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Abstract 

 

In this work, the Friedmann equations, which represent the fundamental equations of cosmological 
models, are derived using a Newtonian and a relativistic approach by solving Einstein's field 
equations in a high level of detail. The space-time geometry in the form of the Friedmann-Robertson-
Walker metric is derived and the calculations of the Christoffel symbols, the Ricci tensor and Ricci 
scalar, as well as the solution of the field equations are described in detail. The energy-momentum 
tensor assumes that matter in the universe behaves like an ideal fluid. 

The relationship between the different densities in the universe and the scale factor and the resulting 
three phases in the evolutionary history of the universe are explained. The time-varying ratio of 
matter density to vacuum density in the universe eventually led to the reversal of expansion, i.e., the 
change from a decelerated to an accelerated expansion of space. With the help of the second 
Friedmann equation and an equation for the expansion force, it is demonstrated at which density 
ratio and at what time this occurred.  

Assuming a flat universe and neglecting the radiation density, the Friedmann equation is solved and 
equations for the scale factor and the Hubble parameter are derived. 

Equations are derived to determine the cosmological horizons, the Hubble radius, and the worldlines 
of photons (light cones) and of stationary objects moving only within the Hubble flow. Using example 
calculations and their representations in space-time diagrams, the interrelations of these quantities 
are particularly elaborated. 
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1. Introduction 

To describe the dynamics of the expanding universe on large scales, this work derives the two 
Friedmann equations (FE) and in particular solves the first FE and numerically evaluates the scale 
factor that describes the spatial expansion of the universe. Using the time-dependent scale factor, 
distances (horizons), light cones, and world lines are calculated and depicted in space-time diagrams. 

In principle, only the path via a suitable metric—typically, the Friedmann-Robertson-Walker metric 
(FRW metric) is employed, as is the case in this study—and solving Einstein's field equations leads to 
the complete Friedmann equations, i.e. taking into account relativistic considerations. But the basic 
structure of the FE can already be derived by examining the energy of a test mass under the 
influence of Newton's law of gravity. For this purpose, initially as an introduction, Newton's law of 
gravitation, the gravitational potential, and the Poisson equation are examined in a bit more detail. 

Both approaches are based on the cosmological principle, which is briefly described in the next 
chapter. 

As early as the 1920s, Hubble observed the expansion of the universe (red shift of the spectral lines 
of observed objects) through his observations and summarized his results in 1929 in the Hubble 
diagram named after him. These findings are also briefly summarized. 

 

1.1 The cosmological principle 

A fundamental concept in cosmology is the cosmological principle. It is assumed that the universe is 
homogeneous and isotropic on large scales. 

Homogeneity 

The distribution of mass and energy is, on average, uniform across space, i.e., that from any position 
in the universe we see a similar distribution of mass and energy. 

 
Isotropy 

The universe looks the same in all directions, i.e., all physical laws and properties do not depend on 
the direction in which an observer looks. 

 
It should be emphasized again that the cosmological principle is only valid when averaging over large 
volumes. Of course, on “small” scales we see a lot of structures in the universe with stars, galaxies, 
galaxy clusters, etc. 

With the cosmological principle, changes in the universe are only permitted as long as these changes 
do not change the spatial arrangement. This means that only changes are permitted that lead to 
uniform changes in distance and thus also uniform changes in density through expansion or 
contraction of the space. 
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1.2 Potential function of the gravitational force and the Poisson equation 

We start with Newton's law of gravitation: 

 

      

𝐹 =
∙ ∙

,        (1.1)

       

G: Gravitational constant; 𝑚 , 𝑚 : mass points 
               𝑟: distance between the mass points 

   

or as a directed force 

 

   �⃗� = −𝐹 ∙ 𝑒 = −
∙ ∙

∙ 𝑒 ,         (1.2) 

 

with the unit vector 

 

   𝑒 =
⃗

| ⃗|
=

⃗
.            (1.3) 

 

The force that the mass 𝑚  exerts on 𝑚  is a “pulling force” and therefore points in the opposite 
direction of the unit vector. Hence the negative sign in Eq. (1.2). 

If we want to move the mass 𝑚  from the position 𝑃  to a position 𝑃 , a force 𝐹  is required that 
corresponds in magnitude to 𝐹 , but is directed in the opposite direction: 

  

 

     �⃗� = −�⃗� =
∙ ∙

∙ 𝑒       (1.4) 

 

 

 

The work done here is calculated from 

   𝑊 = ∫ �⃗�  𝑑𝑟           (1.5) 

 

𝑟 

𝑒

⃗ 𝑃  

𝑃  

𝑚  

𝑚  

𝑟 

𝑒

⃗ 𝑃  

𝑃  

𝑚  

𝑚  
𝑃  
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and corresponds to the difference in potential energy at points 𝑃  and 𝑃  

   𝑊 = ∫ �⃗�  𝑑𝑟 = 𝐸 (𝑃 ) − 𝐸 (𝑃 ).       (1.6) 

 

If we only consider an infinitesimally small step 𝑑𝑟, we can write Eq. (1.6) in the following form 

 

   𝑑𝑊 = �⃗�  ∙ 𝑑𝑟 =

𝐹 ,

𝐹 ,

𝐹 ,

∙
𝑑𝑥
𝑑𝑦
𝑑𝑧

= 𝑑𝐸 .    

   

 

If we form the dot product �⃗� ∙ 𝑑𝑟 and write the differential 𝑑𝐸  as a change according to the 
coordinates x, y and z we get 

 

  𝐹 , 𝑑𝑥 + 𝐹 , 𝑑𝑦 + 𝐹 , 𝑑𝑧 = 𝑑𝑥 + 𝑑𝑦 + 𝑑𝑧.     (1.7) 

 

With Eq. (1.4) we can also write 

 

  −𝐹 , 𝑑𝑥 − 𝐹 , 𝑑𝑦 − 𝐹 , 𝑑𝑧 = 𝑑𝑥 + 𝑑𝑦 + 𝑑𝑧,     (1.8) 

 

and get for the force components  

 

𝐹 , = − ;   𝐹 , = − ;   𝐹 , = −  .       (1.9) 

 

This means that the gravitational force �⃗�  can be written in the following form: 

 

�⃗� = 𝐹 , 𝑒 + 𝐹 , 𝑒 + 𝐹 , 𝑒 = − 𝑒 + 𝑒 + 𝑒  , 

 

�⃗� = −∇⃗ 𝐸𝑝𝑜𝑡 .        (1.10) 
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The gravitational force therefore corresponds to the negative gradient of potential energy. 

In the following we want to derive the potential function of the gravitational force. To do this, we 

first take the gradient of  and consider that 𝑟 = 𝑥 + 𝑦 + 𝑧 . 

 

  ∇⃗ = 𝐺𝑚 𝑚 ∇⃗ = 𝐺𝑚 𝑚 𝑒 + 𝑒 + 𝑒  

    = 𝐺𝑚 𝑚 −
( )

𝑒 −
( )

𝑒 −
( )

𝑒  

= −𝐺𝑚 𝑚 𝑒 + 𝑒 + 𝑒 = − 𝑥𝑒 + 𝑦𝑒 + 𝑧𝑒  . 

With Eq. (1.2) 

∇⃗ = −
⃗

= − 𝑒 = �⃗�  .     (1.11) 

 

According to Eq. (1.10), the gravitational force corresponds to the negative gradient of the potential 
energy 

�⃗� = −∇⃗ 𝐸𝑝𝑜𝑡 = ∇⃗ or.∇⃗ 𝐸𝑝𝑜𝑡 = ∇⃗ −     (1.12) 

 

which ultimately leads to the potential function of the gravitational force: 

 

   𝐸 = − .         (1.13) 

 

If we set 𝑚 = 𝑀, the mass of a central body (e.g. a planet or a sun), and 𝑚 = 𝑚, Eq. (1.12) also be 
written with the gravitational potential Φ(𝑟). 

 

∇⃗ 𝐸 = 𝑚 ∙ ∇⃗ −
∙

= 𝑚 ∙ ∇⃗Φ(𝑟) = −�⃗�  ,    (1.14) 

 

with  Φ(𝑟) = −
∙

 .        (1.15) 

 

This means that the potential energy (see Eq. (1.13)) can also be expressed in the form 

 

𝐸 = 𝑚 ∙ Φ(𝑟) .         (1.16) 
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Newton's equation of motion in a gravitational field, generated by the mass 𝑀, is therefore for a 
particle of mass 𝑚 

 

   �⃗� = 𝑚 ∙ �̈� = 𝑚 ∙ �⃗� = −𝑚
∙

𝑒   ;       �⃗� = −
∙

𝑒   .   (1.17) 

 

With Eq. (1.14) 

 

   �⃗� = 𝑚 ∙ �̈� = −𝑚 ∙ ∇⃗ −
∙

= −𝑚 ∙ ∇⃗Φ(𝑟).    (1.18) 

 

This allows us to write for the acceleration vector 

 

�̈� = �̇⃗� = −∇⃗Φ(𝑟) .        (1.19) 

 

Assuming that the mass 𝑀 is a homogeneously distributed mass of a sphere with radius 𝑟, i.e. 

 

   𝑀 = 𝜌 ∙ 𝑉 = 𝜌 ∙ ∙ 𝜋 ∙ 𝑟 ,       (1.20) 

 

the gravitational force field on the spherical surface can, with the Eqs. (1.17) and (1.3), be expressed 
as: 

  �⃗� = −𝑚
∙

𝑒 = −𝑚
∙

𝑟 = −𝑚
∙ ∙ ∙ ∙

𝑟 = −𝑚 𝜋𝐺𝜌𝑟.   

 

The divergence of this vector is 

 

   ∇⃗ ∙ �⃗� = −𝑚 𝜋𝐺𝜌 ∇⃗ ∙ 𝑟.        

 

With 𝑟 = (𝑥, 𝑦, 𝑧) it becomes 

 

   ∇⃗ ∙ �⃗� = −𝑚 𝜋𝐺𝜌 + + = −𝑚 𝜋𝐺𝜌3 , 
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   ∇⃗ ∙ �⃗� = −𝑚4𝜋𝐺𝜌, 

 

Let us now replace �⃗� with Eq. (1.18) 

 

∇⃗ ∙ −𝑚 ∇⃗Φ(𝑟) = −𝑚4𝜋𝐺𝜌, 

−𝑚 ∇⃗ ∙ ∇⃗Φ(𝑟) = −𝑚 ∇⃗ Φ(𝑟) = −𝑚4𝜋𝐺𝜌 , 

 

we finally get the Poisson equation 

 

    ∇⃗ Φ(𝑟) =△ Φ(𝑟) = 4𝜋𝐺𝜌.        (1.21) 

 

 

2 Hubble and the expanding Universe 

As early as 1929, Edwin Hubble determined a linear relationship between the distance and the 
escape velocity (i.e. the red shift of spectral lines) through his observations of objects (such as 
Cepheids) outside the Milky Way and presented it in a diagram, the so-called Hubble diagram. This 
connection is independent of the viewing direction, i.e., no matter which direction we look or 
measure, we always find the same linear connection. Since we can assume that our Earth or our 
galaxy, the Milky Way, does not hold a special position in the universe, we must assume that this 
relationship between redshift and distance of observed objects is the same from any point in the 
universe, which corresponds to the basic idea of the cosmological principle. This redshift is primarily 
caused by the expansion of the universe. 

Even though the values measured by Hubble were still very imprecise, it is particularly thanks to him 
that the idea of an expanding universe was established in science. 

Eventually, he was also able to convince Einstein to abandon his static universe - something Einstein 
had "forced" by adding the cosmological constants to his field equations - and to accept a dynamic 
universe. 

The linear relationship between distance 𝑅 at the time of light emission and the recessional velocity 
𝑣  is described by the Hubble law (see also Fig. 2.1): 

 

     𝑣 , = 𝐻 ⋅ 𝑅.      (2.1) 

 

𝐻 ≈ 67.4 ± 0.5 
⋅

: Hubble constant (Planck measurements 2018 [1]). 
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The cosmological redshift is given by the equation (see e.g. [3]): 

 

  𝑧 = − 1             (2.2) 

 

with the redshifted wavelength 𝜆  (value measured today) and the original, non-redshifted 
wavelength 𝜆. 

