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On the negation intensity of a probability
distribution

Xiangjun Mi, Chongru Huang, Bingyi Kang, Member, IEEE

Abstract—How to obtain negation knowledge is a crucial topic,
especially in the field of artificial intelligence. Limited work has
been done on the negation of a probability distribution, which
has been studied in depth throughout the literature. However,
the aspect of the intensity level of negation enforcement has
not yet been investigated. Moreover, let us note that the main
characteristic of intelligent systems is just the flexibility for the
sake of being able to represent knowledge according to each
situation. In general, researchers have a tendency to express the
need for cognitive range in the negation. Thus, it would seem very
useful to find a wide range of negations under intensity levels in
a probability distribution. Based on these ideas, this paper first
proposes a new approach of finding a probability distribution
negation and gives a domain of intensity in which the negation is
executed, which is called the negation space. Then, we investigate
a number of desirable properties and explore their correlation
with entropy. Numerical examples show the characteristics of the
proposed negation solution. Finally, we validate the efficiency of
the proposed method from the point of view of the Dempster-
Shafer belief structure.

Index Terms—Negation, probability distributions, aggregation,
decision-making, membership grade, uncertainty.

I. INTRODUCTION

In any case, the representation of knowledge is an extremely
important issue for information science, especially in the con-
struction of artificial intelligence. A large number of studies
have been developed to solve the issue of information charac-
terisation of knowledge contained in information sources, such
as fuzzy sets [1]–[4], Dempster-Shafer evidence theory [5]–
[9], Z numbers [10]–[12], evidence reasoning [13], etc. They
have been accepted as the driving force behind the move from
theory to practice, and are widely used in decision making
[14]–[16], information fusion [17], and intelligent systems
[18].

As rare events can in some cases have a serious impact on
the system, the study of rare events is essential [19]. Negation
provides us a new way of thinking about problem solving. For
instance, ”What is it?” This may not be directly answerable in
some contexts. One angle we can choose to address is ”What
is its negation?”. Furthermore, when a theorem is difficult to
prove directly, we can easily prove it wrong if we can find
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a counter-example of it. Just as in the original Dempster-
Shafer theory [20], [21], researchers were unable to prove
that the Dempster’s combination rule is irrational by strict
mathematical deduction. But since Zadeh found a counter-
example [22], it has been confirmed that using Dempster’s
combination rule to combine highly conflicting evidence yields
results that defy human intuition. Thus, this gives us sufficient
grounds to justify the shortcomings of the original combination
rule. Here, let us consider a question in a knowledge-based
rule base. If A is good, then B is p. If A is bad, then A is q.
If we represent good as a fuzzy set, the process of becoming
bad is well known. But if we use a probability distribution to
determine the concept of good, the determination bad becomes
the negation of finding the probability distribution. In this
paper, we are concerned with the form of knowledge contained
in the negation of a probability distribution.

Formulating the negation of the probability event was first
formally put forward by Zadeh in his BISC blog. Since then,
the topic has become more and more popular. Yager [23]
presented a probability distribution of the negation procedure
from the point of view of maximum entropy. In his negation
model, each probability is treated as a separate element xi and
its complementary probabilities are characterised using 1−pi,
and finally all complementary probabilities are normalised
with n−1 to obtain the negation of the probability distribution.
Yager’s idea of design negation can be summarised as follows.
If this probability distribution is initially certain information,
then the iterations of its negation will eventually reach a state
of maximum entropy, i.e., a state of complete uncertainty.
Subsequently, the negation model based on maximum entropy
has attracted widespread attention from scholars, who have
extended the model to areas such as evidence theory [24]–
[28], Z-numbers [29] and have achieved good performance in
the characterisation and treatment of uncertain information in
these areas. Moreover, following the negation model based on
maximum entropy proposed by Yager, some Bayesian prop-
erties [30], extended algorithms [31], [32], entropy measures
[33] and complex-valued distribution [34] have recently been
studied by many scholars. These studies show that the subject
of obtaining a probability distribution negation method is an
open and important topic.

The main goals of this paper is to find a more general
method for obtaining the negation of a probability distribu-
tions, and to do so in a way that is consistent with our cogni-
tion and intuition. More specifically, the main contributions of
this paper are summarised below. First, we suggest a negation
procedure to obtain the negation of a probability distribution
based on the idea of order, and formulate a domain of negation
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intensity, which we call the negation space, by which we
quantify the intensity level of negation execution. Then we
investigate the properties of the negation method from the
perspective of entropy. Finally, we show that the proposed
negation scheme is indeed a desirable negation in terms of the
conflict measurement of belief structure in Dempster-Shafer
evidence theory.

II. NEGATION OF A PROBABILITY DISTRIBUTION

Here we would like to focus on the concern about how to
find a negation of a probability distribution. In the following,
we shall suggest a negation of a probability distribution.

