.20 0.00

ῡP̄3
(a) 0.40 0.00 0.00

Test sample T̄
µ̄T̄ (a) 0.25 0.20 0.10

ῡT̄ (a) 0.35 0.40 0.45

Step 2: The distance dAvgX (·) between P̄1, P̄2, P̄3 and T̄ is
gradually computed as follows

dAvgX (P̄1, T̄ ) = 0.3546;

dAvgX (P̄2, T̄ ) = 0.4006;

dAvgX (P̄3, T̄ ) = 0.2804.

Step 3: The minimum distance between P̄ =
{
P̄1, P̄2, P̄3

}
and T̄ is obtained by

dAvgX (P̄3, T̄ ) = 0.2804.

Step 4: The sample T is classified according to

ξ = 3, T̄ ← P̄3.

Next, in order to illustrate the performance of the proposed
algorithm, we compare the results generated by the proposed
method with some existing methods. The results are listed in
Table III and Fig 3.

From the intuitive graphs and data provided, it can be
found that, except for the dSW method that produces counter-
intuitive results, since dSW (P1, T ) = dSW (P2, T ) = 0.11,
the proposed method maintains the same result dist(P3, T ) <
dist(P1, T ) < dist(P2, T ) as dSK−H , dSK−E , dG, dW 1 ,
d
W

1
2

, dP , dY F , dH−M , dH−LA, dSM , dLZ , dY C and dX .

Application two: Assume that for a pattern classification
problem constructed by three attributes A = {a1, a2, a3},
three patterns P = {P1, P2, P3}, and a given test sam-
ple T , we want to classify T into corresponding patterns,
namely P1, P2 and P3. The model and sample data are all
formulated using the IFSs standard and are represented as
Pj =

{
< ai, µPj (ai), υPj (ai) > | ai ∈ A

}
(1 ≤ i ≤ 3;

1 ≤ j ≤ 3) and T = {< ai, µT (ai), υT (ai) > | ai ∈ A}
(1 ≤ i ≤ 3) respectively. These results are listed in Table
IV.
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TABLE III
THE RESULTS OF DISTANCE MEASURES AND PATTERN CLASSIFICATION IN APPLICATION ONE.

Methods Literatures
Distance measures

Classification results
dist(P1, T ) dist(P2, T ) dist(P3, T )

dSK−H [62] 0.27 0.30 0.17 P3

dSK−E [62] 0.28 0.29 0.16 P3

dG [63] 0.27 0.30 0.17 P3

dW1 [64] 0.16 0.18 0.09 P3

d
W

1
2

[64] 0.22 0.23 0.15 P3

dP [65] 0.27 0.30 0.17 P3

dY F [66] 0.27 0.30 0.17 P3

dH−T [67] 0.32 0.19 0.15 P3

dH−R [67] 0.19 0.17 0.10 P3

dH−L [67] 0.11 0.08 0.04 P3

dH−KD [67] 0.26 0.25 0.16 P3

dH−M [67] 0.21 0.25 0.15 P3

dH−LA [67] 0.21 0.27 0.15 P3

dH−G [67] 0.41 0.24 0.19 P3

dSW [68] 0.11 0.11 0.06 P3

dSM [69] 0.21 0.22 0.16 P3

dLZ [70] 0.35 0.42 0.24 P3

dY C [71] 0.30 0.33 0.22 P3

dX [59] 0.38 0.40 0.28 P3

Proposed method - 0.35 0.40 0.21 P3
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Fig. 3. Comparison of different methods in Application one.
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TABLE IV
PATTERN CLASSIFICATION PROBLEM WITH THREE-CLASSES AND

THREE-ATTRIBUTES IN APPLICATION TWO.

Attributes

a1 a2 a3

Patterns

P1

µP1(a) 0.15 0.25 0.35

υP1(a) 0.25 0.35 0.45

P2

µP2(a) 0.05 0.15 0.25

υP2(a) 0.15 0.25 0.35

P3

µP3(a) 0.16 0.26 0.36

υP3(a) 0.26 0.36 0.46

Test sample T
µT (a) 0.30 0.40 0.50

υT (a) 0.20 0.30 0.40

Below we shall implement the proposed new pattern clas-
sification algorithm, and the detailed steps are as follows.
Step 1: First, the negations P̄1, P̄2, P̄3 of the three given
patterns P1, P2, P3, and the negation T̄1 of the test sample T
are computed. And the the results are shown in Table V.

TABLE V
NEGATION OF IFSS IN APPLICATION TWO.

Attributes

a1 a2 a3

Patterns

P̄1

µ̄P̄1
(a) 0.425 0.375 0.325

ῡP̄1
(a) 0.375 0.325 0.275

P̄2

µ̄P̄2
(a) 0.475 0.425 0.375

ῡP̄2
(a) 0.425 0.375 0.325

P̄3

µ̄P̄3
(a) 0.420 0.370 0.320

ῡP̄3
(a) 0.370 0.320 0.270

Test sample T̄
µ̄T̄ (a) 0.350 0.300 0.250

ῡT̄ (a) 0.400 0.350 0.300

Step 2: The distance dAvgX (·) from T̄ to P̄1, P̄2, P̄3 and T̄
is calculated as follows

dAvgX (P̄1, T̄ ) = 0.0948;

dAvgX (P̄2, T̄ ) = 0.1539;

dAvgX (P̄3, T̄ ) = 0.0912.