When we speak of a red shift caused by the expansion of the universe or a recessional velocity of the 
observed objects, such as galaxies, we mean an expansion of space itself and not a movement of the 
objects in a static space. Throughout this work peculiar velocities of objects are neglected. 

We describe the expansion of space with the help of the scale factor 𝑎(𝑡) already mentioned in the 
introduction. To do this, we look at the increasing distance between two galaxies over time: 

 

time𝑡   time𝑡   time𝑡  

 

 

 

𝑠(𝑡 ) is calculated using the scale factor 

  
𝑠(𝑡 ) = 𝑎(𝑡 ) ∙ 𝑠(𝑡 ) ,         (2.3) 

 

𝑠(𝑡 ) 𝑠(𝑡 ) 𝑠(𝑡 ) 

2.1: Hubble diagram 

 𝑣
,

 𝑖
𝑛

 𝑘
𝑚 𝑠

 
Escape velocity today (calculated with 𝐻 = 67.4 

⋅
) 

  𝑅 𝑖𝑛 𝑀𝑝𝑐 
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and 𝑠(𝑡 ) accordingly  

𝑠(𝑡 ) = 𝑎(𝑡 ) ∙ 𝑠(𝑡 ) .      (2.4) 

 

If one replaces in (2.4) 𝑠(𝑡 ) with the relation (2.3), the result is 

 

    𝑠(𝑡 ) =
( )

( )
𝑠(𝑡 ),       or the other way around   (2.5a) 

𝑠(𝑡 ) =
( )

( )
𝑠(𝑡 ).      (2.5b) 

 

With 𝑡 = 𝑡 and 𝑡 = 𝑡 + ∆𝑡 Eq. (2.5a) becomes  

 

    𝑠(𝑡 + ∆𝑡) =
( ∆ )

( )
𝑠(𝑡).         (2.6) 

 

Subtracting 𝑠(𝑡) from both sides, rearranging, and then dividing by ∆𝑡 yields 

 

( ∆ ) ( )

∆
=

( ∆ ) ( )

∆
∙

( )

( )
 .       (2.7) 

 

Now we can take the limit as ∆𝑡 approaches zero 

 

      lim
∆ →

( ∆ ) ( )

∆
= lim

∆ →

( ∆ ) ( )

∆
∙

( )

( )
        and received 

 

     = ∙
( )

( )
 

     �̇�(𝑡) = 𝑣 (𝑡) =
̇ ( )

( )
𝑠(𝑡).       (2.8) 

 

A comparison with Eq. (2.1) yields the Hubble parameter dependent on the scale factor and thus on 
time 

𝐻(𝑡) =
̇ ( )

( )
 .         (2.9) 
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Using 𝑟 = 𝑎 ∙ 𝑟  or 𝑎 =  and �̇� =
̇  we obtain the generalized Hubble law 

 

    �̇�(𝑡) = 𝑣 (𝑡) = 𝐻(𝑡) ∙ 𝑟(𝑡) .      (2.10) 

 

And with 𝑡 = 𝑡 (i. e. , today) and thus �̇�(𝑡 ) = 𝑣 , , 𝐻(𝑡 ) = 𝐻 , and 𝑟(𝑡 ) = 𝑅, we recover Hubble’s 
law (Eq. (2.1)), 𝑣 , = 𝐻 ⋅ 𝑅. 

If changes in distance due to the expansion of the universe can be calculated according to the 
equation 

    𝑠 = 𝑎(𝑡) ∙ 𝑠         (2.11) 

then the increase in the wavelength of a light wave must also follow this approach [3], i.e. 

    𝜆 = 𝑎(𝑡) ∙ 𝜆 .        (2.12) 

Substituting into Eq. (2.2) yields:  

 

𝑧 =
∙

− 1 = − 1      or     𝑎 =       (2.13) 

 

The cosmological redshift is therefore also a measure of the expansion of the universe. By definition, 
the scale factor today is equal to one (𝑎(𝑡 ) = 𝑎 = 1), that is, for the local universe is 𝑧 = 0. If we 
measure for example 𝑧 = 1 (𝑎 = 0.5), the photon-emitting object was in a universe only half its 
current size, with 𝑧 = 3 (𝑎 = 0.25) the universe had only a quarter of its current size. 

 

3 Friedmann equations (FE) 

As already mentioned in the introduction, two approaches are shown below that can be used to 
derive the FE. Only with the second approach using the Friedmann-Robertson-Walker metric and the 
solution of Einstein's field equations can the FE be derived in its full form, i.e., also taking relativistic 
effects into account. But the basic structure of the FE can be shown with simple energetic 
considerations in Newton's gravitational field. 

3.1 Friedmann equations – Newtonian approach 

We consider a spherical model universe (Fig. 3.1), where there is a homogeneous mass distribution 
𝜌. Furthermore, we use a test mass 𝑚 whose behavior in our model universe is described via the 
energy balance. The test mass is located at a distance |𝑟| = 𝑟 from the center of the model universe. 
𝑟 is not constant over time and, as shown in Chap. 2, we want to describe this change using the scale 
factor 𝑎(𝑡) (Eq. (2.11)). 

𝑟 = 𝑎(𝑡) ∙ 𝑟  .          (3.1) 
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The kinetic energy of the test mass 𝑚 is (taking into account Eq. (3.1)) 

 

 𝐸 = 𝑚𝑣 = 𝑚�̇� = 𝑚(�̇�(𝑡) ∙ 𝑟 )   .       (3.2) 

 

For the potential energy, we obtain using Eq. (1.16), the gravitational potential (Eq. (1.15)) and Eq. 
(3.1) 

 

 𝐸 = 𝑚 ∙ Φ(𝑟) = −𝑚
∙

= −𝑚
∙

( )
 .       (3.3) 

 

With homogeneous mass distribution, we can replace the attracting mass 𝑀 with 

   𝑀 = 𝜌𝑉 = 𝜌 𝜋𝑟 = 𝜌 𝜋(𝑎(𝑡)𝑟 )      and received 

 

   𝐸 = −𝑚 𝐺 𝜌 𝜋𝑎(𝑡) 𝑟 .         (3.4) 

 

We view our model universe as a closed system, so that the sum of kinetic and potential energy is 
constant: 

 𝐸 + 𝐸 = 𝐸  ,        𝐸 = 𝑐𝑜𝑛𝑠𝑡  .       (3.5) 

 

𝑟 

𝑚 

y𝜙 

Θ 

e

x

𝜌 

3.1: Model universe with homogeneous mass distribution 
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Substituting equations (3.2) and (3.4) into (3.5) gives us 

 

𝑚�̇�(𝑡) 𝑟 − 𝑚 𝐺 𝜌 𝜋𝑎(𝑡) 𝑟 = 𝐸 ,       (3.6) 

 

and by rearranging, we finally obtain the first Friedmann equation 

 

   
̇ ( )

( )
= +

( )
∙

 

 
, 

 

̇ ( )

( )
= 𝐻(𝑡) = 𝜌(𝑡) +

( )
 .        (3.7) 

 

In the next chapter, we will see that in relativistic consideration, the constant takes the form  
𝑐𝑜𝑛𝑠𝑡 = −𝐾 𝑐  , with 𝐾 representing the curvature of space and 𝑐 representing the speed of light. 
Furthermore, there is a term missing that includes the cosmological constant Λ. 

 

To answer the question of whether the expansion of the universe proceeds at a constant speed 
(𝐹 = 0), accelerates (𝐹 > 0) or decelerates (𝐹 < 0), we need an equation for the force within the 
universe acting on our test mass 𝑚  

 

    𝐹 = 𝑚 ∙ �̈�.           (3.8) 

 

If we substitute Eq. (2.9) into (2.10) and differentiate w.r.t. time, we obtain the acceleration 

 

�̈� =
̇

𝑟 +
̇
�̇� = 𝑟

̈
−

̇
+

̇ ̇
𝑟 = 𝑟

̈       and     (3.9) 

 

substituting into Eq. (3.8), we get for the force 

 

 𝐹 = 𝑚 ∙ 𝑟 ∙
̈  .       (3.10) 

 

First Friedmann equation 
(Newtonian approach)

= 𝑐𝑜𝑛𝑠𝑡 
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To calculate the quantity ̈ , we differentiate the first Friedmann equation (Eq. (3.7)) w.r.t. to time and 

obtain after some rearrangement: 

 

 
̈
=

̇

̇
+ 2𝜌  .       (3.11) 

 

We want to reformulate the term 
̇

̇
. To do this we use the first law of thermodynamics 

 (𝑑𝐸 = −𝑝𝑑𝑉) and Einstein's famous energy equation from the special theory of relativity (𝐸 = 𝑚𝑐  
or 𝑑𝐸 = 𝑐 𝑑𝑚 = 𝑐 𝑑(𝜌𝑉)) and differentiate w.r.t. time: 

 

−𝑝 = 𝑐 (𝜌𝑉) = 𝑐 �̇�𝑉 + 𝜌  , 

�̇�𝑉 = − 𝜌 +  , 

with 𝑉 = 𝜋𝑟  and 𝑟 = 𝑎 𝑟  

�̇� 𝜋𝑎 𝑟 = − 𝜌 + 𝜋 𝑟 (𝑎 ) , 

�̇�𝑎 = − 𝜌 + 3𝑎 �̇� , 

 ̇

̇
= −3 𝜌 +  .        (3.12) 

 

Putting Eq. (3.12) into Eq. (3.11) gives us the second Friedmann equation 

 

. ̈
= − 𝜌 +        (3.13) 

 

Due to the non-relativistic approach, this equation is also incomplete, as we will see in the next 
chapter. Therefore, we will postpone answering the question of whether the expansion of the 
universe proceeds at a constant speed (𝐹 = 0), accelerates (𝐹 > 0) or decelerates (𝐹 < 0) until 
Chapter 4. 

 

 

 

 

Second Friedmann equation 
(Newtonian approach)
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3.2 Friedmann equations – relativistic approach 

The Friedmann-Robertson-Walker metric (FRW metric) is compatible with the cosmological principle 
and, when inserted into the Einstein’s field equations of the general theory of relativity, leads to the 
two Friedmann equations. 

In order to gain a better understanding of the structure of the FRW metric, it is helpful to derive the 
metric of surfaces with a constant curvature using the simple example of the sphere (Fig. 3.1). The 
requirement for constant curvature follows from the cosmological principle of a homogeneous and 
isotropic universe (see also Chapter 1.1). 

 

 

 

 

 

 

 

 

 

 

 

 

The line element 𝑑𝑠 is calculated according to the geometric relationships shown in Fig. 3.1 

 

𝑑𝑠 = 𝑅 𝑑Θ + 𝑅 sin Θ 𝑑Φ = 𝑅 (𝑑Θ + sin Θ 𝑑Φ ) .  (3.14) 

 

The metric in matrix form is 

 

 𝑔 = 𝑅
 1 0
 0 sin Θ

   .      (3.15) 

 

We now aim to describe the sphere as a curved surface in a two-dimensional space with the constant 
curvature radius 𝑅, i.e., we want to express the line element 𝑑𝑠 in cylindrical coordinates 𝑟 and Φ. To 
do this, we first differentiate the term 𝑟 = 𝑅 sin Θ w.r.t. Θ: 

    = 𝑅 cos Θ,       and thus obtain for 𝑑Θ  

𝑅 

yΦ 

Θ 

e

x

3.1: Geometry for calculating the line element 𝑑𝑠 

𝑑Φ dΘ 

𝑟 = 𝑅 sin Θ  
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𝑑Θ =
 

=
 ( )

 . 

Substituting into Eq. (3.14) considering the relationship 𝑟 = 𝑅 sin Θ yields 

 

   𝑑𝑠 = 𝑅
 ( )

+ 𝑟 𝑑Φ = + 𝑟 𝑑Φ .     (3.16) 

For the metric we therefore get 

 𝑔 =
      0

 0      𝑟

  .      (3.17) 

 

3.2.1 Measuring curvature 

Measuring curvature can be easily explained using the example of a sphere. To do this, let's first 
consider what happens to a triangle when we go from a plane to a curved surface: 

 

 

 

 

 

The sum of angles for a triangle in the plane (Fig. 3.2) is 𝜋, and for a positively curved surface, such as 
a sphere, the sum of angles is > 𝜋 (Fig. 3.3). This angle 𝛿 = 𝛼 + 𝛽 + 𝛾 − 𝜋 is called the spherical 
excess for the sphere. 