Assume that one of the frames we refer to is a set X =
{x1, ..., xi, ..., xn}. Consider a probability distribution over X
denoted as

P = {p1, ..., pi, ..., pn} .

Naturally, we have
n∑
i=1

pi = 1 and 0 ≤ pi ≤ 1,∀i = 1, ..., n.

Note that in this paper, we stipulate that the negation
of the probability distribution P is expressed as P̄ =
{p̄1, ..., p̄i, ..., p̄n}. In effect, the negation grants us a state-
ment about representational knowledge that allows us to use
”not P ”.

Below we shall introduce in detail our motivation in con-
structing a negation scheme. Before proceeding to our task,
defining the negation of the probability distribution, we shall
find it convenient to use a slightly different notation for the
proposed negation method. Hence, we first make the following
setting. For the probability distribution P , if the size of pi
is ordered ascending, correspondingly, we can obtain a set of
sequences about xi. In order to find this sequence, we let δi be
an index function, which makes δi(k) the kth most probability
index associated with candidate xi in X . Thus here pδi(k) is
the kth largest probability associated with xi in P . And we let
them satisfy pδi(1) ≤ · · · ≤ pδi(k) ≤ · · · ≤ pδi(n). Based on
the idea of negation, we can easily derive an intuitive result
that p̄δi(1) ≥ · · · ≥ p̄δi(k) ≥ · · · ≥ p̄δi(n).

Now, we define an aggregate-type operator, which we call
joint income (JI). This operator is used to collect a set of
values and provide a single value. We define this operator as
follows

JIz(pδi(1), ..., pδi(n)) =

z∑
j=1

1 +

n∑
j=1,j 6=z;
k=1

Inc(pδz(k), pδj(k))

 .

We shall denote Inc(p, q) as the income for p from q, which
is the degree of support received. Generally, we assume that
Inc(p, q) satisfies the following three desired properties:

• Inc(p, q) ∈ [0, 1];
• Inc(p, q) = Inc(q, p);
• Inc(p, q) ≥ Inc(x, y), if |p− q| < |x− y|.

Thus we see the more similar, the closer two values, the more
they support each other. Here, a possible form of the Inc
function is provided as

Inc(p, q) = (1− |p− q|).

Obviously, it is easy to deduce that the Inc function given
above satisfies the three important properties mentioned ear-
lier.

Next, base on the JI operator, we shall define a unique
operator, we call the power negation (PN). But before that,
we need to determine a general regular increasing monotone
function. Let U : [0, 1] → [0, 1], it satisfies the constraint:
U(0) = 0; U(1) = 1; and U(x) ≥ U(y) if x > y. By
appropriately selecting U , we can implement different types
of aggregation imperative. Here, we draw up a simple function
that satisfies the above conditions as f(x) = xυ with υ ≥ 0.
Thus this operator is formally defined by

PNz(pδi(1), ..., pδi(n)) =

(
JIz
JIn

)1−κ

−
(
JIz−1

JIn

)1−κ

where κ is defined as the negation parameter. We call κ ∈ [0, 1]
the negation space, which is used to characterize the possible
range of a probability distribution after it has been negated in a
single negation operation. In fact, the magnitude of the value of
κ indicates the strength of negation being executed. The higher
κ is, the stronger it is. Typically, κ takes the value 0, 0.1, ...,
1. We call κ = 0 the lower bound of negation and κ = 1
the upper bound of negation. Note that for the convenience of
presentation, this paper records the negation of the probability
distribution P at the lower bound of negation as P̄∗, and its
component element is represented as p̄∗i. Correspondingly, the
negation it obtains at the upper bound of negation as P̄ ∗, and
its component element is represented as p̄∗i . We shall explain
later in detail the implications of the suggested negation space
for the negation of a probability distribution. In addition, we
note that when the minimum value of z is equal to 1, z − 1
crosses the boundary, making JIz−1 invalid. Thus, by defining
JIz−1 = 0, we end up with a complete PNz .

In order to fusion the probability information generated
after using the PN operator, we expect to use this set of
output values to correspondingly multiply each probability in
P . However, we note that there may be values of zero for
these probabilities in P , rendering some output of the PN op-
erator unusable. For this reason, we introduce a monotonically
decreasing function, denoted as g(x) = e−x. Thus, we have

Prodi = PNi × e−pδi(k) .

It is interesting to note, however, that the output of Prodi
may be a set of subsequences whose sum is not equal to 1,
so that a necessary remedial step before finally obtaining this
sequence is to perform a normalization operation on it. Thus,
we can obtain the sequence of the probability distribution after
negation as

p̄δi(k) =
Prodi
n∑
i=1

Prodi

.

