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Abstract

Why a particle has the specific rest mass it does is an open ques-
tion. An alternative theory of mass is put forward. Mass is the in-
tersection of a Hopf bundle and 3-space. The masses of six lighter
hyperons and electron are derived as functions of the proton and neu-
tron masses. Nine free parameters are thereby reduced to two. The
most significant outcome is the derivation of the electron mass.
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In the standard model the Higgs field imparts mass to the simplest funda-
mental particles. In the crowd analogy the field acts like a mob impeding the
progress of a celebrity across a room.[1] The slower the progress, the stronger
the interaction and the heavier the particle. If we dig a little bit deeper, par-
ticles that exhibit internal Lie group symmetry at higher energy states gain
mass when spontaneous symmetry breaking couples with the Higgs field [2, 3]
The caveat is the Higgs field only interacts with quarks, leptons and some
bosons; while the bulk of Hadron mass is due to quark confinement. Whether
a particle is simple or a conglomeration, theory and math eventually give out.
Unable to say why a particle has the precise mass that it does the standard
model relies on observation. It is for this reason particle rest mass is an open
question. An alternative theory of mass is put forward that rethinks why a
particle notices a force. Symmetry preservation (not symmetry breaking) is
the cause of mass. The intersection of the particle and field is also respon-
sible for entirety of a particle’s mass. This simplifying premise enables the
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calculation of six light hyperons and electron as functions of the proton and
neutron masses.

The topological theory considers a particle to be a Hopf bundle. The
geometry of a Hopf Bundle is well understood.[4, 5, 6, 7] A Hopf bundle
maps a 3-sphere to a 2-sphere. The 3-sphere is the set of four dimensional
points S3. The 2-sphere is a two dimensional surface described by the set
of three dimensional points S2. A Hopf fibration continuously maps S3 to
S2. This is done with Hopf maps. A Hopf map (h : S3 → S2) is a surjective
function that maps a subset of S3 elements to a point in S2. An individual
Hopf map describes a circle (Hopf circle). Continuous mapping entails an
infinite number of maps for each point in S3; this requires an infinite bundle
of circles that in total connect each S2 point to every point in S3. The total
space is therefore transitive.

Added to the conventional description of a Hopf bundle is the physical
interpretation. A ‘Hopf particle’, as we shall call it, interacts with ambient
three dimensional space. This 3-space is a field with a ground state like the
Higgs field. While it is possible to describe force as a vector in 3-space, a
force is one dimensional at point of contact with the Hopf particle. The point
of contact is also a point on a bundle of Hopf circles. This raises the question
of the differing topologies of a circle and point. Continuous retraction of the
circle is impossible. Only by cutting the circle may the circle retract to a
point. The discontinuity prevents smooth transmission of an external force.
If a circle does not break, the force must jump topologies. The topological
hitch is interpreted as physical resistance to the external force. On this view,
if a particle had some other topology that deform retracts to a point then it
would be massless. Hopf particle topology however, such that the bundle of
Hopf circles at point of contact is related to every point in S3, leaves the size
of the 3-sphere the measure of the particle’s resistance to an external force.

Five equations characterise a Hopf particle. The first tells us mass is
determined by the size of the 3-sphere. For example, if the mass of the
proton is 938.272 MeV/c2 then r ≈ 3.622 MeV. I.E.

M = 2π2r3. (1)
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The volume of a 2-sphere is the space the Hopf particle occupies in the
ambient 3-space. This is the volume of an ordinary ball.

V =
2M

3π
=

4π

3
r3. (2)

At Eq. (2), r is the radius derived at Eq. (1). In the case of the proton
V ≈ 199.108 MeV. The 3-sphere’s extra fourth dimension does not contribute
to the 3-space volume; it is dark in the sense it is not a direction within the
limitations of 3-space the ball can be forced to move.

ρ =
M

V
=

3π

2
. (3)

Eq. (3) means the ball is hyper-dense. We call the excess mass ‘hyper-
mass’. A particle’s hypermass is the evidence of an extra dimension. The
contribution to Hopf particle mass means the extra dimension is not com-
pletely dark. Hypermass (H) is the difference between mass and volume.

H = M − V. (4)

A Hopf particle mass has the Hopf/hypermass signature (H-signature):

M = (H)(
ρ

ρ− 1
). (5)

H-signature mass splitting suggests lighter hyperons are Hopf particles.
For what follows the 2018 CODATA recommended values are used for the
proton and neutron masses (ignoring the standard deviation).[8]

Mp = 938.272 088 16 ± 0.000 000 29 MeV/c2.

Mn = 939.565 420 52 ± 0.000 000 54 MeV/c2.
(6)

All other masses derived in this paper are a function of Mp and Mn. For
instance, the light Σ (Sigma) masses are the following functions.
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MΣ+ = (2Mp −Mn)(
ρ

ρ− 1
) ≈ 1189.3712. (7)

MΣ0 = (Mn)(
ρ

ρ− 1
) ≈ 1192.6546. (8)

MΣ− = (4Mn − 3Mp)(
ρ

ρ− 1
) ≈ 1197.5797. (9)

Eq. (8) allows us to say that in an energetic event a Σ0 hyperon is created
when there is sufficient energy to form a hypermass equivalent to the mass
of the neutron. The asymmetry of Eqs. (7, 9) reveal the charged Σ+ and
Σ− have complex hypermasses; the cause of the asymmetry is not presently
understood.