 

 

 

 

 

 

 

 

 

 

β 

α 

γ 

3.4: Triangle on a spherical surface with two right angles, bounded by the equator line 
        and two meridians, with area 𝐴 and the spherical excess 𝛿 = 𝛼 + 𝛽 + 𝛾 − 𝜋 = 𝛾 . 

Equator 

α β 

γ 

3.2: Sum of angles  𝛼 + 𝛽 + 𝛾 = 𝜋 

 α 
β 

γ 

3.3: Sum of angles 𝛼 + 𝛽 + 𝛾 > 𝜋 
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In the special case shown in Fig. 3.4, the spherical excess 𝛿 (and thus also the angle 𝛾) behaves with 

respect to the area 𝐴 as 2𝜋 to half the surface area of the sphere,  4𝜋𝑅 = 2𝜋𝑅 , where 𝑅 is the 

radius of the sphere. 

 = =  .        (3.18) 

 

This ratio is a measure of the curvature 𝐾 of two-dimensional surfaces and has the value  for the 

sphere. 

    = 𝐾.          (3.19) 

 

Thus in Eq. (3.16), the expression  can be replaced by the general expression of curvature for two-

dimensional surfaces, 𝐾 , obtaining the line element for all two-dimensional geometries with 
arbitrary curvature radii [4]. 

 

    𝑑𝑠 = 𝑑𝑟 + 𝑟 𝑑Φ .      (3.20) 

 

So, this line element describes all two-dimensional geometries with arbitrary curvature radii. For 

example, one obtains for 𝐾 =  the line element of the sphere (Eq. (3.16)) and for 𝐾 = 0 that of the 

plane in cylindrical coordinates 𝑑𝑠 = 𝑑𝑟 + 𝑟 𝑑Φ . 

  

 

3.2.2 Friedmann-Robertson-Walker metric and the Friedmann equations 

We want to extend the two-dimensional metric with the variables 𝑟 and Φ (Eq. (3.20)) to three-
dimensional geometries by introducing the third spatial coordinate Θ. To do this, we replace 𝑑Φ  in 
Eq. (3.20) with the corresponding solid angle 𝑑Θ + sin Θ 𝑑Φ . 

By introducing the angle Θ, we rotate the radius 𝑟 (see Fig. 3.1) out of the plane and thereby create a 
volume element, as shown in Fig. 3.5. Multiplying the edge lengths by the scale factor 𝑎(𝑡), which 
describes the expansion of the space over time, leads to the line element of three-dimensional 
geometries in a dynamic space. 
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 𝑑𝑠 = 𝑎(𝑡) 𝑑𝑟 + 𝑎(𝑡) 𝑟 𝑑Θ + 𝑎(𝑡) 𝑟 sin Θ 𝑑Φ  

 

 

 

 

 

 𝑑𝑠 = 𝑎(𝑡) 𝑑𝑟 + 𝑟 (𝑑Θ + sin Θ 𝑑Φ )  .   (3.21) 

 

If we expand Eq. (3.21) to include the time element −𝑐 𝑑𝑡 , we finally obtain the FRW metric 

 

  𝑑𝑠 = −𝑐 𝑑𝑡 + 𝑎(𝑡) 𝑑𝑟 + 𝑟 (𝑑Θ + sin Θ 𝑑Φ ) .    (3.22) 

 

   𝑔 =

⎣
⎢
⎢
⎢
⎡
−𝑐 0 0 0

0 0 0

0 0 𝑎 𝑟 0
0 0 0 𝑎 𝑟 sin Θ⎦

⎥
⎥
⎥
⎤

.    (3.23) 

 

The curvature 𝐾 can take the values 0, 1 and -1 (with appropriate rescaling of 𝑟) and defines the 
shape of the universe: 

𝐾 = 0: flat universe 

  𝐾 = 1: closed universe 

  𝐾 = −1: open universe 

(more on this later, see Chapter 4) 

 

It should be noted that a flat universe is not equivalent to a flat spacetime, i.e., to Minkowski 
spacetime. For this, the scale factor must be constant, so that it can be absorbed into the coordinate 
𝑟. Only then does the FRW metric Eq. (3.22) become the Minkowski metric: 

 

   𝑑𝑠 = −𝑐 𝑑𝑡 + 𝑑𝑟 + 𝑟 (𝑑Θ + sin Θ 𝑑Φ ).    (3.24) 

𝑟 

Φ 

Θ 

3.5: Components of the line element in three-dimensional space, as an extension of the line element of Eq. (3.20) by 
        the angle Θ and scaled with the scale factor 𝑎(𝑡). 
 

𝑑Φ dΘ 

𝑎(𝑡)𝑟 𝑠𝑖𝑛 Θ 𝑑Φ 

𝑎(𝑡)𝑟 𝑑Θ 

𝑎(𝑡)
1

1 − 𝐾𝑟
 𝑑𝑟  
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To derive the FE, we put the FRW metric into Einstein's field equation 

 

 𝑅 − 𝑔 𝑅 + 𝛬𝑔 = 𝑇  .        (3.25) 

 

For the energy-momentum tensor 𝑇  we assume that the matter in the universe behaves like the 
particles of an ideal fluid. This means, we have to consider the energy density 𝜌 and pressure 𝑝. 
There are no shear forces present, so the energy-momentum tensor is only occupied with values on 
the main diagonal [3]. 

    𝑇 =

𝜌 0 0 0
0 𝑝 0 0
0 0 𝑝 0
0 0 0 𝑝

,       (3.26) 

or in component notation 

    𝑇 = (𝜌 + 𝑝) + 𝑝𝑔 , with  𝑢 = (𝑐, 𝟎).   (3.27) 

Starting from the Riemann curvature tensor 

 𝑅 = 𝜕 Γ − 𝜕 Γ + Γ Γ − Γ Γ  ,   (3.28) 

with the Christoffel symbols 

 Γ = 𝑔 𝜕 𝑔 + 𝜕 𝑔 − 𝜕 𝑔  ,    (3.29) 

we calculate the Ricci tensor 

    𝑅 = 𝑅 = 𝑅 ,       (3.30) 

and the Ricci scalar 

 𝑅 = 𝑔 𝑅  .        (3.31) 

 

First, we determine the non-zero Christoffel symbols and begin with a few preliminary 
considerations: 

a) The metric tensor is only occupied on the main diagonal, i.e., 𝑔  or 𝑔  are only non-zero 
when 𝜇 = 𝜈. 

b) 𝑔  is a constant and therefore 𝜕 𝑔 = 0 for any 𝛼. 
c) The elements 𝑔 , 𝑔  and 𝑔  are functions of 𝑡 and 𝑟, with 𝑔  also depending on Θ. None 

of the metric elements depend on the coordinate Φ. 
d) The Christoffel symbols are symmetrical w.r.t. the lower two indices, i.e., Γ = Γ   

With these findings, the non-zero Christoffel symbols can be determined: 
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 𝝂 = 𝟎 

Γ =
1

2
𝑔 𝜕 𝑔 + 𝜕 𝑔 − 𝜕 𝑔   

 𝛼 = 0, 𝛽 = 0,1,2,3 

Γ = 0,   Γ = 0,   Γ = 0,   Γ = 0 

 𝛼 = 1, 𝛽 = 0,1,2,3 

𝚪 𝟏𝟏
𝟎 ≠ 𝟎,   Γ = 0,   Γ = 0 

 𝛼 = 2, 𝛽 = 0,1,2,3 

𝚪 𝟐𝟐
𝟎 ≠ 𝟎,   Γ = 0 

 𝛼 = 3, 𝛽 = 0,1,2,3 

𝚪 𝟑𝟑
𝟎 ≠ 𝟎  

 𝝂 = 𝟏 

 Γ = 𝑔 𝜕 𝑔 + 𝜕 𝑔 − 𝜕 𝑔   

 𝛼 = 0, 𝛽 = 0,1,2,3 

 Γ = 0, 𝚪 𝟎𝟏
𝟏 ≠ 𝟎,   Γ = 0,   Γ = 0 

 𝛼 = 1, 𝛽 = 0,1,2,3 

 𝚪 𝟏𝟏
𝟏 ≠ 𝟎,   Γ = 0,   Γ = 0 

 𝛼 = 2, 𝛽 = 0,1,2,3 

 𝚪 𝟐𝟐
𝟏 ≠ 𝟎,   Γ = 0 

 𝛼 = 3, 𝛽 = 0,1,2,3 

 𝚪 𝟑𝟑
𝟏 ≠ 𝟎 

 𝝂 = 𝟐 

 Γ = 𝑔 𝜕 𝑔 + 𝜕 𝑔 − 𝜕 𝑔   

 𝛼 = 0, 𝛽 = 0,1,2,3 

 Γ = 0, Γ = 0,   𝚪 𝟎𝟐
𝟐 ≠ 𝟎,   Γ = 0 

 𝛼 = 1, 𝛽 = 0,1,2,3 

 Γ = 0,   𝚪 𝟏𝟐
𝟐 ≠ 𝟎,   Γ = 0 
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 𝛼 = 2, 𝛽 = 0,1,2,3 

Γ = 0,   Γ = 0 

 𝛼 = 3, 𝛽 = 0,1,2,3 

𝚪 𝟑𝟑
𝟐 ≠ 𝟎  

 𝝂 = 𝟑 

Γ =
1

2
𝑔 𝜕 𝑔 + 𝜕 𝑔 − 𝜕 𝑔   

 𝛼 = 0, 𝛽 = 0,1,2,3 

Γ = 0,   Γ = 0,   Γ = 0,   𝚪 𝟎𝟑
𝟑 ≠ 𝟎 

 𝛼 = 1, 𝛽 = 0,1,2,3 

Γ = 0,   Γ = 0,   𝚪 𝟏𝟑
𝟑 ≠ 𝟎 

 𝛼 = 2, 𝛽 = 0,1,2,3 

Γ = 0,   𝚪 𝟐𝟑
𝟑 ≠ 𝟎 

 𝛼 = 3, 𝛽 = 0,1,2,3 

Γ = 0 

 

So there are 13 non-zero Christoffel symbols that we now want to determine: 

Γ =
1

2
𝑔 (𝜕 𝑔 + 𝜕 𝑔 − 𝜕 𝑔 ) 

Γ = (−𝑐 )(−1)𝜕 =
̇   

Γ =  
̇              (3.32) 

 

Γ =
1

2
𝑔 (𝜕 𝑔 + 𝜕 𝑔 − 𝜕 𝑔 ) 

Γ = − (−1)𝜕 (𝑎 𝑟 ) = 2𝑎�̇�  

Γ =  
̇              (3.33) 
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Γ =
1

2
𝑔 (𝜕 𝑔 + 𝜕 𝑔 − 𝜕 𝑔 ) 

Γ = − (−1)𝜕 (𝑎 𝑟 sin Θ) = 2𝑎�̇�  

Γ =  
̇             (3.34) 

 

Γ =
1

2
𝑔 (𝜕 𝑔 + 𝜕 𝑔 − 𝜕 𝑔 ) 

Γ =  𝜕 =  
̇   

Γ =  
̇              (3.35) 

 

Γ =
1

2
𝑔 (𝜕 𝑔 + 𝜕 𝑔 − 𝜕 𝑔 ) 

Γ =  𝜕 =  (−1)
( )

  

Γ =              (3.36) 

 

Γ =
1

2
𝑔 (𝜕 𝑔 + 𝜕 𝑔 − 𝜕 𝑔 ) 

Γ = −  𝜕 (𝑎 𝑟 ) = −  2𝑟𝑎   

Γ =  −𝑟(1 − 𝐾𝑟 )           (3.37) 

 

Γ =
1

2
𝑔 (𝜕 𝑔 + 𝜕 𝑔 − 𝜕 𝑔 ) 

Γ = −  𝜕 (𝑎 𝑟 sin Θ) = −  2𝑟𝑎 sin Θ  

Γ =  −𝑟(1 − 𝐾𝑟 ) sin Θ          (3.38) 