According to the index function δi(k), correspondingly, we
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assign p̄δi(k) to the candidate xi. Thus, in this case

P̄ : p̄δi(k)
refer to δi(k)→ p̄i.

In this way, we end up with the negation of the probability
distribution.

In fact, the proposed negation method first finds the ascend-
ing sequence of all probabilities in a probability distribution
through a special index function, and uses this index function
to record their corresponding positions with the elements in
the reference frame X . The realization process of the negation
operation of the probability distribution is actually to gradually
reduce the value of the elements with high probability in this
group of sequences, and gradually increase the value of the
elements with low probability. Finally, the negated probability
is assigned to the corresponding candidate element in X by
using the index function. The final result of the negation of
the probability distribution depends on the size of the negation
parameter in the negation space.

In what follows, we shall further examine some interesting
properties about the negation of a probability distribution, but
before we do so, we first need to demonstrate that P̄ is also
a probability distribution.

THEOREM 1. Assume that for a probability distribution P =
{p1, ..., pi, ..., pn}, its negation is given through our proposed
scheme, denoted by P̄ . Then, for all i, we have

n∑
i=1

p̄i = 1 and 0 ≤ p̄i ≤ 1.

PROOF. Recalling our previous definitions, it is easy to derive
that Inc(pδz(k), pδj(k)) > 0, and JIz(pδi(1), ..., pδi(n)) > 0.
For PNi, as previously stated

PNz =

(
JIz
JIn

)υ
−
(
JIz−1

JIn

)υ
.

Since f(x) = xυ is a monotonic increasing function with υ ∈
[0, 1], we can say that PNz > 0 as long as JIz > JIz−1. In
the following, we will derive it step by step. First, we know
1 ≤ z ≤ n. When z = 1, we have

PN1 =

(
JI1
JIn

)υ
−
(
JI0
JIn

)υ
.

Due to JI1 > 0 and JI0 = 0, we have PN1 > 0. When
1 < z ≤ n, we have JIz−JIz−1 > 0. Thus, we can conclude
JIz > 0. Futhermore, if we let κ = 1, then υ = 0. For p̄δi(n),
we have p̄i = 1, since PN1 = 1. In addition to this case, it is
easy to infer p̄i ≥ 0. Thus, we can draw the first conclusion
p̄i ∈ [0, 1].

Then, let us consider the next question. As in the preceding

p̄δi(k) =
Prodi
n∑
i=1

Prodi

.

We know that the index function δi(k) only changes the proba-
bility and the position it corresponds to some random variable.
Therefore, it is easy to infer that

∑n
i=1 p̄δi(k) ⇔

∑n
i=1 p̄i.

Then, we have
n∑
i=1

p̄i =

n∑
i=1

p̄δi(k)

=

n∑
i=1

(
Prodi∑n
i=1 Prodi

)
= 1.

Now, let us formally return to that place of interest. Recall
that we define the range of possible values of the negation
operation, which we call the negation space. Until then, it had
been mysteriously defined. In the following, through some
theorems, we shall explore more interesting findings about
the negation parameter in the proposed negation method. One
direction of exploration that needs to be pointed out in advance
is that we try to establish the relationship between the level of
negation and uncertainty. Before that, it is worth noting that
there are many different measures of entropy we shall measure
the uncertainty of a probability distribution as

H(P ) =

n∑
i=1

(1− pi)pi = 1−
n∑
i=1

p2
i .

Note that here we prefer this form of entropy measure
instead of the classical Shannon measure [35] because of its
simplicity, i.e., the computation it entails, without the log.
Since we do not have the additivity of entropy that requires
independent probabilities, a unique property of Shannon en-
tropy, we do not lose anything by using this measure.

THEOREM 2. Let a probability distribution be P =
{p1, ..., pn}. P̄v denotes the negation of the probability dis-
tribution when the negation parameter takes the value of v,
and v usually takes 0, 0.1, ..., 1. Then, we have

H(P̄r) > H(P̄e) with 0 ≤ e, r ≤ 1

where e = r + 0.1.

PROOF. As noted earlier, we know JIz ≤ JIn, so

0 <
JIz
JIn

≤ 1.

Since 0 ≤ κ ≤ 1, we know 0 ≤ 1−κ ≤ 1. Thus (JIz/JIn)
1−κ

is a monotonically increasing function. Additionally, we can
see that e−pδi(k) is also a monotone decreasing function. Due
to the index function δi(k), the probability distribution is a set
of ascending sequences, so PNi × e−pδi(k) is an increasing
function. Grasping the properties of the above functions, we
shall now discuss the role of the negative parameter taking a
value.

On the one hand, when κ = 0. For PN1, because of JI0 =
0, we have

PN1 =
JI1
JIn

.

Furthermore, if z ≥ 2, in this case

PNz =
JIz − JIz−1

JIn
.

