[ On the Distinct Aspect of Eleven]
Dwight Boddorf

A distinct aspect of eleven is defined. Aspect is utilized to index one hundred thirty-seven. Index is used to generate a plausible value for the fine structure constant.

Eleven is the only prime equal to a prime plus the square of a greater prime.
$11=2+3^{2}$
$P_{S}=P_{<}+P_{>}^{2}$
$P_{<}<P_{>}$
$\left(P_{S}\right)$ Prime sum
$\left(P_{<}\right)$Prime lesser
$\left(P_{>}\right)$Prime greater
Odd $+(\text { odd })^{2}=$ even
Odd $+(\text { even })^{2}=$ odd
Even $+(o d d)^{2}=$ odd
2 is the only even prime.
2 is the least of primes.

Must be
$2+P_{>}^{2}=P_{s}$
If; $n>3$ ( $n$ )atural number
$\frac{2+n^{2}}{3}=(w)$ hole number, except when $n$ is a multiple of 3
$\frac{2+n^{2}}{3}=w$, if $\frac{n}{3} \neq w$
$\frac{2+n^{2}}{3} \neq w$, if $\frac{n}{3}=w$
$\frac{2+4^{2}}{3}=6 \quad \frac{2+5^{2}}{3}=9$
$\frac{2+6^{2}}{3}=12.66 \ldots$
$\frac{2+7^{2}}{3}=17 \quad \frac{2+8^{2}}{3}=22$
$\frac{2+9^{2}}{3}=27.66 \ldots$.

If; $n>3$
and; n is prime, $\frac{n}{3} \neq w$
then; $2+n^{2}$ is not prime, $\frac{2+n^{2}}{3}=w$
If, $n>3$
and; $2+n^{2}$ is prime, $\frac{2+n^{2}}{3} \neq w$
then; n is not prime, $\frac{n}{3}=w$

Eleven is the only prime equal to a prime plus the square of a greater prime.

If; $P_{s}=P_{<}+P_{>}^{2}$
and; $P_{s}^{i}+P_{<}^{v}=P_{i_{v}}=11^{i}+2^{v}$
positive (i)nteger
positi(v)e integer
(P) rime $_{i_{v}}$
then;

$$
\begin{array}{lll}
P_{1_{1}}=13 & P_{2_{4}}=137 & P_{3_{7}}=1459 \\
P_{1_{4}}=19 & P_{2_{12}}=4217 & \\
P_{1_{5}}=43 & \\
P_{1_{7}}=139 &
\end{array}
$$

The least prime were (i) and (v) are both even is 137.
when; $P_{s}=P_{<}+P_{>}^{2}$ and; below

$$
\left[\sqrt{P_{S}^{2}+P_{<}^{4}}+\frac{1}{\left(P_{<}+P_{>}\right)^{2}+\left(P_{<}+P_{>}\right)^{4}+\frac{1}{\sqrt[4]{\left(P_{>} P_{>}\right)^{2}+P_{<}^{4}}}}\right]^{2}=x
$$

$$
\begin{aligned}
& {\left[\sqrt{11^{2}+2^{4}}+\frac{1}{(2+3)^{2}+(2+3)^{4}+\frac{1}{\sqrt[4]{(3(3))^{2}+2^{4}}}}\right]^{2}=x} \\
& {\left[\sqrt{11^{2}+2^{4}}+\frac{1}{5^{2}+5^{4}+\frac{1}{\sqrt[4]{3^{4}+2^{4}}}}\right]^{2}=x}
\end{aligned}
$$

then

$$
\left[\sqrt{137}+\frac{1}{650+\frac{1}{\sqrt[4]{97}}}\right]^{2}=137.03599917 \ldots \ldots
$$

## The simple equation

$$
2+3^{2}=11
$$

may have an understated impact.