 

Γ =
1

2
𝑔 (𝜕 𝑔 + 𝜕 𝑔 − 𝜕 𝑔 ) 
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Γ =  𝜕 (𝑎 𝑟 ) =  2𝑎�̇�𝑟   

Γ =  
̇              (3.39) 

 

Γ =
1

2
𝑔 (𝜕 𝑔 + 𝜕 𝑔 − 𝜕 𝑔 ) 

Γ =  𝜕 (𝑎 𝑟 ) =  2𝑎 𝑟  

Γ =               (3.40) 

 

Γ =
1

2
𝑔 (𝜕 𝑔 + 𝜕 𝑔 − 𝜕 𝑔 ) 

Γ = −  𝜕 (𝑎 𝑟 sin Θ) = −  2𝑟 𝑎 sin Θ cos Θ  

Γ =  − sin Θ cos Θ           (3.41) 

 

Γ =
1

2
𝑔 (𝜕 𝑔 + 𝜕 𝑔 − 𝜕 𝑔 ) 

Γ =  𝜕 (𝑎 𝑟 sin Θ) =  2𝑟 𝑎�̇� sin Θ  

Γ =  
̇              (3.42) 

 

Γ =
1

2
𝑔 (𝜕 𝑔 + 𝜕 𝑔 − 𝜕 𝑔 ) 

Γ =  𝜕 (𝑎 𝑟 sin Θ) =  2𝑟𝑎 sin Θ  

Γ =               (3.43) 

 

Γ =
1

2
𝑔 (𝜕 𝑔 + 𝜕 𝑔 − 𝜕 𝑔 ) 

Γ =  𝜕 (𝑎 𝑟 sin Θ) =  2𝑎 𝑟 sin Θ cos Θ  

Γ =  cot Θ            (3.44) 
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With the Christoffel symbols known, we can determine the elements of the Ricci tensor using Eq. 
(3.28) and (3.30): 

 

𝑅 = 𝑅 = 𝜕 Γ − 𝜕 Γ + Γ Γ − Γ Γ ,    (3.45) 

 

Due to the symmetry of the Ricci tensor (Eq. (3.30)), only 10 of the 16 elements need to be 
calculated: 

 

𝑅  ; 𝑅  ; 𝑅  ; 𝑅  ; 𝑅  ; 𝑅  ; 𝑅  ; 𝑅  ; 𝑅  ; 𝑅   

 

If we perform the summation over 𝛼 and 𝜎 in Eq. (3.45), we obtain an equation for calculating the 
Ricci tensor elements in the form 

 

𝑅 = 𝜕 Γ − 𝜕 Γ  + Γ Γ + Γ Γ + Γ Γ + Γ Γ  
               − Γ Γ + Γ Γ + Γ Γ + Γ Γ  

          + 𝜕 Γ − 𝜕 Γ + Γ Γ + Γ Γ + Γ Γ + Γ Γ  
                − Γ Γ + Γ Γ + Γ Γ + Γ Γ  

           +𝜕 Γ − 𝜕 Γ + Γ Γ + Γ Γ + Γ Γ + Γ Γ  
               − Γ Γ + Γ Γ + Γ Γ + Γ Γ  

           +𝜕 Γ − 𝜕 Γ + Γ Γ + Γ Γ + Γ Γ + Γ Γ  
               − Γ Γ + Γ Γ + Γ Γ + Γ Γ  .  (3.46) 

 

Since only 13 Christoffel symbols are non-zero (see (3.32) - (3.44)), many of these terms vanish. 
Furthermore, we consider that 𝑎 = 𝑎(𝑡), i.e., 𝜕 (𝑎) = 0 for 𝛼 ≠ 0. 

 

𝑅 = −𝜕 Γ − (Γ ) − 𝜕 Γ − (Γ ) − 𝜕 Γ − (Γ )   

𝑅 = −𝜕 (�̇�𝑎 ) −
̇

− 𝜕 (�̇�𝑎 ) −
̇

− 𝜕 (�̇�𝑎 ) −
̇   

𝑅 = −3 (�̈�𝑎 − �̇� 𝑎 ) +
̇   

𝑅 = −3
̈              (3.47) 
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𝑅 = 𝜕 Γ − 𝜕 Γ  + Γ Γ − Γ Γ − 𝜕 Γ  + Γ Γ − Γ Γ  
            −𝜕 Γ + Γ Γ − Γ Γ  

𝑅 = −𝜕
̇

+
̇
−

̇
− 𝜕

̇
+

̇
−

̇   

𝑅 = 0             (3.48) 

 

𝑅 = −𝜕 Γ + 𝜕 Γ − 𝜕 Γ − 𝜕 Γ + Γ Γ − Γ Γ   

𝑅 = −𝜕
̇

− 𝜕
̇

+ cot Θ
̇
− cot Θ

̇   

𝑅 = 0             (3.49) 

 

𝑅 = −𝜕 Γ − 𝜕 Γ + 𝜕 Γ − 𝜕 Γ   

𝑅 = −𝜕
̇

− 𝜕
̇   

𝑅 = 0             (3.50) 

 

𝑅 = 𝜕 Γ − Γ Γ + 𝜕 Γ −𝜕 Γ + Γ Γ + (Γ ) − Γ Γ − (Γ )   
     −𝜕 Γ  + Γ Γ + Γ Γ − (Γ ) − 𝜕 Γ + Γ Γ + Γ Γ − (Γ )  

𝑅 = 𝜕
̇

−
̇ ̇

− 𝜕 +
̇ ̇

+ −   

          −𝜕 +
̇ ̇

+ −   

𝑅 =
̇ ̈

( )
−

̇

( )
− (−1) +

̇

( )
+ − − (−1)  

           +
̇

( )
−  

𝑅 =
̇

( )
+

̈

( )
+

̇

( )
+   

𝑅 =
̈

( )
+

̇

( )
+   

𝑅 =
̈

+
̇

+ 2 𝑔         (3.51) 
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𝑅 = −𝜕 Γ + 𝜕 Γ − 𝜕 Γ − 𝜕 Γ + Γ Γ − Γ Γ   

𝑅 = −𝜕 − 𝜕 + cot Θ − cot Θ   

𝑅 = 0             (3.52) 

 

𝑅 = −𝜕 Γ − 𝜕 Γ + 𝜕 Γ − 𝜕 Γ   

𝑅 = −𝜕 − 𝜕   

𝑅 = 0             (3.53) 

 

𝑅 = 𝜕 Γ − Γ Γ + 𝜕 Γ + Γ Γ  + Γ Γ − Γ Γ + Γ Γ  
           +Γ Γ − Γ Γ − Γ Γ − 𝜕 Γ  + Γ Γ + Γ Γ − (Γ )  

𝑅 = 𝜕
̇

−
̇ ̇

+ 𝜕 −𝑟(1 − 𝐾𝑟 ) +
̇ ̇   

+
𝐾𝑟

1 − 𝐾𝑟
−𝑟(1 − 𝐾𝑟 ) −

1

𝑟
−𝑟(1 − 𝐾𝑟 ) − 𝜕 (cot Θ) +

�̇�

𝑎

𝑟 𝑎�̇�

𝑐
 

 +
1

𝑟
−𝑟(1 − 𝐾𝑟 ) − cot Θ 

𝑅 = (�̇� + 𝑎�̈�) − 1 + 3𝐾𝑟 − 𝐾𝑟 + (1 + cot Θ) − cot Θ +
̇   

𝑅 =
̈
+

̇
+ 2𝐾𝑟   

𝑅 =
̈

+
̇

+ 2 𝑔          (3.54) 

 

𝑅 = 𝜕 Γ − 𝜕 Γ   

𝑅 = 0             (3.55) 

 

𝑅 = 𝜕 Γ + Γ Γ + 𝜕 Γ + Γ Γ + Γ Γ − Γ Γ + 𝜕 Γ       
         +Γ Γ + Γ Γ − Γ Γ + Γ Γ + Γ Γ ± Γ Γ − Γ Γ  
         −Γ Γ − Γ Γ  

 

 



28 
 

𝑅 = 𝜕
 ̇

+ 𝜕 (−𝑟 + 𝐾𝑟 ) sin Θ +
̇  ̇   

          +
𝐾𝑟

1 − 𝐾𝑟
(−𝑟)(1 − 𝐾𝑟 ) sin Θ − (−𝑟 + 𝐾𝑟 ) sin Θ 

1

𝑟
  

          +𝜕 (− sin Θ cos Θ) +
1

𝑟
(−𝑟 + 𝐾𝑟 ) sin Θ − (− sin Θ cos Θ) cot Θ 

𝑅 =
𝑟 sin Θ

𝑐
(�̇� + 𝑎�̈�) + (−1 + 3𝐾𝑟 ) sin Θ +

𝑟 sin Θ �̇�

𝑐
− 𝐾𝑟 sin Θ 

          −(cos Θ − sin Θ) + sin Θ cos Θ   

𝑅 =
̈   

+
 ̇  

+ 2𝐾𝑟 sin Θ  

𝑅 =
̈

+
̇

+ 2 𝑔          (3.56) 

 

So, the Ricci tensor has only non-zero elements on the main diagonal: 

 

𝑅 = −3
̈              (3.57) 

𝑅 =
̈

+
̇

+ 2 𝑔 ,     with    𝑖 = 1, 2, 3      (3.58) 

 

With Eq. (3.31) and Eqs. (3.57) and (3.58) we are now able to determine the Ricci scalar: 

 

𝑅 = 𝑔 𝑅 = 𝑔 𝑅 + 𝑔 𝑅 , 

𝑅 = 3
̈
+ 𝑔

̈
+

̇
+ 2 𝑔 = 3

̈
+ 3

̈
+

̇
+ 2 , 

𝑅 = 6
̈

+
̇

+           (3.59) 

 

To solve the field equations (Eq. (3.25)), we need the contravariant form of the energy-momentum 
tensor (see Eq. (3.27)): 

𝑇 = 𝑇 𝑔 𝑔 . For the main diagonal elements, it becomes 

𝑇 = 𝑇 𝑔 𝑔 = 𝑐 𝜚 ,         (3.60) 

𝑇 = 𝑇 𝑔 𝑔 = 𝑇   𝑔 = (𝜌 + 𝑝) 𝑔 + 𝑝𝑔 𝑔  𝑔 . 
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Taking into account that 𝑢 = 0 for 𝑖 = 1,2,3 and 𝑔 𝑔 = 𝑔 𝑔 = 𝑔 𝑔 = 1, this becomes 

𝑇 = 𝑇   𝑔 = 𝑝 𝑔 , for𝑖 = 1,2,3        (3.61) 

 

First, we use the time components in Eq. (3.25) to obtain the first FE: 

𝑅 − 𝑔 𝑅 + 𝛬𝑔 = 𝑇 , 

−3
̈
− (−𝑐 )6

̈
+

̇
+ − 𝑐 𝛬 = 𝑐 𝜌, 

3
̇

+ 3 − 𝑐 𝛬 = 8𝜋𝐺𝜌  

 

�̇�(𝒕)

𝒂(𝒕)

𝟐
= 𝐻(𝑡) =

𝟖𝝅𝑮

𝟑
𝝆(𝒕) −

𝑲𝒄𝟐

𝒂(𝒕)𝟐
+

𝜦 𝒄𝟐

𝟑
.       (3.62) 

 

The comparison with Eq. (3.7) (Newtonian approach) shows that the constant 𝑐𝑜𝑛𝑠𝑡 = −𝐾𝑐  and 
the term with the cosmological constant is missing in the non-relativistic approach, i.e. in Eq. (3.7). 

We will use this equation in the next chapter to derive a solution for the scale factor 𝑎(𝑡). 

 

With the spatial components, we get 

 

𝑅 − 𝑔 𝑅 + 𝛬𝑔 = 𝑇 = 𝑝 𝑔 , 

̈
+

̇
+ 2 𝑔 − 3

̈
+

̇
+ 𝑔 + 𝛬𝑔 = 𝑝 𝑔 , 

−2
̈

−
̇

− + 𝛬 = 𝑝. 

 

We see that regardless of which spatial component, i.e., 𝑖 = 1, 2 𝑜𝑟 3, is used, we get the same 
result. 