Moreover, the joint income function Inc causes JIz to in-
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crease by a nearly equal gap which is approximately 1/n. This
makes P̄∗ reach the maximum entropy in the negation space.

On the other hand, when κ = 1, in this case

PN1 =

(
JIz
JIn

)1−1

= 1.

Since P̄ also is a probability distribution, it makes H(P̄ ∗)
minimum in the negation space. Hence we have

H(P̄ ∗)min =

n∑
i=1

(1− p̄∗δi(1))p̄
∗
δi(1)

= 1−
n∑
i=1

(p̄∗δi(1))
2

= 1−
n∑
i=1

12 = 0.

In addition to these two cases, let us consider the more
general case. As κ changes from 0 to 1, the uncertainty of the
P̄ gets lower and lower, while PN1 gets larger and larger,
until it converges to 1, i.e., the minimum entropy.

Notably, in Theorem 2, we claim that the maximum value of
the entropy of P̄ ∗ is obtained in the negation space compared
to P̄ under other negation strength levels, so it is not really the
maximum entropy that can be achieved under any conditions.
As a matter of fact, in the proposed negation scheme, there
is only one maximum entropy for negation of a probability
distribution. That is, the negation of a uniform distribution is
uniform. Below, we give an explanation.

THEOREM 3. Assume P = {p1, ..., pi, ..., pn} is such that
pi = 1/n for all i then p̄i = 1/n for all i if and only if
it is the lower bound of negation in the negation space. In this
case, P̄ achieves the maximum entropy, i.e., H(P̄∗)max.

PROOF. As before, when κ = 0 and z = 1, we have

PN1 =
JI1
JIn

.

If z ≥ 2, then

PNz =
JIz − JIz−1

JIn
.

Since Inc(1/n, 1/n) = (1−|1/n−1/n|) = 1, then JI1 = 1/n
and hence

PNz =
JIz − JIz−1

JIn
=

1

n
with z ≥ 2.

In the situation where 1 ≤ z ≤ n, since Prodi = PNi ×
e−(1/n), we have

Prod1 = · · · = Prodi = · · · = Prodn.

This gives us

p̄δi(k) =
Prodi∑n
i=1 Prodi

=
1

n
.

We notice pi = 1/n, so there is no need to use the index
function δi(k) to mark the position of pi and xi in P . Thus,
we now can obtain

p̄i =
1

n
.

Finally, in this particular situation, we can get

H(P̄∗)max =

n∑
i=1

(1− p̄δi(k))p̄δi(k)

= 1−
n∑
i=1

p̄2
δi(k)

= 1−
(

(
1

n
)2 + · · ·+ (

1

n
)2

)
=
n− 1

n
.

Based on Theorem 3, we can easily derive the following
theorem.

THEOREM 4. Assume P is a probability distribution, and P̄
is its negation, then H(P̄∗) ≥ H(P ).

PROOF. The proof is obvious and trivial.

Through the above theorem, we find that the negation space
is an important domain space for obtaining the negation of
a probability distribution. As the strength of the negation
increases, the uncertainty of the probability distribution after
negation becomes smaller and smaller, until it is equal to
zero, which is H(P̄ ∗)min. One reason for this phenomenon is
that the entropy of P̄ is gradually decreasing. In other words,
we can always find the opposite of a probability distribution,
because the final state is the least uncertain. As mentioned
before, in the proposed negation technique, we treat P as a
whole, that is, a set of ascending sequences. Its negation is
to increase the probability of candidates supported by some
smaller probabilities in the set of sequences, until a certain
candidate is completely affirmed, namely p̄δi(1) = 1. At the
same time, it makes the probability of some candidates that
are supported by a larger probability smaller, until a certain
candidate is completely rejected, that is, there is p̄δi(n) = 0.
When the negation strength is the upper bound of negation,
the negation of the probability distribution is the strongest
at this time, that is, the most unlikely event becomes the
most likely event. Usually for researchers, getting the negation
domain of an event is more important than its only opposite,
which provides space for expressing cognition. Therefore, this
discovery is intuitive and what we desire.

Furthermore, we completely analyze our idea of designing
negation method. When the negation parameter is the lower
bound of negation, the reason for choosing the near-maximum
entropy alternative is that it selects an allowable alternative,
which brings less unsupported information. In other words, in
this case, the information we can use is not helpful because
it has the greatest uncertainty and cannot make decisions.
In addition, let us analogize to the real world and explain
this connotation more deeply. Assuming that resources can
be obtained equally, a phenomenon is that a few people
often control most of the resources. The reason for this
phenomenon may be caused by the uneven distribution of
initial resources. It is well known that people with sound
intelligence are more likely to be successful than people with
disabilities. The negation in this case is the final negation after
considering the time span. Although we do not clearly point
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out whether this non-uniform probability distribution reached
a certain fixed asymmetric distribution after negation, in this
case, at least it is not the state of maximum entropy. In other
words, the negation of the asymmetric probability distribution
is ultimately asymmetric. A special case is that only the
negation of a uniform probability distribution is uniform. At
this time, this kind of unsupported information is the least,
and a symmetrical distribution of negations is realized, as
indicated by Theorem 4. On the other hand, when the negation
parameter is the upper bound of negation, the reason for
choosing the minimum entropy scheme is that it chooses one
of the most accurate and intuitive alternatives. In this case, the
uncertainty of the negation of the probability distribution is
the smallest, which is more helpful for us to make decisions.
This is similar to the state after the information is restored
after defuzzification, and it can directly provide us with more
reliable information.