Step 3: The minimum distance between T̄ and P̄ ={
P̄1, P̄2, P̄3

}
is obtained by

dAvgX (P̄3, T̄ ) = 0.0912.

Step 4: The sample T is classified according to

ξ = 3, T̄ ← P̄3.

Then, the results of the proposed method and other existing
methods are compared and shown in Table VI and Fig 4.

On the one hand, from the results, it is apparent that the
proposed method and dSK−H , dSK−E , dG, dW 1 , dP , dY F ,
dSW , dLZ , dY C , and dX can classify the test sample T
as P3. However, some existing methods cannot determine
the classification results, e.g., d

W
1
2

, dH−T , dH−R, dH−L,
dH−KD, dH−M , dH−LA, dH−G, and dSW . On the other
hand, considering the distance measure, we can know that
the proposed method and the methods dSK−H , dSK−E , dG,
dW 1 , d

W
1
2

, dP , dY F , dSM , dLZ , dY C , and dX can all
get a consistent ranking, i.e., dist(P3, T ) < dist(P1, T ) <
dist(P2, T ). However, some existing methods have shown
counterintuitive results, e.g., d

W
1
2

(P1, T ) = d
W

1
2

(P3, T ) =

0.10; dH−T (P1, T ) = dH−T (P3, T ) = 0.05; dH−R(P1, T ) =
dH−R(P3, T ) = 0.05; dH−L(P1, T ) = dH−T (P3, T ) =
3.70 × 10−17; dH−KD(P1, T ) = dH−KD(P3, T ) = 0.10;
dH−M (P1, T ) = dH−M (P3, T ) = 0.10; dH−LA(P1, T ) =
dH−LA(P3, T ) = 0.07. Hence, this also shows that these
methods cannot be used for this pattern classification problem
due to algorithm defects.

The above two application examples illustrate the immense
value of IFS negation for practical problems. In fact, the
negation method turns the ”possible event” characterized by
IFS into the ”impossible event”. Therefore, the solution of the
problem also shifts to the opposite of the event.

VIII. CONCLUSION

In this paper, the concept of the IFS core elements is first
defined to describe the number of focal elements in the IFS.
Then a general method to obtain the negation of the IFS is
proposed. Some numerical examples are used to illustrate the
negation process, and a phenomenon is shown that when the
IFS degenerates into a Bayes structure, the proposed negation
method will degenerate into the negation of the probability
distribution. Some theorems and properties are investigated to
illustrate the nature of negation operations. Next, based on the
meaning of physical science and entropy, we discuss the reason
why the IFS core elements probability reaches the maximum
entropy distribution in the negation operation, and a finding
is confirmed, which may be caused by the uncertainty of the
IFS. Moreover, based on distance and negation, a novel IFS
measurement method is proposed to measure the uncertainty
of the IFS. Through experimental simulation, some interesting
phenomena are discovered, i.e., for the IFS, when the number
of core elements is equal to 2 or 3, the minimum value of the
dUM (A, Ā) is 0.1722 or 0.1742. In addition, a new pattern
classification algorithm is proposed based on the negation and
distance, and two application examples are effectively solved.
By comparing with many methods, i.e. dSK−H , dSK−E , dG,
dW 1 , d

W
1
2

, dP , dY F , dH−T , dH−R, dH−L, dH−KD, dH−M ,
dH−LA, dH−G, dSW , dSM , dLZ , dY C and dX , it shows the
potential value of the negation method in practice.

This research has established the basic foundation for the
IFS negation problem and opened up many interesting research
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TABLE VI
THE RESULTS OF DISTANCE MEASURES AND PATTERN CLASSIFICATION IN APPLICATION TWO.

Methods Literatures
Distance measures

Classification results
dist(P1, T ) dist(P2, T ) dist(P3, T )

dSK−H [62] 0.15 0.30 0.14 P3

dSK−E [62] 0.13 0.28 0.12 P3

dG [63] 0.15 0.25 0.14 P3

dW1 [64] 0.10 0.20 0.09 P3

d
W

1
2

[64] 0.10 0.15 0.10 Cannot be identified

dP [65] 0.15 0.30 0.14 P3

dY F [66] 0.15 0.30 0.14 P3

dH−T [67] 0.05 0.12 0.05 Cannot be identified

dH−R [67] 0.04 0.07 0.04 Cannot be identified

dH−L [67] 3.70× 10−17 3.70× 10−17 3.70× 10−17 Cannot be identified

dH−KD [67] 0.10 0.15 0.10 Cannot be identified

dH−M [67] 0.10 0.15 0.10 Cannot be identified

dH−LA [67] 0.07 0.08 0.07 Cannot be identified

dH−G [67] 0.05 0.08 0.05 Cannot be identified

dSW [68] 0.01 0.05 0.01 Cannot be identified

dSM [69] 0.14 0.19 0.10 P3

dLZ [70] 0.20 0.40 0.19 P3

dY C [71] 0.11 0.23 0.10 P3

dX [59] 0.15 0.31 0.14 P3

Proposed method - 0.10 0.15 0.09 P3

d
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Fig. 4. Comparison of different methods in Application two.
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topics. However, it is worth noting that the negative research is
an open issue, and the work in this paper is also a preliminary
discussion of the IFS negation. How to construct a more
effective model is still our future exploration direction.
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