Replacing ̇  with Eq. (3.62) leads, after a few rearrangements, to the second FE: 

 

−2
̈

− 𝜌(𝑡) −
( )

+
 

− + 𝛬 = 𝑝, 

 

First Friedmann equation 
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̈ ( )

( )
+ 𝜌(𝑡) −

( )
+

 
+

( )
−

 
= − 𝑝  

 

�̈�(𝒕)

𝒂(𝒕)
= −

𝟒𝝅𝑮

𝟑
𝝆(𝒕) + 𝟑

𝒑

𝒄𝟐
+

𝜦 𝒄𝟐

𝟑
 .       (3.63) 

 

The comparison with the Newtonian approach shows that the term with the cosmological constant is 
missing in Eq. (3.13). With Eq. (3.63) the acceleration of the scale factor can be calculated, what we 
will use later to calculate the expansion force. 

 

4 Densities in the universe and the resulting dynamics 

4.1 Densities 

First, let's look at the different components that contribute to the total density in the universe. The 
density 𝜌(𝑡) in the FE can be divided into two components: 

𝜌(𝑡) = 𝜌 (𝑡) + 𝜌 (𝑡),          (4.1) 

𝜌 : Matter density, consisting of baryonic (normal) and cold dark matter. 

𝜌 : Radiation density, which was particularly dominant in the early phase of the universe. 

Furthermore, we can rewrite the term with the cosmological constant 
 

 in the so-called vacuum 

density 

𝜌 =
 

= 𝑐𝑜𝑛𝑠𝑡          (4.2) 

 

and thus include it as a further density component in the first FE, 

 

̇ ( )

( )
= 𝐻(𝑡) = 𝜌 −

( )
,         (4.3) 

 

with a total density of 

𝜌 = 𝜌 + 𝜌 + 𝜌 .         (4.4) 

 

Since we assume a flat universe today, i.e., 𝐾 = 0, the question arises as to what value the total 
density must take in this case. This density is called critical density 𝜌 . To derive it, we rearrange  
Eq. (4.3) as follows 

Second Friedmann equation 
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 ( )
− 𝜌 = −

( )
.         (4.5) 

 

The total density must therefore have the value 

 

𝜌 = 𝜌 =
 ( )

 .          (4.6) 

 

For this density, the left side of Eq. (4.5) equals zero, resulting in curvature 𝐾 = 0, i.e., a flat universe. 

 

With 𝐾 = 0 and today's values, i.e. 𝑡 = 𝑡 , 𝐻(𝑡 = 𝑡 ) = 𝐻  and 𝑎(𝑡 = 𝑡 ) = 𝑎 = 1, Eq. (4.5) 
becomes 

 
− 𝜌 = 0,          (4.7) 

 

and thus for the critical density at the present time 𝜌 ,  

 

𝜌 , =
 .           (4.8) 

 

With 𝐻 = 67.4 
 

 and 𝐺 = 6.674 ∙ 10
 

 we obtain the value for the critical density as: 

𝜌 , = 8.53 ∙ 10 . 

 

Dividing the matter, radiation, and vacuum densities by the critical density yields the dimensionless 
quantities: 

 

Ω = ,      Ω =  ,     Ω =         (4.9) 

 

and with today's values 𝜌 , , 𝜌 , , 𝜌 , , and 𝜌 , = 𝜌 = 𝑐𝑜𝑛𝑠𝑡 

 

Ω , = ,

,
,   Ω , = ,

,
 ,   Ω , = ,

,
= 𝑐𝑜𝑛𝑠𝑡.    (4.10) 

 



32 
 

The dimensionless total density is 

 

Ω = = Ω + Ω + Ω ,       (4.11) 

or for 𝑡 = 𝑡  

Ω , = ,

,
= Ω , + Ω , + Ω , .      (4.12) 

 

The following values are used ([1],[2]): Ω , = 0.315, Ω , = 0.685, Ω , = 0.000055 

 

The spatial geometry of the universe is determined by the sum of the matter, radiation, and vacuum 
densities. We have already encountered the terms “flat”, “closed”, and “open” universe in Chapter 3 
in connection with curvature 𝐾, and we want to explain these terms in a bit more detail here (see 
also [5]): 

 

Flat universe 

A flat universe has a flat or Euclidean geometry. The total density equals the critical density. Although 
the expansion of the universe is slowed down by gravity, it cannot reverse it. Thus, there won’t be a 
so-called Big Crunch. The universe will expand endlessly. 

𝐾 = 0, Ω = 1, 𝜌 = 𝜌      => flat universe     (4.13) 

 

Closed universe 

A closed universe has a positively curved geometry, like the surface of a three-dimensional sphere. 
The total density is greater than the critical density. The expansion of the universe is slowed down by 
gravity and reversed, meaning the universe collapses, the Big Crunch will occur. 

𝐾 = 1, Ω > 1, 𝜌 > 𝜌       => closed universe      (4.14) 

 

Open universe 

An open universe has a negatively curved geometry, similar to that of a saddle or hyperbola. The 
total density is less than the critical density. There is no slowing down of the expansion, i.e., the 
universe expands infinitely. 

𝐾 = −1, Ω < 1, 𝜌 < 𝜌     => open universe      (4.15) 
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4.2 Relation between density and scale factor and the three phases in the 
      evolution of the universe 

The vacuum density is according to Eq. (4.2) a constant over time and therefore independent of the 
scale factor. However, this does not apply to the matter density 𝜌  and the radiation density 𝜌 . We 
want to derive this dependence on 𝑎(𝑡) now. 

To do this, we will first derive an equation from the combination of the first and second FE that 
describes mass and energy conservation. 

If we multiply the first FE by 𝑎(𝑡)  and then differentiate this equation w.r.t. time, we obtain 

 

�̇� = (𝜌 + 𝜌 )𝑎 − 𝐾𝑐 +
  , 

 

2�̈��̇� = [(�̇� + �̇� )𝑎 + (𝜌 + 𝜌 )2𝑎�̇�] +
 ̇       (4.16) 

 

We multiply the second FE by 2𝑎�̇�: 

 

2�̈��̇� = − (𝜌 + 𝜌 ) + 3 𝑎�̇� +
 ̇  .      (4.17) 

 

If we subtract Eq. (4.17) from (4.16), we get 

 

0 = (𝜌 + 𝜌 )𝑎�̇� + (�̇� + �̇� )𝑎 + 𝑎�̇� . 

 

Multiplying by  and rearranging yields 

 

𝑐 [3(𝜌 + 𝜌 )𝑎 �̇� + (�̇� + �̇� )𝑎 ] = −3𝑝𝑎 �̇�,          which is identical to  

 

𝑐 [𝑎 (𝜌 + 𝜌 )] = −𝑝 (𝑎 ) .      (4.18) 

 

Eq. (4.18) is the sought energy balance, which states that the change in energy in a comoving volume 
element (left side) corresponds to the negative product of pressure and volume change. 
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This is the relativistic version of the 1st law of thermodynamics under constant entropy, which is a 
good approximation (𝑇𝑑𝑠 = 𝑑𝐸 + 𝑝𝑑𝑉 = 0   =>   𝑑𝐸 = −𝑝𝑑𝑉). 

 

With Eq. (4.18) it is now possible to represent the proportionality between the densities 𝜌  and 𝜌  
and the scale factor. Additionally, we need the so-called equation of state parameter, which 
describes the ratio of pressure to energy density. 

𝜔 =  .        (4.19) 

For matter this ratio is zero, i.e., 𝑝 = 0. For a photon gas (homogeneous radiation) 𝜔 =  and 

therefore 𝑝 = 𝜌 𝑐  [3]. 

 

For a matter-dominated universe, meaning 𝜌 ≪ 𝜌  and 𝑝 = 0, Eq. (4.18) becomes 

 

(𝑎 𝜌 ) =0 , 

𝑎 𝜌 = 𝑐𝑜𝑛𝑠𝑡, 

𝜌 (𝑎)~ .         (4.20) 

 

With the known value of the matter density today 𝜌 , , we obtain an equation for 𝜌  as a function 
of the scale factor: 

𝜌 (𝑎) = , .        (4.21) 

 

Dividing Eq. (4.21) by 𝜌 ,  and considering Eq. (4.10) this becomes 

 

( )

,
=

,

, = , .       (4.22) 

 

For a radiation-dominated universe, we have 𝜌 ≪ 𝜌 . For the pressure we use the relationship 

shown above (Eq. (4.19) with 𝜔 = ). 

Substituting into Eq. (4.18) leads to 

 

(𝑎 𝜌 ) = − (𝑎 ) , 
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𝑎 + 𝜌
( )

= −
( )

 , 

= − 𝜌 3𝑎  , 

𝑑𝜌 = −4 𝑑𝑎 , 

ln(𝜌 ) = −4 ln(𝑎) = ln(𝑎 ) , 

 

and thus finally to the sought relationship 

 

𝜌 (𝑎)~ .        (4.23) 

 

Using the value of today's radiation density 𝜌 , , we obtain an equation for 𝜌 : 

 

𝜌 (𝑎) = , .       (4.24) 

 

Dividing Eq. (4.24) by 𝜌 ,  and considering Eq. (4.10) again yields 

 

( )

,
=

,

, = ,  .       (4.25) 

 

For the sake of completeness, it should be mentioned again that the vacuum density is constant and 
does not depend on the scale factor (see also Equation (4.2)): 

 

𝜌 = 𝜌 , = 𝑐𝑜𝑛𝑠𝑡 .     (4.26) 

 

One can therefore distinguish three phases in the development of the universe: 

1. Radiation dominated phase: Shortly after the Big Bang, the radiant energy in the dense and 
hot universe was very large. Therefore, in this phase, 𝜌  is significantly larger than 𝜌  and 

𝜌 , but it decreases rapidly due to proportionality  (Eq. (4.23)) and asymptotically 

approaches zero. After only about 10  years, the radiation density 𝜌  is negligible compared 
to the matter density 𝜌 . 
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2. Matter-dominated phase: Due to proportionality , 𝜌  also decreases over time and 

approaches zero, but slower than 𝜌 . After approximately 10 billion years, the matter density 
𝜌  falls below the constant vacuum density 𝜌 , which can be easily calculated using Eq. 
(4.22) and the known function 𝑎(𝑡). 
 
 

3. 𝜦-dominated phase: The constant vacuum density 𝜌  has been dominant for around 4 billion 
years, although the change to an accelerated expansion of the universe, began earlier, 
around 6 billion years ago. We will calculate this point later. 
 

If we put the proportionalities given by Eqs. (4.20) and (4.23) as well as the constant vacuum density 
into the first FE (Eq. (3.62)) one after the other, we can specify for the three phases described above 
the basic development of the scale factor over time in these phases. 

In the radiation-dominated area the FE is also proportional to : 

 

̇
~ , 

~  , 

𝑎 𝑑𝑎~𝑑𝑡. 

Integration yields 

∫ 𝑎 𝑑𝑎 ~ ∫ 𝑑𝑡 , 

𝑎 ~𝑡 , 

𝑎(𝑡)~√𝑡.        (4.27) 

 

In the matter-dominated area applies 

 

̇
~  , 

√𝑎 𝑑𝑎~𝑑𝑡. 

We integrate again 

∫ √𝑎 𝑑𝑎 ~ ∫ 𝑑𝑡 , 

𝑎 ~𝑡 , 

Radiation-dominated area 



37 
 

𝑎(𝑡)~𝑡  .        (4.28) 

 

In the 𝜦-dominated area, where the constant vacuum density 𝜌  dominates, we find 

 

̇
~

  , 

~
  , 

𝑑𝑎~
 

𝑑𝑡. 

We integrate and obtain 

∫ 𝑑𝑎 ~ ∫
 

𝑑𝑡 , 

ln(𝑎) ~
 

𝑡 , 

𝑎(𝑡)~𝑒
 

 
.       (4.29) 

 

4.3 Force of Expansion 

Already in Chapter 3, we posed the question of whether the expansion of the universe proceeds at a 
constant speed (𝐹 = 0), accelerated (𝐹 > 0), or decelerated (𝐹 < 0). 