Later, we shall use several numerical examples to further
illustrate the characteristics of the proposed negation method,
so as to impress the readers about the numerical meaning of
getting the negation of a probability distribution.

III. NUMERICAL EXAMPLES

In this section, some numerical examples are provided to
analyze the properties of the proposed negation procedure.
In particular, Examples 1-3 are used to verify the theorems
satisfied by the proposed scheme. In Example 4, we compare
the proposed negation scheme with Yager’s maximum entropy
model and search some interesting findings.

EXAMPLE 1. Assume a frame of reference is the set X =
{x1, x2, x3, x4, x5}. Let P be such that p1 = 1 and pi = 0
for i 6= 1. In this case not P , i.e., P̄ , is obtained as shown in
Table I and Figure 1.

TABLE I
THE NEGATION OF THE PROBABILITY DISTRIBUTION IN EXAMPLE 1

P̄
Negation parameter
κ = 0 κ = 1

p̄1 0.0225 0
p̄2 0.2444 0
p̄3 0.2444 0
p̄4 0.2444 0
p̄5 0.2444 1

P
ro

b
a

b
ili

ty

Fig. 1. The graph on the negation of the probability distribution in Example
1.

In this example, the negation of the probability distribution
P is provided at the lower and upper negation bounds,
respectively. First of all, we can clearly observe that under
these two different negation parameters, P̄∗:

∑5
i=1 p̄i∗ = 1

with p̄i∗ ∈ [0, 1], as well as P̄ ∗:
∑5
i=1 p̄

∗
i = 1 with

p̄∗i ∈ [0, 1]. That is, the negation of P is still a probability
distribution, which verifies Theorem 1. In addition, we can
see that p1 > pi (i 6= 1) in the initial probability distribution.
After executing the negation procedure, in the lower and upper
bounds of negation, the results we get are p̄i ≥ p̄1 (i 6= 1). In
other words, if pi ≥ pj then p̄i ≤ p̄j , which is in line with our
intuition. Note that when the negation parameter is the lower
bound of negation, Figure 1 only shows a possible probability
allocation scheme. In fact, all elements except x1 may get
1, since their initial probability distribution is the same. And
this result depends on the position of the variable element
xi, which is determined by the index function. In addition,
when the negation parameter is the lower bound of negation,
we can observe that H(P̄∗) achieves a distribution close to
the maximum entropy. When the negation parameter is the
lower bound of negation, we can easily calculate H(P̄ ∗) = 0.
Moreover, we can get H(P̄∗) = 0.7606 > H(P ) = 0 through
calculation. Therefore, this example verifies Theorems 1-2 and
4.

EXAMPLE 2. Assume a frame of reference is the set X =
{x1, x2, x3, x4, x5}. Let P be such that pi = 1/5. In this case
not P , i.e., P̄ , is obtained as shown in Table II and Figure 2.

TABLE II
THE NEGATION OF THE PROBABILITY DISTRIBUTION IN EXAMPLE 2

P̄
Negation parameter
κ = 0 κ = 1

p̄1 0.2000 1
p̄2 0.2000 0
p̄3 0.2000 0
p̄4 0.2000 0
p̄5 0.2000 0
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Fig. 2. The graph on the negation of the probability distribution in Example
2.

In this example, what is given is a set of uniform probability
distributions. We can find the following results. First of all, un-
der these two different negation parameters, it is obvious that
the negation of the original probability distribution is still a
probability distribution, since

∑5
i=1 p̄i∗ = 1 with p̄i∗ ∈ [0, 1],

and P̄ ∗:
∑5
i=1 p̄

∗
i = 1 with p̄∗i ∈ [0, 1], which verify Theorem

1. In particular, at the lower bound of negation, it can be
seen intuitively from Figure 2 that the negation of P is still
uniformly distributed. That is the negation at this time achieves
the maximum entropy, i.e., H(P̄∗)max. Thus, this also verifies
Theorem 4. In addition, when the negation parameter is the
upper bound of negation, a distribution way of the probability
distribution is displayed as p̄1 = 1. This is similar to the case
where the negation parameter is the upper bound of negation
in Example 1, since the initial probability distribution of the
five reference elements is the same. In this particular case, the
negation of the probability distribution can be assigned to any
element in the reference frame. In addition, by calculation we
can obtain H(P̄∗) = H(P ) = 0.8000. Therefore, this example
verifies Theorems 1-4, especially Theorem 3.

