Collatz Conjecture integer series has no looping except one.
Tsuneaki Takahashi


#### Abstract

If the series of Collatz Conjecture integer has looping in it, it is sure the members of the looping cannot reach to value 1 . Here it is proven that the possibility of looping is zero except one case.


## 1. Introduction

Procedure of Collatz Conjecture is recognized as following operations.
It starts with positive odd integer $n_{0}$.
It continues following calculation up to $n_{i}=1$.

- Compute $n_{w}=3 \times n_{i-1}+1$.
- $n_{w}$ is divided by $2, m_{i}$ times until it becomes positive odd integer.

$$
\begin{aligned}
& n_{i}=\frac{n_{w}}{2^{m_{i}}}=\frac{3 \times n_{i-1}+1}{2^{m_{i}}} \\
& n_{i} \text { becomes } n_{i-1} \text { for (1). }
\end{aligned}
$$

## 2. Looping

Collatz conjecture procedure $i$ th iteration calculation is (3) based on (2).

$$
\begin{equation*}
n_{i}=\frac{3 \times n_{i-1}+1}{2^{m_{i}}}=\frac{n_{i-1}\left(3+\frac{1}{n_{i-1}}\right)}{2^{m_{i}}} \tag{3}
\end{equation*}
$$

( $i-1$ )th iteration calculation is (4) same as (3).

$$
\begin{equation*}
n_{i-1}=\frac{n_{i-2}\left(3+\frac{1}{n_{i-2}}\right)}{2^{m_{i-1}}} \tag{4}
\end{equation*}
$$

In turn calculating n value down to $n_{0}$ and inserting these, we can get (5).

$$
\begin{equation*}
n_{i}=n_{0}\left(\frac{3+\frac{1}{m_{0}}}{2^{m_{1}}}\right)\left(\frac{3+\frac{1}{m_{1}}}{2^{m_{2}}}\right)\left(\frac{3+\frac{1}{m_{2}}}{2^{m_{3}}}\right) \cdots\left(\frac{3+\frac{1}{n_{i-1}}}{2^{m_{i}}}\right) \tag{5}
\end{equation*}
$$

If $n_{0}=n_{i}$ in Collatz Conjecture integer series, it makes looping from $n_{0}$ to $n_{i-1}$. Therefore, the condition for looping is (6).

$$
\begin{equation*}
\left(\frac{3+\frac{1}{n_{0}}}{2^{m_{1}}}\right)\left(\frac{3+\frac{1}{n_{1}}}{2^{m_{2}}}\right)\left(\frac{3+\frac{1}{n_{2}}}{2^{m_{3}}}\right) \cdots\left(\frac{3+\frac{1}{n_{i-1}}}{2^{m_{i}}}\right)=1 \tag{6}
\end{equation*}
$$

About the parts of (6),

$$
\begin{equation*}
3<3+\frac{1}{n_{j-1}} \leq 4 \quad \text { (j; for all i). } \tag{7}
\end{equation*}
$$

Equal condition is satisfied when $n_{j-1}=1$.
Regarding to the structure of (6), left side is

$$
\begin{equation*}
\left(\frac{3+\prime \text { below the decimal point or } 1 \prime}{\text { power of } 2}\right)(-)(-) \cdots(-) \tag{8}
\end{equation*}
$$

In the case of $n_{0} \neq 1$, value of 'below the decimal point or 1 ' of ( 8 ) is not 1 .
Therefore, (6) is not satisfied because same kind of fractions multiplication cannot make result of value 1 . Then $n_{i}=n_{0}$ cannot be realized in this case although $n_{i}<n_{0}$ or $n_{i}>n_{0}$ can be.

In the case of $n_{0}=1$, value of 'below the decimal point or 1 ' of ( 8 ) is 1 , then

$$
\begin{equation*}
3+\frac{1}{n_{0}}=4 . \tag{9}
\end{equation*}
$$

Also, actually result is (10) in this case, then (6) is satisfied.

$$
\begin{equation*}
n_{j}=1, m_{j}=2 \quad(\mathrm{j} ; \text { for all } \mathrm{i}) \tag{10}
\end{equation*}
$$

Considering all above situations, only possible looping has result (10).
This means that this looping is only one member looping or self-looping when $\mathrm{n}=1$. Therefore, $\mathrm{n}=1$ can be terminal point of Collatz Conjecture operation.

## 3. Consideration

No looping proof in this report could be used with *1 and *2 which investigate Collatz Conjecture Space. These show that the space expectation value of $2^{m_{i}}$ in (2) is $2^{2}=4$.
Also, this no looping report could be used with *3 which investigates the series of Collatz Conjecture integer.
These combinations show Collatz Conjecture is correct.
*1) viXra:2204.0151
*2) viXra:2304.0182
*3) viXra:2302.0015