According to the Big Bang theory, after an initial inflation period, the expansion of the universe 
initially slowed down during the first billion years. Approximately 6 billion years ago, a reversal of the 
expansion occurred, leading to the change from decelerated to accelerated expansion. We can 
already surmise that this change is associated with the decrease in the density of matter 𝜌  – as per 
Eq. (4.20) – and thus the increase in the dominance of dark energy, i.e., the constant vacuum energy 
density 𝜌 . We want to take a closer look at this with the help of the second FE. 

 

With Eq. (3.10) we defined already the force that is responsible for the expansion in the universe: 

𝐹 = 𝑚 ∙ 𝑟 ∙
̈ . 

The term ̈  represents precisely the second FE. As with the first FE in the form of Eq. (4.3), we want 

to use the total density 𝜌 = 𝜌 + 𝜌 + 𝜌  and also interpret the pressure as a total pressure  
𝑝 = 𝑝 + 𝑝 + 𝑝 , which represents the three different sources of pressure in the universe, such as 
radiation, matter, and dark energy. 

Matter-dominated area 

𝜦-dominated area 
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With this we can write Eq. (3.63) in the form 

 

̈ ( )

( )
= − 𝜌 + 𝜌 + 𝜌 + (𝑝 + 𝑝 + 𝑝 ) .    (4.30) 

 

Since we have integrated the 𝛬-term, i.e., the vacuum energy, into 𝜌  and 𝑝 , the comparison of Eq. 
(4.30) with Eq. (3.63) using also Eq. (4.2) leads to 

 

− 𝜌 − 𝑝 =
  , 

−𝜌 − 𝑝 =
 

= 2
 

= 2𝜌  , 

𝜌 = − .       (4.31) 

 

Substituting in Eq. (4.30) 𝑝  with −𝜌 𝑐  and taking into account that radiation pressure and radiation 
density were only relevant in the early phase of the evolution of the universe, and also neglecting 
𝑝 , Eq. (4.30) becomes 

 

̈ ( )

( )
= − (𝜌 − 2𝜌 ) .      (4.32) 

 

Using this in Eq. (3.10) gives us an equation to calculate the force acting in the universe: 

 

𝐹 = −𝑚 ∙ 𝑟 (𝜌 − 2𝜌 ).      (4.33) 

 

This equation explains the aforementioned reversal of the expansion. The force 𝐹 changes from an 
attractive (negative) to a repulsive (positive) force, causing the accelerated expansion of the universe 
once 

𝜌 < |−2𝜌 |.       (4.34) 

 

What is interesting is the point in time when this reversal occurred, i.e., when was 

 

𝜌 = 2𝜌 .        (4.35) 
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When we substitute the relationships 𝜌 (𝑎) = ,  ∙ ,  and 𝜌 = Ω ,  ∙ 𝜌 , , derived from equations 

(4.10), (4.22), and (4.26), into equation (4.35) we obtain 

 

,  = 2 Ω ,  , 

𝑎 = ,  

  ,  
.      (4.36) 

 

With the values based on observations and analyzes of cosmological development (cosmological 
parameters of the Planck measurements 2018 [1]) for the dimensionless matter density  
Ω , = 0.315 and the vacuum density  Ω , = 0.685, we get a scale factor of 𝑎 = 0.6126. In 
Chapter 5 we will derive a function 𝑡(𝑎) (Eq. (5.12)), allowing us to assign a time to this value. 
Anticipating this result, let us mention here the age of the universe at which the change in expansion 
occurred: 

𝑡(𝑎 = 0.6126) = 7.7 ∙ 10  years.     (4.37) 

 

5 Special solution of the Friedmann equation 

 

We start with the first FE in the form of Eq. (4.3) and take into account Eq. (4.4) 

 

̇ ( )

( )
= 𝐻(𝑡) = (𝜌 + 𝜌 + 𝜌 ) −

( )
 .      (5.1) 

 

If we want to use the densities in their dimensionless form, we can rewrite Eq. (5.1) using Eq. (4.9) as 
follows: 

 

̇ ( )

( )
= 𝐻(𝑡) = (Ω + Ω + Ω ) 𝜌 −

( )
 ,     (5.2) 

 

and with Eq. (4.6) this becomes 

 

̇ ( )

( )
= 𝐻(𝑡) = 𝐻(𝑡) (Ω + Ω + Ω ) −

( )
 .     (5.3) 
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To be able to drag the curvature term −
( )

 into the parenthesis, we define a curvature component 

of the form 

Ω ≡ −
( ) ( )

           (5.4) 

 

and thus  Ω  𝐻(𝑡) = −
( )

 ,         (5.5) 

 

or for 𝑡 = 𝑡  (i.e. today) and thus 𝐻(𝑡 = 𝑡 ) = 𝐻 and 𝑎(𝑡 = 𝑡 ) = a = 1 

 

−𝐾𝑐 = Ω  𝐻     or     −
( )

=
 

( )
 .       (5.6) 

 

Substituting Eq. (5.5) into (5.3), cancelling 𝐻(𝑡)  on both sides, and considering Eq. (4.11), we obtain 
the interesting relationship 

 

1 = Ω + Ω + Ω + Ω = Ω + Ω  .      (5.7) 

 

From this, we can immediately see that a flat universe, i.e., 𝐾 = 0 (and hence Ω = 0) corresponds 
to the dimensionless total density Ω = = 1, meaning the total density equals the critical density, 

𝜌 = 𝜌 . 

 

If we divide the densities in Eq. (5.1) by 𝜌 ,  (Eq. (4.8)) instead of 𝜌 , this leads to 

 

̇ ( )

( )
= 𝐻(𝑡) =

,
+

,
+

,
𝜌 , −

( )
 , 

 

̇ ( )

( )
= 𝐻(𝑡) = 𝐻

,
+

,
+

,
−

( )
 , 

 

and with the Eqs. (4.10), (4.22), (4.25), and (5.6) to 
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̇ ( )

( )
= 𝐻(𝑡) = 𝐻 , + , + Ω , +

 

( )
 .     (5.8) 

 

If one assumes a flat universe, i.e., Ω = 0, and neglects the radiation density, which is small 
compared to the other densities and was only relevant in a short phase after the Big Bang, Eq. (5.8) 
simplifies to 

 

̇ ( )

( )
= 𝐻 , + Ω ,  .         (5.9) 

 

By further rearranging and integrating this equation, we obtain the function 𝑡(𝑎): 

 

= 𝐻 , + 𝛺 ,  ,        (5.10) 

𝑑𝑡 =  
 ∙ ,

,

 , 

𝑡 =  ∫
√  

, ,  
 .       (5.11) 

 

With the substitution 𝑥 = 𝑎  and consequently 𝑎 = 𝑥 , = √𝑎, and 𝑑𝑎 =
√

𝑑𝑥, Eq. (5.11) can 

be rewritten 

𝑡 =
,

 ∫
 

,

,
 

 , 

with the solution 

𝑡 =
,

 arsinh
 

,

,

 ,      

or 

𝑡(𝑎) =
,

 arsinh ,

,
 𝑎  .      (5.12) 
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We had already used this equation to obtain the result in Eq. (4.37). If we take into account that the 
scale factor today, i.e., at 𝑡 = 𝑡 , has the value of one, Eq. (5.12) gives us an age of the universe of 
𝑡(𝑎 ) = 𝑡 = 13.796 billion years. 

Solving for the scale factor gives 

𝑎(𝑡) = ,

,
sinh

,
 𝑡  .      (5.13) 

 

The Hubble parameter can easily be obtained from the relationship Eq. (2.9), 𝐻(𝑡) =
̇ ( )

( )
, and Eq. 

(5.13): 

 

𝐻(𝑡) = =

,

,
  

,
  ∙ 

,
  ∙ 

,

,

,

,
 

 , 

 

𝐻(𝑡) = 𝐻 𝛺 ,  ∙  coth
,

∙ 𝑡  .     (5.14) 

 

5.1 Scale factor, Hubble radius, horizons, light cones and worldlines 

After obtaining a solution for the scale factor and thus also for the Hubble parameter in the previous 
chapter, we will utilize these results in this chapter to gain a better understanding of the dynamic 
processes in the expanding universe. 

For numerical integrations, derivatives, etc. and all plots, the program GNU Octave was utilized. 

 

Scale factor 

Figure 5.1 shows the scale factor over time (Eq. (5.13)). From the shape of the curve, we can discern 
that between 6 and 8 billion years after the Big Bang the expansion transitions from a decelerated to 
an accelerated expansion. 
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We already know that this moment occurred 7.7 ∙ 10  years after the Big Bang (see Eq. (4.37)). 
This event becomes more apparent when differentiate the function 𝑎(𝑡) w.r.t. time, see Fig. 5.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hubble radius 

With Eq. (2.10) we found already an equation for the universe’s recession velocity. If we want to 
determine at what distances 𝑟(𝑡) the recession velocity was, is and will be equal to the speed of 
light, we substitute 𝑣  in Eq. (2.10) by the speed of light 𝑐 and rearrange the equation to the radius. 
This radius is referred to as the Hubble radius 𝑟 : 

5.2: Derivative of the scale factor 
𝑎(𝑡)

∗ 10  

𝑑𝑎

𝑑𝑡
    

 Time in billions of years 

7.7   

5.1: Scale factor 𝑎(𝑡) 

𝑎(𝑡)  

Scale factor 

         Time in billions of years 
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𝑟 (𝑡) =
( )

.        (5.15) 

Using today's Hubble constant 𝐻 ≈ 67.4
⋅

 (from [1]), this calculates a distance of 

𝑟 , = 4464.52 𝑀𝑝𝑐 =  14.51 ∙ 10  ly.     (5.16) 

To represent the time evolution of the Hubble radius, we substitute Eq. (5.14) into Eq. (5.15) and 
obtain the evolution illustrated in Fig. 5.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Fig. 5.3, the limit 𝑟 ,  is also indicated, towards which the Hubble radius tends. It is obtained from 

Eq. (5.9), taking into account that as 𝑡 → ∞, the term ,  tends to zero, and thus 

𝐻 = 𝐻 Ω ,  .         (5.17) 

If we substitute Eq. (5.17) into Eq. (5.15), the limit value 𝑟 ,  can be calculated. 

𝑟 , =
,

 .       (5.18) 

We get the value 𝑟 , = 17.528 billion light-years. 

 

Since “stationary” objects (i.e., without peculiar velocity) located on the surface of the sphere with 
the radius 𝑟 (𝑡) move away from us at the speed of light due to the expansion of space, the velocity 
of objects within the sphere is less than c and outside it is greater than c. However, under certain 
conditions, we can still receive information from objects located outside the sphere with the radius 

Time in billions of years 

𝑟 (𝑡) 

5.3: Hubble radius. Also shown are the values of the Hubble radius at the present time, 𝑟 , , 
        and the limit 𝑟 ,  towards which the Hubble radius tends. 

𝑟 , =  14.51    
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𝑟 . There is, however, a distance known as the event horizon 𝑟 , from which photons take an infinite 
amount of time to reach us (i.e., never). We'll soon see how this is calculated. 

First, some preliminary considerations about the distances traveled by photons in an expanding 
universe. If we were dealing with a static universe, such a distance could be calculated using the 

simple relationship 𝑟 = ∫ 𝑐 𝑑𝑡 = 𝑐 ∙ (𝑡 − 𝑡 ). But since we live in an expanding universe, we have 

to continuously correct the distance 𝑐 ∙ 𝑑𝑡 during the integration with the time-dependent scale 
factor: 

𝑟 = ∫
 

( )
 .       (5.19) 

 

This is the so-called comoving distance, a distance that a comoving observer would measure. 
However, we can use the corresponding scale factor to convert the distance at the times 𝑡  or 𝑡  to a 
stationary observer (e.g. us). We call this distance the proper distance. The Eq. (5.19) would only 
provide a proper distance without the need for correction if 𝑡 = 𝑡  (i.e., today) and we wanted to 
know the distance to us at the current time (the scale factor would then be 𝑎 = 1 and thus would 
not change the value of the integral). 