EXAMPLE 3. Assume a frame of reference is the set X =
{x1, x2, x3, x4, x5}. Let P = {0.20, 0.30, 0.10, 0.25, 0.15}. In
this case not P , i.e., P̄ , is obtained as shown in Table III. In
addition, Figure 2 shows the relationship between the negation
of the probability distribution and entropy.

In this example, we can see that when the strength of the
negation is further deepened, that is, from the upper bound of
the negation to the lower bound of the negation, the value of
the element x2 with the larger initial probability distribution is
constantly decreasing, and the value of the element x3 with the
smaller initial probability distribution is always increase until
p̄3 = 1. Moreover, in this process, we can observe that the
value of entropy is decreasing after the negation of the proba-
bility distribution, until H(P̄ ∗) = 0. In addition, we notice that
under any of the above negation parameters, the probability
distribution of the negation is still a probability distribution,
because the constraints

∑5
i=1 p̄i = 1 and p̄i ∈ [0, 1] are always

satisfied. In particular, in the lower bound of negation, we have
H(P̄∗) = 0.7990 > H(P ) = 0.7750. Hence, this example

verifies Theorems 1-2, and 4, especially Theorem 2.

EXAMPLE 4. Assume a frame of reference is the set X =
{x1, x2}. Let P be such that p1 = 0.7 and p2 = 0.3.

In this example, we let the initial probability distribution be
the first iteration of negation. Then we calculate the probability
distribution of different negation iterations under different
negation parameters, and the results are shown in Table IV
and Figure 4.

We can observe an interesting discovery that under differ-
ent negation parameters, with the iteration of negation, the
probabilities of p1 and p2 are interchanged. In this case,
the negation is reversible. In particular, when κ = 0, the
maximum entropy distribution is realized at this time. In order
to further find the reason for this phenomenon, we think
from the perspective of entropy. We calculate the change in
entropy of this probability distribution under different negation
parameters, and the results are shown in Table V and Figure
5.

We can see that during the initial negation iteration, as
the probability is distributed, the entropy of the negation
probability distribution also changes. Until the probability of
the element x1 and x2 is exchanged, the entropy reaches a
certain value and does not change afterwards. This example
shows that as the strength of the negation increases, the support
for elements after each iteration of negation also increases.
In essence, this phenomenon reflects the concept of mutual
exchange of support before propositions. If we consider the
maximum entropy model of Yager and the result is shown
in Figure 6, we can see that in the 12 iterations of the
negation, the probability distribution after negation only shows
the exchange of probability, and H(P̄ ) is always 0.42. In
contrast, our negation method introduces the intensity level
of negation execution based on the exchange probability. In
contrast, our negation method introduces the intensity level of
negation execution based on the exchange probability, so that
the negation is constrained in a spatial domain, and the result
is intuitive.

IV. VIEW FROM DEMPSTER-SHAFER THEORY

Here, we shall further verify the actual connotation of the
negation parameters in our proposed negation method from the
perspective of Dempster-Shafer theory. But first, let us recall
some basic concepts about this theory.

In Dempster-Shafer theory [20], [21], X =
{x1, x2, · · · , xN} represents the value space of a set
of random variables, which is mutually exclusive and
exhaustive, and is called a frame of discernment. For a given
frame of discernment X , a belief structure m is denoted as
a mapping, i.e., m : 2Ω → [0, 1], satisfying the following
conditions:

m (∅) = 0 and
∑
F⊆X

m (F ) = 1.

And if m(F ) > 0, F is the focal element of the belief struc-
ture. m(F ) represents an assigned belief measure to accurately
reflect the degree of support for F . The combination of all
focus elements is called the core of the belief structure m. In
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TABLE III
THE NEGATION OF THE PROBABILITY DISTRIBUTION IN EXAMPLE 3

P̄
Negation parameter κ

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
p̄1 0.2038 0.1956 0.1852 0.1726 0.1575 0.1396 0.1187 0.0946 0.0669 0.0354 0
p̄2 0.1766 0.1596 0.1424 0.1250 0.1074 0.0897 0.0718 0.0539 0.0359 0.0179 0
p̄3 0.2157 0.2524 0.2951 0.3448 0.4027 0.4698 0.5477 0.6378 0.7420 0.8620 1
p̄4 0.1918 0.1778 0.1627 0.1465 0.1291 0.1105 0.0907 0.0698 0.0477 0.0244 0
p̄5 0.2120 0.2146 0.2145 0.2110 0.2033 0.1904 0.1710 0.1440 0.1076 0.0603 0
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Fig. 3. The graph on the negation of the probability distribution in Example 3.