All three derived values are close to the observed masses. The Particle
Data Group (PDG) fit for MΣ+ is 1189.37 ±0.07. [9] While the PDG fit
for MΣ0 is 1192.642 ±0.024, Eq. (8) is particularly close to Wang 1192.65
±0.020.[10] Eq. (9), however, is over four standard deviations shy of the
PDG value (1197.449 ±0.030). The present PDG fit for MΣ− draws on three
results.[11, 12, 13] Schmidt (1197.43)[11] and Gurev (1197.417)[12] are too
low to be the value derived here, though Eq. (9) is within one standard
deviation of Gall (1197.532 ±0.057)[13]. The H-signatures for the Ξ (Xi)
pair introduce a complication that provides a way to check whether Eqs. (8,
9) are correct.

MΞ0 = (MΣ0)(
ρ

ρ− 1
)− Vp ≈ 1314.8104. (10)

(MΣ−)(
ρ

ρ− 1
)− Vp ≈ 1321.0622. (11)

Eq. (10) is within one standard deviation of the PDG fit and looks to be
a near direct hit for Fanti (1314.82 ±0.06)[14], but a problem looms. When
the basic pattern of Eq. (10) is repeated at Eq. (11) the result (1321.0622)
is over nine standard deviations adrift of the PDG fit for MΞ− . The present
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PDG recommended value (1321.71 Mev) is a fit for a 2006 study of a large
1992-1995 data sample.[15] Realistically, the 2006 result makes a future nine
standard deviation downward adjustment unlikely. Accepting Eq. (11) will
not do, we are about to see why [15] is accurate.

If MΣ− is close to 1321.71 a fudge ≈ 0.51 is needed to adjust our derived
value upward. The electron mass ≈ 0.511 MeV is an obvious candidate. For
the moment we call the additional weighting value ‘W’. I.E.

MΞ− = (MΣ− +W )(
ρ

ρ− 1
)− Vp. (12)

At face value W appears ad hoc, but there is a firm reason for thinking
otherwise. There are a few more equations to walk through before we can
see why. First, we give the formula for the Ω− (Omega) mass.

MΩ− =

󰀕
3MΞ0 + 2MΞ−

5

󰀖󰀕
ρ

ρ− 1

󰀖
. (13)

Given Eqs. (8, 9, 10, 12, 13), and using Eq. 2 and Eq. 13 to also find
VΩ− , the following equivalences determine the value of W.

󰀕
(MΣ0)(MΞ−)− (MΣ0)(MΞ0)

MΣ− −MΣ0

−MΞ0 − VΩ−

󰀖󰀕
ρ− 1

ρ

󰀖
= 1. (14)

󰀕
(MΣ−)(MΞ−)− (MΣ−)(MΞ0)

MΣ− −MΣ0

−MΞ− − VΩ−

󰀖󰀕
ρ− 1

ρ

󰀖
= 1. (15)

When Eqs. (14, 15) = 1, W ≈ 0.510 998 961 080. This compares to 2018
CODATA value 0.510 998 9500 ±0.000 000 0015.[8] An adjustment within
one standard deviation to Mp and Mn at Eq. (6) allows the numerical value
for W to come within one standard deviation of the CODATA value. From
this we conclude W = Me MeV. If so, the mass value at Eqs. (8, 9, 10) are
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correct, while the values for MΞ− and MΩ− are within one standard deviation
of the PDG recommendation. I.E.

MΞ− = (MΣ− +Me)(
ρ

ρ− 1
) ≈ 1321.7109. (16)

MΩ− ≈ 1672.4824 (Eq. 13). (17)

Before concluding, there is a question to clear up concerning which system
of units is correct. In eV, Eqs. (14, 15) = Me eV

Me MeV
= 1,000,000; or in Kg,

Me Kg
Me MeV

= 1.78 ·10−30. It seems the formulae only resolve to 1 when the
numerator is in MeV. It is difficult to believe nature privileges increments
of one million electron volts. We find the answer lies in an obsolete cgs
unit of magnetomotive force, the Gilbert (Gb).[16] As the unit of current
in an electric circuit is the Volt, the Gilbert is a unit of magnetic flux in a
magnetic circuit. The SI units for magnetomotive force are Ampere (A) and
turn (tr). Turns are the winding number of an electromagnetic coil. The
winding number is the number of times the coil wraps around a point. In SI
units a Gilbert is equal to:

1 Gb =
10

4π
A · tr. (18)

The magnetic permeability µ0 (mu zero) is proportional to the energy
stored in a magnetic field.

µ0 ≈ (4π)(10−7) N · A−2. (19)

The revaluation of SI units in 2019 means µ is no longer an exact value.
However, it is sufficiently close to the number 4π × 10−7 for the difference
to be negligible. Magnetic permeability is related to electric permittivity ε0
(epsilon nought) by the following equivalence.

ε0 =
1

µ0c2
. (20)
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ε0 is proportional to the energy stored in an electric field. We divide a
Gilbert by ε0 and use Eq. 20 to simplify and parse dimensions.

1 Gb

ε0
≈ (10−6)(c2) N · A−1 · tr. (21)

The arrangement of units of Eq. (21) converts mass denominated in eV/c2

into rest energy described in Newton-Volt-turns, where n is the number of
electron volts and one turn is the winding number of a Hopf circle. I.E.

󰀕
n eV

c2

󰀖󰀕
1 Gb

ε0

󰀖
≈ n× 10−6 N · V · tr. (22)

The final value given in NVtr is numerically indistinguishable from MeV.

The discrepant topologies of point and circle offer an economical theory of
mass, but not one that plays well with the standard model. The smattering
of results presented here are a long way from a thorough-going theory, while
the many questions left open make it easy to discount a challenge to the
standard model. Nonetheless, the Σ, Ξ, Ω and electron masses are derived as
functions of the proton and neutron. It is the first time this has been done.
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