 

By scaling the comoving distance by the scale factor, we get the following two distances: 

1. Distance of an object moving with the expansion of space at time 𝒕𝑭, which emitted photons 
at time 𝑡  that arrive at the stationary observer (us) at time 𝑡 . It can be helpful for 
understanding to consider the photon-emitting object as stationary (the determination what 
is at rest and what is in motion is arbitrary anyway). This stationary object emits photons in 
our direction at time 𝑡 . They arrive at us at the time 𝑡  taking into account the intrinsic 
velocity of the photons and the expansion of space. The total distance traveled is 𝑟 , (𝑡 ). 

𝑟 , (𝑡 ) = 𝑎(𝑡 ) ∙ 𝑟 = 𝑎(𝑡 ) ∫
 

( )
.    (5.20) 

2. Distance of an object at time 𝒕𝑺 that emitted photons at that time, which arrive at the 
stationary observer at time 𝑡 . 

𝑟 , (𝑡 ) = 𝑎(𝑡 ) ∙ 𝑟 = 𝑎(𝑡 ) ∫
 

( )
.    (5.21) 

 

If we want to show a progression over time, we need to perform calculations step by step from 𝑡  to 
𝑡  using Eqs. (5.19), (5.20), and (5.21) to obtain enough data points for the graphic representation of 
a temporal progression of the radii: 

𝑟 (𝑖) = ∫
 

( )

( )
  , 𝑟 , (𝑖) = 𝑎(𝑡 ) ∫

 

( )

( )
  , 𝑟 , (𝑖) = 𝑎(𝑡 ) ∫

 

( )( )
 ,    (5.22) 

with 𝑖 = 1. . . 𝑖 ,   ∆𝑡 =  ,  𝑡(𝑖) =  𝑡 + ∆𝑡(𝑖 − 1) 

𝑡  and 𝑡  must be determined according to the case under investigation. 
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In Figure 5.4, 3 cases are distinguished (𝑡  is fixed, 𝑡  varies): 

Case 1: 𝑡 < 𝑡  : The scale factor 𝑎(𝑡 ) < 1. 

Case 2: 𝑡 = 𝑡  : 𝑎(𝑡 ) reaches at 𝑡 = 𝑡  the value one, i.e., 𝑎(𝑡 ) = 𝑎 = 1, hence at time 𝑡 , as 
already mentioned above, 𝑟 (𝑡 ) = 𝑟 , (𝑡 ). 

Case 3: 𝑡 > 𝑡  : 𝑎(𝑡 ) > 1 after 𝑡 = 𝑡 . Hence 𝑟 , (𝑡) is greater than 𝑟 (𝑡) after 𝑡 . 
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5.4: Distances from the perspective of a moving observer (comoving distance) and a stationary observer 
       (proper distance). There are 3 cases: 1) 𝑡 < 𝑡 , 2) 𝑡 = 𝑡  and 3) 𝑡 > 𝑡 . 
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  𝑟 in billions of ly 

  𝑟 in billions of ly 

  𝑟 in billions of ly 

Case 1 Case 2 

Case 3 

𝑟 , (𝑡 ) 𝑟 , (𝑡 ) 

𝑟 , (𝑡 ) 

𝑟 (𝑡 ) 

 

𝑟 , (𝑡 ) 

𝑟 , (𝑡 ) 

𝑟 (𝑡 ) 

𝑟 (𝑡 ) = 𝑟 , (𝑡 ) today 



47 
 

Combining Eqs. (5.20) and (5.21), as already shown in Eqs. (2.5a/b), the distances 𝑟 , (𝑡 ) and 
𝑟 , (𝑡 ) can be easily converted into each other using the scale factors: 

 

𝑟 , (𝑡 ) =
( )

( )
𝑟 , (𝑡 ),      (5.23) 

 

𝑟 , (𝑡 ) =
( )

( )
𝑟 , (𝑡 ).      (5.24) 

 

From Eqs. (5.20) and (5.21), special cases, known as horizons and the past light cone can be derived 
depending on the choice of integration limits. 

 

Event horizon 𝒓𝑬,𝒑𝒓: Eq. (5.21) with 𝑡 = ∞ 

The event horizon is the distance of an object at time 𝑡 , that emitted photons at that time, which 
will never reach us, even after an infinitely long time. 

 

𝑟 , (𝑡 ) = 𝑎(𝑡 ) ∫
 

( )
 .      (5.25) 

 

For the distance an object has to us today, we set 𝑡 = 𝑡  and thus 𝑎(𝑡 ) = 𝑎 = 1. 

 

𝑟 , = ∫
 

( )
 .        (5.26) 

 

This results in a value of 𝑟 , = 16.678 billion ly 

From objects located on the surface of this sphere (with us at the center) or further away from us 
today, we will no longer receive any information. 

 

As shown in Eq. (5.22), we can also calculate and illustrate the temporal evolution of the event 
horizon. From the trend of the curve in Fig. 5.5, it can already be inferred that the event horizon also 
converges to a limit value. 
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In Table 5.1, values for 𝑡 = 𝑡  up to 𝑡 = 5𝑡  with the respective increase in percentage are listed. 
We see that the increases rapidly diminish, and 𝑟 ,  tends toward the same limit as the Hubble 
radius 𝑟 , , = 𝑟 , =  17.528: billions of light years. 
 

 

 

 

 

 

 

 

 

 

In Fig. 5.6 the Hubbel radius and the event horizon are shown together in a spacetime diagram, 
where the time axis is now vertical and the space axis is horizontal. 

 

tS rE,pr (109 ly) Growth (%) 
t0 16,678  

2t0 17,450 4,627 

3t0 17,521 0.406 

4t0 17,528 0.038 

5t0 17,528 0.004 

5.1: Values for the event horizon 𝑟 , (𝑡 ) for 𝑡 = 𝑡  up to  𝑡 = 5𝑡 .  
        The increase is given in percent, which diminishes very quickly, i.e., 
        𝑟 ,  approaches the limit value 𝑟 , , = 17.528 billions of ly. 

Time in billions of years 

𝑟 ,    

𝑟 , =  16.678    

𝑡 = 13.796 

 Event horizon 

5.5: Event horizon 𝑟 ,𝑝𝑟(𝑡 ). The values for today and for 2𝑡  are indicated 

2𝑡  

𝑟 , (2𝑡 ) =  17.450    
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We have already discussed in the context of Eq. (5.15) that under certain conditions, we can receive 
information from objects located outside the sphere with the radius 𝑟 , i.e., those having a 
recessional velocity > c. This condition can now be easily interpreted from Fig. 5.6: These objects 
must lie within the gray shaded region shown in the figure. We will see an example of this further 
below. 

 

Particle horizon 𝒓𝑷,𝒑𝒓: Eq. (5.20) with 𝑡 = 0 (or 𝑡 = 𝑡 ≈ 380000 years ) 

Note: Often, instead of zero, the lower time limit is chosen as the time of recombination 𝑡 , which 
is the moment when the universe became transparent. It is the earliest time from which we receive 
information in the form of photons. We refer to this photon radiation received today as the Cosmic 
Microwave Background Radiation (CMB). 

The particle horizon is the distance of an “object” at a time 𝑡 , that emitted photons, for example, at 
the time 𝑡 = 0 (theoretically), which arrive at our location at the time 𝑡 . 

 

𝑟 , (𝑡 ) = 𝑎(𝑡 ) ∫
 

( )
 .      (5.27) 
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Hubble radius and event horizon 

5.6: Spacetime diagram with the Hubbel radius and the event horizon 

  𝑟 in billions of light years 
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For the distance that such an “object” has to us today, we set 𝑡 = 𝑡  and thus 𝑎(𝑡 ) = 𝑎 = 1. 

 

𝑟 , = ∫
 

( )
.        (5.28) 

 

This results in a value of 47.01 billion ly. This distance also defines the limit of our observable 
universe. However, the received information is not current, but as old as the universe itself, which is 
𝑡 = 13.796 billion years old. 
 
For 𝑡 = 𝑡 ≈ 380000 years 
 

𝑟 , = ∫
 

( )
        (5.29) 

 

We obtain a distance of 𝑟 , = 45.56 billion ly 
 
If we include the particle horizon in the space-time diagram of Fig. 5.6, it looks as follows: 
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Hubble radius, event horizon and particle horizon 

5.7: Space-time diagram with the Hubbel radius, the event horizon and the particle horizon 
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Past light cone 𝒓𝑳𝑪,𝒑𝒓: Eq. (5.21) 

As the name suggests, the past light cone gives us the distance of an object at time 𝑡 , i.e., in the 
past, that at that time emitted photons which reach the observer at rest at time 𝑡 . 

 

𝑟 , (𝑡 ) = 𝑎(𝑡 ) ∫
 

( )
.      (5.30) 

 

Generally, we are interested in the distances of objects in the past, whose photons arrive at our 
location today, that is, at the current time 𝑡 = 𝑡 . 

 

𝑟 , (𝑡 ) = 𝑎(𝑡 ) ∫
 

( )
.      (5.31) 

 

If we substitute the time of recombination, 𝑡 = 𝑡 ≈ 380000 years , into the equation, we 
obtain the distance that the photons of the CMB radiation had to “us” at that time (we didn’t exist at 
that time, so it refers to the “stationary” location that we occupy today, from which we determine 
proper distances in the universe). 

 

𝑟 , (𝑡 ) = 𝑎(𝑡 ) ∫
 

( )
 .    (5.32) 

 

This results in a distance of 𝑟 , (𝑡 ) = 3.6 ∙ 10 billion ly. Since we calculated already the 
particle horizon for 𝑡 = 𝑡 ≈ 380000 years, using Eq. (5.29), we can also calculate 𝑟 , (𝑡 ) 
using Eq. (5.23): 

 

𝑟 , (𝑡 ) =
( )

𝑟 ,  .     (5.33) 

 

we calculate 𝑎(𝑡 ) with Eq. (5.13): 𝑎(𝑡 ) = ,

,
sinh

,
 𝑡 = 7.863737 ∙ 10  

and can therefore confirm the above value. 

 

𝑟 , (𝑡 ) =
7.863737∙10−4

45.56 𝑀𝑖𝑙𝑙𝑖𝑎𝑟𝑑𝑒𝑛 𝐿𝑗 = 3.6 ∙ 10−2billion ly. 

 

Fig. 5.8 shows the temporal evolution of the past light cone. 
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The trajectory of the light cone shows that initially, the photons directed towards the stationary 
observer, which were only 36 million light-years away from it at the starting point P, move away from 
it due to the high expansion rate of space. Only at the time 𝑡 = 4.057 billion years does the 
direction of motion reverse. At this point, the recession velocity 𝑣  is equal to the speed of light c. 
Subsequently, the velocity of the expansion of space continues to decrease, reaching zero at the 
location of the stationary observer today (i.e., at the time 𝑡 ). 
 
Using Eq. (2.10) in combination with Eq. (5.14), we can calculate the corresponding escape velocity 
for the radii of the light cone obtained with Eq. (5.30). As already indicated in Fig. 5.8 (point 𝑃 ), at 
𝑡 = 4.057 billion years, it is equal to the speed of light: 
 

𝑣 (𝑡 = 4.057 ∙ 10  𝐽) = 𝐻(𝑡 ) ∙ 𝑟(𝑡 ) ,  

𝑣 (𝑡 ) = 𝐻 𝛺 ,  ∙  𝑐𝑜𝑡ℎ
,

∙ 𝑡 ∙ 𝑎(𝑡 ) ∫
 

( )
 , 

𝑟
,

( 𝑡
)

=
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Past Light Cone 

5.8: Spacetime diagram with past light cone 𝑟 , (𝑡). Starting point is 𝑃 𝑟 , (𝑡 ), 𝑡 .  
        In point 𝑃 𝑟 , (𝑡 ), 𝑡  the expansion velocity of space is equal to the speed of light. 

𝑟 , (𝑡) 

  𝑟 in billions of light years 

𝑡 = 4.057 

𝑣 < 𝑐 

𝑣 = 𝑐 

𝑣 > 𝑐 

𝑃 

𝑃  
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𝑣 (𝑡 ) = 167.080201560149
∙

∙ 5.85223343 𝐺𝐿𝑗 ∙
.   

𝑣 (𝑡 ) = 299792.5 = 𝑐 . 