TABLE IV
THE CHANGE OF THE PROBABILITY DISTRIBUTION (IN EXAMPLE 4) IN THE NEGATION ITERATION UNDER DIFFERENT NEGATION PARAMETERS

Frequency of negation
κ P 1 2 3 4 5 6 7 8 9 10 11 12 13
0 p1 0.7 0.4013 0.5492 0.4754 0.5123 0.4939 0.5031 0.4985 0.5008 0.4996 0.5002 0.4999 0.5000

p2 0.3 0.5987 0.4508 0.5246 0.4877 0.5061 0.4969 0.5015 0.4992 0.5004 0.4998 0.5001 0.5000
0.1 p1 0.7 0.3673 0.6009 0.4145 0.5781 0.4256 0.5726 0.4282 0.5713 0.4289 0.5710 0.4290 0.5710

p2 0.3 0.6327 0.3991 0.5855 0.4219 0.5744 0.4274 0.5718 0.4287 0.5711 0.4290 0.5710 0.4290
0.2 p1 0.7 0.3319 0.6538 0.3527 0.6443 0.3570 0.6423 0.3579 0.6419 0.3581 0.6419 0.3581 0.6419

p2 0.3 0.6681 0.3462 0.6473 0.3557 0.6430 0.3577 0.6421 0.3581 0.6419 0.3581 0.6419 0.3581
0.3 p1 0.7 0.2951 0.7070 0.2922 0.7081 0.2917 0.7083 0.2917 0.7083 0.2917 0.7083 0.2917 0.7083

p2 0.3 0.7049 0.2930 0.7078 0.2919 0.7083 0.2917 0.7083 0.2917 0.7083 0.2917 0.7083 0.2917
0.4 p1 0.7 0.2569 0.7592 0.2349 0.7672 0.2321 0.7682 0.2317 0.7683 0.2317 0.7683 0.2317 0.2317

p2 0.3 0.7431 0.2408 0.7651 0.2328 0.7679 0.2318 0.7683 0.2317 0.7683 0.2317 0.7683 0.7683
0.5 p1 0.7 0.2173 0.8095 0.1824 0.8200 0.1792 0.8210 0.1790 0.8210 0.1790 0.8210 0.1790 0.8210

p2 0.3 0.7827 0.1905 0.8176 0.1800 0.8208 0.1790 0.8210 0.1790 0.8210 0.1790 0.8210 0.1790
0.6 p1 0.7 0.1764 0.8567 0.1354 0.8665 0.1331 0.8670 0.1330 0.8670 0.1330 0.8670 0.1330 0.8670

p2 0.3 0.8236 0.1433 0.8646 0.1335 0.8669 0.1330 0.8670 0.1330 0.8670 0.1330 0.8670 0.1330
0.7 p1 0.7 0.1342 0.8999 0.0941 0.9069 0.0929 0.9071 0.0929 0.9071 0.0929 0.9071 0.0929 0.9071

p2 0.3 0.8236 0.1433 0.8646 0.1335 0.8669 0.1330 0.8670 0.1330 0.8670 0.1330 0.8670 0.1330
0.8 p1 0.7 0.0906 0.9385 0.0583 0.9421 0.0579 0.9421 0.0579 0.9421 0.0579 0.9421 0.0579 0.9421

p2 0.3 0.9094 0.0615 0.9417 0.9421 0.9421 0.0579 0.9421 0.0579 0.9421 0.0579 0.9421 0.0579
0.9 p1 0.7 0.0459 0.9719 0.0272 0.9729 0.0271 0.9729 0.0271 0.9729 0.0271 0.9729 0.0271 0.9729

p2 0.3 0.9541 0.0281 0.9728 0.0271 0.9729 0.0271 0.9729 0.0271 0.9729 0.0271 0.9729 0.0271
1 p1 0.7 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000

p2 0.3 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000
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Fig. 4. The graph on the negation of the probability distribution in Example 4 under different negation parameters.

TABLE V
THE ENTROPY CHANGE OF THE PROBABILITY DISTRIBUTION (IN EXAMPLE 4) IN THE NEGATION ITERATION UNDER DIFFERENT NEGATION PARAMETERS

κ
Frequency of negation

2 3 4 5 6 7 8 9 10 11 12 13
0 0.4805 0.4952 0.4988 0.4997 0.4999 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
0.1 0.4648 0.4796 0.4854 0.4878 0.4889 0.4894 0.4897 0.4898 0.4899 0.4899 0.4899 0.4899
0.2 0.4435 0.4527 0.4566 0.4583 0.4591 0.4595 0.4596 0.4597 0.4597 0.4597 0.4597 0.4597
0.3 0.4160 0.4143 0.4136 0.4134 0.4132 0.4132 0.4132 0.4132 0.4132 0.4132 0.4132 0.4132
0.4 0.3818 0.3656 0.3595 0.3573 0.3565 0.3562 0.3561 0.3561 0.3561 0.3561 0.3561 0.3561
0.5 0.3402 0.3084 0.2982 0.2951 0.2942 0.2940 0.2940 0.2940 0.2940 0.2940 0.2940 0.2940
0.6 0.2906 0.2455 0.2341 0.2314 0.2307 0.2306 0.2306 0.2306 0.2306 0.2306 0.2306 0.2306
0.7 0.2323 0.1801 0.1705 0.1688 0.1686 0.1686 0.1686 0.1686 0.1686 0.1686 0.1686 0.1686
0.8 0.1649 0.1155 0.1097 0.1091 0.1091 0.1091 0.1091 0.1091 0.1091 0.1091 0.1091 0.1091
0.9 0.0876 0.0547 0.0529 0.0528 0.0528 0.0528 0.0528 0.0528 0.0528 0.0528 0.0528 0.0528
1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Fig. 5. The relationship between entropy and negation parameter in the negation iteration process.
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Fig. 6. The negation calculation results of Yager’s maximum entropy model to the probability distribution in Example 4.

addition, A Bayesian belief structure is such that all its focal
elements are singletons elements of the frame of discernment
[36], [37]. Multiple sources of evidence each represented by a
belief structure can be combined by Dempster’s combination
rule. The rule to combine m1, m2, ..., mN is defined as the
following

[m1 ⊕m2 · · · ⊕mN ] (A) =

∑
N⋂
i=1

Fi=A

N∏
i=1

mi(Fi)

1−
∑

N⋂
i=1

Ai=∅

N∏
i=1

mi(Ai)

in which A 6= ∅, Fi, Ai ∈ 2Θ, whereas m(∅) = 0 for
A = ∅. One of the most important parameters in Dempster’s
combination rules is called conflict measure. For two given
belief structures m1 and m2, the conflict between them is
measured by

Conf =
∑

Fi∩Fj=∅

m1(Fi)m2(Fj).

Generally, the larger Conf is, the more conflict between these
two belief structures. For instance, if Conf = 0, it indicates
that there is no conflict between mi and mj . However, when
Conf = 1, it indicates a complete conflict between m1 and
m2.

Here we shall use the conflict coefficient Conf from
Dempster-Shafer theory to measure the degree of uncertainty
between two belief structures. One reason for its choice is
that since negation is intuitively back to the opposite side
of this event, the negation model can at least satisfy the
phenomenon that this event and its opposite event should be
in complete conflict. Assume given such a Bayesian belief
structure, expressed by

m : m({F1}) = 0.9,m({T2}) = 0,m({T3}) = 0.1

its negation is denoted as m̄. Then we calculate the results of
the proposed scheme and Yager’s negation method. The data
are shown in Table VI. The intuitive comparison of the two
methods is shown in Figure 7.

TABLE VI
THE NEGATION OF THE BELIEF STRUCTURE m

Method Negation parameter Conf(m, m̄)
Proposed method κ = 0 0.8497

κ = 0.1 0.8634
κ = 0.2 0.8774
κ = 0.3 0.8918
κ = 0.4 0.9063
κ = 0.5 0.9212
κ = 0.6 0.9363
κ = 0.7 0.9518
κ = 0.8 0.9675
κ = 0.9 0.9836
κ = 1 1

Yager’s method 0.9100

Obviously, we can observe that using Yager’s negation
method, the conflict measure between belief structure m and
m̄ is equal to 0.9100. In the proposed negation method, when
κ = 0.5, the measure of conflict is greater than 0.9100.
Moreover, as the level of negation increases later, when
κ = 1, Conf(m, m̄) = 1. In other words, when the negation
parameter is the upper bound of negation, this initial belief
structure m and its negation m̄ are completely in conflict.

Therefore, the proposed negation of a probability distribu-
tion is indeed a sound negation scheme, which considers all
possible negations. This gives people a hope that through a
change in the level of negation, the negation of a certain event
I found is indeed the answer I want, and it is consistent with
cognition and intuition.

V. CONCLUSIONS

In this paper, we advised a transformation method to obtain
the negation of a probability distribution. Some negation
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Fig. 7. The graph on the negation of the belief structure m.

operators are defined and some desired properties are proved.
Numerical examples are used to demonstrate the unique fea-
tures of the proposed method. We discovered the influence of
the negation parameter in the negation space on the execution
of the negation. Moreover, from the perspective of Dempster’s
belief structure, we verified the connotations of the negation
parameter in the proposed negation scheme. Furthermore, we
found that Yager’s negation model seems to be one of the
special cases of the negation scenario we proposal.
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