 

Let's do the same calculation for the point 𝑃 𝑟 , (𝑡 ), 𝑡 : 

 

𝑣 (𝑡 ) = 𝐻 𝛺 ,  ∙  𝑐𝑜𝑡ℎ
,

∙ 𝑡 ∙ 𝑟 , (𝑡 ), 

 

This results in a velocity of 𝑣 (𝑡 ) ≈ 63 ∙ 𝑐, i.e., more than 60 times the speed of light. 

With the Hubble radius 𝑟 (𝑡), we defined a distance at which the escape velocity equals the speed of 
light. If we plot the light cone in a spacetime diagram, these curves intersect at the point 𝑃 , see Fig. 
5.9). 
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Past light cone and Hubbel radius 

𝑟 , (𝑡) 

  𝑟 in billions of light years 

𝑡 = 4.057 
𝑣 = 𝑐 

𝑃  

5.9: Spacetime diagram with past light cone 𝑟 , (𝑡) and Hubbel radius 𝑟 (𝑡). The curves  
        intersect at the point 𝑃 𝑟 , (𝑡 ), 𝑡  where 𝑣 = 𝑐. 
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In connection with Fig. 5.6, we have already discussed that we can also receive information about 
events that occurred in the past and were beyond the Hubble radius but still within the gray shaded 
area of Fig. 5.6, within a finite time. With the definition of the light cone, we can also numerically 
capture this situation and represent it in a diagram. 

Therefore, if we specify a time 𝑡  of an event in the past and a location 𝑟 , (𝑡 ) so that we end up 
within the gray area of Fig. 5.6, the question now is when the photons emitted in our direction will 
reach us. Mathematically, this means finding for which 𝑡  the following equation is satisfied: 

 

, ( )

( )
− ∫

 

( )
= 0 .      (5.34) 

 

The Eq. (5.34) can be easily solved numerically using, for example, the bisection method. 

 

In Fig. 5.10 the past light cones are shown for the following points (events): 

 

𝑡 = 10 billion years,      𝑟 , (𝑡 ) = 13 / 14 / 15 / 15.855 billion ly 

 

All points lie outside the Hubble radius, but still in the gray shaded region between the Hubble radius 
and the event horizon. 

The last point with 𝑟 , (𝑡 ) = 15.855 billion ly is very close to the event horizon,  
𝑟 , (𝑡 = 10 billion ly) = 15.85564 𝑀𝑟𝑑. 𝐿𝑗.  

 

We see that the photons from all 4 events reach us in a finite time, although they are outside the 
Hubble radius (even though these periods are hard to imagine).  

We already know that the Hubble radius intersects the light cones at the points where the escape 
velocity is equal to the speed of light. 

As expected, the photons will reach “us” only very far in the future. Already at the first time point, 
i.e., at 𝑡 = 39.5 billion years, we’ll have long since passed the collision with our neighboring galaxy 
Andromeda, which will take place in around 4 billion years. The Sun will exist only as a black dwarf. 
Life on Earth will no longer be possible. Whether humanity - wherever it may be - will survive until 
then is more than questionable. 

Especially for the point near the curve of the event horizon, i.e., at 𝑟 , (𝑡 ) = 15.855 billion ly, we 
see that the light cone hugs the event horizon and eventually merges into it with closer approach. 
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Future Light Cone 

So far, we have only considered the past light cone, that is, the worldline of photons that have 
embarked on their journey towards us in the past and arrive at out location today. Of course, the 
“journey” of these photons does not end with us; rather, if they have arrived from a positive 
direction in the spacetime diagram, they will continue their path in the negative direction. 

We also already know how photons move in the Hubble flow, i.e., in expanding space: The distance 
that a photon passing the stationary observer at the time 𝑡 = 𝑡  covers up to a future time 𝑡 , can 
be calculated using Eq. (5.20). 

 

𝑟 , (𝑡 ) = (±)𝑎(𝑡 ) ∫
 

( )
 .     (5.35) 

 

If we consider the photon worldline in the form of a future light cone as an extension of a 
past light cone, then we need the positive sign for a “negative” past light cone and the 
negative sign accordingly for a “positive” past light cone (see Fig. 5.11). 

5.10: Past light cone for 𝑡 = 10 billion years and 𝑟 , (𝑡 ) = 13 / 14 / 15 / 15.855 𝑀𝑟𝑑. 𝐿𝑗 
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Spacetime diagram with past light cone, Hubble radius and 
event horizon 

𝑟 , (𝑡) 

  𝑟 in billions of light years 

𝑡 = 10 

13 14 15,855 15 

39.5 
47.0 

60.6

180.6
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The future light cone can also be understood as a particle horizon directed into the future, as 
evidenced by the comparison of equations (5.35) and (5.27). 

Figure 5.11 depicts the temporal evolution of past light cones with 𝑡 = 0 and 𝑡 = 𝑡 , which 
arrive at our location from both positive and negative directions and then continue along the 
trajectories of the photon worldlines according to Eq. (5.35). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Light cones are also known from special relativity and are represented as bisectors in the so-
called Minkowski diagrams of spacetime. Since space expansion is not considered in special 
relativity, the light cones shown there (dashed lines in Fig. 5.11) are to be understood as an 
approximation of the future and past light cones depicted here. 

 

 

 

5.11: Past and future light cones for photons that started at 𝑡 = 0 and reaching us 
          today. 𝑟 , (𝑡) describes the future worldline of these photons. 
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Reverse and forward beams of 
light 

  𝑟 in billions of light years 

𝑟 , (𝑡) 

“negative” past light cone “positive” past light cone 

𝑟 , (𝑡) 

“negative” future light cone “Positive” future light cone 

𝑡 = 13.796 



57 
 

Worldlines 

With the light cones, we have already learned about the world line of photons. It describes the path 
of photons through an expanding universe, taking into account their proper velocity, which is the 
speed of light. Now, let’s consider the path of objects at rest, which arises solely due to the 
expansion of space. These resting objects move through space and time with the Hubble flow, as 
observed by us, as observers at rest on the time axis. Using Eq. (5.20), we are able to calculate the 
distance of these objects from us at the present time 𝑡 , provided we know when in the past (at time 
𝑡 ) these objects emitted photons that arrive at our location today. 

 

𝑟 , (𝑡 ) = 𝑎(𝑡 ) ∫
 

( )
= ∫

 

( )
.    (5.36) 

 

This is the value of a particle horizon at the present time. However, the temporal evolution of this 

particle horizon, starting from 𝑡  (i.e., 𝑟 , (𝑡) = 𝑎(𝑡) ∫
 

( )
 , 𝑡 ≤ 𝑡 ≤ 𝑡 ) does not represent the 

worldline of the object under consideration. The two curves only intersect at 𝑡 = 𝑡  (see Fig. 5.12). 

 

If the distance to a stationary object at a specific point in the past is known to us, then we can use 
the scale factor to calculate any distance that this object will have to us in the future due to the 
expansion of space. The same applies, of course, in reverse: if the distance that the object has to us 
today or at a point in time in the future is known, we can calculate any distance in the past using the 
scale factor. We have already acquainted with the equations for this with Eqs. (5.23) and (5.24). 

 

Case 1: Distance to a stationary object (without peculiar velocity) at a certain time in the past is 
known (Eq. (5.24)): 

 

𝑟 (𝑡) =
( )

( )
𝑟 , (𝑡 ) ,       (5.37) 

 

Case 2: The distance that a stationary object (without peculiar velocity) has to us today or will have 
to us at some point in the future is known (Eq. (5.23)): 

 

𝑟 (𝑡) =
( )

( )
𝑟 , (𝑡 ) ,        (5.38) 

 

Since both approaches lead to the same worldline, we can equate these equations, 

, ( )

( )
𝑎(𝑡) =

, ( )

( )
𝑎(𝑡) ,          or 
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, ( )

( )
=

, ( )

( )
= 𝑐𝑜𝑛𝑠𝑡, 

 

and realize that for a worldline of an object moving with the Hubble flow, the ratio of the distance to 
a stationary observer to the scale factor at any arbitrarily chosen time is constant, i.e., 

 

( )

( )
= 𝑟 , = 𝑐𝑜𝑛𝑠𝑡.      (5.39) 

 

Eq. (5.39) represents the worldline of a comoving object. Later, we will see in a spacetime diagram 
with an x-axis representing the comoving distance, this world line parallels the time axis. The value of 
the constant corresponds to the distance of the object to us at the present time and intersects at 𝑡  
with the specific particle horizon (starting at 𝑡 = 𝑡 ), according to Eq. (5.36). 

To get from the comoving distance to the proper distance, we multiply again by the scale factor and 
obtain for the world line at proper distance: 

 

𝑟 , (𝑡) = 𝑎(𝑡)
( )

( )
 .       (5.40) 

 

                𝑟 (𝑡 ): Location of the observed object at time 𝑡 . 

 

If we know the time 𝑡  at which an object emitted photons that reach us today, we have already 
learned about two ways to calculate the required distance 𝑟 (𝑡 ): 

 

1. Past light cone: 𝑡 = 𝑡 , Eq. (5.30) 
 

𝑟 , (𝑡 ) = 𝑟 (𝑡 ) = 𝑎(𝑡 ) ∫
 

( )
     and thus     (5.41) 

𝑟 , (𝑡) = 𝑎(𝑡) ∙ 𝑎(𝑡 )
∫

 

( )

( )
 , 

𝑟 , (𝑡) = 𝑎(𝑡) ∙ ∫
 

( )
= 𝑎(𝑡) ∙ 𝑟 ,  .     (5.42) 
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2. Particle horizon: 𝑡 = 𝑡  and lower integration limit 𝑡 = 𝑡 , Eq. (5.28) 

 

𝑟 , = 𝑟 (𝑡 ) = ∫
 

( )
         and thus      (5.43) 

𝑟 , (𝑡) = 𝑎(𝑡) ∙
∫

 

( ) , 

𝑟 , (𝑡) = 𝑎(𝑡) ∙ ∫
 

( )
= 𝑎(𝑡) ∙ 𝑟 ,  .     (5.44) 

 

As expected, both approaches lead to the same result. 

 

As an example, let’s consider that the light from a supernova that occurred at 𝑡 = 5 billion years, 
reaches us today. We calculate the worldline of the supernova remnants using Eq. (5.44). 

In Fig. 5.12, the worldline, the past light cone, and the particle horizon for the described event are 
plotted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.12: Worldline of the remnants of the supernova that occurred approximately  
          8.8 billion years ago. Also shown are the past light cone and the particle horizon. 
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In Fig. 5.13, spacetime diagrams are presented for the time of recombination, 𝑡 = 𝑡 ≈

380000 years. In the upper image, as usual, the x-axis represents proper distance. In the lower 
image, the x-axis represents comoving distance. Plotted are the past light cone, the Hubbel radius, 
the event horizon, the particle horizon and the worldline. The worldline and the particle horizon 
intersect on the “today line” at a distance of 45.56 billion ly (cf. also Eq. (5.29)). As described earlier, 
the worldline in the comoving distance diagram is a constant with the value 𝑟 , = 45.56 billion ly. 
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5.13: Spacetime diagram for the event of recombination, featuring the past light cone, Hubbel radius, 
          event horizon, particle horizon and worldline. Upper representation at proper distance, lower 
          representation in comoving distance. 
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At this point, an interesting relationship between a particle horizon and worldlines should be noted: 

We already know that for an object that emitted photons at a time 𝑡  in the past, which arrive at our 
location today, the worldline of this object and the particle horizon intersect at 𝑡 . This intersection 
indicates where the object is located today due to the expansion of space. However, the temporal 
evolution of this particle horizon for 𝑡  contains more information than just this one point at 𝑡 . If we 
consider other objects with photon-emitting events that occurred at the same time 𝑡  but at 
different distances from us in the past, the intersection of the respective world line of these objects 
with the particle horizon gives us the time when the photons of these events reach us, and where the 
object are at that time. In figure 5.14 four events are plotted to illustrate this concept. Thus, this one 
particle horizon “represents” all events occurring at the time 𝑡 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Relationship between Particle Horizon, Worldlines and Past Light Cone 
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5.14: Spacetime diagram for various events at a time 𝑡 . The intersections between the particle horizon 
          for this time and the different worldlines of the events indicate when the photons of the events 
          reach us and where the photon-emitting object is located at that time. 
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